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Cognitive Computing — the C3SR View

= A cognitive computing application fuses vast, unstructured data
and vast human knowledge base to extend human capabilities
by solving problems, making actionable recommendations, and
producing customized learning experiences




C3SR Vision

" The rise of cognitive computing has created new opportunities
to rethink all the three layers of computing systems—
applications, software, and hardware.

" Dramatic enhancement in the efficacy, efficiency and variety of
cognitive computing applications can be achieved through
dramatic enhancement in the programmability, throughput,
latency, capacity, and affinity of computing systems.
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The Three Pillars of C3SR:

 Creative experiential learning advisor (CELA) as a grand
challenge use case for cognitive capabilities

e Cognitive application builder (CAB) to make the underlying
heterogeneous infrastructure easy to consume for cognitive
application developers

e Cognitive systems innovations (Erudite) for workload
acceleration, including Near Memory Acceleration (NMA)



A New Modality of Application Development

e Cognitive applications demand functionalities that we have failed to
program
e Computer vision, natural language dialogs, stock trading, fraud detection, ...

e Use labeled data — data that come with the input values and their
desired output values — to learn what the logic should be

e Capture each labeled data item by adjusting the program logic
e Learn by example!

* This introduces a new modality of application development
e Training, Testing, Integration, Profiling, Debugging, etc.



Application Driver



CELA: personalized education via multi-modality data
comprehension and computational creativity
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Decomposition of CELA’s Research Challenges

CELA
Integratlon (CAB)

Marcheret, Ratha Gong, Gliozzo Gong, Sakakini Scholoss Bhattacharjya CHN, 1BM Bluemix

Heterogeneous Infrastructure

e Requires a tool to integrate core services that are optimized for the
underlying heterogeneous infrastructure
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Cognitive Application Builder

A system-level challenge

Workflow description High-performance, scalable,
Innovative Al techniques, robust applications

Data, Models, Frameworks

 CAB: A language, compiler, and runtime for easy development of
cognitive applications
e Software synthesis to exploit accelerators and efficient communication
* Introspection for debugging and performance evaluation

* Workflow profiling, optimization and orchestration for system-level
performance

e Decentralized application architecture for scalability, composability, testing,
and development



CELA as a Driving Use Case for CAB
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CELA as a Driving Use Case for CAB
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C3SR Approach to Cognitive Computing System Design

= To develop scalable cognitive applications by co-designing
e advanced methods and algorithms for cognitive computation, and
e optimized heterogeneous computing systems for these workloads.

= Generations of complete prototype systems
* |nitial — existing methods, algorithms and workflows running on existing hardware

e Refined — innovative methods, algorithms and workflows enabled by the next
generation memory/storage technology and accelerators

 Novel — ambitious methods, algorithms and workflows empowered by new
memory and near memory/near 10 acceleration technologies.

Cognitive Computing
Hardware and Programming

Interface

Cognitive Algorithms,

Workflow




Initial Experimental Heterogeneous Infrastructure
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Selected center progress highlights

- Curated datasets

- The CarML system for model development and deployment
- Workload acceleration

- The Erudite NMA system
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Curated Datasets

e Extracted STEM concept dependency from next
generation science standard that includes
e Performance Expectations
Science and Engineering Practices
Disciplinary Core Ideas
Crosscutting Concepts
Connections

e Extracted science projects from websites and stored as
a structured data
e Extracted all 1188 projects from ScienceBuddies.com
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e Extracted DBLP bibliographic database for computer
science and MICRO 50 years of publications (~1400)

e All stored in a graph database (~100G) with a structure similar
to the Microsoft Academic Graph




Selected center progress highlights

- The CarML system for model development and deployment
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Deep Learning Revolution
- a humble beginning in 2010

Traditional Computer Vision
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Slide courtesy of Steve Oberlin, NVIDIA
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CarML — Cognitive Artifacts for Machine Learning

e CarML.org

* An open source distributed platform to easily deploy and benchmark
machine learning frameworks and models across hardware
architectures, through a common interface.

e An experimentation platform for ML users
e A deployment platform for ML developers
* A benchmarking platform for systems architects



CarML.org as a Web Service

A use selects models and
inputs through web Ul or
API.

The web server accepts the user
inputs and interacts with registry,
tracing, and agents

The agent starts a docker container for
the request. Data that is shared across
executions are mounted as a shared

volume.

7
=)

On bootup, agents advertise the models
in the registry. The web server forwards
the user request to the agents capable of
evaluating the model

The web server queries the agent registry to
retrieve the address. The tracing process is
started, if profiling is enabled.

Within the docker container, the model is
downloaded, loaded into memory, and
the user's inputs are preprocessed.

ﬂ

Inference is performed within the docker
container and the results are sent back to
the user.




Model Catalog

e Repository contains more than 100 DL models

e Support for Tensorflow, Caffe, Caffe2, and MXNet
e PyTorch, CNTK, Paddle, ... planned

 \Versioned models and frameworks
e Allows to experiment with custom DL layers



Dataset Catalog

e Repository contains common DL datasets

CIFAR 10/100
MNIST
ImageNet

* Allows one to compare DL models on validation
datasets



Machine Catalog

e X86 and Power8 Systems
e CPU only mode and/or GPU mode

* Planned to have ARM cores and integration with
simulators



racing and Monitoring Options

ntegration with PAPI
ntegration with Perf Events

ntegration with NVIDIA's CUPTI
ntegration with OSX's Instruments




Tracing




erminology

A Trace is a directed acyclic
graph (DAG) of Spans

Spans can reference one
another.

TRACE

SPANS



racing
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Observers

e Subscribe on StartSpan / EndSpan events

e (Capture hardware counters for each event
e PAPI
¢ NVML
e Perf



CUPTI

e (Capture CUDA runtime & driver events
* Integrated with the CarML tracer

e Implemented in Go

e Declare CUPTI callback function in Go
e Pass CUPI Go handle into C code

e Events to capture are configurable



func callback(userData unsafe.Pointer, domain® C.CUpti_CallbackDomain, cbid® C.
handle := (*CUPTI)(unsafe.Pointer({userData))
if handle == nil {
log.Debug(“expecting a cupti handle, but get nil")
return

}
domain := types.CUpti_CallbackDomain{domain®)
switch domain {

case types.CUPTI_CB_DOMAIN_DRIVER_API:

cbid := types.CUpti_driver_api_trace_cbid(cbid@)

switch cbid {

case types.CUPTI_DRIVER_TRACE_CBID_culaunchKernel:
handle.onCULaunchKernel(domain, cbid, cbInfo)
return

case types.CUPTI_DRIVER_TRACE_CBID_cuMemcpyHtoD_wZ2,
types.CUPTI_DRIVER_TRACE_CBID_cuMemcpyDtoH_vw2,
types.CUPTI_DRIVER_TRACE_CBID_cuMemcpyDtoD_v2,
types.CUPTI_DRIVER_TRACE_CBID_cuMemcpyHtoDAsynmc_v2,
types.CUPTI_DRIVER_TRACE_CBID_cuMemcpyDtoHAsync_v2,
types.CUPTI_DRIVER_TRACE_CBID_cuMemcpyDtoDAsync_v2:
handle.onCudaMemCopyDevice(domain, cbid, cbInfo)
return

default:
log.WithField("cbid", cbid.String()).

WithField("function_name”, demangleName(cbInfo.functionName)).
Debug(”skipping runtime call")

return

}

case types.,CUPTI_CB_DOMAIN_RUNTIME_API:

cbid := types.CUPTI_RUNTIME_TRACE_CBID(cbid®)

switch cbid {

case types.CUPTI_RUNTIME_TRACE_CBID_cudaDeviceSynchronize_v3e2a,
types.CUPTI_RUNTIME_TRACE_CBID_cudaStreamSynchronize_v3020:
handle.onCudaDeviceSynchronize{domain, cbid, cbInfo)
return

case types.CUPTI_RUNTIME_TRACE_CBID_cudaMemcpy_w3828,
types.CUPTI_RUNTIME_TRACE_CBID_cudaMemcpyAsync_v3@20:
handle.onCudaMemCopy(domain, cbid, cbInfo)
return

case types.CUPTI_RUNTIME_TRACE_CBID_cudalaunch_w3@2@:
handle.onCudalaunch(domain, cbid, cbInfo)
return

case types.CUPTI_RUNTIME_TRACE_CBID_cudaThreadSynchronize_v3@20:
handle.onCudaSynchronize(domain, cbid, cbInfo)
return

case types.CUPTI_RUNTIME_TRACE_CBID_cudaConfigureCall_w3e2@:
handle.onCudaConfigureCall(demain, cbid, cbInfo)
return




Current Work




Filter flles mxnet/BVLC-AlexNet::2
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Filter files mxnet/BVLC-AlexNet::2
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Model Accuracy on different

machines (CPU)

mxnet-m mxnet-|
BVLC-AlexNet 0.4268 0.6764
BVLC-GooglLeNet 0.9984 0.9991
SqueezeNet-v1.0 0.8834 0.8501
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SqueezeNet-v1.1 Cap(0.2874) 0.6929
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Selected center progress highlights

- Workload acceleration



Workload acceleration research at C3SR

* Focus on impactful cognitive workloads for acceleration
e Matrix factorization on GPU
e Long-term Recurrent Convolutional Network acceleration
e ResNet inference acceleration
 Neuron Machine Translation acceleration
 DNN inference acceleration
e Graph analytic acceleration

* In discussion with other CHN centers to collect performance critical
cognitive workloads

* Plan to deliver a set of cognitive benchmarks optimized for
OpenPOWER



Matrix factorization: one of key workloads

Recommender systems Natural language processing

Latent semantic model
Word embedding as input to DNN

Predict missing ratings
Group similar users/items

Complex network Matrix Deep learning
Factorization

Link prediction
Vertices clustering

Model compression
Embedding layer

Web search Tensor decomposition

Match query and document In machine learning and HPC applications
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C

uMF acceleration

cuMF formulation: factorize matrix R into
R~ X. .0

e while minimizing the empirical lost

T = (e = @0 00)" + A el [* + 3 e, [100]°)

w,u

Connect cuMF to Spark MLlIib via JNI

cuMF_ALS @4 Maxwell (52.5/hour)
= 10x speedup over SparkALS @50 nodes
~ 1% of SparkALS’s cost (S0.53/hour/node)

Open source @ http://github.com/cuMF/
Demoed at SC’'16 and GTC’16 on Minsky
Presented to Jen-Hsun Huang on Feb 1, 2017
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e 32 nodes for Netflix and Yahoo
2-10x as fast


http://github.com/cuMF/

Selected center progress highlights

- The Erudite NMA system
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Key Erudite Features

 Persistent objects for main stream languages (C++, Java, Python, etc.)

e Storage-Class Memory (Flash RAM).
* Near Memory Acceleration and memory-channel networking

* API| for collaborative CPU/GPU/NMA execution



High-level Diagram of Current MCN Implementation
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e Host requires a new kernel driver to transform TCP/IP packet to
memory access and vice versa.



Summary

 Creative experiential learning advisor (CELA) as a grand
challenge use case for cognitive capabilities

e Cognitive application builder (CAB) to make the underlying
heterogeneous infrastructure easy to consume for cognitive
application developers

e Cognitive systems innovations (Erudite) for workload
acceleration, including Near Memory Acceleration (NMA)
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