
C3SR Cloud Tools and Services for
Heterogeneous Cognitive Computing Systems

Wen-mei Hwu

Professor and Sanders-AMD Chair, ECE, NCSA, CS

University of Illinois at Urbana-Champaign

with

Jinjun Xiong (IBM), Abdul Dakkak, Cheng Li, and Carl Pearson

Agenda

• Accelerator research at IBM-Illinois C3SR

• RAI

• D4P

• CarML

• Discussions

C3SR Vision
(Center for Cognitive Computing Systems Research)

• The rise of cognitive computing has created new opportunities to
rethink all the three layers of computing systems– applications,
software, and hardware.

• Dramatic enhancement in the efficacy, efficiency and variety of
cognitive computing applications can be achieved through innovative
system design.

C3SR Experimental Heterogeneous Infrastructure

2x P8 Minsky with
NVLink Pascal GPUs

DGX-1

www.ptopenlab.com
SuperVessel

Watson developer cloud

4 x P8 Tuleta (S824L)

FPGA
AFU

PSL

FPGA CAPI
over PCIe

ConTutto over DMI

Power9/Volta upgrade in progress!

http://www.ptopenlab.com/

Accelerator Research Example:

• FPGA accelerated real-time video content recognition with LRCN
(Long-term Recurrent Convolutional Network)

• Achieved 0.04 sec latency: 3x over GPU, 5x over Intel CPU, with x17 lower energy

• More in consideration, including FaceNet, neural machine translation (NMT)

Internet

Front-end (video capturing)
Webcam + Tegra TK1

Back-end (LRCN)
Xilinx FPGA on host server

A group of

young men

playing a

game of

soccer

A Common Pattern for Building Cognitive Solutions

• Applications need to access core services that are optimized for the underlying
heterogeneous infrastructure

Distributed & Heterogeneous Infrastructure

Multi-modality Sensor Input

Video/Image

Understanding

Knowledge

Representation

Concept

Extraction

Formal

Assessment

Computational

Creativity

NLP/Dialog

Systems

Web Service

Portal UI

NVLINK – Pascal/Volta

FPGA, NMA

Agenda

• Accelerator Diversity at IBM-Illinois C3SR

• RAI

• D4P

• CarML

• Discussions

RAI: Easy Use of Accelerators in the Cloud

• Developers download a RAI client binary, which runs on the developer’s
machine
• No library dependencies and work on all major OS

• Set up user profile with a secret key to use the RAI service

• Edit your project locally as you typically do

• Run the RAI client with pointers to your local project folder, and receive
console outputs on your local machine
• As if you’re directly working with a local system with accelerators

https://github.com/rai-project/rai

RAI Demo

Su
b

m
issio

n
 Sp

ec
U

ser P
ro

gram

Output

https://asciinema.org/a/6k5e96itnqu6ekbji60c3kgy4

RAI: Current Use (and X86 too)

• We have been using RAI extensively for teaching at UIUC
• ~270 students registered the UIUC’s GPU Programming Class (ECE408/CS483)
• ~150 students registered the UIUC’s GPU Algorithm Class (ECE508/CS508)
• ~100 students all around the world attending the Programming and Tuning Massively

Parallel Systems (PUMPS) summer school

• Supported tasks such as
• Students to develop a CUDA version of a CNN
• Students to use system profiling tools to identify performance bottlenecks
• Students allowed for repeated submissions in a competition
• Teachers to grade repeated submissions automatically

• System has to be scalable and elastic (from 1 to 20 AWS instances!)

Agenda

• Accelerator Diversity at IBM-Illinois C3SR

• RAI

• D4P

• CarML

• Discussions

D4P: Docker for POWER

• Objectives
• Extend the POWER Docker ecosystem by making it possible to build images without

direct access to POWER hardware
• Make building and deploying POWER Docker images easy for the developers
• A home for POWER Docker containers

• D4P provides
• A cloud-based service for authoring and publishing POWER Docker images
• An API interface for easy integration with any dev/ops pipelines (e.g., for building

POWER-compatible packages)
• A fast increasing collection of Docker images for POWER/accelerator-compatible

packages

D4P demo

D4P demo: authoring and editing

D4P demo: building and publishing

D4P: publishing docker images to docker hub

D4P: a hub for POWER Docker images

Agenda

• Accelerator Diversity at IBM-Illinois C3SR

• RAI

• D4P

• CarML

• Discussions

ML/DL ecosystem: status-quo

• Diverse models
• New DL models are popping up almost everyday around the world on

arXiv/github

• Diverse frameworks
• Theano, Caffee, Tensorflow, Torch, MXNET, Chainer…

• Diverse hardware infrastructures
• X86, POWER, GPUs, FPGAs, accelerators…

TPU

A platform allowing model users to easily evaluate
and consume ML models and algorithms

• Try different ML models with a click

• Run different ML models on user provided data

• Validate ML models performance / accuracy

• Benchmark HW impacts on ML models in terms of performance,
energy & cost

A deployment platform for ML model researchers
to promote their research and receive timely
feedback

• Easy to publish a new ML model for anyone to try it
• Users can reproduce results

• Model variety with different input / output modalities (text, voice, images etc.)

• Framework variety with different packages (Caffee, Tensforflow, Torch etc.)

• Receive feedback on test cases where models break (e.g., unseen cases)

• Easy to benchmark against peers’ results (scoreboards)

A workload characterization platform to
understand system bottlenecks for ML workloads

• All major frameworks, data sets, models available

• Provide distributed tracing and monitoring capabilities

• Support different HW infrastructures

• Allow easy integration of new HW innovations

CarML: prototype demo

• www.carml.org

CarML: end-to-end system tracing demo

• 52.44.160.49:9411

CarML: an open platform to answer those
challenges
• Deploy and benchmark machine learning frameworks and models

across hardware infrastructures, through a common interface

• An experimentation platform for ML users

• A deployment platform for ML developers

• A benchmarking platform for systems architects

• A distributed and resilient system where the web server, registry,
tracer, and agents can all scale either horizontally or vertically

Carl PearsonCheng LiAbdul DakkakDr. Jinjun Xiong (IBM)

Thanks!

Suma Bhat Julia HockenmaierMinh Do Deming Chen Wen-mei Hwu Nam Sung Kim Dan Roth Lav VarshneyRakesh Nagi

…

RAI’s current deployment setup

RAI architecture with reusable components

Hardware and Accelerators

Middleware

CLI

Team Ranking
Execution

Configuration

Tracing

LoggingStorage

PubSub

Health Monitoring

TA Grading

Container OrchestratorQueue

Database

Cache

CPU GPU FPGA

Core
RAI Execution

User1 User2 UserN

CarML architecture: built on RAI

Hardware and Accelerators

CarML Predictors

CarML API

Web UI CLI

RPC Gateway REST API

Tracing

LoggingStorage

K/V store

Health Monitoring

Service Registry

Caffe Caffe2 TF MXNet

Predictor OrchestratorQueue

Dataset

Cache

CPU GPU FPGA ASIC

PyTorch

Word2Vec

RAI/

Core

Cognitive benchmarks optimized for POWER

• Motivation: demonstrate the value of a well-balanced CPU + accelerators design
for many important workloads

• Chai (Collaborative Heterogeneous Applications for Integrated-architecture)
• Identified a set of common collaborative computation patterns
• Demonstrated benefits of having CPU + accelerators for those patterns

• Primary on AMD Kaveri A10-7850K APU
• Open sourced a set of benchmarks to evaluate various CPU + accelerators architectures

• On-going: add more cognitive-related benchmarks + release an optimized version
for POWER systems

Power Accelerator Ecosystems: status-quo
The POWER Minsky with NVLink GPUs (or CAPI FPGA) is so

cool. Can I learn how to program them?

I’m a big fan of accelerator technologies.
How can I educate my students/peers about it at scale?

I have a great Open Source project.
How can I make use of accelerators in the cloud?

Learners

Developers

Educators

RAI: built on Many Existing Open Source Projects
Services Available Backends

Authentication Secret, Auth0

Queue NSQ, SQS, Redis, Kafka, NATS

Database RethinkDB, MongoDB, MySQL, Postgres, SQLite, ...

Registry Etcd, Consul, BoltDB, Zookeeper

Config Yaml, Toml, JSON, Environment

PubSub EC, Redis, GCP, NATS, SNS

Trace XRay, Zipkin, StackDriver, Jaeger

Logger StackDriver, JournalD, Syslog, Kinesis

Store S3, Minio, Memfs, LMDB

Container Docker

Serializer BSON, JSON, YAML, JSONPB, Python Pickle

D4P Architecture: built on top of RAI

RAI

D4P API

D4P Web UI

RAI Client

RAI CLI

RPC Gateway File Server

Registry Authenticator

ML/DL ecosystem personas: users

There are so many cool DL models.
Which one will work (or will there be one working) for my

data?

I just heard of a new wonderful DL model
published on arXiv/github. Can it really achieve

that impressive results?

What hardware (performance, energy, cost) should I
buy to support the desired business logic for

adopting DL models / algorithms?

IT support for business

ML enthusiasts

Business innovator

CarML: model researchers

I just published such a wonderful DL model.
How can I let the world to try it without me providing too

much support (documentation)?

I heard people are using my DL models. Does it
work all the time? If not, what can I do to improve

my model for interesting scenarios?

How does my model compare against the latest
models that are constantly popping up from almost

everywhere?

Model researcher

Model researcher

Model researcher

ML/DL ecosystem personas: system researchers
AI is the future, and ML/DL will be a key workload.

How can I characterize those workloads (with so many
models and frameworks) on my HW systems?

I have designed a new wonderful HW system.
Will it work seamlessly and wonderfully for those

existing ML/DL models?

People are complaining my systems not performing
for their DL models. How can I easily repeat the

same experiment as them?

System researcher

System researcher

System researcher

CarML: workflow explained
A use selects models
and inputs through web
UI or API.

1

The web server accepts the
user inputs and interacts with
registry, tracing, and agents

2

On bootup, agents advertise the
models in the registry. The web
server forwards the user request to
the agents capable of evaluating the
model

0

The web server queries the agent registry
to retrieve the address. The tracing
process is started, if profiling is enabled.

3

The agent starts a docker container
for the request. Data that is shared
across executions are mounted as a
shared volume.

4

Within the docker container, the
model is downloaded, loaded into
memory, and the user's inputs are
preprocessed.

5

Inference is performed within the
docker container and the results are
sent back to the user.

6

5

1

6

0

2 3

4

