Rebooting the Data Access Hierarchy of Computing Systems

Wen-mei Hwu Professor and Sanders-AMD Chair, ECE, NCSA, CS University of Illinois at Urbana-Ch<u>ampaign</u>

with

Izzat El Hajj, Simon Garcia, Carl Pearson, Nam Sung Kim, Deming Chen,

Jinjun Xiong (IBM), Zehra Sura (IBM)

Agenda

- Data access challenges
- The IBM-Illinois Erudite project

Data Access Challenge (HBM)

Each operands must be used **62.3 times** once fetched to achieve peak FLOPS rate.

or Sustain < **1.6%** of peak without data reuse

Data Access Challenge (DDR DRAM)

Each operands must be used **700 times** once fetched to achieve peak FLOPS rate.

or Sustain < 0.14% peak without data reuse

Data Access Challenge (FLASH)

Each operands must be used **3,507 times** once fetched to achieve peak FLOPS rate.

or Sustain < 0.03% of peak without data reuse

Large Problem Challenge

- Solving larger problems motivates continued growth of computing capability
 - Inverse solvers for science and engineering applications
 - Matrix factorization and graph traversal for analytics
- As problem size grows,

- Fast, low complexity (O(n) or O(nlog(n)) algorithms win
- Sparsity increases, iterative methods win
- \rightarrow data reuse diminishes!

Graph Analytics Example on IBM Minsky with Pascal GPUs HPCC 2017

	TRUSS DECOMPOSITION BENCHMARKS ON LEAL-WORLD GRAPHS										
Creat			1.	Python Baseline			Zero-copy			Unified	
Graph	n	m	κ_{max}	Time (s)	Rate (edges/s)	Time (s	Rate (edges/s)	Speedup	Time (s)	Rate (edges/s)	Speedup
cit-Patents	3,774,768	33,037,894	36	> 4 hrs	-	28.76	1,148,843.8	-	5,459.60	6,051.3	-
roadNet-CA	1,965,206	5,533,214	4	526.18	10,515.8	3.74	1,477,924.7	140.54	4.63	1,193,838.4	113.53
amazon0601	403,394	4,886,816	11	1,443.57	3,385.2	9.06	539,148.4	159.27	656.23	7,446.8	2.20
amazon0505	410,236	4,878,874	11	2,666.41	1,829.8	9.43	517,160.8	282.64	684.17	7,131.1	3.90
amazon0312	400,727	4,699,738	11	2,213.74	2,123.0	10.24	459,045.0	216.23	626.42	7,502.6	3.53
flickrEdges	105,938	4,633,896	574	> 4 hrs	-	195.47	23,706.8	-	> 4 hrs	-	-
roadNet-TX	1,379,917	3,843,320	4	368.98	10,416.2	3.79	1,013,800.0	97.33	4.53	848,926.8	81.50
roadNet-PA	1,088,092	3,083,796	4	295.11	10,449.7	3.57	864,595.0	82.74	4.56	676,667.7	64.75
amazon0302	262,111	1,799,584	7	306.63	5,868.9	4.96	362,934.8	61.84	61.83	29,103.6	4.96
soc-Slashdot0811	77,360	938,360	35	2,863.68	327.7	10.64	88,185.5	269.12	183.08	5,125.4	15.64
cit-HepPh	34,546	841,754	25	1,888.29	445.8	15.14	55,597.5	124.72	156.27	5,386.4	12.08
email-EuAll	265,214	728,962	20	2,508.10	290.6	10.96	66,521.6	228.88	144.83	5,033.1	17.32
cit-HepTh	27,770	704,570	30	2,387.76	295.1	18.65	37,785.2	128.05	178.33	3,950.9	13.39
loc-brightkite_edges	58,228	428,156	43	1,498.01	285.8	10.37	41,307.1	144.52	51.61	8,296.2	29.03
ca-AstroPh	18,772	396,100	57	854.94	463.3	14.35	27,600.8	59.57	87.90	4,506.2	9.73
email-Enron	36,692	367,662	22	1,053.50	349.0	14.94	24,608.6	70.51	88.05	4,175.8	11.97
ca-HepPh	12,008	236,978	239	1,080.12	219.4	12.33	19,226.5	87.63	55.78	4,248.3	19.36
ca-CondMat	23,133	186,878	26	109.94	1,699.8	5.00	37,342.5	21.97	11.98	15,599.3	9.18
facebook_combined	4,039	176,468	97	1,235.49	142.8	25.40	6,947.1	48.64	79.89	2,208.8	15.46
as-caida20071105	26,475	106,762	16	143.37	744.7	5.35	19,946.8	26.79	9.56	11,163.7	14.99
p2p-Gnutella04	10,876	79,988	4	3.82	20,939.2	3.58	22,353.0	1.07	3.66	21,879.4	1.04
oregon1_010331	10,670	44,004	16	39.43	1,115.9	5.07	8,677.7	7.78	6.49	6,784.1	6.08
as20000102	6 474	25 144	10	12 13	2 073 2	4 29	5 859 8	2.83	4 99	5 042 1	2 4 3

ECE ILLINOIS

ILLINOIS

Agenda

- Data access challenges
- The Erudite project

IBM-Illinois C³SR faculties & students (Est. Sep./2016) Wen-mei Hwu (Illinois) and Jinjun-Xiong (IBM) Co-directors

Suma Bhat Minh Do

Deming Chen

Julia Hockenmaier Wen-mei Hwu

Nam Sung Kim

Dan Roth

Rakesh Nagi

Lav Varshney

ECE ILLINOIS

• • •

Erudite Target Computation Types

- Low-complexity iterative solver algorithms
 - Multi-level Fast Multipole Methods, etc.
- Graph analytics
 - Inference, search, counting, etc.
- Large cognitive applications
 - Large multi-model classifiers, etc.

Erudite Project Approach

- To achieve > 100x performance/Watt for data-intensive cognitive computing applications
 - Elimination of file-system software overhead for engaging large data sets
 - Placement of computation appropriately in the memory and storage hierarchy
 - Highly optimized kernel synthesis for NMA
 - Collaborative heterogeneous execution of CPU, GPU, and NMA

Erudite Step 1: remove file system from data access path

Erudite Step 2: place NMA compute inside memory system

Erudite NMA Board 1.0

ECE ILLINOIS

- Develop a principled methodology for acceleration
 - HLS (high-level synthesis) for FPGA based on TANGRAM
 - Hardware/Software partitioning for heterogeneous systems

. I N O I S

- Optimized for cognitive workload
- Throughput proportional to capacity
 - 1 GFLOPS / 10 GB sustained
 - 100 GFLOS sustained for 1TB

Erudite Step 3 collaborative heterogeneous computing (Chai)

Erudite Research Agenda

- Package-level integration
 - Post-Moore scaling
 - Optical interconnects in package?
 - Collaboration support for heterogeneous devices
 - Virtual address translation
- System software (r)evolution
 - Persistent objects for multi-language environments
 - Directory and mapping of very large persistent objects
- Power consumption in memory
 - Much higher memory-level parallelism needed for FLASH-based memories
 - Latency vs. throughput oriented memories

Conclusion and Outlook

• Drivers for computing capabilities

- Large-scale inverse problems with natural data inputs
- Machine-learning-based applications

- Erudite cognitive computing systems project
 - Removing file-system bottleneck from access paths to large data sets
 - Placing compute into the appropriate levels of the memory system hierarchy
 - Memory parallelism (data bandwidth) proportional to the data capacity
 - Collaborative NMA execution with CPUs and GPUs
 - > 100x improvement in power-efficiency and performance

Thank you!

What is driving new computing innovations?

- Applications with large, accurate models
 - Problems that we know how to solve accurately but choose not to because it would be "too expensive"
 - High-valued applications with approximations that cause inaccuracies and lost opportunities
 - Medicate imaging, remote sensing, earthquake modeling, weather modeling, precision digital manufacturing, combustion modeling,
- Applications that we have failed to program
 - Problems that we just don't know how to solve
 - High-valued applications with no effective computational methods
 - Computer vision, natural language dialogs, document comprehension, individualized education, fraud detection, self-driving cars, ...

A Simplified Heterogeneous System (IBM Minsky with NVIDIA Pascal GPUs)

ILLINOIS

ECE ILLINOIS

ILLINOIS

Iterative Solver Example – If matrix fits into Host Memory

ECE ILLINOIS

ILLINOIS

Iterative Solver Example – If matrix has to be accessed from storage

ECE ILLINOIS

IILLINOIS

Problem Statement for the Erudite Project

- Latency and bandwidth limitations on accessing massive data sets
 - Sweeping through large data sets brings systems to their knees
 - Low data reuse creates unnecessary traffic through the memory hierarchy
 - Sustained performance < 1% of peak for memory/storage bound applications
- Large software overhead for data access
 - File system overhead and bottleneck
 - Message passing serialization/deserialization and layers of constructors
 - Excessive data copying between memory address spaces and subspaces

Example: Direct vs. Iterative Solvers

Direct Solvers

- Good Locality
 - Data reuse through tiling
- Sparsity
 - Too many fill-ins, data explosion
- Stability

ECE ILLINOIS

• Pivoting restricts parallelism

Iterative Solvers

- Poor Locality
 - Multiple sweeps through matrix
- Good with Sparsity
 - No fill-ins during solution time
- Stability
 - Convergence varies
 - Preconditioning may enlarge matrix

