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Agenda

• Revolutionary paradigm shift in applications

• Post-Dennard technology pivot

• Engineering high-efficiency scalable algorithm libraries for 
heterogeneous parallel computing



A major paradigm shift

 In the 20th Century, we were able to understand, design, and 
manufacture what we can measure
• Physical instruments and computing systems allowed us to see farther, capture 

more, communicate better, understand natural processes, control artificial 
processes…
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 In the 21st Century, we are able to understand, design, and create what 
we can compute
• Computational models are allowing us to see even farther, going back and 

forth in time, learn better, test hypothesis that cannot be verified any other 
way, create safe artificial processes…



Examples of Paradigm Shift
20th Century

 Small mask patterns

 Electronic microscope and Crystallography 
with computational image processing

 Anatomic imaging with computational 
image processing

 Teleconference

 GPS 

21st Century

 Optical proximity correction

 Computational microscope with initial 
conditions from Crystallography 

 Metabolic imaging sees disease before 
visible anatomic change

 Tele-emersion

 Self-driving cars



What is powering the paradigm shift? 

• Large clusters (scale out) allow solving realistic problems
• 1.5 Peta bytes of DRAM in Blue Waters
• E.g., 0.5 Å (0.05 nm) grid spacing is needed for accurate molecular dynamics 

• interesting biological systems have dimensions of mm or larger
• Thousands of nodes are required to hold and update all the grid points.

• Fast nodes (scale up) allow solution at realistic time scales
• Simulation time steps at femtosecond (10-15 second) level needed for accuracy

• Biological processes take milliseconds or longer
• Current molecular dynamics simulations progress at about one day for each 100 

microseconds of the simulated process.
• Interesting computational experiments take weeks (used to be months)



Blue Waters Computing System
Operational at Illinois since 3/2013

Sonexion: 26 PBs

>1 TB/sec

100 GB/sec

10/40/100 Gb
Ethernet Switch

Spectra Logic: 300 PBs

120+ Gb/sec

WAN

IB Switch12.5 PF
1.6 PB DRAM

$250M

49,504 CPUs -- 4,224 GPUs



What types of applications are demanding 
computing power today? 
• First-principle-based models

• Problems that we know how to solve accurately but chose not to because it 
would be “too expensive”

• High-valued applications with approximations that cause inaccuracies and lost 
opportunities

• Medicate imaging, earthquake modeling, weather modeling, astrophysics 
modeling, precision digital manufacturing, combustion modeling, ….

• Applications that we have failed to program
• Problems that we just don’t know how to solve
• High-valued applications with no effective computational methods
• Computer vision, speech processing, stock trading, decision making



Some different modalities of Real-world Data

Image Vision features Detection

Images/video

Audio Audio features Speaker ID

Audio

Text

Text Text  features

Text classification, machine 

translation, information 

retrieval, ....

Slide courtesy of Andrew Ng, Stanford University



We know what we want but don’t know how 
to get there.

Deep Learning Object Detection

DNN + Data + HPC
Traditional Computer Vision

Experts + Time
Deep Learning Achieves 
“Superhuman” Results
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Slide courtesy of Steve Oberlin, NVIDIA



Some different modalities of Real-world Data

Image Vision features Detection

This seems to be a combinational logic design problem.

?



Combinations Logic Specification –
Truth Table
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Input
outputa b c

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1
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What if we did not know the truth table?

• Look at enough observation data to construct the rules

• 000 → 0

• 011 →  0

• 100 →  1

• 110 →  0

• If we have enough observational data to cover all input patterns, we 
can construct the truth table and derive the logic!
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LeNet-5, a convolutional neural network for hand-
written digit recognition.
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This is a 1024*8 bit input, which will have a 
truth table of 2 8196 entries

Convolutional 
Layer

Weights 
W

Input 
Features

X Output
Features

Y



Forward Propagation Path of a Convolution Layer
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Back-Propagation of  ∂ E/∂W

Convolutional 
Layer

dE/dW

Input 
Features

X
Gradients

dE/dY

∂ E/∂X=WT* ∂ E/∂Y and  ∂ E/∂W=∂ E/∂Y *XT



Behind the Scenes

• In 2010 Prof. Andreas Moshovos 
adopted the Illinoi ECE498AL 
Programming Massively Parallel 
Programming Class

• Several of Prof. Geoffrey Hinton’s 
graduate students took the course

• These students developed the GPU 
implementation of the DNN that 
was trained with 1.2M images to 
win the ImageNet competition
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IBM Watson Q&A Pipeline - 2012 Jeopardy!
running on a 2,880 node cluster



A long way to go towards cognitive computing

Image 
Recognition

Text Extraction

Human 
Instructions

Speech 
Recognition

Natural 
Language 
Processing

Diagram 
Understanding

IR

Knowledge 
Indexing

Knowledge 
Inferencing

Programming Framework

Hardware Platform



How did we end up with GPU 
computing anyway? 



Dennard Scaling of MOS Devices

 In this ideal scaling, as L → α*L

• VDD → α*VDD, C → α*C, i → α*i

• Delay = CVDD/I scales by α, so f → 1/α

• Power for each transistor is CV2*f and scales by α2

• keeping total power constant for same chip area

JSSC Oct 1974, page 256

α has been 1.44 

every 18 months



Frequency Scaled Too Fast 1993-2003

Clock Frequency (MHz)
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Total Processor Power Increased 
(super-scaling of frequency and chip size)
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Post-Dennard Pivoting

 Multiple cores with more moderate clock frequencies 

 Heavy use of vector execution

 Employ both latency-oriented and throughput-oriented cores



Production Use Results CPU+GPU vs. CPU+CPU
Application Description Application Speedup

NAMD
100 million atom benchmark with Langevin dynamics and 

PME once every 4 steps, from launch to finish, all I/O 
included

1.8

Chroma
Lattice QCD parameters: grid size of 483 x 512 running at the 

physical values of the quark masses
2.4

QMCPACK
Full run Graphite 4x4x1 (256 electrons), QMC followed by 

VMC
2.7

ChaNGa
Collisionless N-body stellar dynamics with multipole

expansion and hydrodynamics
2.1

AWP
Earthquake anelastic wave propagation with staggered-grid 

finite-difference and realistic plastic yielding
3.7-5.0



More Heterogeneity Is Coming

 Beyond traditional CPUs and GPUs
• FPGAs (e.g., Microsoft FPGA cloud)

• ASICs (e.g., Google’s TPU)

 Beyond traditional DRAM
• Stacked DRAM for more memory bandwidth

• Non-volatile RAM for memory capacity

• Near/in memory computing for reduced power used in data movement



Engineering high-efficiency software for 
heterogeneous computing



Performance-Portability: One Source for All
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Hierarchical Compute Organization of Devices

GPU

1. Grid

2. Block

3. Warp

4. Thread

5. Instruction-level Parallelism

tile = (len + gridDim.x – 1)/gridDim.x;
sub_tile = (tile + blockDim.x – 1)/blockDim.x;
accum = 0
#pragma unroll
for(unsigned i = 0; i < sub_tile; ++i) {

accum += in[blockIdx.x*tile
+ i*blockDim.x + threadIdx.x];

}
tmp[threadIdx.x] = accum; 
__syncthreads();
for(unsigned s=1; s<blockDim.x; s *= 2) {

if(id >= s)
tmp[threadIdx.x] +=

tmp[threadIdx.x - s];
__syncthreads();

}
partial[blockIdx.x] = tmp[blockDim.x-1];
return; // Launch new kernel to sum up partial



Tangram: Codelet-based Programming Model
__codelet
int sum(const Array<1,int> in) {

unsigned len = in.size();
int accum = 0;
for(unsigned i=0; i < len; ++i) {

accum += in[i];
}
return accum;

}
(a) Atomic autonomous codelet

__codelet __tag(asso_tiled) 
int sum(const Array<1,int> in) {

__tunable unsigned p;
unsigned len = in.size();
unsigned tile = (len+p-1)/p;
return sum( map( sum, partition(in,

p,sequence(0,tile,len),sequence(1),sequence(tile,tile,len+1))));
}

__codelet __coop __tag(kog)
int sum(const Array<1,int> in) {

__shared int tmp[coopDim()];        
unsigned len = in.size();
unsigned id = coopIdx();
tmp[id] = (id < len)? in[id] : 0;
for(unsigned s=1; s<coopDim(); s *= 2) {

if(id >= s)
tmp[id] += tmp[id - s];

}
return tmp[coopDim()-1];

}
(b) Atomic cooperative codelet

(c) Compound codelet using adjacent tiling 

(d) Compound codelet using strided tiling

__codelet __tag(stride_tiled) 
int sum(const Array<1,int> in) {

__tunable unsigned p;
unsigned len = in.size();
unsigned tile = (len+p-1)/p;
return sum( map( sum, partition(in, 

p,sequence(0,1,p),sequence(p),sequence((p-1)*tile,1,len+1))));
}
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Tangram: Composition Example
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Tangram Results
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What is the stake?

• Scalable and portable software can empower many hardware 
generations

Scalable algorithms and libraries could be 
the best legacy we can leave behind from 

this era

33



Thank you!

Any more questions?


