
Rebooting the Data Access Hierarchy of
Computing Systems

Wen-mei Hwu

Professor and Sanders-AMD Chair, ECE, NCSA, CS

University of Illinois at Urbana-Champaign

with

Izzat El Hajj, Simon Garcia, Carl Pearson, Nam Sung Kim, Deming Chen,

Jinjun Xiong (IBM), Zehra Sura (IBM)

Agenda

• Data access challenges

• The IBM-Illinois Erudite project

Data Access Challenge (HBM)

Volta
14.03 SP TFLOPS

HBM2
16 GB

225 Giga SP
operands/cycle

900 GB/S

Each operands must be used 62.3 times once fetched
to achieve peak FLOPS rate.

or
Sustain < 1.6% of peak without data reuse

Data Access Challenge (DDR DRAM)

Volta
14.03 SP TFLOPS

Host DDR3
128-512 GB

NVLINK

20 Giga SP
operands/cycle

80 GB/S

Each operands must be used 700 times once fetched
to achieve peak FLOPS rate.

or
Sustain < 0.14% peak without data reuse

Data Access Challenge (FLASH)

Volta
14.03 SP TFLOPS

FLASH
1,000-2,000 GB

PCIe 3

4 Giga SP
operands/cycle

16 GB/S

Each operands must be used 3,507 times once fetched
to achieve peak FLOPS rate.

or
Sustain < 0.03% of peak without data reuse

Large Problem Challenge

• Solving larger problems motivates continued growth of computing
capability
• Inverse solvers for science and engineering applications

• Matrix factorization and graph traversal for analytics

• As problem size grows,
• Fast, low complexity (O(n) or O(nlog(n)) algorithms win

• Sparsity increases, iterative methods win

• → data reuse diminishes!

Graph Analytics Example on IBM Minsky with
Pascal GPUs HPCC 2017

Agenda

• Data access challenges

• The Erudite project

IBM-Illinois C3SR faculties & students (Est. Sep./2016)
Wen-mei Hwu (Illinois) and Jinjun-Xiong (IBM) Co-directors

Suma Bhat Julia HockenmaierMinh Do Deming Chen Wen-mei Hwu Nam Sung Kim Dan Roth Lav VarshneyRakesh Nagi

…

Erudite Target Computation Types

• Low-complexity iterative solver algorithms
• Multi-level Fast Multipole Methods, etc.

• Graph analytics
• Inference, search, counting, etc.

• Large cognitive applications
• Large multi-model classifiers, etc.

Erudite Project Approach

• To achieve > 100x performance/Watt for data-intensive cognitive
computing applications
• Elimination of file-system software overhead for engaging large data sets

• Placement of computation appropriately in the memory and storage
hierarchy

• Highly optimized kernel synthesis for NMA

• Collaborative heterogeneous execution of CPU, GPU, and NMA

Erudite Step 1:
remove file system from data access path

CPU Host
(~1 TFLOPS)

DDR/Flash
Memory System

(~10 TBs)

GPU 1
(~14 TFLOPS)

HBM
(16 GBs)

GPU 2
(~14 TFOPS)

HBM
(16 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

900 GB/s

900 GB/s

Storage
(~10 TBs)

16 GB/s

ASPLOS 2016, OOPSLA 2017

Erudite Step 2:
place NMA compute inside memory system

CPU Host
(~1 TFLOPS)

GPU 1
(~10 TFLOPS)

HBM
(16 GBs)

GPU 2
(~10 TFOPS)

HBM
(16 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

900 GB/s

900 GB/s100+ GFLOPS
NMA Compute
Proportional to
data capacity

DDR/Flash
Memory System

(~10 TBs)

IEEE MICRO 2017

Erudite NMA Board 1.0

▪ Develop a principled
methodology for acceleration
• HLS (high-level synthesis) for FPGA

based on TANGRAM
• Hardware/Software partitioning for

heterogeneous systems
• Optimized for cognitive workload

▪ Throughput proportional to
capacity
• 1 GFLOPS / 10 GB sustained
• 100 GFLOS sustained for 1TBTo Power CPUs/CUDA GPUs

DMI Logic Accelerator Management Logic

FLASH/DRAM Channel FLASH/DRAM Channel

FPGA
Interconnect Fabric

FLASH(/DRAM?)
NVDIMM-F

with built-in NMA

FLASH(/DRAM?)
NVDIMM-F

with built-in NMA

Erudite Step 3
collaborative heterogeneous computing (Chai)

…

…

data-parallel tasks

se
q

u
e

n
ti

al
 s

u
b

-t
as

ks

co
ar

se
-g

ra
in

ed

sy
n

ch
ro

n
iz

at
io

n
Program Structure

Fine-grained Task Partitioning

Device 1 Device 2

…

…

…
… …

…
ICPE 2017

Erudite Research Agenda

• Package-level integration
• Post-Moore scaling
• Optical interconnects in package?
• Collaboration support for heterogeneous

devices
• Virtual address translation

• System software (r)evolution
• Persistent objects for multi-language

environments
• Directory and mapping of very large

persistent objects

• Power consumption in memory
• Much higher memory-level parallelism

needed for FLASH-based memories
• Latency vs. throughput oriented memories

0

2

4

0 10 20

En
e

rg
y

Ef
fi

ci
e

n
cy

(p

J/
b

it
)

Distance (mm)

Electrical

Conclusion and Outlook

• Drivers for computing capabilities
• Large-scale inverse problems with natural data inputs

• Machine-learning-based applications

• Erudite cognitive computing systems project
• Removing file-system bottleneck from access paths to large data sets

• Placing compute into the appropriate levels of the memory system hierarchy

• Memory parallelism (data bandwidth) proportional to the data capacity

• Collaborative NMA execution with CPUs and GPUs

• > 100x improvement in power-efficiency and performance

CPU

MPU

GPU

Thank you!

What is driving new computing innovations?

• Applications with large, accurate models
• Problems that we know how to solve accurately but choose not to because it would

be “too expensive”
• High-valued applications with approximations that cause inaccuracies and lost

opportunities
• Medicate imaging, remote sensing, earthquake modeling, weather modeling,

precision digital manufacturing, combustion modeling, ….

• Applications that we have failed to program
• Problems that we just don’t know how to solve
• High-valued applications with no effective computational methods
• Computer vision, natural language dialogs, document comprehension, individualized

education, fraud detection, self-driving cars, …

A Simplified Heterogeneous System
(IBM Minsky with NVIDIA Pascal GPUs)

CPU Host
(~1 TFLOPS)

DDR Memory System
(~100 GBs)

GPU 1
(~10 TFLOPS)

HBM
(~10 GBs)

GPU 2
(~10 TFOPS)

HBM
(~10 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

700 GB/s

700 GB/s

Storage
(~10 TBs)

10 GB/s

Iterative Solver Example –
If matrix fits into GPU Memory

CPU Host
(~1 TFLOPS)

DDR Memory System
(~100 GBs)

GPU 1
(~10 TFLOPS)

HBM
(~10 GBs)

GPU 2
(~10 TFOPS)

HBM
(~10 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

700 GB/s

700 GB/s

Storage
(~10 TBs)

10 GB/s

~100 GFLOPS
Sustained

Iterative Solver Example –
If matrix fits into Host Memory

CPU Host
(~1 TFLOPS)

DDR Memory System
(~100 GBs)

GPU 1
(~10 TFLOPS)

HBM
(~10 GBs)

GPU 2
(~10 TFOPS)

HBM
(~10 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

700 GB/s

700 GB/s

Storage
(~10 TBs)

10 GB/s

~10 GFLOPS
Sustained

Tremendous loss of both
performance and energy efficiency

Iterative Solver Example –
If matrix has to be accessed from storage

CPU Host
(~1 TFLOPS)

DDR Memory System
(~100 GBs)

GPU 1
(~10 TFLOPS)

HBM
(~10 GBs)

GPU 2
(~10 TFOPS)

HBM
(~10 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

700 GB/s

700 GB/s

Storage
(~10 TBs)

10 GB/s

< 1 GFLOPS
Sustained

Problem Statement for the Erudite Project

• Latency and bandwidth limitations on accessing massive data sets
• Sweeping through large data sets brings systems to their knees

• Low data reuse creates unnecessary traffic through the memory hierarchy

• Sustained performance < 1% of peak for memory/storage bound applications

• Large software overhead for data access
• File system overhead and bottleneck

• Message passing serialization/deserialization and layers of constructors

• Excessive data copying between memory address spaces and subspaces

Example: Direct vs. Iterative Solvers

Direct Solvers
• Good Locality

• Data reuse through tiling

• Sparsity
• Too many fill-ins, data explosion

• Stability
• Pivoting restricts parallelism

Iterative Solvers
• Poor Locality

• Multiple sweeps through matrix

• Good with Sparsity
• No fill-ins during solution time

• Stability
• Convergence varies

• Preconditioning may enlarge
matrix

16 GB/s

