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e Data access challenges
* The IBM-Illinois Erudite project
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Data Access Challenge (HBM)

900 GB/S

Volta <:>

14.03 SP TFLOPS

225 Giga SP
operands/cycle

Each operands must be used 62.3 times once fetched
to achieve peak FLOPS rate.
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Data Access Challenge (DDR DRAM)

80 GB/S

|

Volta Host DDR3

14.03 SP TFLOPS 128-512 GB
20 Giga SP

operands/cycle

Each operands must be used 700 times once fetched
to achieve peak FLOPS rate.
or
Sustain < 0.14% peak without data reuse
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Data Access Challenge (FLASH)

Volta FLASH

14.03 SP TFLOPS 1,000-2,000 GB
4 Giga SP
operands/cycle

Each operands must be used 3,507 times once fetched
to achieve peak FLOPS rate.
or
Sustain < 0.03% of peak without data reuse
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Large Problem Challenge

* Solving larger problems motivates continued growth of computing
capability
* Inverse solvers for science and engineering applications
* Matrix factorization and graph traversal for analytics

* As problem size grows,
* Fast, low complexity (O(n) or O(nlog(n)) algorithms win
e Sparsity increases, iterative methods win
e - data reuse diminishes!

IirriNnoOTs
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Graph Ana
Pascal GPUs

TRUSS DECOMPOSITION BENCHMARKS ON

TABLE II

vtics Example on IBM Minsky with

HPCC 2017

Graph " m e Python Baseline Zero-copy Unified
MaT “Time (s) Rate (edges/s) Time (§ Rate (edges/s) Speedupf| Time (s)f Rate (edges/s)
cit-Patents 3,774,768 33.037.894 36 > 4 hrs - 28.76 1,148.843.8 - 5.459.60 6.051.3
roadNet-CA 1,965,206 5.533.214 4 526.18 10.515.8 3.74 1,477,924.7 140.54 4.63 1.193,838.4
amazon060 1 403,394 4.886.816 11 1.443.57 3,385.2 9.06 539.148.4 159.27 656.23 7.446.8
amazon0505 410,236 4.878.874 11 2.666.41 1,829.8 0.43 517,160.8 282.64 684.17 7.131.1
amazon0312 400,727 4.699.738 11 2.213.74 2,123.0 10.24 459.,045.0 216.23 626.42 7.502.6
flickrEdges 105,938 4.633.896 574 > 4 hrs - 195.4 23.706.8 - > 4 hrs -
roadNet-TX 1.379.917 3.843.320 4 368.98 10.416.2 3.79 1.013.800.0 97.33 4.53 848.926.8
roadNet-PA 1,088,092 3,083,796 4 295.11 10.449.7 3.57 864.595.0 82.74 4.56 676.667.7
amazon(0302 262,111 1,799,584 7 306.63 5.868.9 4.96 362,934.8 61.84 61.83 29.103.6
soc-SlashdotO81 1 77.360 038.360 35 2.863.68 327.7 10.64 88.183.5 269.12 183.08 5.125.4
cit-HepPh 34.546 841,754 25 1.888.29 445.8 15.14 55.597.5 124.72 156.27 5.386.4
email-EuAll 265,214 728.962 20 2.508.10 290.6 10.96 66,521.6 228.88 144.83 5.033.1
cit-HepTh 27.770 704.570 30 2.387.76 295.1 18.65 37.785.2 128.05 178.33 3.950.9
loc-brightkite_edges 58,228 428.156 43 1.498.01 285.8 10.37 41.307.1 144.52 51.61 8,296.2
ca-AstroPh 18,772 396.100 57 854.94 463.3 14.35 27.600.8 59.57 87.90 4,506.2
email-Enron 36,692 367.662 22 1.053.50 349.0 14.94 24.608.6 70.51 88.05 4,175.8
ca-HepPh 12,008 236,978 239 1,080.12 2194 12.33 19.226.5 87.63 55.78 4,248.3
ca-CondMat 23,133 186.878 26 109.94 1.699.8 5.00 37.342.5 21.97 11.98 15,599.3
facebook_combined 4.039 176.468 97 1,235.49 142.8 25.40 6.,947.1 48.64 79.89 2.208.8
as-caida20071105 26.475 106.762 16 143.37 744.7 5.35 19.946.8 26.79 0.56 11.163.7
p2p-GnutellaO4 10,876 79,988 4 3.82 20,939.2 3.58 22.353.0 1.07 3.66 21.879.4
oregonl_010331 10.670 44.004 16 39.43 1.115.9 5.07 8.677.7 7.78 6.49 6.784.1
20000100 47 4 44 () ) 9 R50 R 2 41 0Q (4
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Erudite Target Computation Types

* Low-complexity iterative solver algorithms
* Multi-level Fast Multipole Methods, etc.

* Graph analytics
* Inference, search, counting, etc.

* Large cognitive applications
* Large multi-model classifiers, etc.

IirriNnoOTs
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Erudite Project Approach

* To achieve > 100x performance/Watt for data-intensive cognitive
computing applications
* Elimination of file-system software overhead for engaging large data sets

* Placement of computation appropriately in the memory and storage
hierarchy

* Highly optimized kernel synthesis for NMA
* Collaborative heterogeneous execution of CPU, GPU, and NMA

IirriNnoOTs
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Erudite Step 1:
remove file system from data access path

900 GB/s

GPU 1
(~14 TFLOPS)

HBM
(16 GBs)

100 GB/s

DDR/Flash
Memory System CPU Host

GPU 2 900 GB/s

HBM
(~14 TFOPS) am) | =

ASPLOS 2016, OOPSLA 2017
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Erudite Step 2:
place NMA compute inside memory system

900 GB/s
GPU 1

80 GB/s (~10 TFLOPS)

HBM
(16 GBs)

DDR/Flash 100 GB/s
Memory System ” CPU Host
(~10 TBs) (~1 TFLOPS) 80 GB/s

100+ GFLOPS
NMA Compute

GPU 2 900 GB/s

HBM
(~10 TFOPS) am) | =

Proportional to
data capacity

IEEE MICRO 2017
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Erudite NMA Board 1.0

" Develop a principled
methodology for acceleration

e HLS (high-level synthesis) for FPGA
based on TANGRAM

* Hardware/Software partitioning for
heterogeneous systems

alerconnect tlanric e Optimized for cognitive workload

" Throughput proportional to
capacity
e 1 GFLOPS / 10 GB sustained
e 100 GFLOS sustained for 1TB

To Power CPUs/CUDA GPUs

IirriNnoOTs
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Erudite Step 3
collaborative heterogeneous computing (Chai)

data-parallel tasks

1

{éﬂwiﬂ i,
TR

Program Structure

ICPE 2017

sequential sub-tasks

Fine-grained Task Partitioning

ECE ILLINOIS
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Erudite Research Agenda

* Package-level integration
* Post-Moore scaling

e Optical interconnects in package? 4 —Flectrical
* Collaboration support for heterogeneous > ectrica
devices c
* Virtual address translation Q
R
. m22
e System software (r)evolution L <3
. . : > O
* Persistent objects for multi-language oo —
environments Q
* Directory and mapping of very large LE
persistent objects 0 | |
* Power consumption in memory 0 Distan%:g (mm) 20

* Much higher memory-level parallelism
needed for FLASH-based memories

* Latency vs. throughput oriented memories

IirriNnoOTs
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Conclusion and Outlook

* Drivers for computing capabilities
* Large-scale inverse problems with natural data inputs
* Machine-learning-based applications

* Erudite cognitive computing systems project

* Removing file-system bottleneck from access paths to large data sets
Placing compute into the appropriate levels of the memory system hierarchy
Memory parallelism (data bandwidth) proportional to the data capacity
Collaborative NMA execution with CPUs and GPUs
> 100x improvement in power-efficiency and performance

IirriNnoOTs
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Thank you!
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What is driving new computing innovations?

e Applications with large, accurate models

* Problems that we know how to solve accurately but choose not to because it would
be “too expensive”

* High-valued applications with approximations that cause inaccuracies and lost
opportunities

* Medicate imaging, remote sensing, earthquake modeling, weather modeling,
precision digital manufacturing, combustion modeling, ....

* Applications that we have failed to program

* Problems that we just don’t know how to solve
* High-valued applications with no effective computational methods

« Computer vision, natural language dialogs, document comprehension, individualized
education, fraud detection, self-driving cars, ...

TirriNnors
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A Simplified Heterogeneous System
(IBM Minsky with NVIDIA Pascal GPUs)

700 GB/s

GPU 1
(~10 TFLOPS)

HBM
(~10 GBs)

100 GB/s

DDR Memory System ” CPU Host
(~100 GBs) (~1 TFLOPS)

GPU 2 700 GB/s

HBM
(~10 TFOPS) “ (~10 GBS)

Storage
(~10 TBs)
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terative Solver Example —
f matrix fits into GPU Memory

~100 GFLOPS
Sustained

700 GB/s

<mm) | o
(~10 GBs)

GPU 1
(~10 TFLOPS)

100 GB/s
DDR Memory System

(~100 GBs) (~1 TFLOPS)

700 GB/s

HBM
(~10 TFOPS) “ (~10 GBS)

GPU 2

Storage
(~10 TBs)
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terative Solver Examp
f matrix fits into Host

~10 GFLOPS |
Sustained 10 68s)

100 GB/s
DDR Memory System CPU Host

(~100 GBs) (~1 TFLOPS)

HBM
(~10 TFOPS) (~10 GBs)

Storage Tremendous loss of both
(~10 TBs) oo
performance and energy efficiency

IirriNnoOTs
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terative Solver Example —
f matrix has to be accessed from storage

<1 GFLOPS |
(~10 TFLOPS)

Sustained socp/
t 80 GB/s
HBM

(~10 TFOPS) (~10 GBs)

HBM
(~10 GBs)

DDR Memory System CPU Host
(~100 GBs) (~1 TFLOPS)

Storage
(~10 TBs)

IirriNnoOTs
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Problem Statement for the Erudite Project

e Latency and bandwidth limitations on accessing massive data sets
* Sweeping through large data sets brings systems to their knees
* Low data reuse creates unnecessary traffic through the memory hierarchy
* Sustained performance < 1% of peak for memory/storage bound applications

 Large software overhead for data access
* File system overhead and bottleneck
* Message passing serialization/deserialization and layers of constructors
* Excessive data copying between memory address spaces and subspaces

TirriNnors
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Example: Direct vs. Iterative Solvers

Direct Solvers

* Good Locality
e Data reuse through tiling

* Sparsity
* Too many fill-ins, data explosion

* Stability
* Pivoting restricts parallelism

ECE ILLINOIS

Iterative Solvers

* Poor Locality
* Multiple sweeps through matrix

* Good with Sparsity
* No fill-ins during solution time

e Stability
* Convergence varies

* Preconditioning may enlarge
matrix

TirriNnors
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