
Innovative Applications and Technology Pivots –
A Perfect Storm in Computing

Wen-mei Hwu

Professor and Sanders-AMD Chair, ECE, NCSA

University of Illinois at Urbana-Champaign

with

Izzat El Hajj, Liwen Chang, Simon Garcia, Abdul Dakkak and Carl Pearson

Agenda

• Revolutionary paradigm shift in applications

• Post-Dennard technology pivot

• Engineering high-efficiency scalable algorithm libraries for
heterogeneous parallel computing

A major paradigm shift

 In the 20th Century, we were able to understand, design, and
manufacture what we can measure
• Physical instruments and computing systems allowed us to see farther, capture

more, communicate better, understand natural processes, control artificial
processes…

A major paradigm shift

 In the 20th Century, we were able to understand, design, and
manufacture what we can measure
• Physical instruments and computing systems allowed us to see farther, capture

more, communicate better, understand natural processes, control artificial
processes…

 In the 21st Century, we are able to understand, design, and create what
we can compute
• Computational models are allowing us to see even farther, going back and

forth in time, learn better, test hypothesis that cannot be verified any other
way, create safe artificial processes…

Examples of Paradigm Shift
20th Century

 Small mask patterns

 Electronic microscope and Crystallography
with computational image processing

 Anatomic imaging with computational
image processing

 Teleconference

 GPS

21st Century

 Optical proximity correction

 Computational microscope with initial
conditions from Crystallography

 Metabolic imaging sees disease before
visible anatomic change

 Tele-emersion

 Self-driving cars

What is powering the paradigm shift?

• Large clusters (scale out) allow solving realistic problems
• 1.5 Peta bytes of DRAM in Blue Waters
• E.g., 0.5 Å (0.05 nm) grid spacing is needed for accurate molecular dynamics

• interesting biological systems have dimensions of mm or larger
• Thousands of nodes are required to hold and update all the grid points.

• Fast nodes (scale up) allow solution at realistic time scales
• Simulation time steps at femtosecond (10-15 second) level needed for accuracy

• Biological processes take milliseconds or longer
• Current molecular dynamics simulations progress at about one day for each 100

microseconds of the simulated process.
• Interesting computational experiments take weeks (used to be months)

Blue Waters Computing System
Operational at Illinois since 3/2013

Sonexion: 26 PBs

>1 TB/sec

100 GB/sec

10/40/100 Gb
Ethernet Switch

Spectra Logic: 300 PBs

120+ Gb/sec

WAN

IB Switch12.5 PF
1.6 PB DRAM

$250M

49,504 CPUs -- 4,224 GPUs

What types of applications are demanding
computing power today?
• First-principle-based models

• Problems that we know how to solve accurately but chose not to because it
would be “too expensive”

• High-valued applications with approximations that cause inaccuracies and lost
opportunities

• Medicate imaging, earthquake modeling, weather modeling, astrophysics
modeling, precision digital manufacturing, combustion modeling, ….

• Applications that we have failed to program
• Problems that we just don’t know how to solve
• High-valued applications with no effective computational methods
• Computer vision, speech processing, stock trading, decision making

Some different modalities of Real-world Data

Image Vision features Detection

Images/video

Audio Audio features Speaker ID

Audio

Text

Text Text features

Text classification, machine

translation, information

retrieval,

Slide courtesy of Andrew Ng, Stanford University

We know what we want but don’t know how
to get there.

Deep Learning Object Detection

DNN + Data + HPC
Traditional Computer Vision

Experts + Time
Deep Learning Achieves
“Superhuman” Results

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

20092010201120122013201420152016

Traditional CV

Deep Learning

ImageNet

Slide courtesy of Steve Oberlin, NVIDIA

Some different modalities of Real-world Data

Image Vision features Detection

This seems to be a combinational logic design problem.

?

Combinations Logic Specification –
Truth Table

12

Input
outputa b c

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

a’ a b’ b c’ c

What if we did not know the truth table?

• Look at enough observation data to construct the rules

• 000 → 0

• 011 → 0

• 100 → 1

• 110 → 0

• If we have enough observational data to cover all input patterns, we
can construct the truth table and derive the logic!

13

LeNet-5, a convolutional neural network for hand-
written digit recognition.

14

This is a 1024*8 bit input, which will have a
truth table of 2 8196 entries

Convolutional
Layer

Weights
W

Input
Features

X Output
Features

Y

Forward Propagation Path of a Convolution Layer

15

Convolutional
Layer

Weights
W

Input
Features

X Output
Features

Y

Back-Propagation of ∂ E/∂W

Convolutional
Layer

dE/dW

Input
Features

X
Gradients

dE/dY

∂ E/∂X=WT* ∂ E/∂Y and ∂ E/∂W=∂ E/∂Y *XT

Behind the Scenes

• In 2010 Prof. Andreas Moshovos
adopted the Illinoi ECE498AL
Programming Massively Parallel
Programming Class

• Several of Prof. Geoffrey Hinton’s
graduate students took the course

• These students developed the GPU
implementation of the DNN that
was trained with 1.2M images to
win the ImageNet competition

17

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2009 2010 2011 2012 2013 2014 2015 2016

IBM Watson Q&A Pipeline - 2012 Jeopardy!
running on a 2,880 node cluster

A long way to go towards cognitive computing

Image
Recognition

Text Extraction

Human
Instructions

Speech
Recognition

Natural
Language
Processing

Diagram
Understanding

IR

Knowledge
Indexing

Knowledge
Inferencing

Programming Framework

Hardware Platform

How did we end up with GPU
computing anyway?

Dennard Scaling of MOS Devices

 In this ideal scaling, as L → α*L

• VDD → α*VDD, C → α*C, i → α*i

• Delay = CVDD/I scales by α, so f → 1/α

• Power for each transistor is CV2*f and scales by α2

• keeping total power constant for same chip area

JSSC Oct 1974, page 256

α has been 1.44

every 18 months

Frequency Scaled Too Fast 1993-2003

Clock Frequency (MHz)

10

100

1000

10000

85 87 89 91 93 95 97 99 01 03 05

Total Processor Power Increased
(super-scaling of frequency and chip size)

1

10

100

85 87 89 91 93 95 97 99 01 03

Post-Dennard Pivoting

 Multiple cores with more moderate clock frequencies

 Heavy use of vector execution

 Employ both latency-oriented and throughput-oriented cores

Production Use Results CPU+GPU vs. CPU+CPU
Application Description Application Speedup

NAMD
100 million atom benchmark with Langevin dynamics and

PME once every 4 steps, from launch to finish, all I/O
included

1.8

Chroma
Lattice QCD parameters: grid size of 483 x 512 running at the

physical values of the quark masses
2.4

QMCPACK
Full run Graphite 4x4x1 (256 electrons), QMC followed by

VMC
2.7

ChaNGa
Collisionless N-body stellar dynamics with multipole

expansion and hydrodynamics
2.1

AWP
Earthquake anelastic wave propagation with staggered-grid

finite-difference and realistic plastic yielding
3.7-5.0

More Heterogeneity Is Coming

 Beyond traditional CPUs and GPUs
• FPGAs (e.g., Microsoft FPGA cloud)

• ASICs (e.g., Google’s TPU)

 Beyond traditional DRAM
• Stacked DRAM for more memory bandwidth

• Non-volatile RAM for memory capacity

• Near/in memory computing for reduced power used in data movement

Engineering high-efficiency software for
heterogeneous computing

Performance-Portability: One Source for All

Levels of
Hierarchy

Codelet
Composition

Memory
Characteristics

Automatic Data
Placement

Resource
Sizes

Autotuning

Micro-
architecture

Algorithmic
Choice

Granularity
of Parallelism

Coarsening

Challenges

Solutions

Hierarchical Compute Organization of Devices

GPU

1. Grid

2. Block

3. Warp

4. Thread

5. Instruction-level Parallelism

tile = (len + gridDim.x – 1)/gridDim.x;
sub_tile = (tile + blockDim.x – 1)/blockDim.x;
accum = 0
#pragma unroll
for(unsigned i = 0; i < sub_tile; ++i) {

accum += in[blockIdx.x*tile
+ i*blockDim.x + threadIdx.x];

}
tmp[threadIdx.x] = accum;
__syncthreads();
for(unsigned s=1; s<blockDim.x; s *= 2) {

if(id >= s)
tmp[threadIdx.x] +=

tmp[threadIdx.x - s];
__syncthreads();

}
partial[blockIdx.x] = tmp[blockDim.x-1];
return; // Launch new kernel to sum up partial

Tangram: Codelet-based Programming Model
__codelet
int sum(const Array<1,int> in) {

unsigned len = in.size();
int accum = 0;
for(unsigned i=0; i < len; ++i) {

accum += in[i];
}
return accum;

}
(a) Atomic autonomous codelet

__codelet __tag(asso_tiled)
int sum(const Array<1,int> in) {

__tunable unsigned p;
unsigned len = in.size();
unsigned tile = (len+p-1)/p;
return sum(map(sum, partition(in,

p,sequence(0,tile,len),sequence(1),sequence(tile,tile,len+1))));
}

__codelet __coop __tag(kog)
int sum(const Array<1,int> in) {

__shared int tmp[coopDim()];
unsigned len = in.size();
unsigned id = coopIdx();
tmp[id] = (id < len)? in[id] : 0;
for(unsigned s=1; s<coopDim(); s *= 2) {

if(id >= s)
tmp[id] += tmp[id - s];

}
return tmp[coopDim()-1];

}
(b) Atomic cooperative codelet

(c) Compound codelet using adjacent tiling

(d) Compound codelet using strided tiling

__codelet __tag(stride_tiled)
int sum(const Array<1,int> in) {

__tunable unsigned p;
unsigned len = in.size();
unsigned tile = (len+p-1)/p;
return sum(map(sum, partition(in,

p,sequence(0,1,p),sequence(p),sequence((p-1)*tile,1,len+1))));
}

cb

?

pc

? ? ?

?

pd

? ? ?

ca

Tangram: Composition Example

?

?

cb

?

pc

? ? ?

?

pd

? ? ?

ca

cb

pc

ca ca ca

__syncthreads()

pc

ca ca ca

?

__syncthreads()

pc

ca ca ca

ca

Tangram Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

scan spmv dgemm kmeans bfs

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

(h
ig

h
er

 is
 b

et
te

r)

Fermi (Reference)

Fermi (TGM)

Kepler (Reference)

Kepler (TGM)

CPU (Reference)

CPU (TGM)

(Tangram)

(Tangram)

(Tangram)

What is the stake?

• Scalable and portable software can empower many hardware
generations

Scalable algorithms and libraries could be
the best legacy we can leave behind from

this era

33

Thank you!

Any more questions?

