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Blue Waters Computing System
Operational at Illinois since 3/2013

Sonexion: 26 PBs

>1 TB/sec

100 GB/sec

10/40/100 Gb
Ethernet Switch

Spectra Logic: 300 PBs

120+ Gb/sec

WAN

IB Switch
12.5 PF

1.6 PB DRAM

$250M
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Blue Waters and Titan 

Computing Systems

NCSA ORNL

System Attribute Blue Waters Titan

Vendors Cray/AMD/NVIDIA Cray/AMD/NVIDIA

Processors Interlagos/Kepler Interlagos/Kepler

Total Peak Performance (PF) 12.5 27.1

Total Peak Performance (CPU/GPU) 7.1/5.4 2.6/24.5

Number of CPU Chips 49,504 18,688

Number of GPU Chips 4,224 18,688

Amount of CPU Memory (TB) 1600 584

Interconnect 3D Torus 3D Torus

Amount of On-line Disk Storage (PB) 26 13.6

Sustained Disk Transfer (TB/sec) >1 0.4-0.7

Amount of Archival Storage 300 15-30

Sustained Tape Transfer (GB/sec) 100 7
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Why did we have only 4,224 

GPUs in Blue Waters?

• Blue Waters will be the only Petascale machine 

for the NSF community for at least two years

– Must minimize risk for petasacle application teams

• The NSF review panel was very concerned 

about the usability of GPUs in 2011

– Small DRAM – up to 6GB

– Hard to program for application teams

– Lack of at-scale experience

– Lack of begin-to-end production use experience
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APPLICATIONS
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At Scale, Begin-to-end execution including I/O



Science Area Number 

of 

Teams

Codes Struct

Grids

Unstruct

Grids

Dense 

Matrix

Sparse 

Matrix

N-

Body

Monte 

Carlo

FFT PIC Sig

I/O

Climate and 

Weather

3 CESM, GCRM, 

CM1/WRF, HOMME
X X X X X

Plasmas/

Magnetosphere

2 H3D(M),VPIC, 

OSIRIS, Magtail/UPIC
X X X X

Stellar

Atmospheres and 

Supernovae

5 PPM, MAESTRO, 

CASTRO, SEDONA, 

ChaNGa, MS-FLUKSS

X X X X X X

Cosmology 2 Enzo, pGADGET X X X

Combustion/

Turbulence

2 PSDNS, DISTUF X X

General Relativity 2 Cactus, Harm3D, 

LazEV
X X

Molecular 

Dynamics

4 AMBER, Gromacs, 

NAMD, LAMMPS
X X X

Quantum Chemistry 2 SIAL, GAMESS, 

NWChem
X X X X X

Material Science 3 NEMOS, OMEN, GW, 

QMCPACK
X X X X

Earthquakes/

Seismology

2 AWP-ODC, 

HERCULES, PLSQR, 

SPECFEM3D

X X X X

Quantum Chromo 

Dynamics

1 Chroma, MILC, 

USQCD
X X X

Social Networks 1 EPISIMDEMICS

Evolution 1 Eve

Engineering/System 

of Systems

1 GRIPS,Revisit X

Computer Science 1 X X X X XCornell April 6, 2014



Current Science Team Use of 

GPUs

• About 1/3 of PRAC projects have active GPU efforts, 
including

– AMBER

– LAMMPS

– USQCD/Chroma/MILC

– GAMESS

– NAMD

– QMCPACK

– PLSQR/SPECFEM3D

– PHOTONPLASMA

– AWP-ODC

• Others are investigating use of GPUs (e.g., Cactus, PPM,, MS-
FLUKSS)
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Initial Production Use Results 

• NAMD

– 100 million atom benchmark with Langevin dynamics and PME 

once every 4 steps, from launch to finish, all I/O included

– 768 nodes, Kepler+Interlagos is 3.9X faster over Interlagos-only

– 768 nodes, XK7 is 1.8X XE6

• Chroma

– Lattice QCD parameters: grid size of 483 x 512 running at the 

physical values of the quark masses

– 768 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only

– 768 nodes, XK7 is 2.4X XE6

• QMCPACK

– Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC

– 700 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only

– 700 nodes, XK7 is 2.7X XE6
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Eight Techniques for Scalable Kernels

Memory 

Bandwidth

Update

Contention 

Load 

Balance
Regularity Efficiency

Scatter to Gather X

Privatization X

Tiling X X

Coarsening X X X

Data Layout X X X

Input Binning X X

Regularization X X X

Compaction X X X X

Stratton, et al, IEEE Computer, 8/2012
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Numerical Error and Stability
(case study: tridiagonal solver)

Cornell April 6, 

2014

Matrix type SPIKE-diag_pivoting  SPIKE-Thomas CUSPARSE MKL Intel SPIKE Matlab

1 1.82E-14 1.97E-14 7.14E-12 1.88E-14 1.39E-15 1.96E-14

2 1.27E-16 1.27E-16 1.69E-16 1.03E-16 1.02E-16 1.03E-16

3 1.55E-16 1.52E-16 2.57E-16 1.35E-16 1.29E-16 1.35E-16

4 1.37E-14 1.22E-14 1.39E-12 3.10E-15 1.69E-15 2.78E-15

5 1.07E-14 1.13E-14 1.82E-14 1.56E-14 4.62E-15 2.93E-14

6 1.05E-16 1.06E-16 1.57E-16 9.34E-17 9.51E-17 9.34E-17

7 2.42E-16 2.46E-16 5.13E-16 2.52E-16 2.55E-16 2.27E-16

8 2.14E-04 2.14E-04 1.50E+10 3.76E-04 2.32E-16 2.14E-04

9 2.32E-05 3.90E-04 1.93E+08 3.15E-05 9.07E-16 1.19E-05

10 4.27E-05 4.83E-05 2.74E+05 3.21E-05 4.72E-16 3.21E-05

11 7.52E-04 6.59E-02 4.54E+11 2.99E-04 2.20E-15 2.28E-04

12 5.58E-05 7.95E-05 5.55E-04 2.24E-05 5.52E-05 2.24E-05

13 5.51E-01 5.45E-01 1.12E+16 3.34E-01 3.92E-15 3.08E-01

14 2.86E+49 4.49E+49 2.92E+51 1.77E+48 3.86E+54 1.77E+48

15 2.09E+60 Nan Nan 1.47E+59 Fail 3.69E+58

16 Inf Nan Nan Inf Fail 4.68E+171

Relative Backward Error

Chang, et al, SC2012, new NVIDIA CUSPARSE



PROGRAMMING INTERFACES 

AND TOOLS

Cornell April 6, 2014



Writing efficient parallel code

is complicated.

• Distribute computation across

• cores,

• hardware threads, and

• vector processing elements

• Distribute data across

• discrete GPUs or

• clusters

• Orchestrate communication for

• reductions,

• variable-size list creation,

• stencils, etc.

• Rearrange data for locality

• Fuse or split loops

• Map loop iterations onto hardware

• Allocate memory

• Partition data

• Insert data movement code

• Reduction trees

• Array packing

• Boundary cell communication

Planning how to execute 

an algorithm

Implementing the plan
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Levels of GPU Programming 

Interfaces
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Current generation CUDA, OpenCL, DirectCompute

Next generation OpenACC, C++AMP, Thrust, Bolt

Simplifies data movement, kernel details and kernel launch

Same GPU execution model (but less boilerplate)

Prototype & in development X10, Chapel, Nesl, Delite, 

Par4all, Triolet/Tangram...

Implementation manages GPU threading and synchronization

invisibly to user



LOW-LEVEL INTERFACE
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CPU vs. GPU Code Versions

• Maintaining multiple code versions is extremely 

expensive 

• Most CUDA/OpenCL developers maintain 

original CPU version

• Many developers report that when they back 

ported the CUDA/OpenCL algorithms to CPU, 

they got better performing code

– Locality, SIMD, multicore

• MxPA is designed to automate this process  
(John Stratton, Hee-Seok Kim, Izzat El Hajj)
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Treatment of Work-Items

st
at

em
en

ts

work-items

for(i=0; i<N; ++i){

statement1(i);

statement2(i);

...

statementM(i);

}

for(x=0; x<N; x+=S){

statement1(i:S);

statement2(i:S);

...

statementM(i:S);

}

st
at

em
en

ts

work-items

time goes from lighter to darkertime goes in direction of arrows

Serialization-based

work-item treatment

Vectorization-based

work-item treatment

i = get_global_id(0);

statement1(i);

statement2(i);

...

statementM(i);

Original OpenCL kernel
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Example: K-means (Rodinia)

if (point_id < npoints) {

float min_dist=FLT_MAX;

for (int i=0; i < nclusters; i++) {

float dist = 0;

float ans = 0;

for (int l=0; l<nfeatures; l++) {

ans += 

(feature[l*npoints+point_id] - clusters[i*nfeatures+l])

*(feature[l*npoints+point_id] - clusters[i*nfeatures+l]);

}

dist = ans;

if (dist < min_dist) {

min_dist = dist;

index = i;

}

}

membership[point_id] = index;

}
Cornell April 6, 2014



Example: K-means (Rodinia)

feature clusters

fe
at

u
re

s

points

cl
u

st
er

s

features
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Example: K-means (Rodinia)

feature clusters

fe
at

u
re

s

points

cl
u

st
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s

features
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MxPA Results
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MxPA MOCFE-Bone Results 

Configurations: Nodes = 1, Groups = 25, Angles = 128, MeshScale=10 

(Elements=103)
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HIGH-LEVEL INTERFACE

Cornell April 6, 2014



High-Level Languages: Does relinquishing 

control mean giving up performance?

• High-level tools are making strides in usability, generality, and performance

• Typically designed to be effective on a small problem domain

• Performance lost from

– Optimization heuristics outside programmer’s control (e.g., vectors vs. threads)

– Requiring programmers to reformulate algorithm in ways that add computation

• Need flexible languages that accept programmer hints for performance-

critical decisions

0

2

4

6

8

10

Triolet Eden

Parallel loop body

Data partitioning &
communication

Transposition

S
e
c
o
n
d
s

SGEMM execution time, 4 node × 16 core cluster
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Huge overhead is often caused by 

the generality of the interface.

Cornell April 6, 2014

Source: Dun and Taura,

IPDPSW 2012

iter myIter(min:int, max:int, step:int=1) {

while min <= max {

yield min;

min += step;

}}

for j in myIter(1,N) do ...;for j in [1..N] do ...;

Time to execute a one-iteration loop on CPU in Chapel

Chapel-to-GPU 

compiler expects 

this form

• Many performance pitfalls 

are fixable, but will still 

cause problems for 

novices



Who does the hard work in 

parallelization?

• General-purpose language + parallelizing compiler

– Requires a very intelligent compiler

– Limited success outside of regular array algorithms

• Delite - Domain-specific language + domain-specific 

compiler

– Simplify compiler’s job with language restrictions and extensions

– Requires customizing a compiler for each domain

• Triolet - Parallel library + general-purpose compiler

– Library makes parallelization decisions

– Uses a general-purpose, rich transformation compiler

– Extensible—just add library functions
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# Matrix multiplication in Triolet

zipped_AB = outerproduct(rows(A), rows(BT))

C = [dotproduct(a, b)
for (a, b) in par(zipped_AB)]

Example: 2D Data Distribution on a 

Cluster
• Matrix multiplication has a block-based data decomposition

• Difficult to write manually, but still a simple and regular pattern

• Triolet library provides functions for looping over a data structure

– Expresses parallelism and access pattern together

• This is the entire algorithm:

2D blocked

matrix multiplication

A

BT
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Data Decomposition in Triolet

# Matrix multiplication in Triolet

A

BT
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Data Decomposition in Triolet

# Matrix multiplication in Triolet

zipped_AB = outerproduct(rows(A), rows(BT))

C = [dotproduct(a, b)
for (a, b) in par(zipped_AB)]
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Data Decomposition in Triolet

# Matrix multiplication in Triolet

zipped_AB = outerproduct(rows(A), rows(BT))

C = [dotproduct(a, b)
for (a, b) in par(zipped_AB)]

zipped_AB
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Data Decomposition in Triolet

# Matrix multiplication in Triolet

zipped_AB = outerproduct(rows(A), rows(BT))

C = [dotproduct(a, b)
for (a, b) in par(zipped_AB)]

C
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Data Decomposition in Triolet

• Parallel loop assigns a range of output to each cluster node

# Matrix multiplication in Triolet

zipped_AB = outerproduct(rows(A), rows(BT))

C = [dotproduct(a, b)
for (a, b) in par(zipped_AB)]

Give me input range  (0,100)–(99, 199)
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Data Decomposition in Triolet

• Parallel loop assigns a range of output to each cluster node

• Library functions translate output ranges into input ranges

# Matrix multiplication in Triolet

zipped_AB = outerproduct(rows(A), rows(BT))

C = [dotproduct(a, b)
for (a, b) in par(zipped_AB)]

Give me input range  (0,100)–(99, 199)

Give me input range  (0,99) from rows(A)

Give me input range (100, 199) from rows(BT)

Cornell April 6, 2014



Data Decomposition in Triolet

• Parallel loop assigns a range of output to each cluster node

• Library functions translate output ranges into input ranges

• and find the subarrays to send to each node

# Matrix multiplication in Triolet

zipped_AB = outerproduct(rows(A), rows(BT))

C = [dotproduct(a, b)
for (a, b) in par(zipped_AB)]

Give me input range  (0,100)–(99, 199)

Give me input range  (0,99) from rows(A)

Give me input range (100, 199) from rows(BT)

Take rows 0–99 of A

Take rows 100–199 of B
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Cluster-Parallel Performance and Scalability

• Triolet delivers large 

speedup over 

sequential C

– On par with manually 

parallelized C

– Except in CUTCP; 

needs better GC 

policy for large arrays

• Similar high-level 

interfaces incur 

additional overhead

– Message passing

– Array split/merge

– Run time variability

MRI-Q TPACF

SGEMM CUTCP

S
p
e
e
d
u
p
 o

v
e
r 

s
e

q
u
e
n
ti
a
l 
C
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o
d
e

Number of cores Number of cores

Rodrigues, et al PPoPP 2014
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Map/Reduce 

Example: 1D convolution 

0 1 2 3 4 5 6 7 8 9
1

0
11

0 1 2 3 4 5 6 7 8 9
1

0
11

0 1 2 3 4 5 6 7 8 9
1

0
11

xl=shift(input, -1)

xll=shift(input, -2)

x=input

output = map(compute_kernel, zip(x, xl, xll)[:])

1 2 3

0 1 2

*

Reduce 

(+)

5 8 11
1

4

1

7

2

0

2

3

2

6

2

9

3

2

3

5

3

8output

compute_kernel = reduce(+, map(*, kernel[:], zipped_elements[:]))

Kerne

l
0 1 2

zip
7 9

1

0

0 1 2

*

Reduce 

(+)

… ……
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Loop Fusion of Map

• Fused

– Increased locality

– More execution resources 

per element

• Fission

– f() and g() may have 

different dependencies

-> expose parallelism by 

splitting them

0 2 4 6 8
1

0

1

2

1

4

1

6

f(x)

0 1 2 3 4 5 6 7 8

1 3 5 7 9 11
1

3

1

5

1

7

g(x)

0 2 4 6 8
1

0

1

2

1

4

1

6

g(f(x))

1 3 5 7 9 11
1

3

1

5

1

7

0 1 2 3 4 5 6 7 8

Fusion Fissio

n
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An Opportunity of a Lifetime

• Scalable and portable software lasts through 

many hardware generations

Scalable algorithms and libraries could  

be the best legacy we can leave behind 

from this era
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Conclusion and Outlook

• We have enjoyed some victories

– Good set of applications and kernels

– Good low-level interface in major languages

– Good initial results, educated developers

• We will face more challenges

– Potential fragmentation of programming interfaces

– Widen the set of applications, algorithms and kernels

• Analytics and machine learning

– Productive, robust programming interfaces and tools
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THANK YOU!
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There is always hope. 

– Aragorn in the eve of the Battle of Pelennor

Minas Tirith



SOME IMPORTANT TRENDS
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DRAM trends in bandwidth

Source: J. Thomas Pawlowski, “Hybrid 

Memory Cube (HMC)”, Hot Chips 23
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Exascale Energy Pressure

• Pressure for higher energy efficiency will likely 

make processors more difficult to program

– More specialized processor data path (width, 

connectivity, etc.)

– Wider SIMD

– More system-level data movement control

– Smaller on-chip storage per thread

– …
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Today’s Data Transfer Behavior

Main Memory 

(DRAM)

GPU card 

(or other Accelerator cards)

CPU

DMADevice 

Memory

Network I/O

Disk I/O

Each additional copy 

diminishes application-

perceived bandwidth 
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Desired Data Transfer Behavior

with UVAS/UPAS/P2P DMA

Main Memory 

(DRAM)

GPU card 

(or other Accelerator cards)

CPU

DMADevice 

Memory

Network I/O

Disk I/O
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Algorithm Design Challenges

Parallelism

• Parallelism to fill growing HW parallelism

Data Scalability

• Operations should grow linearly with data size

Locality

• DRAM burst and cache space utilization

Regularity

• SIMD utilization and load balance

Numerical Stability

• Pivoting for linear system solvers
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Cray XK7 Nodes

• Dual-socket Node

– One AMD Interlagos chip

• 8 core modules, 32 threads

• 156.5 GFs peak performance

• 32 GBs memory

– 51 GB/s bandwidth

– One NVIDIA Kepler chip

• 1.3 TFs peak performance

• 6 GBs GDDR5 memory

– 250 GB/sec bandwidth

– Gemini Interconnect

• Same as XE6 nodes
Blue Waters contains 4,224 

Cray XK7 compute nodes.
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Cray XE6 Nodes

• Dual-socket Node

– Two AMD Interlagos

chips

• 16 core modules, 64 threads

• 313 GFs peak performance

• 64 GBs memory

– 102 GB/sec memory 

bandwidth

– Gemini Interconnect

• Router chip & network 

interface

• Injection Bandwidth (peak)

– 9.6 GB/sec per direction

Blue Waters contains 

22,640 Cray XE6 compute 

nodes.

Cornell April 6, 2014



Scalable GPU Libraries

• Dense Linear algebra—BLAS,  LU, Cholesky, 

Eigen solvers (CUBLAS, CULA, MAGMA)

• Sparse Matrix Vector Multiplication, Tridiagonal

solvers (CUSPARSE, QUDA, ViennaCL, Parboil)

• FFTs, Convolutions (CUFFT, ViennaCL, Parboil)

• N-Body (NAMD/VMD, FMM BU, Parboil)

• Histograms (CUB, Parboil)

• Some PDE solvers (CURRENT, Parboil)

• Graphs – Breadth-First Search (Parboil)

• Image Processing (OpenCV)
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Example of Library Needs

• Sparse linear algebra

– Sparse LU, Cholesky factorization(?)

– Sparse Eigen solvers 

• Graph algorithm

– Graph partitioning 

– Depth first search

– …

• …
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