
Scalability, Portability, and

Productivity in GPU Computing

Wen-mei Hwu

Sanders AMD Chair, ECE and CS

University of Illinois, Urbana-Champaign

CTO, MulticoreWare

Agenda

• 4,224 Kepler GPUs in Blue Waters

• Programming Interfaces and Tools

• Conclusion and Outlook

Cornell April 6, 2014

Blue Waters Computing System
Operational at Illinois since 3/2013

Sonexion: 26 PBs

>1 TB/sec

100 GB/sec

10/40/100 Gb
Ethernet Switch

Spectra Logic: 300 PBs

120+ Gb/sec

WAN

IB Switch
12.5 PF

1.6 PB DRAM

$250M

Cornell April 6, 2014

Blue Waters and Titan

Computing Systems

NCSA ORNL

System Attribute Blue Waters Titan

Vendors Cray/AMD/NVIDIA Cray/AMD/NVIDIA

Processors Interlagos/Kepler Interlagos/Kepler

Total Peak Performance (PF) 12.5 27.1

Total Peak Performance (CPU/GPU) 7.1/5.4 2.6/24.5

Number of CPU Chips 49,504 18,688

Number of GPU Chips 4,224 18,688

Amount of CPU Memory (TB) 1600 584

Interconnect 3D Torus 3D Torus

Amount of On-line Disk Storage (PB) 26 13.6

Sustained Disk Transfer (TB/sec) >1 0.4-0.7

Amount of Archival Storage 300 15-30

Sustained Tape Transfer (GB/sec) 100 7

Cornell April 6, 2014

Why did we have only 4,224

GPUs in Blue Waters?

• Blue Waters will be the only Petascale machine

for the NSF community for at least two years

– Must minimize risk for petasacle application teams

• The NSF review panel was very concerned

about the usability of GPUs in 2011

– Small DRAM – up to 6GB

– Hard to program for application teams

– Lack of at-scale experience

– Lack of begin-to-end production use experience

Cornell April 6, 2014

APPLICATIONS

Cornell April 6, 2014

At Scale, Begin-to-end execution including I/O

Science Area Number

of

Teams

Codes Struct

Grids

Unstruct

Grids

Dense

Matrix

Sparse

Matrix

N-

Body

Monte

Carlo

FFT PIC Sig

I/O

Climate and

Weather

3 CESM, GCRM,

CM1/WRF, HOMME
X X X X X

Plasmas/

Magnetosphere

2 H3D(M),VPIC,

OSIRIS, Magtail/UPIC
X X X X

Stellar

Atmospheres and

Supernovae

5 PPM, MAESTRO,

CASTRO, SEDONA,

ChaNGa, MS-FLUKSS

X X X X X X

Cosmology 2 Enzo, pGADGET X X X

Combustion/

Turbulence

2 PSDNS, DISTUF X X

General Relativity 2 Cactus, Harm3D,

LazEV
X X

Molecular

Dynamics

4 AMBER, Gromacs,

NAMD, LAMMPS
X X X

Quantum Chemistry 2 SIAL, GAMESS,

NWChem
X X X X X

Material Science 3 NEMOS, OMEN, GW,

QMCPACK
X X X X

Earthquakes/

Seismology

2 AWP-ODC,

HERCULES, PLSQR,

SPECFEM3D

X X X X

Quantum Chromo

Dynamics

1 Chroma, MILC,

USQCD
X X X

Social Networks 1 EPISIMDEMICS

Evolution 1 Eve

Engineering/System

of Systems

1 GRIPS,Revisit X

Computer Science 1 X X X X XCornell April 6, 2014

Current Science Team Use of

GPUs

• About 1/3 of PRAC projects have active GPU efforts,
including

– AMBER

– LAMMPS

– USQCD/Chroma/MILC

– GAMESS

– NAMD

– QMCPACK

– PLSQR/SPECFEM3D

– PHOTONPLASMA

– AWP-ODC

• Others are investigating use of GPUs (e.g., Cactus, PPM,, MS-
FLUKSS)

Cornell April 6, 2014

Initial Production Use Results

• NAMD

– 100 million atom benchmark with Langevin dynamics and PME

once every 4 steps, from launch to finish, all I/O included

– 768 nodes, Kepler+Interlagos is 3.9X faster over Interlagos-only

– 768 nodes, XK7 is 1.8X XE6

• Chroma

– Lattice QCD parameters: grid size of 483 x 512 running at the

physical values of the quark masses

– 768 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only

– 768 nodes, XK7 is 2.4X XE6

• QMCPACK

– Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC

– 700 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only

– 700 nodes, XK7 is 2.7X XE6

Cornell April 6, 2014

Eight Techniques for Scalable Kernels

Memory

Bandwidth

Update

Contention

Load

Balance
Regularity Efficiency

Scatter to Gather X

Privatization X

Tiling X X

Coarsening X X X

Data Layout X X X

Input Binning X X

Regularization X X X

Compaction X X X X

Stratton, et al, IEEE Computer, 8/2012

Cornell April 6, 2014

Numerical Error and Stability
(case study: tridiagonal solver)

Cornell April 6,

2014

Matrix type SPIKE-diag_pivoting SPIKE-Thomas CUSPARSE MKL Intel SPIKE Matlab

1 1.82E-14 1.97E-14 7.14E-12 1.88E-14 1.39E-15 1.96E-14

2 1.27E-16 1.27E-16 1.69E-16 1.03E-16 1.02E-16 1.03E-16

3 1.55E-16 1.52E-16 2.57E-16 1.35E-16 1.29E-16 1.35E-16

4 1.37E-14 1.22E-14 1.39E-12 3.10E-15 1.69E-15 2.78E-15

5 1.07E-14 1.13E-14 1.82E-14 1.56E-14 4.62E-15 2.93E-14

6 1.05E-16 1.06E-16 1.57E-16 9.34E-17 9.51E-17 9.34E-17

7 2.42E-16 2.46E-16 5.13E-16 2.52E-16 2.55E-16 2.27E-16

8 2.14E-04 2.14E-04 1.50E+10 3.76E-04 2.32E-16 2.14E-04

9 2.32E-05 3.90E-04 1.93E+08 3.15E-05 9.07E-16 1.19E-05

10 4.27E-05 4.83E-05 2.74E+05 3.21E-05 4.72E-16 3.21E-05

11 7.52E-04 6.59E-02 4.54E+11 2.99E-04 2.20E-15 2.28E-04

12 5.58E-05 7.95E-05 5.55E-04 2.24E-05 5.52E-05 2.24E-05

13 5.51E-01 5.45E-01 1.12E+16 3.34E-01 3.92E-15 3.08E-01

14 2.86E+49 4.49E+49 2.92E+51 1.77E+48 3.86E+54 1.77E+48

15 2.09E+60 Nan Nan 1.47E+59 Fail 3.69E+58

16 Inf Nan Nan Inf Fail 4.68E+171

Relative Backward Error

Chang, et al, SC2012, new NVIDIA CUSPARSE

PROGRAMMING INTERFACES

AND TOOLS

Cornell April 6, 2014

Writing efficient parallel code

is complicated.

• Distribute computation across

• cores,

• hardware threads, and

• vector processing elements

• Distribute data across

• discrete GPUs or

• clusters

• Orchestrate communication for

• reductions,

• variable-size list creation,

• stencils, etc.

• Rearrange data for locality

• Fuse or split loops

• Map loop iterations onto hardware

• Allocate memory

• Partition data

• Insert data movement code

• Reduction trees

• Array packing

• Boundary cell communication

Planning how to execute

an algorithm

Implementing the plan

Cornell April 6, 2014

Levels of GPU Programming

Interfaces

Cornell April 6, 2014

Current generation CUDA, OpenCL, DirectCompute

Next generation OpenACC, C++AMP, Thrust, Bolt

Simplifies data movement, kernel details and kernel launch

Same GPU execution model (but less boilerplate)

Prototype & in development X10, Chapel, Nesl, Delite,

Par4all, Triolet/Tangram...

Implementation manages GPU threading and synchronization

invisibly to user

LOW-LEVEL INTERFACE

Cornell April 6, 2014

CPU vs. GPU Code Versions

• Maintaining multiple code versions is extremely

expensive

• Most CUDA/OpenCL developers maintain

original CPU version

• Many developers report that when they back

ported the CUDA/OpenCL algorithms to CPU,

they got better performing code

– Locality, SIMD, multicore

• MxPA is designed to automate this process
(John Stratton, Hee-Seok Kim, Izzat El Hajj)

Cornell April 6, 2014

Treatment of Work-Items

st
at

em
en

ts

work-items

for(i=0; i<N; ++i){

statement1(i);

statement2(i);

...

statementM(i);

}

for(x=0; x<N; x+=S){

statement1(i:S);

statement2(i:S);

...

statementM(i:S);

}

st
at

em
en

ts

work-items

time goes from lighter to darkertime goes in direction of arrows

Serialization-based

work-item treatment

Vectorization-based

work-item treatment

i = get_global_id(0);

statement1(i);

statement2(i);

...

statementM(i);

Original OpenCL kernel

Cornell April 6, 2014

Example: K-means (Rodinia)

if (point_id < npoints) {

float min_dist=FLT_MAX;

for (int i=0; i < nclusters; i++) {

float dist = 0;

float ans = 0;

for (int l=0; l<nfeatures; l++) {

ans +=

(feature[l*npoints+point_id] - clusters[i*nfeatures+l])

*(feature[l*npoints+point_id] - clusters[i*nfeatures+l]);

}

dist = ans;

if (dist < min_dist) {

min_dist = dist;

index = i;

}

}

membership[point_id] = index;

}
Cornell April 6, 2014

Example: K-means (Rodinia)

feature clusters

fe
at

u
re

s

points

cl
u

st
er

s

features

Cornell April 6, 2014

Example: K-means (Rodinia)

feature clusters

fe
at

u
re

s

points

cl
u

st
er

s

features

Cornell April 6, 2014

MxPA Results

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

S
p

e
e

d
u

p
 (

n
o

rm
.
to

 f
a

s
te

s
t)

amd

intel

MxPA

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

S
p

e
e

d
u

p
 (

n
o

rm
.
to

 f
a

s
te

s
t)

Cornell April 6, 2014

MxPA MOCFE-Bone Results

Configurations: Nodes = 1, Groups = 25, Angles = 128, MeshScale=10

(Elements=103)

0

0.5

1

1.5

2

2.5

W
h

o
le

 A
p

p
li
c

a
ti

o
n

 E
x
e
c

u
ti

o
n

 T
im

e

(n
o

rm
.)

Program Version

Fixed Transformed Breakdown Unavailable

Cornell April 6, 2014

HIGH-LEVEL INTERFACE

Cornell April 6, 2014

High-Level Languages: Does relinquishing

control mean giving up performance?

• High-level tools are making strides in usability, generality, and performance

• Typically designed to be effective on a small problem domain

• Performance lost from

– Optimization heuristics outside programmer’s control (e.g., vectors vs. threads)

– Requiring programmers to reformulate algorithm in ways that add computation

• Need flexible languages that accept programmer hints for performance-

critical decisions

0

2

4

6

8

10

Triolet Eden

Parallel loop body

Data partitioning &
communication

Transposition

S
e
c
o
n
d
s

SGEMM execution time, 4 node × 16 core cluster

Cornell April 6, 2014

Huge overhead is often caused by

the generality of the interface.

Cornell April 6, 2014

Source: Dun and Taura,

IPDPSW 2012

iter myIter(min:int, max:int, step:int=1) {

while min <= max {

yield min;

min += step;

}}

for j in myIter(1,N) do ...;for j in [1..N] do ...;

Time to execute a one-iteration loop on CPU in Chapel

Chapel-to-GPU

compiler expects

this form

• Many performance pitfalls

are fixable, but will still

cause problems for

novices

Who does the hard work in

parallelization?

• General-purpose language + parallelizing compiler

– Requires a very intelligent compiler

– Limited success outside of regular array algorithms

• Delite - Domain-specific language + domain-specific

compiler

– Simplify compiler’s job with language restrictions and extensions

– Requires customizing a compiler for each domain

• Triolet - Parallel library + general-purpose compiler

– Library makes parallelization decisions

– Uses a general-purpose, rich transformation compiler

– Extensible—just add library functions

Cornell April 6, 2014

Who does the hard work in

parallelization?

• General-purpose language + parallelizing compiler

– Requires a very intelligent compiler

– Limited success outside of regular array algorithms

• Delite - Domain-specific language + domain-specific

compiler

– Simplify compiler’s job with language restrictions and extensions

– Requires customizing a compiler for each domain

• Triolet - Parallel library + general-purpose compiler

– Library makes parallelization decisions

– Uses a general-purpose, rich transformation compiler

– Extensible—just add library functions

Cornell April 6, 2014

Matrix multiplication in Triolet

zipped_AB = outerproduct(rows(A), rows(BT))

C = [dotproduct(a, b)
for (a, b) in par(zipped_AB)]

Example: 2D Data Distribution on a

Cluster
• Matrix multiplication has a block-based data decomposition

• Difficult to write manually, but still a simple and regular pattern

• Triolet library provides functions for looping over a data structure

– Expresses parallelism and access pattern together

• This is the entire algorithm:

2D blocked

matrix multiplication

A

BT

Cornell April 6, 2014

Data Decomposition in Triolet

Matrix multiplication in Triolet

A

BT

Cornell April 6, 2014

Data Decomposition in Triolet

Matrix multiplication in Triolet

zipped_AB = outerproduct(rows(A), rows(BT))

C = [dotproduct(a, b)
for (a, b) in par(zipped_AB)]

Cornell April 6, 2014

Data Decomposition in Triolet

Matrix multiplication in Triolet

zipped_AB = outerproduct(rows(A), rows(BT))

C = [dotproduct(a, b)
for (a, b) in par(zipped_AB)]

zipped_AB

Cornell April 6, 2014

Data Decomposition in Triolet

Matrix multiplication in Triolet

zipped_AB = outerproduct(rows(A), rows(BT))

C = [dotproduct(a, b)
for (a, b) in par(zipped_AB)]

C

Cornell April 6, 2014

Data Decomposition in Triolet

• Parallel loop assigns a range of output to each cluster node

Matrix multiplication in Triolet

zipped_AB = outerproduct(rows(A), rows(BT))

C = [dotproduct(a, b)
for (a, b) in par(zipped_AB)]

Give me input range (0,100)–(99, 199)

Cornell April 6, 2014

Data Decomposition in Triolet

• Parallel loop assigns a range of output to each cluster node

• Library functions translate output ranges into input ranges

Matrix multiplication in Triolet

zipped_AB = outerproduct(rows(A), rows(BT))

C = [dotproduct(a, b)
for (a, b) in par(zipped_AB)]

Give me input range (0,100)–(99, 199)

Give me input range (0,99) from rows(A)

Give me input range (100, 199) from rows(BT)

Cornell April 6, 2014

Data Decomposition in Triolet

• Parallel loop assigns a range of output to each cluster node

• Library functions translate output ranges into input ranges

• and find the subarrays to send to each node

Matrix multiplication in Triolet

zipped_AB = outerproduct(rows(A), rows(BT))

C = [dotproduct(a, b)
for (a, b) in par(zipped_AB)]

Give me input range (0,100)–(99, 199)

Give me input range (0,99) from rows(A)

Give me input range (100, 199) from rows(BT)

Take rows 0–99 of A

Take rows 100–199 of B

Cornell April 6, 2014

Cluster-Parallel Performance and Scalability

• Triolet delivers large

speedup over

sequential C

– On par with manually

parallelized C

– Except in CUTCP;

needs better GC

policy for large arrays

• Similar high-level

interfaces incur

additional overhead

– Message passing

– Array split/merge

– Run time variability

MRI-Q TPACF

SGEMM CUTCP

S
p
e
e
d
u
p
 o

v
e
r

s
e

q
u
e
n
ti
a
l
C

 c
o
d
e

Number of cores Number of cores

Rodrigues, et al PPoPP 2014
Cornell April 6, 2014

Map/Reduce

Example: 1D convolution

0 1 2 3 4 5 6 7 8 9
1

0
11

0 1 2 3 4 5 6 7 8 9
1

0
11

0 1 2 3 4 5 6 7 8 9
1

0
11

xl=shift(input, -1)

xll=shift(input, -2)

x=input

output = map(compute_kernel, zip(x, xl, xll)[:])

1 2 3

0 1 2

*

Reduce

(+)

5 8 11
1

4

1

7

2

0

2

3

2

6

2

9

3

2

3

5

3

8output

compute_kernel = reduce(+, map(*, kernel[:], zipped_elements[:]))

Kerne

l
0 1 2

zip
7 9

1

0

0 1 2

*

Reduce

(+)

… ……

Cornell April 6, 2014

Loop Fusion of Map

• Fused

– Increased locality

– More execution resources

per element

• Fission

– f() and g() may have

different dependencies

-> expose parallelism by

splitting them

0 2 4 6 8
1

0

1

2

1

4

1

6

f(x)

0 1 2 3 4 5 6 7 8

1 3 5 7 9 11
1

3

1

5

1

7

g(x)

0 2 4 6 8
1

0

1

2

1

4

1

6

g(f(x))

1 3 5 7 9 11
1

3

1

5

1

7

0 1 2 3 4 5 6 7 8

Fusion Fissio

n

Cornell April 6, 2014

An Opportunity of a Lifetime

• Scalable and portable software lasts through

many hardware generations

Scalable algorithms and libraries could

be the best legacy we can leave behind

from this era

Cornell April 6, 2014

Conclusion and Outlook

• We have enjoyed some victories

– Good set of applications and kernels

– Good low-level interface in major languages

– Good initial results, educated developers

• We will face more challenges

– Potential fragmentation of programming interfaces

– Widen the set of applications, algorithms and kernels

• Analytics and machine learning

– Productive, robust programming interfaces and tools

Cornell April 6, 2014

Acknowledgements

Cornell April 6, 2014

• D. August (Princeton), S. Baghsorkhi (Illinois), N. Bell
(NVIDIA), D. Callahan (Microsoft), J. Cohen (NVIDIA), B.
Dally (Stanford), J. Demmel (Berkeley), P. Dubey (Intel), M.
Frank (Intel), M. Garland (NVIDIA), Isaac Gelado (BSC), M.
Gschwind (IBM), R. Hank (Google), J. Hennessy (Stanford),
P. Hanrahan (Stanford), M. Houston (AMD), T. Huang
(Illinois), D. Kaeli (NEU), K. Keutzer (Berkeley), I. Gelado
(UPC), B. Gropp (Illinois), D. Kirk (NVIDIA), D. Kuck (Intel),
S. Mahlke (Michigan), T. Mattson (Intel), N. Navarro (UPC), J.
Owens (Davis), D. Padua (Illinois), S. Patel (Illinois), Y. Patt
(Texas), D. Patterson (Berkeley), C. Rodrigues (Illinois), S.
Ryoo (ZeroSoft), K. Schulten (Illinois), B. Smith (Microsoft),
M. Snir (Illinois), I. Sung (Illinois), P. Stenstrom (Chalmers), J.
Stone (Illinois), S. Stone (Harvard) J. Stratton (Illinois), H.
Takizawa (Tohoku), M. Valero (UPC)

• And many others!

THANK YOU!

Cornell April 6, 2014

There is always hope.

– Aragorn in the eve of the Battle of Pelennor

Minas Tirith

SOME IMPORTANT TRENDS

Cornell April 6, 2014

DRAM trends in bandwidth

Source: J. Thomas Pawlowski, “Hybrid

Memory Cube (HMC)”, Hot Chips 23

0

20

40

60

80

100

120

140

Bandwidth in GB/s

Bandwidth (GB/s)

Cornell April 6, 2014

Exascale Energy Pressure

• Pressure for higher energy efficiency will likely

make processors more difficult to program

– More specialized processor data path (width,

connectivity, etc.)

– Wider SIMD

– More system-level data movement control

– Smaller on-chip storage per thread

– …

Cornell April 6, 2014

Today’s Data Transfer Behavior

Main Memory

(DRAM)

GPU card

(or other Accelerator cards)

CPU

DMADevice

Memory

Network I/O

Disk I/O

Each additional copy

diminishes application-

perceived bandwidth

Cornell April 6, 2014

Desired Data Transfer Behavior

with UVAS/UPAS/P2P DMA

Main Memory

(DRAM)

GPU card

(or other Accelerator cards)

CPU

DMADevice

Memory

Network I/O

Disk I/O

Cornell April 6, 2014

Algorithm Design Challenges

Parallelism

• Parallelism to fill growing HW parallelism

Data Scalability

• Operations should grow linearly with data size

Locality

• DRAM burst and cache space utilization

Regularity

• SIMD utilization and load balance

Numerical Stability

• Pivoting for linear system solvers

Cornell April 6, 2014

Cray XK7 Nodes

• Dual-socket Node

– One AMD Interlagos chip

• 8 core modules, 32 threads

• 156.5 GFs peak performance

• 32 GBs memory

– 51 GB/s bandwidth

– One NVIDIA Kepler chip

• 1.3 TFs peak performance

• 6 GBs GDDR5 memory

– 250 GB/sec bandwidth

– Gemini Interconnect

• Same as XE6 nodes
Blue Waters contains 4,224

Cray XK7 compute nodes.

Cornell April 6, 2014

Cray XE6 Nodes

• Dual-socket Node

– Two AMD Interlagos

chips

• 16 core modules, 64 threads

• 313 GFs peak performance

• 64 GBs memory

– 102 GB/sec memory

bandwidth

– Gemini Interconnect

• Router chip & network

interface

• Injection Bandwidth (peak)

– 9.6 GB/sec per direction

Blue Waters contains

22,640 Cray XE6 compute

nodes.

Cornell April 6, 2014

Scalable GPU Libraries

• Dense Linear algebra—BLAS, LU, Cholesky,

Eigen solvers (CUBLAS, CULA, MAGMA)

• Sparse Matrix Vector Multiplication, Tridiagonal

solvers (CUSPARSE, QUDA, ViennaCL, Parboil)

• FFTs, Convolutions (CUFFT, ViennaCL, Parboil)

• N-Body (NAMD/VMD, FMM BU, Parboil)

• Histograms (CUB, Parboil)

• Some PDE solvers (CURRENT, Parboil)

• Graphs – Breadth-First Search (Parboil)

• Image Processing (OpenCV)

Cornell April 6, 2014

Example of Library Needs

• Sparse linear algebra

– Sparse LU, Cholesky factorization(?)

– Sparse Eigen solvers

• Graph algorithm

– Graph partitioning

– Depth first search

– …

• …

Cornell April 6, 2014

