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Agenda

e Revolutionary paradigm shift in applications
* Post-Dennard technology pivot

* Engineering high-efficiency scalable algorithm libraries for
heterogeneous parallel computing
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A major paradigm shift

" |n the 20th Century, we were able to understand, design, and
manufacture what we can measure
e Physical instruments and computing systems allowed us to see farther, capture

more, communicate better, understand natural processes, control artificial
processes...
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A major paradigm shift

" |nthe 21st Century, we are able to understand, design, and create what
We can compute

 Computational models are allowing us to see even farther, going back and
forth in time, learn better, test hypothesis that cannot be verified any other
way, create safe artificial processes...
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Examples of Paradigm Shift
20t Century 215t Century

= Small mask patterns = QOptical proximity correction

= Electronic microscope and Crystallography ® Computational microscope with initial

with computational image processing conditions from Crystallography

= Anatomic imaging with computational " Metabolic imaging sees disease before
image processing visible anatomic change

= Teleconference = Tele-emersion

= GPS = Self-driving cars
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What is powering the paradigm shift?

* Large clusters (scale out) allow solving realistic problems
* 1.5 Peta bytes of DRAM in Blue Waters

e E.g., 0.5 A (0.05 nm) grid spacing is needed for accurate molecular dynamics
* interesting biological systems have dimensions of mm or larger
* Thousands of nodes are required to hold and update all the grid points.

* Fast nodes (scale up) allow solution at realistic time scales

 Simulation time steps at femtosecond (101> second) level needed for accuracy
* Biological processes take milliseconds or longer

e Current molecular dynamics simulations progress at about one day for each 100
microseconds of the simulated process.

* Interesting computational experiments take weeks (used to be months)
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Blue Waters Computing System
Operational at lllinois since 3/2013 49,504 CPUs -- 4,224 GPUs
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What types of applications are demanding
computing power today?

* First-principle-based models

* Problems that we know how to solve accurately but chose not to because it
would be “too expensive”

* High-valued applications with approximations that cause inaccuracies and lost
opportunities

* Medicate imaging, earthquake modeling, weather modeling, astrophysics
modeling, precision digital manufacturing, combustion modeling, ....

* Applications that we have failed to program
* Problems that we just don’t know how to solve
* High-valued applications with no effective computational methods
* Computer vision, speech processing, stock trading, decision making
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‘erent modalities of Real-world Data

Some di

Image Vision features Detection

Audio
_;"'"“f;\ Text classification, machine
Text AN — translation, information
b retrieval, ....
Text Text features

Slide courtesy of Andrew Ng, Stanford University
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We know what we want but don’t know how
to get there.

ImageNet

[ |
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Traditional Computer Vision Deep Learning Object Detection Deep Learning Achieves
Experts + Time DNN + Data + HPC “Superhuman” Results

Slide courtesy of Steve Oberlin, NVIDIA
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Some different modalities of Real-world Data

e e

Image Vision features Detection

This seems to be a combinational logic design problem.
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Combinations Logic Specification —
Truth Table va bb o

Input
3 b c output
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
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What if we did not know the truth table?

* Look at enough observation data to construct the rules

* 000> 0
*011-> 0
*100> 1
*110> O

* If we have enough observational data to cover all input patterns, we
can construct the truth table and derive the logic!
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LeNet-5, a convolutional neural network for hand-

written digit recognition. (ee)
—> l Output
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This is a 1024*8 bit input, which will have a

truth table of 2 81°¢ entries
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Forward Propagation Path of a Convolution Layer
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Back-Propagation of JdE/dw

P
= § %

JE/OX=W"*J E/FY and JE/OW=0J E/dY *X’
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Behind the Scenes

* |n 2010 Prof. Andreas Moshovos

adopted the Illinoi ECE498AL 100%
Programming Massively Parallel -
Programming Class - ; ; :
 Several of Prof. Geoffrey Hinton’s o 9
graduate students took the course - ‘
* These students developed the GPU - l
implementation of the DNN that o

2009 2010 2011 2012 2013 2014 2015 2016

was trained with 1.2M images to
win the ImageNet competition
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IBM Watson Q&A Pipeline - 2012 Jeopardy!
running on a 2,880 node cluster
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A long way to go towards cognitive computing

¥ Social Sciences
Use the cartoon to answer the next TWO guestions.

; “Taken from
C Unemployment http://www.ode. state.

D, Embargo chlearn/testing/sam

ocsci_sampletest en

Without his raise, which would typify Phil's bebavioe in the marketplice?
A, He will increase his interest for hagher priced ibems.
B, He will ncrease his demansd for higher priced items.
. He will decrease his demand for lower priced substiutes.
D, He will increase his demandd for lower priced substitutes.
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How did we end up with GPU
computing anyway?
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Dennard Scaling of MOS Devices
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In this ideal scaling, as L — a*L JSSC Oct 1974, page 256

° % Y ol %
Vop — &"Vpp, & = 0*C, 1= 0" o has been 1.44
* Delay = CV,p/I scalesbya,sof — 1/«

 Power for each transistor is CV2*f and scales by o?
 keeping total power constant for same chip area

every 18 months
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Frequency Scaled Too Fast 1993-2003

Clock Frequency (MHz)
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Total Processor Power Increased

(super-scaling of frequency and chip size)
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Post-Dennard Pivoting

= Multiple cores with more moderate clock frequencies
" Heavy use of vector execution
=" Employ both latency-oriented and throughput-oriented cores
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Production Use Results CPU+GPU vs. CPU+CPU

Application Description Application Speedup
100 million atom benchmark with Langevin dynamics and
NAMD PME once every 4 steps, from launch to finish, all I/O 1.8
included
Lattice QCD parameters: grid size of 483 x 512 running at the
Chroma Qcbp ) 5 5 2.4
physical values of the quark masses
Full run Graphite 4x4x1 (256 electrons), QMC followed b
QMCPACK P ( ) Q Y 2.7
VMC
Collisionless N-body stellar dynamics with multipole
ChaNGa -y 4 . P 2.1
expansion and hydrodynamics
Earthquake anelastic wave propagation with staggered-grid
AWP a Propas BEETECS 3.7-5.0

finite-difference and realistic plastic yielding
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More Heterogeneity Is Coming

" Beyond traditional CPUs and GPUs
* FPGAs (e.g., Microsoft FPGA cloud)
* ASICs (e.g., Google’s TPU)

" Beyond traditional DRAM

» Stacked DRAM for more memory bandwidth
* Non-volatile RAM for memory capacity
* Near/in memory computing for reduced power used in data movement
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Performance-Portability: One Source for All

Challenges

Solutions
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Granularity

of Parallelism

Coarsening
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Hierarchical Compute Organization of Devices

GPU

tile = (len + gridDim.x - 1)/gridDim.x;
sub tile = (tile + blockDim.x - 1)/blockDim.x;

accum = © .
1. Grid
2. Block
3. Warp
tmp[threadIdx.x] = accum;
__syncthreads(); 4. Thread
for(unsigned s=1; s<blockDim.x; s *= 2) {
1f(id >= s) 5. Instruction-level Parallelism

tmp[threadIdx.x] +=
tmp[threadIdx.x - s];
__syncthreads();

}
partial[blockIdx.x] = tmp[blockDim.x-1];

return; // Launch new kernel to sum up partial
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Tangram: Codelet-based Programming Model

__codelet
int sum(const Array<l,int> in) {
unsigned len = in.size();
int accum = 0;
for(unsigned i=0; i < len; ++i) {
accum += in[i];

}

return accum;
} (a) Atomic autonomous codelet

__codelet _ coop _ tag(kog)

int sum(const Array<l,int> in) {
__shared int tmp[coopDim()];
unsigned len = in.size();
unsigned id = coopIdx();

tmp[id] = (id < len)? in[id] : o;
for(unsigned s=1; s<coopDim(); s *= 2) {
if(id »>= s)
tmp[id] += tmp[id - s];

}
return tmp[coopDim()-1];

(b) Atomic cooperative codelet
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__codelet _ tag(asso_tiled)
int sum(const Array<l,int> in) {

__tunable unsigned p; L2 9 ?
unsigned len = in.size(); I""'::::I'""
unsigned tile = (len+p-1)/p; P

return sum( map( sum, partition(in,
p,sequence(@,tile,len),sequence(1l),sequence(tile,tile,len+l))));

(c) Compound codelet using adjacent tiling

__codelet _ tag(stride_tiled)
int sum(const Array<l,int> in) {

__tunable unsigned p; 7?7
unsigned len = in.size(); e
unsigned tile = (len+p-1)/p; r?

return sum( map( sum, partition(in,
p,sequence(0,1,p),sequence(p),sequence((p-1)*tile,1,1len+l))));

(d) Compound codelet using strided tiling

TirriNnors



Tangram: Composition Example
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Tangram Results
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dgemm

kmeans

bfs

Fermi (Reference)

M Fermi (Tangram)

Kepler (Reference)

m Kepler (Tangram)

CPU (Reference)

B CPU (Tangram)

IirriNnoOTsS



What is the stake?

 Scalable and portable software can empower many hardware
generations

Scalable algorithms and libraries could be
the best legacy we can leave behind from
this era
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Thank you!

Any more questions?
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