What have we learned about programming heterogeneous computing systems?

Wen-mei Hwu
Professor and Sanders-AMD Chair, ECE, NCSA
University of Illinois at Urbana-Champaign

With
Liwen Chang, Simon Garcia, Abdul Dakkak, Hee-Seok Kim, Izzat El Hajj
Blue Waters Computing System
Operational at Illinois since 3/2013

12.5 PF
1.6 PB DRAM
$250M

120+ Gb/sec

Sonexion: 26 PBs

IB Switch
>1 TB/sec

10/40/100 Gb Ethernet Switch

Spectra Logic: 300 PBs

100 GB/sec

WAN

Wayne State 2015
Heterogeneous Computing in Blue Waters

• Dual-socket Node
 – One AMD Interlagos chip
 • 8 core modules, 32 threads
 • 156.5 GFs peak performance
 • 32 GBs memory
 – 51 GB/s bandwidth
 – One NVIDIA Kepler chip
 • 1.3 TFs peak performance
 • 6 GBs GDDR5 memory
 – 250 GB/sec bandwidth
 – Gemini Interconnect

Blue Waters contains 4,224 Cray XK7 compute nodes.
Initial Production Use Results

• **NAMD**
 – 100 million atom benchmark with Langevin dynamics and PME once every 4 steps, from launch to finish, all I/O included
 – 768 nodes, Kepler+Interlagos is 3.9X faster over Interlagos-only
 – 768 nodes, XK7 is 1.8X XE6

• **Chroma**
 – Lattice QCD parameters: grid size of 483 x 512 running at the physical values of the quark masses
 – 768 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only
 – 768 nodes, XK7 is 2.4X XE6

• **QMCPACK**
 – Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC
 – 700 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only
 – 700 nodes, XK7 is 2.7X XE6
Some Lessons Learned

• Throughput computing using GPUs can result in 2-3X end-to-end application level performance improvement

• GPU computing has had narrow but deep impact in the application space due to limited support for CPU-GPU collaboration
 – Small GPU memory and data movement overhead
 – Coarse grained platform-level workflow
 – Low-level programming interfaces with poor performance portability
Performance Library

- A major qualifying factor for new computing platforms
- Currently redeveloped and hand-tuned for each HW type/generation
- Exa-scale HW expected to have increasing levels of heterogeneity, parallelism, and hierarchy
 - Increasing levels of memory heterogeneity and hierarchy
 - Increase SIMD width and number of cores
- Performance library development process must keep up with the HW evolution and diversification
 - Performance portability
It is not just about supercomputing

- Smart phone computing apps
- Software defined networking
- Autonomous vehicle image analysis
- Cloud services for image search and management
- IoT devices
- ...
Trend Towards Heterogeneity

- **IBM**
 - 1 core: 2003
 - 4 cores: 2006
 - SoC (1 core): 2008
 - 6 cores: 2010

- **Qualcomm Snapdragon**
 - SoC (2 cores): 2012
 - many-core: 2014

- **Intel**
 - 2 cores: 2005
 - many-core: 2007
 - SoC (2 cores): 2011
 - SoC (6 cores): 2014

- **NVIDIA**
 - Fermi: 2010
 - many-core: 2012
 - many-core: 2014
 - Maxwell: 2014

- **Stellarton**
 - CPU+FPGA: 2010

- **APU (1st gen)**
 - AMD Fusion

- **APU (2nd gen)**
 - A-Series

- **APU (3rd gen)**
 - Kaveri

- **OpenPower CAPI**
C++ Sequential Reduction

```c++
float reduce(const Array<1, float> in) {
    int len = in.size();
    int accum = 0;
    for(int i=0; i<len; i++) {
        accum += in[i];
    }
    return accum;
}
```
CUDA Parallel Reduction

global

void reduce(float* input, int length) {

 __shared__ float partialSum[2*BLOC_SIZE];
 unsigned int t = threadIdx.x;
 unsigned int start = 2*blockIdx.x*blockDim.x;

 partialSum[t] = input[start + t];
 partialSum[blockDim.x+t] = input[start+blockDim.x+t];

 for (unsigned int stride = blockDim.x;
 stride > 0; stride /= 2)
 {
 __syncthreads();
 if (t < stride)
 partialSum[t] += partialSum[t+stride];
 }
}
CUDA Threads and Blocks - Basics

- Divide thread array into multiple blocks
 - Threads within a block efficiently cooperate via **shared memory**, **atomic operations** and **barrier synchronization**
 - Threads in different blocks do not interact
 - Threads and Blocks have unique indices for data access mapping

```
i = blockIdx.x * blockDim.x + threadIdx.x;
... = A[i];
```
CUDA Parallel Reduction (cont.)

global

void reduce(float* input, int length, float* output) {

 __shared__ float partialSum[2*BLOCK_SIZE];
 unsigned int t = threadIdx.x;
 unsigned int start = 2*blockIdx.x*blockDim.x;

 partialSum[t] = input[start + t];
 partialSum[blockDim.x+t] = input[start+blockDim.x+t];

 Every thread loads two elements

 Total number of preceding threads * 2
 = blockIdx.x * blockDim * 2
 start

 Start+blockDim.x

 Start+ 2*blockDim.x
void reduce(float* input, int length) {
 __shared__ float partialSum[2*BLOCK_SIZE];
 unsigned int t = threadIdx.x;
 unsigned int start = 2*blockIdx.x*blockDim.x;
 partialSum[t] = input[start + t];
 partialSum[blockDim.x+t] = input[start+blockDim.x+t];
 for (unsigned int stride = blockDim.x; stride > 0; stride /= 2) {
 __syncthreads();
 if (t < stride)
 partialSum[t] += partialSum[t+stride];
 }
}
High-Performance GPU Reduction

Coursera – Heterogeneous Parallel Programming
Current State of Performance Portability - DGEMM Case Study

Performance (GFLOPS)

- Tesla GPU (GTX 280)
- Fermi GPU (C2050)
- Sandy Bridge CPU (i7-3820)

- Parboil (default naïve OpenCL version)
- Parboil (OpenCL version optimized for Tesla GPU)
- Reference (MKL for CPU, CUBLAS for GPU)
Current State of Performance Portability
- DGEMM Case Study

Naive Code benefits the most (8X) but still not competitive

- Tesla GPU (GTX 280)
- Fermi GPU (C2050)
- Sandy Bridge CPU (i7-3820)

Performance (GFLOPS)

- **Naive Code benefits the most (8X) but still not competitive**

- **DGEMM Case Study**

- **Wayne State 2015**
Current State of Performance Portability - DGEMM Case Study

Tesla-optimized code benefit from Fermi

Performance (GFLOPS)

Tesla GPU (GTX 280)
Parboil (default naïve OpenCL version)
Parboil (OpenCL version optimized for Tesla GPU)
Reference (MKL for CPU, CUBLAS for GPU)

Fermi GPU (C2050)

Sandy Bridge CPU (i7-3820)
Current State of Performance Portability
- DGEMM Case Study

Re-development makes a big difference

<table>
<thead>
<tr>
<th>Performance (GFLOPS)</th>
<th>Tesla GPU (GTX 280)</th>
<th>Fermi GPU (C2050)</th>
<th>Sandy Bridge CPU (i7-3820)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.2</td>
<td>392.5</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>304.6</td>
<td>74.0</td>
<td>55.5</td>
</tr>
<tr>
<td></td>
<td>348.0</td>
<td></td>
<td>183.9</td>
</tr>
</tbody>
</table>

- Parboil (default naïve OpenCL version)
- Parboil (OpenCL version optimized for Tesla GPU)
- Reference (MKL for CPU, CUBLAS for GPU)
Current State of Performance Portability - DGEMM Case Study

- Tesla optimization benefit CPU as well but not quite sufficient
Algorithm Selection
Stream Compaction Case Study

Wayne State 2015
Algorithm Selection
Stream Compaction Case Study

For Kepler and Fermi, prefix sum, atomics better for low conflict and prefix-sum better for high conflict
Algorithm Selection
Stream Compaction Case Study

For Maxwell, atomics always better, though prefix-sum improved over Fermi and Kepler.
A Practical Programming System for Heterogeneous Platforms

Triolet (Dakkak/El Hajj/Rodrigues)
- High-level library-driven language
- Automated data distribution

Tangram (Chang)
- Performance portable code synthesis
- Algorithm-level auto-tuning

MxPA/HOCL (Garcia/Kim)
- Locality-centric scheduling OpenCL compiler
- Dynamic vectorization
- Joint CPU-GPU execution
Tangram

- A language, compiler and runtime
- A C++ extension to support
 - recursive decomposition and over decomposition
 - data placement
 - Using containers, data placement is performed by compiler
 - parameterization
 - Using __tunable keywords
 - pattern replacement
 - Alternative codelets

Wayne State 2015
Tangram Code Example: Reduction

(a) Atomic scalar codelet

```c
__codelet
int reduce(const Array<1,int> in) {
    int len = in.size();
    int accum = 0;
    for(int i=0; i<len; i++) {
        accum += in[i];
    }
    return accum;
}
```

(c) Compound codelet using adjacent tiling

```c
__codelet __tag(stride_tiled)
int reduce(const Array<1,int> in) {
    __tunable int p;
    int len = in.size();
    int tile_size = (len+p-1)/p;
    return reduce( map( reduce,
                          partition(in,
                                     p,
                                     sequence(0,tile_size,len),
                                     sequence(1),
                                     sequence(tile_size, tile_size, len+1))));
}
```

(b) Atomic vector codelet

```c
__codelet __vector __tag(kog)
int reduce(const Array<1,int> in) {
    __shared __tunable Vector<1,int> vec();
    __shared int tmp[vec.size()];
    int len = in.size();
    int id = vec.id();
    tmp[id] = id < len ? in[id] : 0;
    int idle_len = 1;
    while(id >= idle_len) {
        tmp[id] += tmp[id-idle_len];
        idle_len *= 2;
    }
    if(id==0)
        return tmp[vec.size()-1];
}
```

(d) Compound codelet using strided tiling

```c
__codelet __tag(asso_tiled)
int reduce(const Array<1,int> in) {
    __tunable int p;
    int len = in.size();
    int tile_size = (len+p-1)/p;
    return reduce( map( reduce,
                        partition(in,
                                   p,
                                   sequence(0,tile_size,len),
                                   sequence(1),
                                   sequence(tile_size, tile_size, len+1))));
}
```
Code Example: Reduction

```cpp
__codelet
int reduce(const Array<1,int> in) {
  int len = in.size();
  int accum = 0;
  for(int i=0; i<len; i++) {
    accum += in[i];
  }
  return accum;
}
```

(a) Atomic scalar codelet

```cpp
idle_len *= 2;
}
if(id==0)
  return tmp[vec.size()-1];
```

(b) Atomic vector codelet

```cpp
partition(in,
  sequence(0,1,p),
  sequence(p),
  sequence((p-1)*tile_size, 1, len+1)));
```

(c) Compound codelet using adjacent tiling

```cpp
__shared__
tunable Vector<1,int> vec();
__shared__
int tmp[vec.size()]();
```

(d) Compound codelet using strided tiling

```cpp
int id = vec.id();
tmp[id] = id < len? in[id] : 0;
int idle_len = 1;
while(id >= idle_len) {
  tmp[id] += tmp[id-idle_len];
  idle_len *= 2;
}
if(id==0)
  return tmp[vec.size()-1];
```

(b) Atomic vector codelet

Wayne State 2015
Code Example: Reduction

```c
__codelet __vector __tag(kog)
int reduce(const Array<1,int> in) {
  __shared __tunable Vector<1,int> vec();
  __shared int tmp[vec.size()];
  int len = in.size();
  int id = vec.id();
  tmp[id] = id < len ? in[id] : 0;
  int idle_len = 1;
  while(id >= idle_len) {
    tmp[id] += tmp[id-idle_len];
    idle_len *= 2;
  }
  if(id==0)
    return tmp[vec.size()-1];
}

(b) Atomic vector codelet
```
Code Example: Reduction

__codelet__ __tag__(asso_tiled)
int reduce(const Array<1,int> in) {
 __tunable int p;
 int len = in.size();
 int tile_size = (len+p-1)/p;
 return reduce(map(reduce,
 partition(in,
 p,
 sequence(0,tile_size,len),
 sequence(1),
 sequence(tile_size,tile_size,len+1))));
}

(c) Compound codelet using adjacent tiling

Built-in function partition(c,n,start,inc,end)
Returns n sub-containers c[i] of c where c[i] goes from start[i] to end[i] with increment inc[i]
Code Example: Reduction

```c++
__codelet __tag(stride_tiled)
int reduce(const Array<1,int> in) {
    __tunable int p;
    int len = in.size();
    int tile_size = (len+p-1)/p;
    return reduce( map( reduce,
                        partition(in,
                                   p,
                                   sequence(0,1,p),
                                   sequence(p),
                                   sequence((p-1)*tile_size, 1, len+1))));
}
```

(d) Compound codelet using strided tiling
• Construction OpenCL AST from Tangram AST

• Generate few competitive versions for runtime using relative merits (parallelism and locality, for example)

• DySel Runtime applies micro-profiling and dynamically selects best version for the actual data and hardware
Reduction – CPU vs. GPU (Part 2)

CPU 2-level hierarchy

GPU 4-level hierarchy

Collect from Work Group partial results
Experimental Results

- We achieve at least 70% of reference libraries (MKL, CUBLAS, CUSPARSE, Thrust) and reference benchmark suite (Rodinia)
Summary

• Heterogeneous computing gaining importance
 – Performance, energy advantages
 – Heterogeneity increasing in both memory and processors

• Programming for heterogeneous computing evolving
 – Currently low-level interfaces – CUDA, OpenCL
 – Next higher-level – OpenACC, Parallel C++
 – Ultimately need code synthesis - Tangram
THANK YOU FOR YOUR ATTENTION! QUESTIONS?
Data Tiling Performance Portability - DGEMM case study

Parameter tuning of Tesla tiling for Fermi helps but not sufficient
Data Tiling Performance Portability
- DGEMM case study

![Graph showing performance comparison between tuned and tiled versions for Tesla and Fermi architectures.](image-url)
Data Tiling Performance Portability - DGEMM case study

Mis-matched Parameter of Fermi tiling can be worse than re-tuned Tesla tiling, neither is sufficient

Wayne State 2015
Data Tiling Performance Portability - DGEMM case study

Mis-matched Parameter of Tesla tiling can be worse than re-tuned Fermi tiling, neither is sufficient