
Volodymyr Kindratenko Editor

Numerical
Computations
with GPUs

Numerical Computations with GPUs

Volodymyr Kindratenko
Editor

Numerical Computations
with GPUs

123

Editor
Volodymyr Kindratenko
National Center for Supercomputing

Applications
University of Illinois
Urbana, IL, USA

ISBN 978-3-319-06547-2 ISBN 978-3-319-06548-9 (eBook)
DOI 10.1007/978-3-319-06548-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014940054

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

This book is intended to serve as a practical guide for the development and
implementation of numerical algorithms on Graphics Processing Units (GPUs). The
book assumes that the reader is familiar with the mathematical context and has a
good working knowledge of GPU architecture and its programming sufficient to
translate specialized mathematical algorithms and pseudo-codes presented in the
book into a fully functional CUDA or OpenCL software. In case the reader is
not familiar with the GPU programming, the reader is directed to other sources,
such as NVIDIA’s CUDA Parallel Computing Platform website, for low-level
programming details, tools, and techniques prior to reading this book.

Book Focus

The main focus of this book is on the efficient implementation of numerical methods
on GPUs. The book chapters are written by the leaders in the field working for
many years on the development and implementation of computationally intensive
numerical algorithms for solving scientific computing and engineering problems.

It is widely understood and accepted that modern scientific discovery in all of
the disciplines requires extensive computations. It is also the case that modern
engineering heavily utilizes advanced computational models and tools. At the
heart of many such computations are libraries of mathematical codes for solving
systems of linear equations, computing solutions of differential equations, finding
integrals and function values, transforming time series, etc. These libraries have
been developed over several decades and have been constantly updated to track the
ever changing architecture and capabilities of computing hardware. With the intro-
duction of GPUs, many of the existing numerical libraries are currently undergoing
another phase of transformation in order to continue serving the computational
science and engineering community by providing the required level of performance.
Simultaneously, new numerical methods are under development to take advantage
of the revolutionary architecture of GPUs. In either case, the developers of such

v

vi Preface

numerical codes face the challenge of extracting parallelism present in numerical
methods and expressing it in the form that can be successfully utilized by the
massively parallel GPU architecture. This frequently requires reformulating the
original algorithmic structure of the code, tuning its performance, and developing
and validating entirely new algorithms that can take advantage of the new hardware.
It is my hope that this book will serve as a reference implementation and will provide
the guidance for the developers of such codes by presenting a collective experience
from many recent successful efforts.

Audience and Organization

This book targets practitioners working on the implementation of numerical codes
on GPUs, researchers and software developers attempting to extend existing numer-
ical libraries to GPUs, and readers interested in all aspects of GPU programming. It
especially targets community of computational scientists from disciplines known to
make use of linear algebra, differential equations, Monte Carlo methods, and Fourier
transform.

The book is organized in four parts, each covering a particular set of numerical
methods. First part is dedicated to the solution of linear algebra problems, ranging
from the matrix–matrix multiplication, to the solution of systems of linear equations,
to the computation of eigenvalues. Several chapters in this part address the problem
of computing on a very large number of small matrixes. The final chapter also
addresses the sparse matrix–vector product problem.

Second part is dedicated to the solution of differential equations and problems
based on the space discretization of differential equations. Methods such as finite
elements, finite difference, and successive over-relaxation with the applications to
problem domains such as flow and wave propagation and solution of Maxwell’s
equations are presented. One chapter also addresses the challenge of integrating a
large number of independent ordinary differential equations.

Third part is dedicated to the use of Monte Carlo methods for numerical
integration. Monte Carlo techniques are well suited for GPU implementation and
their use is widening. The part also includes chapters about random number
generation on GPUs as a necessary first step in Monte Carlo methods.

The final part consists of two chapters dedicated to the efficient implementation
of Fourier transform and one chapter discussing N-body simulations.

Preface vii

Acknowledgments

This book consists of contributed chapters provided by the experts in various fields
involved with numerical computations on GPUs. I would like to thank all of the
contributing authors whose work appears in this edition. I am also thankful to the
Directors of the National Center for Supercomputing Applications at the University
of Illinois at Urbana-Champaign for the support and encouragement.

Urbana, IL, USA Volodymyr Kindratenko

Contents

Part I Linear Algebra

1 Accelerating Numerical Dense Linear Algebra
Calculations with GPUs . 3
Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak,
Piotr Luszczek, Stanimire Tomov, and Ichitaro Yamazaki

2 A Guide for Implementing Tridiagonal Solvers on GPUs 29
Li-Wen Chang and Wen-mei W. Hwu

3 Batch Matrix Exponentiation . 45
M. Graham Lopez and Mitchel D. Horton

4 Efficient Batch LU and QR Decomposition on GPU 69
William J. Brouwer and Pierre-Yves Taunay

5 A Flexible CUDA LU-Based Solver for Small, Batched
Linear Systems . 87
Antonino Tumeo, Nitin Gawande, and Oreste Villa

6 Sparse Matrix-Vector Product . 103
Zbigniew Koza, Maciej Matyka, Łukasz Mirosław,
and Jakub Poła

Part II Differential Equations

7 Solving Ordinary Differential Equations on GPUs . 125
Karsten Ahnert, Denis Demidov, and Mario Mulansky

8 GPU-Based Parallel Integration of Large Numbers
of Independent ODE Systems . 159
Kyle E. Niemeyer and Chih-Jen Sung

ix

x Contents

9 Finite and Spectral Element Methods on Unstructured
Grids for Flow and Wave Propagation Problems . 183
Dominik Göddeke, Dimitri Komatitsch, and Matthias Möller

10 A GPU Implementation for Solving the Convection
Diffusion Equation Using the Local Modified SOR Method 207
Yiannis Cotronis, Elias Konstantinidis,
and Nikolaos M. Missirlis

11 Finite-Difference in Time-Domain Scalable
Implementations on CUDA and OpenCL . 223
Lídia Kuan, Pedro Tomás, and Leonel Sousa

Part III Random Numbers and Monte Carlo Methods

12 Pseudorandom Numbers Generation for Monte Carlo
Simulations on GPUs: OpenCL Approach . 245
Vadim Demchik

13 Monte Carlo Automatic Integration with Dynamic
Parallelism in CUDA . 273
Elise de Doncker, John Kapenga, and Rida Assaf

14 GPU: Accelerated Computation Routines for Quantum
Trajectories Method . 299
Joanna Wiśniewska and Marek Sawerwain

15 Monte Carlo Simulation of Dynamic Systems on GPU’s. 319
Jonathan Rogers

Part IV Fast Fourier Transform and Localized n-Body
Problems

16 Fast Fourier Transform (FFT) on GPUs . 339
Yash Ukidave, Gunar Schirner, and David Kaeli

17 A Highly Efficient FFT Using Shared-Memory Multiplexing 363
Yi Yang and Huiyang Zhou

18 Increasing Parallelism and Reducing Thread Contentions
in Mapping Localized N-Body Simulations to GPUs 379
Bharat Sukhwani and Martin C. Herbordt

Part I
Linear Algebra

Chapter 1
Accelerating Numerical Dense Linear Algebra
Calculations with GPUs

Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek,
Stanimire Tomov, and Ichitaro Yamazaki

1.1 Introduction

Enabling large scale use of GPU-based architectures for high performance
computational science depends on the successful development of fundamental
numerical libraries for GPUs. Of particular interest are libraries in the area of dense
linear algebra (DLA), as many science and engineering applications depend on
them; these applications will not perform well unless the linear algebra libraries
perform well.

Drivers for DLA developments have been significant hardware changes. In
particular, the development of LAPACK [1]—the contemporary library for DLA
computations—was motivated by the hardware changes in the late 1980s when its
predecessors (EISPACK and LINPACK) needed to be redesigned to run efficiently
on shared-memory vector and parallel processors with multilayered memory hierar-
chies. Memory hierarchies enable the caching of data for its reuse in computations,
while reducing its movement. To account for this, the main DLA algorithms were
reorganized to use block matrix operations, such as matrix multiplication, in their
innermost loops. These block operations can be optimized for various architectures
to account for memory hierarchy, and so provide a way to achieve high-efficiency
on diverse architectures.

J. Dongarra
University of Tennessee Knoxville, Knoxville, TN 37996-3450, USA

Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

University of Manchester, Manchester M13 9PL, UK
e-mail: dongarra@eecs.utk.edu

M. Gates • A. Haidar • J. Kurzak • P. Luszczek • S. Tomov (�) • I. Yamazaki
University of Tennessee Knoxville, Knoxville, TN 37996-3450, USA
e-mail: mgates3@eecs.utk.edu; haidar@eecs.utk.edu; kurzak@eecs.utk.edu;
luszczek@eecs.utk.edu; tomov@eecs.utk.edu; iyamazak@eecs.utk.edu

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__1, © Springer International Publishing Switzerland 2014

3

mailto:dongarra@eecs.utk.edu
mailto:mgates3@eecs.utk.edu
mailto:haidar@eecs.utk.edu
mailto:kurzak@eecs.utk.edu
mailto:luszczek@eecs.utk.edu
mailto:tomov@eecs.utk.edu
mailto:iyamazak@eecs.utk.edu

4 J. Dongarra et al.

Challenges for DLA on GPUs stem from present-day hardware changes that
require yet another major redesign of DLA algorithms and software in order
to be efficient on modern architectures. This is provided through the MAGMA
library [12], a redesign for GPUs of the popular LAPACK.

There are two main hardware trends that challenge and motivate the development
of new algorithms and programming models, namely:

The explosion of parallelism where a single GPU can have thousands of cores
(e.g., there are 2,880 CUDA cores in a K40), and algorithms must account for
this level of parallelism in order to use the GPUs efficiently;

The growing gap of compute vs. data-movement capabilities that has been incre
asing exponentially over the years. To use modern architectures efficiently
new algorithms must be designed to reduce their data movements. Current
discrepancies between the compute- vs. memory-bound computations can be
orders of magnitude, e.g., a K40 achieves about 1,240 Gflop/s on dgemm but
only about 46 Gflop/s on dgemv.

This chapter presents the current best design and implementation practices that
tackle the above mentioned challenges in the area of DLA. Examples are given
with fundamental algorithms—from the matrix–matrix multiplication kernel written
in CUDA (in Sect. 1.2) to the higher level algorithms for solving linear systems
(Sects. 1.3 and 1.4), to eigenvalue and SVD problems (Sect. 1.5).

The complete implementations and more are available through the MAGMA
library.1 Similar to LAPACK, MAGMA is an open source library and incorporates
the newest algorithmic developments from the linear algebra community.

1.2 BLAS

The Basic Linear Algebra Subroutines (BLAS) are the main building blocks for
dense matrix software packages. The matrix multiplication routine is the most
common and most performance-critical BLAS routine. This section presents the
process of building a fast matrix multiplication GPU kernel in double precision,
real arithmetic (dgemm), using the process of autotuning. The target is the Nvidia
K40c card.

In the canonical form, matrix multiplication is represented by three nested loops
(Fig. 1.1). The primary tool in optimizing matrix multiplication is the technique of
loop tiling. Tiling replaces one loop with two loops: the inner loop incrementing the
loop counter by one, and the outer loop incrementing the loop counter by the tiling
factor. In the case of matrix multiplication, tiling replaces the three loops of Fig. 1.1
with the six loops of Fig. 1.2. Tiling of matrix multiplication exploits the surface to
volume effect, i.e., execution of O.n3/ floating-point operations overO.n2/ data.

1http://icl.cs.utk.edu/magma/.

http://icl.cs.utk.edu/magma/

1 Accelerating Numerical Dense Linear Algebra Calculations with GPUs 5

1 f o r (m = 0 ; m< M; m++)
2 f o r (n = 0 ; n < N; n++)
3 f o r (k = 0 ; k< K; k++)
4 C[n] [m] += A[k] [m]∗B[n] [k] ;

Fig. 1.1 Canonical form of
matrix multiplication

1 f o r (m = 0 ; m < M; m += t i l eM)
2 f o r (n = 0 ; n < N; n += t i l eN)
3 f o r (k = 0 ; k < K; k += t i l eK)
4 f o r (m = 0 ; m< t i l eM ; m++)
5 f o r (n = 0 ; n< t i l eN ; n++)
6 f o r (k = 0 ; k< t i l eK ; k++)
7 C[n +n] [m +n] +=
8 A[k +k] [m +m]∗
9 B[n +n] [k +k] ;

Fig. 1.2 Matrix multiplication with loop tiling

1 f o r (m = 0 ; m < M; m += t i l eM)
2 f o r (n = 0 ; n < N; n += t i l eN)
3 f o r (k = 0 ; k < K; k += t i l eK)
4 {
5 i n s t r u c t i o n
6 i n s t r u c t i o n
7 i n s t r u c t i o n
8 . . .
9 }

Fig. 1.3 Matrix multiplication with complete unrolling of tile operations

Next, the technique of loop unrolling is applied, which replaces the three
innermost loops with a single block of straight-line code (a single basic block),
as shown in Fig. 1.3. The purpose of unrolling is twofold: to reduce the penalty of
looping (the overhead of incrementing loop counters, advancing data pointers and
branching), and to increase instruction-level parallelism by creating sequences of
independent instructions, which can fill out the processor’s pipeline.

This optimization sequence is universal for almost any computer architecture,
including “standard” superscalar processors with cache memories, as well as GPU
accelerators and other less conventional architectures. Tiling, also referred to as
blocking, is often applied at multiple levels, e.g., L2 cache, L1 cache, registers
file, etc.

6 J. Dongarra et al.

In the case of a GPU, the C matrix is overlaid with a 2D grid of thread blocks,
each one responsible for computing a single tile of C. Since the code of a GPU kernel
spells out the operation of a single thread block, the two outer loops disappear, and
only one loop remains—the loop advancing along the k dimension, tile by tile.

Figure 1.4 shows the GPU implementation of matrix multiplication at the device
level. Each thread block computes a tile of C (dark gray) by passing through a stripe
of A and a stripe of B (light gray). The code iterates over A and B in chunks ofKblk

(dark gray). The thread block follows the cycle of:

• making texture reads of the small, dark gray, stripes of A and B and storing them
in shared memory,

• synchronizing threads with the __syncthreads() call,
• loading A and B from shared memory to registers and computing the product,
• synchronizing threads with the __syncthreads() call.

After the light gray stripes of A and B are completely swept, the tile of C is read,
updated and stored back to device memory. Figure 1.5 shows closer what happens
in the inner loop. The light gray area shows the shape of the thread block. The dark
gray regions show how a single thread iterates over the tile.

Fig. 1.4 gemm at the device
level

Figure 1.6 shows the complete kernel implementation in CUDA. Tiling is defined
by BLK_M, BLK_N, and BLK_K. DIM_X and DIM_Y define how the thread block
covers the tile of C, DIM_XA and DIM_YA define how the thread block covers a
stripe of A, and DIM_XB and DIM_YB define how the thread block covers a stripe
of B.

In lines 24–28 the values of C are set to zero. In lines 32–38 a stripe of A is read
(texture reads) and stored in shared memory. In lines 40–46 a stripe of B is read
(texture reads) and stored in shared memory. The __syncthreads() call in line

1 Accelerating Numerical Dense Linear Algebra Calculations with GPUs 7

Fig. 1.5 gemm at the block
level

48 ensures that reading of A and B, and storing in shared memory, is finished before
operation continues. In lines 50–56 the product is computed, using the values from
shared memory. The __syncthreads() call in line 58 ensures that computing
the product is finished and the shared memory can be overwritten with new stripes
of A and B. In lines 60 and 61 the pointers are advanced to the location of new
stripes. When the main loop completes, C is read from device memory, modified
with the accumulated product, and written back, in lines 64–77. The use of texture
reads with clamping eliminates the need for cleanup code to handle matrix sizes not
exactly divisible by the tiling factors.

With the parametrized code in place, what remains is the actual autotuning part,
i.e., finding good values for the nine tuning parameters. Here the process used in
the BEAST project (Bench-testing Environment for Automated Software Tuning) is
described. It relies on three components: (1) defining the search space, (2) pruning
the search space by applying filtering constraints, (3) benchmarking the remaining
configurations and selecting the best performer. The important point in the BEAST
project is to not introduce artificial, arbitrary limitations to the search process.

The loops of Fig. 1.7 define the search space for the autotuning of the matrix
multiplication of Fig. 1.6. The two outer loops sweep through all possible 2D shapes
of the thread block, up to the device limit in each dimension. The three inner loops
sweep through all possible tiling sizes, up to arbitrarily high values, represented by
the INF symbol. In practice, the actual values to substitute the INF symbols can
be found by choosing a small starting point, e.g., (64, 64, 8), and moving up until
further increase has no effect on the number of kernels that pass the selection.

The list of pruning constraints consists of nine simple checks that eliminate
kernels deemed inadequate for one of several reasons:

• The kernel would not compile due to exceeding a hardware limit.
• The kernel would compile but fail to launch due to exceeding a hardware limit.

8 J. Dongarra et al.

Fig. 1.6 Complete dgemm (C D alpha A B C beta C) implementation in CUDA

1 Accelerating Numerical Dense Linear Algebra Calculations with GPUs 9

1 / / Sweep t h r ead b l o ck d imen s i on s .
2 f o r (dim m = 1 ; dim m <=MAX THREADS DIM X; dim m++)
3 f o r (dim n = 1 ; dim n <
4 / / Sweep t i l i n g s i z e s .
5 f o r (blk m = dim m ; blk m < INF ; blk m += dim m)
6 f o r (b l k n = dim n ; b l k n < INF ; b l k n += dim n)
7 f o r (b l k k = 1 ; b l k k < INF ; b l k k ++)
8 {
9 / / Apply p run ing c o n s t r a i n t s .

10 }

=MAX THREADS DIM Y; dim n++)

Fig. 1.7 The parameter search space for the autotuning of matrix multiplication

• The kernel would compile and launch, but produce invalid results due to the
limitations of the implementation, e.g., unimplemented corner case.

• The kernel would compile, launch and produce correct results, but have no
chance of running fast, due to an obvious performance shortcoming, such as very
low occupancy.

The nine checks rely on basic hardware parameters, which can be obtained by
querying the card with the CUDA API, and include:

1. The number of threads in the block is not divisible by the warp size.
2. The number of threads in the block exceeds the hardware maximum.
3. The number of registers per thread, to store C, exceeds the hardware maximum.
4. The number of registers per block, to store C, exceeds the hardware maximum.
5. The shared memory per block, to store A and B, exceeds the hardware maximum.
6. The thread block cannot be shaped to read A and B without cleanup code.
7. The number of load instructions, from shared memory to registers, in the

innermost loop, in the PTX code, exceeds the number of Fused Multiply-
Adds (FMAs).

8. Low occupancy due to high number of registers per block to store C.
9. Low occupancy due to the amount of shared memory per block to read A and B.

In order to check the last two conditions, the number of registers per block, and
the amount of shared memory per block are computed. Then the maximum number
of possible blocks per multiprocessor is found, which gives the maximum possible
number of threads per multiprocessor. If that number is lower than the minimum
occupancy requirement, the kernel is discarded. Here the threshold is set to a fairly
low number of 256 threads, which translates to minimum occupancy of 0.125 on the
Nvidia K40 card, with the maximum number of 2,048 threads per multiprocessor.

This process produces 14,767 kernels, which can be benchmarked in roughly
1 day. Three thousand two hundred and fifty six kernels fail to launch due to
excessive number of registers per block. The reason is that the pruning process uses
a lower estimate on the number of registers, and the compiler actually produces code
requiring more registers. We could detect it in compilation and skip benchmarking

10 J. Dongarra et al.

of such kernels or we can run them and let them fail. For simplicity we chose the
latter. We could also cap the register usage to prevent the failure to launch. However,
capping register usage usually produces code of inferior performance.

Eventually, 11,511 kernels run successfully and pass correctness checks.
Figure 1.8 shows the performance distribution of these kernels. The fastest kernel
achieves 900 Gflop/s with tiling of 96�64�12, with 128 threads (16�8 to compute
C, 32 � 4 to read A, and 4 � 32 to read B). The achieved occupancy number of
0.1875 indicates that, most of the time, each multiprocessor executes 384 threads
(three blocks).

Fig. 1.8 Distribution of the
dgemm kernels

In comparison, CUBLAS achieves the performance of 1,225 Gflop/s using 256
threads per multiprocessor. Although CUBLAS achieves a higher number, this
example shows the effectiveness of the autotuning process in quickly creating well
performing kernels from high level language source codes. This technique can be
used to build kernels for routines not provided in vendor libraries, such as extended
precision BLAS (double–double and triple-float), BLAS for misshaped matrices
(tall and skinny), etc. Even more importantly, this technique can be used to build
domain specific kernels for many application areas.

As the last interesting observation, we offer a look at the PTX code produced
by the nvcc compiler (Fig. 1.9). We can see that the compiler does exactly what is
expected, which is completely unrolling the loops in lines 50–56 of the C code
in Fig. 1.6, into a stream of loads from shared memory to registers and FMA
instructions, with substantially more FMAs than loads.

1 Accelerating Numerical Dense Linear Algebra Calculations with GPUs 11

1 l d . s ha r ed . f64 %fd258 , [%rd3] ;
2 l d . s ha r ed . f64 %fd259 , [%rd4] ;
3 fma . rn . f64 %fd260 , %fd258 , %fd259 , %fd1145 ;
4 l d . s ha r ed . f64 %fd261 , [%rd3 +128] ;
5 fma . rn . f64 %fd262 , %fd261 , %fd259 , %fd1144 ;
6 l d . s ha r ed . f64 %fd263 , [%rd3 +256] ;
7 fma . rn . f64 %fd264 , %fd263 , %fd259 , %fd1143 ;
8 l d . s ha r ed . f64 %fd265 , [%rd3 +384] ;
9 fma . rn . f64 %fd266 , %fd265 , %fd259 , %fd1142 ;

10 l d . s ha r ed . f64 %fd267 , [%rd3 +512] ;
11 fma . rn . f64 %fd268 , %fd267 , %fd259 , %fd1141 ;
12 l d . s ha r ed . f64 %fd269 , [%rd3 +640] ;
13 fma . rn . f64 %fd270 , %fd269 , %fd259 , %fd1140 ;
14 l d . s ha r ed . f64 %fd271 , [%rd4 +832] ;
15 fma . rn . f64 %fd272 , %fd258 , %fd271 , %fd1139 ;
16 fma . rn . f64 %fd273 , %fd261 , %fd271 , %fd1138 ;
17 fma . rn . f64 %fd274 , %fd263 , %fd271 , %fd1137 ;
18 fma . rn . f64 %fd275 , %fd265 , %fd271 , %fd1136 ;
19 fma . rn . f64 %fd276 , %fd267 , %fd271 , %fd1135 ;
20 fma . rn . f64 %fd277 , %fd269 , %fd271 , %fd1134 ;
21 l d . s ha r ed . f64 %fd278 , [%rd4 +1664] ;
22 fma . rn . f64 %fd279 , %fd258 , %fd278 , %fd1133 ;
23 fma . rn . f64 %fd280 , %fd261 , %fd278 , %fd1132 ;
24 fma . rn . f64 %fd281 , %fd263 , %fd278 , %fd1131 ;
25 fma . rn . f64 %fd282 , %fd265 , %fd278 , %fd1130 ;
26 fma . rn . f64 %fd283 , %fd267 , %fd278 , %fd1129 ;
27 fma . rn . f64 %fd284 , %fd269 , %fd278 , %fd1128 ;
28 l d . s ha r ed . f64 %fd285 , [%rd4 +2496] ;
29 fma . rn . f64 %fd286 , %fd258 , %fd285 , %fd1127 ;
30 fma . rn . f64 %fd287 , %fd261 , %fd285 , %fd1126 ;
31 fma . rn . f64 %fd288 , %fd263 , %fd285 , %fd1125 ;
32 fma . rn . f64 %fd289 , %fd265 , %fd285 , %fd1124 ;
33 fma . rn . f64 %fd290 , %fd267 , %fd285 , %fd1123 ;
34 fma . rn . f64 %fd291 , %fd269 , %fd285 , %fd1122 ;
35 l d . s ha r ed . f64 %fd292 , [%rd4 +3328] ;
36 fma . rn . f64 %fd293 , %fd258 , %fd292 , %fd1121 ;
37 fma . rn . f64 %fd294 , %fd261 , %fd292 , %fd1120 ;
38 fma . rn . f64 %fd295 , %fd263 , %fd292 , %fd1119 ;
39 fma . rn . f64 %fd296 , %fd265 , %fd292 , %fd1118 ;
40 fma . rn . f64 %fd297 , %fd267 , %fd292 , %fd1117 ;
41 fma . rn . f64 %fd298 , %fd269 , %fd292 , %fd1116 ;
42 l d . s ha r ed . f64 %fd299 , [%rd4 +4160] ;
43 fma . rn . f64 %fd300 , %fd258 , %fd299 , %fd1115 ;
44 fma . rn . f64 %fd301 , %fd261 , %fd299 , %fd1114 ;
45 fma . rn . f64 %fd302 , %fd263 , %fd299 , %fd1113 ;
46 fma . rn . f64 %fd303 , %fd265 , %fd299 , %fd1112 ;
47 fma . rn . f64 %fd304 , %fd267 , %fd299 , %fd1111 ;
48 fma . rn . f64 %fd305 , %fd269 , %fd299 , %fd1110 ;
49 l d . s ha r ed . f64 %fd306 , [%rd4 +4992] ;
50 fma . rn . f64 %fd307 , %fd258 , %fd306 , %fd1109 ;
51 fma . rn . f64 %fd308 , %fd261 , %fd306 , %fd1108 ;
52 fma . rn . f64 %fd309 , %fd263 , %fd306 , %fd1107 ;
53 fma . rn . f64 %fd310 , %fd265 , %fd306 , %fd1106 ;
54 fma . rn . f64 %fd311 , %fd267 , %fd306 , %fd1105 ;
55 fma . rn . f64 %fd312 , %fd269 , %fd306 , %fd1104 ;
56 l d . s ha r ed . f64 %fd313 , [%rd4 +5824] ;
57 fma . rn . f64 %fd314 , %fd258 , %fd313 , %fd1103 ;
58 fma . rn . f64 %fd315 , %fd261 , %fd313 , %fd1102 ;
59 fma . rn . f64 %fd316 , %fd263 , %fd313 , %fd1101 ;
60 fma . rn . f64 %fd317 , %fd265 , %fd313 , %fd1100 ;
61 fma . rn . f64 %fd318 , %fd267 , %fd313 , %fd1099 ;
62 fma . rn . f64 %fd319 , %fd269 , %fd313 , %fd1098 ;
63 l d . s ha r ed . f64 %fd320 , [%rd3 +776] ;
64 l d . s ha r ed . f64 %fd321 , [%rd4 +8] ;
65 fma . rn . f64 %fd322 , %fd320 , %fd321 , %fd260 ;
66 l d . s ha r ed . f64 %fd323 , [%rd3 +904] ;
67 fma . rn . f64 %fd324 , %fd323 , %fd321 , %fd262 ;
68 l d . s ha r ed . f64 %fd325 , [%rd3 +1032] ;
69 fma . rn . f64 %fd326 , %fd325 , %fd321 , %fd264 ;
70 l d . s ha r ed . f64 %fd327 , [%rd3 +1160] ;
71 fma . rn . f64 %fd328 , %fd327 , %fd321 , %fd266 ;
72 l d . s ha r ed . f64 %fd329 , [%rd3 +1288] ;
73 fma . rn . f64 %fd330 , %fd329 , %fd321 , %fd268 ;
74 l d . s ha r ed . f64 %fd331 , [%rd3 +1416] ;
75 fma . rn . f64 %fd332 , %fd331 , %fd321 , %fd270 ;
76 l d . s ha r ed . f64 %fd333 , [%rd4 +840] ;
77 fma . rn . f64 %fd334 , %fd320 , %fd333 , %fd272 ;
78 fma . rn . f64 %fd335 , %fd323 , %fd333 , %fd273 ;
79 fma . rn . f64 %fd336 , %fd325 , %fd333 , %fd274 ;
80 fma . rn . f64 %fd337 , %fd327 , %fd333 , %fd275 ;
81 fma . rn . f64 %fd338 , %fd329 , %fd333 , %fd276 ;
82 fma . rn . f64 %fd339 , %fd331 , %fd333 , %fd277 ;
83 l d . s ha r ed . f64 %fd340 , [%rd4 +1672] ;
84 fma . rn . f64 %fd341 , %fd320 , %fd340 , %fd279 ;
85 fma . rn . f64 %fd342 , %fd323 , %fd340 , %fd280 ;
86 fma . rn . f64 %fd343 , %fd325 , %fd340 , %fd281 ;
87 fma . rn . f64 %fd344 , %fd327 , %fd340 , %fd282 ;
88 fma . rn . f64 %fd345 , %fd329 , %fd340 , %fd283 ;
89 fma . rn . f64 %fd346 , %fd331 , %fd340 , %fd284 ;

Fig. 1.9 A portion of the PTX for the innermost loop of the fastest dgemm kernel

12 J. Dongarra et al.

1.3 Solving Linear Systems

Solving dense linear systems of equations is a fundamental problem in scientific
computing. Numerical simulations involving complex systems represented in terms
of unknown variables and relations between them often lead to linear systems
of equations that must be solved as fast as possible. This section presents a
methodology for developing these solvers. The technique is illustrated using the
Cholesky factorization.

1.3.1 Cholesky Factorization

The Cholesky factorization (or Cholesky decomposition) of an n�n real symmetric
positive definite matrix A has the form A D LLT , where L is an n � n real
lower triangular matrix with positive diagonal elements [5]. This factorization is
mainly used as a first step for the numerical solution of linear equations Ax D b,
where A is a symmetric positive definite matrix. Such systems arise often in
physics applications, where A is positive definite due to the nature of the modeled
physical phenomenon. The reference implementation of the Cholesky factorization
for machines with hierarchical levels of memory is part of the LAPACK library.
It consists of a succession of panel (or block column) factorizations followed by
updates of the trailing submatrix.

1.3.2 Hybrid Algorithms

The Cholesky factorization algorithm can easily be parallelized using a fork-join
approach since each update—consisting of a matrix–matrix multiplication—can be
performed in parallel (fork) but that a synchronization is needed before performing
the next panel factorization (join). The number of synchronizations of this algo-
rithm and the synchronous nature of the panel factorization would be prohibitive
bottlenecks for performance on highly parallel devices such as GPUs.

Instead, the panel factorization and the update of the trailing submatrix are
broken into tasks, where the less parallel panel tasks are scheduled for execution on
multicore CPUs, and the parallel updates mainly on GPUs. Figure 1.10 illustrates
this concept of developing hybrid algorithms by splitting the computation into
tasks, data dependencies, and consequently scheduling the execution over GPUs
and multicore CPUs. The scheduling can be static (described next), or dynamic (see
Sect. 1.4). In either case, the small and not easy to parallelize tasks from the critical
path (e.g., panel factorizations) are executed on CPUs, and the large and highly
parallel task (like the matrix updates) are executed mostly on the GPUs.

1 Accelerating Numerical Dense Linear Algebra Calculations with GPUs 13

Fig. 1.10 Algorithms as a
collection of tasks and
dependencies among them for
hybrid GPU-CPU computing

1.3.3 Hybrid Cholesky Factorization for a Single GPU

Figure 1.11 gives the hybrid Cholesky factorization implementation for a single
GPU. Here da points to the input matrix that is in the GPU memory, work is a
work-space array in the CPU memory, and nb is the blocking size. This algorithm
assumes the input matrix is stored in the leading n-by-n lower triangular part of da,
which is overwritten on exit by the result. The rest of the matrix is not referenced.
Compared to the LAPACK reference algorithm, the only difference is that the hybrid

1 f o r (j = 0 ; j < ∗n ; j += nb) {
2 j b = min (nb , ∗n−j) ;
3 cub la sDsy rk (’ l ’ , ’ n ’ , jb , j ,−1, da (j , 0) ,∗lda , 1 , da (j , j) ,∗l d a) ;
4 cudaMemcpy2DAsync (work , j b∗s i z e o f (doub le) , da (j , j) , ∗l d a∗s i z e o f (doub le) ,
5 s i z e o f (doub le)∗jb , jb , cudaMemcpyDeviceToHost , s t r eam [1]) ;
6 i f (j + j b < ∗n)
7 cublasDgemm (’n ’ , ’ t ’ , ∗n−j−jb , jb , j , −1, da (j + jb , 0) , ∗lda , da (j , 0) ,
8 ∗lda , 1 , da (j + jb , j) , ∗l d a) ;
9 cudaStreamSynchronize (s t r eam [1]) ;

10 d p o t r f (”Lower” , &jb , work , &jb , i n f o) ;
11 i f (∗ i n f o != 0)
12 ∗ i n f o = ∗ i n f o + j , b r eak ;
13 cudaMemcpy2DAsync (da (j , j) , ∗l d a∗s i z e o f (doub le) , work , j b∗s i z e o f (doub le) ,
14 s i z e o f (doub le)∗jb , jb , cudaMemcpyHostToDevice , s t r eam [0]) ;
15 i f (j + j b < ∗n)
16 cub la sDtr sm (’ r ’ , ’ l ’ , ’ t ’ , ’ n ’ , ∗n−j−jb , jb , 1 , da (j , j) , ∗lda ,
17 da (j + jb , j) , ∗l d a) ;
18 }

Fig. 1.11 Hybrid Cholesky factorization for single CPU-GPU pair (dpotrf)

14 J. Dongarra et al.

one has three extra lines—4, 9, and 13. These extra lines implement our intent in
the hybrid code to have the jb-by-jb diagonal block starting at da(j,j) factored on
the CPU, instead of on the GPU. Therefore, at line 4 we send the block to the CPU,
at line 9 we synchronize to ensure that the data has arrived, then factor it on the
CPU using a call to LAPACK at line 10, and send the result back to the GPU at
line 13. Note that the computation at line 7 is independent of the factorization of
the diagonal block, allowing us to do these two tasks in parallel on the CPU and
on the GPU. This is implemented by statically scheduling first the dgemm (line 7)
on the GPU; this is an asynchronous call, hence the CPU continues immediately
with the dpotrf (line 10) while the GPU is running the dgemm.

The hybrid algorithm is given an LAPACK interface to simplify its use and
adoption. Thus, codes that use LAPACK can be seamlessly accelerated multiple
times with GPUs.

To summarize, the following is achieved with this algorithm:

• The LAPACK Cholesky factorization is split into tasks;
• Large, highly data parallel tasks, suitable for efficient GPU computing, are

statically assigned for execution on the GPU;
• Small, inherently sequential dpotrf tasks (line 10), not suitable for efficient GPU

computing, are executed on the CPU using LAPACK;
• Small CPU tasks (line 10) are overlapped by large GPU tasks (line 7);
• Communications are asynchronous to overlap them with computation;
• Communications are in a surface-to-volume ratio with computations: sending
nb2 elements at iteration j is tied to O(nb � j 2) flops, j � nb.

1.4 The Case for Dynamic Scheduling

In this section, we present the linear algebra aspects of our generic solution for
development of either Cholesky, Gaussian, and Householder factorizations based
on block outer-product updates of the trailing matrix.

Conceptually, one-sided factorization F maps a matrix A into a product of two
matrices X and Y :

F W
�
A11 A12

A21 A22

�
7!
�
X11 X12

X21 X22

�
�
�
Y11 Y12

Y21 Y22

�

Algorithmically, this corresponds to a sequence of in-place transformations of A,
whose storage is overwritten with the entries of matricesX and Y (Pij indicates the
currently factorized panels):

2
64
A
.0/
11 A

.0/
12 A

.0/
13

A
.0/
21 A

.0/
22 A

.0/
23

A
.0/
31 A

.0/
32 A

.0/
33

3
75 !

2
64
P11 A

.0/
12 A

.0/
13

P21 A
.0/
22 A

.0/
23

P31 A
.0/
32 A

.0/
33

3
75 !

2
64
XY11 Y12 Y13

X21 A
.1/
22 A

.1/
23

X31 A
.1/
32 A

.1/
33

3
75 !

2
64
XY11 Y12 Y13

X21 P22 A
.1/
23

X31 P32 A
.1/
33

3
75 !

1 Accelerating Numerical Dense Linear Algebra Calculations with GPUs 15

Algorithm 1 Two-phase implementation of a one-sided factorization
// iterate over all matrix panels
for Pi 2 fP1; P2; : : : ; Png

FactorizePanel(Pi)
UpdateTrailingMatrix(A.i/)

end

Table 1.1 Routines for panel
factorization and the trailing
matrix update

Cholesky Householder Gauss

FactorizePanel dpotf2 dgeqf2 dgetf2
dtrsm
dsyrk dlarfb dlaswp

UpdateTrailingMatrix dgemm dtrsm
dgemm

Algorithm 2 Two-phase implementation with the update split between Fermi and
Kepler GPUs

// iterate over all matrix panels
for Pi 2 fP1; P2; : : :g

FactorizePanel(Pi)
UpdateTrailingMatrixKepler(A.i/)
UpdateTrailingMatrixFermi(A.i/)

end

!
2
4XY11 Y12 Y13
X21 XY22 Y23

X31 X32 A
.2/
33

3
5 !

2
4XY11 Y12 Y13X21 X22 Y23
X31 X32 P33

3
5 !

2
4XY11 Y12 Y13
X21 XY22 Y23
X31 X32 XY33

3
5 ! �

XY
�
;

where XYij is a compact representation of both Xij and Yij in the space originally
occupied by Aij .

Observe two distinct phases in each step of the transformation from ŒA� to
ŒXY �: panel factorization (P) and trailing matrix update: A.i/ ! A.iC1/. Imple-
mentation of these two phases leads to a straightforward iterative scheme shown
in Algorithm 1. Table 1.1 shows BLAS and LAPACK routines that should be
substituted for the generic routines named in the algorithm.

The use of multiple accelerators complicates the simple loop from Algorithm 1:
we must split the update operation into multiple instances for each of the acceler-
ators. This was done in Algorithm 2. Notice that FactorizePanel() is not split for
execution on accelerators because it exhibits properties of latency-bound workloads,
which face a number of inefficiencies on throughput-oriented GPU devices. Due to
their high performance rate exhibited on the update operation, and the fact that the
update requires the majority of floating-point operations, it is the trailing matrix
update that is a good target for off-load. The problem of keeping track of the
computational activities is exacerbated by the separation between the address spaces
of main memory of the CPU and the GPUs. This requires synchronization between
memory buffers and is included in the implementation shown in Algorithm 3.

16 J. Dongarra et al.

Algorithm 3 Two-phase implementation with a split update and explicit communi-
cation

// iterate over all matrix panels
for Pi 2 fP1; P2; : : :g

FactorizePanel(Pi)
SendPanelKepler(Pi)
UpdateTrailingMatrixKepler(A.i/)
SendPanelFermi (Pi)
UpdateTrailingMatrixFermi(A.i/)

end

Algorithm 4 Lookahead of depth 1 for the two-phase factorization
FactorizePanel(P1)
SendPanel(P1)
UpdateTrailingMatrixfKepler;Fermig(P1)
PanelStartReceiving(P2)
UpdateTrailingMatrixfKepler;Fermig(R.1/)
// iterate over remaining matrix panels
for Pi 2 fP2; P3; : : :g

PanelReceive(Pi)
PanelFactor(Pi)
SendPanel(Pi)
UpdateTrailingMatrixfKepler;Fermig(Pi)
PanelStartReceiving(Pi)
UpdateTrailingMatrixfKepler;Fermig(R.i/)

end
PanelReceive(Pn)
PanelFactor(Pn)

The complexity increases further as the code must be modified further to achieve
close to peak performance. In fact, the bandwidth between the CPU and the GPUs is
orders of magnitude too slow to sustain computational rates of GPUs.2 The common
technique to alleviate this imbalance is to use lookahead [14, 15].

Algorithm 4 shows a very simple case of a lookahead of depth 1. The update
operation is split into an update of the next panel, the start of the receiving of the
next panel that just got updated, and an update of the rest of the trailing matrix R.
The splitting is done to overlap the communication of the panel and the update
operation. The complication of this approach comes from the fact that depending
on the communication bandwidth and the accelerator speed, a different lookahead
depth might be required for optimal overlap. In fact, the adjustment of the depth
is often required throughout the factorization’s runtime to yield good performance:
the updates consume progressively less time when compared to the time spent in the
panel factorization.

2The bandwidth for the current generation PCI Express is at most 16 GB/s while the devices
achieve over 1,000 Gflop/s performance.

1 Accelerating Numerical Dense Linear Algebra Calculations with GPUs 17

Since the management of adaptive lookahead is tedious, it is desirable to use a
dynamic scheduler to keep track of data dependences and communication events.
The only issue is the homogeneity inherent in most of the schedulers which is
violated here due to the use of three different computing devices that we used. Also,
common scheduling techniques, such as task stealing, are not applicable here due
to the disjoint address spaces and the associated large overheads. These caveats are
dealt with comprehensively in the remainder of the chapter.

1.5 Eigenvalue and Singular Value Problems

Eigenvalue and singular value decomposition (SVD) problems are fundamental
for many engineering and physics applications. For example, image processing,
compression, facial recognition, vibrational analysis of mechanical structures,
and computing energy levels of electrons in nanostructure materials can all be
expressed as eigenvalue problems. Also, the SVD plays a very important role in
statistics where it is directly related to the principal component analysis method,
in signal processing and pattern recognition as an essential filtering tool, and in
analysis of control systems. It has applications in such areas as least squares
problems, computing the pseudoinverse, and computing the Jordan canonical form.
In addition, the SVD is used in solving integral equations, digital image processing,
information retrieval, seismic reflection tomography, and optimization.

1.5.1 Background

The eigenvalue problem is to find an eigenvector x and eigenvalue � that satisfy

Ax D �x;

where A is a symmetric or nonsymmetric n � n matrix. When the entire eigenvalue
decomposition is computed we have A D XƒX�1, whereƒ is a diagonal matrix of
eigenvalues and X is a matrix of eigenvectors. The SVD finds orthogonal matrices
U , V , and a diagonal matrix † with nonnegative elements, such that A D U†V T ,
where A is an m � n matrix. The diagonal elements of † are singular values of A,
the columns of U are called its left singular vectors, and the columns of V are called
its right singular vectors.

All of these problems are solved by a similar three-phase process:

1. Reduction phase: orthogonal matrices Q (Q and P for singular value decom-
position) are applied on both the left and the right side of A to reduce it to a
condensed form matrix—hence these are called “two-sided factorizations.” Note
that the use of two-sided orthogonal transformations guarantees that A has the

18 J. Dongarra et al.

same eigen/singular-values as the reduced matrix, and the eigen/singular-vectors
of A can be easily derived from those of the reduced matrix (step 3);

2. Solution phase: an eigenvalue (respectively, singular value) solver further
computes the eigenpairs ƒ and Z (respectively, singular values † and the left
and right vectors QU and QV T) of the condensed form matrix;

3. Back transformation phase: if required, the eigenvectors (respectively, left and
right singular vectors) of A are computed by multiplying Z (respectively, QU and
QV T) by the orthogonal matrices used in the reduction phase.

For the nonsymmetric eigenvalue problem, the reduction phase is to upper
Hessenberg form, H D QTAQ. For the second phase, QR iteration is used to
find the eigenpairs of the reduced Hessenberg matrix H by further reducing it to
(quasi) upper triangular Schur form, S D ETHE. Since S is in a (quasi) upper
triangular form, its eigenvalues are on its diagonal and its eigenvectors Z can be
easily derived. Thus, A can be expressed as:

A D QHQT D Q E S ET QT;

which reveals that the eigenvalues of A are those of S , and the eigenvectorsZ of S
can be back-transformed to eigenvectors of A as X D Q E Z.

When A is symmetric (or Hermitian in the complex case), the reduction phase is
to symmetric tridiagonal T D QTAQ, instead of upper Hessenberg form. Since
T is tridiagonal, computations with T are very efficient. Several eigensolvers are
applicable to the symmetric case, such as the divide and conquer (D&C), the
multiple relatively robust representations (MRRR), the bisection algorithm, and the
QR iteration method. These solvers compute the eigenvalues and eigenvectors of
T D ZƒZT , yielding ƒ to be the eigenvalues of A. Finally, if eigenvectors are
desired, the eigenvectors Z of T are back-transformed to eigenvectors of A as
X D Q Z.

For the singular value decomposition (SVD), two orthogonal matrices Q and
P are applied on the left and on the right, respectively, to reduce A to bidiagonal
form, B D QTAP . Divide and conquer or QR iteration is then used as a solver
to find both the singular values and the left and the right singular vectors of B as
B D QU† QV T , yielding the singular values of A. If desired, singular vectors of B
are back-transformed to singular vectors of A as U D Q QU and V T D PT QV T .

There are many ways to formulate mathematically and solve these problems
numerically, but in all cases, designing an efficient computation is challenging
because of the nature of the algorithms. In particular, the orthogonal transformations
applied to the matrix are two-sided, i.e., transformations are applied on both the left
and right side of the matrix. This creates data dependencies that prevent the use
of standard techniques to increase the computational intensity of the computation,
such as blocking and look-ahead, which are used extensively in the one-sided
LU, QR, and Cholesky factorizations. Thus, the reduction phase can take a large
portion of the overall time. Recent research has been into two-stage algorithms
[2, 6, 7, 10, 11], where the first stage uses Level 3 BLAS operations to reduce A

1 Accelerating Numerical Dense Linear Algebra Calculations with GPUs 19

to band form, followed by a second stage to reduce it to the final condensed form.
Because it is the most time consuming phase, it is very important to identify the
bottlenecks of the reduction phase, as implemented in the classical approaches [1].
The classical approach is discussed in the next section, while Sect. 1.5.4 covers two-
stage algorithms.

The initial reduction to condensed form (Hessenberg, tridiagonal, or bidiagonal)
and the final back-transformation are particularly amenable to GPU computation.
The eigenvalue solver itself (QR iteration or divide and conquer) has significant
control flow and limited parallelism, making it less suited for GPU computation.

1.5.2 Classical Reduction to Hessenberg, Tridiagonal,
or Bidiagonal Condensed Form

The classical approach (“LAPACK algorithms”) to reduce a matrix to condensed
form is to use one-stage algorithms [5]. Similar to the one-sided factorizations
(LU, Cholesky, QR), the two-sided factorizations are split into a panel factorization
and a trailing matrix update. Pseudocode for the Hessenberg factorization is
given in Algorithm 5 and shown schematically in Fig. 1.12; the tridiagonal and
bidiagonal factorizations follow a similar form, though the details differ [17].
Unlike the one-sided factorizations, the panel factorization requires computing
Level 2 BLAS matrix-vector products with the entire trailing matrix. This requires
loading the entire trailing matrix into memory, incurring a significant amount of
memory bound operations. It also produces synchronization points between the
panel factorization and the trailing submatrix update steps. As a result, the algorithm
follows the expensive fork-and-join model, preventing overlap between the CPU
computation and the GPU computation. Also it prevents having a look-ahead panel
and hiding communication costs by overlapping with computation. For instance,
in the Hessenberg factorization, these Level 2 BLAS operations account for about
20 % of the floating point operations, but can take 70 % of the time in a CPU
implementation [16]. Note that the computational complexity of the reduction phase
is about 10

3
n3, 8

3
n3, and 4

3
n3 for the reduction to Hessenberg, bidiagonal, and

tridiagonal form respectively.
In the panel factorization, each column is factored by introducing zeros below

the subdiagonal using an orthogonal Householder reflector, Hj D I � �vj vTj . The
matrixQ is represented as a product of n � 1 of these reflectors,

Q D H1H2 : : : Hn�1:

Before the next column can be factored, it must be updated as if Hj were
applied on both sides of A, though we delay actually updating the trailing matrix.
For each column, performing this update requires computing yj D Avj . For
a GPU implementation, we compute these matrix-vector products on the GPU,
using cublasDgemv for the Hessenberg and bidiagonal, and cublasDsymv for
the tridiagonal factorization. Optimized versions of symv and hemv also exist in

20 J. Dongarra et al.

Algorithm 5 Hessenberg reduction, magma_*gehrd
for i D 1; : : : ; n by nb

// panel factorization, in magma_*lahr2.
get panel AiWn;iWiCnb�1 from GPU
for j D i; : : : ; i C nb

.vj ; �j / D householder.aj /
send vj to GPU
yj D AiC1Wn;j Wnvj on GPU
get yj from GPU

compute T.j/ D
"
T.j�1/ ��j T.j�1/V

T
.j�1/vj

0 �j

#

update column ajC1 D .I � V T T V T /.ajC1 � Y T fV T gjC1/

end

// trailing matrix update, in magma_*lahru.
Y1Wi;1Wnb D A1Wi;iWnV on GPU
A D .I � V T T V T /.A� Y T V T / on GPU

end

Y1:i, : = A1:i, :V

BLAS-3 on GPU

column aj

yj = Avj

BLAS-2
on GPU

Trailing
matrix
update

A = QTAQ

BLAS-3
on GPU

Panel V

0

Fig. 1.12 Hessenberg panel factorization, trailing matrix update, and V matrix on GPU with upper
triangle set to zero

MAGMA [13], which achieve higher performance by readingA only once and using
extra workspace to store intermediate results. While these are memory-bound Level
2 BLAS operations, computing them on the GPU leverages the GPU’s high memory
bandwidth.

After factoring each panel of nb columns, the trailing matrix must be updated.
Instead of applying each Hj individually to the entire trailing matrix, they are
blocked together into a block Hessenberg update,

Qi D H1H2 : : : Hnb D I � ViTiV
T
i :

1 Accelerating Numerical Dense Linear Algebra Calculations with GPUs 21

The trailing matrix is then updated as

OA D QT
i AQi D .I � ViT Ti V T

i /.A� YiTiV
T
i / (1.1)

for the nonsymmetric case, or using the alternate representation

OA D A�WiV
T
i � ViW T

i (1.2)

for the symmetric case. In all cases, the update is a series of efficient Level 3 BLAS
operations executed on the GPU, either general matrix–matrix multiplies (dgemm)
for the Hessenberg and bidiagonal factorizations, or a symmetric rank-2k update
(dsyr2k) for the symmetric tridiagonal factorization.

Several additional considerations are made for an efficient GPU implementation.
In the LAPACK CPU implementation, the matrix V of Householder vectors is stored
below the subdiagonal of A. This requires multiplies to be split into two operations,
a triangular multiply (dtrmm) for the top triangular portion, and a dgemm for the
bottom portion. On the GPU, we explicitly set the upper triangle of V to zero, as
shown in Fig. 1.12, so the entire product can be computed using a single dgemm.
Second, it is beneficial to store the small nb � nb Ti matrices used in the reduction,
for later use in the back-transformation, whereas LAPACK recomputes them later
from Vi .

1.5.3 Back-Transform Eigenvectors

For eigenvalue problems, after the reduction to condensed form, the eigensolver
finds the eigenvalues ƒ and eigenvectors Z of H or T . For the SVD, it finds
the singular values † and singular vectors QU and QV of B . The eigenvalues and
singular values are the same as for the original matrix A. To find the eigenvectors or
singular vectors of the original matrix A, the vectors need to be back-transformed
by multiplying by the same orthogonal matrix Q (and P , for the SVD) used
in the reduction to condensed form. As in the reduction, the block Householder
transformation Qi D I � ViTiV

T
i is used. From this representation, either Q can

be formed explicitly using dorghr, dorgtr, or dorgbr; or we can multiply by the
implicitly representedQ using dormhr, dormtr, or dormbr. In either case, applying
it becomes a series of dgemm operations executed on the GPU.

The entire procedure is implemented in the MAGMA library: magma_dgeev
for nonsymmetric eigenvalues, magma_dsyevd for real symmetric, and
magma_dgesvd for the singular value decomposition.

22 J. Dongarra et al.

1.5.4 Two Stage Reduction

Because of the expense of the reduction step, renewed research has focused
on improving this step, resulting in a novel technique based on a two-stage
reduction [6, 9]. The two-stage reduction is designed to increase the utilization of
compute-intensive operations. Many algorithms have been investigated using this
two-stage approach. The idea is to split the original one-stage approach into a
compute-intensive phase (first stage) and a memory-bound phase (second or “bulge
chasing” stage). In this section we will cover the description for the symmetric case.
The first stage reduces the original symmetric dense matrix to a symmetric band
form, while the second stage reduces from band to tridiagonal form, as depicted
in Fig. 1.13.

0 20 40 60

0

10

20

30

40

50

60

nz = 3600
0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 119

First stage

0 10 20 30 40 50 60

0

10

20

30

40

50

60

nz = 1016

Second stage

Bulge chasing

Fig. 1.13 Two stage technique for the reduction phase

1.5.4.1 First Stage: Hybrid CPU-GPU Band Reduction

The first stage applies a sequence of block Householder transformations to reduce
a symmetric dense matrix to a symmetric band matrix. This stage uses compute-
intensive matrix-multiply kernels, eliminating the memory-bound matrix-vector
product in the one-stage panel factorization, and has been shown to have a good data
access pattern and large portion of Level 3 BLAS operations [3,4,8]. It also enables
the efficient use of GPUs by minimizing communication and allowing overlap of
computation and communication. Given a dense n � n symmetric matrix A, the
matrix is divided into nt D n=b block-columns of size nb. The algorithm proceeds
panel by panel, performing a QR decomposition for each panel to generate the
Householder reflectors V (i.e., the orthogonal transformations) required to zero out
elements below the bandwidth nb. Then the generated block Householder reflectors
are applied from the left and the right to the trailing symmetric matrix, according to

A D A�W V T � V W T; (1.3)

where V and T define the block of Householder reflectors and W is computed as

W D X � 1
2
V T T V TX;where (1.4)

X D AV T:

1 Accelerating Numerical Dense Linear Algebra Calculations with GPUs 23

Since the panel factorization consists of a QR factorization performed on a panel
of size l � b shifted by nb rows below the diagonal, this will remove both the
synchronization and the data dependency constraints seen using the classical one
stage technique. In contrast to the classical approach, the panel factorization by
itself does not require any operation on the data of the trailing matrix, making
it an independent task. Moreover, we can factorize the next panel once we have
finished its update, without waiting for the total trailing matrix update. Thus this
kind of technique removes the bottlenecks of the classical approach: there are no
BLAS-2 operations concerning the trailing matrix and also there is no need to wait
for the update of the trailing matrix in order to start the next panel. However, the
resulting matrix is banded, instead of tridiagonal. The hybrid CPU-GPU algorithm
is illustrated in Fig. 1.14. We first run the QR decomposition (dgeqrf panel on step
i of Fig. 1.14) of a panel on the CPUs. Once the panel factorization of step i is
finished, then we compute W on the GPU, as defined by Eq. (1.4). In particular,
it involves a dgemm to compute V T , then a dsymm to compute X D AV T ,
which is the dominant cost of computing W , consisting of 95 % of the time spent
in computing W , and finally another inexpensive dgemm. Once W is computed,
the trailing matrix update (applying transformations on the left and right) defined
by Eq. (1.3) can be performed using a rank-2k update.

However, to allow overlap of CPU and GPU computation, the trailing submatrix
update is split into two pieces. First, the next panel for step iC1 (medium gray panel
of Fig. 1.14) is updated using two dgemm’s on the GPU. Next, the remainder of the
trailing submatrix (dark gray triangle of Fig. 1.14) is updated using a dsyr2k. While
the dsyr2k is executing, the CPUs receive the panel for step i C 1, perform the next
panel factorization (dgeqrf), and send the resulting ViC1 back to the GPU. In this
way, the factorization of panels i D 2; : : : ; nt and the associated communication
are hidden by overlapping with GPU computation, as demonstrated in Fig. 1.15.
This is similar to the look-ahead technique typically used in the one-sided dense

CPU: QR on
panel (i+1)

GPU: computeW(i)
and update next panel (i+1)

GPU: update
trailing matrix

step i

step i+1 step i+2

Fig. 1.14 Description of the reduction to band form, stage 1

24 J. Dongarra et al.

CPU QR on
panel step i

CPU waiting:

GPU compute W of
step i and update
next panel (i+1)

GPU update
trailing matrix
of step i

CPU

GPU

CPU: QR on
panel step i+1

Fig. 1.15 Execution trace of reduction to band form

matrix factorizations. Figure 1.15 shows a snapshot of the execution trace of the
reduction to band form, where we can easily identify the overlap between CPU and
GPU computation. Note that the high-performance GPU is continuously busy, either
computing W or updating the trailing matrix, while the lower performance CPUs
wait for the GPU as necessary.

1.5.4.2 Second Stage: Cache-Friendly Computational Kernels

The band form is further reduced to the final condensed form using the bulge chasing
technique. This procedure annihilates the extra off-diagonal elements by chasing the
created fill-in elements down to the bottom right side of the matrix using successive
orthogonal transformations. Each annihilation of the nb non-zero element below
the off-diagonal of the band matrix is called a sweep. This stage involves memory-
bound operations and requires the band matrix to be accessed from multiple disjoint
locations. In other words, there is an accumulation of substantial latency overhead
each time different portions of the matrix are loaded into cache memory, which is not
compensated for by the low execution rate of the actual computations (the so-called
surface-to-volume effect). To overcome these critical limitations, we developed
a bulge chasing algorithm, to extensively use cache friendly kernels combined
with fine grained, memory aware tasks in an out-of-order scheduling technique
which considerably enhances data locality. This reduction has been designed for
multicore architectures, and results have shown its efficiency. This step has been
well optimized such that it takes between 5 and 10 % of the global time of the
reduction from dense to tridiagonal. We refer the reader to [6, 8] for a detailed
description of the technique.

1 Accelerating Numerical Dense Linear Algebra Calculations with GPUs 25

We decide to develop a hybrid CPU-GPU implementation of only the first stage
of the two stage algorithm, and leave the second stage executed entirely on the
CPU. The main motivation is that the first stage is the most expensive computational
phase of the reduction. Results show that 90 % of the time is spent in the first stage
reduction. Another motivation for this direction is that accelerators perform poorly
when dealing with memory-bound fine-grained computational tasks (such as bulge
chasing), limiting the potential benefit of a GPU implementation of the second stage.
Experiments showed that the two-stage algorithm can be up to six times faster than
the standard one-stage approach.

1.5.5 Back Transform the Eigenvectors of the Two Stage
Technique

The standard one-stage approach reduces the dense matrix A to condensed form
(e.g., tridiagonal T in the case of symmetric matrix), computes its eigenval-
ues/eigenvectors (ƒ, Z) and back transform its eigenvectors Z to computes the
eigenvectorsX D Q Z of the original matrix A as mentioned earlier in Sect. 1.5.3.
In the case of the two-stage approach, the first stage reduces the original dense
matrix A to a band matrix by applying a two-sided transformations to A such that
QT
1 AQ1 D B . Similarly, the second, bulge-chasing stage reduces the band matrix

B to the condensed form (e.g, tridiagonal T) by applying two-sided transformations
to B such that QT

2 BQ2 D T . Thus, when the eigenvectors matrix X of A are
requested, the eigenvectors matrixZ resulting from the eigensolver needs to be back
transformed by the Householder reflectors generated during the reduction phase,
according to

X D Q1Q2 Z D .I � V1t1V
T
1 / .I � V2t2V T

2 / Z; (1.5)

where (V1; t1) and (V2; t2) represent the Householder reflectors generated during the
reduction stages one and two, respectively. Note that when the eigenvectors are
requested, the two stage approach has the extra cost of the back transformation
of Q2. However, experiments show that even with this extra cost the overall
performance of the eigen/singular-solvers using the two stage approach can be
several times faster than solvers using the one stage approach.

From the practical standpoint, the back transformation Q2 is not as straight-
forward as the one of Q1, which is similar to the classical back transformation
described in Sect. 1.5.3. In particular, because of complications of the bulge-chasing
mechanism, the order and the overlap of the Householder reflector generated during
this stage is intricate. Let us first begin by describing the complexity and the
design of the algorithm for applying Q2. We present the structure of V2 (the
Householder reflectors that form the orthogonal matrix Q2) in Fig. 1.16a. Note that

26 J. Dongarra et al.

these reflectors represent the annihilation of the band matrix, and thus each is of
length nb—the bandwidth size. A naïve implementation would take each reflector
and apply it in isolation to the matrix Z. Such an implementation is memory-bound
and relies on Level 2 BLAS operations. A better procedure is to apply with calls
to Level 3 BLAS, which achieves both very good scalability and performance. The
priority is to create compute intensive operations to take advantage of the efficiency
of Level 3 BLAS. We proposed and implemented accumulation and combination
of the Householder reflectors. This is not always easy, and to achieve this goal we
must pay attention to the overlap between the data they access as well as the fact
that their application must follow the specific dependency order of the bulge chasing
procedure in which they have been created. To stress these issues, we will clarify it
by giving an example. For sweep i (e.g., the column at position B(i,i):B(iCnb,i)),
its annihilation generates a set of k Householder reflectors (vki), each of length nb,
the vki are represented in column i of the matrix V2 depicted in Fig. 1.16a. Likewise,
the ones related to the annihilation of sweep i C 1, are those presented in column
i C 1, where they are shifted one element down compared to those of sweep i .
It is possible to combine the reflectors v.k/i from sweep i with those from sweep
i C 1, i C 2,. . . , i C ` and to apply them together in blocked fashion. This grouping
is represented by the diamond-shaped region in Fig. 1.16a. While each of those
diamonds is considered as one block, their back transformation (application to the
matrixZ) needs to follow the dependency order. For example, applying block 4 and
block 5 of the V2’s in Fig. 1.16a modifies block row 4 and block row 5, respectively,
of the eigenvector matrix Z drawn in Fig. 1.16b where one can easily observe the
overlapped region. The order dictates that block 4 needs to be applied before block 5.
It is possible to compute this phase efficiently by splitting Z by blocks of columns
over both the CPUs and the GPU as shown in Fig. 1.16b, where we can apply
each diamond independently to each portion of E . Moreover, this method does not
require any data communication. The back transformation of Q1 to the resulting
matrix from above,Q1 � .Q2 Z/, involves efficient BLAS 3 kernels and it is done
by using the GPU function magma_dormtr, which is the GPU implementation of
the standard LAPACK function (dormtr).

1.6 Summary and Future Directions

In conclusion, GPUs can be used with astonishing success to accelerate fundamental
linear algebra algorithms. We have demonstrated this on a range of algorithms,
from the matrix–matrix multiplication kernel written in CUDA, to the higher level
algorithms for solving linear systems, to eigenvalue and SVD problems. Further,
despite the complexity of the hardware, acceleration was achieved at a surprisingly
low software development effort using a high-level methodology of developing
hybrid algorithms. The complete implementations and more are available through
the MAGMA library. The promise shown so far motivates and opens opportunities
for future research and extensions, e.g., tackling more complex algorithms and

1 Accelerating Numerical Dense Linear Algebra Calculations with GPUs 27

0 5 10 15 20 25

0

5

10

15

20

25

2

1

0 3

4

5

6

7

8

9

12

13

11

10

14

15

0 5 10 15 20 25

0

5

10

15

20

25

GPU CPUs

4

5

a b

Fig. 1.16 Blocking technique to apply the Householder reflectors V2 with a hybrid implementation
on GPU and CPU. (a) Blocking for V2; (b) eigenvectors matrix

hybrid hardware. Several major bottlenecks need to be alleviated to run at scale
though, which is an intensive research topic. When a complex algorithm needs to be
executed on a complex heterogeneous system, scheduling decisions have a dramatic
impact on performance. Therefore, new scheduling strategies must be designed to
fully benefit from the potential of future large-scale machines.

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J.W., Dongarra, J.J. Du Croz, J.,
Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide. SIAM,
Philadelphia (1992). http://www.netlib.org/lapack/lug/

2. Bientinesi, P., Igual, F.D., Kressner, D., Quintana-Ortí, E.S.: Reduction to condensed forms
for symmetric eigenvalue problems on multi-core architectures. In: Proceedings of the 8th
International Conference on Parallel Processing and Applied Mathematics: Part I, PPAM’09,
pp. 387–395. Springer, Berlin/Heidelberg (2010)

3. Dongarra, J.J., Sorensen, D.C., Hammarling, S.J.: Block reduction of matrices to condensed
forms for eigenvalue computations. J. Comput. Appl. Math. 27(1–2), 215–227 (1989)

4. Gansterer, W., Kvasnicka, D., Ueberhuber, C.: Multi-sweep algorithms for the symmetric
eigenproblem. In: Vector and Parallel Processing - VECPAR’98. Lecture Notes in Computer
Science, vol. 1573, pp. 20–28. Springer, Berlin (1999)

5. Golub, G., Loan, C.V.: Matrix Computations, 3rd edn. Johns Hopkins, Baltimore (1996)
6. Haidar, A., Ltaief, H., Dongarra, J.: Parallel reduction to condensed forms for symmetric eigen-

value problems using aggregated fine-grained and memory-aware kernels. In: Proceedings of
SC ’11, pp. 8:1–8:11. ACM, New York (2011)

7. Haidar, A., Ltaief, H., Luszczek, P., Dongarra, J.: A comprehensive study of task coalescing
for selecting parallelism granularity in a two-stage bidiagonal reduction. In: Proceedings of
the IEEE International Parallel and Distributed Processing Symposium, Shanghai, 21–25 May
2012. ISBN 978-1-4673-0975-2

8. Haidar, A., Tomov, S., Dongarra, J., Solca, R., Schulthess, T.: A novel hybrid CPU-GPU
generalized eigensolver for electronic structure calculations based on fine grained memory
aware tasks. Int. J. High Perform. Comput. Appl. 28(2), 196–209 (2014)

http://www.netlib.org/lapack/lug/

28 J. Dongarra et al.

9. Haidar, A., Kurzak, J., Luszczek, P.: An improved parallel singular value algorithm and its
implementation for multicore hardware. In: SC13, The International Conference for High
Performance Computing, Networking, Storage and Analysis, Denver, CO, 17–22 November
2013

10. Lang, B.: Efficient eigenvalue and singular value computations on shared memory machines.
Parallel Comput. 25(7), 845–860 (1999)

11. Ltaief, H., Luszczek, P., Haidar, A., Dongarra, J.: Enhancing parallelism of tile bidiagonal
transformation on multicore architectures using tree reduction. In: Wyrzykowski, R., Dongarra,
J., Karczewski, K., Wasniewski, J. (eds.) Proceedings of 9th International Conference, PPAM
2011, Torun, vol. 7203, pp. 661–670 (2012)

12. MAGMA 1.4.1: http://icl.cs.utk.edu/magma/ (2013)
13. Nath, R., Tomov, S., Dong, T., Dongarra, J.: Optimizing symmetric dense matrix-vector

multiplication on GPUs. In: 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pp. 1–10. New York, NY, USAm 2011, ACM

14. Strazdins, P.E.: Lookahead and algorithmic blocking techniques compared for parallel matrix
factorization. In: 10th International Conference on Parallel and Distributed Computing and
Systems, IASTED, Las Vegas, 1998

15. Strazdins, P.E.: A comparison of lookahead and algorithmic blocking techniques for parallel
matrix factorization. Int. J. Parallel Distrib. Syst. Netw. 4(1), 26–35 (2001)

16. Tomov, S., Nath, R., Dongarra, J.: Accelerating the reduction to upper Hessenberg, tridiag-
onal, and bidiagonal forms through hybrid GPU-based computing. Parallel Comput. 36(12),
645–654 (2010)

17. Yamazaki, I., Dong, T., Solcà, R., Tomov, S., Dongarra, J., Schulthess, T.: Tridiagonalization
of a dense symmetric matrix on multiple GPUs and its application to symmetric eigenvalue
problems. Concurr. Comput. Pract. Exp. (2013). doi:10.1002/cpe.3152

http://icl.cs.utk.edu/magma/

Chapter 2
A Guide for Implementing Tridiagonal
Solvers on GPUs

Li-Wen Chang and Wen-mei W. Hwu

2.1 Introduction

The tridiagonal solver has been recognized as a critical building block for many
engineering and scientific applications [3, 8, 9, 11, 17, 18] on GPUs. However,
a general high-performance tridiagonal solver for GPU is challenging, not just
because the number of independent, simultaneous matrices varies greatly among
applications, but also because applications may require their tridiagonal solvers to
have customized requirements, such as: data with different layouts, matrices with
a certain structure, or execution on multi-GPUs. Therefore, although building a
tridiagonal solver library is crucial, it is very difficult to meet all demands. In this
chapter, guidelines are given for customizing a high-performance tridiagonal solver
for GPUs.

A wide range of algorithms for implementing tridiagonal solvers on GPUs,
including both sequential and parallel algorithms, was studied. The selected algo-
rithms were chosen for the requirement of applications, and to take the advantage of
massive data parallelism of GPU architecture. Meanwhile, corresponding optimiza-
tions were proposed to compensate for some inherent limitations of the selected
algorithms. In order to achieve high performance on GPUs, workloads have to
be partitioned and computed in parallel on stream processors. For the tridiagonal
solver, the inherent data dependence found in sequential algorithms (e.g. the Thomas
algorithm [5] and the diagonal pivoting method [10]), limits the opportunities
for partitioning the workload. On the other hand, parallel algorithms (e.g. Cyclic
Reduction (CR) [12], Parallel Cyclic Reduction (PCR) [12], or the SPIKE algorithm
[16,19]) allow the partitioning of workloads, but suffer from the required overheads
of extra computation, barrier synchronization, or communication.

L.-W. Chang • W.-m.W. Hwu (�)
University of Illinois, 1308 W Main St, Urbana, IL 61801, USA
e-mail: lchang20@illinois.edu; w-hwu@illinois.edu

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__2, © Springer International Publishing Switzerland 2014

29

mailto:lchang20@illinois.edu
mailto:w-hwu@illinois.edu

30 L.-W. Chang and W.-m.W. Hwu

Two main kinds of components are recognized in most GPU tridiagonal solvers.
(1) Partitioning methods are applied to divide workloads for parallel computing.
Independent solvers compute massive independent workloads in parallel. In this
chapter, we first review cutting-edge partitioning techniques for GPU tridiagonal
solvers. Different partitioning techniques require different types of overheads, such
as computation or memory overhead. (2) State-of-the-art optimization techniques
for independent solvers are discussed. Different algorithms of independent solvers
might require different optimizations. Optimization techniques might perform
together for more robust independent solvers. Finally, a case study of a new
algorithm, SPIKE-CR, which replaces part of the traditional SPIKE algorithm
with Cyclic Reduction, is given to demonstrate how to systematically build a
highly optimized tridiagonal solver by selecting the partitioning method, and by
applying optimization techniques to the independent solver for each partition.
The main purpose of this chapter is to inspire readers building their own GPU
tridiagonal solvers to meet their application requirement, instead of demonstrating
high performance of SPIKE-CR.

The rest of the sections in this chapter are organized as following. Section 2.2
briefly reviews the selected algorithms used by GPU tridiagonal solvers. Section 2.3
reviews and compares corresponding optimizations applied to the GPU tridiagonal
solvers. Section 2.4 shows a case study of the new GPU tridiagonal solver, SPIKE-
CR; discusses its partitioning and optimizations; and compares its performance to
alternative methods. Section 2.5 concludes the chapter. In the following sections,
we use NVIDIA CUDA [14] terminology.

2.2 Related Algorithms

In this section, we briefly cover the selected tridiagonal solver algorithms used for
GPUs. Although, in general, most tridiagonal solvers may be used to solve multiple
systems of equations each with its own tridiagonal matrix, for simpler explanation
here, we only discuss the case of solving a single system with one tridiagonal matrix.
The tridiagonal solver solves T x D d , where T is a tridiagonal matrix with n rows
and n columns, defined in Eq. (2.1), and x and d are both column vectors with n
elements. Note that the first row of T is row 0, and the first element of x and d is
element 0.

T D

2
6666664

b0 c0
a1 b1 c1

a2
: : :

: : :

: : :
: : : cn�2
an�1 bn�1

3
7777775

(2.1)

2 A Guide for Implementing Tridiagonal Solvers on GPUs 31

2.2.1 Thomas Algorithm

The Thomas algorithm is a special case of Gaussian elimination without pivoting
(or LU decomposition with LU solvers) for a tridiagonal matrix. It consists
of two phases, a forward reduction and a backward substitution. The forward
reduction sequentially eliminates the lower diagonal of the original matrix, while
the backward substitution sequentially solves for unknown variables using known
variables and the upper and main diagonals in the resultant matrix. For T x D d ,
decompose T D LU by LU decomposition, let Ux D y, solve Ly D d , and then
solve Ux D y.

2.2.2 Diagonal Pivoting Algorithm

The diagonal pivoting algorithm for tridiagonal matrices was proposed by Erway
et al. [10]. Although Gaussian elimination with partial pivoting is widely used for
tridiagonal solvers on CPUs, it is not efficient on GPUs due to its inherent data
dependence and expensive row interchange operations. Erway’s diagonal pivoting
method avoids row interchanges by dynamically selecting 1-by-1 or 2-by-2 pivots.
The factorization is defined as follows:

T D
�
Ph B

C Tr

�
D
�
Ih 0

CP�1
h Ir

� �
Ph 0

0 Ts

� �
Ih P

�1
h B

0 Ir

�
(2.2)

where Ph is a 1-by-1 (
�
b0
�
) or 2-by-2 pivoting block (

�
b0 c0
a1 b1

�
), and

Ts D Tr � CP�1
h B D f Tr � a1c0

b0
e
.n�1/
1 e

.n�1/T
1 , for 1-by-1 pivoting

Tr � a2b0c1
�

e
.n�2/
1 e

.n�2/T
1 , for 2-by-2 pivoting

(2.3)

where � D b0b1 � a1c0 and e.k/1 is the first column vector of the k-by-k identity
matrix. Since Ts is still tridiagonal (Eq. (2.3)), it can also be factorized by the same
Eq. (2.2). Therefore, a tridiagonal matrix T can be recursively factorized in LBMT ,
where B only contains either 1-by-1 or 2-by-2 blocks in its diagonal. After LBMT

factorization, the tridiagonal matrix T can be solved by solving L, B , and MT

sequentially.

32 L.-W. Chang and W.-m.W. Hwu

1

0

00

0

b2a2

c0b0

b3a3

b2a2

c1ba1

c0b0

b3a3

c2b2a2

c1b1a1

c0b0

Fig. 2.1 One step CR forward reduction on a 4-by-4 matrix: a2 and c2 on row 2 are eliminated by
row 1 and 3. Similarly, c0 is eliminated by row 1. After that, row 0 and row 2 can form a smaller
matrix

2.2.3 Cyclic Reduction

The Cyclic Reduction (CR) algorithm, also known as an odd-even reduction,
contains two phases, forward reduction and backward substitution. In every step of
the forward reduction, defined in Eq. (2.4), each odd (or even) equation is eliminated
by using the adjacent two even (or odd) equations.

˛ D ai=bi�st ride; ˇ D ci=biCst ride;
a0
i D �˛ai�st ride; b0

i D bi � ˛ci�st ride � ˇaiCst ride;
c0
i D �ˇciCst ride; d 0

i D di � ˛di�st ride˛ � ˇdiCst ride;
(2.4)

where the stride starts from 1 and increases exponentially step-by-step, and the
domain of i starts from all odd and shrinks exponentially. The boundary condition
can be simplified by using ai D ci D 0, and bi D 1. Figure 2.1 shows a CR example
for a 4-by-4 tridiagonal matrix. After a step of CR forward reduction, redundant
unknown variables and zeros can be removed, and a half-size matrix is formed of
the remaining unsolved equations. Each step of the backward substitution, defined
in Eq. (2.5), solves for unknown variables by substituting solutions obtained from
the smaller system.

xi D d 0
i � a0

i xi�st ride � c0
i xiCst ride

b0
i

(2.5)

where the stride decreases exponentially step-by-step, and the domain of i increases
exponentially. The graph representation of CR for a 8-by-8 matrix is shown in
Fig. 2.2, where each vertical line represents an equation, and each circle represents
forward or backwards computation.

2.2.4 Parallel Cyclic Reduction

The PCR algorithm, different from CR, only performs the forward reduction,
Eq. (2.4). Also, the PCR forward reduction is performed on all equations, instead
of odd (or even). That means the domain of i does not decrease exponentially, but

2 A Guide for Implementing Tridiagonal Solvers on GPUs 33

Fig. 2.2 The CR access
pattern on a 8-by-8 matrix:
each vertical line represents
an equation, each circle
represents forward or
backwards computation, and
each edge represents
communication between two
equations

the stride still keeps increasing exponentially step-by-step. Figure 2.3 shows a PCR
example for the same 4-by-4 tridiagonal matrix. After a step of PCR, two half-
size matrices are formed of the resultant new equation by reorganizing unknown
variables. It also illustrates how a matrix can be partitioned after each PCR (forward
reduction) step.

0 b1 0 c1

0

b2a2

c0b0

b3a3

c1b100 b2

b3

a2

a3

0 c0b0

b3a3

c2b2a2

c1b1a1

c0b0

Fig. 2.3 One step PCR forward reduction on a 4-by-4 matrix: ai and ci on each row i are
eliminated by adjacent two rows. For example, a2 and c2 on row 2 are eliminated by row 1 and 3.
After that, row 0 and 2 can form a smaller matrix, and row 1 and 3 can form another

2.2.5 Recursive Doubling

The Recursive Doubling (RD) algorithm [21] can be considered as a reformulation
of a parallel tridiagonal solver into a second-order linear recurrence, Eq. (2.6). By
solving the relationship between x0 and dn�1, all unknown variables, xi ’s, can be
solved.

2
666666664

1

b0=c0 1

a1=c1 b1=c1 1
: : :

: : :
: : :

an�2=cn�2 bn�2=cn�2 1

an�1 bn�1 1

3
777777775

2
666666664

x0
x1

x2
:::

xn�1
0

3
777777775

D

2
666666664

x0
d0=c0

d1=c1
:::

dn�2=cn�2
dn�1

3
777777775

(2.6)

34 L.-W. Chang and W.-m.W. Hwu

However, in the Recursive Doubling algorithm, huge numerical errors might be
produced, even for a diagonally dominant matrix, since division operations are
performed on upper diagonal elements (ci ’s). Because of this shortcoming, we skip
the discussion of RD in this chapter.

2.2.6 SPIKE Algorithm

The SPIKE algorithm was originally introduced by Sameh et al. [19] and the latest
version described by Pollizi et al. [16]. It is a domain decomposition algorithm, that
partitions a matrix into block rows containing diagonal sub-matrices, Ti , and off-
diagonal elements, ahi and cti . The original matrix, T , can be further defined as
the product of two matrices, the block-diagonal matrix D and the spike matrix S ,
Fig. 2.4, where Vi andWi of S can be solved by Eq. (2.7).

TiVi D

2
6664
0
:::

0

cti

3
7775 ; TiWi D

2
6664
ahi
0
:::

0

3
7775 : (2.7)

After the formation of the matricesD and S , the SPIKE algorithm solves Dy D d

for y, and then uses the special form of S to solve Sx D y [16]. The spike
matrix, S , can also be considered a specialized block tridiagonal matrix, and can be
solved by a block tridiagonal solver algorithm, such as the block Cyclic Reduction
algorithm [2].

Fig. 2.4 A tridiagonal matrix T can be defined as T D DS , where D is a block diagonal matrix
and S is a spike matrix (a specialized block tridiagonal matrix)

2 A Guide for Implementing Tridiagonal Solvers on GPUs 35

2.3 Optimization Techniques

As mentioned in Sect. 2.1, partitioning is necessary for high performance on GPUs.
Although sequential algorithms inherently cannot be partitioned, they are widely
applied to solving multiple independent systems in parallel. On the other hand,
although parallel algorithms are capable of both partitioning individual systems
and solving multiple independent systems, they might require high overheads. In
this section, all existing optimization techniques for GPU tridiagonal solvers are
examined. However, while not every optimization is discussed in detail, references
are provided for each technique to satisfy readers who need more information.

2.3.1 Partitioning Method

Many of the early tridiagonal solvers on GPUs [6, 8, 11, 17, 20, 23] can only be
applied to problems with multiple independent matrices. They simply assume no
partitioning occurs, and exploit only the inherent parallelism from multiple indepen-
dent matrices. This assumption works very efficiently, simply because parallelism
is inherent and no partitioning overhead is required. However, when the number of
independent matrices shrinks, the overall performance drops dramatically.

Partitioning is found in many studies of tridiagonal solvers for GPUs, and
particularly, the PCR algorithm was widely applied to partitioning. Sakharnykh
[18] first introduced PCR in his PCR-Thomas implementation to further extract
more parallelism for a limited number of independent matrices. Kim et al. [13] and
Davidson et al. [7] first recognized that partitioning is necessary for a tridiagonal
solver to handle a single large matrix on GPUs, and they proposed PCR-Thomas
tridiagonal solvers. In both papers, PCR was used to decompose one large matrix
into many smaller independent matrices. The main limitation of PCR is its compu-
tation overhead. In order to minimize the computation overhead of PCR, only a few
PCR steps are performed. Kim et al. further proposed the sliding window technique
to reduce the requirement of scratchpad memory size for PCR, and to make PCR
more efficient.

Compared to PCR, domain partitioning requires less computational overhead.
The CR-PCR implementation for the non-pivoting tridiagonal solver in NVIDIA
CUSPARSE [15] uses implicit domain partitioning by duplicating memory accesses
between two adjacent partitions. By storing data back to global memory between
two CR steps, the redundant equations of CR (see Fig. 2.1) can be removed to avoid
unnecessary memory overhead. Although this naive partitioning method simplifies
the source code, it may cost a large memory overhead, since each CR step requires
reloading data from global memory.

Argüello et al. [1] proposed a split-and-merge method for CR by separating com-
putation workloads into two sets, called split and merge sets. The split sets represent
the independent workloads partitioned and are assigned to stream processors, while

36 L.-W. Chang and W.-m.W. Hwu

the merge sets represent computation workloads requiring data from two or more
independent split sets. Figure 2.5a illustrates the graph representation for the split-
and-merge method of CR forward reduction. The independent split sets can be
simply computed in parallel, while the merge sets are postponed and computed
in a separate kernel later. Compared to the NVIDIA CR-PCR implementation,
Argüello’s method dramatically reduces memory access overhead, since multiple
steps of CR might be computed with shared data in a kernel. Chang et al. [2]
further refined Argüello’s split-and-merge CR to support the larger split sets. The
corresponding illustration is shown in Fig. 2.5b.

split

merge

split

merge

a b

Fig. 2.5 The graph representation of a 8-by-8 matrix for CR using split-and-merge. (a) Argüello’s
split-and-merge method, which has smaller splits sets and larger merge sets; (b) Chang’s split-and-
merge method, which has larger splits sets and smaller merge sets

Chang et al. [4] and the pivoting tridiagonal solver in NVIDIA CUSPARSE
applied the SPIKE algorithm to decompose a matrix into disjoint partitions. The
SPIKE algorithm requires extra overhead for solving the spike matrix, Sx D y.
The computation cost for solving the spike matrix is relatively small, compared to
the cost for solving all of the independent partitions.

2.3.2 Algorithms and Optimizations for Independent Solver

After using a matrix partitioning method, or given multiple independent matrices,
the multiple independent workloads can be computed in parallel. The Thomas
algorithm was applied in [4, 7, 13, 17] simply for its low complexity and lack of
warp divergence. Chang et al. [4] first introduced the diagonal pivoting method [10]
for numerical stability, and the same method is also implemented in the CUSPARSE
pivoting tridiagonal solver. With Chang’s dynamic tiling technique, the overhead of
warp divergence in the diagonal pivoting method is dramatically reduced.

Different from the sequential algorithms, the parallel algorithms, such as CR,
require more optimization techniques to reduce possible overheads and to perform
efficiently. Göddeke et al. [11] eliminated bank conflict caused by the strided

2 A Guide for Implementing Tridiagonal Solvers on GPUs 37

access of CR, by marshaling data on scratchpad memory. Davidson et al. [6]
proposed register packing for CR to hold more data in registers within a stream
processor without increasing the size of scratchpad memory. Figure 2.6 illustrates an
example of 4-equation register-packing CR forward reduction for an 8-by-8 matrix.
A 4-equation CR forward reduction is computed locally in packed vector4 registers.
The label S represents the data copied to scratchpad memory for communication
among threads. Note that the needed scratchpad size is equal to the number of
threads. Davidson’s optimization can potentially increase the size of each partition,
and further reduce the possible overhead of partitioning, though the benefits were
not explicitly mentioned in Davidson’s paper.

Vector4 Vector4
S

S

S

Fig. 2.6 The graph
representation of a 8-by-8
matrix for Davidson’s
4-equation register-packing
CR forward reduction: the
label S represents the data
copied to scratchpad memory.
Davidson’s method can hold
the number of thread times
the number of register
packing equations in a thread
block. The needed scratchpad
size is equal to the number of
threads. In this illustration,
the scratchpad size is only
2 equations

PCR can be used as an efficient independent solver for small-size matrices.
Zhang et al. [23] first demonstrated it in their CR-PCR method, and CUSPARSE
extended the CR-PCR method in a non-pivoting tridiagonal solver to support larger
matrices. A high-performance warp-level PCR that has no barrier overhead is
proposed in Sect. 2.4 and Listing 2.5.

Zhang et al. [23] first systematically introduced the hybrid methods for GPU
tridiagonal solvers, by combining the Thomas, CR, PCR, and RD algorithms, to
gain feasible complementary benefits. Although Zhang’s idea only worked for
small matrices, implementing an independent solver using his idea is extremely
efficient when running on a stream processor. The reading of Zhang’s paper is highly
recommended.

2.3.3 Short Summary

Table 2.1 summarizes the above partitioning methods, and the corresponding
limitation or overhead. Different applications may require different partitioning
methods, and have different overheads. Another possible overhead for all methods is
the data marshaling [22] overhead to glue two memory access patterns of the applied

38 L.-W. Chang and W.-m.W. Hwu

Table 2.1 Summary of partitioning methods

Methods Limitation or overhead

No partitioning No overhead, but only for massive
independent matrices

PCR Heavy computation overhead
Naive domain partitioning Heavy memory access overhead
SPIKE algorithm Light computation/memory overhead
Split-and-merge Light memory access overhead

Table 2.2 Optimization of
independent solver

Optimization Algorithms

Dynamic tiling Diagonal pivoting method
Register packing CR
Bank conflict elimination CR
Warp-level computation PCR
Hybrid method All tridiagonal algorithms

partitioning method and independent solver. For example, in Chang’s SPIKE-based
tridiagonal solver [4], data marshaling is used to guarantee a coalesced memory
access pattern in the independent solver. The data marshaling overhead is required
only if the output pattern of the partitioning method is different from the input
pattern of the independent solver.

Table 2.2 categorizes applicable optimizations for the algorithms used in inde-
pendent solvers. Different optimization techniques might perform better together
for more robust independent solvers. The concept of Zhang’s hybrid method [23]
can further enable more potential optimizations across different algorithms. For
example, in the case study (Sect. 2.4), we use a hybrid of CR and PCR to enable
optimizations in the both algorithms.

2.4 Case Study: SPIKE-CR

In this section, a new hybrid algorithm, SPIKE-CR, is used as a case study to
demonstrate how to apply the optimization techniques that were summarized in
Sect. 2.3. Using a systematic optimization analysis, the implementation of the
SPIKE-CR tridiagonal solver conceptually interacts with the GPU architecture.
Previous works did not discover the SPIKE-CR method. This is mainly because
the previous works did not systematically analyze the partitioning methods.

In the SPIKE-CR, the SPIKE algorithm is applied to partitioning for its lower
computation overhead than PCR and lower memory access overhead than the other
domain partitioning methods. After the partitioning method is selected, CR is
applied for the independent solver. Although the sequential algorithms are efficient
with the SPIKE algorithm [4], the CR algorithm is chosen to avoid the potential
data marshaling overhead from combining the SPIKE algorithm and the sequential

2 A Guide for Implementing Tridiagonal Solvers on GPUs 39

algorithms. SPIKE-PCR is another potential direction for a GPU tridiagonal solver.
However, the computation cost of PCR is much higher than CR.

In order to implement an efficient SPIKE-CR, the following optimization
techniques are applied in this case study. First, Davidson’s register packing [6] is
applied to hold more equations in a partition. This optimization can potentially
reduce partitioning overhead of the SPIKE algorithm by reducing the number of
partitions. Second, Zhang’s hybrid idea [23] of CR and PCR is used to avoid the
potential low utilization of vector units in CR and to further enable more options of
optimization in PCR. Third, a new warp-level PCR is proposed to remove barrier
synchronization overheads in PCR. Last, another level partitioning using the SPIKE
algorithm is applied to minimize communication between warps within a thread
block. This strategy makes partitioning become hierarchical and further reduces
communication overheads.

Listing 2.1 The baseline kernel of CR forward

1 ...
2 tx = threadIdx.x;
3 b_dim = blockDim.x;
4 ...
5 //CR iteration within a thread block
6 active_tx = b_dim;
7 for(int i=1;i<b_dim;i*=2)
8 {
9 active_tx/=2;

10 if(tx < active_tx)
11 {
12 //CR forward computation using data in
13 scratchpad
14 }
15 __syncthreads();
16 if(tx < active_tx)
17 {
18 //update scratchpad
19 }
20 __syncthreads();
21 }
22 ...

Listing 2.2 The optimized kernel of CR

1 ...
2 tx = threadIdx.x;
3 b_dim = blockDim.x;
4 lane_id = tx % warpSize;
5 warp_id = tx / warpSize;
6 ...
7 double2 a_reg,b_reg, c_reg, d_reg; //vectorize register
8 //load data into scratchpad using vector2
9 a_reg = a[id];

10 b_reg = b[id];
11 c_reg = c[id];
12 d_reg = d[id];
13 //code fragment 1, CR forward reduction
14 //code fragment 2, warp-level PCR
15 //code fragment 3, CR backward substitution
16 //store partial results and the spike matrix
17 ...

40 L.-W. Chang and W.-m.W. Hwu

Since the source codes of the SPIKE algorithm have been provided by Chang
et al. [4] at http://impact.crhc.illinois.edu, and the computation cost for solving the
spike matrix is much smaller than the cost for solving all independent partitions,
we only discuss the detailed source codes of the independent solver. The reading of
Chang’s paper and source codes is highly recommended. Listing 2.1 shows the sim-
plified baseline of the CR forward reduction kernel, and Listing 2.2 shows the struc-
ture of our optimized CR. The code fragments are written for NVIDIA Fermi archi-
tecture, and possible changes for NVIDIA Kepler architecture are further discussed.

Listing 2.3 The code fragment 1: CR forward reduction

1 ...
2 //CR forward in register
3 sh_a[tx] = a_reg.y;
4 sh_b[tx] = b_reg.y;
5 sh_c[tx] = c_reg.y;
6 sh_d[tx] = d_reg.y;
7 //up side
8 {
9 k1=c_reg.x/b_reg.y;

10 b_reg.x -= a_reg.y*k1;
11 d_reg.x -= d_reg.y*k1;
12 c_reg.x = -c_reg.y*k1;
13 }
14 // down side
15 if(lane_id>=1)
16 {
17 k1=a_reg.x/sh_b[tx-1];
18 b_reg.x -= sh_c[tx-1]*k1;
19 d_reg.x -= sh_d[tx-1]*k1;
20 a_reg.x = -sh_a[tx-1]*k1;
21 }
22 sh_a[tx] = a_reg.x;
23 sh_b[tx] = b_reg.x;
24 sh_c[tx] = c_reg.x;
25 sh_d[tx] = d_reg.x;
26 ...

Listing 2.4 The code fragment 3: CR backward substitution

1 ...
2 //CR backward in register
3 k1 = a_reg.y/b_reg.x;
4 a_reg.y = 0.0;
5 if(lane_id<warpSize-1)
6 {
7 k2 = c_reg.y/sh_b[tx+1];
8 c_reg.y = -sh_c[tx+1]*k2;
9 a_reg.y = -sh_a[tx+1]*k2;

10 d_reg.y -= sh_d[tx+1]*k2;
11 }
12 c_reg.y -= c_reg.x*k1;
13 a_reg.y -= a_reg.x*k1;
14 d_reg.y -= d_reg.x*k1;
15 ...

Listing 2.3 shows the portion of 2-equation register-packing CR forward reduc-
tion using Davidson’s technique [6], and Listing 2.4 shows the portion of corre-
sponding CR backward substitution. Note that Listing 2.4 is the fragment 3, and is
performed after the warp-level PCR. Here, we change the order of the listings for an

http://impact.crhc.illinois.edu

2 A Guide for Implementing Tridiagonal Solvers on GPUs 41

easier discussion by putting the two fragments of CR together. The packed registers
are defined in line 7 of Listing 2.2, and the computation of CR happens at line 3–14
of Listing 2.3 and all of Listing 2.4. Scratchpad memory, sh_a to sh_d , is used to
communicate among threads only within a warp. Compared to the baseline of CR
forward reduction, which contains at least two barrier synchronizations, line 14 and
19 of Listing 2.1, in a loop, the optimized CR requires no barrier synchronization,
since communication only happens within a warp. Also, for NVIDIA Kepler
architecture, shuffle instructions can replace those scratchpad memory accesses,
since communication happens within a warp. Moreover, since Kepler provides
larger register files, a larger size register packing can be applied to holding more
data.

Listing 2.5 shows the warp-level PCR fragment of our CR-PCR hybrid. Similarly,
since PCR only happens in a warp, no barrier synchronization is needed. Also, shuf-
fle instructions can be used for Kepler by replacing scratchpad memory accesses. In
these code fragments, our CR-PCR performs 1 CR forward reduction step, followed
by 5 PCR steps in the warp-level PCR and 1 CR backward substitution step, without
any barrier synchronization. After CR-PCR, the computed results are stored back to
global memory, and also the formed spike matrix is explicitly stored in another
space. Since each thread block is further partitioned into multiple warps, another
level of domain partitioning using SPIKE algorithm is implicitly applied.

Listing 2.5 The code fragment 2: warp-level PCR

1 ...
2 //PCR for each warp, no barrier needed
3 for(int i=1;i<warpSize;i*=2)
4 {
5 // down side
6 if(lane_id>=i)
7 {
8 k1=sh_a[tx]/sh_b[tx-i];
9 b_reg.x -= sh_c[tx-i]*k1;

10 d_reg.x -= sh_d[tx-i]*k1;
11 a_reg.x = -sh_a[tx-i]*k1;
12 }
13 //up side
14 if(lane_id<warpSize-i)
15 {
16 k1=sh_c[tx]/sh_b[tx+i];
17 b_reg.x -= sh_a[tx+i]*k1;
18 d_reg.x -= sh_d[tx+i]*k1;
19 c_reg.x = -sh_c[tx+i]*k1;
20 }
21 sh_a[tx] = a_reg.x;
22 sh_b[tx] = b_reg.x;
23 sh_c[tx] = c_reg.x;
24 sh_d[tx] = d_reg.x;
25 }
26 ...

42 L.-W. Chang and W.-m.W. Hwu

cusparseDgtsv_
nopivot

SPIKE-Thomas

SPIKE-CR

0 10 20 30

runtime (ms)

40 50 60 70

Marshaling

Solving

Fig. 2.7 Performance results for solving a 16M-equation double-precision matrix using CUS-
PARSE non-pivoting tridiagonal solver(cusparseDgtsv_nopivot), Chang’s SPIKE-Thomas, and
SPIKE-CR on an NVIDIA Tesla C2050. The data marshaling overhead of Chang’s SPIKE-Thomas
implementation is shown in the right portion of the bar

2.4.1 Performance Comparison

Figure 2.7 shows the performance comparison for solving a 16M-equation (224)
double-precision matrix using CUSPARSE non-pivoting tridiagonal solver (CR-
PCR), Chang’s SPIKE-Thomas [4], and SPIKE-CR on an NVIDIA Tesla C2050.
Although the Thomas algorithm is extremely efficient as an independent solver,
in Chang’s SPIKE-Thomas, the overhead of data marshaling, required to maintain
coalescing memory access for Thomas algorithm, causes Chang’s SPIKE-Thomas
performing slightly slower than SPIKE-CR. Compared to CUSPARSE CR-PCR, the
domain partitioning using the SPIKE algorithm tends to have less memory access
overhead than the naive domain partitioning used by CUSPARSE. The memory
access overhead causes the main performance difference between the SPIKE-based
methods and CUSPARSE CR-PCR. In the end, SPIKE-CR has 1.23� and 2.23�
speedups over SPIKE-Thomas and CUSPARSE CR-PCR, respectively.

2.5 Conclusion

This chapter summarizes most cutting-edge optimization techniques, applied in both
partitioning methods and independent solvers, for GPU tridiagonal solvers, and
demonstrates how to apply optimization techniques for building a high-performance
tridiagonal solver in our case study, SPIKE-CR. The case study, SPIKE-CR,
shows 1.23� and 2.23� speedups, respectively, over Chang’s SPIKE-Thomas [4]
and CUSPARSE non-pivoting tridiagonal solver, since SPIKE-CR has no data
marshaling overhead and less memory access overhead.

As mentioned in Sect. 2.1, the main purpose of this chapter is to give readers
the current status of GPU tridiagonal solvers, and further to inspire readers to
customize GPU tridiagonal solvers to meet their application requirements, instead
of showing high performance of SPIKE-CR. Multiple partitioning methods, such as
the split-and-merge method [1, 2] and the SPIKE algorithm, tend to have very low

2 A Guide for Implementing Tridiagonal Solvers on GPUs 43

overheads for a limited number of large matrices, while no partitioning is required
for a massive number of matrices. For independent solvers, the sequential methods
usually perform very efficiently, while the parallel algorithms, such as CR, can also
provide comparable performance after optimization. Therefore, the main concern of
building a high-performance GPU tridiagonal solver is how the applied algorithm
and its memory access pattern meet a given application.

Some unique properties, such as numerical stability, of a GPU tridiagonal solver
for the application are also very critical. So far, only few previous works [4, 23]
recognized the numerical stability issue of current GPU tridiagonal solvers, and
even fewer ones [4] investigated it. Numerical stability becomes the most important
future work for the research of GPU tridiagonal solvers.

Acknowledgements This project was partly supported by the STARnet Center for Future Archi-
tecture Research (C-FAR), the DoE Vancouver Project (DE-FC02-10ER26004/DE-SC0005515),
and the UIUC CUDA Center of Excellence.

References

1. Argüello, F., Heras, D.B., Bóo, M., Lamas-Rodríguez, J.: The split-and-merge method in
general purpose computation on GPUs. Parallel Comput. 38(6–7), 277–288 (2012)

2. Chang, L.-W., Hwu, W.-m.W.: Mapping tridiagonal solvers to linear recurrences. Technical
report, University of Illinois at Urbana-Champaign (2013)

3. Chang, L.-W., Lo, M.-T., Anssari, N., Hsu, K.-H., Huang, N.E., Hwu, W.-m.W.: Parallel imple-
mentation of multi-dimensional ensemble empirical mode decomposition. In: International
Conference on Acoustics, Speech, and Signal Processing, pp. 1621–1624 (May 2011)

4. Chang, L.-W., Stratton, J.A., Kim, H.-S., Hwu, W.-m.W.: A scalable, numerically stable, high-
performance tridiagonal solver using GPUs. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, SC ’12, pp. 27:1–27:11
(2012)

5. Conte, S.D., De Boor, C.W.: Elementary Numerical Analysis: An Algorithmic Approach, 3rd
edn. McGraw-Hill Higher Education, New York (1980)

6. Davidson, A., Owens, J.D.: Register packing for cyclic reduction: a case study. In: Proceedings
of the Fourth Workshop on General Purpose Processing on Graphics Processing Units (2011)

7. Davidson, A., Zhang, Y., Owens, J.D.: An auto-tuned method for solving large tridiagonal
systems on the GPU. In: Proceedings of the 25th IEEE International Parallel and Distributed
Processing Symposium (May 2011)

8. Egloff, D.: GPUs in financial computing part II: massively parallel solvers on GPUs. Wilmott,
50, 50–53 (Nov 2010)

9. Egloff, D.: GPUs in financial computing part III: ADI solvers on GPUs with application to
stochastic volatility. Wilmott, 52, 51–53 (Mar 2011)

10. Erway, J.B., Marcia, R.F., Tyson, J.A.: Generalized diagonal pivoting methods for tridiagonal
systems without interchanges. IAENG Int. J. Appl. Math. 40(4), 269–275 (2010)

11. Göddeke, D., Strzodka, R.: Cyclic reduction tridiagonal solvers on GPUs applied to mixed-
precision multigrid. IEEE Trans. Parallel Distrib. Syst. 22, 22–32 (2011)

12. Hockney, R.W., Jesshope, C.R.: Parallel Computers: Architecture, Programming and Algo-
rithms. Hilger, Bristol (1981)

13. Kim, H.-S., Wu, S., Chang, L.-W., Hwu, W.-m.W.: A scalable tridiagonal solver for GPUs. In:
2011 International Conference on Parallel Processing (ICPP), pp. 444–453 (2011)

44 L.-W. Chang and W.-m.W. Hwu

14. NVIDIA Corporation: CUDA Programming Guide 5.5 (2013)
15. NVIDIA Corporation: CUSPARSE Library (2013)
16. Polizzi, E., Sameh, A.H.: A parallel hybrid banded system solver: the SPIKE algorithm.

Parallel Comput. 32(2), 177–194 (2006)
17. Sakharnykh, N.: Tridiagonal solvers on the GPU and applications to fluid simulation. In:

NVIDIA GPU Technology Conference (September 2009)
18. Sakharnykh, N.: Efficient tridiagonal solvers for ADI methods and fluid simulation. In:

NVIDIA GPU Technology Conference (September 2010)
19. Sameh, A.H., Kuck, D.J.: On stable parallel linear system solvers. J. ACM 25(1), 81–91 (1978)
20. Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan primitives for gpu computing. In:

Graphics Hardware 2007, pp. 97–106 (2007)
21. Stone, H.S.: An efficient parallel algorithm for the solution of a tridiagonal linear system of

equations. J. ACM 20(1), 27–38 (1973)
22. Sung, I.-J., Stratton, J.A., Hwu, W.-M.W.: Data layout transformation exploiting memory-level

parallelism in structured grid many-core applications. In: PACT ’10: Proceedings of the 19th
International Conference on Parallel Architectures and Compilation Techniques, pp. 513–522.
ACM, New York (2010)

23. Zhang, Y., Cohen, J., Owens, J.D.: Fast tridiagonal solvers on the GPU. In: Proceedings of the
15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
’10, pp. 127–136 (2010)

Chapter 3
Batch Matrix Exponentiation

M. Graham Lopez and Mitchel D. Horton

3.1 Introduction

Being the crucial component of numerical software packages such as LAPACK
[3], ScaLAPACK [6], MUMPS [2], and SuperLU [13], the general dense matrix–
matrix multiplication routine, GEMM,1 is a common performance benchmark and a
typical target of early optimization efforts for new computing architectures [33,34].
Major hardware vendors such as Intel, IBM, AMD, and NVIDIA maintain their own
highly optimized GEMM implementations, which are included with their respective
BLAS libraries: MKL [35], ESSL [28], ACML [1], and CUBLAS [8]. Non-vendor
optimized implementations for various architectures are also available, examples
being ATLAS [44] and GotoBLAS [24]. Autotuning efforts are now commonplace
[33, 34], and GEMM is critical to the performance of the High Performance
LINPACK Benchmark (HPL) [16], the official benchmark of the TOP500 list.

All of this importance attributed to GEMM is explained by the fact that
many numerical algorithms, lower-upper (LU) factorization being one of several
examples, can be expressed in terms of GEMM, or at least designed to partially
use GEMM. This is achieved using delayed updates; the application of basic linear
transformations expressed in terms of matrix–vector multiplications are delayed
and accumulated, and then they are applied in aggregate as a GEMM [39]. LU
is a canonical linear algebra procedure for solving linear systems of equations;
improvements in the time to solution for LU has a direct impact on the execution
time of applications in domains such as airplane wing design, radar cross-section

1In this work, we refer to general matrix–matrix multiplication as GEMM, in adherence with the
Basic Linear Algebra Subroutines (BLAS) standard [5].

M.G. Lopez • M.D. Horton (�)
Georgia Institute of Technology, Atlanta, GA 30332, USA
e-mail: graham.lopez@gatech.edu; mhorton9@mail.gatech.edu

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__3, © Springer International Publishing Switzerland 2014

45

mailto:graham.lopez@gatech.edu
mailto:mhorton9@mail.gatech.edu

46 M.G. Lopez and M.D. Horton

studies, flow around ships and other off-shore constructions, diffusion of solid
bodies in a liquid, noise reduction, diffusion of light by small particles, etc. [14]

Besides its applicability to a wide variety of numerical algorithms and resulting
application domains, GEMM has a high flops per memory access ratio and regular
memory access pattern, which makes it well suited to a many-core architecture with
a hierarchical memory such as the GPU [12]. Evaluation of GEMM is a well-studied
problem, and it is the canonical GPU programming example [9]; double precision
GEMM (DGEMM) can achieve 80 % of the peak theoretical performance on the
Kepler architecture [32].

Consequently, batch GEMM, the matrix–matrix multiplication of a large number
of relatively small matrices, is a growing area within dense linear algebra, and
is relevant to various application areas such as phylogenetics [42], finite element
modeling [29], image processing [11], fluid dynamics [11], and hydrodynam-
ics [15]. NIVIDA began providing a batch GEMM routine with CUDA 4.1:
cublasXgemmBatched, where X is one of S,D,C,Z [9]. With CUDA 5.5,
NVIDIA provides batch LU, and batch matrix inversion [9].

3.2 Motivation

Our problem, matrix exponentiation based on batch GEMM, comes from the field
of phylogenetics. Recent advances in sequencing technology (DNA sequencing,
amino-acid and protein characterization, gene expression data, and whole-genome
descriptions) are providing phylogenetics researchers with a plethora of biological
sequence datasets [4, 18, 22, 23, 30, 36, 38, 40–42, 45]. Often, the goal is to infer
a most probable phylogenetic history, which is represented as a tree. However, as
the number of sequences increases, the number of trees that a brute force algorithm
would evaluate to determine the most probable history quickly becomes prohibitive.
The number of unrooted bifurcating trees, T , for n observed sequences is given by

T .n/ D
nY
iD3
.2i � 5/; (3.1)

and while the number of observed sequences can number in the hundreds or
thousands, note that T .50/ � 2:8476 [19, 21, 23, 45].

As a result of this intractability, a number of techniques have emerged for
reducing the number of trees that must be evaluated. Foremost among these is
Markov chain Monte Carlo (MCMC), which has been enthusiastically embraced
for phylogenetic inference [17, 26]. An MCMC based phylogenetics algorithm for
inferring trees does its work in the following manner:

1. Randomly construct an initial tree. Call it the current tree.
2. Stochastically perturb the current tree (often this is simply a local regrouping and

branch length modification).

3 Batch Matrix Exponentiation 47

3. Compute the acceptance ratio,R, of the probabilities of the modified tree and the
current tree.

4. If R � 1, accept the new tree and make it the current tree. Otherwise, draw a
uniform random number between 0 and 1. If it is less thanR, accept the new tree
and make it the current tree. Otherwise, reject the new tree.

5. Go to step 2.

It turns out that for a properly constructed and adequately run Markov chain, the
proportion of the time that any tree is visited is a valid approximation of the
probability of that tree [27, 43]. The tree that is visited the most would then also
be the tree with the highest probability.

The probabilities given in step 3 above are computed using Felsenstein’s algo-
rithm for likelihood [19–21]. This evaluation is the most computationally intensive
part of the algorithm, and is normally the prime candidate for GPU acceleration
[42]. Briefly, Felsenstein’s algorithm assumes independence of sites, independence
of branches, and finite-time transition probabilities Pi;j .t/ that characterize how
state i mutates to state j along a branch of length t ; it then computes the probability
of the given tree and set of branch lengths by summing across all possibilities for
interior nodes and multiplying across all branches and sites.

For phylogenetic models, there are three common choices for the number of
values a site can have: 4, 20, and 60 (nucleotide, amino acid, and codon model,
respectively). For the nucleotide model, the finite-time transition probabilities are
derived as follows [25]: a transition is a point mutation that changes a purine
nucleotide base (A;G) to another purine, or a pyrimidine nucleotide base (C; T)
to another pyrimidine. A transversion is a point mutation that changes a purine to a
pyrimidine, or a pyrimidine to a purine. Each site evolves according to a Markov
process in which a base i 2 fT;C;A;Gg is replaced by another base j in an
infinitesimally short interval of time, dt , with a probability Pij .dt/ given by

Pij .dt/ D
(
˛�j dt .for transition/

ˇ�j dt .for transversion/
(3.2)

where ˛ is the proportion of mutations that are transitions, ˇ is the proportion of
mutations that are transversions, and �j is the stationary composition of base j .
The substitution probability matrix for an infinitesimally short interval of time can
then be written as:

P.dt/ D

2
664

T C A G

T 1� .˛�C C ˇ�A C ˇ�G/dt ˛�C dt ˇ�Adt ˇ�Gdt

C ˛�T dt 1� .˛�T C ˇ�A C ˇ�G/dt ˇ�Adt ˇ�Gdt

A ˇ�T dt ˇ�C dt 1� .˛�G C ˇ�T C ˇ�C /dt ˛�Gdt

G ˇ�T dt ˇ�C dt ˛�Adt 1� .˛�A C ˇ�T C ˇ�C /dt

3
775

D I C Adt

For an arbitrary time interval t , the function P.t/ satisfies the Chapman–
Kolmogorov equation [25]

48 M.G. Lopez and M.D. Horton

P.t C dt/ D P.t/P.dt/

D P.t/.I C Adt/ : (3.3)

Therefore, we get

dP.t/

dt
D P.t/A : (3.4)

Since P.0/ D I , we have

P.t/ D etA : (3.5)

The right hand side of Eq. (3.5) is matrix exponentiation. Matrix exponentiation is
defined to be

eX D
1X
kD0

1

kŠ
Xk; (3.6)

where X is a matrix. For simple cases, matrix exponentiation can be computed
explicitly. Otherwise, diagonalization is used. Given an eigendecomposition for X ,
the following holds:

X D EDE�1) Xk D EDkE�1) eX D E

 1X
kD0

1

kŠ
Dk

!
E�1 D EeDE�1 :

(3.7)

Because raising a diagonal matrix to a power amounts to raising each diagonal entry
to that power, Eq. (3.5) can be expressed as

P.t/ D etA D E � diag.et�1 ; : : : ; et�4/ � E�1 D EDtE
�1; (3.8)

where �1; : : : ; �4 are the eigenvalues of A.
It is from Eq. (3.8) that our motivating batch GEMM arises. For each MCMC

step, and for each tree branch, we must compute the finite time transition probability
Pi;j .t/ that characterizes how state i mutates to state j along a branch of length t .
Since an MCMC algorithm can run for hundreds of millions of steps, and tree
branches can number in the tens of thousands, this computation is a good candidate
for acceleration on the GPU. As part of the Keeneland project [31], optimizing the
acceleration of this batched matrix exponentiation was undertaken as a contribution
to the beast/beagle phylogenetics community code [4, 17].

3 Batch Matrix Exponentiation 49

3.3 Implementation

As can be seen from Eq. (3.8), the fundamental operations for calculating the matrix
exponentiation involves two GEMMs, plusM floating point exponential operations2

to construct the diagonal Dt matrix. Of course, the eigendecomposition of the
transition matrix is needed as well. For our models, the transition matrix A does not
change when a tree is modified. Only the branch lengths, t , of the trees in Eq. (3.5)
change (across branches, and across MCMC steps), and so Dt in Eq. (3.8) must be
recalculated at each MCMC step for each branch.

This implies that our two outer matrices E and E�1 referred to as A and
B in the pseudocode examples also remain the same for every step in the
algorithm. The pseudocode examples given throughout this section assume A

and B are the same across steps, however, to generalize to unique matrices, the
cublasSgemmBatched and cublasSgemm examples need no modification,
and the handwritten CUDA needs only to be changed in how the input matrices
are read from global device memory to shared memory. The size of memory
transfers would also be different for the input A and B matrices being unique
in the batched operation. However, all of the performance data shown here for
comparison purposes excludes all memory transfers, since this cost is similar across
implementation methods anyway.

3.3.1 NVIDIA Library Solutions

As pointed out before, each tree can have tens of thousands of internal branches. The
exponentiation involves two GEMM operations per branch length evaluation, and
the number of flops required by the GEMMs dominates that for the exponentiation
of the diagonal matrix by O.n3/ to O.n/. NVIDIA has provided a batched GEMM
implementation, cublasXGemmBatched, since the release of CUDA 4.1, and so
we examine how to use this implementation for batched matrix exponentiation and
the resulting performance.

1 __global__ void kernelComputeD(float* D,
2 float* eigenvals,
3 float* lengths,
4 int n) {
5
6 float* position;
7 float length;

2Here,M is the dimension of the probability matrix and number of sites in the model. For example,
M D 4 for the nucleotide model.

50 M.G. Lopez and M.D. Horton

8
9 int bx=blockIdx.x;

10 int tx=threadIdx.x;
11
12 position=D+bx*n*n;
13 length=lengths[bx];
14
15 position[n*tx+tx]=__expf(eigenvls[tx]*length);
16
17 }
18
19 int main(int argc,char **argv) {
...
20 float **dAin=0;
21 float **dAin_d=NULL;
22 dAin=(float**)malloc(numLengths*sizeof(*dAin));
23 for (i=0;i<numLengths;i++) {
24 cudaMalloc((void**)&dAin[i],n*n*sizeof(float));
25 }
26 for (i=0;i<numLengths;i++) {
27 cudaMemcpy(dAin[i],hA,n*n*sizeof(float),
28 cudaMemcpyHostToDevice);
29 }
30 cudaMalloc((void**)&dAin_d,
31 numLengths*sizeof(*dAin)));
32 cudaMemcpy(dAin_d,dAin,numLengths*sizeof(*dAin),
33 cudaMemcpyHostToDevice);
34
35 dim3 dimBlock(n,1,1);
36 dim3 dimGrid(numLengths,1,1);
37 kernelComputeD<<<dimGrid,dimBlock>>>(dDout,
38 dEigenvls,
39 dLengths,
40 n);
41 cudaMemcpy(hDout,
42 dDout,
43 numLengths*n*n*sizeof(float),
44 cudaMemcpyDeviceToHost);
45 for (i=0;i<numLengths;i++) {
46 cudaMemcpy(dinD[i],
47 hDout+i*n*n,
48 n*n*sizeof(float),
49 cudaMemcpyHostToDevice);
50 }
51 cudaMemcpy(dinD_d,

3 Batch Matrix Exponentiation 51

52 dinD,
53 numLengths*sizeof(*dinD),
54 cudaMemcpyHostToDevice);
55 cublasSetStream(handle,streamArray[0]);
56 cublasSgemmBatched(handle,CUBLAS_OP_N,
57 CUBLAS_OP_N,n,n,n,
58 &alpha,
59 (const float**)dAin_d,n,
60 (const float**)dDin_d,n,
61 &beta, dOut1_d,n,numLengths);
...

Code 1: cublasSgemmBatched for Matrix Exponentiation.

Code 1 shows the main points of computation associated with using
cublasSgemmBatched to evaluate the right hand side of Eq. (3.8) for a
single tree, for each branch length of that tree. For the sake of clarity, no error
checking is done. The variable holding the input matrix A in device memory, dA
on Ln. 59, is declared, allocated, and initialized according to the pattern set out in
batchCUBLAS.cpp from the NVIDIA SDK [10]. On Ln. 35, n is the dimension of
Dt from Eq. (3.5), in this case, 4. On Ln. 36, numLengths is the number of branch
lengths in a single tree and the number of matrices in the batch computation. On
Ln. 38, dEigenvals is the matrix of four eigenvalues from Eq. (3.5). On Ln. 39,
dLengths is an array of branch lengths. The second required batched GEMM,
multiplying the result of the first one shown with the matrix B , is done in the same
pattern as the one shown in Cd. 1, but is omitted here for brevity.

Another solution that is suggested by the CUBLAS documentation [8] for
a batched situation involves making multiple calls to the normal cublasSgemm
routine in separate streams. Accordingly, the solution for batched exponentiation
is unchanged, except for replacing the cublasSgemmBatched routine with a
loop which launches cublasSgemm in multiple streams, as shown in Cd. 2. In this
example, the computation on Ln. 56 from Cd. 1 is replaced with Lns. 2–8 in Cd. 2.

1 float *dAin;
...
2 for (i=0;i<numLengths;i++) {
3 cublasSetStream(handle, streamArray[i]);
4 cublasSgemm (handle,CUBLAS_OP_N,
5 CUBLAS_OP_N,n,n,n,
6 &alpha,dAin,n,
7 dDin[i],n,&beta,dDout1,n);
8 }

Code 2: cublasSgemm with Streams.

The relative performance of these two solutions will be discussed in the following
section.

52 M.G. Lopez and M.D. Horton

3.3.2 Handwritten CUDA

As will be shown in Fig. 3.1, neither cublasSgemmBatched nor the streams
solution achieves a very high percentage of the theoretical peak performance of the
device. Hence, it makes sense to consider hand written CUDA for this algorithm.
Code 3 shows a first attempt at a hand written CUDA kernel that implements all
steps of the matrix exponentiation expressed on the right hand side of Eq. (3.8) into
a single kernel, while keeping performance considerations in mind, for example by
using shared memory where possible.

1 __global__ void exp4x4(float* output,
2 float* A,
3 float* D,
4 float* B,
5 float* lengths) {
6 __shared__ float* C;
7 __shared__ float length;
8 int bx = blockIdx.x;
9 int tx = threadIdx.x;

10 int ty = threadIdx.y;
11
12 if (tx == 0 && ty == 0) {
13 C = output + 4*4*bx;
14 length = lengths[bx];
15 }
16 __syncthreads();
17
18 float Csub = 0;
19 __shared__ float As[4][4];
20 __shared__ float Bs[4][4];
21 __shared__ float Ds[4];
22
23 if (ty == 0)
24 Ds[tx] = __expf(D[tx] * length);
25 __syncthreads();
26
27 As[ty][tx] = A[4 * ty + tx];
28 Bs[ty][tx] = B[4 * ty + tx];
29 __syncthreads();
30
31 for (int k = 0; k < 4; k++)
32 Csub += As[ty][k] * Ds[k] * Bs[k][tx];
33 __syncthreads();
34
35 C[ty*4 + tx] = Csub;
40 }

3 Batch Matrix Exponentiation 53

41
42 int main(int argc, char **argv) {
...
43 dim3 dimBlock(4,4,1);
44 dim3 dimGrid(numLengths,1,1);
45 exp4x4<<<dimGrid,dimBlock>>>(dOut,dA,dD,
46 dB,dLengths);
...

Code 3: Hand-written Kernel for Matrix Exponentiation.

The argument dA on Ln. 45 is E from Eq. (3.8), the argument dD on Ln. 45
is the matrix of eigenvalues referred to in Eq. (3.8), the argument dB on Ln. 45 is
E�1 from Eq. (3.8), and the argument dLengths on Ln. 46 is an array of branch
lengths, one to be used in each computation of the batched exponentiation. Note that
on the Fermi architecture, there is a limit of 216 � 1 possible blocks along each grid
dimension. Therefore, additional logic is required to launch a kernel with more than
216�1 matrices in the batch, using more than one dimension of the grid. On Kepler,
this limit is larger at 231 � 1.

All of the input and output memory that holds the matrices is one-dimensional
linear; Line 13 simply points the current block’s threads to the right spot in memory
to record their output, and similarly Ln. 27 and 28 have the threads divide up the
work of reading input from global to shared memory. It is at Ln. 24 and 32 where the
computation takes place. First, Dt from Eq. (3.8) is constructed. Next, rather than
doing two full GEMMs, the fact that the inner matrix is diagonal is exploited to turn
the computation into a matrix–vector combined with GEMM operation.

Figure 3.1 shows the performance3 of the cublasSgemmBatched, streams,
and handwritten CUDA solutions on Fermi and Kepler with threaded MKL as
a baseline. The results for cublasSgemmBatched are consistent with those
published by NVIDIA for CUBLAS batched GEMM [7].

There are a couple of points to note about the streams solution performance as
shown in Fig. 3.1. First, the performance is not only less than that of cublasSgemm-
Batched, but also that of using MKL on the CPU alone. This is consistent with
NVIDIA’s CUBLAS documentation[8] where it is pointed out that the performance
of cublasSgemmBatched should be much greater than that of using multiple streams
for matrices where M < 100. Secondly, it is perhaps at first unexpected that the
Kepler architecture would underperform Fermi, especially in the case of using
multiple streams, given that Kepler has been enhanced with 32 work queues

3We use the following flop count throughout this work, regardless of the algorithm, implementa-
tion, or architecture:

f lops D n � .3m3 C 2m/ (3.9)

where n is the number of branch lengths, and m is the dimension of the matrix E from Eq. (3.8).
This count comes from Ln. 24 and 32 of Cd. 3.

54 M.G. Lopez and M.D. Horton

0.01

0.1

1

10

100

1000

100 1000 10000 100000

G
F

LO
P

S
/S

Number of Matrices

Performance of cublasSgemmBatched, streams, hand-written CUDA, MKL, 4x4
 CPU Cores (2 x 8-cores) 2.6 GHz, Xeon E5-2670, 32 GB, 332 Gflops/s Double Precision Peak

Fermi (Telsa M2090) 1.3 GHz, 5.4 GB, 665 Gflop/s Double Precision Peak
Kepler (Telsa K20X) 0.732 GHz, 5.4 GB, 1320 Gflops/s Double Precision Peak

Hand-written CUDA, Kepler
Hand-written CUDA, Fermi

cublasSgemmBatched, Kepler
cublasSgemmBatched, Fermi

MKL
streams, Fermi

streams, Kepler

Fig. 3.1 Performance of NVIDIA library solutions vs. handwritten CUDA on Fermi and Kepler
for M D 4

to Fermi’s single work queue. A possible explanation is that due to the extra
hardware involved in implementing the additional work queues for Kepler, there is
a greater launch overhead cost. Consistent with the suggestion from the CUBLAS
documentation, the matrices being used are too small to offset this extra overhead.

Figure 3.1 clearly indicates that the handwritten kernel from Cd. 3 outperforms
cublasSgemmBatched and cublasSgemm when called from multiple streams.
The simplification that turns two GEMMs into a GEMM plus a matrix–vector
computation is one immediate advantage over the library-provided solutions. Addi-
tionally, because the GPU code is now accessible, there are further opportunities for
optimization.

3.4 Tuning

Now that we have an algorithm in hand that performs reasonably well compared
to the NVIDIA-provided solutions already described, we want to explore ways to
further improve the performance of our hand-written CUDA kernel. Rather than
exploring the performance effects of each possible optimization in isolation, the
process will be presented incrementally, giving the results of each effort in the
context of all previously successful changes to the algorithm. The examples in this

3 Batch Matrix Exponentiation 55

section are for matrix sizes from our problem domain. However, the same principles
that we show here for matrices of sizeM D 4,M D 20, andM D 60 can be applied
to matrices of any size from M 2 f2; : : : ; 8g, M 2 f9; : : : ; 32g, and M > 32,
respectively—with some caveats mentioned near the end of this section.

3.4.1 M D 4 Case

A first step is to adjust the kernel launch configuration. As seen in Cd. 3, each block
of 16 threads is responsible for computing a single matrix in the batch. With only 16
threads in each block, only half of a single warp is being scheduled on each block.
By having multiple matrices from the batch computed on a single block, more warps
per block can make more efficient use of the hardware.

One way to achieve this configuration change is to introduce a third dimension
of threads to address multiple matrices per block. We show how to do this using an
adjustable parameter, packsize, because in our experience, the optimal number
of warps per block can be hardware and problem-size dependent. For example, for
the 4 � 4 matrix batch exponentiation, having a packsize of 8 which results in 128
threads or 4 warps per block gives the best performance. Code 4 shows the basic
modifications needed to implement this change; a small amount of additional logic
would be needed in the kernel if the total number of matrices in the batch is not
evenly divisible by the packsize.

1 __global__ void exp4x4(float* output,
2 float* A,
3 float* D,
4 float* B,
5 float* lengths) {
6
7 float* C;
8 float length;
9

10 int bx = blockIdx.x;
11 int tx = threadIdx.x;
12 int ty = threadIdx.y;
13
14 int tz = threadIdx.z;
15 int matrix_idx = bx*blockDim.z + tz;
16 int matrix_addr = 4*4*(bx*blockDim.z + tz);
17
18 C = output + matrix_addr;
19 length = lengths[matrix_idx];
20
21 float Csub = 0;

56 M.G. Lopez and M.D. Horton

22 __shared__ float As[4][4];
23 __shared__ float Bs[4][4];
24 __shared__ float Ds[4][16];
25
26 if (ty == 0)
27 Ds[tx][tz] = __expf(D[tx] * length);
28 __syncthreads();
29
30 As[ty][tx] = A[4 * ty + tx];
31 Bs[ty][tx] = B[4 * ty + tx];
32 __syncthreads();
33
34 for (int k = 0; k < 4; k++)
35 Csub += As[ty][k] * Ds[k][tz] * Bs[k][tx];
40 __syncthreads();
41
42 C[ty*4 + tx] = Csub;
43 }
44
45 int main(int argc, char **argv) {
...
46 dim3 dimBlock(Nsize,Nsize,packsize);
47 dim3 dimGrid((numLengths+packsize-1)/packsize,1,1);
48 exp4x4<<<dimGrid,dimBlock>>>(dOut,dA,dD,
49 dB,dLengths);
...

Code 4: Adjusting Kernel Launch Configuration.

Two new variables are added to the kernel for convenience, matrix_idx and
matrix_addr. In Lns. 18 and 19 of Cd. 4, these variables function in the same
way as Lns. 13 and 14 of the original kernel in Cd. 3. However, now there are
multiple matrices per block, so the z-dimension of the thread index indicates which
matrix within the current block is being worked on. Since there are now multiple
matrices being handled within a block, length and the address of the output matrix
are no longer shared as they were in Cd. 3. Finally, the shared D matrix, Ds in Cd. 4,
is now two-dimensional, with the second dimension being used to indicate which
matrix within the block is being used by addressing it with the z-dimension of the
thread index. Using these changes, we see a 4.5–5x speedup on both Fermi and
Kepler for 50,000 matrices of size 4 � 4 when going from a single matrix per block
to 8 matrices (packsize = 8) per block.

The next most obvious optimization that can be done is to remove all unnecessary
branching and barriers from the kernel. In fact, the kernel from Cd. 4 is already
quite compact, but a small amount of refactoring can have a nontrivial impact on
performance. Code 5 shows an improved kernel.

3 Batch Matrix Exponentiation 57

1 __global__ void exp4x4(float* output,
2 float* A,
3 float* D,
4 float* B,
5 float* lenghts) {
6
7 float* C;
8 float lengths;
9

10 int bx = blockIdx.x;
11 int tx = threadIdx.x;
12 int ty = threadIdx.y;
13
14 int tz = threadIdx.z;
15 int matrix_idx = bx*blockDim.z + tz;
16 int matrix_addr = 4*4*(bx*blockDim.z + tz);
17
18 C = output + matrix_addr;
19 length = lenghts[matrix_idx];
20
21 float Csub = 0;
22 __shared__ float As[4][4];
23 __shared__ float Bs[4][4];
24 __shared__ float Ds[4][16];
25
26 As[ty][tx] = A[4 * ty + tx];
27 Bs[ty][tx] = B[4 * ty + tx];
28 Ds[tx][tz] = D[tx];
29 __syncthreads();
30
31 for (int k = 0; k < 4; k++)
32 Csub += As[ty][k] *
33 __expf(Ds[tx][tz]*length) *
34 Bs[k][tx];
35 __syncthreads();
36
37 C[ty*4 + tx] = Csub;
38
39 }
...

Code 5: Removing Barriers and Branches.

58 M.G. Lopez and M.D. Horton

The main difference between Cd. 4 and 5 is the construction of the D matrix.
Lns. 26–28 from Cd. 4 have been eliminated, and the entire computation is done at
once on Lns. 32–34 of Cd. 5. Even though more threads will be doing redundant
work to compute D in Cd. 5, these threads actually would be waiting due to the
branch and barrier from Cd. 4, which has now been eliminated. Making this change
in Cd. 5 gives a roughly 20 % performance increase on Fermi, and around an 8 %
increase on Kepler over Cd. 4.

In certain situations, a performance improvement can result from reading the
input data from texture memory instead of device global memory. In Cd. 6, we
show how this is done for our problem.

1 texture <float> textureA;
2 texture <float> textureD;
3 texture <float> textureB;
4 texture <float> textureLengths;
5
6 __global__ void exp4x4(float* output,
7 float* A,
8 float* D,
9 float* B,

10 float* lengths) {
11
12 float* C;
13 float length;
14
15 int bx = blockIdx.x;
16 int tx = threadIdx.x;
17 int ty = threadIdx.y;
18
19 int tz = threadIdx.z;
20 int matrix_idx = bx*blockDim.z + tz;
21 int matrix_addr = 4*4*(bx*blockDim.z + tz);
22
23 C = output + matrix_addr;
24 length = tex1Dfetch(textureLengths, matrix_idx);
25
26 float Csub = 0;
27 __shared__ float As[4][4];
28 __shared__ float Bs[4][4];
29 __shared__ float Ds[4][16];
30
31 As[ty][tx] = tex1Dfetch(textureA, 4 * ty + tx);
32 Bs[ty][tx] = tex1Dfetch(textureB, 4 * ty + tx);
33 Ds[tx][tz] = tex1Dfetch(textureD, tx);
34

3 Batch Matrix Exponentiation 59

35 __syncthreads();
40
41 for (int k = 0; k < 4; k++)
42 Csub += As[ty][k] *
43 __expf(Ds[tx][tz]*length) *
44 Bs[k][tx];
45 __syncthreads();
46
47 C[ty*4 + tx] = Csub;
48
49 }
...
50 int main(int argc, char **argv) {
...
51 cudaBindTexture(NULL,textureA,dA,16*sizeof(float));
52 cudaBindTexture(NULL,textureD,dD,4*sizeof(float));
53 cudaBindTexture(NULL,textureB,dB,16*sizeof(float));
54 cudaBindTexture(NULL,textureLengths,dLengths,
55 numLengths*sizeof(float));
...

Code 6: Using Texture Memory.

Lines 1–4 of Cd. 6 declare the texture memory that will be used for the input
data, while Lns. 51–55 bind the device memory to the texture memory. Note
that dA in Ln. 51 is device memory that has the input already copied to it
via cudaMemcpy(dA,...,cudaMemcpyHostToDevice), and likewise for
Lns. 52–55. While there is no significant overall performance improvement on
Fermi or Kepler for small batches, there is a much larger improvement on Kepler
with large batches, up to a 30 % increase over the kernel shown in Cd. 5.

Besides ensuring that each block has enough work allocated to it as was discussed
with Cd. 4, a performance gain can be seen for some problems by adding to the
amount of work that is assigned to each individual thread. Code 7 shows one way
to go about giving each thread more work. The x-dimension of the grid is divided
by some factor L, and each thread now steps through that grid dimension L times
during each execution.

1 __global__ void exp4x4(float* output,
2 float* A,
3 float* D,
4 float* B,
5 float* lengths,
6 int L) {
7
8 float* C;
9 float lengths;

60 M.G. Lopez and M.D. Horton

10
11 int bx = blockIdx.x;
12 int tx = threadIdx.x;
13 int ty = threadIdx.y;
14
15 int tz = threadIdx.z;
16
17 float Csub;
18 __shared__ float As[4][4];
19 __shared__ float Bs[4][4];
20 __shared__ float Ds[4][16];
21
22 As[ty][tx] = tex1Dfetch(textureA, 4 * ty + tx);
23 Bs[ty][tx] = tex1Dfetch(textureB, 4 * ty + tx);
24 Ds[tx][tz] = tex1Dfetch(textureD, tx);
25
26 __syncthreads();
27
28 for (int l=0;l<L;l++) {
29
30 Csub=0.0;
31 int matrix_idx = l*gridDim.x +
32 bx*blockDim.z + tz;
33 int matrix_addr = 4*4*(l*gridDim.x +
34 bx*blockDim.z + tz);
35
36 length = tex1Dfetch(textureLengths, matrix_idx);
37
38 C = dMatrices + matrix_addr;
39
40 for (int k = 0; k < 4; k++)
41 Csub += As[ty][k] *
42 __expf(Ds[tx][tz]*length) *
43 Bs[k][tx];
44 __syncthreads();
45
46 C[ty*4 + tx] = Csub;
47
48 }
49
50 }
...
51 int main(int argc, char **argv) {
...
52 dim3 dimBlock(Nsize,Nsize,packsize);

3 Batch Matrix Exponentiation 61

53 dim3 dimGrid((numLengths+packsize-1)/packsize/
L,1,1);

54 exp4x4<<<dimGrid,dimBlock>>>(dOut,dA,dD,
55 dB,dLengths,L);
...

Code 7: Adding Work for Each Thread.

On Ln. 53, the kernel launch parameters are changed so that the grid dimension as
previously calculated is now divided by a factor L, and this parameter is passed into
the kernel itself at Ln. 55. Then, in the kernel, a for loop is added at Ln. 28 which
loops over chunks of the batch and calculates the stride matrix index and address at
Lns. 31–34 using the width of the x-dimension of the grid as the stride length.

Similarly to the number of warps per block assignment, the optimal number of
matrices to assign each thread execution can depend on the problem type and size.
For our 4� 4 batch matrix exponentiation, we found the greatest increase by setting
L D 16, resulting in an increase of 32 and 48 % over the kernel shown in Cd. 6 for
Fermi and Kepler, respectively.

Finally, there are a few things to point out regarding generalization of these
kernels to handle problems with different parameters. First, in order to handle
arbitrarily-sized batches of matrices, some hardware constraints must be kept in
mind. Of course one must consider the total amount of device memory required
to hold the input and output. However, for smaller matrices with constant A and B
input matrices, as with the case of our motivating problem, the maximum number of
blocks in a particular grid dimension must also be considered. This is especially true
for Fermi, which has a limit of 216�1 for each dimension, whereas Kepler increases
this to 231 � 1. To get around such a limitation, multiple grid dimensions can be
used. However, caution and ideally prior knowledge about the problem specifics
must be used, because the additional logic and kernel launch overhead required to
accommodate the larger batch sizes can cause a performance decrease for smaller
batch sizes versus using the simpler configuration.

Figure 3.2 shows the performance of the final kernel given by Cd. 7 versus the
original kernel in Cd. 3 on both Fermi and Kepler for M D 4. An advantage
for Cd. 7 can be seen at a batch size of 10,000 matrices, and the difference in
performance grows significantly as the batch size increases from there. There is
a dip in the Fermi curve at around 60,000 matrices for Cd. 7 due to the effect of the
modified block allocation to allow for batch sizes larger than 216 � 1 matrices as
discussed in the previous paragraph.

Another generalization that may be attempted is to allow for multiple matrix
sizes with the same kernel code, replacing the hard-coded values of M D 4 at
Lns. 18–20 and 42 of Cd. 7, for example. However, be aware that using a variable
loop limit at Ln. 42 can impose a performance penalty because the compiler can
no longer unroll this loop, which reduces performance by 35 and 48 % on Fermi
and Kepler, respectively. This issue is more pronounced in later versions of CUDA,
where the compiler has gotten better at increasing performance with automatic
unrolling. Adding #pragma unroll to try to alleviate this problem only recovers
a few percent of the performance that was lost.

62 M.G. Lopez and M.D. Horton

 0

 50

 100

 150

 200

 250

 300

 350

100 1000 10000 100000 1e+06

G
F

LO
P

S
/S

Number of Matrices

Performance of Hand-written CUDA, Optimized CUDA, 4x4
CPU Cores (2 x 8-cores) 2.6 GHz, Xeon E5-2670, 32 GB, 332 Gflops/s Double Precision Peak

Fermi (Telsa M2090) 1.3 GHz, 5.4 GB, 665 Gflop/s Double Precision Peak
Kepler (Telsa K20X) 0.732 GHz, 5.4 GB, 1320 Gflops/s Double Precision Peak

Optimized CUDA, Kepler
Optimized CUDA, Fermi

Hand-written CUDA, Kepler
Hand-written CUDA, Fermi

Fig. 3.2 Relative performance of handwritten kernels for M D 4 on Fermi and Kepler

3.4.2 M D 20 and M D 60 Cases

There are two other matrix sizes that are of interest to our motivating phylogenetics
problem, M D 20 and M D 60, as described in Sect. 3.2. These additional sizes
introduce a few considerations that can affect the performance of the kernels already
shown.

The M D 20 case is similar to the M D 4 case already discussed. However,
packing multiple matrices per block is not as important for the larger matrices.
Assigning only a single matrix to each block, there are still 400 threads and 13
warps per block, which is enough to make efficient use of the hardware. Besides this
difference, the kernel for the 20�20 case looks exactly like that in Cds. 3–7, except
that the constants of ‘4’ in the shared memory allocations and the loop limit for the
computation should be changed to ‘20’. The enhancements discussed in Cds. 5 and 7
are also relevant to the 20�20 case and yield significant performance improvements.

The performance of the cublasSgemmBatched solution from Cd. 1, along
with the original and optimized kernels presented in Cds. 3 and 7, as applied to the
20� 20 case is shown in Fig. 3.3. Since the problem provides a denser computation,
the performance of all methods increases relative to the M D 4 case. However,
the ordering of relative performance of each method remains the same, with the
optimized kernel of Cd. 7 yielding a nice performance advantage, even at smaller
batch sizes.

3 Batch Matrix Exponentiation 63

0

100

200

300

400

500

100 1000 10000 100000

G
F

LO
P

S
/S

Number of Matrices

Performance of Hand-written CUDA, Optimized CUDA, cublasSgemmBatched, 20x20
CPU Cores (2 x 8-cores) 2.6 GHz, Xeon E5-2670, 32 GB, 332 Gflops/s Double Precision Peak

Fermi (Telsa M2090) 1.3 GHz, 5.4 GB, 665 Gflop/s Double Precision Peak
Kepler (Telsa K20X) 0.732 GHz, 5.4 GB, 1320 Gflops/s Double Precision Peak

Optimized CUDA, Kepler
Optimized CUDA, Fermi

Hand-written CUDA, Kepler
Hand-written CUDA, Fermi

cublasSgemmBatched, Kepler
cublasSgemmBatched, Fermi

Fig. 3.3 Relative performance of handwritten kernels and cublasSgemmBatched for M D 20 on
Fermi and Kepler

Since the beginning of this work, improvements have been made to NVIDIA’s
CUBLAS library and the cublasSgemmBatched implementation. In the most
recent CUDA version 5.5 as of this writing, cublasSgemmBatched outperforms
our kernel for the 60 � 60 case. However, since the eigendecomposition algorithm
presented here outperforms cublasSgemmBatched for M D 4 and M D 20,
and if a unified solution is desired, there are a couple of considerations to adapting
the eigendecomposition method to theM D 60 case. On many devices the hardware
limit on shared memory necessitates the use of the common tiling algorithm which
brings the matrix into shared memory in smaller pieces to be worked on separately.
This algorithm is taught in most introductory CUDA programming materials and is
not repeated here. After tiling has been applied to the kernel as previously presented,
then the remaining optimizations (excepting the multiple matrices per block, which
has been replaced by tiling) can be applied, although the effect of increasing the
computational work of each thread is expected to be less pronounced since each
thread is already working on multiple tiles.

64 M.G. Lopez and M.D. Horton

3.5 Alternative Methods for Matrix Exponentiation

Besides the eigendecomposition method presented here, there are many other ways
to numerically compute matrix exponentiation[37]. We chose to evaluate two of
these alternative methods which appeared to have a computational pattern that
would fare well for a batched application on the GPU.

The first method is Lagrange interpolation, which can be applied to matrix expo-
nentiation as shown in Eq. (3.10). Note that for greatest efficiency, the eigenvalues
of the matrix A should be known and precomputed, as is the case of the matrix A
from the phylogenetics problem in Eq. (3.5) because it does not change throughout
the batch operation (only t changes from case to case within the batch).

etA D
nX

jD1
e�j t

nY
kD1;k¤j

.A� �kI /

.�j � �k/
(3.10)

Another viable option that was identified is Newton interpolation, which is shown
in Eqs. (3.11) and (3.12) for matrix exponentiation. This method also presumes
knowing the eigenvalues of the A matrix beforehand,

etA D e�1t I C
nX

jD2
Œ�1; � � � ; �j �

j�1Y
kD1
.A � �kI /; (3.11)

where the Œ�1; � � � ; �j � are functions of t and are recursively defined as [37],

Œ�1; �2� D .e�1t � e�2t /=.�1 � �2/;

Œ�1; � � � ; �kC1� D Œ�1; � � � ; �k� � Œ�2; � � � ; �kC1�
�1 � �kC1

.k � 2/ : (3.12)

The performance of the Lagrange and Newton interpolation for the simplest
M D 4 case is shown in Fig. 3.4. While both the Lagrange and Newton
interpolation methods perform well compared to the cublasSgemmBatched
solution presented in Sect. 3.3.1, for much larger batch sizes, Newton interpolation
becomes preferable to Lagrange interpolation. However, neither of these methods
outperforms the eigendecomposition method as shown in Cd. 7.

3.6 Conclusions

We have focused here on batch matrix–matrix multiplication as applied to
matrix exponentiation, for the phylogenetics domain (fixed A and B, 4 � 4,
20 � 20, and 60 � 60), in single precision. The methods discussed also apply

3 Batch Matrix Exponentiation 65

0

50

100

150

200

0 10000 20000 30000 40000 50000 60000

G
F

LO
P

S
/S

Number of Matrices

Performance of Lagrange Interpolation, Newton Interpolation, Optimized CUDA, 4x4
CPU Cores (2 x 8-cores) 2.6 GHz, Xeon E5-2670, 32 GB, 332 Gflops/s Double Precision Peak

Fermi (Telsa M2090) 1.3 GHz, 5.4 GB, 665 Gflop/s Double Precision Peak
Kepler (Telsa K20X) 0.732 GHz, 5.4 GB, 1320 Gflops/s Double Precision Peak

Optimized CUDA, Kepler
Optimized CUDA, Fermi

Newton Interpolation, Kepler
Lagrange Interpolation, Fermi

Newton Interpolation, Fermi
Lagrange Interpolation, Kepler

Fig. 3.4 Performance of Lagrange and Newton interpolation on Fermi and Kepler

to matrix exponentiation for variable A, B, and matrix size. The techniques
can easily be applied to the general matrix–matrix multiplication problem:
C:=alpha*op(A)*op(B)+beta*C, where op(X) is one of op(X)=X or
op(X)=X’. Note that the matrices for the general problem can be rectangular. Our
methods apply to any of the four precisions: single precision real, double precision
real, single precision complex, and double precision complex. When all precisions
are supported, it is common practice to maintain the code base in one precision
only, say double precision complex, then generate the other three precisions
automatically. Finally, our techniques clearly lend themselves to auto-tuning.

References

1. AMD Core Math Library (ACML): www.amd.com/acml. Cited 16 Dec 2013
2. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y.: Multifrontal parallel distributed symmetric and

unsymmetric solvers. Comput. Methods Appl. Mech. Eng. (2000). doi: 10.1016/S0045-
7825(99)00242X

3. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J.W., Dongarra, J.J., Du Croz, J.,
Greenbaum, A., Hamarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide. SIAM
(1992). http://www.netlib.org/lapack/lug/. Cited 16 Dec 2013

4. Ayres, D.L., Darling, A., Zwickl, D.J., Beerli, P., Holder, M.T., Lewis, P.O., Huelsenbeck,
J.P., Ronquist, F., Swofford, D.L., Cummings, M.P., Rambaut, A., Suchard, M.A.: BEAGLE:
an application programming interface and high-performance computing library for statistical
phylogenetics. Syst. Biol. 61(1), 170–173 (2012)

www.amd.com/acml
http://www.netlib.org/lapack/lug/

66 M.G. Lopez and M.D. Horton

5. Basic Linear Algebra Technical Forum: http://www.netlib.org/blas/blast-forum/blas-report.
pdf. Cited 16 Dec 2013

6. Blackford, L.S., Choi, J., Cleary, A., D’Azevodo, E., Demmel, J., Dhillon, I., Dongarra, J.J.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK
Users’ Guide. SIAM (1997). http://www.netlib.org/scalapack/slug/. Cited 16 Dec 2013

7. CUBLAS: https://developer.nvidia.com/cuBLAS. Cited 16 Dec 2013
8. CUBLAS Documentation: http://docs.nvidia.com/cuda/cublas/. Cited 16 Dec 2013
9. CUDA C Programming Guide: http://docs.nvidia.com/cuda/cuda-c-programming-guide/

index.html. Cited 16 Dec 2013
10. CUDA Toolkit Documentation: http://docs.nvidia.com/cuda/cuda-samples/. Cited 16 Dec 2013
11. CULA Tools: http://www.culatools.com/blog/2011/12/09/batched-operations/. Cited 16 Dec

2013
12. Demmel, J., Volkov, V.: Benchmarking GPUs to tune dense linear algebra. In: Proceedings of

the 2008 ACM/IEEE Conference on Supercomputing, vol. 31. IEEE Press, Piscataway (2008)
13. Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to

sparse partial pivoting. SIAM J. Matrix Anal. Appl. (1999). doi: 10.1137/S0895479895291765
14. Donfack, S., Dongarra, J., Faverge, M., Gates, M., Kurzak, J., Luszczek, P., Yamzaki, I.:

LAPACK working note 280: On Algorithmic Variants of Parallel Gaussian Elimination: Com-
parison of Implementations in Terms of Performance and Numerical Properties. Innovative
Computing Laboratory, University of Tennessee, Knoxville (2013)

15. Dong, T., Dovrev, V., Kolev, T., Rieben, R., Tomov, S., Dongarra, J.: Hydrodynamic Compu-
tation with Hybrid Programming on CPU-GPU Clusters. Innovative Computing Laboratory,
University of Tennessee (2013)

16. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: past, present and future.
Concurr. Comput. Pract. Exp. (2003). doi: 10.1002/cpe.728

17. Drummond, A., Rambaut, A.: BEAST: Bayesian evolutionary analysis by sampling trees. BMC
Evol. Biol. 7, 214 (2007)

18. Drummond, A., Suchard, M., Xie, D., Rambaut, A.: Bayesian phylogenetics with BEAUti and
the BEAST 1.7. Mol. Biol. Evol. 29(8), 1969–1973 (2012)

19. Durbin, R., Eddy, S., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids, 1st edn. Cambridge University Press, Cambridge (1997)

20. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. J.
Mol. Evol. 17, 368–376 (1981)

21. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland (2003)
22. Feng, X., Buell, D., Rose, J., Waddell, P.: Parallel algorithms for Bayesian phylogenetic

inference. J. Parallel Distrib. Comput. 63, 707–718 (2003)
23. Feng, X., Cameron, K., Sosa, C., Smith, B.: Building the tree of life on terascale systems. In:

Parallel Distributed Processing Symposium (IPDPS 2007), Washington (2007)
24. GoToBLAS: Texas Advanced Computing Center. http://www.tacc.utexas.edu/. Cited 16 Dec

2013
25. Hasegawa, M., Kishino, H., Yano, T.: Dating of the human-ape splitting by a molecular clock

of mitochondrial DNA. J. Mol. Evol. 22(2), 160–174 (1985)
26. Huelsenbeck, J.P., Ronquist, F.: MrBayes: Bayesian inference of phylogenetic trees. Bioinfor-

matics 17, 754–755 (2001)
27. Huelsenbeck, J.P., Ronquist, F., Nielsen, R., Bollback, J.P.: Bayesian inference of phylogeny

and its impact on evolutionary biology. Science 294(5550), 2310–2314 (2001)
28. IBM: Engineering and Scientific Subroutine Library (ESSL) and parallel ESSL. http://www-

03.ibm.com/systems/p/software/essl. Cited 16 Dec 2013

http://www.netlib.org/blas/ blast-forum/blas-report.pdf
http://www.netlib.org/blas/ blast-forum/blas-report.pdf
http://www.netlib.org/scalapack/slug/
https://developer.nvidia.com/cuBLAS
http://docs.nvidia.com/cuda/cublas/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-samples/
http://www.culatools.com/blog/2011/12/09/batched-operations/
http://www.tacc.utexas.edu/
http://www-03.ibm.com/systems/p/software/essl
http://www-03.ibm.com/systems/p/software/essl

3 Batch Matrix Exponentiation 67

29. Jhurani, C., Mullowney, P.: A GEMM interface and implementation on NVIDIA GPUs
for multiple small matrices. www.ices.utexas.edu/$\char126$chetan/preprints/2013-CJ-PM-
GEMM.pdf. Cited 16 Dec 2013

30. Keane, T., Naughton, T., Travers, S., McInerney, J., McCormack, G.: DPRml: distributed
phylogeny reconstruction by maximum likelihood. Bioinformatics 21, 969974 (2005)

31. Keeneland: http://keeneland.gatech.edu/. Cited 29 Jan 2014
32. Kepler Whitepaper: http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-

Architecture-Whitepaper.pdf. Cited 16 Dec 2013
33. Kurzak, J., Tomov, S., Dongarra, J.: LAPACK Working Note 245: Autotuning GEMMs for

Fermi. Innovative Computing Laboratory, University of Tennessee (2011)
34. Kurzak, J., Luszczek, P., Tomov, S., Dongarra, J.: LAPACK Working Note 267: Preliminary

Results of Autotuning Gemm Kernels for the NVIDIA Kepler Architecture. Innovative
Computing Laboratory, University of Tennessee (2012)

35. Math Kernel Library (MKL): Intel(R). http://www.intel.com/cd/software/products/asmo-na/
eng.347757.htm. Cited 16 Dec 2013

36. Minh, B., Vinh, L., Haeseler, A., Schmidt, H.: pIQPNNI: parallel reconstruction of large
maximum likelihood phylogenies. Bioinformatics 21, 3794–3796 (2005)

37. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later. SIAM Rev. (2003). doi: 10.1137/S00361445024180

38. Moret, B., Badar, D., Warnow, T.: High-performance algorithm engineering for computational
phylogenetics. J. Supercomput. 22, 99–11 (2002)

39. Nath, R., Tomov, S., Dongarra, J.: An improved MAGMA GEMM for Fermi GPUs. Int. J.
High Perform. Comput. 24(4), 511–515 (2010)

40. Schmidt, H., Strimmer, K., Vingron, M., Haeseler, A.: TREE-PUZZLE: maximum likelihood
phylogenetic analysis using quartets and parallel computing. Bioinformatics 18(2), 503–504
(2002)

41. Stamatakis, A., Meier, L.T.: RAxML-III: a fast program for maximum likelihood-based
inference of large phylogenetic trees. Bioinformatics 21(4), 456–463 (2005)

42. Suchard, M., Rambaut, A.: Many-core algorithms for statistical phylogenetics. Bioinformatics
25, 1370–1376 (2009)

43. Tierney, L.: Markov chains for exploring posterior distributions. Ann. Stat. 22(4), 1701–1728
(1994)

44. Whaley, C.R., Petitet, A., Dongarra, J.: Automated empirical optimizations of software and the
ATLAS project. Parallel Comput. 27(1–2), 3–35 (2001)

45. Zwickl, D.: Genetic algorithm approaches for the phylogenetic analysis of large biological
sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, University of
Texas, Austin (2006)

www.ices.utexas.edu/$char 126$chetan/preprints/2013-CJ-PM-GEMM.pdf
www.ices.utexas.edu/$char 126$chetan/preprints/2013-CJ-PM-GEMM.pdf
http://keeneland.gatech.edu/
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.intel.com/cd/software/products/asmo-na/eng.347757.htm
http://www.intel.com/cd/software/products/asmo-na/eng.347757.htm

Chapter 4
Efficient Batch LU and QR Decomposition
on GPU

William J. Brouwer and Pierre-Yves Taunay

4.1 Batch LU Decomposition

While comparatively expensive, direct solvers based around matrix decomposition
are used in various applications, for reasons of numerical stability, over iterative
solvers. The implementation presented shortly was originally devised for the
solution of many decoupled systems simultaneously [4], for what amounts to a
domain decomposition approach [6]. The LU decomposition also provides a viable
method for the calculation of the matrix determinant; after execution of an in-
place implementation, the determinant is available from the product of the diagonal
elements. This is particularly useful in condensed matter physics, specifically in
studies of the fractional quantum Hall effect based on construction of the Pfaffian
wave function, which requiresO.N Š/ determinant evaluations [9, 10].

4.1.1 Theory

The decomposition of matrix A into lower L (elements ˛ij) and upper U (elements
ˇij) matrix,

LU D A; (4.1)

has the advantage of permitting the solution of linear systems in two steps,
comprised of forward and backward substitution procedures, for multiple right hand
sides in Ax D y. Crout’s approach to LU decomposition solves the set of equations
implicit to Eq. (4.1); these are:

W.J. Brouwer (�) • P.-Y. Taunay
The Pennsylvania State University, University Park, PA, USA
e-mail: wjb19@psu.edu; py.taunay@psu.edu

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__4, © Springer International Publishing Switzerland 2014

69

mailto:wjb19@psu.edu
mailto:py.taunay@psu.edu

70 W.J. Brouwer and P.-Y. Taunay

ˇij D aij �
i�1X
kD1

˛ikˇkj ; (4.2)

and

˛ij D 1

ˇjj

aij �

j�1X
kD1

˛ikˇkj

!
: (4.3)

Numerical stability relies on suitable choice of pivot, or dividing element in the
solution for ˛ij . Pivoting may be partial (a row interchange) or full (both row
and column); the former is implemented in this chapter. Following the approach
detailed in Numerical Recipes [5], the choice of the best pivot is made only after
both Eqs. (4.2) and (4.3) are solved for a given column, and thereafter the row swap
and a scaling performed. Recording the row permutations in a separate vector is
required for use with the solution of linear equations, in order that the right hand
side vector be subsequently rearranged to suit. Equations (4.2) and (4.3) give rise to
N2 CN equations, whose overdetermined nature permits the setting ofN elements
arbitrarily. A popular choice is to set the diagonal elements of ˛ to one, followed in
this chapter. Crout’s approach to LU decomposition is summarized in Algorithm 1.

4.1.2 GPU Implementation

With the foreknowledge that the decomposition will be applied in batch, the
mapping of computational thread to matrix is a seemingly reasonable strategy
for a GPU implementation. However, on the device this virtually eliminates the
possibility of coalesced loads from global memory, and thread cooperation via
shared memory, key requirements for good performance. At the other extreme,
mapping thread to matrix element would introduce significant overhead in the
form of synchronization, owing to dependencies between the loops described in
Algorithm 1. In a compromise between the two extremes, O.N/ threads were
assigned to the operations for each matrix, and individual CUDA thread blocks
assigned one or more matrices to process. Referring to Algorithm 1, there are at least
two key points at which threads must cooperate. The first is the determination of
scaling information, lines 1–5, which may be considered a separate scope to lines 6
forward. This task is readily solved using parallel reduction, a well known primitive.
Turning attention to the main steps of the algorithm, lines 7–13 perform updates to
matrix elements above the diagonal, specifically column j . By assigning the index
of the loop at line 7 to thread index, increasingly more threads in this scope work
as the outer loop progresses; a brief summary of this scope as executed in CUDA
is detailed in Table 4.1. Within a warp, one may rely on SIMD execution, and thus
updated column elements are available to threads of higher indices when needed.

4 Efficient Batch LU and QR Decomposition on GPU 71

Algorithm 1 LU decomposition with partial pivoting

As one might expect, matrices of side greater than a single warp require serialization
of warp execution, due to the unpredictable way in which instructions are scheduled
and dispatched within the Streaming Multiprocessor (SM), as illustrated in Fig. 4.1.
Some parallelism is regained by mapping matrix to warp, for this scope alone.

No such limitations pervade lines 14–20, where loop index is also mapped to
thread index, and column data is read from above the diagonal. Threads in this scope
update from diagonal downwards; however, barrier synchronization is necessary
before and after this scope. The particular column updated in a single iteration of

72 W.J. Brouwer and P.-Y. Taunay

Table 4.1 Global memory read[], shared memory read(), write{}, critical�
and arithmetic operations for several iterations and CUDA threads t_id of
algorithm lines 7–14

k t_id j=2 j=3 j=4 j=5

– 1 (1,2) (1,3) (1,4) (1,5)
0 1 �[1,0]*(0,2) �[1,0]*(0,3) �[1,0]*(0,4) �[1,0]*(0,5)
– 1 {1,2} {1,3}� {1,4}� {1,5}�

– 2 (2,3) (2,4) (2,5)
0 2 �[2,0]*(0,3) �[2,0]*(0,4) �[2,0]*(0,5)
1 2 �[2,1]*(1,3)� �[2,1]*(1,4)� �[2,1]*(1,5)�
– 2 {2,3} {2,4}� {2,5}�

– 3 (3,4) (3,5)
0 3 �[3,0]*(0,4) �[3,0]*(0,5)
1 3 �[3,1]*(1,4)� �[3,1]*(1,5)�
2 3 �[3,2]*(2,4)� �[3,2]*(2,5)�
– 3 {3,4} {3,5}�

– 4 (4,5)
0 4 �[4,0]*(0,5)
1 4 �[4,1]*(1,5)�
2 4 �[4,2]*(2,5)�
3 4 �[4,3]*(3,5)�
– 4 {4,5}

Warp Scheduler

Instruction Dispatch Instruction Dispatch

x32 x32

Warp 8 instruction 11

Warp 2 instruction 42

Warp 8 instruction 12

Warp 14 instruction 96

Warp 2 instruction 43

Warp 14 instruction 95

Fig. 4.1 An example of
instruction scheduling and
execution in a streaming
multiprocessor

the outer loop is cached in shared memory before line 7, and written back to global
after line 20. Shared memory buffers used for communication are declared using the
volatile keyword, to ensure that write operations are not optimized out during
compilation. Once the column update is complete, and working threads have written
elements q before line 20 to another shared memory buffer, parallel reduction is
employed in order to find the index of the pivot. Should the condition at line 21 be
satisfied, then a row swap is completed by threads, storing temporary elements in
registers. Thereafter, row elements are scaled by diagonal elements; once again loop
index k is mapped to thread. Barrier synchronization is employed before the end of

4 Efficient Batch LU and QR Decomposition on GPU 73

Table 4.2 LU algorithm
executed on K40c GPU
device versus 16 Intel
E5-2670 (Sandy Bridge) CPU
threads

Batch size Matrix size K40c (s) CPU(s) mats./blk

800 256 1.5 1.5 1
1,600 128 0.33 0.45 1
8,000 64 0.20 0.30 2
16,000 32 0.05 0.11 4
64,000 16 0.03 0.15 8

the outer loop at line 29. An abbreviated listing of the main CUDA kernel is recorded
in Appendix 1, based around the float2 type, for processing complex data.

4.1.3 LU Results

An implementation of Algorithm 1 was written in C for execution on CPU, for
use with row-major storage format matrices and complex (single precision) floating
point data. This routine was compiled using a recent revision of the Intel compiler,
with flags -O3 -xHost to ensure the highest degree of optimization, taking
advantage of AVX hardware and instructions of the Sandy Bridge CPU. OpenMP
was used to distribute matrices to separate threads for processing. The main GPU
kernel as described and supporting routines including parallel reduction were
compiled using nvcc, CUDA revision 5.5, for compute architecture 3.5 and with
optimization flag -O3. Table 4.2 summarizes results, comparing execution times.
Profiling using nvvp revealed a total global memory bandwidth of approximately
62 GB/s (54.5 GB/s read + 7.5 GB/s write). Both CPU and GPU routines were
devoted to calculating the in-place LU decomposition alone. No permutations were
stored; however, the sign of the permutation was recorded in memory, as is necessary
for any subsequent calculation of matrix determinants. Crout’s algorithm when
executed on the K40c device experienced a 1.0–5.0x performance improvement over
a single Sandy Bridge CPU socket, running 16 threads. The super-linear scaling of
the CPU results was investigated further using tools from the Valgrind suite [8].
As expected, the effect had little correlation with cache performance; miss rates for
both instructions and data were negligible for all matrix and batch sizes considered.
However, profiling with callgrind did reveal that instructions devoted directly
to the LU calculation itself steadily increased as a fraction of the total instructions,
with matrix size. This fraction was as little as 60 % for a matrix of side 32,
increasing to almost 100 % for matrices of side 256. Similarly, the percentage of
instructions derived from other sources, particularly the Intel KMP interface for
thread management and CPU affinity decreased to negligible contributions, for
matrices of side 256.

74 W.J. Brouwer and P.-Y. Taunay

4.2 QR Decomposition

While also a method that may be applied in the solution of systems of linear
equations, the QR decomposition,

QR D A; (4.4)

generally takes preeminence in a popular approach to eigendecomposition, the QR
algorithm. In numerical implementations of the QR decomposition algorithm, the
upper diagonal matrix R is constructed by the action of operations on A. R can be
produced by one of several means, the most popular being Householder reflections,
or Givens rotations [3]. This chapter focuses on the latter, whereby successive
rotations Gi are applied, selectively eliminating elements below the diagonal of A,
and producing the upper diagonal matrix R. One such step for the first column
of a 3�3 complex matrix is illustrated in Eq. (4.5), where * denotes the complex
conjugate.

2
4 1 0 0

0 c s

0 �s� c

3
5
2
4a11 a12 a13a21 a22 a23

a31 a32 a33

3
5 D

2
4a11 a12 a13a0

21 a
0
22 a

0
23

0 a0
32 a

0
33

3
5 (4.5)

4.2.1 Theory

4.2.1.1 Serial QR Decomposition

The kernel of rotation matrix Gi is a 2�2 matrix that operates on pairs of values
a D ai;j and b D aiC1;j in A, where elements c and s are chosen to eliminate the
lower element in the operation:

�
c s

�s� c
� �

a

b

�
D
�
r

0

�
: (4.6)

Bindel et al. [1] give expressions for suitable c and s in a variety of contexts; the
following are used in the remainder of this chapter for complex values, analogous
to those for real values:

c D ˙ jajpjaj2 C jbj2 ; (4.7)

s D ˙sgn.a/
bpjaj2 C jbj2 ; (4.8)

4 Efficient Batch LU and QR Decomposition on GPU 75

where

sgn.a/ D
�
a=jaj if a ¤ 0

1 if a D 0
: (4.9)

The concatenation of all orthogonal operationsGi comprises the transpose of the
orthogonal matrix Q ie., using 0-based indexing,

QTA D
2
4jDN�2Y

jD0

8<
:
iDN�2Y
iDj

G
j
i

9=
;
3
5 A D R (4.10)

where the superscript on G refers to the matrix column operated on during a
particular iteration.

4.2.1.2 Parallel QR Decomposition

Sameh and Kuck [7] developed a parallel scheme dedicated to matrices of even
side, in which the elimination process pictured in Eq. (4.5) can be carried in parallel
across multiple rows and columns. Multiple independent Givens rotations QQm;n can
be executed at the same time, where m and n refer to the row and column indices
of the eliminated element. The product of these matrices constructs the matrix OQi ,
which is applied at the i -th step of the algorithm:

OQi D
Y QQm;n: (4.11)

For a given step i , the matrices QQm;n can be multiplied in any order to obtain OQi ,
as they are a direct sum of plane rotations [7]. As a result, OQi is a block-diagonal
matrix, with Givens rotations matricesGi on the diagonal, as pictured in Eq. (4.12).

OQi D

2
6666666666666664

1
: : :

1

ck;l sk;l
�sk;l� ck;l

: : :

cm;n sm;n
�sm;n� cm;n

1

3
7777777777777775

(4.12)

The scheme from Sameh and Kuck is completed in 2N �3 steps, whereN is the
rank of the matrix. The i -th transform is obtained by eliminating an entry in A at

76 W.J. Brouwer and P.-Y. Taunay

the row m and column n, wherem and n are given by

m D
� fN � i; N � i C 1; : : : ; N � 1 � ı .i/g 1 � i � N � 1

fi �N C 2; i �N C 4; : : : ; N � 1� ı .i/g N � i � 2N � 3
; (4.13)

and

n D

8̂
<̂
ˆ̂:

�
1; 2; : : : ; d i

2
e
�

1 � i � N � 1�
i �N C 2; i �N C 3; : : : ; d i

2
e
�
N � i � 2N � 3

; (4.14)

with ı .i/ defined as

ı .i/ D
�
0 i odd
1 i even

: (4.15)

Though other elimination patterns are possible, this approach has been proven to be
one of the most efficient, both from a practical and mathematical point of view, as it
is easy to implement and asymptotically optimal [2].

At each step of the process, the total number of rotations performed simulta-
neously, Nrot, is obtained by counting the total number of columns n and rows m
affected:

Nrot D
� di=2e 1 � i � N � 1

di=2e � i CN � 1 N � i � 2N � 3
: (4.16)

An example of the entries successively eliminated by this algorithm is shown in
Fig. 4.2, for an 8�8 matrix. Numbers in the matrix correspond to the order in which
the associated matrix element is eliminated in the algorithm.

7
6 8
5 7 9
4 6 8 10
3 5 7 9 11
2 4 6 8 10 12
1 3 5 7 9 11 13

Fig. 4.2 Illustration of the
successive elimination
scheme in the QR parallel
decomposition algorithm, for
an 8�8 matrix

4 Efficient Batch LU and QR Decomposition on GPU 77

Algorithm 2 Outer loop of the parallel QR decomposition

4.2.2 GPU Implementation

The previous observations made in Sect. 4.1.2 related to global and shared memory
accesses are also valid for the QR decomposition; therefore, each CUDA thread
block is assigned one or more matrices to process, and N threads operate on a
single matrix. The parallel QR algorithm is driven by an outer loop executed on
the CPU, as detailed in Algorithm 2. This routine calculates the number of CUDA
blocks to run in the x-dimension of the CUDA grid, initializes the orthogonal matrix
Q as the identity matrix, and calculates the total number of Givens rotations that
can be executed in parallel, based on Eq. (4.16). This number sets the z-dimension
of the CUDA grid, to ensure that a total of Nrot Givens rotations are applied in
parallel to the same matrix, at each iteration of the outer loop. Finally, each iteration
launches the CUDA kernel to be executed on the GPU, shown in Algorithm 3.
Each CUDA block in the x-dimension performs operations on multiple matrices
A, and accumulates the results in the corresponding matrix Q. All threads first
calculate the indices m; n of the entry to eliminate in their corresponding matrix.
Threads then load rows m � 1 and m, on lines 10 and 11, subsequently calculating
their corresponding Givens rotation, on line 14. Algorithm 4 details this operation:
multiple threads load the elements a and b defined in Eq. (4.6) through a shared
memory broadcast on lines 1 and 2. The components of the Givens rotation kernel,
c and s, are then evaluated on line 3 based on Eqs. (4.7) through (4.9). Turning
attention back to Algorithm 3, the threads perform the Givens rotation on their

78 W.J. Brouwer and P.-Y. Taunay

Algorithm 3 QR_KERNEL Core GPU kernel for the parallel QR decomposition

corresponding matrix with the APPLYGIVENS routine. The details of this function
are outlined in Algorithm 5. In the APPLYGIVENS routine, each thread within
a CUDA block operates on a single matrix element of the two rows loaded in
upperRow and lowerRow. The calculation presented in Eq. (4.6) is performed on
lines 5 and 6. The threads then store the data back in place, in global memory,

4 Efficient Batch LU and QR Decomposition on GPU 79

Algorithm 4 CALCGIVENS Calculate the [c,s] values of a Givens rotation

Algorithm 5 APPLYGIVENS Apply the [c,s] Givens rotation to an array of matrices

on lines 7 and 8. Care is taken to introduce an exact zero for columns 1 through
n� 1 with the boolean condition myIndex> n on line 8, in order to avoid floating
point approximations. The remainder of the Algorithm 3—lines 16 through 18—
accumulates the rotations in the matrix Q. Note that the boolean condition on line 8
of Algorithm 5 does not apply to matrix Q, as can be discerned from the last line of
QR_Kernel in Appendix 2.

Memory optimizations are included in the QR kernel implementation. A few
constants, for example the current iteration number and the total batch size are stored
in constant memory to provide fast data access. The bandwidth-cost of copying
the data from the CPU to the GPU through a call to cudaMemcpyToSymbol()
does not impact the overall performance of the algorithm. Care is taken to avoid
non-coalesced global memory accesses by providing contiguous indices for global
memory loads and stores.

80 W.J. Brouwer and P.-Y. Taunay

Table 4.3 QR parallel decomposition algorithm executed on K40c GPU device
versus 16 Intel E5-2670 (Sandy Bridge) CPU threads, in ms

Batch size

Matrix side 1,000 10,000 100,000 Matrices per block

16 1.370 (14.3) 7.475 (6.03) 68.14 (3.26) 64
32 6.732 (4.82) 55.76 (2.86) 534.0 (1.83) 32
64 48.70 (2.5) 457.9 (1.73) 4,630 (0.87) 16
128 404.9 (1.69) 4,025 (0.81) – 8
256 3,172 (0.76) 32,151 (0.57) – 4

The number in parenthesis indicates the speedup over the QR serial decomposition
executed on the CPU

4.2.3 QR Results

A serial implementation of the QR decomposition algorithm as described in the
first paragraph of Sect. 4.2.1 was written in C for execution on the CPU. The
source code was compiled with the latest AVX optimizations available for Intel
processors, with flags -O3 -xHost. The core GPU kernel QR_Kernel was
compiled with the CUDA 5.5 revision of nvcc for compute architecture 3.5, and
with -O3 optimizations. The GPU method was tested on a Kepler K40c, while
the CPU implementation was executed on a single Sandy Bridge CPU socket
running 16 OpenMP threads. Benchmarking results are presented in Table 4.3.
The GPU implementation of the QR algorithm as outlined here demonstrates a
0.6–14.3x performance improvement over a comparable CPU routine. The Nvidia
profiler nvvp revealed a global memory bandwidth of 195 GB/s (97.5 GB/s read +
97.5 GB/s write).

Table 4.3 shows that the GPU results scale linearly at a constant matrix size.
However, the scaling is not linear with the matrix size, at constant batch size; this
effect can be attributed to a decreasing total number of matrices processed per
block, as the size of the matrices increase. Therefore, more blocks are scheduled
and executed on the GPU, resulting in a larger overhead. The QR GPU kernel as
described was revealed to be memory-bound by the Nvidia profiler. Thus, additional
optimizations to help the code scale with the matrix size may include increasing the
total work performed by individual CUDA threads, in order to keep the total number
of matrices processed per block constant. The super-linear behavior observed in the
CPU scaling results was deduced to share similar origins as those of the CPU LU
implementation.

4 Efficient Batch LU and QR Decomposition on GPU 81

4.3 Conclusion

This chapter has detailed new CUDA implementations of LU and QR decom-
position, for large batches of matrices of side less than 1,024 elements. The
kernels take advantage of several key GPU architectural features and display
highly favorable performance and scaling as compared to comparable CPU imple-
mentations. However, QR decomposition was relatively more performant than
LU decomposition, largely owing to the need for warp serialization and fairly
excessive synchronization in the latter. Performance for initial kernels was improved
significantly through introduction of several techniques guided by profiling. These
techniques included configuring cache and shared memory in software, as well as
optimizing thread blocksize and shared memory buffer size. Further optimizations
and alternative kernels for these important methods are the subjects of ongoing
work.

Acknowledgements The authors would like to thank Muhammed Kabiru Hassan and Sreejith
Ganesh Jaya for bringing applications to their attention that benefit from the routines detailed here.
The authors are also very grateful to reviewers from Nvidia for their comments and improvements
to the manuscript.

Appendix 1

82 W.J. Brouwer and P.-Y. Taunay

4 Efficient Batch LU and QR Decomposition on GPU 83

84 W.J. Brouwer and P.-Y. Taunay

Appendix 2

4 Efficient Batch LU and QR Decomposition on GPU 85

86 W.J. Brouwer and P.-Y. Taunay

References

1. Bindel, D., Demmel, J., Kahan, W., Marques, O.: On computing givens rotations reliably and
efficiently. ACM Trans. Math. Softw. 28(2), 206–238 (2002)

2. Cosnard, M., Robert, Y.: Complexity of parallel QR factorization. J. Assoc. Comput.
Machinery 33, 712–723 (1986)

3. Golub, G.H.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
4. Lucente, E., Monorchio, A., Mittra, R.: An iteration-free MoM approach based on excitation

independent characteristic basis functions for solving large multiscale electromagnetic scatter-
ing problems. IEEE Trans. Antennas Propag. 56(4), 999–1007 (2008)

5. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The
Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1993)

6. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)
7. Sameh, A.H., Kuck, D.J.: On stable parallel linear system solvers. J. Assoc. Comput.

Machinery 25, 81–91 (1978)
8. Seward, J., Nethercote, N., Weidendorfer, J.: Valgrind 3.3: Advanced Debugging and Profiling

for GNU/Linux Applications. Network Theory Ltd., Bristol (2008)
9. Sreejith, G.J., Jolad, S., Sen, D., Jain, J.K.: Microscopic study of the 2

5
fractional quantum Hall

edge. Phys. Rev. B 84, 245104 (2011)
10. Sreejith, G.J., Toke, C., Wójs, A., Jain, J.K.: Bipartite composite fermion states. Phys. Rev.

Lett. 107, 086806 (2011)

Chapter 5
A Flexible CUDA LU-Based Solver for Small,
Batched Linear Systems

Antonino Tumeo, Nitin Gawande, and Oreste Villa

5.1 Introduction and Motivations

Many simulation models for hydrology, combustion and atmospheric modeling
require solvers that operate on a large amount of small, independent systems of
equations. These models typically operate by computing, at each time step of the
simulation, the flow and then the chemical reactions of fluids and solids in elements
over a large number of locations (a.k.a. physical grid nodes). The chemical reactions
are usually described through a set of non-linear equations. The profiling of typical
codes shows that these models can spend up to 95 % of the overall computation
time to solve the chemical reactions [1]. Typical simulations involve computing
tens to few hundreds chemical reactions, in tens of thousands up to millions of
uniform or non-uniform grid nodes, depending on the geometry and the resolution
of the problem to solve. The Newton–Raphson method is one of the most used
approaches for obtaining a solution for such systems of non-linear equations. The
technique involves the linearization of the systems by computing the Jacobian
matrix and a residual vector for each set of equations that represent the reactions
for a grid node. The method solves the linearized systems iteratively, performing
Gaussian elimination with LU factorization until achieving the desired convergence.
The method allows computing the LU factorization either with partial or full
pivoting, depending on the numerical characteristics of the problem, time-step of the
simulation and, ultimately, accuracy of the result. The Jacobian matrix is generated
from the chemical reactions, and its size is typically a square function of the number
of equations involved in the process. For example, the simulation of kinetic chemical

A. Tumeo (�) • N. Gawande
Pacific Northwest National Laboratory, Richland, WA, USA
e-mail: antonino.tumeo@pnnl.gov; nitin.gawande@pnnl.gov

O. Villa
NVIDIA, Santa Clara, CA, USA
e-mail: ovilla@nvidia.com

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__5, © Springer International Publishing Switzerland 2014

87

mailto:antonino.tumeo@pnnl.gov
mailto:nitin.gawande@pnnl.gov
mailto:ovilla@nvidia.com

88 A. Tumeo et al.

reactions in combustion modeling [2] typically involves matrices up to �40 � 40

in sizes, and is usually numerically stable by just using partial pivoting for the
LU decomposition. Reactive transport models for fluids through the Earth’s crust
over multiple phases, instead, require matrices with sizes up to �100 � 100 and
traditionally use LU decomposition with full pivoting to increase numerical stability.
STOMP [3], HydroGeoChem [4], PRFLOTRAN [5], and TOUGH [6] use some of
these models. All of these applications require solving the chemical reactions for at
least thousands of grid nodes for the smallest problems they tackle.

There are many effective implementations of linear solvers for Graphic Pro-
cessing Units (GPUs) [7]. However, GPUs are more efficient when they perform
a large number of operations with respect to the amount of data involved in the
operations (flop/byte ratio). In fact, although new GPUs keep providing higher
and higher memory bandwidths, computational power is much higher and there
still are strict requirements to reach the peak memory transfer rates. For these
reasons, many of the available libraries focus on linear solvers for single, very
large, matrices. Conventional solvers, such as MAGMA [8] or those provided by
the CUDA library [9], target large matrices with several thousand of elements
per dimension, achieving speedups of one order of magnitude when compared to
CPUs. They exploit parallelism at the level of a single matrix solver and, in some
cases, they also make use of heterogeneity, by assigning the diagonal blocks and
interchange of row and columns to CPU cores and the reduction and scaling of
large sub-matrices to GPUs [10]. The combination of increased parallelism and
of solutions to increase bandwidth (e.g., through more effective and larger caches,
bigger register files, larger on-chip memories), recently made GPUs much more
interesting for operating in parallel on a large number of small matrices. Indeed,
the latest versions of the CUBLAS library [11] include support for batched LU
factorization. A software developer can use it to construct a solver operating on a
set of small, independent matrices.

In this book chapter we present the CUDA implementation of a batched linear
solver that operates on large numbers of small matrices, ranging from size 2 � 2

to 128 � 128. The presented implementation exploits, somehow counterintuitively,
thread level parallelism, exploiting a employs GPU thread for each matrix. With
respect to other existing implementations, the benefit of our approach resides in
the support of matrices with sizes over the 100 � 100 elements, and the support of
both partial and complete pivoting for the LU factorization. These are mandatory
requirements for reactive transport simulators, which historically use complete
pivoting, trading off some of the performance for higher accuracy. We discuss
our implementation in comparison to other currently available solutions, which
instead only integrate partial pivoting and support sizes up to 76 � 76 elements.
Beside presenting the code of our implementation, we also discuss the performance
tradeoffs, enabling a developer to choose the best implementation for his target
applications.

The remainder of this chapter is organized as follows. Section 5.2 provides
some preliminaries on linear solvers. Section 5.3 presents the commented code of

5 A Flexible CUDA LU-Based Solver for Small, Batched Linear Systems 89

our implementation. Section 5.4 briefly introduces other existing approaches and
Sect. 5.5 discusses the performance and flexibility tradeoffs with respect to our
solution. Finally, Sect. 5.6 concludes the chapter.

5.2 Preliminaries on Solvers and LU Decomposition

The Newton–Raphson method is a technique for solving nonlinear equations
numerically. It is an iterative technique, which works by linearly approximating the
equations until convergence. A typical problem gives N nonlinear equations to be
zeroed, involving variables xi ; i D 1; 2; : : : ; N :

Fi .x1; x2; : : : ; xN / D 0i D 1; 2; : : : ; N

Denoting with x the vector of values xi and with F the vector of functions Fi , we
can expand each of the functions Fi in the neighborhood of X in Taylor series:

Fi .x C ıx/ D Fi .x/C
NX
jD1

@Fi

@xj
ıxj CO.ıx2/

where:

Jij 	 @Fi

@xj

is the Jacobian matrix J.
In matrix notation:

F.x C ıx/ D F.x C Jıx CO.ıx2/

By neglecting terms of order ıx2 and higher and by setting F.x C ıx/ D 0, we
obtain a set of equations for the corrections ıx that move each function closer to
zero simultaneously:

Jıx D �F

This matrix equation can be solved by LU decomposition. The corrections are
then added to the solution vector:

xnew D xold C ıx

And the process is iterated to convergence.

90 A. Tumeo et al.

5.2.1 LU-Based Linear Solvers

A linear solver is a procedure that, given a system of linear equation described in
matricial form as Ax D b, finds the solution vector x. One of the most efficient
method for dense and semi-dense matrices is finding a decomposition of the matrix
A such that the solution is then obtained by back substitution. LU decomposition
(also called LU factorization) factorizes a matrix A as the product of a lower
triangular matrix L and an upper triangular matrix U such that LU D A. There
are two basic approaches for arriving at an LU decomposition:

• simulate Gaussian elimination by using row operations to zero elements in A
until an upper triangular matrix exists. Save the multipliers produced at each
stage of the elimination procedure as L;

• use the definition of matrix multiplication to solve directly LU D A for the
elements of L and U .

Approaches that exploit Gaussian elimination mainly differs in the order in
which A is forced into upper triangular form. The most common alternatives are
to eliminate subdiagonal parts of A either one row at a time or one column at a time.
The calculations required to zero a complete row or a complete column are referred
as one stage of the elimination process.

At the kth stage of Gaussian elimination:

a
.kC1/
ij D a

.k/
ij � .

a
.k/

ik

a
.k/

kk

/a
.k/
ij ; where i; j > k

The term
a
.k/

ik

a
.k
kk

(referred as multiplier) describes the effect of eliminating element

aik on the other entries in row i during the kth stage of the elimination. These
multipliers are the elements of the lower triangular matrix L, i.e.:

lik D a
.k/

ik

a
.k/

kk

Considering the Gaussian elimination procedure, LU decomposition fails when
the value a.k/kk (called the pivot element) is zero. Furthermore, Gaussian elimination
is numerically unstable even if there are no zero pivot elements, because of the
errors in approximation in finite precision representation of real numbers. A solution
to numerical instability is to interchange the rows and columns of A to avoid zero
and unstable pivot elements. These interchanges do not affect the solution of the
approximated linear equations of the system as long as the permutations are logged
and taken into account during the substitution process. The choice of pivot elements
is referred as pivot strategy. There is not an optimal pivot strategy, but two common
heuristics are:

5 A Flexible CUDA LU-Based Solver for Small, Batched Linear Systems 91

• Partial pivoting: at the kth stage of the computation, select the largest element
in column k as the pivot. When using partial pivoting, the factorization produces
matrices L and U that satisfy the equation:

LU D PA

where P is a permutation matrix. Initially, P is initialized to I, then each row
interchange that occurs during the decomposition of A causes a corresponding
row swap in P. Starting from the linear system of equations Ax D b and
premultiplying both sides by P, we obtain PAx D Pb. Substituting PA with LU,
we obtain LUx D Pb. Thus, we can achieve a solution for A by the sequential
solution of two triangular systems: y D Pb, Lc D y, Ux D c.

• Complete pivoting: at the kth stage of the computation, choose the largest
remaining element in A as the pivot. If pivoting has proceeded along the diagonal
in stages 1 through k � 1, this implies that the next pivot should be the largest
element a.k�1/

i j where k � i � n and k � j � n. When using complete
pivoting, factorization produces matrices L and U that satisfy the equation:

LU D PAQ

where P is a row permutation matrix and Q is a column permutation matrix.
Q is derived from column interchanges in the same way P is derived from
row interchanges. The linear system of equations Ax D b can be solved by the
sequential solution of two triangular systems: y D Pb, Lc D y, Uz D c, x D Qz.

The computational complexity of the LU factorization is O.2=3 � n3/. Par-
tial pivoting contributes for a further O..n2 C n/=2/, while full pivoting adds
O.2=3 � n3 C 1=2 � n2 C 1=6 � n/. Once the matrix is decomposed, each triangular
solver has computational complexity O.n2/. Asymptomatically, a solver with partial
pivoting has computational complexity of O.2=3 � n3/, while with full pivoting
complexity is O.4=3 � n3/.

5.3 Proposed Implementation: CUDA Code and Comments

This section presents the implementation of our LU-based solver with complete
pivoting. Listing 5.1 shows both the kernel invocation and the code of the kernel.
The Jacobian matrixA has n�n elements, and the residual vector b has n elements.
n is the size of the system. Our approach employs a single CUDA thread to find the
solution for a single system (matrix). Because complete pivoting involves both a row
and a column permutation, the procedure is difficult to parallelize effectively for a
single matrix. Parallelization is achieved by batching multiple systems together. By
using a single thread per matrix, and by directly accessing and storing the matrices
and the residual vectors in memory, this implementation can potentially manage

92 A. Tumeo et al.

matrices of arbitrary sizes. In our experiments with Tesla M2090 boards based on
the Fermi architecture and integrating 6 GB of memory, we easily reached sizes
up to 128 � 128 elements, which allow solving a typical simulation integrated in
a reactive transport simulator such as STOMP. At first glance, this implementation
violates basic GPU programming principles, because it assigns a different “task”
to different threads inside a warp. Generally applying this technique can lead
to very poor performance due to thread divergence within the warp. However,
in our code, each thread is exactly performing the same operations on all the
independent matrices, except when it discovers pivot elements and swaps rows. The
key observation is that, when the matrix is larger than 32 � 32 elements, the cost of
these operations is much smaller than the cost of updating the lower matrix and back
substituting in the triangular systems. Vice-versa, when the matrix is smaller than
32 � 32 elements, the cost of pivoting and row interchange can be compared to the
cost of updating the matrices and performing back-substitution, resulting in possible
thread divergence. However this is true with any other implementation, because
with matrices smaller than 32 � 32 elements warps are not fully utilized. Another
important issue of this approach is that the input matrices A and vectors b and x
are stored as arrays of structures, meaning that big arrays contain all the elements
of the different matrices and vectors. If each thread is accessing its own matrix, the
threads in a warp are accessing elements that are strides of the number of elements
in the matrix: i.e., they access elements at a distance of n � n memory locations.
When accessing arrays b and x, data are instead at distance n. This results in un-
coalesced accesses to memory, which are a main cause of performance degradation.
To alleviate this problem, our code performs a transformation of the matrix A and
of the arrays b and x before and after the solver phase, such that the resulting data
structure is a structure of arrays, meaning that a given element (i,j) of a matrix is
rearranged together in memory with those of the other matrices. This operation may
appear quite expensive, in particular for the matrices, because the transformation
must access their elements at least once in un-coalesced manner. However, the
transformation has cost O.N2/, while the entire computational complexity of the
algorithm is O.N3/.

Given the iterative nature of the solver, we want our code to preserve the original
matrices A, without transforming them back after the solver completes. Thus, we
need to store the transformed matrices in a temporary space. Unfortunately, the on-
chip shared memory is not big enough. In fact, we need at least space for a number
of matrices equal to the thread block size. To minimize divergence, the minimum
effective thread block size obviously is 32 (warp size). Consequently, for a thread
block of 32 threads, simultaneously operating on 32 matrices of size 100�100with
double precision elements (64 bits), we would need at least 2.5 MB. For this reason,
although this may again seem counterintuitive for usual GPGPU programming,
we utilize another portion of GPU memory that is allocated and deallocated on a
thread block basis by a single thread in the block. These allocations are performed
on a heap space that is set during initialization of the device by using the CUDA
library call cudaThreadSetLimit(cudaLimitMallocHeapSize, bytes). Allocations and
de-allocations inside the heap space are performed with _malloc/_free primitives,

5 A Flexible CUDA LU-Based Solver for Small, Batched Linear Systems 93

which wrap the standard malloc/free that align to 128 bytes inside in the heap. As the
heap space is reused across thread blocks that are executed on the same Streaming
Multiprocessor, we do not need to have a heap space as large as the total dataset.

Finally, since the proposed implementation does not use the shared memory, we
set the architecture to employ as much as possible the 64 kB of on-chip memory
as L1 cache (i.e., 48 kB on both Fermi and Kepler architectures), exploiting the
cudaFuncSetCacheConfig primitive.

Listing 5.1 GPU implementation of LU solver with complete pivoting

#include <stdio.h>
2#include <assert.h>

#include <cuda.h>
4#include <cuda_runtime.h>

6#define BLOCKSIZE 96

8#define T(id) (threadIdx.x + blockDim.x * (id))

10int axb_solve_d_gpu_batch(double * d_A, double * d_B,
double * d_X, int n, int batch) {

12cudaFuncSetCacheConfig(_axb_solve_d_gpu_batch,cudaFuncCachePreferL1);
int gridDim = batch / BLOCKSIZE + 1;

14_axb_solve_d_gpu_batch<<<gridDim, BLOCKSIZE>>>(d_A, d_B, d_X, n, batch);
cudaError_t err = cudaGetLastError();

16if (cudaSuccess != err) {
printf("ERROR %d\n", err);

18return -1;
}

20return 0;
}

22

__global__ void _axb_solve_d_gpu_batch(double * d_A,
24double * d_B, double * d_X, int n, int batch)

{
26int matrixId = blockIdx.x * blockDim.x + threadIdx.x;

if (matrixId >= batch) return;
28int i, j, k;

30__shared__ double * A;
__shared__ double * B;

32__shared__ double * X;
__shared__ int * pivot;

34

if(threadIdx.x == 0)
36{

A = (double*) malloc(blockDim.x * n * n * sizeof(double));
38B = (double*) malloc(blockDim.x * n * sizeof(double));

X = (double*) malloc(blockDim.x * n * sizeof(double));
40pivot = (int *) malloc(blockDim.x * n * sizeof(int));

}
42__syncthreads();

44// Check for failure
if (A == NULL || B == NULL || X == NULL || pivot == NULL) {

46printf("Error allocating inside kernel\n");
return;

48}

50/* coalescing A and B */
for (j = 0; j < n; j++)

52{
B[T(j)] = d_B[matrixId * n + j];

54for (i = 0; i < n; i++)
A[T(j * n + i)] = d_A[matrixId * n * n + j * n + i];

56}

94 A. Tumeo et al.

58// For each row and column, k = 0, ..., n-1,
for (k = 0; k < n; k++) {

60

// find the pivot row
62int col = k;

double max = fabs(A[T(k * n + k)]);
64for (j = k + 1; j < n; j++) {

if (max < fabs(A[T(j * n + k)])) {
66max = fabs(A[T(j * n + k)]);

col = j;
68}

}
70

// and if the pivot row differs from the current row, then
72// interchange the two rows.

if (col != k) {
74for (j = 0; j < n; j++) {

double max = A[T(k * n + j)];
76A[T(k * n + j)] = A[T(col * n + j)];

A[T(col * n + j)] = max;
78}

}
80

// and if the matrix is singular, return error
82if (A[T(k * n + k)] == 0.0) {

printf("Inside Kernel: Matrix singular!!\n");
84return;

}
86

// otherwise find the lower triangular matrix elements for column k.
88

for (i = k+1; i < n; i++)
90A[T(i * n + k)] /= A[T(k * n + k)];

92// update remaining matrix
for (i = k+1; i < n; i++)

94for (j = k+1; j < n; j++)
A[T(i * n + j)] -= A[T(i * n + k)] * A[T(k * n + j)];

96

pivot[T(k)] = col;
98}

100// Solve the linear equation Lx = B for x, where L is a lower
// triangular matrix with an implied 1 along the diagonal.

102

for (k = 0; k < n; k++) {
104if (pivot[T(k)] != k) {

double dum = B[T(k)];
106B[T(k)] = B[T(pivot[T(k)])];

B[T(pivot[T(k)])] = dum;
108}

X[T(k)] = B[T(k)];
110for (i = 0; i < k; i++)

X[T(k)] -= X[T(i)] * A[T(n * k + i)];
112}

114// Solve the linear equation Ux = y, where y is the solution
// obtained above of Lx = B and U is an upper triangular matrix.

116for (k = n-1; k >= 0; k--) {
if (pivot[T(k)] != k) {

118double dum = B[T(k)];
B[T(k)] = B[T(pivot[T(k)])];

120B[T(pivot[T(k)])] = dum;
}

122for (i = k + 1; i < n; i++)
X[T(k)] -= X[T(i)] * A[T(k * n + i)];

5 A Flexible CUDA LU-Based Solver for Small, Batched Linear Systems 95

124

if (A[T(k * n + k)] == 0.0) {
126printf("Inside Kernel: Matrix singular!!\n");

return;
128}

X[T(k)] /= A[T(k * n + k)];
130}

132/* un-coalescing X */
for (j = 0; j < n; j++)

134d_X[matrixId * n + j] = X[T(j)];

136__syncthreads();
if(threadIdx.x == 0)

138{
free(A);

140free(B);
free(X);

142free(pivot);
}

144return;
}

5.4 Other Implementations

There are two other implementations we are aware of that try to address the problem
of solving a set of small systems in a batch. The first one requires the batched
interfaces provided in the CUBLAS library [11] starting from CUDA 5.0. It exploits
parallelism at the warp-level. The second one [12], provided by NVIDIA on its
developer site, exploits parallelism at the thread block level. We briefly discuss
the features of these solutions, and present a tradeoff analysis with respect to our
proposed thread parallel implementation.

5.4.1 Warp Parallel Implementation

A software developer can implement a batched LU-based solver by exploiting the
batched interfaces of the CUBLAS library [11], provided in CUDA 5.0. Such
a solver performs a sequence of four GPU kernel calls for all the matrices, as
follows:

1. LU decomposition of A (PA D LU);
2. permutation of the array b with the array of pivots P (y D Pb);
3. solution of the triangular lower system (Lc D y);
4. solution of the upper system to obtain the final solution (Ux D c).

The library directly provides batched functions for three kernel calls: cublas-
DgetrfBatched for step 1 (batched LU decomposition), and cublasDtrsmBatched
for steps 3 and 4. A developer can implement a simple kernel that performs

96 A. Tumeo et al.

step 2 to complete the solver. Compared to the other steps, step 2 has negligible
execution time. With respect to our proposed implementation, this implementation
has several limitations in terms of flexibility. First of all, it can perform the
batched LU decomposition only with partial pivoting, because it is the only method
provided in CUBLAS. Our approach supports complete pivoting, and can easily
use partial pivoting by just substituting the related code. Second, the batched
functions assign a warp (32 threads) per matrix, and they are limited to matrices
at most of 32 � 32 elements. Thus, this solver can deal with a subset of the
problems that our implementation can support solve. Because matrices are small,
the implementation exploits shared memory (a matrix with 64 bit values occupies
8 kB). However, CUDA does not preserve the content of shared memory across
subsequent kernel calls. Thus, every kernel has to reload the data in shared memory,
with a performance penalty for the operation.

5.4.2 Thread Block Parallel Implementation

This implementation [12] is available on the NVIDIA developer site. It selects
among three mutually exclusive kernels, depending on the size of the input matrices.
The implementation exposes a dsolve_batch() function that, in turn, calls a single
templatized function. This templatized function is parametrized by data type and
architecture. The implementation loads the entire system to solve in shared memory,
thus the size of the matrices it can handle are limited. For Fermi architectures,
the maximum size is 76 � 76 double precision elements. When the solver loads
the matrix into the shared memory, it augments the matrix on the right with
the right hand side vector, allowing parallel manipulation. The two-dimensional
shared memory layout of the matrix uses padding to minimize bank conflicts.
The configuration class allows optimizing the padding for each matrix size. Each
thread block solves a single system, so the number thread blocks in the launch
configuration is identical to the batch size. The implementation exploits two-
dimensional thread blocks: the x dimension is configured by the template class,
the y dimension corresponds to the number of columns of the augmented matrix.
In this way, each thread “row” handles one row of the augmented matrix in
parallel. The three kernels used are gauss_jordan1 (for dimensions 2 through 9),
gauss_jordan2 (used for dimension 10), and gauss2 (for dimensions 10 through 76),
with switch-over points empirically determined. The first two kernels implement the
Gauss–Jordan algorithm with partial pivoting, while the third implements Gaussian
elimination with partial pivoting. In the first Gauss–Jordan kernel the number of
thread rows is identical to the number of rows in the matrix (i.e., each thread
handles one element of the augmented matrix), while in the second there are fewer
thread rows than the number of matrix rows (i.e., each thread handles more than one
element). The implementation performs the maximum search for partial pivoting as
a two-stage process. In the first stage, a small number of threads search a maximum

5 A Flexible CUDA LU-Based Solver for Small, Batched Linear Systems 97

for a subset of column elements. In the second stage, a single thread finds the overall
maximum. Row swapping is implemented by physical exchange.

5.5 Trade-Offs Evaluation

In the following, we refer to the CUBLAS-based solution as the Warp parallel one
and to the custom NVIDIA solution as the Thread block parallel one. We refer to our
custom implementation as the Thread parallel one. To perform a fair comparison,
we execute our implementation with both the partial pivoting and the full pivoting
implementation.

We present a brief performance evaluation of the three different implementations
on two different GPUs. The objective of this analysis is to provide to developers an
informed view of which implementation to prefer, depending on the requirements of
their target applications. For certain applications, it may also be useful to integrate
a switching logic able to select the best implementation depending on the size of
the systems to solve, on the number of systems and on the required numerical
accuracy (choosing between complete or partial pivoting). For this analysis, we
selected a Fermi-based and a Kepler-based Tesla board. The Fermi-based solution
is a Tesla M2090 board, which includes the Fermi T20a GPU, with 16 Streaming
Multiprocessors (SMs), providing a total of 512 Streaming Processors (SPs) at
1.3 GHz, and 6 GB of GDDR5 at 1.85 GHz connected through a 384-bit interface.
The peak memory bandwidth is 177 GB/s. The Kepler-based solution is a Tesla
K20 board with a GPU that implements 13 SMXes (2,496 SPs). The GPU works at
706 MHz, and the board includes 5 GB of GDDR5 at 2.6 GHz, connected through a
320-bit bus with 5 memory controllers. The peak memory bandwidth is 208 GB/s.

We underline that the architectures of the two GPUs are radically different. The
Fermi architecture exploits a set of Streaming Multiprocessors (SMs) that include
32 Streaming Processors (SPs), 4 Super Function Units (SFUs), 16 Load/Store
Units and 64 kB of on-chip memory configurable either as 48 kB of L1 cache and
16 kB of shared memory or as 16 kB of L1 cache and 48 kB of shared memory.
A Fermi’s SM can simultaneously execute two single precision Warps (group of
32 threads) or one double precision Warp in a minimum of 2 clock cycles. Thus,
peak double precision is half of the single precision. Each SM includes a total
of 32,768 registers and can maintain up to 1,536 threads in-flight. All the SMs
in a chip interface to a L2 cache of 768 kB. The SMs access the global memory
through a crossbar connected to several 64 bits memory controllers. In Fermi, the
SMs run at higher clocks (double) than the rest of the chip. In Kepler, instead,
a SM, now called SMX, includes 192 single precision streaming processors, 64
double precision streaming processors, 32 SFUs, 32 Load/Store Units. The number
of threads and of registers per SMX is, respectively, 2,048 and 65,536. Kepler can
dispatch 8 instructions (2 independent instructions from 4 Warps) simultaneously
and can pair double precision instructions with other instructions. Each SMX still
has 64 kB of configurable shared memory, but now there is also a 32/32 kB split.

98 A. Tumeo et al.

This results in a higher number of warps competing for the same shared memory.
An SMX also includes a new 48 kB cache for read-only data. Kepler doubles the L2
cache both in terms of size (1,536 kB) and bandwidth with respect to Fermi.

0

0

0.01

0.1

Time to solve 20000 systems of linear equations

0
4 12

8 16 24 32 40 48 56 64

Matrix Size (NxN) - N

72 80 88 96 104 112 120 128
12411610810092

Warp Level (cublas)

Thread Block Level

Thread Level
(Complete Pivoting)

Thread Level

847668605244362820

S
ec

on
ds

1

10

Fig. 5.1 Performance of the three implementations on a Tesla M2090 when solving 20,000
systems of linear equations while increasing the number of double precision elements in each
matrix

Figure 5.1 shows the performance of the three implementations on a Tesla M2090
board when simultaneously solving 20,000 systems of variable size (the matrices
have from 2 � 2 to 128� 128 elements). The Thread block parallel implementation
results the fastest. However, the performance varies a lot by changing the matrix
size. Performance significantly degrades with matrices larger than 56�56 elements.
This happens because increasing the size of the matrices increases shared memory
occupation. Because shared memory is a limited resource allocated per thread
block, over a certain threshold there is a reduction in the number of thread
blocks that are simultaneously active, determining resulting in under-utilization.
The Warp parallel implementation is the second fastest. Up to 16 � 16 elements,
it provides performance very near to the Thread block parallel implementation,
but over 16 � 16 elements its performance significantly reduces. The reason is
the use of multiple kernels, which does not allow to fully exploit the increased
bandwidth provided by the shared memory. The only implementation that manages
matrices bigger than 76 � 76 elements is our proposed Thread parallel solution. It
presents the lowest performance of the three implementations, but it is also the most
stable: the execution time almost linearly increases with the size the systems. Our
implementation is mainly limited by the number of registers used by each thread,
which limits utilization of the SMs. Our proposed implementation is also the only
one that supports full pivoting. Full pivoting is slower, for the higher computational

5 A Flexible CUDA LU-Based Solver for Small, Batched Linear Systems 99

complexity, than single pivoting. However, it follows the same behavior of linearly
increasing its execution time with the size of the systems.

0

0

0.01

0.1

Time to solve 20000 systems of linear equations

0
4 12

8 16 24 32 40 48 56 64

Matrix Size (NxN) - N

72 80 88 96 104 112 120 128
12411610810092

Warp Level (cublas)
CPU 1socket

Thread Block Level

Thread Level
(Complete Pivoting)

Thread Level

847668605244362820

S
ec

on
ds

1

10

Fig. 5.2 Performance of the three implementations on a Tesla K20 when solving 20,000 systems
of linear equations while increasing the number of double precision elements in each matrix

Figure 5.2 proposes the evaluation on the Tesla K20 (Kepler). The Thread parallel
implementation still results the slowest in average. However, with Kepler, it is faster
than both the Warp level and the Thread block parallel implementations for certain
dimensions. The switch points are dimensions of 16 � 16 for the Warp parallel
implementation and 56 � 56 for the Thread block parallel implementations. The
Thread parallel implementation utilizes almost all the available global memory
bandwidth, thus it benefits of its increase in Kepler. At the opposite, Kepler provides
less bandwidth to the on-chip shared memory for each active warp. This limits
the effectiveness of the Warp parallel and Thread block parallel implementations.
The performance spread between the Warp parallel and the Thread block parallel
implementation with matrices over sizes of 16� 16 is more significant. The Thread
parallel implementation with full pivoting is the slowest, but it still follows the
same general behavior of when partial pivoting is used. The figure also shows
that, for small matrices, the performance of Kepler with the Thread parallel
implementation is comparable to a reference x86 implementation (Xeon X5650 at
2.67 GHz, 6 Nehalem cores with 12 threads at 12 MB of L3 cache), while for larger
matrices it becomes slower. Therefore, it may be useful to provide heterogeneous
implementations able to distribute the workload across GPUs and CPUs, depending
on the characteristics of the applications and the systems to solve.

100 A. Tumeo et al.

5.6 Conclusions/Summary

In this chapter we presented and discussed the CUDA implementation of a batched
linear solver based on LU factorization for small matrices. These matrices are
usually generated from small sets (up to 100) of non linear equations, typical in
reactive transport simulators, that are then solved through the Newton–Raphson
iterative technique. The code presented in this chapter exploits a thread parallel
implementation (a matrix is assigned to a CUDA thread), does not exploit the on-
chip shared memory and employs dynamic allocation inside the kernel. Although
these approaches may appear counterintuitive, our code can manage bigger matrices
(well over 100 � 100 elements) than other currently available solutions, which can
only reach 76 � 76 elements. Furthermore, our approach supports both partial and
complete pivoting for the LU decomposition. The support of larger matrices and
full pivoting are strict requirements for certain reactive flow transport simulators
for fluids through the Earth’s crust over multiple phases, such as STOMP from
Pacific Northwest National Laboratory (PNNL). We also presented an evaluation of
our implementation against the other solutions, discussing tradeoffs in performance
and flexibility. This may allow a developer to select and then integrate in its target
application the best approach, depending on the requirements, or even implementing
dynamic switching solutions among the different methods to maximize perfor-
mance, depending on the characteristics and sizes of the problems to solve.

References

1. Tang, G., D’Azevedo, E.F., Zhang, F., Parker, J.C., Watson, D.B., Jardine, P.M.: Application of
a hybrid MPI/OPENMP approach for parallel groundwater model calibration using multi-core
computers. Comput. Geosci. 36, 1451–1460 (2010)

2. Higham, N.J.: Gaussian elimination. Comput. Stat. 3, 230–238 (2011)
3. White, M.D., Oostrom, M.: STOMP Subsurface Transport Over Multiple Phase: User’s Guide.

Technical report, Pacific Northwest National Laboratory, Richland (2006). PNNL-15782
4. Yeh, G.T., Tripathi, V.S., Gwo, J.P., Cheng, H.P., Chend, J.-R.C., Salvage, K.M., Li, M.H.,

Fang, Y., Li, Y., Sun, J.T., Zhang, F., Siegel, M.D.: HYDROGEOCHEM: a coupled model of
variably saturated flow, thermal transport, and reactive biogeochemical transport, on laptops
to leadership-class supercomputers. In: Groundwater Reactive Transport Models. Bentham
Science Publishers, Sharjah (2012)

5. Hammond, G.E., Lichtner, P.C., Lu, C., Mills, R.T.: Pflotran: reactive flow and transport code
for use on laptops to leadership-class supercomputers. In: Groundwater Reactive Transport
Models. Bentham Science Publishers, Sharjah (2012)

6. Zhang, K., Wu, Y., Pruess, K.: User’s Guide for TOUGH2-MP - A Massively Parallel Version
of the TOUGH2 Code. Technical report, Lawrence Berkeley National Laboratory, Berkeley
(2008). LBNL-315E

7. Tomov, S., Nath, R., Ltaief, H., Dongarra, J.: Dense linear algebra solvers for multicore with
gpu accelerators. In: IPDPSW’10: IEEE International Symposium on Parallel Distributed
Processing, Workshops and Phd Forum, pp. 1–8 (2010)

8. Agullo, E., Augonnet, C., Dongarra, J., Faverge, M., Langou, J., Ltaief, H., Tomov, S.:
Lu factorization for accelerator-based systems. In: AICCSA: 9th IEEE/ACS International
Conference on Computer Systems and Applications, pp. 217–224 (2011)

5 A Flexible CUDA LU-Based Solver for Small, Batched Linear Systems 101

9. NVIDIA Corporation. Nvidia CUDA C Programming Guide, Version 5.0 (2012)
10. Song, F., Tomov, S., Dongarra, J.: Enabling and scaling matrix computations on heterogeneous

multi-core and multi-GPU systems. In: ICS ’12: The 26th ACM International Conference on
Supercomputing, pp. 365–376 (2012)

11. NVIDIA Corporation. Nidia CUBLAS Library, Version 5.0 (2012)
12. NVIDIA custom batched LU Decomposition. NVIDIA. Available at http://developer.nvidia.

com (2013)

http://developer.nvidia.com
http://developer.nvidia.com

Chapter 6
Sparse Matrix-Vector Product

Zbigniew Koza, Maciej Matyka, Łukasz Mirosław, and Jakub Poła

6.1 Introduction

The sparse matrix-vector (SpMV) multiplication is one of the key kernels in
scientific computing. Efficient SpMV is crucial for the performance of several
popular algorithms of computational linear algebra, especially sparse linear solvers
and sparse eigenvalue solvers. The former are common, for example, in codes
that solve partial differential equations like those governing the air flow round an
airplane or propagation of seismic waves through the Earth. The latter are essential,
for example, in quantum physics, but also in the PageRank algorithm used by
Google in its web search engine to rank websites.

From a mathematical point of view, the aim of the SpMV kernel is to calculate the
product y D OAx, where OA is a large sparse matrix and x, y are dense vectors. While
SpMV operation belongs to the most simple operations of linear algebra, it is rather
surprising—and instructive—to realize to what extent its efficient implementation
on GPUs requires a deep understanding of the hardware. The SpMV kernel can thus
serve as a good illustration of the GPU programming principles. Moreover, the ideas
behind this kernel turn out to be helpful in other GPU kernels that deal with sparse
data structures.

Z. Koza (�) • M. Matyka
Faculty of Physics & Astronomy, University of Wrocław, Wrocław, Poland
e-mail: zkoza@ift.uni.wroc.pl; maq@ift.uni.wroc.pl

Ł. Mirosław
Institute of Informatics, Wrocław University of Technology, Wrocław, Poland
e-mail: lukasz.miroslaw@vratis.com

J. Poła
Institute of Physics, University of Silesia, Katowice, Poland
e-mail: jakub.pola@gmail.com

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__6, © Springer International Publishing Switzerland 2014

103

mailto:zkoza@ift.uni.wroc.pl
mailto:maq@ift.uni.wroc.pl
mailto:lukasz.miroslaw@vratis.com
mailto:jakub.pola@gmail.com

104 Z. Koza et al.

COO ELL

A
B
C
D
E

0
1
1
0
2

0
0
1
2
2

A B
C
D E

D

A

E

1
1

B
C

0 1 2

0

1

2

A
B
C
D
E

0
1
1
0
2

0
2
3
5

0

1

2

3

4

5

CRS

0

20

Fig. 6.1 A simple matrix encoded in various sparse formats

We start the chapter with a short introduction into two main issues each SpMV
designer must cope with: sparse matrix storage and architecture-specific aspects of
the problem.

6.1.1 Sparse Matrix Formats

To perform numerical algebra on matrices, we have to keep them in computer
memory. With sparse structures this is a non-trivial task. The straightforward usage
of a two-dimensional array is impractical as sparse data written this way could easily
exceed the computer memory. Moreover, reading all these zeroes would increase
the execution time by several orders of magnitude. Therefore, compact formats
for sparse matrices that omit an unnecessary storage of zeroes are required. Below
we focus on three most representative formats used in the context of the GPU (cf.
Fig. 6.1):

(a) COO (coordinate format), in which non-zero matrix elements together with
their row and column indices are stored in separate arrays;

(b) CRS (compressed row storage), in which references to the first nonzero element
within each matrix row are stored instead of the row indices;

(c) ELL, in which relatively small two-dimensional dense arrays are used to store
the nonzero matrix elements and their column indices.

The simplest sparse matrix format is the coordinate (COO) format, in which the
information about the row index, column index, and the value of each non-zero
matrix element is stored in three 1D arrays, RowInd, ColInd, and Val, respec-
tively. As an example, consider a matrix:

6 Sparse Matrix-Vector Product 105

OM D

2
666664

1 0 0 2 0

0 3 0 0 4

0 0 5 0 6

0 0 7 8 9

0 0 0 0 10

3
777775
: (6.1)

Its COO representation (with zero-based indexing) reads

Val D Œ 1 2 3 4 5 6 7 8 9 10 � ;

ColInd D Œ 0 3 1 4 2 4 2 3 4 4 � ;

RowInd D Œ 0 0 1 1 2 2 3 3 3 4 � :

To complete the definition of a sparse matrix representation, one also needs to
supply three integers: the number of matrix rows (rows), columns (cols) and
non-zero elements (nnz).

In the above example the row-major ordering was used, i.e., the arrays were first
sorted by row indices and then by column indices. In such a case array RowInd
will typically contain sequences of many identical entries. This property is utilized
in the compressed row storage (CRS, also known as compressed sparse row, CSR)
format to reduce the memory footprint by replacing array RowInd with a shorter
array RowPtr. This array has exactly rowsC1 elements and is defined by the
requirement that RowPtr[j] be equal to the number of non-zero elements in all
the rows preceding the j -th row (j D 0; : : : ;rows � 1) and RowPtr[rows]
= nnz. If the matrix contains no empty rows, RowPtr[j] gives the index into
Val corresponding to the first non-zero element in the j -th matrix row. The CRS
representation of OM reads

Val D Œ 1 2 3 4 5 6 7 8 9 10 � ;

ColInd D Œ 0 3 1 4 2 4 2 3 4 4 � ;

RowPtr D Œ 0 2 4 6 9 10 � :

Note that arrays Val and ColInd are the same as in COO format.
In the ELLPACK/ITPACK (ELL) format an n � m sparse matrix is represented

by two n � k dense arrays, Val and ColInd, where k is the maximum number of
non-zero elements per row. Array Val is constructed from the original matrix by
removing all zeros, while ColInd holds column indices into Val. The rows with
less than k non-zero elements are padded in Val and ColInd arrays with 0 and
�1, respectively. The ELL representation of OM is thus:

106 Z. Koza et al.

Val D

2
666664

1 2 0

3 4 0

5 6 0

7 8 9

10 0 0

3
777775
; ColInd D

2
666664

0 3 �1
1 4 �1
2 4 �1
2 3 4

4 �1 �1

3
777775
: (6.2)

6.1.2 Architecture-Specific Issues

The ideal sparse matrix representation should

– store only the non-zero matrix elements,
– require no extra storage space,
– require no additional computation (e.g. sorting),
– allow for efficient utilization of the hardware,
– allow for a single-kernel implementation of the SpMV product.

Unfortunately, this ideal representation does not exist and one has to strike a balance
between conflicting requirements. Here we briefly present the hardware-related
issues that must be taken into account in designing an efficient SpMV kernel running
on the GPU.

Matrix size. Modern GPUs are massively parallel, throughput-oriented architec-
tures that need to process at least tens of thousands of threads to hide a high latency
of the off-chip memory. Moreover, one should take into account a relatively high
kernel launch time, � 4�s for Tesla K20M. Note that during 4�s a GPU with the
memory bandwidth of 200 GB/s can read � 8�105 bytes, or 105 numbers in double
precision. This means that for today’s hardware the minimal number of nonzero
matrix elements that could saturate the GPU and amortize the kernel launch time is
of order of 105. Thus, the sparse matrices that can be processed efficiently on GPUs
need to be large.

Rows are preferred to columns. If different threads were allowed to write to
the same entry in the output vector, they would have to be synchronized, e.g.,
by atomic operations, which would diminish the performance. Therefore GPU
implementations of the SpMV kernel are based on matrix formats that facilitate
accessing the matrix elements by rows (CRS and ELL) or assume the row-
major ordering of the data (COO). This, in turn, hinders the development of
implementations of algorithms where a sparse matrix should be traversed along its
columns, e.g., multiplication by a matrix transpose.

Memory boundedness. Calculation of a sparse matrix-vector product essentially
reduces to many “multiply and add” operations, which in modern GPUs are
implemented as a single fused multiple-add (FMA) instruction. Since SpMV
multiplication involves several memory accesses per arithmetic instruction, the
SpMV kernel is inherently memory-bound. For example, a server-class Tesla K20X
GPU can perform �6:5 � 1011 FMA operations per second and can access its main

6 Sparse Matrix-Vector Product 107

memory at �2:5 � 1011 B/s, which yields approximately 2.5 operations per byte.
For the SpMV kernel this sets the upper bound for the processor computational
efficiency to �2% of its peak theoretical value. It is therefore of utmost importance
to focus on the memory utilization as well as on reducing the memory footprint of
the SpMV kernel.

Storage overhead. CRS generally needs less memory than COO. As for ELL,
the situation is far more complex. If each matrix row contains exactly the same
number of nonzero elements (we shall call this parameter “a row length”), then
ELL is the most storage-efficient format of the three. However, if row lengths vary,
shorter rows must be padded with explicit zeroes. For example, if the length of the
first matrix row is 10 and all other rows contain only 1 nonzero element, the ELL
format imposes a huge, ten-fold memory overhead. On the one hand, this makes
ELL impractical as a general sparse matrix format. On the other hand, for regular
matrices ELL is really fast on GPUs, approximately three times faster than COO,
so many attempts have been made to reduce its potentially unacceptable storage
overhead. Two main ideas have been used to achieve this goal. The first one consists
in partitioning the matrix into a regular part, stored in ELL, and an irregular part,
stored in a storage-efficient format, e.g., COO. This is exactly the thought behind
the HYB format from NVIDIA:

HYB D ELL C COO:

The second idea is to use some kind of matrix transformation, e.g., permutation
of rows according to their size and then to divide the matrix into several slices,
each represented separately in ELL, to reduce padding. This approach has led to the
development of several ELL-based formats, e.g., sliced-ELL and sliced ELLR-T.

Coalescing memory transfers. Once the storage has been optimized, we still
have to make sure that the off-chip memory can be read from or written to efficiently.
In the case of the GPU, this is equivalent to requiring that the accesses to the data
stored in the computer representations of OA, x and y can be coalesced. This is a key
condition for the SpMV performance: failure to coalesce global data transfers can
decrease the kernel performance by an order of magnitude.

The output vector, y, can be coalesced quite easily; besides, it often contributes
only a small fraction of all data transfers involved in SpMV. The input vector, x,
has a much serious impact on the kernel performance, as its elements are requested
as often as the matrix values. As this is the only data array whose elements can be
used many times during an SpMV kernel invocation, it would be very advantageous
to have it buffered on-chip. However, the access pattern for the elements of x
is completely unpredictable and so an SpMV kernel designer has a very limited
control over the way x can be cached. The most common strategy is to bind it to a
texture cache (on devices supporting OpenCL or CUDA with compute capability cc
< 3:5) or to the 48 kB read-only cache (only for CUDA cc � 3:5). Perhaps the best
thing that can be done regarding x is to reduce the so called matrix bandwidth, i.e.,
permute matrix rows and columns so that to move the nonzero elements towards its

108 Z. Koza et al.

main diagonal. We have seen physics simulations in which renumbering the mesh
cells with the Cuthill–McKee algorithm accelerated the SpMV by a factor of six.

Let’s now consider the matrix data. In ELL all data accesses for both the value
and column index arrays can be fully coalesced by assigning consecutive threads to
consecutive matrix rows. One point worth noticing is that the data in these arrays
are stored in column-major order, so in order to ensure the same coalescing for each
column, the number of rows must be a multiply of a warp size (currently: 32). This
can be achieved by padding the matrix with up to 31 empty rows.

The data transfer coalescence is much harder to achieve in COO and CRS
because in these formats the row lengths can vary and, consequently, there is no
simple functional mapping between the position in the internal array holding the
nonzero matrix values, val, and the matrix row number. Hence, the data in COO
and CRS must be stored in a row-major order. In CRS, the simplest choice is to
assign consecutive threads to consecutive matrix rows. This is the essence of the
so called scalar CRS kernel. In this approach threads process matrix elements in
essentially the same order as in ELL, however, in contrast to ELL, the data are now
arranged in a row-major order. This precludes any data coalescing except when the
row lengths are extremely short. Thus, for most sparse matrices the scalar kernel is
easy to write but very slow to run. Another option is to process matrix rows using
whole warps, which leads to the so called vector CRS kernel. This mapping allows
for good global memory coalescing and results in a kernel that is very efficient for
matrices in which the mean row length is quite high, 100 or more. To understand this
phenomenon, consider a matrix with row lengths equal to 5. In this case a warp of
32 threads would read only 5 data items per clock tick. Moreover, these 5 data items
are quite likely to be located in different 128-byte-long global memory segments
and hence two data transfers may be necessary to complete the read request. In this
particular case the CRS vector loses to the ELL kernel at least 5:32 and perhaps even
5:64. This problem can be mitigated by making a warp process several consecutive
rows, an idea that has led to the development of several CRS-based, GPU-oriented
formats, e.g., CRS SIC and CMRS.

As for COO, this format allows for an elegant implementation based on a
segmented reduction, an algorithm which is, however, beyond the scope of the
present study. While the data transfers turn out to be well coalesced, several kernels
must be launched sequentially to complete the job, each transferring data from or to
the global memory. The COO kernel is not very fast for regular matrices, but since
its computational performance is largely independent of the matrix structure, it can
be found useful for matrices with a very irregular pattern of nonzero elements.

Work imbalance and thread divergence. Some matrices, e.g., those describing
the WWW connections, exhibit a high variability of row lengths. If a block of
threads is assigned one long and many short rows in the “vector” CRS kernel, then
the warps processing short rows will quickly finish their job and stay idle waiting for
the warp processing the long row to finish (work imbalance). If a warp is assigned a
short row, than only a few of its threads will be active (thread divergence). Both of
these problems can be mitigated by reordering the rows and processing more than
one row per warp.

6 Sparse Matrix-Vector Product 109

In summary, ELL excels in data coalescing, CRS in reduction of the storage
overhead, and COO is a good alternative for the most irregular sparsity patterns.
The main drawback of ELL is the memory overhead related to zero padding, CRS
is inefficient for matrices with short rows, and COO is too slow for regular matrices.
These problems can be mitigated in ELL either by combining it with a storage-
efficient format or by some kind of matrix preprocessing involving row permutation,
whereas disadvantages of CRS can be counteracted by processing several matrix
rows per warp.

6.2 SpMV for Everyday Usage

Whenever we have to use a nontrivial piece of code, our first thought is to use
a ready-made library. Many implementations of the SpMV kernel are already
available to download from the Internet, both for the CUDA and OpenCL platforms.
Among them, the cuSPARSE, CUSP and Paralution libraries are certainly worth
recommendation.

6.2.1 CuSPARSE

The NVIDIA CUDA Sparse Matrix library (cuSPARSE) is a highly-optimized
C/CCC library of basic linear algebra subroutines used for handling sparse matrices
on the NVIDIA GPUs. It is freely available as part of the CUDA toolkit and contains
implementations for several sparse matrix formats, including CRS and HYB. All
functions are thread-safe and can be called from many host threads. Moreover, they
are executed asynchronously with respect to the CPU and may return control to the
application on the host before they complete their job.

The SpMV product for matrices in CRS format is handled by a family of
functions cusparse[S,D,C,Z]csrmv, where exactly one of the upper-case
letters in the square brackets must be selected to indicate whether the function
accepts real data in single (S) or double (D) precision or perhaps complex data
in single (C) or double (Z) precision. Each of these functions performs a general
matrix-vector operation

y D ˛� op .A/ � x C ˇ � y;

where x; y are vectors, A is a sparse matrix stored in CRS, ˛; ˇ are some constants,
and op is one of three operators that can modify A: either the identity operator
(op.A/ D A) or the matrix transpose operator (op.A/ D AT), or the conjugate
transpose operator (op.A/ D AH). This operation reduces to the SpMV product for
˛ D 1; ˇ D 0, and op.A/ D A.

110 Z. Koza et al.

Performing the SpMV operation in HYB is a bit more complicated. CuSPARSE
implements HYB in a opaque data type that can only be manipulated by calling
appropriate subroutines. The first step is to create and initialize an internal data
structure by calling cusparseCreateHybMat. Then one has to fill it with data
by converting a matrix from CRS format using an appropriate subroutine from a
cusparse[S,D,C,Z]csr2hyb family. Now it is possible to perform the SpMV
operation by calling a cusparse[S,D,C,Z]hybmv function.

Tests show that NVIDIA HYB often yields better performance than NVIDIA
CRS. However, HYB requires more storage, especially during conversion from CRS
format, as at this stage a matrix is stored in two disjoint representations.

6.2.2 CUSP

CUSP is a CCC template library for sparse linear algebra operations on the
CUDA platform. Its distinguishing feature is a flexible, high-level interface for
manipulating sparse matrices and solving sparse linear systems. CUSP provides
various linear solvers, preconditioners, sparse linear algebra and graph computation
subroutines and can handle matrices in various sparse formats, including COO,
CRS, ELL and HYB. While its SpMV routines are not as efficient as those available
in NVIDIA cuSPARSE, CUSP is an open-source project based on a liberal Apache
2.0 licence, which makes it an excellent starting point for any CUDA-based software
project that exploits sparse linear algebra. The library is available from https://
github.com/cusplibrary.

Listing 6.1 shows an example of how simple and elegant can programming
with CUSP be. This complete program declares a matrix in HYB format, loads its
elements from a file stored in the MatrixMarket file format (*.mtx), allocates and
initializes storage for the input and output vectors, performs the SpMV operation
(cusp::multiply), and finally prints the result out.

Listing 6.1 An SpMV example in CUSP

#include <cusp/hyb_matrix.h>
#include <cusp/multiply.h>
#include <cusp/io/matrix_market.h>
#include <cusp/print.h>

int main()
{

cusp::hyb_matrix<int, float, cusp::device_memory> A;
cusp::io::read_matrix_market_file(A, "1.mtx");
cusp::array1d<float, cusp::device_memory> x(A.num_rows, 1);
cusp::array1d<float, cusp::device_memory> y(A.num_rows, 0);
cusp::multiply(A, x, y);
cusp::print(y);

}

https://github.com/cusplibrary
https://github.com/cusplibrary

6 Sparse Matrix-Vector Product 111

6.2.3 Paralution

Paralution is another open-source C++ library for sparse linear algebra. Its unique
feature is a high-level hardware and software abstraction, which enables its users to
develop a portable software that can be compiled for various hardware accelerator
and software backend configurations, including NVIDIA GPUs (CUDA, OpenCL),
AMD GPUs (OpenCL), Intel Xeon Phi (OpenCL, OpenMP) and multicore CPUs
(OpenMP). The target backend can be set at compile time by defining an appropriate
preprocessor macro: SUPPORT_CUDA, SUPPORT_OCL or SUPPORT_MIC for the
CUDA, OpenCL or Intel Xeon Phi, respectively.

An exemplary Paralution code, a direct counterpart of the program from
Listing 6.1, is presented in Listing 6.2.

Listing 6.2 An SpMV example in Paralution

#include <paralution.hpp>

int main(int argc, char* argv[])
{

paralution::init_paralution();

paralution::LocalMatrix<float> mat;
paralution::LocalVector<float> x, y;

mat.ReadFileMTX("1.mtx");
mat.ConvertToHYB();

x.Allocate("x", mat.get_nrow());
y.Allocate("y", mat.get_nrow());
x.Ones();
y.Zeros();

mat.MoveToAccelerator();
x.MoveToAccelerator();
y.MoveToAccelerator();

mat.Apply(x, &y); // y = A*x

paralution::stop_paralution();
}

As can be seen, the matrix and the vectors are first allocated on the host. The matrix
is read from a file (default format: CRS). Next, its format is converted to HYB. All
the data are then moved to the accelerator, if the library can detect one; otherwise
member functions MoveToAccelerator return immediately. If no accelerator is
attached to the host, the data will remain on the CPU and Paralution will attempt to
use the OpenMP backend (it is also possible to use the Intel MKL library instead).
The SpMV operation is executed with the Apply member function. The library is
available from http://www.paralution.comontheGPL-3licence.

http://www.paralution.com on the GPL-3 licence

112 Z. Koza et al.

6.3 Custom SpMV Kernels

Sometimes the structure of our sparse matrices exhibit some characteristic patterns
or the problems we are solving require that some other operations, besides SpMV,
should be implemented efficiently. In both cases a solution may consist in designing
a special matrix format and writing an appropriate SpMV kernel. Such “custom”
sparse formats are usually derived from simpler ones, especially ELL and CRS.
Below we present CUDA and OpenCL implementations for these two basic formats
and discuss the way these formats (and corresponding SpMV implementations)
could be extended to improve the SpMV eperformance.

6.3.1 SpMV for ELL and ELL-Based Sparse Matrix Formats

As it was already stated, ELL belongs to the most efficient formats for sparse
matrices in which all rows have the same lengths. Moreover, as we shall see, writing
an efficient SpMV implementation for ELL is relatively simple, which makes this
format a good starting point for our further discussion.

6.3.1.1 ELL

Complete SpMV kernels for matrices stored in ELL, written in OpenCL and CUDA,
are shown in Listings 6.3 and 6.4, respectively.

As might be expected, the two implementations share a lot of features. They
both take eight identical arguments: four integers that define the size of the
original matrix (rows, cols), and the size of its ELL representations (ell_rows,
ell_cols) followed by four pointers to 1D arrays that hold the column indices
(col_ind), values (val), input (x) and output (y) vectors. Note that while in
theory ELL holds the values and column indices in dense 2D arrays, in practice they
are implemented as 1D arrays, which leads to instructions like

const int index = i * ell_rows + row;

that transform indices from 2D to 1D representation. Since rows are processed by
individual threads, this formula ensures that all accesses to the output vector (y),
matrix values (val) and column indices (col_ind) are fully coalesced provided
that ell_rows is a multiply of the warp size. This, in turn, explains why the
number of rows in the internal ELL representation need not be equal to the number
of rows in the matrix and must be passed as a separate argument.

The bodies of the OpenCL and CUDA implementations are almost identical,
the main difference being the mapping of a current thread id into a matrix row. In
OpenCL this is achieved by calling get_global_id, whereas CUDA utilizes a
more cumbersome method

const int row = blockDim.x * (gridDim.x * blockIdx.y + blockIdx.x) + threadIdx.x;

6 Sparse Matrix-Vector Product 113

Listing 6.3 An OpenCL kernel for ELL

1 #pragma OPENCL EXTENSION \
2 cl_khr_fp64 : enable
3 #define T double
4

5 __kernel void ell_spmv_d(
6 const int rows,
7 const int cols,
8 const int ell_rows,
9 const int ell_cols,

10 __global const int *col_ind,
11 __global const T *val,
12 __global const T *x,
13 __global T *y)
14 {
15 const int row = get_global_id(0);
16

17

18 if (row >= rows)
19 return;
20

21 T sum = (T)0;
22 for (int i=0; i<ell_cols; ++i)
23 {
24 const int index = i * ell_rows + row;
25 const int column = col_ind[index];
26 if (column >= 0)
27 sum += val[index] * x[column];
28 }
29

30 y[row] = sum;
31 }

Listing 6.4 A CUDA kernel for ELL

template <typename T, size_t BLOCK_SIZE>
__launch_bounds__(BLOCK_SIZE,1)

__global__ void ell_spmv(
const int rows,
const int cols,
const int ell_rows,
const int ell_cols,
const int * __restrict__ col_ind,
const T * __restrict__ val,
const T * __restrict__ x,

T * __restrict__ y)
{

const int row = blockDim.x * (gridDim.x *
blockIdx.y + blockIdx.x) + threadIdx.x;

if (row >= rows)
return;

T sum = (T)0;
for (int i = 0; i < ell_cols; ++i)
{

const int index = i * ell_rows + row;
const int column = col_ind[index];
if (column >= 0)

sum += val[index] * LOAD(x[column]);
}

y[row] = sum;
}

which contains a typical expression for a thread id in CUDA kernels invoked on
2D grids of thread blocks. Some implementations, e.g., CUSP, use 1D grids with a
simplified expression for the thread id,

const int thread_id = blockDim.x * blockIdx.x + threadIdx.x;

This, however, brings about a problem on pre-Kepler architectures, where the
maximum number of threads that can be launched in a 1D grid configuration is
limited to �226 � 6:7 � 107. If matrices with a larger number of rows are to be
processed by the SpMV kernel, the implementation must be modified to allow a
thread to process several matrix rows (see the CUSP source code for details).

The differences between OpenCL and CUDA versions are mostly technical.
An important advantage of CUDA is that it fully supports C++ templates. This
facilitates writing a generic code that can be used for single or double precision
kernels. In contrast to this, OpenCL requires that a separate function be written
for each data type. Listing 6.4 shows also how template arguments can be used in
CUDA to pass to the compiler some additional bits of information to help it optimize
the code. Function qualifier __launch_bounds__(BLOCK_SIZE,1) asserts
that the kernel will never be launched with more than BLOCK_SIZE threads
per block, which the compiler can use to optimize the register usage. Another
interesting feature of the CUDA code is that all the pointers are marked with the
__restrict__ qualifier to assert to the compiler that the pointers are not aliased

114 Z. Koza et al.

and writing through y will never overwrite elements of other arrays. This helps
the compiler to cache the read-only data (pointed to by const pointers) in the
read-only data cache introduced in devices of CUDA compute capability � 3:5.
We may also explicitly demand that some data be fetched via this cache using the
__ldg function. In Listing 6.4 we do it through a macro LOAD, which is defined in
Listing 6.5.

Listing 6.5 A macro to speed up loading of read-only data on the newest CUDA-capable hardware

#if __CUDA_ARCH__ < 350
define LOAD(x) x
#else
define LOAD(x) __ldg(&x)
#endif

6.3.1.2 ELL-Based Formats

ELL is a great starting point for devising new sparse matrix formats tailored to our
needs. Here we only list several extensions of ELL that were recently examined in
the context of GPUs. The details can be found in the original research papers.

– ELL-R: This is ELL with an additional 1D array that stores the actual matrix row
lengths.

– ELLR-T: This is ELL-R in which a warp processes w=T rows, where w is a warp
size and T D 1; 2; 4; : : : ;w.

– Sliced ELL: The matrix is partitioned into strips of S adjacent rows, and each
strip is stored in ELL. Further performance improvement can be achieved by
reordering matrix rows according to their length. For S D 1 this ELL-based
format reduces to CRS.

– Sliced ELLR-T: The matrix is partitioned into slices and each slice is stored in
ELLR-T.

6.3.2 SpMV for CRS and CRS-Based Sparse Matrix Formats

While GPU-oriented extensions of ELL focus on reducing its storage overhead,
CRS-based formats concentrate on mitigating problems with thread divergence and
memory access coalescence. Writing an efficient SpMV kernel for vector architec-
tures, like GPUs, is more challenging if the matrix is stored in CRS. However, as we
shall see, CRS-based kernels can compete with or even surpass ELL-based kernels.
To further improve CRS kernels, some extensions were suggested, i.e.:

– CRS SIC (CRS with segmented interleave combination) format: The matrix is
partitioned into many strips of a constant height h � 2 and the matrix values are
interleaved within each strip, with zero-padding of shorter rows. For example, if
h D 2 and the two rows in a strip have the nonzero values Œ6; 4; 2� and Œ1; 5; 3; 7�,

6 Sparse Matrix-Vector Product 115

they are interleaved to form a “longer row” Œ6; 1; 4; 5; 2; 3; 0; 7�. These “longer
rows” are then stored in CRS. To reduce zero padding and work imbalance, the
matrix is reordered according to row lengths and may be further partitioned into
several segments containing rows with approximately equal lengths. A separate
CRS SIC kernel is then launched for each segment. Implementation of the SpMV
product for CSR SIC is thus quite complex.

– CMRS (compressed multi-row storage) format: The matrix is partitioned into
strips of hight h. Strips are stored in CRS. An additional array is then used to
identify the actual row index within a strip.

Below we present in a greater detail CUDA implementations of the SpMV kernel
for the CRS and CMRS formats.

6.3.2.1 CRS

One of the problems in designing SpMV kernels for CRS format is how to map GPU
threads into matrix rows. Listing 6.6 shows a “vector” implementation in which each
matrix row is processed by all threads in a corresponding warp.

The kernel begins with a definition of a shared memory array shared. This
array is marked with the volatile keyword to inform the compiler that the array
will be used as a communication vehicle between threads of a block so that the
compiler should never buffer its elements in registers. The size of the array is equal
to the number of threads in a block of threads plus WARP_SIZE/2 (D16) additional
elements to avoid buffer overrun. Here WARP_SIZE has of course the same value as
that in CUDA’s warpSize register, but the latter cannot be used as a compile-time
constant.

The expression for the thread id,

const int thread_id = blockDim.x * blockIdx.x + threadIdx.x;

is written with the assumption that the kernel will be launched in a 1D grid
configuration. This implies that a warp may be forced to process more than one
matrix row on devices of cc < 3:5, which explains the outer for loop that runs
over all rows assigned to the current warp. However, there is a deeper thought
behind the outer loop: an attempt to balance warp load. The implementation assumes
that a fixed number of warps has been launched that persist over the duration of
the computation. This approach tends to even out moderate imbalances in per-row
workload related to the variability of the matrix row lengths. Another strategy to
reduce work imbalance is to use small, but not too small blocks. Tests show that
BLOCKSIZE D 128 is a good choice for modern NVIDIA devices.

Each thread accumulates the partial sum it has been assigned to compute and
stores it in register sum, which is private to a thread. Once the whole row has been
processed, all threads in the warp use the shared memory buffer shared to reduce
these values to the actual sum, which is then written to the output vector y. Since
they work in parallel, it suffices to perform only 5 instruction to work out the sum of

116 Z. Koza et al.

Listing 6.6 A CUDA SpMV kernel for CRS

template<typename T, int BLOCK_SIZE = 128>
__launch_bounds__(BLOCK_SIZE,1)
__global__ void spmv_crs(const int * __restrict__ row_ptr,

const int * __restrict__ col_ind,
5 const T * __restrict__ val,

const T * __restrict__ x,
T * __restrict__ y,
const int rows)

{
10 const int WARP_SIZE = 32;

__shared__ volatile T shared[BLOCK_SIZE + WARP_SIZE/2];

const int thread_id = blockDim.x * blockIdx.x + threadIdx.x;
const int warp_id = thread_id / WARP_SIZE;

15 const int thread_lane = threadIdx.x % WARP_SIZE;
const int num_warps = ((blockDim.x + WARP_SIZE � 1) / WARP_SIZE) * gridDim.x;

for(int row = warp_id; row < rows; row += num_warps)
{

20 const int row_start = row_ptr[row];
const int row_end = row_ptr[row+1];
T sum = T(0);
for(int j = row_start + thread_lane; j < row_end; j += warpSize)

sum += val[j] * LOAD(x[col_ind[j]);
25

shared[threadIdx.x] = sum;
shared[threadIdx.x] = sum += shared[threadIdx.x + 16];
shared[threadIdx.x] = sum += shared[threadIdx.x + 8];
shared[threadIdx.x] = sum += shared[threadIdx.x + 4];

30 shared[threadIdx.x] = sum += shared[threadIdx.x + 2];
sum += shared[threadIdx.x + 1];

if (thread_lane == 0)
y[row] = sum;

35 }
}

32 numbers. Note that the parallel reduction code in Listing 6.6 explicitly assumes
that the warp size is 32, which may change in future GPU architectures.

Listing 6.6 shows only a basic implementation of the “vector” CRS kernel. It
can be still improved by several techniques, at the cost of increased complexity. For
example, the CUSP library can virtually divide each warp into 2, 4, 8 or 16 smaller
parts and assign them to different rows. This can improve the performance for
matrices with short rows. Another technique, applicable for matrices with long rows,
is to first process the unaligned part of each row to ensure fully coalesced accesses
for the remaining part. It is also possible to speed up the parallel reduction by using
shuffle instructions introduced in CUDA-capable devices of compute capability
� 3:5. These instructions allow to exchange data between the threads of a warp
directly, bypassing the shared memory.

6 Sparse Matrix-Vector Product 117

6.3.2.2 CMRS: A CRS-Based Format for Multi-Row Matrix Processing

The main drawback of the CRS SpMV kernel discussed in Sect. 6.3.2.1 is its low
performance for matrices with relatively short rows. A natural solution to this
problem is to group some rows into strips and process them in parallel, which is the
key idea behind compressed multi-row storage (CMRS). In Fig. 6.2 an exemplary
3 � 3 matrix is encoded both in CRS and CMRS.

BA
C

D E

20 1

0

1

2

CRS

A
B
C
D
E

0
1
1
0
2

0
2
3
5

row 1

CMRS

A
B
C
D
E

0
1
1
0
2

0
3
5

0
0
1
0
0

row 2

row 3

0

1

2

3

4

5

strip 1
0

1

2

3

4

5

strip 2

Fig. 6.2 A simple matrix encoded in CRS and CMRS formats, the latter with strip height D 2

CMRS uses four arrays to encode the sparse matrix, the first two of them being
exactly the same as in CRS, while two arrays are specific to CMRS:

Val—a list of non-zero elements;
ColInd—column indices of all entries in Val;
StripPtr—locates the first elements of each strip (indices into Val);
RowInStrip—locates rows within a strip (for each element in Val).

If we assume the constant height of all strips (denoted by height or HEIGHT
in the following text) then the number of strips is equal to drows=heighte (the
smallest integer greater than or equal to the ratio rows=height). As an example,
let us consider matrix OM introduced in Sect. 6.1.1. Assuming height D 2, the
CMRS representation of OM reads:

Val D Œ 1 2 3 4 5 6 7 8 9 10 � ;

ColInd D Œ 0 3 1 4 2 4 2 3 4 4 � ;

StripPtr D Œ 0 4 9 10 � ;

RowInStrip D Œ 0 0 1 1 0 0 1 1 1 0 � :

Conversion between the CRS and CMRS formats is trivial and easy to parallelize.
In particular, StripPtrŒj� D RowPtrŒj � height� for j < strips and

118 Z. Koza et al.

StripPtrŒstrips� D nnz, whereas RowInStrip[k] is the remainder of the
row number divided by height. It is also clear that both formats are equivalent if
height D 1, hence CMRS can be regarded as a generalization of the CRS format.

By introducing strips, we enlarged the number of contiguous data items pro-
cessed by a warp at the cost of an extra array, without any need for zero-padding
or row permutation. This extra array turns out to be a minor problem: it contains
small integers, as height is assumed to be �16. Consequently, they can be stored
on 4 bits of array ColInd—the remaining 28 bits are enough to identify column
indices of the matrices that fit into 12 GB of modern GPUs. The main problem with
CMRS is that while in the CRS kernel shown in Listing 6.6 we reserved in the
shared memory only one word (float or double) per thread, with CMRS one should
reserve height such words per thread. As the size of the shared memory is limited,
for large height this will reduce the occupancy (i.e., the ratio of the number of
resident threads to the maximum number of resident threads) and, consequently,
kernel efficiency. For the Kepler-class architecture this sets the upper bound for
height to 4. This problem can be mitigated by the fact that array RowInStrip
allows to dynamically assign threads to rows. In other words, the order of the items
within a strip is essentially arbitrary. In particular, we can try to order them in such
a way that each warp will be assigned to process, at a given time, at most M values
from the same matrix row, where 1 � M � WARPSIZE, all arranged in a contiguous
manner. It turns out that for such arrangement of data items within a strip, the shared
memory per thread is proportional to M. Fortunately, for most sparse matrices from
real applications, one can assume M = 8, a number far smaller than the warp size.
This allows to increase HEIGHT to 16. For most other matrices for which M = 8
cannot be achieved, the solution is. . . zero padding. In a vast majority of cases the
resulting storage overhead is negligible. With height D 16 the mean number of
nonzeroes per strip is 16 times larger than for CRS, usually &100, and hence we
can apply one more optimization: pad each strip with zeroes to make sure its length
is a multiply of the warp size. This final optimization ensures the full coalescence
of memory accesses to the matrix data at a price of an acceptable additional storage
overhead (usually below 10 %).

The SpMV kernel for the CMRS format is shown in Listing 6.7. Its general
structure resembles that of the CRS “vector” kernel (Listing 6.6): after the current
thread identifies itself, a big for loop is executed that runs over several different
strips and consists of three main parts: the inner for loop running over all elements
of a given strip, the parallel reduction and, finally, the storage of the results. For
convenience, the shared memory buffer is allocated dynamically at run time, as its
size depends on various parameters. A warp has an access to part of the shared
memory buffer via ptr pointer. As this buffer is local to a warp, no explicit
synchronization of different warps is necessary, which allows for massively parallel
processing of strips.

The inner loop is a bit more complicated, as the row and column indices have
to be decoded from a single value stored in col_ind. At this point the row index
(r) is local to the strip and its value is between 0 and HEIGHT � 1. The parallel
reduction is modified to account for the fact that now M � HEIGHT values must be

6 Sparse Matrix-Vector Product 119

reduced to HEIGHT values. Finally, the results are written out in a coalesced way
by HEIGHT contiguous threads.

Tests performed on NVIDIA K20M GPU in double precision show that the
speed-up of the CMRS kernel over both NVIDIA HYB and NVIDIA CRS can be
as high as three-fold, although for some matrices the former implementation yields
the shortest SpMV times—there is no such a thing as a single, universal SpMV
kernel for all sparse matrices. The speedup over the “vector” CRS kernel shown in
Listing 6.6 turns out to be the largest for matrices with short rows and can be as high
as ten-fold (!).

6.4 Further Reading

Perhaps the best way to improve one’s skills in designing SpMV kernels is to consult
the source codes of high quality open-source GPU libraries for sparse linear algebra.
These include:

– CUSP, http://cusplibrary.github.io (CUDA)
– Paralution, http://www.paralution.com (CUDA, OpenCL)

A thorough presentation of many sparse matrix formats and SpMV optimization
techniques on traditional, cache-based processor designs can be found in Vuduc’s
thesis [11]. As for SpMV on GPUs, the primary source of information is a paper by
Bell and Garland [1], which discusses the implementations of several SpMV kernels
that can be found in the CUSP library. The ELL-R format in the context of SpMV on
GPUs was discussed by Vázquez et al. [9]. For Sliced-ELL see Monakov et al. [6],
for ELLR-T see Vázquez et al. [10], for Sliced ELLR-T see Dziekonski et al. [3],
for CRS-T see Yoshizawa and Takahashi [13], and for CSR SIC see Feng et al. [4].
Blocked sparse formats are a separate class of matrix formats not covered here, see
Choi et al. [2] for an example of such a format and the corresponding SpMV kernel.

Listing 6.7 A CUDA SpMV kernel for matrices stored in CMRS. For conciseness HEIGHT = 16
and 2 � M � 8 is assumed

template<typename T, int M>
__global__ void
cmrs_multiply(const int * __restrict__ strip_ptr,

const int * __restrict__ col_ind,
5 const T * __restrict__ val,

const T * __restrict__ x,
T * __restrict__ y,

int rows)
{

10 assert (M >=2 && M <=8);
const int CMRS_BITS = 4;
const int CMRS_MASK = (1 << CMRS_BITS) � 1; // 15
const int WARP_SIZE = 32;
const int HEIGHT = 16; // parts of the code below rely implicitly on this particular value

15 const int asize = HEIGHT*M; // size of warp�owned array in shared memory

// shared memory is assigned dynamically at kernel invocation
extern __shared__ char cdata[];

http://cusplibrary.github.io
http://www.paralution.com

120 Z. Koza et al.

// the buffer in shared memory actually contains T’s
20 T volatile * sdata = reinterpret_cast<T volatile *>(cdata);

// ptr points to the warp�owned buffer in shared memory
T volatile * ptr = &sdata[(threadIdx.x / WARP_SIZE)*asize];

const int thread_id = blockDim.x * blockIdx.x + threadIdx.x;
25 const int warp_id = thread_id / WARP_SIZE;

const int thread_lane = threadIdx.x % WARP_SIZE;
const int num_warps = ((blockDim.x + WARP_SIZE � 1) / WARP_SIZE) * gridDim.x;

for(int strip = warp_id; strip*HEIGHT < rows; strip += num_warps)
30 {

// let’s zero the buffer local to the current warp
#pragma unroll

for(int k = 0; k < M/2; k++)
ptr[thread_lane + WARP_SIZE*k] = 0;

35

const int strip_start = strip_ptr[strip];
const int strip_end = strip_ptr[strip + 1];
for(int j = strip_start + thread_lane; j < strip_end; j += WARP_SIZE)
{

40 int c = col_ind[j];
int r = c & CMRS_MASK;
c >>= CMRS_BITS;
r += HEIGHT*(thread_lane % M);
ptr[r] += LOAD(x[c]) * val[j];

45 }

// Now the parallel reduction of the data pointed by ptr.
T z = 0;
if (M == 2)

50 z = ptr[thread_lane];
if (M > 4)
{

ptr[thread_lane] += ptr[thread_lane + HEIGHT*4];
ptr[thread_lane + 32] += ptr[thread_lane + HEIGHT*4 + 32];

55 }
if (M > 2)

z = ptr[thread_lane] += ptr[thread_lane + HEIGHT*2];
if (thread_lane < HEIGHT)

z += ptr[thread_lane + HEIGHT];
60

// write the results to y
int row = strip*HEIGHT + thread_lane;
if (thread_lane < HEIGHT && row < rows)

y[row] = z;
65 }

}

Special optimization techniques necessary for sparse matrices with a power-law
distribution of row lengths were studied by Yang et al. [12]. Optimization techniques
for Kepler-class GPUs were discussed by Mukunoki and Takahashi [7]. Autotuning
of the parameters for the SpMV kernels on GPUs was discussed, for example, by
Choi et al. [2] and Su and Keutzer [8]. Finally, the CMRS format with two SpMV
implementations was described by Koza et al. [5] and examples of its application
are available at http://speedit.vratis.com.

http://speedit.vratis.com

6 Sparse Matrix-Vector Product 121

References

1. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on throughput-
oriented processors. In: SC’09: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, pp. 1–11. ACM, New York (2009). doi:http://
doi.acm.org/10.1145/1654059.1654078

2. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-vector mul-
tiply on GPUs. SIGPLAN Not. 45(5), 115–126 (2010). http://doi.acm.org/10.1145/1837853.
1693471

3. Dziekonski, A., Lamecki, A., Mrozowski, M.: A memory efficient and fast sparse matrix vector
product on a GPU. Prog. Electromagn. Res. 116, 49–63 (2011). http://www.jpier.org/PIER/
pier116/03.11031607.pdf

4. Feng, X., Jin, H., Zheng, R., Hu, K., Zeng, J., Shao, Z.: Optimization of sparse matrix-vector
multiplication with variant CSR on GPUs. In: 2011 IEEE 17th International Conference on
Parallel and Distributed Systems (ICPADS), pp. 165–172. IEEE, Tainan (2011)

5. Koza, Z., Matyka, M., Szkoda, S., Mirosław, Ł.: Compressed multirow storage format for
sparse matrices on graphics processing units. SIAM J. Sci. Comput. 36(2), 219–239 (2014).
http://dx.doi.org/10.1137/120900216

6. Monakov, A., Lokhmotov, A., Avetisyan, A.: Automatically tuning sparse matrix-vector
multiplication for GPU architectures. In: Patt, Y., Foglia, P., Duesterwald, E., Faraboschi, P.,
Martorell, X. (eds.) High Performance Embedded Architectures and Compilers. Lecture Notes
in Computer Science, vol. 5952, pp. 111–125. Springer, Heidelberg (2010). http://dx.doi.org/
10.1007/978-3-642-11515-8_10.

7. Mukunoki, D., Takahashi, D.: Optimization of sparse matrix-vector multiplication for CRS
format on NVIDIA Kepler architecture GPUs. In: Murgante, B., Misra, S., Carlini, M., Torre,
C.M., Nguyen, H.Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) Computational Science and
Its Applications – ICCSA 2013. Lecture Notes in Computer Science, vol. 7975, pp. 211–223.
Springer, Heidelberg (2013).http://dx.doi.org/10.1007/978-3-642-39640-3_15

8. Su, B.Y., Keutzer, K.: clSpMV: a cross-platform opencl spmv framework on GPUs. In:
Proceedings of the International Conference on Supercomputing, ICS ’12 (2012)

9. Vázquez, F., Garzón, E.M., Martınez, J.A., Fernández, J.: Accelerating sparse matrix vector
product with GPUs. In: Proceedings of the International Conference on Computational and
Mathematical Methods in Science and Engineering (CMMSE 2009), pp. 1081–1092. CMMSE,
Gijón (2009)

10. Vázquez, F., Fernández, J.J., Garzón, E.M.: Automatic tuning of the sparse matrix vector
product on GPUs based on the ELLR-T approach. Parallel Comput. 38(8), 408–420
(2012). doi:10.1016/j.parco.2011.08.003. http://www.sciencedirect.com/science/article/pii/
S0167819111001050

11. Vuduc, R.W.: Automatic performance tuning of sparse matrix kernels. Ph.D. thesis, University
of California (2003)

12. Yang, X., Parthasarathy, S., Sadayappan, P.: Fast sparse matrix-vector multiplication on GPUs:
implications for graph mining. Proc. VLDB Endowment 4(4), 231–242 (2011)

13. Yoshizawa, H., Takahashi, D.: Automatic tuning of sparse matrix-vector multiplication for
CRS format on GPUs. In: 2012 IEEE 15th International Conference on Computational Science
and Engineering, pp. 130–136 (2012). doi:http://doi.ieeecomputersociety.org/10.1109/ICCSE.
2012.28

http://doi.acm.org/10.1145/1654059.1654078
http://doi.acm.org/10.1145/1654059.1654078
http://doi.acm.org/10.1145/1837853.1693471
http://doi.acm.org/10.1145/1837853.1693471
http://www.jpier.org/PIER/pier116/03.11031607.pdf
http://www.jpier.org/PIER/pier116/03.11031607.pdf
http://dx.doi.org/10.1137/120900216
http://dx.doi.org/10.1007/978-3-642-11515-8_10
http://dx.doi.org/10.1007/978-3-642-11515-8_10
http://dx.doi.org/10.1007/978-3-642-39640-3_15
http://www.sciencedirect.com/science/article/pii/S0167819111001050
http://www.sciencedirect.com/science/article/pii/S0167819111001050
http://doi.ieeecomputersociety.org/10.1109/ICCSE.2012.28
http://doi.ieeecomputersociety.org/10.1109/ICCSE.2012.28

Part II
Differential Equations

Chapter 7
Solving Ordinary Differential Equations
on GPUs

Karsten Ahnert, Denis Demidov, and Mario Mulansky

7.1 Introduction

One of the most common problems encountered in Physics, Chemistry, Biology,
but also Engineering or Social Sciences, is to find the solution of an initial value
problem (IVP) of an ordinary differential equation (ODE). In fact, many physical
laws are written in terms of ODEs, for example the whole classical mechanics, but
ODEs also emerge from discretization of partial differential equations (PDEs) or
in models of granular systems or when studying networks of interacting neurons.
In the most cases one faces ODEs that are too complicated to be solved with
analytic methods and one has to rely on numerical techniques to find at least an
approximate solution. Of course, there exists a wide range of numerical algorithms
to find such solutions of IVPs of ODEs. An introduction to both the mathematical
background and the numerical implementation can be found in the textbooks from
Hairer, Nørsett and Wanner [14,15]. The standard work for numerical programming,
the “Numerical Recipes” [29] also contains detailed sections on solving ODEs.

K. Ahnert (�)
Ambrosys GmbH, Albert-Einstein-Str. 1-5, 14469 Potsdam, Germany
e-mail: karsten.ahnert@gmx.de

D. Demidov
Kazan Branch of Joint Supercomputer Center, Russian Academy of Sciences,
Lobachevsky st. 2/31, 420011 Kazan, Russia
e-mail: dennis.demidov@gmail.com

M. Mulansky
Max-Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38,
01187 Dresden, Germany

TU-Dresden, Institute for Theoretical Physics, Zellescher Weg 17, 01069 Dresden, Germany
e-mail: mulansky@pks.mpg.de

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__7, © Springer International Publishing Switzerland 2014

125

mailto:karsten.ahnert@gmx.de
mailto:dennis.demidov@gmail.com
mailto:mulansky@pks.mpg.de

126 K. Ahnert et al.

There are also several special classes of ODEs that require specific numerical
methods, e.g. the Hamiltonian systems in physics which are typically solved using
symplectic routines [21].

Obviously, there is a variety of numerical tools and libraries dedicated to solving
ODEs. All mathematical software packages, like Matlab, Maple, Mathematica, or
even R [30, 34] contain routines for integrating ODEs. However, the focus here lies
on the direct implementation of ODE simulations. For this task, one also finds a
vast selection of numerical libraries, typically with Fortran or C/CCC bindings.
Most prominent are probably the codes shipped with the “Numerical Recipes”
book [29] containing several sophisticated explicit and implicit routines. The GNU
scientific library (GSL) also provides ODE functionality [10], and finally the
SUNDIALS suite [16] offers a modern implementation of all important algorithms.
Unfortunately, none of those libraries supports GPU devices. However, there exists
a highly flexible CCC library dedicated to ODEs: Boost.odeint,1 which is designed
in such a generic way that the algorithms are implemented completely independent
from the computational backend. Thus, by providing a computational backend that
employs GPUs one immediately gets a GPU implementation of the ODE solver.
Boost.odeint already includes several backends for GPU computations: for the
NVIDIA CUDA-framework based on the Thrust2 library or the CUDA MTL43 [8]
and for the OpenCL-framework based on VexCL,4 ViennaCL,5 or Boost.Compute.6

In this text we will show how to implement ODE algorithms in such a generic way
that separates the computational backend and thus greatly simplifies the portability
to GPUs. Furthermore, we present two such backends, based on CUDA and OpenCL
and develop several example simulations using these ODE codes. However, the
most difficult part when writing an ODE simulation is the implementation of the
right-hand-side (RHS) of the ODE, as it will be explained later. Hence, although
Boost.odeint provides all the functionality to find a numerical solution of a given
ODE, implementing the RHS of the ODE remains a non-trivial task.

The examples presented later will use modern CCC techniques and thus require
the reader to be familiar with several advanced CCC concepts, e.g. we will
make heavy use of templates to write generic code. Moreover, knowledge of
the CCC Standard Library is also useful, specifically containers, iterators and
algorithms. For the ODE algorithms implementation we make use of the CCC03
standard only, but in some of the examples we employ the new CCC11 and even
CCC14 abilities.

In the following sections we will give a short introduction to ODEs and the
basic numerical schemes for finding approximate solutions (Sect. 7.2), followed by

1http://www.odeint.com.
2http://thrust.github.com.
3http://www.simunova.com/gpu_mtl4.
4https://github.com/ddemidov/vexcl.
5http://viennacl.sourceforge.net/.
6https://github.com/kylelutz/compute.

http://www.odeint.com
http://thrust.github.com
http://www.simunova.com/gpu_mtl4
https://github.com/ddemidov/vexcl
http://viennacl.sourceforge.net/
https://github.com/kylelutz/compute

7 Solving Ordinary Differential Equations on GPUs 127

a description of the generic implementation of those algorithms in Sect. 7.3. Then
in Sect. 7.4 we will specifically describe how to use the various GPU backends and
how they are implemented. The Boost.odeint library is introduced in Sect. 7.5 and
Sect. 7.6 contains several examples on how to efficiently implement the RHS of
different ODE problems together with a discussion of the performance implications
of possible implementations. Finally, Sect. 7.7 contains a short summary and
conclusions.

7.2 Numerical Schemes

Before describing the generic implementation of ODE solvers and how to adapt
them for GPU usage we will give a short introduction to ODEs and some mathe-
matical background about the numerical schemes. This is mainly to familiarize the
reader with our notation; for a more detailed description of the mathematics behind
ODE integration we refer to standard textbooks, e.g. [14, 15].

7.2.1 Ordinary Differential Equations

Generally, an ODE is an equation containing a function x.t/ of an independent
variable t and its derivatives x0, x00; : : : :

F.x; x0; x00; : : : ; x.n/; t/ D 0: (7.1)

This is the most general form, including implicit ODEs. However, we will here only
consider explicit ODEs, which are of the form x.n/ D f .x; x0; x00; : : : ; x.n�1// and
are much simpler to be addressed numerically. The highest derivative n that appears
in the ODE is called the order of the ODE. But any ODE of order n can be easily
transformed into an n-dimensional ODE of first order. Therefore, it is sufficient to
consider only first order differential equations where n D 1. The numerical routines
presented later will all deal with initial value problems (IVP) where additionally to
the ODE one has also given the value for x at a starting point x.t D t0/ D x0. Thus,
the mathematical formulation of the problem that will be numerically addressed
throughout the following pages is:

d

dt
x.t/ D f.x.t/; t/; x.t D t0/ D x0: (7.2)

Here, we use bold face x to indicate a possible vector character. Typically, the ODE
is defined for real-valued variables, i.e. x 2 R

N , but it is also possible to consider
complex valued ODEs where x 2 C

N . The function f.x; t/ is called the right-hand-
side (RHS) of the ODE. The most simple physical example for an ODE is probably

128 K. Ahnert et al.

the harmonic oscillator, e.g. a point mass connected to a spring. Newton’s equation
of motion for such a system is:

d2

dt2
q.t/ D �!20q.t/; (7.3)

where q.t/ denotes the position of the mass and !0 is the oscillation frequency, a
function of the mass m and the stiffness of the spring k: !0 D p

k=m. This can be
brought into form (7.2) by introducing p D dq=dt , using x D .q; p/T and defining
some initial conditions, e.g. q.0/ D q0, p.0/ D 0. Using the short-hand Px D dx=dt
and omitting explicit time dependencies we get:

Px D f.x/ D
�

p

�!20q
	
; x.0/ D

�
q0

0

	
: (7.4)

Note, that f in Eq. (7.4) does not depend on the variable t , which makes Eq. (7.4) an
autonomous ODE. Also note that in this example the independent variable t denotes
the time and x a point in phase spaces, hence the solution x.t/ is the trajectory of
the harmonic oscillator. This is a typical situation in physical ODEs and the reason
behind our choice of variables t and x.7

For the harmonic oscillator in Eq. (7.4), one can easily find an analytic solution
of the IVP: q.t/ D q0 cos!0t and p.t/ D �q0!0 sin.!0t/. For more complicated,
non-linear ODEs it is often impossible to find an analytic solution and one has to
employ numerical methods to at least find an approximate solution. One specific
example are systems exhibiting chaotic dynamics [26], where the trajectories can
not be described in terms of analytic functions. One of the first models where this
has been explored is the so-called Lorenz-system [35], a three-dimensional ODE
given by the following equations for x D .x1; x2; x3/

T 2 R
3:

Px1 D 	.x2 � x1/

Px2 D Rx1 � x2 � x1x3

Px3 D x1x2 � bx3;

(7.5)

where 	; R; b 2 R are parameters of the system. Although the solution might be
impossible to find analytically, there are mathematical proofs about its existence and
uniqueness under some conditions on the RHS f, e.g. the Picard-Lindelöf theorem
which requires f to be Lipschitz continuous [37]. Provided that this condition is
fulfilled and a unique solution does exist, as it is the case for almost all practical
problems, one can apply a numerical algorithm to find an approximate solution.

7In Mathematics, the independent variable is often called x and the function is y.x/.

7 Solving Ordinary Differential Equations on GPUs 129

7.2.2 Runge-Kutta Schemes

The most common general-purpose schemes for solving initial value problems of
ordinary differential equations are the so-called Runge-Kutta (RK) methods [14].
We will focus on the explicit RK-schemes as those are easier to implement and
well-suited for GPUs. They are a family of iterative one-step methods that rely on
a temporal discretization to compute an approximate solution of the IVP. Temporal
discretization means that the approximate solution is computed at time points tn.
So we use xn for the numerical approximation of the solution x.tn/ at time tn. In
the simplest, but most frequently used case of an equidistant discretization with a
constant step size
t , one writes for the numerical solution:

xn � x.tn/; with tn D t0 C n �
t: (7.6)

The approximate points xn are obtained sequentially using a numerical algorithm
that can in the most general form be written as:

xnC1 D F
t .xn/: (7.7)

The mapping F
t here represents the numerical algorithm, i.e. the Runge-Kutta
scheme, that performs one iteration from xn to xnC1 with the time step
t . The
numerical scheme is said to have the orderm if the solution it generates is exact up
to some error of ordermC 1:

x1 D x.t1/CO.
tmC1/; (7.8)

where x.t1/ here is the exact solution of the ODE at t1 starting from the initial
condition x.t0/ D x0. Hence,m denotes the order of accuracy of a single step of the
scheme.

The most basic numerical algorithm to compute such a discrete trajectory
x1; x2; : : : is the Euler scheme, where F
t .xn/ D xn C
t � f.xn; tn/, which means
the next approximation is obtained from the current one by:

xnC1 D xn C
t � f.xn; tn/: (7.9)

This scheme has no practical relevance because it only offers accuracy of order
m D 1. A higher order can be reached by introducing intermediate points and
thus dividing one step into several stages. For example, the famous “RK4” scheme,
sometimes also called the Runge-Kutta method, has s D 4 stages and also
orderm D 4. It is defined as follows:

130 K. Ahnert et al.

Table 7.1 Generic Butcher
Tableau with s stages

c1
c2 a2;1
c3 a3;1 a3;2
:
:
:

:
:
:

: : :

cs as;1 as;2 : : : cs;s�1

b1 b2 : : : bs�1 bs

Table 7.2 Butcher tableau
with coefficients for the RK4
method

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

xnC1 D xn C 1

6

t.k1 C 2k2 C 2k3 C k4/; with

k1 D f.xn; tn/;

k2 D f
�

xn C
t

2
k1; tn C
t

2

	
;

k3 D f
�

xn C
t

2
k2; tn C
t

2

	
;

k4 D f .xn C
t k3; tn C
t/ :

(7.10)

Note, how the subsequent computations of the intermediate results ki depend on the
results of the previous stages kj<i .

More generally, a Runge-Kutta scheme is defined by its number of stages s and a
set of parameters c1 : : : cs; a21; a31; a32; : : : ; ass�1 and b1 : : : bs . The algorithm to
calculate the next approximation xnC1 is then given by:

xnC1 D xn C
t

sX
iD1

biki ; where

ki D f .xn C
t

i�1X
jD1

aij kj ; tn C ci
t/:

(7.11)

The parameter sets ai;j , bi and ci define the so-called Butcher tableau (see Tables 7.1
and 7.2) and fully describe the specific Runge-Kutta scheme. The Butcher tableau
for the RK4 scheme above is given in Table 7.2. Note, that the above schemes have
a lower triangular structure. For tableaus with entries in the upper right region the
method becomes an implicit RK-scheme and can not easily be implemented.

7 Solving Ordinary Differential Equations on GPUs 131

Table 7.3 Computational requirements of the Runge-Kutta algorithms

Requirement Representation in CCC Example

Represent mathematical entities Template parameter vector<double>, double
Memory management Function specialization resize<state_type>
Vector iteration Template parameter container_algebra
Elementary operations Template parameter default_operations

7.3 Generic Runge-Kutta Implementation

In this section, we will develop an implementation of the Runge-Kutta schemes
described above. The code will be designed in such a way that it separates the
algorithm from the underlying computations and thus can be easily ported to GPUs.
We will therefore analyze the computational requirements of the Runge-Kutta
algorithms and produce a modularized implementation. In this way, we will be able
to replace, for example, the memory management and the computational backend
with GPU variants and thus obtain a GPU implementation without re-implementing
the algorithm itself. This will allow us to easily use the same code with different
GPU technologies, i.e. CUDA and OpenCL.

7.3.1 Computational Requirements

To analyze the algorithmic parts involved in a Runge-Kutta scheme, we will
start with a straight-forward implementation that does not yet provide any mod-
ularization. Listing 7.1 shows such an implementation for the RK4 algorithm as
given by Eq. (7.10). It defines a class runge_kutta4 that provides a member
function do_step which performs a single RK4 step given a system function
system, the current state x, the current time t and the time step dt. Note how
we use a template parameter System to specify the system function. This gives
us already some flexibility as do_step immediately works with function pointers
and functor object, but also in more complicated cases like generalized functions
objects from std::function or boost::function [3, 12] or even CCC11 lamb-
das. Basically anything that defines a function call operator with the signature
operator()(state_type &x, state_type &k, double t) can be supplied as
system in do_step.

In the following we will extract the computational requirements for the Runge-
Kutta algorithms from the simple implementation in Listing 7.1. First, we need to
define a representation of the dependent variable x. In the runge_kutta4 class a
vector<double> from the Standard Template Library [36] is used for that purpose
(Line 7). After that, we need to define the type of the independent variable t (called
the time_type below). In Listing 7.1 (Line 13) we use double for this purpose.
Then we need to introduce variables for temporary results (Line 38) and allocate

132 K. Ahnert et al.

Listing 7.1 Simple Runge-Kutta4 implementation simple_runge_kutta4.hpp

5 class runge_kutta4 {
6 public:
7 typedef std::vector<double> state_type;
9 runge_kutta4(size_t N)

10 : N(N), x_tmp(N), k1(N), k2(N), k3(N), k4(N) { }
12 template<typename System>
13 void do_step(System system, state_type &x, double t, double dt)
14 {
15 const double dt2 = dt / 2;
16 const double dt3 = dt / 3;
17 const double dt6 = dt / 6;
19 system(x, k1, t);
20 for(size_t i = 0; i < N; ++i)
21 x_tmp[i] = x[i] + dt2 * k1[i];
23 system(x_tmp, k2, t + dt2);
24 for(size_t i = 0 ; i < N; ++i)
25 x_tmp[i] = x[i] + dt2 * k2[i];
27 system(x_tmp, k3, t + dt2);
28 for(size_t i = 0; i < N; ++i)
29 x_tmp[i] = x[i] + dt * k3[i];
31 system(x_tmp, k4, t + dt);
32 for(size_t i = 0; i < N; ++i)
33 x[i] += dt6*k1[i] + dt3*k2[i] + dt3*k3[i] + dt6*k4[i];
34 }
36 private:
37 const size_t N;
38 state_type x_tmp, k1, k2, k3, k4;
39 };

Listing 7.2 Runge-Kutta class with templated types

1 template<
2 class state_type,
3 class value_type = double,
4 class time_type = value_type
5 >
6 class runge_kutta4 {
7 // ...
8 };
9 typedef runge_kutta4< std::vector<double> > rk_stepper;

enough memory for the temporaries, done in the constructor (Line 10). And finally
we have to perform the summation and multiplication, in general operations of the
form:

y D a1x1 C a2x2 C � � � C asxs; (7.12)

7 Solving Ordinary Differential Equations on GPUs 133

where y and xn are of state_type and as are of floating point type, typically
double. Hence, from a mathematical view point, these operations are vector-vector
addition and scalar-vector multiplication. In the runge_kutta4 class above we
specifically perform the iteration over the elements of the state_type and use the
intrinsic operators + and * on those elements which are just double values here.
All the requirements identified above are again listed in Table 7.3. Note how in the
runge_kutta4 class in Listing 7.1 the parts to satisfy these requirements are hard-
coded into the class. If we want to change, for example, the state_type to some
construct that resides on the GPU, we have to completely rewrite the class for a new
state_type, but also to change the memory allocation and the vector operations,
thus rewriting the whole algorithm, e.g. in terms of a new class runge_kutta4_gpu.
In the next section, however, we will present a modularized implementation based
on the requirements identified here, which allows to exchange the fundamental
types, memory allocation and vector computations so that the code can be ported
to GPUs without changing the algorithm itself.

7.3.2 Modularized Design

In the following, we will generalize the basic implementation above by moving
the parts addressing the several requirements out of the runge_kutta4 class and
keeping only the essential algorithm.

We start with the fundamental types used to represent the mathematical objects
in the Runge-Kutta schemes Eq. (7.10). From a computational point of view we
identify three different kinds of objects:

1. The state of the solution at some time x.t/, typically more dimensional and
represented by a vector<double>.

2. The independent variable t , typically the time and represented by a double.
3. Parameters of the Runge-Kutta scheme as given in the Butcher Tableau

(Table 7.2), usually also represented by double values.

The standard way to generalize an algorithm for arbitrary types in CCC is to
introduce template parameters. We will also follow this approach and define three
class template parameters state_type, value_type and time_type. Listing 7.2
shows the skeleton of the new runge_kutta4 class. Note how we use default
template parameters to provide value_type and time_type as double, so for the
most typical case the user only has to specify the state_type, as shown exemplarily
in Line 9. It should be noted that the derivatives might require a representation
different from the state, especially if arithmetic types with dimensions are used, for
example the ones from Boost.Units [33].

Let us now consider the memory allocation. In the basic implementation in
Listing 7.1 this is done in the constructor which therefore requires the system
size. This implementation relies on the existence of a constructor accepting the
numbers of elements N , which is not generic enough because the state_type

134 K. Ahnert et al.

does not need to be a vector anymore, or even a container at all. Therefore we
will change the implementation and introduce a templated helper function resize

that takes care of the resizing and can be specialized by the user for any given
state_type. The result is outlined in Listing 7.3. The resize function here adjusts
the allocated memory of some object out using the size of the given object in.
This is the most flexible way. With this technique the runge_kutta4 class takes
care of the memory automatically, and it works out-of-the-box for all containers
that provide a size and resize member functions. If some other state_type is
employed, the user can implement an overload of the resize function to tell the
runge_kutta4 how to allocate memory. One example could be fixed-size arrays
boost::array<double,N>, which live on the stack and do not require manual
memory allocation. Hence, the resize function would just be empty (and disappear
during the optimization step of the compilation), shown in Lines 7–11 in Listing 7.3.
Note that this implementation already supports the case when the system size
changes during the integration, i.e. if the size of x changes between do_step calls.
However, checking the system size at each step of the algorithm is not necessary
for almost all situations and thus it is a waste of performance. This can be solved
by adding a trivial logic that only calls resize during the first call of do_step (not
shown here for clarity).

Now we arrive at the final and most difficult point: the abstraction of the numer-
ical computation. As seen from the mathematical definition of the Runge-Kutta
scheme in Eq. (7.11), we need to calculate vector-vector sums and scalar-vector
products to perform a Runge-Kutta step. In the simplistic implementation above
(Listing 7.1), this is done by explicit for loops and arithmetic operators + and *. In
our abstraction of this computation, we divide these computations into two distinct
parts: iteration and operation. The first one will be responsible for iterating over
the elements of the involved state types, i.e. it addresses the vector character of
the computation. The code structure that performs these iterations will be called
Algebra. The operation on the other hand represents the computation that is
performed for each element, i.e. within the iteration. The respective code structure
will be called Operation.

We start with the Algebra. For the RK4 algorithm we need to provide two func-
tions that do iteration over three and six container instances. A possible Algebra is
presented in Listing 7.4, where for the sake of clarity only the for_each3 method
is shown.

The iteration is performed in terms of for_each functions that are gathered in
a struct called container_algebra. The for_each functions expect a number
of containers and an operation object as parameters. They simply perform the
iteration over the elements of the containers and execute the given operation on
each of the container’s elements. Here we use a raw hand written for-loop which
requires a size() member function and the []-operator for the given container
types S1,S2. . . . This loop could easily be generalized to use iterators which is the
preferred and recommended way in CCC to iterate over containers. Inside the loop
the functors op are applied to the elements of the containers. Listing 7.5 shows
an exemplary implementation of such operations designed to be used within the
container_algebra above. It consists of functor types organized in a struct

7 Solving Ordinary Differential Equations on GPUs 135

Listing 7.3 Memory allocation

1 template<class state_type>
2 void resize(const state_type &in, state_type &out) {
3 // standard implementation works for containers
4 out.resize(in.size());
5 }
7 // specialization for boost::array
8 template<class T, size_t N>
9 void resize(const boost::array<T, N> &, boost::array<T,N>&) {

10 /* arrays don’t need resizing */
11 }
13 template< ... >
14 class runge_kutta4 {
15 // ...
16 template<class Sys>
17 void do_step(Sys sys, state_type &x, time_type t, time_type~dt)
18 {
19 adjust_size(x);
20 // ...
21 }
23 void adjust_size(const state_type &x) {
24 resize(x, x_tmp);
25 resize(x, k1);
26 resize(x, k2);
27 resize(x, k3);
28 resize(x, k4);
29 }
30 }

Listing 7.4 Example algebra for the RK4 container_algebra.hpp

6 struct container_algebra {
7 template<class S1, class S2, class S3, class Op>
8 static void for_each3(S1 &s1, S2 &s2, S3 &s3, Op op) {
9 const size_t dim = s1.size();

10 for(size_t n = 0; n < dim; ++n)
11 op(s1[n], s2[n], s3[n]);
12 }
20 };

called default_operations. The scale_sum2 works with the for_each3 above,
while the scale_sum5 that interacts with for_each6 is again omitted. Those
functors consist of a number of parameters alpha1,alpha2. . . and a function call
operator that calculates a simple product-sum (Listing 7.5).

With these abstractions we have moved the computational details away from the
algorithm into separate code structures and thus reached a generic implementation
of the RK4 algorithm (shown in Listing 7.6). The runge_kutta4 class got two

136 K. Ahnert et al.

Listing 7.5 Example operations for the RK4 default_operations.hpp

6 struct default_operations {
7 template<class Fac1 = double, class Fac2 = Fac1>
8 struct scale_sum2 {
9 typedef void result_type;

11 const Fac1 alpha1;
12 const Fac2 alpha2;
14 scale_sum2(Fac1 alpha1, Fac2 alpha2)
15 : alpha1(alpha1), alpha2(alpha2) { }
17 template<class T0, class T1, class T2>
18 void operator()(T0 &t0, const T1 &t1, const T2 &t2) const {
19 t0 = alpha1 * t1 + alpha2 * t2;
20 }
21 };
48 };

more template parameters specifying the algebra and operations, i.e. the compu-
tational backend used for the calculation. We use the container_algebra and
default_operations from Listings 7.4 and 7.5 as the default values that will work
for almost all cases. In the do_step method we now use the for_each functions
from the given Algebra in combination with the scale_sum functors from the
given Operations to perform the required computations. So the explicit for-loops,
that were hard-coded into the algorithm in the first implementation (Listing 7.1),
have been separated into two parts, an algebra and operations. Those parts are
supplied to the algorithm in terms of template parameters and can thus be easily
replaced without changing the algorithm itself. This flexibility now allows us to
port the RK4 implementation to GPUs. The idea is to first provide a GPU data
structure, e.g. a gpu_vector with the respective resize functions as required by the
algorithm (Listing 7.3). Then we only need a gpu_algebra and gpu_operations

to do the vector computations on the GPU in a parallelized way. Assuming we
have implemented those pieces, the following code would give us a RK4 algorithm
running on the GPU:

typedef runge_kutta4< gpu_vector<double>, double, double,
gpu_algebra, gpu_operations > gpu_stepper;

So with the generalized implementation we have greatly simplified the problem
of implementing a Runge-Kutta scheme on the GPU. Instead of having to start
from scratch, we now only have to implement a basic data structure for the
GPU (gpu_vector), provide low-level functions for memory allocation (resize),
iteration (algebra) and fundamental calculations (operations). But the real
strength of this approach is that these remaining problems are so fundamental that
they are already solved for GPUs. Of course, there are libraries that provide data

7 Solving Ordinary Differential Equations on GPUs 137

Listing 7.6 Generic RK4 implementation runge_kutta4.hpp

10 template<class state_type, class value_type = double,
12 class time_type = value_type,
13 class algebra = container_algebra,
14 class operations = default_operations>
15 class runge_kutta4 {
16 public:
17 template<typename System>
18 void do_step(System &system, state_type &x,
19 time_type t, time_type dt)
20 {
21 adjust_size(x);
22 const value_type one = 1;
23 const time_type dt2 = dt/2, dt3 = dt/3, dt6 = dt/6;
25 typedef typename operations::template scale_sum2<
26 value_type, time_type> scale_sum2;
28 typedef typename operations::template scale_sum5<
29 value_type, time_type, time_type,
30 time_type, time_type> scale_sum5;
32 system(x, k1, t);
33 algebra::for_each3(x_tmp, x, k1, scale_sum2(one, dt2));
35 system(x_tmp, k2, t + dt2);
36 algebra::for_each3(x_tmp, x, k2, scale_sum2(one, dt2));
38 system(x_tmp, k3, t + dt2);
39 algebra::for_each3(x_tmp, x, k3, scale_sum2(one, dt));
41 system(x_tmp, k4, t + dt);
42 algebra::for_each6(x, x, k1, k2, k3, k4,
43 scale_sum5(one, dt6, dt3, dt3, dt6));
44 }
45 private:
46 state_type x_tmp, k1, k2, k3, k4;
48 void adjust_size(const state_type &x) {
49 resize(x, x_tmp);
50 resize(x, k1); resize(x, k2);
51 resize(x, k3); resize(x, k4);
52 }
53 };

structures and memory management for the GPU, as well as parallelized iteration
and element-wise computations. In the following sections we will introduce two
such libraries and show how they are combined with the RK4 implementation from
Listing 7.6 to produce a GPU-version.

It should be noted that this approach of separating the algorithm from the
computations is not only valuable when aiming at GPU computations. With the
implementation above we can, for example, also easily create a RK4 algorithm

138 K. Ahnert et al.

that works with arbitrary precision types instead of the usual double. Another
example would be an ODE solver based on interval arithmetic [22], also easily
implementable by providing some interval_operations .

7.3.3 Lorenz Attractor Example

Before considering the GPU backends we want to show how to use the codes above
to compute a trajectory of the famous Lorenz system (7.5) introduced earlier in
Sect. 7.2.1. Listing 7.7 shows the implementation of a simulation of a trajectory for
this system based on the runge_kutta4 class developed above. As seen there, all
that is left to do is to define the state_type, implement the RHS of the ODE, here
done in terms of a functor lorenz, and define the initial conditions (Line 30). Now
we can use the Runge-Kutta algorithm implemented above (Listing 7.6) to iterate
along the trajectory using a step size of
t D 0:1.

7.4 GPU Backends

Having reduced the problem of running the ODE solver on GPUs to memory
management and some basic algebra operations, we finally come to the point of
implementing those necessities. Instead of relying on low-level GPU programming
and thus essentially reinventing the wheel, we will use existing high-level libraries
that offer GPU data structures as well as routines for algebraic operations. To
cover all available GPU technologies we will develop two GPU backends, the first
one based on the NVIDIA CUDA technology, the second one for the OpenCL
framework. For the CUDA environments, we will employ the Thrust library [4],
which is part of the NVIDIA CUDA SDK [24]. In the case of OpenCL, we will rely
on the VexCL library [7], an open source library developed at the Supercomputer
Center of Russian Academy of Sciences.

7.4.1 Thrust Backend

The Thrust library is a CCC template library that provides containers and algo-
rithms similar to the Standard Template Library (STL) [36], but capable of running
parallel on a CUDA GPU. Besides the CUDA backend, Thrust also supports CPU
parallelization via OpenMP [25] and Intel’s Thread Building Block (TBB) [31],
configurable at compile time by preprocessor variables. As said above, Thrust is part
of the NVIDIA CUDA framework and thus requires the use of the nvcc compiler
to generate code that can be executed on GPUs. For a thorough introduction
into CUDA programming and Thrust in particular, we refer to the respective
documentation [4, 24].

7 Solving Ordinary Differential Equations on GPUs 139

Listing 7.7 Computing a trajectory of the Lorenz system lorenz_single.cpp

1 #include <iostream>
2 #include <vector>
4 #include "runge_kutta4.hpp"
6 using namespace std;
8 typedef std::vector<double> state_type;
9 typedef ncwg::runge_kutta4< state_type > rk4_type;

11 struct lorenz {
12 const double sigma, R, b;
13 lorenz(const double sigma, const double R, const double b)
14 : sigma(sigma), R(R), b(b) { }
16 void operator()(const state_type &x,state_type &dxdt,double t)
17 {
18 dxdt[0] = sigma * (x[1] - x[0]);
19 dxdt[1] = R * x[0] - x[1] - x[0] * x[2];
20 dxdt[2] = -b * x[2] + x[0] * x[1];
21 }
22 };
24 int main() {
25 const int steps = 5000;
26 const double dt = 0.01;
28 rk4_type stepper;
29 lorenz system(10.0, 28.0, 8.0/3.0);
30 state_type x(3, 1.0);
31 x[0] = 10.0;
32 for(size_t n=0 ; n<steps ; ++n) {
33 stepper.do_step(system, x, n*dt, dt);
34 cout << n*dt << ’ ’;
35 cout << x[0] << ’ ’ << x[1] << ’ ’ << x[2] << endl;
36 }
37 }

To handle the memory on the GPU, Thrust provides a thrust::device_vector
template class similar to std::vector from the STL. This will be our basic
state_type representing the state x of the dynamical system. As Thrust mimics the
STL, the thrust::device_vector also has size and resize member functions,
which means that the memory management for std::vectors given in Listing 7.3
also works nicely with thrust::device_vectors—no specialization is required.
This is a nice example of how well-designed libraries, such as Thrust, decrease the
required programming effort by increasing the re-usability of your code.

To ensure that the vector computations are executed in parallel on the GPU, we
introduce a thrust_algebra as a replacement of the container_algebra (see
Listing 7.4) above. To implement the for_each3 and for_each6 functions required

140 K. Ahnert et al.

Listing 7.8 The Thrust algebra thrust_algebra.hpp

6 struct thrust_algebra {
7 template<class S1, class S2, class S3, class Op>
8 static void for_each3(S1 &s1, S2 &s2, S3 &s3, Op op) {
9 thrust::for_each(

10 thrust::make_zip_iterator(thrust::make_tuple(
11 s1.begin(), s2.begin(), s3.begin())),
12 thrust::make_zip_iterator(thrust::make_tuple(
13 s1.end(), s2.end(), s3.end())),
14 op);
15 }
39 };

in the algebra, we will employ Thrust’s thrust::for_each routine. This routine
has the following signature:

thust::for_each(Iterator begin, Iterator end, UnaryOperator op)

where the iterators begin and end define a range of data in a device_vector

and op defines the operation performed for each element of the sequence. As seen
from the signature above, thrust::for_each iterates only over a single range
from begin to end, but for our for_each3 and for_each6 we need to iterate over
several device vectors at once. Fortunately, this can be easily achieved by using
zip_iterators that combine an arbitrary number of iterators into a single iterator
and thus allows us to use thrust::for_each for iterating over several ranges at
once. The implementation of the thrust_algebra based on thrust::for_each

and make_zip_iterator in combination with make_tuple is shown in Listing 7.8.
The usage of make_zip_iterator and make_tuple is almost self-explanatory:
make_tuple combines the given parameters (iterators in this case) into a single
tuple, and make_zip_iterator then converts this tuple of iterators into a single
zip_iterator that can then be passed to the for_each algorithm. Note that the
implementation of the for_each6 algorithm is omitted here for clarity.

Of course, we also need to replace the default_operations , containing the
scale_sum functors (see Listing 7.5), by a CUDA-compatible implementation.
These functions contain the code that in the end will run in parallel on the GPU,
which means that they will be compiled into so-called kernels. Therefore, they
need to be decorated by specific compiler instruction to make the nvcc compiler
generate specific GPU code for those functions. For this purpose, CUDA provides
the keywords __device__ and __host__. The former indicates that a function will
run on a GPU, and the latter assures that the compiler will also generate a CPU
version. Listing 7.9 shows the implementation of the thrust_operations. The
keywords are used before the function definition in Line 19.

Furthermore, we have to bear in mind that since we used zip_iterators in the
for_each, the scale_sum functors also get the elements from several ranges packed
in a single tuple. To access the individual elements, we have to unpack the tuple,

7 Solving Ordinary Differential Equations on GPUs 141

Listing 7.9 The Thrust operations thrust_operations.hpp

9 struct thrust_operations {
10 template<class Fac1 = double, class Fac2 = Fac1>
11 struct scale_sum2 {
12 const Fac1 m_alpha1;
13 const Fac2 m_alpha2;
15 scale_sum2(const Fac1 alpha1, const Fac2 alpha2)
16 : m_alpha1(alpha1), m_alpha2(alpha2) { }
18 template< class Tuple >
19 __host__ __device__ void operator()(Tuple t) const {
20 thrust::get<0>(t) = m_alpha1 * thrust::get<1>(t) +
21 m_alpha2 * thrust::get<2>(t);
22 }
23 };
48 };

which can be done by the Thrust’s get<N>(tuple) function that simply returns the
N-th entry of the given tuple. Together with the thrust_algebra (see Listing 7.8)
this completes the CUDA backend for the RK4 scheme. The following code defines
a gpu_stepper class that computes an approximate trajectory using the GPU:

typedef thrust::device_vector<double> state_type;
typedef runge_kutta4< state_type, double, double,

thrust_algebra, thrust_operations > gpu_stepper_type;

With this, we have successfully ported the RK4 scheme to GPUs using func-
tionality from the Thrust library. However, for a complete simulation we also have
to implement the RHS function such that it is also computed on the GPU. This is
highly non-trivial and will be discussed in detail for several examples in Sect. 7.6.

7.4.2 VexCL Backend

The Thrust backend above allows to run ODE integration on NVIDIA GPUs only
as it is based on the CUDA technology. To address a wider range of hardware, we
will now present a computational backend based on OpenCL (Open Computing
Language) [23]. OpenCL supports NVIDIA as well as AMD/ATI GPUs, but can
also be used for parallel runs on multi-core CPUs.

As above, we will not start from scratch but rather employ the modern, well-
designed GPGPU library VexCL [7]. The library does not only provide the required
data structures, but also covers the vector operations which makes our work even
simpler than with Thrust. As the data structure for representing a state_type we
will use a vex::vector, which is again similar to a std::vector. Listing 7.10
shows the resize function specialized for the vex::vector<T>. Note how we have

142 K. Ahnert et al.

Listing 7.10 Memory allocation for VexCL vexcl_resize.hpp

11 template<class T>
12 void resize(const vex::vector<T> &in, vex::vector<T> &out) {
13 out.resize(in.queue_list(), in.size());
14 }
16 template<class T, size_t N>
17 void resize(const vex::multivector<T,N> &in,
18 vex::multivector<T,N> &out)
19 {
20 out.resize(in.queue_list(), in.size());
21 }

Listing 7.11 Vector space algebra vector_space_algebra.hpp

6 struct vector_space_algebra {
7 template<class S1, class S2, class S3, class Op>
8 static void for_each3(S1 &s1, S2 &s2, S3 &s3, Op op) {
9 op(s1, s2, s3);

10 }
15 };

to pass on the list of OpenCL command queues that contains crucial information
about where the data will reside (i.e. which compute device) to the vector’s resize
function. Just like the required size, we extract this information from the given
vex::vector instance in. Additionally to the usual vectors, VexCL also pro-
vides a vex::multivector<T,N>, which is basically a group of N instances of
vex::vector<T> and can be quite handy for some problems. Hence, we also
provide the resize functionality for vex::multivector<T,N> in Listing 7.10.

We are left with the vector operations, but as mentioned above this is very simple
with VexCL. Being a library designed specifically for linear algebra, VexCL natively
supports vector-vector addition and scalar-vector multiplication. Assuming x, y and
z are of type vex::vector<double> and a and b are double values, the following
code performs the element-wise summation and scalar multiplication of the vectors:

z = a * x + b * y;

That means that the VexCL library intrinsically performs the iteration over the
elements of the vector in parallel on an OpenCL compute device (i.e. a GPU).
Mathematically, one can say that the vex::vector together with the standard +

and * operators form a vector space. Hence, it is not required for us to implement
a parallelized iteration ourselves and the existence of an algebra is not necessarily
required, in contrast to the Thrust backend above (c.f. Listing 7.8). But as the
algebra is part of the structure of our ODE solver and can not be neglected,

7 Solving Ordinary Differential Equations on GPUs 143

we provide a trivial vector_space_algebra that simply forwards the operation
directly to the vectors without performing an iteration. This is shown in Listing 7.11.

This implementation is not only useful for VexCL and its vex::vector, but
also for any other vector library that provides vector operations in terms of + and *
operators, e.g. MTL4 [11] or Boost.uBLAS [39]. To account for this generality we
call this trivial algebra a vector_space_algebra , as it works with any type that
forms a vector space. From the above it is also clear that for VexCL we do not
need to take special care of the operations. As VexCL redefines the operators +

and * itself, we can simply plug in the default_operations from the beginning
(Listing 7.5). Therefore, the computational backend for OpenCL based on VexCL
is finished and we can construct an algorithm that is capable of running on a GPU
device with the following code:

typedef vex::vector<double> state_type;
typedef runge_kutta4< state_type, double, double,

vector_space_algebra, default_operations > gpu_stepper_type;

7.5 The Boost.odeint Library

Above, we have shown how to implement the RK4 scheme in a generic way such
that it can be easily ported to GPUs. We have demonstrated the strengths of this
approach by providing two backends that address CUDA and OpenCL devices
respectively. However, there is a vast potential for improvement and extension
of this code. Although this goes well beyond the scope of the present text, we
want to mention that a highly sophisticated implementation of the ideas and
techniques above exists in the Boost.odeint library [1,2]. Boost.odeint also separates
memory allocation, iteration and fundamental operations from the actual algorithm
in the same way as described above in Sect. 7.3.2. But in contrast to the ad hoc
implementation presented here, Boost.odeint is a fully grown library consisting of
about 25,000 lines of CCC code. It includes a vastly larger functionality and we
shortly list the most important points below:

• Arbitrary explicit Runge-Kutta schemes, predefined schemes: Dormand-Prince
5, Cash-Karp, Runge-Kutta78.

• Symplectic Runge-Kutta-Nyström schemes.
• Variable order method: Bulirsch-Stoer.
• Multistep methods: Adams-Bashforth, Adams-Bashforth-Moulton.
• Implicit routines: Rosenbrock method, implicit Euler.
• Step-size control and dense output.
• Integrate routines with observer support.
• Iterator and range interfaces.
• Support of arbitrary precision arithmetic with Boost.Multiprecision.
• Support of additional backends: eigen [13], GSL vectors [10], Math Kernel

Library [17], Matrix Template Library [11], ViennaCL [32].

144 K. Ahnert et al.

Listing 7.12 lorenz_thrust_v1.hpp

30 typedef thrust::device_vector<double> state_type;
31 struct lorenz_system {
40 struct lorenz_functor {
41 double sigma, b;
42 lorenz_functor(double sigma, double b)
43 : sigma(sigma), b(b) {}
45 template<class T>
46 __host__ __device__ void operator()(T t) const {
47 double x = thrust::get<0>(t);
48 double y = thrust::get<1>(t);
49 double z = thrust::get<2>(t);
50 double R = thrust::get<3>(t);
52 thrust::get<4>(t) = sigma * (y - x);
53 thrust::get<5>(t) = R * x - y - x * z;
54 thrust::get<6>(t) = -b * z + x * y;
55 }
56 };
58 template<class State, class Deriv>
59 void operator()(const State &x, Deriv &dxdt, double t) const {
60 BOOST_AUTO(start,
61 thrust::make_zip_iterator(thrust::make_tuple(
62 x.begin(),
63 x.begin() + n,
64 x.begin() + 2 * n,
65 R.begin(),
66 dxdt.begin(),
67 dxdt.begin() + n,
68 dxdt.begin() + 2 * n
69))
70);
72 thrust::for_each(start, start+n, lorenz_functor(sigma, b));
73 }
74 };

If Boost.odeint provides the necessary algorithms and functionality to solve a
problem, we strongly advise to use this library. However, some problems require
specialized schemes or additional computations. In this case the code developed
in the previous pages should represent a good starting point to develop a specific
algorithm in a generalized way that is easily portable to GPUs.

7 Solving Ordinary Differential Equations on GPUs 145

Listing 7.13 lorenz_vexcl_v1.cpp

28 typedef vex::multivector<double, 3> state_type;
29 struct lorenz_system {
36 void operator()(const state_type &x, state_type &dxdt,
37 double t) const
38 {
39 dxdt = std::tie(
40 sigma * (x(1) - x(0)),
41 R * x(0) - x(1) - x(0) * x(2),
42 x(0) * x(1) - b * x(2));
43 }
44 };

7.6 Example Problems

7.6.1 Lorenz Attractor Ensemble

In the first example we consider the Lorenz system (7.5). Solutions of the Lorenz
system usually furnish very interesting behavior in dependence on one of its
parameters. For example, one might want to study the chaoticity in dependence
on the parameter R. Therefore, one would create a large set of Lorenz systems
(each with a different parameter R), pack them all into one system and solve
them simultaneously. In a real study of chaoticity one may also calculate the
Lyapunov exponents [26], which requires to solve the Lorenz system and their linear
perturbations.

In the Thrust version of the example we define the state type as device_vector
of size 3n, where n is the system size. The X , Y , and Z components of the state are
held in the continuous partitions of the vector. The system functor holds the model
parameters and provides a function call operator with the necessary signature. Here
we use the standard Thrust technique of packing the state components into a zip
iterator which is then passed to a thrust::for_each algorithm (Listing 7.12).

The system function object for the VexCL version of the Lorenz attractor
example is more compact than the Thrust variant because VexCL supports a rich
set of vector expressions. We represent the three components of attractor trajectory
as a multivector<double,3>. Since VexCL provides all necessary overloads for
the multivector type, we are able to use the vector_space_algebra in this case
(Listing 7.13).

Figure 7.1 shows performance results for the Thrust, VexCL, and CPU versions
of the Lorenz attractor example. Time in seconds required to make a 1,000 of
RK4 iterations is plotted against the ensemble size N . Lines denoted “Thrust v1”
and “VexCL v1” correspond to the versions presented above. “CPU v1” is the
Thrust version compiled for the OpenMP backend. Times for the Thrust and the

146 K. Ahnert et al.

VexCL versions of the code are given for the NVIDIA Tesla K20c GPU. Times
for the CPU runs are given for the Intel Core i7 920 CPU (all four cores of which
were used through OpenMP technology). It is clear from the figure that the initial
implementations for the Thrust and the VexCL libraries perform equally well for
large problem sizes and are about 14 times faster than the CPU version. VexCL has
higher initialization costs and hence is a bit slower than Thrust for smaller problems.
However, the distinction seems not as important once we note that both the Thrust
and the VexCL versions loose to the CPU version for N . 104.

Note that both the Thrust and the VexCL versions above have the same drawback.
Namely, both of them use device vectors as state type. Hence, intermediate state
variables used in the steppers are stored in the global GPU memory. Moreover,
each operation results in a launch of a separate compute kernel. A kernel launch
has nonzero overhead both in CUDA and in OpenCL, but more importantly, each
kernel needs to both read and write intermediate states from/to the global GPU
memory. Since the problem is memory bound, this leads to a severe drop in
performance.

We could overcome the above problem by providing a monolithic kernel which
would encode the stepper logic and provide the complete solution in a single launch.
However, the use of such kernel would also mean the loss of the flexibility we
achieved so far by separation of algorithm and the underlying computations: one
would have to completely re-implement the kernel for each new problem. Luckily,
VexCL library allows us to generate such a fused kernel automatically by providing
the vex::symbolic<T> class template. Instances of the type dump to the specified
output stream any arithmetic operations they are being subjected to. For example,
in the following code snippet two symbolic variables are declared and participate in
an arithmetic expression:

102 103 104 105 106 107

N

10−3

10−2

10−1

100

101

102

103

T
im

e
pe

r
10

00
 R

K
4

st
ep

s

CPU v1
CPU v2
Thrust v1
VexCL v1
VexCL v2

Fig. 7.1 Performance results
for the Lorenz attractor
example

7 Solving Ordinary Differential Equations on GPUs 147

vex::generator::set_recorder(std::cout);
vex::symbolic<double> x = 6, y = 7;
x = sin(x * y);

This generates the following output:

double var1 = 6;
double var2 = 7;
var1 = sin((var1 * var2));

This is implemented by overloading arithmetic operators and mathematical func-
tions for the symbolic classes. So when two symbolic variables are being added,
the overloaded addition operator just outputs names of the variables divided by
symbol “+” to the specified output stream. By defining the state type to be
boost::array< vex::symbolic<double>, 3>, and using the same algebra and
the system function as in Listing 7.7, we are able to record the sequence of arithmetic
operations made by a Runge-Kutta stepper. This gives us a fused kernel which is as
effective as a manually written one (Listing 7.14).

This approach has some obvious restrictions: namely, it only supports embar-
rassingly parallel problems (no data dependencies between threads of execution),
and it does not allow conditional statements or loops with non-constant number of
iterations. But when the method works, it works very well. This version of the code
is denoted “VexCL v2” in Fig. 7.1 and is about ten times faster than the initial VexCL
implementation.

We use a similar approach in order to accelerate the CPU version of the
example. Namely, we create a Boost.odeint stepper for a single Lorenz attractor
(state type is boost::array<double,3>), and then we use an outer loop which
iterates over the complete ensemble (Listing 7.15). This version of the code
(“CPU v2”) uses less memory and is more cache-friendly. As a result, it is about
6 times faster than the Thrust example with the OpenMP backend. Unfortunately,
the Thrust library does not allow the same type of optimization. We could in
principle create a device function that would operate on a single attractor (by calling
runge_kutta4<...>::do_step from inside the function), and apply the function
to the complete ensemble with the help of the thrust::for_each algorithm. But
CUDA requires all device functions to be decorated with __device__ keyword, and
the Boost.odeint functions are not marked as such.

7.6.2 Chain of Coupled Phase Oscillators

As a second example we consider a chain of coupled phase oscillators. A phase
oscillator describes the dynamics of an autonomous oscillator [18]. Its evolution is
governed by the phase ', which is a 2�-periodic variable growing linearly in time,
i.e. P' D !, where ! is the phase velocity. The amplitude of the oscillator does
not occur in this equation, so interesting behavior can only be observed if many of

148 K. Ahnert et al.

Listing 7.14 lorenz_vexcl_v2.cpp

34 typedef vex::symbolic<double> sym_vector;
35 typedef boost::array<sym_vector, 3> sym_state;
64 // Custom kernel body will be recorded here
65 std::ostringstream body;
66 vex::generator::set_recorder(body);
68 // State types that would become kernel parameters
69 sym_state sym_S = {{
70 sym_vector(sym_vector::VectorParameter),
71 sym_vector(sym_vector::VectorParameter),
72 sym_vector(sym_vector::VectorParameter)
73 }};
75 sym_vector sym_R(sym_vector::VectorParameter, sym_vector::Const);
77 // Stepper type
78 odeint::runge_kutta4_classic<
79 sym_state, double, sym_state, double,
80 odeint::container_algebra, odeint::default_operations
81 > stepper;
83 // Record single RK4 step
84 lorenz_system sys(sym_R);
85 stepper.do_step(sys, sym_S, 0, dt);
87 // Generate the kernel from the recorded sequence
88 auto kernel = vex::generator::build_kernel(ctx, "lorenz",
89 body.str(), sym_S[0], sym_S[1], sym_S[2], sym_R);
91 // Real state initialization
92 vex::vector<double> X(ctx, n), Y(ctx, n), Z(ctx, n), R(ctx, n);
93 X = Y = Z = 10.0;
94 R = Rmin + dR * vex::element_index();
99 // Integration loop

100 for(double t = 0; t < t_max; t += dt)
101 kernel(X, Y, Z, R);

such oscillators are coupled. In fact, such a system can be used to study phenomena
like synchronization, wave and pattern formation, phase chaos, or oscillation death
[20,27]. It is a prominent example of an emergent system where the coupled system
shows a more complex behavior than its constituents.

The concrete example we analyze here is a chain of nearest-neighbor coupled
phase oscillators [5]:

P'i D !i C sin.'iC1 � 'i /C sin.'i � 'i�1/: (7.13)

The index i denotes here the i -th phase in the chain. Note, that the phase velocity is
different for each oscillator.

From the implementation point of view, the main difference between the phase
oscillator chain and the Lorenz attractor examples is that in the former example the
values of neighboring vector elements are needed in order to compute the system
function. In the Thrust version this is implemented with help of fancy iterators.

7 Solving Ordinary Differential Equations on GPUs 149

Listing 7.15 lorenz_cpu_v2.cpp

67 #pragma omp parallel for
68 for(size_t i = 0; i < n; ++i) {
69 odeint::runge_kutta4_classic<
70 state_type, double, state_type, double,
71 odeint::container_algebra, odeint::default_operations
72 > stepper;
74 lorenz_system sys(R[i]);
75 for(double t = 0; t < t_max; t += dt)
76 stepper.do_step(sys, x[i], t, dt);
77 }

First, we define device functors left_nbr and right_nbr returning left and right
neighbor positions for the i -th element. Then we create a couple of permutation
iterators from transformed counting iterators (with left_nbr and right_nbr used
as transformation functors), pack the resulting iterators together with iterators x,
omega, and dxdt into a zip_iterator. Finally we call the thrust::for_each

algorithm with the accordingly defined system functor (Listing 7.16).
We use a similar technique for the VexCL version of the example. VexCL

provides the vex::permutation function that allows to permute arbitrary
expressions (Listing 7.17). Note how the use of CCC11 auto keyword in Lines 38–
40 allows us to conveniently capture intermediate expressions and thus simplify the
code in Line 42.

102 103 104 105 106 107

N

10−2

10−1

100

101

102

103

T
im

e
pe

r
10

00
 R

K
4

ite
ra

tio
ns

CPU
Thrust
VexCL

Fig. 7.2 Performance results
for the chain of coupled phase
oscillators example

150 K. Ahnert et al.

Listing 7.16 po_thrust.cpp

25 typedef thrust::device_vector< double > state_type;
26 struct phase_oscillators {
33 struct left_nbr : thrust::unary_function<size_t, size_t> {
34 __host__ __device__ size_t operator()(size_t i) const {
35 return (i > 0) ? i - 1 : 0;
36 }
37 };
47 struct sys_functor {
48 template< class Tuple >
49 __host__ __device__ void operator()(Tuple t) {
50 double phi_c = thrust::get<0>(t);
51 double phi_l = thrust::get<1>(t);
52 double phi_r = thrust::get<2>(t);
53 double omega = thrust::get<3>(t);
55 thrust::get<4>(t) = omega +
56 sin(phi_r - phi_c) + sin(phi_c - phi_l);
57 }
58 };
60 void operator() (const state_type &x, state_type &dxdt,
61 double dt)
62 {
63 BOOST_AUTO(start, thrust::make_zip_iterator(
64 thrust::make_tuple(
65 x.begin(),
66 thrust::make_permutation_iterator(
67 x.begin(),
68 thrust::make_transform_iterator(
69 thrust::counting_iterator<size_t>(0),
70 left_nbr()
71)
72),
73 thrust::make_permutation_iterator(
74 x.begin(),
75 thrust::make_transform_iterator(
76 thrust::counting_iterator<size_t>(0),
77 right_nbr(n - 1)
78)
79),
80 omega.begin(),
81 dxdt.begin()
82)
83)
84);
86 thrust::for_each(start, start + n, sys_functor());
87 }
88 };

7 Solving Ordinary Differential Equations on GPUs 151

Listing 7.17 po_vexcl.cpp

25 typedef vex::vector<double> state_type;
26 struct phase_oscillators {
31 void operator()(const state_type &phi, state_type &dxdt,
32 double t) const
33 {
34 VEX_FUNCTION(left, size_t(size_t),
35 "return (prm1 > 0) ? prm1 - 1 : 0;");
36 VEX_FUNCTION(right, size_t(size_t, size_t),
37 "return (prm1 >= prm2) ? prm2 : prm1 + 1;");
39 auto idx = vex::element_index();
40 auto phi_l=vex::permutation(left(idx))(phi);
41 auto phi_r=vex::permutation(right(idx,phi.size()-1))(phi);
43 dxdt = omega + sin(phi_r - phi) + sin(phi - phi_l);
44 }
45 };

The performance results for the chain of coupled phase oscillators are presented
in Fig. 7.2. Again, the Thrust and the VexCL versions show similar results for large
problems (with VexCL being faster by about 20 %). The GPU versions are 70–80
times faster than the CPU version (which is the Thrust version compiled for the
OpenMP backend). The higher acceleration w.r.t. the Lorenz attractor example is
explained by the higher FLOP/byte ratio of the problem.

7.6.3 Molecular Dynamics

Molecular dynamics (MD) are a simulation technique for a large number of small
interacting particles, typically with local interaction forces. Examples are systems of
molecules [9], granular systems [28], or coarse-grained models of fluid molecules.

Here, we study a two dimensional MD simulation described by the following
equations of motion for particle i

mi Rxi D floc.xi /C ff ric. Pxi /C
X
j2Si

fint .xi ; xj / : (7.14)

mi is the mass of the particle, floc is a local external force, for example the gravity.
fint .xi ; xj / is the (low-range) interaction between the particles i and j and the sum
goes over all particles in an appropriate surrounding Si of particle i . The second
term is the friction which usually is only velocity dependent. Of course, other terms
might also be included here, but for our purposes the above equation is generic
enough to explain most details of implementing a molecular dynamics simulation.
The restriction to two dimensions is easily generalizable to three dimensions. In
fact, most of the following code is already independent of the concrete dimension.

152 K. Ahnert et al.

For the interaction we use the Lennard-Jones potential [19]

fint .xi ; xj / D � r

jr j
dV

dr
with r D xi � xj (7.15)

with

V.r/ D 4"

�
	
r

�12 �

	
r

�6	
: (7.16)

It is used to describe the interaction of chemically unbounded atoms and molecules.
Here " is the strength of the interaction and 	 denotes the interaction radius. The
interaction decreases very fast with increasing distance of the particles f
 r�7.
So, to speed up the simulations one usually restricts the interactions for particle i to
particles withing its surrounding Si D fj W jxi � xj j < 4	g. Of course, this means
that mathematically the Lennard-Jones is not continuous anymore, but this is only
of minor importance for our sample application. In practice several possibilities to
overcome this discontinuity exist.

How can one implement such rather complicated systems of ODEs in a high-
performance way on GPUs? The obvious idea would be to discard the locality of
the potential and calculate all pairwise interaction for all particles. Unfortunately,
this brute-force solution is far from being optimal. The computational complexity is
O.n2/ since all possible pairwise interactions are calculated. As explained above the
interaction decreases very fast with increasing particle distance, so one should only
take neighboring particles into account. In the following we present an algorithm
for this problem and its GPU-implementation.

The basic idea is to assign particles to a regular grid of relatively large cells and
calculate the interaction of particle i only with the particles located in neighboring
cells, see Listing 7.18. This method is also known as cell list algorithm. Another
popular ansatz for the interaction computation,—the neighbor list—takes only the
neighbors of particle i into account [38]. In the following we will only concentrate
on the first method.

In the two-dimensional case each cell can be identified either by a two dimen-
sional index .jx; jy/ or by a one dimensional index j D ix C nxjy where nx is the
number of cells in x-direction. The ordering of the particles is done in two steps.
First, the cell index j of each particle is calculated and stored in a vector cell_idx,
lines 213–220. Secondly, the particles are sorted in ascending order according to the
cell index. Of course, the vector of particles is not ordered itself. Instead, a vector
with indices is created and sorted according to the cell indices. This is done by the
sort_by_key algorithm from Thrust which sorts the first container and reorders the
second container according to the order of the first one. The part_ord vector is then
used as the index to refer to the original element in the particles vector. This kind of
sort algorithm is also know as bucket sort [6].

The cell_idx vector now consists of a sorted array of the cell indices for each
particles. Next we find the range (begin and end) for each cell in cell_idx which

7 Solving Ordinary Differential Equations on GPUs 153

Listing 7.18 mdc_thrust_v2.cu

71 template< typename LocalForce , typename Interaction >
72 struct md_system_bs {

204 void operator()(point_vector const &x, point_vector const &v,
205 point_vector &a, double t) const
206 {
207 typedef thrust::counting_iterator< size_t > ci;
209 // Reset the ordering.
210 thrust::copy(ci(0), ci(prm.n), part_ord.begin());
212 // Assign each particle to a cell.
213 thrust::for_each(
214 thrust::make_zip_iterator(thrust::make_tuple(
215 x.begin(), cell_coo.begin(), cell_idx.begin()
216)) ,
217 thrust::make_zip_iterator(thrust::make_tuple(
218 x.end(), cell_coo.end(), cell_idx.end()
219)) ,
220 fill_index_n_hash(prm));
222 // Sort particle numbers in part_ord by cell numbers.
223 thrust::sort_by_key(cell_idx.begin(), cell_idx.end(),
224 part_ord.begin());
226 // Find range of each cell in cell_idx array.
227 thrust::lower_bound(cell_idx.begin(), cell_idx.end(),
228 ci(0), ci(prm.n_cells), cells_begin.begin());
230 thrust::upper_bound(cell_idx.begin(), cell_idx.end(),
231 ci(0), ci(prm.n_cells), cells_end.begin());
233 // Handle boundary conditions
234 thrust::transform(x.begin(), x.end(), x_bc.begin(),
235 bc_functor(prm));
237 // Calculate the local and interacttion forces.
238 thrust::for_each(
239 thrust::make_zip_iterator(thrust::make_tuple(
240 x_bc.begin(), v.begin(), cell_coo.begin(),
241 ci(0), a.begin()
242)),
243 thrust::make_zip_iterator(thrust::make_tuple(
244 x_bc.end(), v.end(), cell_coo.end(),
245 ci(prm.n), a.end()
246)),
247 interaction_functor(cells_begin, cells_end, part_ord,
248 x, v, prm)
249);
250 }
288 };

corresponds to particles located in each of the cells (Lines 227–231). The range
limits are stored in the cells_begin and cells_end arrays.

The final step is to compute the local forces and interactions for all particles,
see Lines 238–249. Here we loop over all particles and velocities. The result is

154 K. Ahnert et al.

Listing 7.19 mdc_thrust_v2.cu

71 template< typename LocalForce , typename Interaction >
72 struct md_system_bs {

139 struct interaction_functor {
169 template< typename Tuple >
170 __host__ __device__ void operator()(Tuple const &t) const {
171 point_type X = thrust::get<0>(t);
172 point_type V = thrust::get<1>(t);
173 index_type index = thrust::get<2>(t);
174 size_t cell_idx = thrust::get<3>(t);
176 point_type A = local_force(X, V);
178 for(int i = -1; i <= 1; ++i) {
179 for(int j = -1; j <= 1; ++j) {
180 index_type cell_index = index + index_type(i, j);
181 size_t cell_hash = get_cell_idx(cell_index, nx, ny);
182 for(size_t ii = cells_begin[cell_hash],
183 ee = cells_end[cell_hash]; ii < ee; ++ii)
184 {
185 size_t jj = order[ii];
187 if(jj == cell_idx) continue;
188 point_type Y = x[jj];
190 if(cell_index[0] >= nx) Y[0] += xmax;
191 if(cell_index[0] < 0) Y[0] -= xmax;
192 if(cell_index[1] >= ny) Y[1] += ymax;
193 if(cell_index[1] < 0) Y[1] -= ymax;
195 A += interaction(X, Y);
196 }
197 }
198 }
200 thrust::get<4>(t) = A;
201 }
202 };
288 };

the acceleration which is stored in the vector a. The vector cell_coo contains the
index of the cell in which the current particle is located. The interaction functor
is shown in Listing 7.19. First, the local force is calculated in Line 176. Then two
loops iterate over all neighboring cells of the current particle. Inside that loop the
interaction between all particles in this cell and the particle is calculated. Lines 190–
193 perform checks and corrections if particles are out of boundaries or are located
on the opposite side of the considered domain.

At this point we only need to define the concrete solver type. A classical solver
for molecular dynamic simulation is the Velocity-Verlet algorithm [9], which is used
for second order ODEs and makes single RHS evaluation during one step. Here we
use the implementation of the method from Boost.odeint.

The VexCL implementation follows the Thrust variant closely, so we omit the
code for the sake of conciseness. VexCL provides sort_by_key primitive, and we

7 Solving Ordinary Differential Equations on GPUs 155

102 103 104 105 106

N

10−1

100

101

102

103

104

105

106

107

108

T
im

e
pe

r
10

00
 it

er
at

io
ns

CPU v1
CPU v2
Thrust v1
Thrust v2
VexCL v1
VexCL v2

Fig. 7.3 Performance results
for the molecular dynamics
example

had to implement lower_bound and upper_bound algorithms in form of custom
VexCL functions. We also had to use custom kernel in order to compute the
interaction force. The kernel source is very similar to the Thrust interaction functor
(Listing 7.19). See md_vexcl_v2.cpp file for the complete VexCL solution.

Figure 7.3 shows performance results for the different versions of the molecular
dynamics example. Versions denoted by “v1” implement the straight-forward algo-
rithm with O.n2/ complexity. “v2” versions employ the bucket sort optimization.
Both of the CPU versions use separate code which was again omitted from the
text. The versions that use bucket sort optimization are expectedly faster than the
“v1” algorithm. The Thrust and the VexCL versions show similar performance
for large enough problems on the same hardware (with VexCL by 10–30 % faster
than Thrust). For both versions the GPU implementations are orders of magnitude
faster than the CPU implementation (factor 75 for “v1” and 25 for “v2”). But the
biggest performance boost comes from the algorithmic complexity reduction: e.g.
the optimized VexCL version runs 300 times faster than the straight-forward one.

7.7 Summary and Conclusions

We have presented a high-level approach to compute numerical solutions of ODEs
by developing a generic implementation of common ODE solvers. The proposed
framework is very flexible and is able to adapt several CPU and GPU backends. The
Thrust and the VexCL backends considered here are very different with respect to
their interface design, but nevertheless are easily incorporated with our approach to
generic algorithms. The proposed ideas and techniques are already implemented in

156 K. Ahnert et al.

the Boost.odeint library, which offers a vastly larger functionality, including more
steppers and more backends.

Regarding the backend choice, it seems that the use of VexCL results in generally
shorter and cleaner code for the kind of problems we considered here. Admittedly,
for the more advanced molecular dynamics example we had to implement a custom
OpenCL kernel, although the implementation was very similar to the corresponding
Thrust functor. Performance-wise, VexCL showed slightly better results for the
larger problems, but due to OpenCL initialization cost was slower for the smaller
problem sizes. The main advantage of VexCL (and of OpenCL libraries in general)
seems to be the larger set of supported hardware. It should be noted that Boost.odeint
supports many other backends, which allows the user to choose the one best suited
for the problem at hand, or the one they feel most comfortable with. This freedom
is the great advantage of the modularized, generic design that we presented here
for ODE solvers. It is clear that this technique can be applied to other numerical
algorithms as well.

Acknowledgements This work has been partially supported by the Russian Foundation for Basic
Research (RFBR) grants No. 12-07-0007, 12-01-00333a, and by the Russian Government Program
of Competitive Growth of Kazan Federal University. M. M. thankfully acknowledges financial
support through the visitors program of the MPIPKS, Dresden (Germany).

References

1. Ahnert, K.: Odeint v2 - Solving Ordinary Differential Equations in CCC. http://www.
codeproject.com/Articles/268589/odeint-v2-Solving-ordinary-differential-equations (Oct
2011)

2. Ahnert, K., Mulansky, M.: Odeint — solving ordinary differential equations in C++. AIP Conf.
Proc. 1389, 1586–1589 (2011)

3. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Patterns Applied.
Addison-Wesley Longman Publishing, Boston (2001)

4. Bell, N., Hoberock, J.: Thrust: A Productivity-Oriented Library for CUDA, Chap. 26,
pp. 359–371. Elsevier, USA (2011)

5. Cohen, A.H., Holmes, P.J., Rand, R.H.: The nature of the coupling between segmental
oscillators of the lamprey spinal generator for locomotion: a mathematical model. J. Math.
Biol. 13, 345–369 (1982)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press,
Cambridge (2001)

7. Demidov, D.: VexCL: Vector Expression Template Library for OpenCL. http://www.
codeproject.com/Articles/415058/VexCL-Vector-expression-template-library-for-OpenC
(July 2012)

8. Demidov, D., Ahnert, K., Rupp, K., Gottschling, P.: Programming CUDA and OpenCL: a case
study using modern C++ libraries. SIAM J. Sci. Comput. 35(5), C453–C472 (2013)

9. Frenkel, D., Smit, B.: Understanding Molecular Simulation from Algorithms to Applications.
Academic, San Diego (2002)

10. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F.:
GNU Scientific Library. Network Theory, Bristol (2007)

11. Gottschling, P., Wise, D.S., Adams, M.D.: Representation-transparent matrix algorithms
with scalable performance. In: Proceedings of the 21st Annual International Conference on
Supercomputing, pp. 116–125. ACM, New York (2007)

http://www.codeproject.com/Articles/268589/odeint-v2-Solving-ordinary-differential-equations
http://www.codeproject.com/Articles/268589/odeint-v2-Solving-ordinary-differential-equations
http://www.codeproject.com/Articles/415058/VexCL-Vector-expression-template-library-for-OpenC
http://www.codeproject.com/Articles/415058/VexCL-Vector-expression-template-library-for-OpenC

7 Solving Ordinary Differential Equations on GPUs 157

12. Gregor, D.: The Boost Function Library. http://www.boost.org/doc/libs/release/libs/function
(2001)

13. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
14. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff

Problems, 2nd edn. Springer, Berlin (1993) (corr. 3rd printing 1993; corr. 3rd edn. 2009)
15. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-

Algebraic Problems, 2nd edn. Springer, Berlin (1996) (2nd printing edn. 2010)
16. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward,

C.S.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans.
Math. Softw. (TOMS) 31(3), 363–396 (2005)

17. Intel Math Kernel Library Reference Manual, Intel, Version 11.1 (2013)
18. Izhikevich, E.M., Ermentrout, B.: Phase model. Scholarpedia 3(10), 1487 (2008)
19. Jones, J.E.: On the determination of molecular fields. II. From the equation of state of a gas.

R. Soc. Lond. Proc. Ser. A 106, 463–477 (1924)
20. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, New York (1984)
21. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics, vol. 14. Cambridge University

Press, Cambridge (2004)
22. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Methods and Applications of Interval Analysis,

vol. 2. SIAM, Philadelphia (1979)
23. Munshi, A., et al.: The OpenCL Specification. Khronos OpenCL Working Group 1, pp. 11–15

(2009)
24. NVIDIA CUDA Programming Guide. NVIDIA Corporation, Version 5.5 (2013)
25. OpenMP Architecture Review Board: OpenMP Application Program Interface Version 3.0.

http://www.openmp.org/mp-documents/spec30.pdf (May 2008)
26. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)
27. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear

Sciences. Cambridge University Press, Cambridge (2001)
28. Poschel, T., Schwager, T.: Computational Granular Dynamics: Models and Algorithms.

Springer, Berlin/Heidelberg [u.a.] (2010)
29. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of

Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)
30. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna (2013)
31. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor

Parallelism. O’Reilly Media, Inc., Sebastopol (2010)
32. Rupp, K., Rudolf, F., Weinbub, J.: ViennaCL - A High Level Linear Algebra Library for

GPUs and Multi-Core CPUs. In: International Workshop on GPUs and Scientific Applications,
pp. 51–56 (2010)

33. Schabel, M.C., Watanabe, S.: The Boost Units Library. http://www.boost.org/doc/libs/release/
libs/units (2010)

34. Soetaert, K., Cash, J.R., Mazzia, F.: Solving Differential Equations in R. Springer, Berlin/New
York (2012)

35. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, vol. 41.
Springer, New York (1982)

36. Stepanov, A., Lee, M: The Standard Template Library, vol. 1501. Hewlett Packard Laborato-
ries, Palo Alto (1995)

37. Teschl, G.: Ordinary Differential Equations and Dynamical Systems, vol. 140. AMS Book-
store, Providence (2012)

38. Verlet, L.: Computer “experiments” on classical fluids. I. Thermodynamical properties of
Lennard-Jones molecules. Phys. Rev. 159(1), 98–103 (1967)

39. Walter, J., Koch, M.: The Boost uBLAS Library. http://www.boost.org/doc/libs/release/libs/
numeric/ublas/doc/index.htm (2002)

http://www.boost.org/doc/libs/release/libs/function
http://eigen.tuxfamily.org
http://www.openmp.org/mp-documents/spec30.pdf
http://www.boost.org/doc/libs/release/libs/units
http://www.boost.org/doc/libs/release/libs/units
http://www.boost.org/doc/libs/release/libs/numeric/ublas/doc/index.htm
http://www.boost.org/doc/libs/release/libs/numeric/ublas/doc/index.htm

Chapter 8
GPU-Based Parallel Integration of Large
Numbers of Independent ODE Systems

Kyle E. Niemeyer and Chih-Jen Sung

8.1 Introduction

In a number of science and engineering applications, researchers are faced with
the task of solving large numbers of independent systems of ordinary differential
equations (ODEs). One prominent example is the simulation of reactive flows
for modeling combustion [5, 15, 25, 27, 28], atmospheric chemistry [1, 13], and
groundwater transport [2,3], where operator splitting [31,33] decouples the solution
of the fluid transport (e.g., advection, diffusion) and chemical kinetics terms. This
results in large numbers of independent ODEs for the conservation of chemical
species masses, with one system for each spatial location. The solution of the
aggregate of these ODEs consumes most of the total wall-clock time of such
simulations, >90 % in some cases. Simulations of electrical behavior in cardiac
tissue use a similar operator splitting technique, which results in ODE systems
for cell membrane dynamics [23, 34]. Other areas that deal with solving many
independent systems of ODEs include systems biology [6, 40] and Monte Carlo
methods for sensitivity analysis of ODEs [10, 16, 18].

In such problems, large numbers of the same governing ODEs with different
initial conditions and/or input parameters must be integrated; since each system is
independent, the entire set of ODEs can be integrated concurrently. While perfor-
mance can be improved by using parallel central processing unit (CPU) methods,
this embarrassingly parallel problem is especially well-suited to acceleration with
the thread-based parallelism of graphics processing units (GPUs), as demonstrated

K.E. Niemeyer (�)
School of Mechanical, Industrial, & Manufacturing Engineering, Oregon State University,
Corvallis, OR, USA
e-mail: Kyle.Niemeyer@oregonstate.edu

C.-J. Sung
Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA
e-mail: cjsung@engr.uconn.edu

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__8, © Springer International Publishing Switzerland 2014

159

mailto:Kyle.Niemeyer@oregonstate.edu
mailto:cjsung@engr.uconn.edu

160 K.E. Niemeyer and C.-J. Sung

for reactive-flow simulations [21, 22, 29, 32]. In particular, Niemeyer and Sung [21]
recently developed a GPU-based approach for the integration of moderately stiff
chemical kinetics ODEs using explicit integration algorithms, using an adaptive
fifth-order Runge–Kutta–Cash–Karp (RKCK) method for nonstiff cases and a
stabilized second-order Runge–Kutta–Chebyshev (RKC) method for problems with
greater stiffness. For large numbers of ODEs, they demonstrated that the GPU-based
RKCK and RKC algorithms performed up to 126 and 65 times faster, respectively,
than CPU versions of the same algorithm on a single CPU core. Furthermore,
with moderate levels of stiffness, the GPU-based RKC offered a speedup factor
of 57 compared to a conventional implicit algorithm executed in parallel on a
six-core CPU. The specific acceleration factor demonstrated depended on the
problem studied (e.g., the kinetic mechanism) and number of ODEs considered.
Due to the favorable performance of these methods, in this chapter we present the
integration algorithms, associated GPU source code, and implementation details so
that interested readers can apply them to more general applications (e.g., the areas
described above).

8.2 Mathematical Background

In this chapter, we represent a generic system of ODEs using

dy
dt

D f .t; y.t/; g/ ; (8.1)

where y.t/ is the vector of unknown dependent variables at some time t, f is the
right-hand-side vector function, and g is a vector of constant parameters (e.g.,
pressure or temperature for chemical kinetics). The size of y (i.e., the number
of equations/unknowns) is N. For the types of problems with which we are
concerned here, a large number of ODE systems, Node, each given by Eq. (8.1)
must be integrated independently from some time t D tn to tnC1, with different
initial conditions y .tn/ and constant parameters g for each system. The numerical
approximation to the exact solution y.tn/ is yn, and the step size for a given step is
ıtn D tnC1 � tn.

Nonstiff ODEs, or those with little stiffness, can be solved using explicit
integration methods. Many such methods exist, and algorithms can be classified
in general into Runge–Kutta and linear multistep methods, and also into explicit or
implicit methods; see Hairer and Wanner [9] for more details. Stiffness, a concept
somewhat difficult to quantify, refers to the quality of an ODE making standard
explicit methods perform poorly due to the requirement for unreasonably small
time-step sizes—otherwise the solutions become unstable and oscillate wildly [8].

Traditionally, implicit integration algorithms such as those based on backwards
difference formulas have been used to handle stiff equations, but these require
expensive linear algebra operations on the Jacobian matrix (e.g., LU decomposition,

8 GPU-Based Parallel Integration of Large Numbers of Independent ODE Systems 161

matrix inversion). The complex logical flow of such operations results in highly
divergent instructions for different initial conditions, making implicit algorithms
unsuitable for operation on GPUs. In fact, Stone and Davis [32] implemented a
traditional high-order implicit algorithm on GPUs, and found that it performed
only slightly better than a multi-core CPU version of the same algorithm would.
While implicit algorithms may be required for ODE systems with extreme levels
of stiffness (suggesting that new solutions need to be found for GPU acceleration
of such problems), other options can be used for cases of little-to-moderate
stiffness. Here, we describe two integration algorithms suitable for use solving many
independent systems of ODEs on GPUs.

8.2.1 Runge–Kutta–Cash–Karp

For nonstiff ODEs, an appropriate explicit algorithm is the fifth-order Runge–Kutta
method developed by Cash and Karp [4]: the RKCK method. The RKCK method
estimates the local truncation error using an embedded fourth-order method, by
taking the difference between the fourth- and fifth-order solutions. It then uses this
estimate to adaptively select the step size [26].

Using the terminology established above, the RKCK formulas—which also
apply to any general fifth-order Runge–Kutta method—are

k1 D ıtn f .tn; yn; g/ ; (8.2)

k2 D ıtn f .tn C a2 ıtn; yn C b21k1; g/ ; (8.3)

k3 D ıtn f .tn C a3 ıtn; yn C b31k1 C b32k2; g/ ; (8.4)

k4 D ıtn f .tn C a4 ıtn; yn C b41k1 C b42k2 C b43k3; g/ ; (8.5)

k5 D ıtn f .tn C a5 ıtn; yn C b51k1 C b52k2 C b53k3 C b54k4; g/ ; (8.6)

k6 D ıtn f .tn C a6 ıtn; yn C b61k1 C b62k2 C b63k3 C b64k4 C b65k5; g/ ;
(8.7)

ynC1 D yn C c1k1 C c2k2 C c3k3 C c4k4 C c5k5 C c6k6 ; (8.8)

y�
nC1 D yn C c�

1 k1 C c�
2 k2 C c�

3 k3 C c�
4 k4 C c�

5 k5 C c�
6 k6 ; (8.9)

where ynC1 is the fifth-order solution and y�
nC1 is the solution of the embedded

fourth-order method. The RKCK coefficients are given in Table 8.1. The local error
�nC1 is estimated using the difference between the fourth- and fifth-order solutions:

�nC1 D ynC1 � y�
nC1 D

6X
iD1

�
ci � c�

i

ki : (8.10)

Then, this error is compared against a desired accuracy, �0, defined by

�0 D " .jynj C jıtn f .tn; yn; g/j C ı/ ; (8.11)

162 K.E. Niemeyer and C.-J. Sung

Table 8.1 Coefficients for the fifth-order Runge–Kutta–Cash–Karp method, adopted from Press
et al. [26]

i ai bij ci c�
i

1 37
378

2825
27648

2 1
5

1
5

0 0
3 3

10
3
40

9
40

250
621

18575
48384

4 3
5

3
10

� 9
10

6
5

125
594

13525
55296

5 1 � 11
54

5
2

� 70
27

35
27

0 277
14336

6 7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

j 1 2 3 4 5

where " is a tolerance level and ı represents a small value (e.g., 10�30). When the
estimated error rises above the desired accuracy (�nC1 > �0), the algorithm rejects
the current step and calculates a smaller step size. Correspondingly, the algorithm
accepts a step with error at or below the desired accuracy (�nC1 � �0) and
calculates a new step size for the next step using

ıtnew D

8̂
<
:̂
S ıtn maxi

ˇ̌̌
�0;i
�nC1;i

ˇ̌̌�1=5
if�nC1 � �0 ; or

S ıtn maxi

ˇ̌̌

�0;i
�nC1;i

ˇ̌̌�1=4
if�nC1 > �0 :

(8.12)

Here, i represents the ith element of the related vector and S denotes a safety factor
slightly smaller than unity (e.g., 0.9). Equation (8.12) is used to calculate the next
time step size both for an accepted step and also for a new, smaller step size in the
case of a step rejection. In practice, step size decreases and increases are limited to
factors of 10 and 5, respectively [26].

8.2.2 Runge–Kutta–Chebyshev

For ODEs with moderate levels of stiffness, one alternative to implicit algorithms
is a stabilized explicit scheme such as the RKC method [30, 35–39]. While the
RKC method is explicit, it handles stiffness through additional stages—past the first
two required for second-order accuracy—that extend its stability domain along the
negative real axis of eigenvalues.

Our RKC implementation is taken from Sommeijer et al. [30] and Verwer
et al. [39]. Following the same terminology as above, the formulas for the second-
order RKC are

w0 D yn ; (8.13)

w1 D w0 C Q�1 ıtn f0 ; (8.14)

8 GPU-Based Parallel Integration of Large Numbers of Independent ODE Systems 163

wj D .1 � �j � �j /w0 C �jwj�1
C �jwj�2 C Q�j ıtn fj�1 C Q
j ıtn f0; j D 2; : : : ; s ; (8.15)

ynC1 D ws ; (8.16)

where s is the total number of stages and wj are internal vectors for the stages. The
right-hand-side derivative vector function, fj , is evaluated at each stage, such that
fj D f.tn C cj ıtn;wj ; g/. The recursive nature of wj allows the use of only five
arrays for storage. The coefficients used in Eqs. (8.14) and (8.15) can be obtained
analytically for any number of stages s � 2:

Q�1 D b1!1; �j D 2bj!0

bj�1
; �j D �bj

bj�2
; Q�j D 2bj!1

bj�1
; (8.17)

Q
j D �aj�1f�j ; b0 D b2; b1 D 1

!0
; bj D T 00

j .!0/

T 0
j .!0/

�2 ; (8.18)

w0 D 1C �

s2
; !1 D T 0

s .!0/

T 00
s .!0/

; aj D 1 � bj Tj .!0/ ; (8.19)

for j D 2; : : : ; s, where � � 0 is the damping parameter (e.g., � D 2=13 [30,
39]). The Chebyshev polynomials of the first kind, Tj .x/, with first and second
derivatives T 0

j .x/ and T 00
j .x/, respectively, are defined recursively as

Tj .x/ D 2xTj�1.x/ � Tj�2.x/; j D 2; : : : ; s ; (8.20)

where T0.x/ D 1 and T1.x/ D x. The cj used in the function evaluations are

c1 D c2

T 0
2.!0/

� c2

4
; (8.21)

cj D T 0
s .!0/

T 00
s .!0/

T 00
j .!0/

T 0
j .!0/

� j 2 � 1
s2 � 1

; 2 � j � s � 1 ; (8.22)

cs D 1 : (8.23)

As with the RKCK method in Sect. 8.2.1, the RKC method can also be used
with an adaptive time stepping method for error control, as given by Sommeijer
et al. [30]. The error accrued in taking the step tnC1 D tn C ıtn and obtaining ynC1
is estimated using

�nC1 D 4

5
.yn � ynC1/C 2

5
ıtn.fn C fnC1/ : (8.24)

We then obtain the weighted RMS norm of error using this error estimate with
absolute and relative tolerances:

164 K.E. Niemeyer and C.-J. Sung

k�nC1kRMS D
�����nC1

T
p
N

����
2

; (8.25)

T D A CR � max .jynj; jynC1j/ ; (8.26)

where N represents the number of unknown variables as defined previously, A is the
vector of absolute tolerances, and R is the relative tolerance. The norm k�k2 indicates
the Euclidean or L2 norm. If k�nC1kRMS � 1, the step is accepted; otherwise, it is
rejected and repeated using a smaller step size. Finally, a new step size is calculated
using the weighted RMS norm of error for the current and prior steps, as well as the
associated step sizes, via

ıtnC1 D min .10;max.0:1; f // ıtn ; (8.27)

f D 0:8

k�nk1=.pC1/

RMS

k�nC1k1=.pC1/
RMS

ıtn

ıtn�1

!
1

k�nk1=.pC1/
RMS

; (8.28)

where p D 2, the order of the algorithm. We use Eq. (8.27) with a modified relation
to calculate a new step size for a step rejection:

f D 0:8

k�nk1=.pC1/
RMS

: (8.29)

Determining the initial time step size requires special consideration. First, the
algorithm takes a tentative integration step, using the inverse of the spectral radius
	—the magnitude of the largest eigenvalue—of the Jacobian matrix as the step size.
Then, after estimating the error associated with this tentative step, it calculates a new
step size following a similar procedure to that given in Eqs. (8.27) and (8.28):

ıt0 D 1

	
; (8.30)

�0 D ıt0 .f.t0 C ıt0; y0 C ıt0 f.t0; y0//� f.t0; y0// ; (8.31)

ıt1 D 0:1
ıt0

k�0k1=2RMS

; (8.32)

where k�0kRMS is evaluated in the same manner as k�nC1kRMS using Eq. (8.25).
After selecting the optimal time step size to control local error, the algorithm

next determines the optimal number of RKC stages in order to remain stable. Due
to stiffness, too few stages could lead to instability; in contrast, using more stages
than required would add unnecessary computational effort. The number of stages is
determined using the spectral radius and time step size:

s D 1C
p
1C 1:54 ıtn 	 ; (8.33)

8 GPU-Based Parallel Integration of Large Numbers of Independent ODE Systems 165

as suggested by Sommeijer et al. [30], where the value 1.54 is related to the
stability boundary of the algorithm. Note that s may vary between time steps due
to a changing spectral radius and time step size. We recommend using a nonlinear
power method [30] to calculate the spectral radius with our RKC implementation;
this choice costs an additional vector to store the computed eigenvector, but avoids
storing or calculating the Jacobian matrix directly. Following Sommeijer et al. [30],
our RKC implementation estimates the spectral radius every 25 (internal) steps or
after a step rejection.

8.3 Source Code

Next, we provide implementation details and source code for the GPU versions
of the algorithms described above. The number of unknowns (and corresponding
equations) N is represented with the variable NEQN, and the number of ODE systems
Node is defined as numODE in the following code. In order for the GPU algorithms to
offer a performance increase over CPU algorithms, Node should be relatively large.
Although the exact number of ODEs where the GPU algorithm becomes faster than
its CPU equivalent is problem dependent, Niemeyer and Sung [21] showed that a
GPU implementation of the RKCK algorithm for chemical kinetics outperforms an
equivalent serial CPU version for as little as 128 ODE systems. All operations are
given here in double precision, although depending on the particular needs of the
specific application single-precision calculations may be preferable to reduce the
computational expense.

In order to take advantage of global memory coalescing on the GPU, we
recommend storing the set of dependent variable vectors yi , where i D 1; : : : ; Node,
in a single one-dimensional array, where variables corresponding to the same
unknown for consecutive systems sit adjacent in memory. In other words, if Y is a
two-dimensional matrix with Node rows and N columns, where the ith row contains
the unknown vector yi , then Y should be stored in memory as a one-dimensional
array in column-major ordering. This ensures that adjacent GPU threads in the same
warp access adjacent global memory locations when reading or writing equivalent
array elements. See Kirk and Hwu [14] or Jang et al. [12] for more details and
examples on global memory coalescing.

The following code snippet shows the proper loading of a host array yHost from
an arbitrary array y that contains initial conditions for all ODEs:

1 double *yHost;
2 yHost = (double *) malloc (numODE * NEQN * sizeof(double));
3

4 for (int i = 0; i < numODE; ++i) {
5 for (int j = 0; j < NEQN; ++j) {
6 yHost[i + numODE * j] = y[i][j];
7 }
8 }

166 K.E. Niemeyer and C.-J. Sung

A similar procedure should be used for the constant parameter vector g if needed.
Next, the GPU global memory arrays should be declared and initialized, and the

block/grid dimensions set up using

1 double *yDevice;
2 cudaMalloc ((void**) &yDevice, numODE * NEQN * sizeof(double));
3

4 int blockSize;
5 if (numODE < 4194304) {
6 blockSize = 64;
7 } else if (numODE < 8388608) {
8 blockSize = 128;
9 } else if (numODE < 16777216) {

10 blockSize = 256;
11 } else {
12 blockSize = 512;
13 }
14 dim3 dimBlock (blockSize, 1);
15 dim3 dimGrid (numODE / dimBlock.x, 1);

Here, we use simple one-dimensional block and grid dimensions; reshaping the
grid should not affect performance, but can be done for convenience. We chose 64
as the block size for problems with less than 4,194,304 ODEs based on experience
for chemical kinetics problems [21]. The size should remain a power of two, but
different block sizes may be optimal for other problems.

The final step is to set up the ODE integration loop and kernel function execution.
The integration driver kernel, to be described shortly, will perform internal sub-
stepping as necessary to reach the specified end time. Depending on the objectives,
there are various ways to approach this:

• If only the final integrated results are needed, then a single GPU kernel can be
invoked.

• If intermediate integration results are needed, then an acceptable outer step size
over which results will be spaced should be chosen, and the GPU kernel should
be invoked inside a loop.

We will leave the code as general as possible by following the second approach,
although modifications should be made depending on the desired functionality.
In both cases, the global memory array holding the variables to be integrated
needs to be transferred to the GPU before, and from the GPU after, each kernel
invocation.

1 // set initial time
2 double t = t0;
3 double tNext = t + h;
4

5 while (t < tEnd) {
6 // transfer memory to GPU

8 GPU-Based Parallel Integration of Large Numbers of Independent ODE Systems 167

7 cudaMemcpy (yDevice, yHost, numODE*NEQN*sizeof(double),
cudaMemcpyHostToDevice);

8 intDriver <<<dimGrid, dimBlock>>> (t, tNext, numODE, gDevice,
yDevice);

9

10 // transfer memory back to CPU
11 cudaMemcpy (yHost, yDevice, numODE*NEQN*sizeof(double),

cudaMemcpyDeviceToHost);
12

13 t = tNext;
14 tNext += h;
15 }
16

17 cudaFree (gDevice);
18 cudaFree (yDevice);

Here, t0 refers to the initial time, tEnd the desired final time, and h the outer
step size. In the current form, each outer integration step performed by the GPU
will be a “restart” integration, meaning no information about previous steps (e.g.,
error estimates, step sizes) will be used to assist the startup. This is necessary in
certain applications such as reactive-flow simulations (and other simulation methods
that use operator splitting), where, after each outer step, integration results are
combined with changes due to fluid transport, thereby invalidating stored integration
information. However, where possible, better performance may be obtained by
transferring the appropriate data from the GPU and using it in the next overall
integration step.

The next code snippet contains the general integration driver kernel, suitable for
either algorithm:

1 __global__ void
2 intDriver (const double t, const double tEnd, const int numODE,
3 const double* gGlobal, double* yGlobal) {
4 // unique thread ID, based on local ID in block and block ID
5 int tid = threadIdx.x + (blockDim.x * blockIdx.x);
6

7 // ensure thread within limit
8 if (tid < numODE) {
9

10 // local array with initial values
11 double yLocal[NEQN];
12

13 // constant parameter(s)
14 double gLocal = gGlobal[tid];
15

16 // load local array with initial values from global array
17 for (int i = 0; i < NEQN; ++i) {
18 yLocal[i] = yGlobal[tid + numODE * i];
19 }
20

21 // call integrator for one time step
22 integrator (t, tEnd, yLocal, gGlobal);
23

168 K.E. Niemeyer and C.-J. Sung

24 // update global array with integrated values
25 for (int i = 0; i < NEQN; ++i) {
26 yGlobal[tid + numODE * i] = yLocal[i];
27 }
28 }
29 }

The function integrator should be replaced with rkckDriver or rkcDriver
(given below) depending on the desired integration algorithm.

8.3.1 RKCK Code

In the following, the source code for the RKCK driver device function is given in
functional snippets. First, the minimum and maximum allowable time step sizes are
defined, and the initial step size is set as half the integration time.

1 __device__ void
2 rkckDriver (double t, const double tEnd, const double g,
3 double* y) {
4

5 // maximum and minimum allowable step sizes
6 const double hMax = fabs(tEnd - t);
7 const double hMin = 1.0e-20;
8

9 // initial step size
10 double h = 0.5 * fabs(tEnd - t);

Then, inside the time integration loop, the algorithm takes a trial integration step
and estimates the error of that step.

1 // integrate until specified end time
2 while (t < tEnd) {
3

4 // limit step size based on remaining time
5 h = fmin(tEnd - t, h);
6

7 // y and error vectors temporary until error determined
8 double yTemp[NEQN], yErr[NEQN];
9

10 // evaluate derivative
11 double F[NEQN];
12 dydt (t, y, g, F);
13

14 // take a trial step
15 rkckStep (t, y, g, F, h, yTemp, yErr);
16

17 // calculate error
18 double err = 0.0;
19 int nanFlag = 0;
20 for (int i = 0; i < NEQN; ++i) {
21 if (isnan(yErr[i])) nanFlag = 1;

8 GPU-Based Parallel Integration of Large Numbers of Independent ODE Systems 169

22

23 err = fmax(err, fabs(yErr[i] / (fabs(y[i]) + fabs(h * F[i])
+ TINY)));

24 }
25 err /= eps;

If the error is too large, the step size is decreased and the step retaken; otherwise,
the algorithm accepts the step and calculates the next step size, then repeats the
process.

1 // check if error too large
2 if ((err > 1.0) || isnan(err) || (nanFlag == 1)) {
3 // step failed, error too large
4 if (isnan(err) || (nanFlag == 1)) {
5 h *= P1;
6 } else {
7 h = fmax(SAFETY * h * pow(err, PSHRNK), P1 * h);
8 }
9

10 } else {
11 // step accepted
12 t += h;
13

14 if (err > ERRCON) {
15 h = SAFETY * h * pow(err, PGROW);
16 } else {
17 h *= 5.0;
18 }
19

20 // ensure step size is bounded
21 h = fmax(hMin, fmin(hMax, h));
22

23 for (int i = 0; i < NEQN; ++i)
24 y[i] = yTemp[i];
25 }
26 }
27 }

The device function dydt evaluates the derivative function F for the particular
problem as in Eq. (8.1) using the input time t, vector of dependent variables y,
and constant parameter(s) g. The device function rkcStep, not given here, takes
a single integration step using Eqs. (8.2)–(8.9), returning the vector of integrated
values yTemp as well as the error vector yErr. A number of constants were used in
this function, given here:

1 #define UROUND (2.22e-16)
2 #define SAFETY 0.9
3 #define PGROW (-0.2)
4 #define PSHRNK (-0.25)
5 #define ERRCON (1.89e-4)
6 #define TINY (1.0e-30)
7 const double eps = 1.0e-10;

170 K.E. Niemeyer and C.-J. Sung

8.3.2 RKC Code

The RKC driver algorithm is next given. For this algorithm, the number of
stages must be determined at each step to handle local stiffness; to avoid excess
computation, a maximum number of stages is first set. In addition, minimum and
maximum allowable time step sizes are defined.

1 __device__ void
2 rkcDriver(double t, const double tEnd, const double g, double* y)

{
3 // number of steps
4 int numStep = 0;
5

6 // maximum allowable number of RKC stages
7 int mMax = (int)(round(sqrt(relTol / (10.0 * UROUND))));
8

9 // RKC needs at least two stages for second-order accuracy
10 if (mMax < 2) mMax = 2;
11

12 // maximum allowable step size
13 const double stepSizeMax = fabs(tEnd - t);
14

15 // minimum allowable step size
16 double stepSizeMin = 10.0*UROUND*fmax(fabs(t), stepSizeMax);

Then, the algorithm evaluates the derivative using the initial conditions for use
as the initial eigenvector estimate for the spectral radius calculation. The calculated
eigenvectors are stored and used as initial guesses in later steps.

1 // internal y vector
2 double y_n[NEQN];
3 for (int i = 0; i < NEQN; ++i)
4 y_n[i] = y[i];
5

6 // calculate F_n for initial y
7 double F_n[NEQN];
8 dydt (t, y_n, g, F_n);
9

10 // internal work vector
11 double work[4 + NEQN];
12

13 // load initial estimate for eigenvector
14 if (work[2] < UROUND) {
15 for (int i = 0; i < NEQN; ++i) {
16 work[4 + i] = F_n[i];
17 }
18 }

Inside the time integration loop, the algorithm calculates the spectral radius for
the first step—which it next uses to determine the initial step size—and every 25
steps thereafter.

1 // perform internal sub-stepping

8 GPU-Based Parallel Integration of Large Numbers of Independent ODE Systems 171

2 while (t < tEnd) {
3 double tempArr[NEQN], tempArr2[NEQN], err;
4

5 // if last step, limit step size
6 if ((1.1 * work[2]) >= fabs(tEnd - t)) work[2] = fabs(tEnd -

t);
7

8 // estimate Jacobian spectral radius if 25 steps passed
9 if ((numStep % 25) == 0) {

10 work[3] = rkcSpecRad (t, y_n, g, F_n, stepSizeMax, &work
[4], tempArr2);

11 }

For the initial step, a trial step is taken using the inverse of the spectral radius as
the step size; the resulting error is used to determine an appropriate step size that
satisfies error control.

1 // if this is initial step
2 if (work[2] < UROUND) {
3 // estimate first time step
4 work[2] = stepSizeMax;
5

6 if ((work[3] * work[2]) > 1.0) work[2] = 1.0 / work[3];
7 work[2] = fmax(work[2], stepSizeMin);
8

9 for (int i = 0; i < NEQN; ++i) {
10 temp_arr[i] = y_n[i] + (work[2] * F_n[i]);
11 }
12 dydt (t + work[2], tempArr, g, tempArr2);
13

14 err = 0.0;
15 for (int i = 0; i < NEQN; ++i) {
16 double est = (tempArr2[i] - F_n[i]) / (absTol + relTol *

fabs(y_n[i]));
17 err += est * est;
18 }
19 err = work[2] * sqrt(err / NEQN);
20

21 if ((P1 * work[2]) < (stepSizeMax * sqrt(err))) {
22 work[2] = fmax(P1 * work[2] / sqrt(err), stepSizeMin);
23 } else {
24 work[2] = stepSizeMax;
25 }
26 }

For all steps following the first, the value stored in work[2] is used for the time
step size.

Next, the number of stages is determined using the spectral radius and current
time step size, and a tentative integration step performed.

1 // calculate number of steps
2 int m = 1 + (int)(sqrt(1.54 * work[2] * work[3] + 1.0));
3

4 // modify step size based on stages

172 K.E. Niemeyer and C.-J. Sung

5 if (m > mMax) {
6 m = mMax;
7 work[2] = ((double)(m * m - 1)) / (1.54 * work[3]);
8 }
9

10 // perform tentative time step
11 rkcStep (t, y_n, g, F_n, work[2], m, y);

The algorithm then estimates the error of that step.

1 // calculate derivative F_np1 with tentative y_np1
2 dydt (t + work[2], y, g, tempArr);
3

4 // estimate error
5 err = 0.0;
6 for (int i = 0; i < NEQN; ++i) {
7 double est = 0.8 * (y_n[i] - y[i]) + 0.4 * work[2] * (F_n[i

] + tempArr[i]);
8 est /= (absTol + relTol * fmax(fabs(y[i]), fabs(y_n[i])));
9 err += est * est;

10 }
11 err = sqrt(err / ((double)N));

Based on the error magnitude, the algorithm determines whether to accept the
step and proceed to the next step or to decrease the step size and repeat the current
step.

1 // check value of error
2 if (err > 1.0) {
3 // error too large, step is rejected
4 // select smaller step size
5 work[2] = 0.8 * work[2] / (pow(err, (1.0 / 3.0)));
6

7 // reevaluate spectral radius
8 work[3] = rkcSpecRad (t, y_n, g, F_n, stepSizeMax, &work

[4], tempArr2);
9 } else {

10 // step accepted
11 t += work[2];
12 numStep++;

Finally, for an accepted step, the current step size and error are stored and the
next step size is calculated.

1 double fac = 10.0;
2 double temp1, temp2;
3

4 if (work[1] < UROUND) {
5 temp2 = pow(err, (1.0 / 3.0));
6 if (0.8 < (fac * temp2)) fac = 0.8 / temp2;
7 } else {
8 temp1 = 0.8 * work[2] * pow(work[0], (1.0 / 3.0));
9 temp2 = work[1] * pow(err, (2.0 / 3.0));

10 if (temp1 < (fac * temp2)) fac = temp1 / temp2;
11 }

8 GPU-Based Parallel Integration of Large Numbers of Independent ODE Systems 173

12

13 // set "old" values to those for current time step
14 work[0] = err;
15 work[1] = work[2];
16

17 for (int i = 0; i < NEQN; ++i) {
18 y_n[i] = y[i];
19 F_n[i] = tempArr[i];
20 }
21

22 work[2] *= fmax(P1, fac);
23 work[2] = fmax(stepSizeMin, fmin(stepSizeMax, work[2]));
24 }
25 }
26 }

As before, we do not provide the RKC integration step device function rkcStep,
which evaluates Eqs. (8.13)–(8.16). The absolute and relative tolerances absTol and
relTol are set as defined constants, e.g.,:

1 const double abs_tol = 1.0e-10;
2 const double rel_tol = 1.0e-6;

Note that these may be modified to more stringent tolerances if desired. The constant
UROUND is defined the same as in the RKCK code above. The local work array work

contains, in element order:

0 the previous step error estimation,
1 previous time step,
2 current time step,
3 spectral radius, and
4 vector of eigenvalues (of size N).

The device function rkcSpecRad returns the spectral radius, the largest magnitude
eigenvalue; various methods may be used for this purpose depending on the case. We
provide GPU source code for a nonlinear power method adopted from Sommeijer
et al. [30] that may be used for general applications in the Appendix.

8.4 Performance Results

We tested the performance of the GPU-based RKCK and RKC integration algo-
rithms using two ODE test cases, ranging the number of ODE systems from 101

to 105. For both cases, all calculations were performed in double precision using a
single GPU and single CPU; we compared the performance of the GPU algorithm
against serial CPU calculations as well as parallelized CPU performance—via
OpenMP [24]—on four cores. We performed the GPU calculations using an
NVIDIA Tesla c2075 GPU with 6 GB of global memory, and an Intel Xeon X5650
CPU, running at 2:67 GHz with 256 kB of L2 cache memory per core and 12 MB
of L3 cache memory, served as the host processor both for the GPU calculations and

174 K.E. Niemeyer and C.-J. Sung

the CPU single- and four-core OpenMP calculations. We used the GNU Compiler
Collection (gcc) version 4.6.2 (with the compiler options “-O3 -ffast-math
-std=c99 -m64”) to compile the CPU programs and the CUDA 5.5 compiler
nvcc version 5.5.0 (“-O3 -arch=sm_20 -m64”) to compile the GPU versions.
We set the GPU to persistence mode, but also used the cudaSetDevice() to hide
any further device initialization delay in the CUDA implementations prior to the
timing.

The integration algorithms take as input initial conditions and a global time
step, performing internal sub-stepping as necessary. The computational wall-clock
times reported represent the average over ten global time steps, which for the GPU
versions includes the overhead required for transmitting data between the CPU
and GPU before and after each global step. The integrator restarts at each global
time step, not storing any data from the previous step—although any sub-stepping
performed by the algorithm within these larger steps does benefit from retained
information from prior sub-steps. Interested readers should refer to Niemeyer and
Sung [21] for more detailed performance evaluations of these algorithms in the
context of chemical kinetics problems.

8.4.1 RKCK Results

We used the Pleiades ODE test problem (PLEI) of Hairer et al. [9, 20] to test the
GPU- and CPU-based versions of the RKCK integrator. This nonstiff test case
originates from a celestial mechanics problem tracking the coordinates of seven
stars; it consists of a set of 14 second-order ODEs based on Newtonian gravitational
forces, in the form

z00 D

x
y

!00
D

f.1/ .x; y/
f.2/ .x; y/

!
; z 2 <14 ; (8.34)

x00
i D f

.1/
i .x; y/ D

X
j¤i

mj

�
xj � xi

=rij ; (8.35)

y00
i D f

.2/
i .x; y/ D

X
j¤i

mj

�
yj � yi

=rij ; (8.36)

rij D

�
xi � xj

2 C �
yi � yj

�3=2
; i; j D 1; : : : ; 7 ; (8.37)

where (xi ; yi) and mi D i are the coordinates and mass of the ith star, respectively.
This second-order system can be converted into a system of 28 first-order ODEs of
the form by defining w D z0, such that

z
w

!0
D

w
f.z/

!
;

z
w

!
2 <28 : (8.38)

8 GPU-Based Parallel Integration of Large Numbers of Independent ODE Systems 175

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

103 104 105

Sp
ee

du
p

fa
ct

or
 o

f
R

K
C

K
-G

P
U

Number of independent ODE systems

RKCK-GPU vs. RKCK-CPU
RKCK-GPU vs. RKCK-CPU 4

Fig. 8.1 Speedup factors offered by GPU-based explicit RKCK integration algorithm over single-
and four-core CPU-based versions for Pleiades ODE problem. Note that the horizontal axis is
displayed in logarithmic scale

While the original problem offers specific initial conditions for a single ODE
system, here we consider a large number of ODEs with the initial conditions
randomly perturbed by a small factor to emulate a sensitivity analysis. We integrated
the ODE systems from t = 0 to 1.0 s using 1:0 � 10�1 s as the global time step size.
We set the RKCK tolerance " (eps in the code) to 1:0 � 10�10.

Figure 8.1 shows the speedup factors, measured as the ratio of computational
times per step, offered by the GPU-based RKCK algorithm over the baseline
CPU version for both serial and four-core parallel operation, for numbers of ODE
systems ranging from 1,024 to 262,144. The GPU-based algorithm ran faster
than the serial and parallel CPU-based algorithms for Node larger than 4,096 and
8,192, respectively. For the current problem, at best the GPU offered speedup
factors of nearly four and two over the serial and four-core CPU implementations,
respectively. The non-smooth performance scaling resulted from the randomly
perturbed initial conditions.

Note that since each ODE system used randomly perturbed initial conditions,
adjacent threads in the GPU implementation handled potentially extremely different
initial condition values, resulting in thread divergence due to varying internal time
step sizes. Therefore, the results shown here represent a worst-case GPU algo-
rithm performance, particularly compared to applications involving operator-split
reactive-flow codes where adjacent threads/ODE systems correspond to neighboring
spatial locations. In such situations, initial conditions would be more similar
and therefore follow similar instruction pathways. In either case, GPU-based
integration algorithms offer performance benefits over the baseline CPU versions.
See Niemeyer and Sung [21] for more discussion on this topic.

176 K.E. Niemeyer and C.-J. Sung

Furthermore, the current problem involved a relatively simple system of ODEs,
limiting the calculations performed on the GPU between the memory transfers
before and after each integration step. ODE systems with more complex derivative
functions would saturate the GPU with operations, increasing performance. For
example, the RKCK algorithm demonstrated by Niemeyer and Sung [21] performed
up to 126 times faster on a GPU than on a serial CPU, integrating a chemical
kinetics ODE system with nine species participating in 38 reaction steps—requiring
significantly more floating-point calculations than the case studied here.

8.4.2 RKC Results

To demonstrate the performance of the GPU-based RKC algorithm, we used
a chemical kinetics problem: the ODE system describing the constant-volume
autoignition of ethanol (C2H5OH). We implemented the reaction mechanism of
Marinov [19] to describe the oxidation of ethanol, with 57 species participating in
766 irreversible reaction steps. The governing ODE system contained 58 equations:
one for temperature T and the rest for species mass fractions Y:

dy
dt

D
�
dT

dt
;
dY1

dt
; : : : ;

dYNsp

dt

	|
; (8.39)

dT

dt
D � 1

�cv

NspX
iD1

ei!iWi ; (8.40)

dYi

dt
D Wi!i

�
; i D 1; : : : ; Nsp ; (8.41)

!i D
NreacX
jD1

�00
ij � �0

ij

�
kj

NspY
kD1

C
�0
kj

k ; (8.42)

where � indicates the density, cv the mass-averaged constant-volume specific heat,
ei the internal energy of the ith species, Wi the molecular weight of the ith species,
�00
ij and �0

ij the forward and reverse stoichiometric coefficients for the ith species
in reaction j, Ck the molar concentration of the kth species, and Nsp and Nreac are
the numbers of species and reactions, respectively. For a reaction j without pressure
dependence, the rate coefficient kj is given in Arrhenius form by

kj D AjT
ˇj exp

��Ej
RT

	
; (8.43)

where R is the universal gas constant, Aj the pre-exponential coefficient, ˇj
the temperature exponent, and Ej the activation energy. Note that reactions
can be pressure-dependent (see, e.g., Law [17] for examples of various

8 GPU-Based Parallel Integration of Large Numbers of Independent ODE Systems 177

 0.1

 1

 10

 100

102 103 104 105

Sp
ee

du
p

fa
ct

or
 o

f
R

K
C

K
-G

P
U

Number of independent ODE systems

RKC-GPU vs. RKC-CPU

RKC-GPU vs. RKC-CPU 4

Fig. 8.2 Speedup factors offered by GPU-based explicit RKC integration algorithm over single-
and four-core CPU-based versions for chemical kinetics ODE problem. Note that both axes are
displayed in logarithmic scale

pressure-dependence formulations); these were also considered in the current
implementation.

This problem is moderately stiff using a time step size of ıt = 1:0 � 10�6 s for
ten global time steps. In this case, we generated initial conditions for the set of ODE
systems by sampling the solutions obtained from constant-pressure homogeneous
ignition simulations, initiated at 1,600 K, 1 atm, and an equivalence ratio of one.1

We assigned these initial conditions sequentially, such that adjacent threads in the
GPU implementation contained data from consecutive time steps in the sample—
and therefore such threads handled the integration of similar conditions, emulating
adjacent spatial locations in an operator-split reactive-flow simulation.

Figure 8.2 shows the speedup factors offered by the GPU-based RKC algorithm
over the baseline CPU version for both serial and four-core parallel operation,
for numbers of ODE systems ranging from 64 to 16,384. In this case, the GPU-
accelerated code ran faster than the serial CPU version for the entire range of
ODE system sizes considered, while it offered better performance than the four-
core parallel CPU version for 256 ODEs and higher. At best, the GPU-based
RKC algorithm ran nearly 64 and 17 times faster than the serial and four-core
CPU implementations, respectively. The discontinuity in speedup seen in Fig. 8.2
corresponded to the inclusion of initial conditions leading to greater stiffness.

1An equivalence ratio of one indicates the mixture of fuel and oxidizer set to an appropriate ratio
for complete combustion.

178 K.E. Niemeyer and C.-J. Sung

8.5 Conclusions

In this chapter, we presented two explicit algorithms appropriate for integrating
large numbers of independent ODE systems on GPUs. Specifically, we proposed
the fifth-order adaptive Runge–Kutta–Cash–Karp (RKCK) method for nonstiff
problems and the stabilized second-order adaptive Runge–Kutta–Chebyshev (RKC)
method for problems with moderate levels of stiffness. Source code and implemen-
tation details were presented to ease the adoption of such methods, and performance
comparison results were presented for each method. The examples shown here
served to demonstrate the potential of GPU acceleration where many independent
systems of ODEs need to be integrated; in the case of the RKC algorithm, we
demonstrated more than an order of magnitude performance increase over an
equivalent parallel CPU code running on four cores. The types of scientific and
engineering problems dealing with large numbers of ODEs—in particular, reactive-
flow models that rely on operator splitting—can benefit significantly from GPU
acceleration; interested readers can directly implement the algorithms presented
here to such ends, or use them as the beginnings for their own solution.

Acknowledgements This work was supported by the US Department of Defense through the
National Defense Science and Engineering Graduate Fellowship program, the National Science
Foundation Graduate Research Fellowship under grant number DGE-0951783, and the Combus-
tion Energy Frontier Research Center—an Energy Frontier Research Center funded by the US
Department of Energy, Office of Science, Office of Basic Energy Sciences under award number
DE-SC0001198.

Appendix

Various methods may be used to calculate the spectral radius, including the
Gershgorin circle theorem [7, 11] that provides an upper-bound estimate. Here, we
provide a function based on a nonlinear power method [30].

1 __device__ double
2 rkcSpecRad (const double t, const double* y, const double g,

const double* F, const double hMax, double* v, double* Fv) {
3 // maximum number of iterations
4 const int itmax = 50;
5

6 double small = 1.0 / hmax;
7

8 double nrm1 = 0.0;
9 double nrm2 = 0.0;

10 for (int i = 0; i < NEQN; ++i) {
11 nrm1 += (y[i] * y[i]);
12 nrm2 += (v[i] * v[i]);
13 }
14 nrm1 = sqrt(nrm1);

8 GPU-Based Parallel Integration of Large Numbers of Independent ODE Systems 179

15 nrm2 = sqrt(nrm2);
16

17 double dynrm;
18 if ((nrm1 != 0.0) && (nrm2 != 0.0)) {
19 dynrm = nrm1 * sqrt(UROUND);
20 for (int i = 0; i < NEQN; ++i) {
21 v[i] = y[i] + v[i] * (dynrm / nrm2);
22 }
23 } else if (nrm1 != 0.0) {
24 dynrm = nrm1 * sqrt(UROUND);
25 for (int i = 0; i < NEQN; ++i) {
26 v[i] = y[i] * (1.0 + sqrt(UROUND));
27 }
28 } else if (nrm2 != 0.0) {
29 dynrm = UROUND;
30 for (int i = 0; i < NEQN; ++i) {
31 v[i] *= (dynrm / nrm2);
32 }
33 } else {
34 dynrm = UROUND;
35 for (int i = 0; i < NEQN; ++i) {
36 v[i] = UROUND;
37 }
38 }
39

40 // now iterate using nonlinear power method
41 double sigma = 0.0;
42 for (int iter = 1; iter <= itmax; ++iter) {
43

44 dydt (t, pr, v, Fv);
45

46 nrm1 = 0.0;
47 for (int i = 0; i < NEQN; ++i) {
48 nrm1 += ((Fv[i] - F[i]) * (Fv[i] - F[i]));
49 }
50 nrm1 = sqrt(nrm1);
51 nrm2 = sigma;
52 sigma = nrm1 / dynrm;
53

54 nrm2 = fabs(sigma - nrm2) / sigma;
55 if ((iter >= 2) && (fabs(sigma - nrm2) <= (fmax(sigma, small)

* 0.01))) {
56 for (int i = 0; i < NEQN; ++i) {
57 v[i] -= y[i];
58 }
59 return (1.2 * sigma);
60 }
61

62 if (nrm1 != 0.0) {
63 for (int i = 0; i < NEQN; ++i) {
64 v[i] = y[i] + ((Fv[i] - F[i]) * (dynrm / nrm1));
65 }
66 } else {

180 K.E. Niemeyer and C.-J. Sung

67 int ind = (iter % NEQN);
68 v[ind] = y[ind] - (v[ind] - y[ind]);
69 }
70 }
71 return (1.2 * sigma);
72 }

References

1. Alexandrov, V., Sameh, A., Siddique, Y., Zlatev, Z.: Numerical integration of chemical ODE
problems arising in air pollution models. Environ. Monit. Assess. 2(4), 365–377 (1997).
doi:10.1023/A:1019086016734

2. Barry, D., Miller, C., Culligan, P., Bajracharya, K.: Analysis of split operator methods for
nonlinear and multispecies groundwater chemical transport models. Math. Comput. Simul.
43(3–6), 331–341 (1997). doi:10.1016/S0378-4754(97)00017-7

3. Barry, D., Bajracharya, K., Crapper, M., Prommer, H., Cunningham, C.: Comparison of
split-operator methods for solving coupled chemical non-equilibrium reaction/groundwater
transport models. Math. Comput. Simul. 53(1–2), 113–127 (2000). doi:10.1016/S0378-
4754(00)00182-8

4. Cash, J.R., Karp, A.H.: A variable order Runge–Kutta method for initial value problems with
rapidly varying right-hand sides. ACM Trans. Math. Softw. 16(3), 201–222 (1990)

5. Day, M.S., Bell, J.B.: Numerical simulation of laminar reacting flows with complex chemistry.
Combust. Theory Model. 4(4), 535–556 (2000). doi:10.1088/1364-7830/4/4/309

6. Dematte, L., Prandi, D.: GPU computing for systems biology. Brief. Bioinform. 11(3),
323–333 (2010). doi:10.1093/bib/bbq006

7. Geršgorin, S.: Über die abgrenzung der eigenwerte einer matrix. Bulletin de l’Académie des
Sciences de l’URSS. Classe des sciences mathématiques et na (6), 749–754 (1931)

8. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems, 2nd edn. Springer Series in Computational Mathematics, vol. 14.
Springer, Berlin/Heidelberg (1996)

9. Hairer, E., Wanner, G., Nørsett, S.P.: Solving Ordinary Differential Equations I: Nons-
tiff Problems, 2nd edn. Springer Series in Computational Mathematics, vol. 8. Springer,
Berlin/Heidelberg (1993). doi:10.1007/978-3-540-78862-1

10. Helton, J., Davis, F.: Latin hypercube sampling and the propagation of uncertainty in
analyses of complex systems. Reliab. Eng. Syst. Saf. 81(1), 23–69 (2003). doi:10.1016/S0951-
8320(03)00058-9

11. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)
12. Jang, B., Schaa, D., Mistry, P., Kaeli, D.: Exploiting memory access patterns to improve

memory performance in data-parallel architectures. IEEE Trans. Parallel Distrib. Syst. 22(1),
105–118 (2011). doi:10.1109/TPDS.2010.107

13. Kim, J., Cho, S.Y.: Computation accuracy and efficiency of the time-splitting method in solving
atmospheric transport/chemistry equations. Atmos. Environ. 31(15), 2215–2224 (1997)

14. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors: A Hands-on Approach.
Morgan Kaufmann, Burlington (2010)

15. Knio, O.M., Najm, H.N., Wyckoff, P.S.: A semi-implicit numerical scheme for react-
ing flow II. Stiff, operator-split formulation. J. Comput. Phys. 154, 428–467 (1999).
doi:10.1006/jcph.1999.6322

8 GPU-Based Parallel Integration of Large Numbers of Independent ODE Systems 181

16. Kühn, C., Wierling, C., Kühn, A., Klipp, E., Panopoulou, G., Lehrach, H., Poustka, A.: Monte
Carlo analysis of an ODE model of the sea urchin endomesoderm network. BMC Syst. Biol.
3, 83 (2009). doi:10.1186/1752-0509-3-83

17. Law, C.K.: Combustion Physics. Cambridge University Press, New York (2006)
18. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global

uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254(1), 178–19 (2008).
doi:10.1016/j.jtbi.2008.04.011

19. Marinov, N.M.: A detailed chemical kinetic model for high temperature ethanol oxidation. Int.
J. Chem. Kinet. 31(3), 183–220 (1999)

20. Mazzia, F., Magherini, C.: Test Set for Initial Value Problem Solvers, Release 2.4. Department
of Mathematics, University of Bari and INdAM, Research Unit of Bari (2008). Available at
http://www.dm.uniba.it/~testset

21. Niemeyer, K.E., Sung, C.J.: Accelerating moderately stiff chemical kinetics in
reactive-flow simulations using GPUs. J. Comput. Phys. 256, 854–871 (2014).
doi:10.1016/j.jcp.2013.09.025

22. Niemeyer, K.E., Sung, C.J., Fotache, C.G., Lee, J.C.: Turbulence-chemistry closure method
using graphics processing units: a preliminary test. In: 7th Fall Technical Meeting of the
Eastern States Section of the Combustion Institute, Storrs (2011)

23. Nimmagadda, V.K., Akoglu, A., Hariri, S., Moukabary, T.: Cardiac simulation on multi-GPU
platform. J. Supercomput. 59(3), 1360–1378 (2011). doi:10.1007/s11227-010-0540-x

24. OpenMP Architecture Review Board: OpenMP Application Program Interface Version 3.0.
http://www.openmp.org/mp-documents/spec30.pdf (2008)

25. Oran, E.S., Boris, J.P.: Numerical Simulation of Reactive Flow, 2nd edn. Cambridge University
Press, Cambridge (2001)

26. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran
77: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

27. Ren, Z., Pope, S.B.: Second-order splitting schemes for a class of reactive systems. J. Comput.
Phys. 227(17), 8165–8176 (2008). doi:10.1016/j.jcp.2008.05.019

28. Schwer, D., Lu, P., Green, W.H., Semiao, V.: A consistent-splitting approach to computing stiff
steady-state reacting flows with adaptive chemistry. Combust. Theory Model. 7(2), 383–399
(2003). doi:10.1088/1364-7830/7/2/310

29. Shi, Y., Green, W.H., Wong, H., Oluwole, O.O.: Accelerating multi-dimensional combustion
simulations using hybrid CPU-based implicit/GPU-based explicit ODE integration. Combust.
Flame 159(7), 2388–2397 (2012). doi:10.1016/j.combustflame.2012.02.016

30. Sommeijer, B.P., Shampine, L.F., Verwer, J.G.: RKC: an explicit solver for parabolic PDEs.
J. Comput. Appl. Math. 88(2), 315–326 (1997)

31. Sportisse, B.: An analysis of operator splitting techniques in the stiff case. J. Comput. Phys.
161(1), 140–168 (2000)

32. Stone, C.P., Davis, R.L.: Techniques for solving stiff chemical kinetics on graphical processing
units. J. Propulsion Power 29(4), 764–773 (2013). doi:10.2514/1.B34874

33. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal.
5(3), 506–517 (1968)

34. Sundnes, J., Nielsen, B.F., Mardal, K., Cai, X., Lines, G., Tveito, A.: On the computational
complexity of the bidomain and the monodomain models of electrophysiology. Ann. Biomed.
Eng. 34(7), 1088–1097 (2006). doi:10.1007/s10439-006-9082-z

35. van der Houwen, P.J.: The development of Runge–Kutta methods for partial differential
equations. Appl. Numer. Math. 20, 261–272 (1996)

36. van der Houwen, P.J., Sommeijer, B.P.: On the internal stability of explicit, m-stage Runge-
Kutta methods for large m-values. Z. Angew. Math. Mech. 60(10), 479–485 (1980)

37. Verwer, J.G.: Explicit Runge–Kutta methods for parabolic partial differential equations. Appl.
Numer. Math. 22, 359–379 (1996)

http://www.dm.uniba.it/~testset
http://www.openmp.org/mp-documents/spec30.pdf

182 K.E. Niemeyer and C.-J. Sung

38. Verwer, J.G., Hundsdorfer, W., Sommeijer, B.P.: Convergence properties of the Runge–Kutta–
Chebyshev method. Numer. Math. 57, 57–178 (1990)

39. Verwer, J.G., Sommeijer, B.P., Hundsdorfer, W.: RKC time-stepping for advection–diffusion–
reaction problems. J. Comput. Phys. 201(1), 61–79 (2004). doi:10.1016/j.jcp.2004.05.002

40. Zhou, Y., Liepe, J., Sheng, X., Stumpf, M.P.H., Barnes, C.: GPU accelerated biochemical
network simulation. Bioinformatics 27(6), 874–876 (2011). doi:10.1093/bioinformatics/btr015

Chapter 9
Finite and Spectral Element Methods
on Unstructured Grids for Flow and Wave
Propagation Problems

Dominik Göddeke, Dimitri Komatitsch, and Matthias Möller

9.1 Introduction

Many relevant processes and phenomena from a wide range of scientific areas and
application domains can be described by mathematical models comprising (a system
of) partial differential equations (PDEs). A simple example is the Poisson equation

�
u D f; (9.1)

which is fulfilled by the scalar quantity u that represents the state of minimal energy
subject to load f and appropriate boundary conditions. As an illustration, consider
the deformation due to loading of an elastic membrane that is fixed on a frame.

A large class of model problems can be written as first-order systems of the form

@tU C r � F.U / D 0; (9.2)

where F D ŒF 1; : : : ; F n� represents an n-dimensional flux function that depends on
the solution U but not on its derivatives. As an example, consider the flow of air
around an aeroplane at high speeds, which can be modelled by the equations of gas
dynamics.

D. Göddeke (�)
Department of Mathematics, Institute of Applied Mathematics, TU Dortmund,
Dortmund, Germany
e-mail: dominik.goeddeke@math.tu-dortmund.de

D. Komatitsch
Laboratory of Mechanics and Acoustics, CNRS UPR 7051, Aix-Marseille University,
Centrale Marseille, France
e-mail: komatitsch@lma.cnrs-mrs.fr

M. Möller
Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
e-mail: m.moller@tudelft.nl

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__9, © Springer International Publishing Switzerland 2014

183

mailto:dominik.goeddeke@math.tu-dortmund.de
mailto:komatitsch@lma.cnrs-mrs.fr
mailto:m.moller@tudelft.nl

184 D. Göddeke et al.

A third example of an important real-world phenomenon that is modelled by
a time-dependent PDE is the propagation of waves, for instance the propagation of
seismic waves in the Earth to calculate the effects of earthquakes, or the propagation
of ultrasonic acoustic waves in ocean acoustics or in non-destructive testing. The
appropriate mathematical model is the elastodynamics equation

%@2t u � r � T.u;ru/ D f; (9.3)

where the stress tensor T depends on the multi-dimensional displacement field u
and/or its (transposed) gradient, which yields a second-order system.

The numerical treatment of such PDE problems typically involves two aspects,
the discretisation that maps the continuous model to a formulation suitable for
computers, and the solver that computes actual solution approximations. Both from
an engineering and mathematical point of view, the finite element method (FEM)
is often well suited for the discretisation: Finite elements offer a high degree of
geometric flexibility since they can be naturally formulated on unstructured grids.
Furthermore, they can deliver high (guaranteed) accuracy and robustness when
enhanced with h/hp-adaptation and a-posteriori error estimation techniques, for
which solid theoretical foundations exist in the FEM framework. In combination
with powerful and robust iterative solvers for the resulting linear or non-linear
systems of equations, finite elements form the underlying fabric of many modern
simulation tools.

9.2 Finite Element Analysis in a Nutshell

It is far beyond the scope of this chapter to give a comprehensive introduction to
the finite element method including all its variants and theoretical aspects. Thus, we
only outline the basic concepts of the continuous Galerkin finite element method
and refer the interested reader to, e.g., [8, 10] for an introduction to practical finite
element analysis, and to the more theoretical textbooks [2, 4]. A good overview of
discontinuous Galerkin methods, which are not considered in this chapter but feature
amenable properties that can be helpful for designing highly efficient parallelised
codes, can be found for instance in [14] and the references therein.

9.2.1 Variational Formulation

Let the scalar quantity u be governed by the generic PDE model problem

Lu D f

9 Finite and Spectral Element Methods on Unstructured Grids 185

within the n-dimensional domain ˝ � R
n; d D 1; 2; 3, where L represents a

linear spatial differential operator. Moreover, u has to fulfil certain conditions at the
boundary � WD @˝ , e.g., a combination of Dirichlet and Neumann conditions:

u D uD on �D � �;

@nu D g on �N D � n�D:

The first step in deriving the finite element method is to translate the problem at
hand into its variational form, which amounts to integrating the weighted residual
over the domain˝ and forcing the result to vanish. Thus, the solution u is sought in
some suitable function space V , referred to as trial space, such that

Z
˝

w.Lu � f / dx D 0 8w 2 W; (9.4)

where W denotes the space of test functions w. Both spaces have to comply with
the demands of the differential operator L and the Dirichlet boundary conditions.

In the second step, the infinite dimensional function spaces V and W are
approximated by finite dimensional ones, denoted by Vh and Wh.

9.2.2 Galerkin Discretisation

To simplify the presentation, let us adopt the same set of basis functions f'igNiD1 for
the discrete test and trial spaces Wh and Vh, respectively. The approximate solution
and its derivatives can then be represented as:

u.x/ � uh.x/ D
NX
jD1

'j .x/uj ; Lu.x/ � Luh.x/ D
NX
jD1

L'j .x/uj

Substituting them into the weak form (9.4) and replacing the weighting function w
by all possible 'i yields a linear system of equations for the vector of unknowns
u D Œu1; : : : uN �T :

NX
jD1

�Z
˝

'iL'j dx
�

uj D
Z
˝

'if dx; i D 1; 2; : : : ; N

As an example, consider Poisson’s equation (9.1), which corresponds to defining the
differential operator according toLŒ�� WD �
Œ�� D �r �rŒ��. Performing integration
by parts results in seeking u 2 V WD fu 2 H 1.˝/ W u D uD on �Dg such that

Z
˝

rw � ru dx D
Z
�N

wg ds C
Z
˝

wf dx

186 D. Göddeke et al.

for all test functions w 2 W WD fw 2 H 1.˝/ W w D 0 on �Dg that vanish on
the Dirichlet boundary part. Here and below H 1.˝/ denotes the space of square
integrable functions with square integrable first weak derivatives. The discrete
counterpart of the problem at hand can be expressed in compact matrix form as

Su D b with sij D
Z
˝

r'i �r'j dx D sj i and bi D
Z
�N

'ig dsC
Z
˝

'if dx:

(9.5)

Note that sij ¤ 0 if and only if 'i and 'j have overlapping supports, and that
basis functions are typically constructed so that they fulfil a local support property.
For practical applications, the system (9.5) may thus be very large but will remain
sparse.

9.2.3 Element-Based Assembly

In all finite element methods, the domain ˝ is covered by non-overlapping simple
geometric objects, e.g., triangles and/or quadrilaterals in two space dimensions,
and tetrahedra, hexahedra and/or prisms in three space dimensions. This (fully
unstructured) partition Th D fT1; : : : ; TM g is referred to as a mesh, or triangulation,
of ˝ . It is common practice to associate the degrees of freedom with entities of
this mesh such as element vertices or midpoints of edges/faces. Depending on the
choice of basis functions, the unknowns uj may represent nodal solution values, i.e.
uj D uh.xj /, integral mean values of the solution, or they can be related to solution
derivatives.

The global integral terms are then assembled by summing over individual
element contributions that may either be computed exactly or approximated by
some cubature rule (quadrature formula), e.g., Gaussian quadrature. The weighting
coefficients O!k and cubature points Oxk are typically tabulated for some reference
element OT with a regular shape. That is,

Z
OT
I.Ox/ dOx �

NcubX
kD1

O!kI.Oxk/ (9.6)

for a generic integrand I.�/. As a result the numerical evaluation procedure reads

Z
˚T . OT /

'i .x/L'j .x/ dx D
Z

OT
'i .˚T .Ox//L'j .˚T .Ox// j detJ.Ox/j dOx : (9.7)

That is, it involves a change of variables, where ˚T W OT 7! T is the mapping from
the reference mesh element to the physical one so that coordinates are related by
x D ˚T .Ox/, and J D D˚T denotes the Jacobian matrix of the transformation.

9 Finite and Spectral Element Methods on Unstructured Grids 187

Let the basis f'igNiD1 be given by the definition of shape functions on individual
elements. For instance, using linear polynomials that equal unity at one vertex of a
triangle/tetrahedron and vanish at all other vertices leads to Lagrange finite elements
of degree p D 1. The choice of shape/basis functions determines the order of
the final approximation. In so-called p-adaptive schemes the shape functions, and
hence, the approximation order may therefore differ from one element to the other.

In parametric finite elements, the reference element is also used to define the
shape functions in terms of referential coordinates, i.e., O'i .Ox/. Substituting the
relation 'i.˚T .Ox// D O'i .Ox/ into expression (9.7) yields the final integration
formula (9.6) to be implemented into a finite element code. This approach makes
it possible to, say, adopt higher-order basis functions but still use a mapping of
low order, called sub-parametric approach. On the other hand, using the same order
for both components (iso-parametric) or even increasing the order of the mapping
(super-parametric) may be beneficial if curved boundaries need to be approximated
with high accuracy.

In summary, the assembly procedure for the global stiffness matrix S of the
Poisson problem reduces to evaluating all non-vanishing matrix coefficients

sij D
X
T2Th

Z
OT

J�T .Ox/ Or O'i.Ox/

�
�

J�T .Ox/ Or O'j .Ox/

�
j detJ.Ox/j„ ƒ‚ …

DWI.Ox;i;j /

dOx (9.8)

after applying the chain rule and the theorem of local inverses.
The assembly procedure of the volumetric part of the right-hand side vector

bi D
X
T2Th

Z
OT

O'i.Ox/f .˚T .Ox// j detJ.Ox/j„ ƒ‚ …
DWI.Ox;i /

dOx (9.9)

is sketched in Fig. 9.1. Note that numerical cubature rules of higher order are
typically adopted to integrate the function f with sufficient accuracy.

Fig. 9.1 Assembly of (9.9):
the local element integrals for
all five elements contributing
to node i are computed
independently and assembled
into the global vector

The same approach can be applied to the entries of the bilinear form if, say,
the differential operator L is replaced by a non-linear one as it is the case for
the elastodynamics equation (9.3). The above strategy is not restricted to linear
and bilinear forms, it can be naturally extended to multi-linear forms such as the

188 D. Göddeke et al.

non-linear convection term u � ru that plays a central role in the Navier–Stokes
equations. The tensor contraction approach [13] is an alternative concept for the
assembly of arbitrary multi-linear forms not addressed here due to space constraints.
For the extension of the tensor contraction approach to GPUs, the interested reader
is referred to [15].

9.2.4 Group Finite Element Formulation

An alternative approach that is commonly used in finite elements for conservation
laws such as the first-order system (9.2) is the group finite element formulation
developed by Fletcher [9]. Instead of evaluating the non-linear flux function F.U / �
F.Uh/ based on the interpolated solution Uh.x; t/ D PN

jD1 'j .x/Uj .t/, the same
basis is adopted to interpolate the fluxes

F.U / � Fh.x; t/ D
NX
jD1

'j .x/Fj .t/; Fj .t/ D F.Uj.t//; Uj .t/ D U.xj;t / :

The resulting semi-discretised variational formulation of system (9.2) reads

NX
jD1

�
mij

dUj.t/

dt
C cij � Fj .t/

�
D 0; (9.10)

where M D fmij g is the consistent mass matrix with ND � ND blocks defined by
mij D mij I, where I stands for the identity tensor. The coefficients of the mass
matrix M D fmij g and those of the discrete gradient operator C D fcij g are given
by

mij D
Z
˝

'i .x/'j .x/ dx; cij D
Z
˝

'i.x/r'j .x/ dx: (9.11)

These coefficients remain constant unless the mesh is changed, and therefore, they
can be computed a priori and stored (maybe adopting an optimized renumbering
strategy) for later use. It goes without saying that the element-based assembly is
readily applicable to assemble M and C in the preprocessing step.

As an example, consider the linear advection equation @tu C r � f.u/ D 0 with
flux function f.u/ D vu, whereby the externally given velocity field v D v.x; t/
may vary both in time and space. Adopting the group finite element formulation,
the convective operator K D fkij g can be updated very efficiently letting kij D
cij � vj .t/ without the need to perform costly numerical integration in every time
step.

9 Finite and Spectral Element Methods on Unstructured Grids 189

9.2.5 Edge-Based Assembly

For finite elements featuring the partition-of-unity property
PN

jD1 'j .x/ D 1, which
holds for instance for Lagrangian or B-spline basis functions, the matrix of auxiliary
coefficients has zero row sums, i.e.,

PN
jD1 cij D 0 8i . This property makes it

possible to cast (9.10) into the following edge-based form [20]

NX
jD1

mij

duj .t/

dt
C
X
j2Si

cij � Œfj .t/ � fi .t/� D 0; (9.12)

where the index set Si D f1 � i ¤ j � N W supp 'i \ supp 'j ¤ ;g extends over
all neighbouring degrees of freedom j that share a common edge with i . In [19],
an alternative flux decomposition has been developed that amounts to performing
integration by parts in the spatial discretisation of the divergence terms, yielding

cij D � cj i C sij ; sij D
Z
�

'i .x/'j .x/n ds;

whereby the symmetric boundary term sij vanishes in the interior. Finally, (9.12)
can be recast into the equivalent edge-based formulation [19]

NX
jD1

�
Mij

duj .t/

dt
C sij � Fj .t/

�
C
X
j2Si

Gij .t/ D 0 (9.13)

with skew-symmetric Galerkin fluxes Gij .t/ D cij � Fi .t/ � cj i � Fj .t/ D � Gj i .t/.

9.3 Implementation and Parallelisation Strategies

At a sufficiently high level of abstraction, element-based FEM as depicted, e.g.,
in (9.8), reduces to a double-nested loop over matrix positions .i; j / and elements
T 2 Th, respectively. Within each element, another triple-nested loop over all
cubature points for all pairs of test and trial functions is executed to compute
the integral(s). The edge-based approach shares many features with the element-
based one, so we can focus on elements. Depending on how one arranges the
loops, one obtains different assembly algorithms. We first discuss advantages and
disadvantages of choosing the ij - or T -loop as the outermost one, and then consider
the order of the per-element loops. We emphasise two aspects that are clear from
Sect. 9.2: First, only the resulting matrix entries sij are written to memory, all
other operations either read data from memory or perform arithmetics. This simple
observation is crucial for extracting parallelism in finite element methods. Second,
due to the unstructured nature of the mesh Th, memory indirections cannot be
avoided.

190 D. Göddeke et al.

9.3.1 Choice of the Outermost Loop

Nonzeros-First. The nonzeros-first approach can be seen as the direct implemen-
tation of expression (9.8). The outermost loop iterates over all non-vanishing matrix
entries sij , and for each entry, all elemental contributions are gathered by computing
each integral in the sum for which 'i and 'j have overlapping support. In the
example depicted in Fig. 9.1 for a right hand side assembly, we need to compute
five per-element contributions for node i , corresponding to the vector entry i . Based
on the observation above, the method is intrinsically parallel and free of synchroni-
sation requirements because all computations can be performed independently for
all non-vanishing matrix entries. This constitutes a major conceptual advantage of
this algorithm, but immediately implies its potential disadvantage: All per-element
integrations that contribute to the ij sum are performed redundantly, e.g., a given
element is computed first for node i and again for node j if both nodes are in its
support. This method is called “assembly-by-nonzeros” in [3].

Elements-First. To avoid this redundancy, one can alternatively iterate over all
elements in the outermost loop, and scatter the contributions stemming from
each element to the matrix entries representing the support of the element. We
mostly focus on this technique throughout this chapter. Subsets of the generic
approach presented here have been considered before, for instance “assembly-by-
elements” in [3], our own work (to our knowledge the first high-order FEM-GPU
implementation [16]), and the “add-to” algorithm [23]. The generic algorithm
proceeds as follows:

Loop over all elements T 2 Th

Determine Ntest, Ntrial and Ncub, f O!gcub, fOxgcub

Loop over all itest D 1; : : : ; Ntest test functions
Loop over all jtrial D 1; : : : ; Ntrial trial functions

Loop over all kcub D 1; : : : ; Ncub cubature points
Compute the integrand I.Oxkcub ; itest; jtrial/

Scatter the result: sG.itest;jtrial/ C D O!kcubI.Oxkcub ; itest; jtrial/

Here, I.Oxkcub ; itest; jtrial/ denotes the evaluation of the integrand in (9.8) for the
given cubature point and pair of test/trial functions, and O!kcub is the cubature
weight that depends on the cubature formula. G is the mapping from local
degrees of freedom itest and jtrial to their global counterparts i and j , depicted
in Fig. 9.1 for the vector-assembly case. This way of casting the assembly into a
loop ordering removes all redundant computations. However, it comes at a cost
because the inherent parallelism of the “nonzeros-first” approach is partially lost.
To see this, consider again Fig. 9.1, and assume that all five elements are computed
simultaneously via some parallelisation of the outermost loop in the algorithm

9 Finite and Spectral Element Methods on Unstructured Grids 191

sketched above. Due to the first observation on input and output data on the previous
page, this is not an issue for the bulk of computations in the assembly process:
As only local computations and read operations for global data are performed per
element, the local portion of the computation is still trivially parallel. However, once
all five parallel threads reach the accumulation operation (the += statement), a race
condition occurs because five threads update the i -th memory location in the target
array (or matrix) simultaneously and thus there is no guarantee about the final sum:
In many cases it will be partial and thus incorrect. In practice, the result can even
vary over several executions of the program on the same machine.

To ensure correctness in the accumulation step, the increments need to be made
mutually exclusive, i.e., one needs to ensure that during the “read-modify-write”
sequence performed by one thread, no other threads interfere. There are essentially
two different solutions to this problem, leading to different assembly algorithms.

Synchronisation. Most parallel programming environments for multicores and
GPUs provide built-in mechanisms to synchronise on certain sequences of opera-
tions and/or on memory locations. To use them, code statements that may cause
data races must be labelled with specific keywords, or dedicated function calls can
be used. The general idea is that the hardware and/or the runtime can serialise
the sequence of operations automatically, because they have been made aware of
the condition. For instance, both NVIDIA CUDA and OpenMP provide so-called
atomic memory updates for, e.g., increment operations. Using them ensures that
as many operations as possible remain parallel, because only the actual increment
operation becomes protected through an automatic serialisation. In longer sequences
of operations, exclusive access to resources (e.g., array entries) must be ensured
by other synchronisation techniques. In OpenMP for instance, so-called “critical
sections” can be used, while in CUDA, cheap barrier synchronisation between
blocks of threads is available.

Decoupling. To resolve the conflicting writes without resorting to synchronisation,
the computation can also be rearranged so that the race condition can never occur.
The basic idea is to take advantage of the fact that the support for each degree
of freedom constitutes, in typical large meshes, just a few neighbouring elements.
Any two elements may safely increment “their” memory locations if the supports
do not overlap, i.e., if the memory locations they write to are independent. In the
decoupling technique, entities (e.g., elements or edges) that can lead to problems are
a priori partitioned accordingly into disjoint sets. The parallel loop over all entities is
then replaced with a sequential loop over all such sets, while all entities within one
set can still be treated independently in parallel. Such independent sets are typically
computed through some kind of colouring algorithm [7].

Matrix-Free Methods. In this chapter, we focus on methods that yield actual
matrices and vectors, in some standard format such as CSR. An alternative approach
are “matrix-free” methods. One example that has been successfully demonstrated
on GPUs in [23] is the “local matrix approach”: All local element matrices are
computed independently (e.g., as in the elements-first algorithms we describe

192 D. Göddeke et al.

below) and stored for later use, but the global system is never actually assembled.
The complete “proto-assembly” is thus free of both synchronisation and redundancy.
The idea is then to modify all operations that would normally make use of the matrix
(or vectors), e.g., sparse matrix vector multiplies. This method is most beneficial if
the assembly rather than the solver dominates the complete simulation.

9.3.2 Per-Element Loops

Both the nonzeros-first and the elements-first approach assume for correctness that
the inner triple-nested loop is executed sequentially. For large meshes with a high
number of elements, this is a valid assumption on CPU-type architectures. On
GPUs however, it can be advantageous to expose parallelism in these loops as well,
in particular in higher-order finite element methods. More parallelism can often
increase overall throughput substantially owing to less granularity effects and less
resource contention. The corresponding code transformations typically lead to data
structures that are also beneficial on CPU-type architectures, e.g., through better
exploitation of the vectorisation capabilities (SIMD units). We return to this issue in
Sect. 9.4, because it is highly dependent on the actual finite element method.

9.3.3 An Improved Blocked Version

The loop structure given in the previous section reveals that large parts of the
algorithm depend on the actual element type and discrete operator(s). Let us
emphasise a few important examples:

• The determinant of the Jacobian is computed differently in the transformation
to different reference elements (e.g., Cartesian vs. barycentric coordinates), or is
even the same for all elements.

• Cubature formulae vary, per se and also depending on the element type.
• Coefficients of the various derivatives of the operator(s) must be evaluated at each

cubature point.

The naive solution to this problem is to include large amounts of nested conditional
statements and callback functions. In terms of efficiency, it is generally a bad
idea to do so in the innermost loops, due to the comparatively high function call
overhead, and the resulting branch divergence that prevents SIMD/SIMT execution.
C++ template metaprogramming or creative use of the preprocessor can partially
alleviate the issue at compile time, although this is no longer possible when runtime
decisions are needed, e.g., when mixed-element methods and/or p-adaptivity are
employed.

9 Finite and Spectral Element Methods on Unstructured Grids 193

As a remedy, the elements can be reorganised into “distributions”

Th D D1 [D2 [: : : [DND

of elements featuring identical or similar properties (e.g., polynomial degree,
shape). This additional level of partitioning allows one to “hose” all conditionals out
of the innermost loops, and to drastically reduce the amount of callback functions.
Note that the colouring approach can be incorporated into this scheme in a natural
way via an additional outermost sequential loop, and if element types are not mixed,
colour groups coincide with distributions. Finally, the distribution loop may be
executed in parallel or sequentially, depending on the (relative) size of the various
distributionsDl � Th.

The next pseudocode snippet illustrates the loop ordering that stems from this
distribution-based approach, including the mandatory synchronisation points. We
introduce an additional blocking layer that can be used to adapt the computation to
the hardware at hand. We refer to this algorithmic template as “sets-first”.

For all distributionsDl � Th sequentially or in parallel
Preallocate work memory for a block of B elements of typeDl

—Barrier synchronisation if outer loop is parallel—
Compute static, common data for element typeDl , store in work
memory
—Barrier synchronisation if outer loop is parallel—
For all sets S D fTe1 ; : : : ; TeB g � Dl of size B in parallel

For all elements T 2 S in parallel
Loop over the test and trial functions, compute the integral(s)
using the precomputed data in work memory, and scatter the result

9.3.4 Implementation on Multicore CPUs

On CPU-type architectures, it is not necessary to exploit all algorithmically available
degrees of parallelism. Instead, the entire body of the distribution loop can be
executed in parallel, equidistributed among all available threads. Load balancing
is needed if the cardinality of each distribution is not large enough to keep all
available threads busy. The additional blocking layer should be chosen with respect
to cache sizes to increase locality and improve efficiency. It is sometimes beneficial
to split the loop over all elements: The local element matrices in each set can first be
computed independently into work memory, followed by a second nested loop that
performs the actual scattering, protected by a “critical section”.

194 D. Göddeke et al.

9.3.5 Implementation on GPUs

Throughout this chapter, we use CUDA terminology, but emphasise that the
implementation guidelines are equally valid in other programming environments.
One important general recommendation is to implement one kernel for each type
of distribution, to facilitate clean and reusable code. The individual kernels can
additionally be equipped with C++ template metaprogramming and/or preprocessor
statements to reduce boilerplate overhead by, e.g., treating all Lagrangian elements
on triangles by one meta-kernel. The loop over all distributions and/or colour groups
then naturally translates to separate kernel launches.

Within each kernel, the main concern towards an efficient implementation
is to translate algorithmic algorithmic to GPU concepts. Examples include the
mapping of loop nesting levels to CUDA entities (blocks, warps, single threads),
and the mapping to various memory spaces (global, shared, constant, registers).
The following characteristics of the CUDA programming model must be taken
into consideration: (1) Global synchronisation is only possible at the kernel launch
granularity. (2) Threads in a block may synchronise inexpensively, and have access
to small, but fast shared memory. (3) Global memory is orders of magnitude slower
than registers or shared memory. (4) Instruction divergence within a warp should be
avoided. (5) The latter is particularly true for memory instructions, i.e., addresses
touched by a single load or store instruction must meet certain alignment criteria
so that the hardware can coalesce memory accesses by a single warp into ideally a
single memory transaction. (6) Atomic memory updates are not equally efficient on
all hardware generations and for all data types.

9.4 Examples and Applications

In this section, we provide guidelines for devising generally applicable yet compet-
itive (with respect to performance) mappings of algorithms to the hardware, under
the constraints outlined in Sect. 9.3.5. Our description is based on representative
examples: Low-order Lagrangian discretisations are discussed quite generically,
high-order (spectral) elements are presented in the scope of a linear wave propa-
gation application, and the edge-based approach is presented for a gas dynamics
application. We do not specifically cover the case of Discontinuous Galerkin
methods, although its high-order forms are close to the high-order spectral-element
method, and refer to [14] instead.

9.4.1 Low-Order Lagrangian-Type Elements

Low-order methods are widely used in practice. In this section, no explicit assump-
tions are made on the problem at hand (2D vs. 3D, time-dependent, (non)linear,

9 Finite and Spectral Element Methods on Unstructured Grids 195

scalar vs. multiple fields), but we do assume a single distribution Dl in the loop
structure on p. 193, i.e., elements of the exact same type. In the following, we focus
on summarising the main ideas to explore the optimisation space. We explicitly do
not aim at describing implementations that perform optimally for a specific finite
element method on a specific hardware generation for a specific problem only.
Further information can be found in [3, 11, 23, 25].

A naive implementation of the “sets-first” approach developed in Sect. 9.3.3 is
straightforward: We simply use the data structures for the (typically, existing) CPU
implementation, associate one fixed-size set of elements with a CUDA thread block,
and let each thread compute the triple per-element loop. For the final accumulation
into the global matrix, either colouring or atomic memory updates can be used. This
implementation generally performs poorly because it does not make good use of
the available bandwidth, which, due to the low arithmetic intensity of low-order
methods, is the main bottleneck: Memory accesses are unstructured, the effective
bandwidth is low because coalescing into a minimal amount of memory transactions
per warp may be poor, and the comparatively small cache does not enable automatic
reuse of, e.g., nodal data that are shared due to common support.

Improved Data Structures. The first optimisation we highlight aims at improving
memory access patterns only. We arrange all input data into a column-major 2D
array, indexed by elements. In each row of this structure, we store nodal data
associated with one element: The first few entries contain static data such as per-
element nodal coordinates, the next few entries are associated with target indices
in the matrix/vector data structure to be assembled into (plus eventually some
padding), and the final optional entries are associated with dynamic data. It depends
on the problem at hand whether dynamic fields evaluations (transport directions
depending on coordinates in convection-diffusion-equations, the u � ru term in the
non-linear Navier–Stokes equations, cf. Sect. 9.1) are best copied here, or instead
read from their original locations. This data structure can be built from information
readily available in the finite element framework.

For the actual computation, we can now associate each thread with one element.
The threads execute “their” triple-nested loop to compute an element matrix each, by
iterating over this data structure. All data required by consecutive threads are stored
contiguously in memory by construction, and the column-major layout ensures that
all memory accesses are fully coalesced, i.e., no bandwidth is wasted. This approach
implies certain redundancies, as actual data instead of just indices are stored several
times.

The final step is to scatter the element matrices to the target matrix/vector in
global memory. There are several ways to implement this: The easiest one is to use
atomic memory updates for all data, but such an approach may be slow, especially
on older hardware generations. Alternatively, a two-pass strategy can be used. All
computed element matrices are first written to global memory in a contiguous way,
and a second kernel is invoked that performs the actual assembly. In this kernel,
each thread is responsible for one target entry in the matrix, gathers all required
data from the global array of element matrices, and performs a sequential reduction

196 D. Göddeke et al.

to compute the final entry. In this case, there is no need to store target indices in the
2D data structure. Instead, an additional “reduction list” is precomputed, which for
each nonzero entry contains the indices in the array of element matrices that need to
be gathered. To be more precise, this list typically starts with the target index, and
the number of subsequent source indices depends on the connectivity of the mesh.
Padding up to a fixed maximum size (amount of elements influencing one node)
with “negative indices” is a standard way to ensure coalesced memory accesses into
this list and SIMT computation during the reduction. Figure 9.2 (left) illustrates the
data flow of such a reduction.

This approach is appealing due to its simplicity and versatility: In essence, all
GPU-related challenges (regarding input data) are resolved by introducing redun-
dancy in the underlying data structure, which in turn can be easily precomputed
in standard finite element programs. The additional storage is well-invested, in
particular for schemes where the assembly is invoked several times. Also, indices
require the same storage as actual values in single precision. However, the approach
does not exploit the fact that several neighbouring elements share nodal data due to
the local support property.

Fig. 9.2 Left: Data flow through reduction lists: While index lookups (including the highlighted
target index) are perfectly coalesced, the gathering step is not. Right: Shared memory implemen-
tation, data flow of the lookup of the last node of the first element (2D bilinear quadrilaterals)
treated by each warp (only two threads shown). The lookup into the map is perfectly coalesced,
only accesses to shared memory are irregular

Improved Data Sharing. The following description of a (more involved) approach
that uses shared memory to facilitate data reuse builds upon a proposal by Cecka
et al. [3]. The basic aim is to preserve generality while increasing performance.

In a preprocessing phase, we partition the elements into sets of approximately
equal size such that (1) the total number of element neighbours is minimised across
partitions and (2) all required data (defined below) for one partition fit into shared
memory. A tunable parameter is the “size” of shared memory: Data reuse and the
number of resident warps to improve latency hiding need to be balanced. A small
safety factor should be added to the partition size because CUDA uses a small
amount of shared memory for itself, e.g., for kernel parameters. This constrained

9 Finite and Spectral Element Methods on Unstructured Grids 197

optimisation problem is commonly encountered in distributed memory parallelisa-
tion techniques for unstructured meshes, and standard graph partitioning software
such as METIS [12] can be used to compute feasible approximations. Nodal data
associated with each partition is then stored contiguously in memory.

We associate one thread block with one partition, and choose a number of threads
that evenly divides the number of elements to be computed (associated with the
partition), rounded up to the next multiple of the warp size. The first phase of the
kernel uses all threads to load all nodal data of the entire partition into shared
memory. Since the nodal data are contiguous in global memory, it is easy to find
a mapping of threads to memory locations that ensures a fully coalesced access
pattern. We now need to find a mapping of global node numbers to their indices in
shared memory. To this end, we precompute an auxiliary 2D array per block, quite
similar to the data structure described above. In it, we store the local indices for
each element in a column-major fashion. This data structure can be stored in global
or in shared memory; the former is more advisable because (1) data accesses to it
are always fully coalesced and (2) the more actual nodal data we can store in shared
memory, the higher the benefits from data sharing.

The second phase of the kernel then iterates over this data structure: Each thread
looks up an index, accesses the data in shared memory, and as soon as all nodal
data for the computation of one element matrix are available, it is computed (e.g.,
after every fourth memory access for the Laplace operator and bilinear elements
on quadrilaterals). All operations per warp are executed in lock-step, and irregular
memory accesses are limited to shared memory (where they constitute less of a
problem), as shown in Fig. 9.2 (right).

For the actual assembly into the global matrix/vector, we can again employ the
two strategies outlined above, or a third one that avoids the overhead of a two-pass
solution: We again exploit the local support property. For all “inner” elements of
the partition, we know that no other element from any other partition will influence
a nonzero entry. Therefore, we can also perform the reduction directly in shared
memory in the same kernel without resorting to a two-pass strategy, and for all
other elements, we can use atomic memory updates. It depends on the hardware and
on the finite element method which implementation performs best.

We conclude this section by referring to Cecka et al. [3, Sect. 4.3], who propose
an approach that uses the nonzeros-first strategy within each set of elements.
This technique is quite involved, and it tends to require quite problem-specific
implementation adjustments to achieve performance.

9.4.2 High-Order Spectral Element Discretisations
for Wave Propagation

Let us now discuss the case of high-order methods by focusing on the spectral
element method, which is a variant of the FEM that is well-suited for instance for
wave propagation modelling in heterogeneous media [29], e.g., seismic waves in

198 D. Göddeke et al.

the Earth [24], ultrasonic acoustic waves in ocean acoustics [5] or non-destructive
testing [30]. Let us consider a linear anisotropic elastic rheology for a solid model,
in which case the differential form of the acoustic wave equation can be written as

% Ru D r � � C f;
� D C W ";

" D 1
2
Œru C .ru/T �;

(9.14)

where u is the displacement vector, � the symmetric, second-order stress tensor, "

the symmetric, second-order strain tensor, C the fourth-order stiffness tensor, % the
density, and f an external force representing the acoustic or seismic source. Denoting
the physical domain of the model and its boundary by˝ and � respectively, we can
write the weak form of this equation by dotting it with an arbitrary test function w
and integrating by parts over the whole domain:

Z
˝

%w � Ru d˝ C
Z
˝

rw W C W ru d˝ D
Z
˝

w � f d˝ C
Z
�

.� � On/ � w d� (9.15)

The contour integral of the last term vanishes because of the free surface, i.e.,
traction-free boundary condition: the traction vector � D � � On is zero at the surface.

The physical domain is subdivided into hexahedral mesh cells within which
variables are approximated by high order interpolants. The SEM resorts to Lagrange
polynomials of degree n D 4 to 8 to interpolate functions such as the unknown
displacement field [6, 27]. The anchor points are most of the time chosen as
the n C 1 Gauss–Lobatto–Legendre (GLL) points because the mass matrix then
becomes perfectly diagonal, which in turn leads to the use of fully explicit
time schemes [29], e.g., a second-order Newmark or a fourth-order Runge–Kutta
scheme. Consequently, the method is by design very efficient on large parallel
computers [24, 26]. Numerical integration over the elements is performed using a
GLL integration rule, and thus each spectral element contains .n C 1/3 such GLL
integration points. The final matrix system to solve is

M RU C KU D F; (9.16)

where U is the unknown displacement vector that needs to be computed, M is the
diagonal mass matrix, K is the stiffness matrix, and F is the source term, whose
detailed expressions can be found for instance in [24, 29].

In almost all wave propagation applications a large number of time steps is
performed, and thus in the SEM algorithm the total cost is dominated by the contents
of the serial time loop. In addition, since the mesh is static and the algorithm is
fully explicit, all the time steps have identical cost, which facilitates optimisation.
The computations performed at each time step consist of two very different kinds
of operations: global vector updates, whose goal is to march the global vector of
unknowns in time, and local matrix–matrix products inside each spectral element
followed by an “assembly” phase, whose goal is to perform the local elastic force
calculations and sum them into the global elastic force vector to be able to compute
the acceleration vector at the next time step.

9 Finite and Spectral Element Methods on Unstructured Grids 199

Operations of the first kind are of the typical type unew D uold C
t Pu C
t
2

Ru,
where u, Pu and Ru are the global displacement, velocity and acceleration vectors,
respectively, and
t is the time step. They are all trivially parallel, and thus a simple
CUDA implementation with a thread per degree of freedom to update is sufficient
because it contains no dependencies. The second step is by far the more complex
one and consists mostly of local matrix products performed inside each element
to compute its contribution to the stiffness matrix term KU of (9.16) according
to (9.15). The global displacement vector is first copied into each spectral element
using a local-to-global mesh numbering mapping that has been precomputed and
stored before the beginning of the time loop. Small matrix products are then
performed between a derivative matrix, whose components are the derivatives of the
Lagrange polynomials at the GLL points, and the displacement vector u in 2D cut
planes along the three local topological directions .i; j; k/ of the spectral element.
The computed local values are then summed at global mesh points using the local-
to-global mesh numbering mapping in order to compute the acceleration vector Ru.
This “assembly process” must in principle imply an atomic sum because different
elements add to the same memory location of a global array.

This can be analysed more precisely by recalling that in each of the three
spatial directions the Lagrange interpolants, defined on Œ�1; 1�, are built from the
GLL points, which include the boundary points �1 and C1. For polynomial basis
functions of degree n, there are n C 1 GLL quadrature points, and thus there are
n � 1 interior points in addition to C1 and �1. In three dimensions, out of the
.n C 1/3 GLL points that each spectral element comprises, there are thus .n � 1/3

interior points that are not shared with neighbouring elements in the mesh, and
.n C 1/3 � .n � 1/3 that may be shared (and will very often be shared in practice)
with neighbouring elements of the unstructured mesh through a common face, edge
or corner. In acoustic wave propagation we use a polynomial degree n D 4 because
it has been shown to provide an optimal trade-off between accuracy and cost [6,27].
Thus, out of the 125 GLL points of each spectral element, only 27 are interior and
not shared, and 98, i.e. a vast majority, are shared with other elements.

Since the contributions to the elastic force vector are calculated locally and
independently inside each spectral element before being summed at the potentially
shared points, we decide to assign a different thread to each of the 125 points of each
spectral element. We thus handle a spectral element with a block of 128 threads
(4 warps) because using a multiple of the 32-thread warp size is best, and use
one thread per GLL quadrature point. Therefore, 125 out of 128 threads perform
actual work, while three are purposely unused and idle. We first copy the global
displacement vector corresponding to each element into shared memory using
the global-to-local mapping. The derivative matrix of the Lagrange polynomials
is stored in constant memory, and the CUDA kernel then multiplies it with the
coefficients in shared memory, at the GLL points.

The derivative matrices have size .nC 1/ � .nC 1/, i.e., 5 � 5. We inline these
small matrix products manually (they are too small to be efficiently handled by
BLAS3 calls), and store them in constant memory to take advantage of its faster
access times and cache mechanism: It is as fast as registers if all threads access the
same item simultaneously.

200 D. Göddeke et al.

In order to maximise efficiency, we also apply a number of optimizations that are
specific to CUDA: we arrange data so that accesses to local data stored in global
memory can be coalesced into large memory transactions, and we try to avoid bank
conflicts in shared memory. However, there are two important limitations in this
crucial and dominant part of spectral element calculations: first, it is memory-bound
because it performs a relatively large number of memory accesses compared to a
relatively small number of calculations, owing to the small size of the matrices
involved. Second, indirect local-to-global addressing is required because of the
unstructured nature of the mesh, which unavoidably leads to some uncoalesced
memory access patterns. On recent hardware, we nonetheless measure very good
throughput of this calculation kernel because coalesced memory accesses are an
issue that is far less critical than in the past. To further improve performance we
perform these global accesses through the texture cache, but the gain is small, as
expected.

The final key issue is to decide how to best handle the summation of all the
elastic forces, local to each spectral element, into the global vector of elastic forces,
in which many global points are shared between adjacent elements as seen above.
In principle, this sum could simply be atomic, the only requirement in order to
get correct results being to ensure that different warps never update the same
shared location simultaneously. In this application, mesh colouring (cf. Sect. 9.3.1)
has been shown to be more efficient. To do so, we partition the mesh elements
into a finite number of disjoint subsets, with the property that any two elements
in a given subset do not share any global mesh nodes. Data at these nodes can
therefore be added to their corresponding global location without any possibility
of access conflict, thus removing the need for an atomic locking mechanism. Mesh
colouring is performed once and for all on the host in a preprocessing stage during
the meshing step by pre-computing maximally independent sets of mesh elements.
Adding an outer serial loop over the mesh colours, each colour is then simply
handled through a call to the CUDA calculation kernel, resulting in one kernel call
per colour. This is acceptable if (and only if) the total number of colours for a given
mesh remains reasonable, which is always the case in practice. Tests not shown
here show that for unstructured finite element meshes we typically need 10–30
colours.

The described approach is implemented in the SPECFEM3D software, and full
source code is available at http://www.geodynamics.org/cig/software.

9.4.3 Group FEM for Gas Dynamics

The final example deals with the gas dynamic equations, modelled by a first-
order hyperbolic system of non-linear coupled equations that can be written in the

http://www.geodynamics.org/cig/software

9 Finite and Spectral Element Methods on Unstructured Grids 201

divergence form (9.2). In particular, it expresses the conservation laws for the mass,
momentum, and energy of an inviscid compressible fluid. That is,

U D
2
4 %

%v
%E

3
5 ; F D

2
4 %v
%v ˝ v C pI

%Ev C pv

3
5 D vU C

2
40I

v

3
5p ; (9.17)

where % is the density, v D .v1; v2; v3/ is the three-dimensional velocity vector,E is
the total energy and I is the 3 � 3 identity tensor. The equation of state

p D .
 � 1/
�
%E � 0:5%kvk2

for an ideal polytropic gas with, e.g.,
 D 1:4 for air, is used to relate the pressure
p to the conserved quantities.

A general class of high-resolution methods for the compressible Euler equations
was introduced in [20] and refined in a series of publications. The interested reader is
referred to [17,18] and the references therein for a detailed description of the state of
the art of so-called algebraic flux correction (AFC) schemes for hyperbolic systems.
Here, the focus lies on their efficient implementation on GPUs. The following
presentation is partly based on algorithms implemented in the open source software
package Featflow2 (http://www.featflow.de).

Let system (9.17) be discretised in space by Fletcher’s group finite element
formulation [9] as outlined in Sect. 9.2.4. The resulting semi-discrete problem reads

M
dU

dt
D R.U/ (9.18)

where the entries of the right-hand side R D fRi g according to (9.10) are given by

Ri D �
NX
jD1

cij � Fj : (9.19)

It serves as a base scheme for many high-resolution methods, but it gives rise to
non-physical undershoots and overshoots in the vicinity of discontinuities such as
shock waves, and hence, it is not applicable per se. A common stabilisation strategy
consists in adding artificial viscosity to prevent the creation of wiggles, and ideally,
to ensure that physical quantities such as the density and pressure variables remain
positive. In the framework of AFC-schemes [17,18,20] this is achieved by replacing
the consistent mass matrix with its row-sum lumped counterpart

ML D diagfmiIg; mi D
NX
jD1

mij

http://www.featflow.de

202 D. Göddeke et al.

and augmenting the right-hand side by artificial diffusion and limited antidiffusion

Ri WD Ri C
X
j2Si

Dij .Uj � Ui /C ˛ijFij : (9.20)

The choices forD D fDij g given in [17,18,20] differ in the arithmetic intensity but
use the same input data. Hence, we consider a generic discrete diffusion operator
which is defined as a symmetric matrix with zero row- and column sums [21]

Di i WD �
X
j2Si

Dij ; Dij D Dij .cij ; cj i ;Ui ;Uj / D Dj i : (9.21)

In the scope of this chapter, it also suffices to consider the skew-symmetric
antidiffusive fluxes Fij and the symmetric limiting coefficients ˛ij 2 Œ0; 1� to
be functions that depend on the precomputed coefficients mij ; cij and cj i , and
on the dynamically changing data Ui ;Uj , dUi =dt and dUj =dt , and their edge-
neighbouring values. All algorithmic details can be found in [17,18]. The treatment
of boundary conditions is a non-trivial task that cannot be addressed here due to
space constraints. Thus, one should bear in mind that additional terms need to be
computed at the boundary, which, however, consumes only a negligible fraction of
the overall computing time even in case the most naive implementation is adopted.

Integrating the semi-discrete form (9.18) in time by the two-level �-scheme
yields

M
UnC1 � Un

t
D �R.UnC1/C .1 � �/R.Un/ (9.22)

which is non-linear for � 2 .0; 1�, and hence, needs to be computed iteratively,
e.g., by successive approximations [17, 20], or linearised based on a Taylor series
expansion [18, 28]. In any case, the left-hand side has the form ŒM=
t � �P �U,
where

P D fPij g; Pij D Kij C Dij C boundary contributions (9.23)

is an approximation such that P.U/U � R.U/ or to its Jacobian, i.e. P.U/ � @R.U/
@U .

The Galerkin part Kij D �cij � Aj exploits the so-called homogeneity property of
the Euler equations, i.e. Fj D AjUj , where Aj D @F

@U .Uj / is the nodal value of
the flux Jacobians. In summary, the core components to be implemented on GPUs
are:

• Vector assembly procedures for R.U/ based on (9.19) or (9.20)
• Matrix assembly procedures for operator (9.23) for the Galerkin scheme (D ¤ 0)

and in the presence of artificial viscosities

9 Finite and Spectral Element Methods on Unstructured Grids 203

Vector Assembly. The assembly of the right-hand side vector (9.19) for the
Galerkin discretisation is straightforward because implementation techniques from
sparse matrix vector multiplication (SpMV, [1]) can be readily adapted. Let the
coefficient matrices C D .C 1; C 2; C 3/ be stored in a GPU-friendly matrix format
in global memory, then the multiply-add operation in the standard (scalar) SpMV-
kernel is replaced by +=

P3
dD1 cdij F d .Uj /, where F d.�/ stands for arithmetic

operations according to (9.17). It should be noted that the computation of a single
field variable of the target vector R, say total energy, requires all five field variables
from the input vector U. It is therefore advisable to invest some amount of shared
memory to store the relevant parts of U. After the synchronisation of all threads of
the CUDA thread block, each entry in the destination vector is then computed by
one thread.

The right-hand side (9.20) is assembled differently by resorting to one of the
edge-based formulations (9.12) or (9.13) to maximise data reuse of the input
solution vector. Without loss of generality, let us present an edge-by-edge assembly
based on the second variant. In particular, the contribution of edge ij needs to be
computed only once and can then be scattered to positions i and j as follows:

Ri WD RiCGijCDij .Uj�Ui /C˛ijFij

Rj WD Rj�Gij�Dij .Uj�Ui /�˛ij Fij (9.24)

The strategy from Sect. 9.4.1 to optimise the memory access pattern of the
element-based assembly can be easily adapted to the edge-based procedure. The
column-major 2D array, which remains unchanged for fixed meshes, is indexed
by the edge number ij and contains the precomputed coefficients mij , cij and cj i
and the integer values i and j which serve both as source and target indices in
the solution and right-hand side vector, respectively. A fixed-sized set of edges
is then associated with a CUDA thread block that implements (9.24) using either
atomic memory updates or the suggested two-pass strategy with “edges” instead
of “elements”. In our current implementation, the solution values are directly read
from their original location instead of copying them into the 2D data structure.

As an alternative, the static data structure can be reordered and partitioned
based on an edge-colouring algorithm (cf. Sect. 9.3.1), accompanied by a permu-
tation of the edge numbering. This yields a contiguous storage of exactly those
edges which have no common start and end points, and that can therefore be
processed independently without synchronisation. Following Sects. 9.3.5 and 9.4.1,
one sequentially-launched CUDA kernel is used for all edges of the same colour.
One potential drawback of this colouring strategy is that data reuse is precluded by
construction. Even worse, the jump jj�i j between the two indices of the edge ij but
also the jump between the index pairs i and i 0 as well as j and j 0 of the succeeding
edge i 0j 0 may become large and lead to extremely unstructured memory accesses.
A reordering algorithm that reduces the jumps in memory access is developed in
[22]. The remaining terms of the right-hand side of (9.22) can be handled efficiently
by standard SpMV kernels and its extension to interleaved matrices, respectively.

204 D. Göddeke et al.

Matrix Assembly. As for the vector assembly, the assembly of the Galerkin part of
the operator (9.23) is straightforward. Moreover, neither atomic memory updates nor
colouring is required to augment the off-diagonal blocks with the artificial viscosity
tensor Dij if either the static 2D data structure or the reduction list employed in the
multi-pass strategy is extended by the target positions .i; j / and .j; i/ in the global
matrix. It is only the diagonal entries that give rise to concurrent updates, see (9.21).

We therefore propose the following strategy combining the static data structure
and the reduction list to maximise data reuse and minimise latency due to atomic
memory updates. As before, a fixed-sized set of edges is associated with a CUDA
thread block running a single kernel. In the first phase, solution data that is required
to process the edges under consideration are gathered into shared memory. Next, all
local blocks Kij for the Galerkin part and the artificial viscosities Dij with j ¤ i

are computed and stored in shared memory. In the following phase, Kij C Dij is
scattered to the non-contentious off-diagonal position .i; j / in global memory based
on the static 2D data structure. An additional “reduction list” is used to calculate the
diagonal entries Kij � P

j2Si
Dij from the previously computed local data and

store the result in global memory. Between each of the different phases, the threads
of the CUDA thread block are synchronised. However, it should be noted that this
approach has a relatively high demand on shared memory so that a careful tuning of
size-parameters is necessary. This is particularly true for compute intensive artificial
viscosities such as Roe’s approximate Riemann solver which essentially requires
two 5 � 5 matrix–matrix multiplications per edge. If shared memory becomes the
limiting factor then this multi-phase approach can be replaced by a multi-pass
strategy similar to the one adopted in Sect. 9.4.1 for the element assembly. That
is, the different tasks are implemented in individual kernels launched for the same
fixed-sized set of edges, whereby intermediate results are written to global memory.

Acknowledgements This work was supported in part by the German Research Foundation (DFG)
through the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA), through
DFG SFB 708 “3D Surface Engineering of Tools for the Sheet Metal Forming—Manufacturing,
Modelling, Machining—”, by the European “Mont-Blanc: European scalable and power efficient
HPC platform based on low-power embedded technology” #288777 project of call FP7-ICT-
2011-7, and by the G8 and French ANR “Interdisciplinary Program on Application Software
towards Exascale Computing for Global Scale Issues” (SEISMIC IMAGING project, ANR-10-
G8EX-002). This work was granted access to the high-performance computing resources of the
French supercomputing centre CCRT under allocation #2012-046351 awarded by GENCI (Grand
Equipement National de Calcul Intensif).

References

1. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on throughput-
oriented processors. In: SC ’09: Proceedings of the 2009 ACM/IEEE Conference on
Supercomputing, pp. 18:1–18:11 (2009)

2. Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in
Applied Mathematics, vol. 15. Springer, New York (1994)

9 Finite and Spectral Element Methods on Unstructured Grids 205

3. Cecka, C., Lew, A.J., Darve, E.: Assembly of finite element methods on graphics processors.
Int. J. Numer. Methods Eng. 85(5), 640–669 (2011)

4. Ciarlet, P.: The Finite Element Methods for Elliptic Problems. North-Holland, Amsterdam
(1978)

5. Cristini, P., Komatitsch, D.: Some illustrative examples of the use of a spectral-element method
in ocean acoustics. J. Acoust. Soc. Am. 131(3), EL229–EL235 (2012)

6. De Basabe, J.D., Sen, M.K.: Grid dispersion and stability criteria of some common finite-
element methods for acoustic and elastic wave equations. Geophysics 72(6), T81–T95 (2007)

7. Diestel, R.: Graph Theory, 4th edn. Graduate Texts in Mathematics, vol. 173. Springer,
Heidelberg (2010)

8. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, New York (2003)
9. Fletcher, C.: The group finite element formulation. Comput. Methods Appl. Mech. Eng. 37,

225–243 (1983)
10. Hughes, T.J.R.: The Finite Element Method, Linear Static and Dynamic Finite Element

Analysis. Prentice-Hall, Englewood Cliffs (1987)
11. Huthwaite, P.: Accelerated finite element elastodynamic simulations using the GPU. J. Comput.

Phys. 257, 687–707 (2014)
12. Karypis, G., Kumar, V.: A fast and high-quality multilevel scheme for partitioning irregular

graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)
13. Kirby, R.C., Logg, A.: A compiler for variational forms. ACM Trans. Math. Softw. 32(3),

417–444 (2006)
14. Klöckner, A., Warburton, T., Bridge, J., Hesthaven, J.S.: Nodal discontinuous Galerkin

methods on graphics processors. J. Comput. Phys. 228(21), 7863–7882 (2009)
15. Knepley, M.G., Terrel, A.R.: Finite element integration on GPUs. ACM Trans. Math. Softw.

39(2), 10 (2013) 10:1–10:13
16. Komatitsch, D., Michéa, D., Erlebacher, G.: Porting a high-order finite-element earthquake

modeling application to NVIDIA graphics cards using CUDA. J. Parallel Distrib. Comput.
69(5), 451–460 (2009)

17. Kuzmin, D., Möller, M.: Algebraic flux correction II: compressible flow problems. Flux-
Corrected Transport: Principles, Algorithms, and Applications, 1st edn. Scientific Computa-
tion, pp. 207–250. Springer Berlin Heidelberg (2005)

18. Kuzmin, D., Möller, M., Gurris, M.: Algebraic flux Correction II: compressible flow problems.
Flux-Corrected Transport: Principles, Algorithms, and Applications, 2nd edn. Scientific
Computation, pp. 193–238. Springer Berlin Heidelberg (2012)

19. Kuzmin, D., Möller, M., Turek, S.: Multidimensional FEM-FCT schemes for arbitrary time
stepping. Int. J. Numer. Methods Fluids 42(3), 265–295 (2003)

20. Kuzmin, D., Möller, M., Turek, S.: High-resolution FEM-FCT schemes for multidimensional
conservation laws. Comput. Methods Appl. Mech. Eng. 193, 4915–4946 (2004)

21. Kuzmin, D., Turek, S.: Flux correction tools for finite elements. J. Comput. Phys. 175, 525–558
(2002)

22. Löhner, R.: Cache-efficient renumbering for vectorization. Int. J. Numer. Methods Biomed.
Eng. 26, 628–636 (2008)

23. Markall, G., Slemmer, A., Ham, D., Kelly, P., Cantwell, C., Sherwin, S.: Finite element
assembly strategies on multi-core and many-core architectures. Int. J. Numer. Methods Fluids
71(1), 80–97 (2013)

24. Peter, D., Komatitsch, D., Luo, Y., Martin, R., Le Goff, N., Casarotti, E., Le Loher, P., Magnoni,
F., Liu, Q., Blitz, C., Nissen-Meyer, T., Basini, P., Tromp, J.: Forward and adjoint simulations
of seismic wave propagation on fully unstructured hexahedral meshes. Geophys. J. Int. 186(2),
721–739 (2011)

25. Plaszewski, P., Banas, K., Maciol, P.: Higher order FEM numerical integration on GPUs with
OpenCL. In: International Multiconference on Computer Science and Information Technology,
pp. 337–342 (2010)

206 D. Göddeke et al.

26. Rietmann, M., Messmer, P., Nissen-Meyer, T., Peter, D., Basini, P., Komatitsch, D., Schenk,
O., Tromp, J., Boschi, L., Giardini, D.: Forward and adjoint simulations of seismic wave prop-
agation on emerging large-scale GPU architectures. In: Proceedings of the SC’12 ACM/IEEE
Conference on Supercomputing, pp. 38:1–38:11 (2012)

27. Seriani, G., Oliveira, S.P.: Dispersion analysis of spectral-element methods for elastic wave
propagation. Wave Motion 45, 729–744 (2008)

28. Trépanier, J.Y., Reggio, M., Ait-Ali-Yahia, D.: An implicit flux-difference splitting method for
solving the Euler equations on adaptive triangular grids. Int. J. Numer. Methods Heat Fluid
Flows 3, 63–77 (1993)

29. Tromp, J., Komatitsch, D., Liu, Q.: Spectral-element and adjoint methods in seismology.
Commun. Comput. Phys. 3(1), 1–32 (2008)

30. van Wijk, K., Komatitsch, D., Scales, J.A., Tromp, J.: Analysis of strong scattering at the
micro-scale. J. Acoust. Soc. Am. 115(3), 1006–1011 (2004)

Chapter 10
A GPU Implementation for Solving
the Convection Diffusion Equation
Using the Local Modified SOR Method

Yiannis Cotronis, Elias Konstantinidis, and Nikolaos M. Missirlis

10.1 Introduction

Commodity GPUs have increased computational power compared to modern CPUs
and thus they are proposed as more efficient compute units in solving scientific
problems with large computational load. Since the appropriate programming envi-
ronments (CUDA [29], OpenCL [19]) are getting mature they can be used to develop
GPU programs in order to exploit the capabilities of GPUs. In this chapter we use
GPUs for the numerical solution of Partial Differential equations (PDEs).

We focus on partial differential equations (PDEs) as they constitute an important
sector of the computational science field. In particular, we consider the solution of
the second order convection diffusion equation

u � f .x; y/
@u

@x
� g.x; y/

@u

@y
D 0 (10.1)

on a domain ˝ D f.x; y/gj0 � x � 1, 0 � y � 1g, where u D u.x; y/ is
prescribed on the boundary @˝ . The solution of PDEs reduces to a system of N
linear equations by using the finite difference method through the discretization on
a rectangular gridM1 �M2.

These systems of equations are sparse and thus iterative methods are preferred in
order to solve them. In these methods computations are applied to stencils (Fig.10.1)
where point values are iteratively recomputed till they converge to certain values.

The Successive Overrelaxation (SOR) iterative method is an important solver
for large, sparse, linear systems [35, 36]. However, the SOR method is essentially
sequential in its original form. In order to use a parallel form of an iterative method

Y. Cotronis • E. Konstantinidis (�) • N.M. Missirlis
Department of Informatics and Telecommunications, University of Athens,
Panepistimiopolis, 15784 Athens, Greece
e-mail: cotronis@di.uoa.gr; ekondis@di.uoa.gr; nmis@di.uoa.gr

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__10, © Springer International Publishing Switzerland 2014

207

mailto:cotronis@di.uoa.gr
mailto:ekondis@di.uoa.gr
mailto:nmis@di.uoa.gr

208 Y. Cotronis et al.

Fig. 10.1 The 5 point stencil
computation involves the
current value of the element
and the values of the four
neighbor elements

0
0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11Fig. 10.2 Grid points are
colored as red and black
forming a chess board pattern
(red points are illustrated as
white due to printing
restrictions). This pattern
allows the independent
computation of all points of
the same color

such as SOR with fine grain parallelism we consider the grid points as red-black
colored (Fig.10.2). In this case sets of points of the same color can be computed in
parallel [32]. The LSOR method was introduced by Ehrlich [12, 13] and Botta and
Veldman [4] in an attempt to further increase the rate of convergence of SOR. In [5]
it was proved that the local Modified SOR method (LMSOR) possesses a better rate
of convergence than LSOR.

Although the focus of this chapter is the Convection Diffusion equation, the
particular code should be easily adaptable to other equations as well. We developed
three implementations differentiated by the degree of recomputations of read-
only matrices thus affecting the flops per element access ratio. Recomputations
are applied as an optimization that lowers the memory access requirements of a
kernel but raises the instruction workload that has to be executed. Contemporary
GPUs feature a quite high compute=bandwidth ratio which allows the instruction
overhead to be hidden. In our implementation each GPU program is designed as
three different kernel variations each one using either of the three major memory
types of GPUs (global memory, texture memory or shared memory) for a particular
data array which is subject to data reuse by adjacent threads. In addition, we apply
the memory reordering strategy [21, 22] which is proved to benefit this kind of
kernels. We assess the performance of the implementations using three NVidia
GPUs (GTX480, Tesla S2050 and GTX660) determining which implementation
best exploits the capabilities of each GPU.

10.1.1 Related Work

The LMSOR method belongs to the iterative methods family for solving linear
systems. Iterative methods in general have already been studied by the research
community. The Gauss-Seidel method has been used on GPUs to accelerate

10 A GPU Implementation for Solving the Convection Diffusion Equation. . . 209

fluid dynamic simulation problems [1, 2] and computer vision algorithms [34].
The SOR method has been implemented on GPUs to medical analysis [15],
computational fluid dynamics [14, 16, 20, 23, 26, 28] problems, as well as for
solving Poisson–Boltzmann equation for electrostatics on molecular systems [7].
Stencil computations in general have been applied on Kepler GPU architecture
[27], on AMD APUs [11] which combine a CPU and a GPU on the same silicon
area, and even on heterogeneous multi-device implementations [25]. A red-black
SOR scheme for solving the steady state heat conduction equation on GPUs has
been studied in [17]. Researchers have also studied a variant of the SOR method
parallelized on GPUs by employing an unconventional tiling format in order to
extract parallelism [10]. Anzt et al. have developed blocked asynchronous kernel
solvers [3] that relax the strict order of operations required by classic iterative
solvers in order to improve scalability and performance on GPUs. Going further,
research efforts have moved on to multi-GPU implementations in order to address
the increased computational load of fluid dynamics problems [18, 33, 37]. A hybrid
Jacobi implementation has also been studied [9]. This chapter provides insight to
the implementation of the red-black LMSOR method on GPUs [8].

10.2 A General Description of the LMSOR Method

The discretization of (10.1) on a rectangular grid N D M1 �M2 within ˝ leads to
a system of linear equations with N unknowns of the form

uij D `ij ui�1;j C rijuiC1;j C tij ui;jC1 C bijui;j�1; (10.2)

i D 1; 2; : : : ;M1 ; j D 1; 2; : : : ;M2

with

`ij D k2

2.k2 C h2/
.1C 1

2
hfij / ; rij D k2

2.k2 C h2/
.1 � 1

2
hfij /

(10.3)

tij D h2

2.k2 C h2/
.1 � 1

2
kgij / ; bij D h2

2.k2 C h2/
.1C 1

2
kgij /;

where h D 1=.M1 C 1/, k D 1=.M2 C 1/, fij D f .ih; jk/ and gij D g.ih; jk/.
In a red-black colored grid of points we can choose to call a point .i; j / as red

when iCj is even and black when iCj is odd. The local Modified SOR (LMSOR)
method [5] to (10.2) can be written as follows:

u.nC1/
ij D .1 � !1ij /u

.n/
ij C !1ij Jij u.n/ij ; red points (10.4)

210 Y. Cotronis et al.

u.nC1/
ij D .1 � !2ij /u.n/ij C !2ij Jij u.nC1/

ij ; black points (10.5)

where

Jij u.n/ij D liju.n/i�1;j C riju.n/iC1;j C tij u.n/i;jC1 C bij u.n/i;j�1 (10.6)

and Jij is called the local Jacobi operator. The parameters !1ij ; !2ij are called local
relaxation parameters. Note that if !ij D !1ij D !2ij , then (10.4), (10.5) reduce
to the LSOR method studied in [24]. Moreover, if ! D !1ij D !2ij (10.4), (10.5)
degenerate into the classical SOR method with red-black ordering. Using Fourier
analysis [6], Boukas and Missirlis [5] found the optimum values of the local
relaxation parameters !1ij and !2ij for the LMSOR method in case the eigenvalues
�ij of the local Jacobi operator Jij are all real or all imaginary. These optimums are
expressed in terms of N�ij and �

ij
, where

N�ij D max
k1;k2

ˇ̌
�ij .k1; k2/

ˇ̌
; �

ij
D min

k1;k2

ˇ̌
�ij .k1; k2/

ˇ̌
; (10.7)

and (see [12])

�ij .k1; k2/ D 2

�q
`ij rij cos

k1�

M1 C 1
C
q
tij bij cos

k2�

M2 C 1

	
; (10.8)

with k1 D 1; 2; : : : ;M1, k2 D 1; 2; : : : ;M2, for Dirichlet boundary conditions.
More precisely the optimum values of !1ij and !2ij are as follows.

Case 1. �ij are real. This case applies when `ij rij � 0 and tij bij � 0. The optimum
values of the LMSOR parameters are given by

!
opt
1ij D 2

1 � �ij�ij
C
q
.1 � �2ij /.1 � �2

ij
/

and (10.9)

!
opt
2ij D 2

1C �ij�ij
C
q
.1 � �2ij /.1 � �2

ij
/

where

�ij D 2

�q
`ij rij cos�hC

q
tij bij cos�k

	
(10.10)

and

�
ij

D 2

�q
`ij rij cos

�.1 � h/
2

C
q
tij bij cos

�.1 � k/
2

	
: (10.11)

10 A GPU Implementation for Solving the Convection Diffusion Equation. . . 211

Case 2. �ij are imaginary. This case applies when `ij rij � 0 and tij bij � 0. The
optimum values of the LMSOR parameters are given by

!
opt
1ij D 2

1 � �ij�ij
C
q
.1C �2ij /.1C �2

ij
/

and (10.12)

!
opt
2ij D 2

1C �ij�ij
C
q
.1C �2ij /.1C �2

ij
/

where �ij and �
ij

are computed by (10.10) and (10.11), respectively. By using the

LMSOR method instead of the red-black SOR we avoid the computation of the
optimum value of the parameter ! which increases considerably the computation
time [5].

In our code the core computation is implemented as described in (10.4)–(10.6).
The values of uij are computed by using the elements !1ij , !2ij , lij , rij , tij , bij
retained in distinct arrays. The values of !1ij and !2ij are combined in a single
array ! as for each point computation only one of the elements !1ij or !2ij is used
but not both. This makes a total of six arrays used during the computation for a
straightforward implementation through which only the values of u are updated.
The rest five arrays (!, l , r , t , b) have their values calculated once during the
initialization as their values are just read and not modified during the computation.
Having two kernel invocations per iteration, one for the computation of black
elements and one for the red ones, we can reach to a straightforward implementation
without dealing with any major issues. However, a straightforward implementation
does not exploit the full capabilities of the GPU. In the rest sections we provide
more insight on the optimizations and provide the CUDA source code of the best
performing kernel developed in this work.

10.3 GPU Implementation

Stencil computations in general are governed by the memory traffic bottleneck. The
type of kernels in which performance is determined by the amount and kind of
memory access transactions are called memory bound kernels. For instance, the
solution of the Laplace equation using the red-black SOR method is considered
as memory bound [21]. The cache sizes are limited and cannot persistently
accommodate the whole dataset especially on the GPU. As such in each iteration
where all array data are traversed they go through the memory bus. Accessing all
array data in each iteration is inevitable for non-trivial sized problems and thus the
bottleneck of kernel execution is not the amount of instructions to execute but the
amount and type of memory accesses instead.

212 Y. Cotronis et al.

10.3.1 Applied Optimizations

Having characterized the kernel under consideration we move our focus to opti-
mization methods that could mitigate the memory traffic requirements. Since
some factors taking part in the equations could be recomputed on the fly, one
strategy to follow is to avoid keeping the required values resident in memory
space but recomputing them on demand instead. This strategy introduces repetitive
computations of the same factors but reduces the access requirements. In this regard
the kernel is developed in three variations differentiated by the recomputation factor.

The GPU implementation involves six arrays (u, !, l , r , t , b) which correspond
to the matrices taking part in the core computation equations (10.4)–(10.6). As the
computation pattern follows the red-black scheme all matrices are accessed in a red-
black fashion. The most significant optimization applied is a memory reorganization
policy which is referred as reordering by color [21, 22, 30]. In this regard the data
of each matrix are split in to two different arrays, one consisting of the red elements
and one of the black (Fig.10.3).

0 1 2 0 1 2 0 1 23 4 5
0

1

1

2

3

4

5

0

1

2

3

4

5

1 3 5

6 8

8 8

13

13 13

15

15 15

1515

17

10

20

20

20 20

20

22

22 2227

27 27

29

18

25

30 32 34

3 5

6 8

13 15 17

10

20 22

27 29

18

25

30 32 34

Red valuesInitial matrix Black values

(i)

(ii)

Fig. 10.3 The reordering by color of grid elements. The reordered pattern leads to optimized
coalesced accesses

The reordering by color optimization is quite important as it virtually improves
the access patterns performed during the core computation. In a straightforward
implementation accesses of consecutive threads are forced to be interleaved with
unused elements. The ideal pattern would suggest having consecutive threads
accessing consecutive memory positions which is referred as coalescing [30]. In
this regard memory reordering by color assists to achieve the desired access pattern.
Coalescing is enforced by using the resulting matrices. This strategy can improve
bandwidth utilization by improving locality and coalescing of memory accesses and
mostly, by utilizing all values contained in a memory segment, which is not possible
with a natural interleaved red-black ordering.

During the core computation accesses on the l , r , t , b, ! arrays are performed
sequentially by consecutive threads. No values are shared and the accesses can
be perfectly aligned which leads to optimum coalescing. The case for the u array
differs. The elements in every array are split in two distinct arrays comprised by
the elements of the same color. In case of u the elements of one particular color are

10 A GPU Implementation for Solving the Convection Diffusion Equation. . . 213

computed (red or black) and these elements are accessed exclusively in the same
fashion as the rest arrays. However, the elements of the opposite color (black or red)
are accessed as neighbor elements and in this case they are not perfectly aligned
and there is data sharing evident (e.g. two consecutive threads have one neighbor
element in common). This issue of data sharing raises the opportunity to use other
memory types (texture memory or shared memory) in order to optimize the local
data sharing. In this regard, kernels are developed in three variants able to use either
memory type for the accessing of the opposite color elements of the u array.

Additionally, some of the resident read-only matrices used in the computation
could be discarded. Having their elements computed during the program initializa-
tion, they could be eliminated by replacing accesses to them with recomputations. In
each stencil computation the required factors could be recomputed on demand. The
GPUs are capable of high instruction throughput and therefore they are tolerable to
hiding the additional overhead. Trading memory accesses for computations can be
beneficial on such memory bound kernels.

In summary, LMSOR on the GPU was implemented in three variations as three
different kernels regarding the amount of recomputation it performs iteratively.
Moreover, each kernel was developed in other three variations with regard to the
memory type usage (global, texture or shared memory).

GPU Kernel #1—No Recomputations. All values required in (10.4)–(10.6) reside
in matrices situated in the GPU device memory (matrices corresponding to elements
uij , !ij , lij , rij , tij and bij). This kernel is the natural outcome implementation as
no extra computations are performed.

GPU Kernel #2—Recomputations of lij , rij , tij , bij . The values of the two
matrices fij and gij multiplied by half the value of h, are precomputed and stored in
two matrices (f

0

ij D 1
2
hfij , g

0

ij D 1
2
kgij) in the device memory. The required terms

(i.e. lij , rij , tij and bij) are generated through f
0

ij ; g
0

ij values during the LMSOR
iterations. Thus, instead of four matrices we just need to access two matrices only
in device memory. Memory requirements are lower since only four matrices (uij ,
!ij , fij , gij) are accessed from device memory. However, it comes at a cost of
extra operations needed to recompute the required terms for the formula on every
iteration.

GPU Kernel #3—Recomputations of All Elements (lij , rij , tij , bij , ¨ij). In
this implementation, recomputation is additionally applied to the !ij elements.
Note that this recomputation is particularly intensive as it involves more than 20
floating point operations per element which include costly transcendental operations
(i.e. sinusoidal, square root, reciprocal operations). During computation uij , fij ,
gij elements are accessed from memory and all other elements are recomputed on
demand.

214 Y. Cotronis et al.

10.3.2 Kernel’s Source Code

In this subsection we provide source code for one kernel variation. The chosen
variation is the GPU Kernel #2 (Recomputations of l , r , t , b) leveraging the texture
memory for the neighbor u elements involved in the five point stencil. This particular
kernel is the one with the optimum overall performance as it was determined in our
experiments. The source code is provided in Listing 10.1.

Listing 10.1 Recompute r ,l ,t ,b with texture memory usage for neighbor elements

1 template<int granularity, int calc_red>
2 __global__ void klmsorDP(const unsigned int N, const unsigned int

pitch, double * __restrict__ dDstU, const double *
__restrict__ dFFh, const double * __restrict__ dGGh, const
double * __restrict__ dW, double * __restrict__ sqrerrorD){

3 const texture2Ddouble texSrcU = calc_red ? texUBlack : texURed;
4 int iy = (blockIdx.y*blockDim.y + threadIdx.y)*granularity + 1;
5 const int ix = blockIdx.x * blockDim.x + threadIdx.x;
6 const unsigned int tid = threadIdx.y*blockDim.x + threadIdx.x;
7 double sqrerror = 0.0;
8 int ptrid = ix + iy * pitch; // absolute index to target point
9 // l_i = {0, 1} can be determined during compilation time

10 // in case granularity is a multiple of 2
11 int l_i = granularity%2==0 ? (1-calc_red) : (calc_red+iy)%2;
12 if(ix<N/2 && iy<N-granularity){ // check if in bounds
13 #pragma unroll
14 for(int i=0; i<granularity; i++){
15 if(ix>=l_i && ix<N/2-(1-l_i)){ // check if in bounds
16 double oldv = dDstU[ptrid];
17 const double quarter = 1.0/4.0;
18 double r = (1.-dFFh[ptrid])*quarter; // right
19 double l = (1.+dFFh[ptrid])*quarter; // left
20 double t = (1.-dGGh[ptrid])*quarter; // top
21 double b = (1.+dGGh[ptrid])*quarter; // bottom
22 double w = dW[ptrid]; // omega
23 // compute new element value
24 double newv = (1. - w)*oldv + w*(
25 l*tex2Ddouble(texSrcU, ix, iy-1) +
26 r*tex2Ddouble(texSrcU, ix, iy+1) +
27 b*tex2Ddouble(texSrcU, ix-l_i, iy) +
28 t*tex2Ddouble(texSrcU, ix-l_i+1, iy));
29 dDstU[ptrid] = newv;
30 sqrerror += (oldv-newv)*(oldv-newv); // diff^2
31 }
32 l_i = 1-l_i; // invert l_i (0->1, 1->0)
33 ptrid += pitch; // next row
34 iy++;
35 }
36 }
37 shm_sqrerr[tid] = sqrerror; // store sqrerror in shared memory
38 // perform a reduction of error values of all threads
39 // in the thread block via shared memory

10 A GPU Implementation for Solving the Convection Diffusion Equation. . . 215

40 __syncthreads();
41 shmem_reduction(tid, shm_sqrerr);
42 if(tid==0)
43 // store accumulated error value of the thread block
44 sqrerrorD[blockIdx.y*gridDim.x+blockIdx.x] = shm_sqrerr[0];
45 }

The main loop can be unrolled by the compiler as granularity is a template
variable and therefore it is known during the compilation time. The template variable
calc_red is set to 1 when computing red elements and 0 otherwise. The l_i variable
is used as an offset to the u array for accessing the neighbor elements. It is set to 0
when the first element of the current row and the calculated element are opposite-
colored and it is set to 1 when they are same-colored.

There are references to other elements as seen on Listing 10.2. The shm_sqrerr
reference is a pointer to the dynamically allocated shared memory address space
that is to be used by the kernel. Since the amount of required shared memory is
determined on runtime it is used as dynamically allocated. The texture2Ddouble is a
texture reference defined as texture to int2 elements. Double precision textures were
not supported in the current version of CUDA. Therefore, an int2 texture was used
along with the tex2Ddouble function which retrieves an int2 value and converts it to
a 64bit double precision value by combining the two 32bit parts of int2.

Listing 10.2 Additional declarations for elements used in the kernel code

1 // shared memory pointer for the reduction of error values
2 extern __shared__ double shm_sqrerr[];
3
4 // texture reference type for U elements
5 typedef texture<int2,2,cudaReadModeElementType> texture2Ddouble;
6
7 // texture references for red and black U elements
8 texture2Ddouble texURed, texUBlack;
9

10 // user defined function for reading double precision values
11 // from texture memory
12 __inline__ __device__
13 double tex2Ddouble(const texture2Ddouble tx, const int x, const

int y){
14 int2 v = tex2D(tx, x, y);
15 return __hiloint2double(v.y, v.x);
16 }

The kernel’s source code makes use of the shmem_reduction function that is
used to reduce the sum of all error values as computed by each individual thread in
a thread block. This function is illustrated in Listing 10.3.

216 Y. Cotronis et al.

Listing 10.3 shmem_reduction function for reduction of error values in shared memory

1 inline __device__
2 void shmem_reduction(unsigned int tid, volatile double *sd){
3 const unsigned int BLOCK_SIZE = blockDim.x*blockDim.y;
4 if(BLOCK_SIZE > 1024){
5 if(tid < min(1024, BLOCK_SIZE-1024)) sd[tid]+=sd[tid+1024];
6 __syncthreads();
7 }
8 if(BLOCK_SIZE > 512){
9 if(tid < min(512, BLOCK_SIZE -512)) sd[tid]+=sd[tid+ 512];

10 __syncthreads();
11 }
12 if(BLOCK_SIZE > 256){
13 if(tid < min(256, BLOCK_SIZE -256)) sd[tid]+=sd[tid+ 256];
14 __syncthreads();
15 }
16 if(BLOCK_SIZE > 128){
17 if(tid < min(128, BLOCK_SIZE -128)) sd[tid]+=sd[tid+ 128];
18 __syncthreads();
19 }
20 if(BLOCK_SIZE > 64){
21 if(tid < min(64, BLOCK_SIZE -64)) sd[tid]+=sd[tid+ 64];
22 __syncthreads();
23 }
24 if(tid < 32){
25 if(BLOCK_SIZE > 32) sd[tid]+=sd[tid + 32];
26 // Synchronization is not needed at this point due to
27 // implicit synchronization by thread warps
28 sd[tid] += sd[tid + 16];
29 sd[tid] += sd[tid + 8];
30 sd[tid] += sd[tid + 4];
31 sd[tid] += sd[tid + 2];
32 sd[tid] += sd[tid + 1];
33 }
34 }

10.4 Performance Results

Performance results are covered in two sections. First, the tuning results are illus-
trated on Table 10.1 and Fig. 10.4 as the configuration parameters were determined
by running multiple experiments on a wide range of different parameter values.
The granularity is the amount of stencil computations assigned to each thread,
the block size is the thread block size as determined for the kernel execution and
fast memory config is the type of memory partitioning to L1 cache and shared
memory in the multiprocessors. The problem size under consideration was set to
N D 2;162 � 2;162. It is evident that the same kernel type performed best for

10 A GPU Implementation for Solving the Convection Diffusion Equation. . . 217

Table 10.1 Tuning configuration results for the three GPUs

Device Recompute factor Kernel Granularity Block size Fast memory config

GTX480 Recompute r,l,t,b kernel #2 2 64� 2 48 KB/16 KBa

S2050 Recompute r,l,t,b kernel #2 1 64� 2 48 KB/16 KBa

GTX660 Recompute r,l,t,b kernel #2 2 64� 2 48 KB/16 KBa

For each GPU the best performing kernel (recomputation/kernel) is determined along with the
optimum configuration parameters (granularity, thread block size and memory configuration)
aL1 Cache/Shared memory configuration

0.0

GTX660

No r
ec

om
pu

te
- k

 #1

No r
ec

om
pu

te
- k

 #2

No r
ec

om
pu

te
- k

 #3

Rec
om

pu
te

rltb
 -

k #
1

Rec
om

pu
te

rltb
 -

k #
2

Rec
om

pu
te

rltb
 -

k #
3

Rec
om

pu
te

all
 -

k #
1

Rec
om

pu
te

all
 -

k #
2

Rec
om

pu
te

all
 -

k #
3

GTX480

S2050

%
 o

f
o

p
ti

m
u

m
 c

o
m

p
u

ta
ti

o
n

 t
im

e

0.1

0.2

0.3

0.4

0.5

0.6 75
%

75
%

93
%

76
%

74
%

92
%

73
%

72
%

86
% 97

%
99

%
96

%

96
%

97
%

89
% 94

%
48

%

37
% 48

%
93

%
39

% 47
%

83
%

35
%

10
0%

10
0%

10
0%

0.7

0.8

0.9

1.0

Fig. 10.4 The performance is illustrated as the optimum time/measured time ratio in the tuning
procedure. Each kernel (horizontal axis) is characterized by the recomputation factor (no recom-
pute, recompute rltb, recompute all) and the memory type usage (k#1: only global memory,
k#2: texture memory and k#3: shared memory). Problem size in the experiments was N D
2;162 � 2;162 and run for 500 iterations. The optimum times correspond to 0.758, 1.141 and
1.241 s for the GTX480, S2050 and GTX660, respectively

all three devices (recompute of l,r,t,b with texture memory usage). The parameter
values that correspond to the minimum execution times were selected as the best for
the next experiments.

As already mentioned the recomputation allows larger problems to solved by the
GPU. GPUs are not equipped with expandable memory and their available memory
is fixed. If more memory is needed then the whole graphic card device has to
be replaced. Let us, for example, consider the theoretical maximum problem size
that can be solved by each kernel and GPU device combination (Table 10.2). The
maximum feasible problem size to be processed by a GPU device can be determined
from formula (10.13). The “total arrays” term is divided by eight as double
precision arithmetic is used. For instance, using the “No recompute” kernel (six
arrays) on the GTX480 (1.5 GB device memory) the maximum problem that can be
solved is N D 33;554;432 � 5;792 � 5;792. In practice the available memory is
even less and thus the maximum problem size is further decreased.

max.N / D device memory

total arrays � 8 (10.13)

218 Y. Cotronis et al.

Table 10.2 Theoretical maximum applicable problem sizes (N) per kernel

Device memory No recompute Recompute rltb Recompute all
Device name (GB) (six arrays) (four arrays) (three arrays)

GTX480 1:5 5;792 � 5;792 7;094 � 7;094 8;192 � 8;192

S2050 3:0a 8;192 � 8;192 10;033� 10;033 11;585 � 11;585

GTX660 2:0 6;688 � 6;688 8;192 � 8;192 9;459 � 9;459

The amount of required arrays and device memory determines the available memory for each array
and the maximum problem size
aWith ECC disabled

0

12
2x

12
2

48
2x

48
2

96
2x

96
2

19
22

x1
92

2

28
82

x2
88

2

38
42

x3
84

2

57
62

x5
76

2

76
82

x7
68

2

500

1000

1500

T
h

ro
u

g
h

p
u

t
(m

ill
io

n
 s

te
n

ci
ls

/s
ec

)

Grid size

1215

387

248

1596

1966 2068 2048 2018 1960

3168

165
361370371

1671

1168
368

1844

1828

2732

3097 3168 3187

2078

310

1893 1906 1917

2000

2500

3000

GTX480

GTX660

Core i7-2600k

S20503500

4000

Fig. 10.5 A scaling throughput comparison for the three GPUs and the CPU. Run for problem
sizes N D {122 � 122, 482 � 482, 962 � 962, 1;922 � 1;922, 2;882 � 2;882, 3;842 � 3;842,
5;762� 5;762 and 7;682� 7;682}

In the next section a scaling experiment was executed. The optimum versions for
each GPU was executed on a range of different problem sizes. In addition, they were
compared with a CPU (Intel Core i7 2600K). The results are illustrated in Fig. 10.5.

It is worth noting that the OpenMP [31] CPU implementation also employs
some of the optimizations applied on the GPU versions. First, the partial recom-
putation strategy is similarly applied on the CPU. The CPU compute potential of
contemporary CPUs is also higher than its memory bandwidth, therefore, through
experimentation it was found that the CPU program also benefits by recomputation.
In addition the memory reordering strategy is also applied on the CPU and it is
essential in order to achieve vectorization through SIMD AVX instructions.

One of the key observations reinforcing the recomputation strategy is the trend
of contemporary GPUs and CPUs on increasing their compute potential in a much
higher rate than the memory bandwidth does. For instance, the NVidia GTX-285,
which is a 5 year old high-end GPU, performs 1,063 GFLOPS peak on single
precision and 159 GB/s memory bandwidth. The modern GTX-780 Ti GPU features

10 A GPU Implementation for Solving the Convection Diffusion Equation. . . 219

5,046 GFLOPS peak on single precision and 336 GB/s memory bandwidth. The
compute=bandwidth ratio of the former is 6.69 and the latter’s ratio is 15.02.
In this example this ratio has more than doubled and it is expected to continue
increasing in the next years. Therefore, as our endeavour to optimize the particular
kernels is focused on memory traffic alleviation, the recomputation policy will
probably gain more value on the following generations of CPUs and GPUs.

10.5 Remarks and Conclusions

GPUs have recently gained the interest of the scientific community. They consist
a high performance platform for massive parallel computations and the iterative
methods for solving PDEs like SOR are pretty well suited. In order to achieve
memory coalescing, the locality of accesses must be ensured and one good strategy
is to apply the reordering by color optimization.

Recomputation can also be beneficial in cases where memory accesses become
a bottleneck for GPUs. Instead of keeping the processing units idle waiting for
memory access requests to complete, one strategy is to recompute data in order
to lower memory access requirements. This is a tradeoff and in many cases when
a kernel is memory bandwidth limited, compute resources can be traded for less
memory accesses. In such cases the overall performance can be improved. In
addition it potentially allows larger problems to be processed as memory space
is released which was initially allocated for the respective arrays. Therefore, the
maximum size of the problem to be solved is determined by the type of the
applied kernel. Even in cases where recomputation is excessively applied, although
performance is worsened on current GPUs, it might prove not to be the case
on future GPUs. The increasing trend of compute=bandwidth ratio allows to
predict that future GPUs will be much more compute capable in comparison to
their memory bandwidth and the excessive recomputation strategies are expected to
exhibit better performance.

Acknowledgements We would like to acknowledge the kind permission of the Innovative
Computing Laboratory at the University of Tennessee to use their NVidia Tesla S2050 installation
for the purpose of this work.

References

1. Amador, G., Gomes, A.: A CUDA-based implementation of stable fluids in 3D with internal
and moving boundaries. In: 2010 International Conference on Computational Science and Its
Applications, pp. 118–128 (2010)

2. Amador, G., Gomes, A.: CUDA-based linear solvers for stable fluids. In: International
Conference on Information Science and Applications (ICISA), pp. 1–8 (2010)

220 Y. Cotronis et al.

3. Anzt, H., Tomov, S., Dongarra, J., Heuveline, V.: Weighted block-asynchronous iteration on
GPU-accelerated systems. In: Euro-Par 2012: Parallel Processing Workshops. Lecture Notes
in Computer Science, vol. 7640, pp. 145–154 (2013)

4. Botta, E.F., Veldman, A.E.P.: On local relaxation methods and their application to convection-
diffusion equations. J. Comput. Phys. 48, 127–149 (1981)

5. Boukas, L.A., Missirlis, N.M.: The parallel local modified SOR for nonsymmetric linear
systems. Int. J. Comput. Math. 68, 153–174 (1998)

6. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput.
31(138), 333–390 (1977)

7. Colmenares, J., Ortiz, J., Decherchi, S., Fijany, A., Rocchia, W.: Solving the linearized Poisson-
Boltzmann equation on GPUs Using CUDA. In: 21st Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP), pp. 420–426 (2013)

8. Cotronis, Y., Konstantinidis, E., Louka, M.A., Missirlis, N.M.: Parallel SOR for solving the
convection diffusion equation using GPUs with CUDA. In: EuroPar 2012 Parallel Processing,
International European Conference on Parallel and Distributed Computing, Rhodos. Lecture
Notes in Computer Science, vol. 7484, pp. 575–586 (2012)

9. Czapiński, M., Thompson, C., Barnes, S.: Reducing communication overhead in multi-
GPU hybrid solver for 2D Laplace equation. Int. J. Parallel Program. 1–16 (2013) DOI:
10.1007/s10766-013-0293-2

10. Di, P., Wu, H., Xue, J., Wang, F., Yang, C.: Parallelizing SOR for GPGPUs using alternate loop
tiling. Parallel Comput. 38(6–7), 310–328 (2012)

11. Eberhart, P., Said, I., Fortin, P., Calandra, H.: Hybrid strategy for stencil computations on
the APU. In: Proceedings of the 1st International Workshop on High-Performance Stencil
Computations, Vienna, pp. 43–49 (2014)

12. Ehrlich, L.W.: An Ad-Hoc SOR method. J. Comput. Phys. 42, 31–45 (1981)
13. Ehrlich, L.W.: The Ad-Hoc SOR method: a local relaxation scheme. In: Elliptic Problem

Solvers II, pp. 257–269. Academic, New York (1984)
14. Gohari, S.M.I., Esfahanian, V., Moqtaderi, H.: Coalesced computations of the incompressible

Navier Stokes equations over an airfoil using graphics processing units. Comput. Fluids 80,
102–115 (2013)

15. Ha, L., Króger, J., Joshi, S., Silva, C.T.: Multiscale unbiased diffeomorphic atlas construction
on multi-GPUs. In: GPU Computing Gems, pp. 771–791. Morgan Kaufmann, Los Altos (2011)

16. Hsieh, C.W., Kuo, S.H., Kuo, F.A., Chou, C.Y.: Solving parabolic problems using multithread
and GPU. In: International Symposium on Parallel and Distributed Processing with Applica-
tions (ISPA’10), Washington, pp. 75–80 (2010)

17. Itu, L.M., Suciu, C., Moldoveanu, F., Postelnicu, A., Suciu, C.: GPU optimized computation
of stencil based algorithms. In: 10th Roedunet International Conference (RoEduNet), pp. 1–6,
23–25 June 2011

18. Khajeh-Saeed, A., Blair Perot, J.: Direct numerical simulation of turbulence using GPU
accelerated supercomputers. J. Comput. Phys. 235, 241–257 (2013)

19. Khronos Group: The OpenCL Specification. Khronos Group, Beaverton (2009) http://www.
khronos.org/registry/cl/specs/opencl-1.0.pdf

20. Komatsu, K., Soga, T., Egawa, R., Takizawa, H., Kobayashi, H., Takahashi, S., Sasaki, D.,
Nakahashi, K.: Parallel processing of the building-cube method on a GPU platform. Comput.
Fluids 45(1), 122–128 (2011)

21. Konstandinidis, E., Cotronis, Y.: Accelerating the red/black SOR method using GPUs with
CUDA. In: 9th International Conference on Parallel Processing and Applied Mathematics, Part
I, Torun. Lecture Notes in Computer Science, vol. 7203, pp. 589–598 (2012)

22. Konstantinidis, E., Cotronis, Y.: Graphics processing unit acceleration of the red/black SOR
method. Concurr. Comput. 25(8), 1107–1120 (2013)

23. Kosior, A., Kudela, H.: Parallel computations on GPU in 3D using the vortex particle method.
Comput. Fluids 80, 423–428 (2013)

24. Kuo, C.-C.J., Levy, B., Musicus, B.R.: A local relaxation method for solving elliptic PDEs on
mesh-connected arrays. SIAM J. Sci. Stat. Comput. 8(4), 550–573 (1987)

http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf

10 A GPU Implementation for Solving the Convection Diffusion Equation. . . 221

25. Li, P., Brunet, E., Namyst, R.: High performance code generation for stencil computation on
heterogeneous multi-device architectures. In: HPCC-15th IEEE International Conference on
High Performance Computing and Communications, Zhangjiajie (2013)

26. Liu, J.T., Ma, Z.S., Li,S.H., Zhao, Y.: A GPU accelerated red-black SOR algorithm for
computational fluid dynamics problems. Adv. Mater. Res. 320, 335–340 (2011)

27. Maruyama, N., Aoki, T.: Optimizing stencil computations for NVIDIA Kepler GPUs. In:
Proceedings of the 1st International Workshop on High-Performance Stencil Computations,
Vienna, pp. 89–95 (2014)

28. Niemeyer, K., Sung, C.: Recent progress and challenges in exploiting graphics processors in
computational fluid dynamics. J. Supercomput. 67(2), 528–564 (2014)

29. NVidia: NVidia CUDA C Programming Guide v.5.0. NVidia (2012)
30. NVidia: NVidia CUDA C Best Practices Guide Version 5.0. NVidia (2012)
31. OpenMP Architecture Review Board: OpenMP Application Program Interface Version 3.0.

OpenMP Architecture Review Board (2008)
32. Ortega, J.M., Voight, R.G.: Solution of Partial Differential Equations on Vector and Parallel

Computers. SIAM, Philadelphia (1985)
33. Thibault, J., Senocak, I.: Accelerating incompressible flow computations with a Pthreads-

CUDA implementation on small-footprint multi-GPU platforms. J. Supercomput. 59(2),
693–719 (2012)

34. Vandal, N.A., Savvides, M.: CUDA accelerated illumination preprocessing on GPUs. In: 17th
International Conference on Digital Signal Processing (DSP), pp. 1–6 (2011)

35. Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (1962)
36. Young, D.M.: Iterative Solution of Large Linear Systems. Academic, New York (1971)
37. Zaspel, P., Griebel, M.: Solving incompressible two-phase flows on multi-GPU clusters.

Comput. Fluids 80, 356–364 (2013)

Chapter 11
Finite-Difference in Time-Domain Scalable
Implementations on CUDA and OpenCL

Lídia Kuan, Pedro Tomás, and Leonel Sousa

11.1 Finite-Difference in Time-Domain Numerical Method

The FDTD [8, 10] is a popular computational method for solving Maxwell’s
Equations for electromagnetics [7, 11]. This method was introduced by Kane Yee
in [10] and is a time domain solution to the Maxwell’s Equations with relatively
good accuracy and flexibility. It has become a powerful method for solving a wide
variety of different electromagnetics problems.

In [10], Yee presented the Finite-Difference in Time-Domain (FDTD) problem
domain as a rectangle composed of cells. Assuming that the dielectric parameters
�, � and 	 are independent of time, the following system of scalar equations is
equivalent to Maxwell’s equations in the rectangular coordinate system .x; y; z/:

@Hx

@t
D 1

�

�
@Ey

@z
� @Ez

@y

	
; (11.1a)

@Hy

@t
D 1

�

�
@Ez

@x
� @Ex

@z

	
; (11.1b)

@Hz

@t
D 1

�

�
@Ex

@y
� @Ey

@x

	
; (11.1c)

@Ex

@t
D 1

�

�
@Hz

@y
� @Hy

@z
� 	Ex

	
; (11.1d)

@Ey

@t
D 1

�

�
@Hx

@y
� @Hz

@x
� 	Ey

	
; (11.1e)

L. Kuan (�) • P. Tomás • L. Sousa
INESC-ID/IST, Universidade de Lisboa, Rua Alves Redol 9, Lisboa, Portugal
e-mail: lmlk@sips.inesc-id.pt; pfzt@inesc-id.pt; las@inesc-id.pt

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__11, © Springer International Publishing Switzerland 2014

223

mailto:lmlk@sips.inesc-id.pt
mailto:pfzt@inesc-id.pt
mailto:las@inesc-id.pt

224 L. Kuan et al.

@Ez

@t
D 1

�

�
@Hy

@x
� @Hx

@y
� 	Ez

	
: (11.1f)

Yee introduced a set of finite-difference equations for the system, where a space cell
point is denoted as

.x; y; z/ D .iıx; jıy; kız/; (11.2)

and any function of space and time is denoted as

F n.i; j; k/ D F.iı; jı; kı; nıt/; (11.3)

where ı is the space increment, which is considered to be uniform in all x; y and z
directions, and ıt is the time increment. Finite-difference expressions for the space
and time derivatives are used:

@F n.i;j;k/

@x
D F n.1C 1

2
;j;k/ � F n.1� 1

2
;j;k/

ı
CO.ı2/; (11.4)

@F n.i;j;k/

@t
D F nC1

2 .i;j;k/ � F n�1
2 .i;j;k/

ıt
CO.ıt2/; (11.5)

(11.4) and (11.5) are applied to the E and H field. Therefore, the FDTD algorithm
solves Maxwell’s equations by first performing the E field equations update for
each cell at time-step n, and then performing the H field equations update for each
cell at time-step n C 1=2. The time resolution of the simulation is determined by
the model’s spatial resolution, and the number of time-steps is determined by the
waveform shape and temporal length of the source being modeled.

There are two modes of electromagnetic waves, namely: transverse electric
(TE) wave and transverse magnetic (TM) wave. In the scope of this chapter, the
implementation of a wave propagation simulation is addressed by considering
that the internal electric field is a uniform, rectangular, space in vacuum, with a
rectangular wave source that is assumed to be infinite in the z direction. The incident
radiation is assumed to be a Cx directed TM wave of frequency f , in this particular
example we set f to be 10 GHz. Because there is no variation of either scattered
geometry or incident fields in the z direction, this problem may be treated as a two-
dimensional scattering of the incident wave, with onlyEz,Hx andHy fields present.
Therefore, from this point forward, the focus will be limited to the following finite-
difference of Maxwell’s equations in a two-dimensional space:

H
nC1

2
x .i;jC 1

2
/DHn�1

2
x .i;jC 1

2
/C ıt

�.i;jC 1
2
/ı

�
�
En
y.i;jC 1

2
/�En

y.i;jC 1

2
/CEn

z .i;j /�En
z .i;jC1/

�
; (11.6a)

11 Finite-Difference in Time-Domain Scalable Implementations on CUDA. . . 225

H
nC1

2
y .iC 1

2
;j /DHn�1

2
y .iC 1

2
; j /C ıt

�.i C 1
2
; j /ı

�
�
En

z .iC1;j /�En
z .i; j /CEn

x.iC
1

2
;j /�En

x .iC
1

2
;j /

�
; (11.6b)

EnC1
z .i;j /D

�
1� 	.i;j /ıt

�.i;j /

�
En

z .i;j /C
ıt

�.i; j /ı
�
�
H
nC1

2
y .iC 1

2
; j /

�HnC1
2

y .i� 1
2
;j /CHnC1

2
x .i;j� 1

2
/�HnC1

2
x .i;jC 1

2
/

�
: (11.6c)

The choice of ı and ıt defines accuracy and stability, respectively [8]. To ensure
the accuracy of the computed results, ı must be taken as a small fraction of either the
minimum wavelength expected in the model or the minimum scatterer dimension.
To ensure the stability of the time-stepping algorithm, ıt is chosen to satisfy the
Courant condition in a two-dimensional space:

�maxıt �
s

1

ıx2
C 1

ıy2
; (11.7)

where �max is the maximum wave phase velocity expected within the model. The
pseudo-code of the sequential FDTD algorithm is shown in Algorithm 1.

226 L. Kuan et al.

In summary, the presented implementation consists of a TM plane wave propa-
gation in a cell grid in vacuum. To avoid wave propagation and/or reflection the E
and H fields were set to zero in the left and right grid limits, and a periodic boundary
condition was added in the top and bottom grid limits. The source generates a
sinusoidal incident wave Ez D Eo cos.2�f ndt/ positioned along a column in the
grid near the left limit.

While many approaches can be considered to implement the described FDTD
algorithm, the objective of this chapter is to show the required optimization steps
in order to efficiently explore the GPUs processing power [5]. With this goal
in mind, we start in Sect. 11.2 by presenting single GPU CUDA and OpenCL
implementations and then address the optimization steps taken to decrease the
time required to compute. Section 11.3 presents the algorithm implementation
considering larger problem sizes. Computing in multi-GPU systems is addressed
in Sect. 11.4. Although, OpenCL framework is target to various devices (i.e. multi-
core Central Processing Units (CPUs), AMD and Nvidia GPUs, Altera FPGAs),
the focus of the presented work is targeted to Nvidia’s GPUs. Therefore, following
discussions will focus on that type of GPUs.

11.2 Single GPU Implementation

To implement the FDTD algorithm in a single GPU system, we consider that the
problem is defined in a .x; y/ grid of size IE�JE . To take advantage of the GPU’s
architecture, the complete grid is divided in small subsets as shown in Fig. 11.1,
where each subset is computed by a different multiprocessor, which in the case of
the Nvidia GPU’s is designated Streaming Multiprocessor (SM).

Fig. 11.1 Grid distribution in the GPU

11 Finite-Difference in Time-Domain Scalable Implementations on CUDA. . . 227

11.2.1 Host Environment Initialization

Although CUDA and OpenCL are similar frameworks, the environment initializa-
tion for each of them is different. The CUDA environment initialization can be
done by using the cudaGetDeviceCount(), which retrieves the number of
CUDA capable GPUs, followed by cudaSetDevice(int device), where
the argument device sets the device on which the active host thread executes the
device code.

The OpenCL framework is divided into a platform layer application program-
ming interface (API) and runtime API. The platform API allows an application
to query for OpenCL devices and manage them through a context. The runtime
API makes use of the context to manage the execution of kernels, which are the
programs, on OpenCL devices. To execute an OpenCL program it is necessary to:

1. Query the host system for OpenCL devices.
2. Create a context to associate the OpenCL devices.
3. Create programs (which in OpenCL is a source file with a set of kernels) that will

run on one or more associated devices.
4. From the programs objects, select the kernels to execute.
5. Create memory objects on the host or on the device.
6. Copy memory data to the devices as needed.
7. Provide arguments for the kernels.
8. Submit kernels to the command queue for execution.
9. Copy the results from the device to the host.

In OpenCL, when the context is established, command queues can be created that
allow commands to be sent to the compute devices associated with this context. In
the following sections we mainly focus on items 5–9 from the list above.

11.2.2 Straightforward Implementation

This section describes a straightforward implementation of the parallel algorithm
on the GPU, by considering that the problem fits into the GPU’s memory. The most
basic approach for designing the kernel would be the one presented in Algorithm 1,
where the update field for() loops would be turn into kernels and be processed
by the GPU [2]. Therefore, there would be two different kernels: one for the Ez

update; and another for the Hx and Hy update. As shown in (11.6) E and H fields
are evaluated at alternate half-time steps, which implies a calculation dependency
between the two fields.

228 L. Kuan et al.

11.2.2.1 General Optimizations

Since the electric and magnetic fields depend on each other, this is equivalent to
having two different kernels that cannot be overlapped due to data dependencies,
which increases the kernel launch overhead. Thus, in order to reduce the kernel
launch overhead these two kernels can be merged into a single kernel, respecting he
data dependencies. This new kernel will be the one that we will use form now on
and the whole problem size is defined in a space of size IE � JE .

In the presented implementation, the number of threads per block was chosen in
order to maximize the targeted GPU resource utilization. Thus, in the following
example, for a grid of size IE � JE , if the number of threads is 256, a two
dimensional 16 � 16 kernel environment is set, as it is shown in Fig. 11.2 for the
CUDA and OpenCL environments.

Fig. 11.2 Kernel launch in host code for CUDA and OpenCL frameworks

The kernel code to compute the Ez, Hx and Hy fields for both CUDA and
OpenCL frameworks is shown in Figs. 11.3 and 11.4, respectively. Each thread is
set to compute one element of the grid, the necessary data to compute the element
is copied to local variables, then the result is computed and stored in the global
memory. Notice that this approach requires copying the E and H matrices only once
to the GPU’s memory before kernel launch, and copying the matrix E back to the
host at the end of the computation. Moreover, the kernel is launched NSTEPS times,
which is the simulation duration.

For this particular algorithm the kernel execution is short, having a significant
launch overhead. Therefore, regarding the code presented in this section an addi-
tional optimization can be made if the IE�JE problem fits in the GPU memory. In
such a case, the for() loop of the NSTEPS iterations can be put inside the kernel,
in order to reduce the kernel launch overhead.

11 Finite-Difference in Time-Domain Scalable Implementations on CUDA. . . 229

Fig. 11.3 CUDA kernel code

11.2.3 Experimental Results

To evaluate the impact of the proposed optimization step, the FDTD algorithm was
run on two experimental setups: (a) Two Nvidia’s GTX 580 GPUs with Fermi
architecture [9], with 1.5 GB of memory, compute capability 2.0 and 512 cuda
cores running at 1.54 GHz, and (b) one Nvidia’s Tesla K20c GPU with Kepler
architecture [4], with 5 GB of memory, compute capability 3.5 and 2,496 cuda cores
running at 0.71 GHz. The results for the single-GPU execution are presented in
Fig. 11.5 and show the obtained speedup of the different implementations using as

230 L. Kuan et al.

Fig. 11.4 OpenCL kernel code

baseline the execution time of the approach with two different kernels. Notice that
the x axis represents the IE value, for the presented results JE D IE . The baseline
execution time (in seconds) is presented in the figure at the top of each group of
columns. It can be observed that for both frameworks using a single kernel reduces
the execution time, and that by executing the for() inside the kernel we were able
to obtain a speedup of up to 2.6. However, for the GTX 580 the achieved speedup
is up to 2.3. This difference can be due to features introduces by compute capability
3.5, for instance global memory atomic operations have higher throughput on Kepler
than on Fermi [3].

11 Finite-Difference in Time-Domain Scalable Implementations on CUDA. . . 231

GTX 580

K20c

IE

512
0

0.5

1

1.5

2

2.5

3

1024 2048 4096 8192

512

CUDA 1 Kernel

OpenCL 1 Kernel

CUDA For Loop in Kernel

OpenCL For Loop in Kernel

1024 2048 4096 163948192

0.
04
8

0.
04

7

0.
06

7

0.
06

2

0.
14

1

0.
14

2
0.

18
6

0.
52

1
0.

68
9

2.
00
8 2.

68
4

7.
81

2 10
.6

11

0.
19

9
0.

51
0

0.
73
8

1.
96

3

2.
86

6
7.

73
2

11
.4

27
29

.7
28

45
.9

69

S
pe

ed
up

0

0.5

1

1.5

2

2.5

3

S
pe

ed
up

Fig. 11.5 Obtained speedup of the presented implementations, taken with a GTX 580 and a
K20c GPUs, for CUDA and OpenCL frameworks. The baseline value, considering the original
straightforward implementation is shown on the top of each group of columns in seconds

11.3 Scalable Implementation for Large Problems

While the FDTD implementation described in Sect. 11.2 allows achieving a sub-
stantial performance, its applicability is limited by the amount of memory of the
GPU device. For large problem sizes where the GPU memory is too small to store
all the required data, a different approach has to be used. This section addresses the
development of a scalable approach, which splits the problem into slices along the y
direction, as shown in Fig. 11.6. Such an approach, allows the data transfer between
the CPU and the GPU to use contiguous memory blocks, and also enables coalesced
memory accesses in the GPU.

For example, assuming a grid of size IE � JE and a GPU whose memory can
only hold the data to compute a problem of size d_IE � d_JE (highlighted in
Fig. 11.6a) where d_IE < IE and d_JE < JE, the grid will be divided in chunks
of d_IE � d_JE elements, in the following way: if T is the number of total bytes
supported by the GPU and each element of the grid occupies B bytes, the total

232 L. Kuan et al.

amount of memory required to compute one line is given by IE � B . Thus, the
maximum number of lines that can be computed by the GPU is given by

d_JE D
�

T

IE � B
�
;

where b c represents the rounding operation to the smallest integer. This is
highlighted in Fig. 11.6b. In this particular algorithm, there are however data depen-
dencies when calculating each single element of the grid. Thus the dependency data
for each chunk also needs to be passed to the GPU. With this purpose ghost cells are
used as additional data to be transferred to the GPU. The ghost cells are highlighted
in Fig. 11.6c.

a b c

Fig. 11.6 Scalable implementation approach. (a) Representation of the whole problem and GPU’s
maximum supported size highlighted in grey. (b) Maximum number of supported elements are
rearranged (grey elements style) in order address a coalesced chunk into the GPU and each chunk
is computed at a time until the whole problem has been calculated. (c) The algorithm has data
dependencies, for each chunk it is necessary to copy additional data highlighted in grey (the rows
at the top and bottom of the chunk)

Each chunk can be calculated sequentially, with the respective memory transfer
data. However, for improving efficiency, the computation can be overlapped with the
memory transfer, reducing the execution time. For this implementation kernel and
data transfer overlaps and dimensions of power of two will be used for simplicity. It
is worth to notice that overlapping induces the size of the chunks to be smaller.

The size of data assigned to the GPU for each chunk is

d_IE D IE;

d_JE D
$

T
Bbytes

� 2
2

%
:

where the subtraction by two is used to accommodate the ghost cells and the division
by two is required for double buffering.

11 Finite-Difference in Time-Domain Scalable Implementations on CUDA. . . 233

11.3.1 Implementation in CUDA

To implement the described parallelization approach, we take advantage of streams
and non-blocking memory transfers. A CUDA stream represents a queue of GPU
operations which can be kernel launches or data copies. The order by which
operations are added to the stream specifies the order in which they will be executed.
A GPU that supports overlapping possesses the capacity to simultaneously execute
a CUDA C kernel while performing a copy between device and host memory.

Fig. 11.7 Excerpt of code to query if the GPU supports the overlap feature

Fig. 11.8 Excerpt of code to create CUDA streams

To use the CUDA stream one should first query the device and check whether
it supports the overlapping feature, using the cudaGetDeviceProperties()
function, as shown in Fig. 11.7 After checking that the target device supports
overlapping the streams to be used are created, which in this case it will be the
number of chunks of the whole grid (see Fig. 11.8). We then proceed to data
allocation on the host and the device, the sequence of computations illustrated in
Fig. 11.9. In this case, generating the input and output buffers allocated on the host
uses pinned memory (notice the call to cudaMallocHost()). The reason for
using the page-locked host memory is that it makes copies faster and it is required
for using the function.

The call to cudaMemcpyAsync() simply places a request to perform a
memory copy into the stream. When the call returns, there is no guarantee
that the copy has even started. The only guarantee is that the copy will be
performed before the next operation placed into the same stream. It is also required
that any host memory pointers passed to cudaMemcpyAsync() have been
allocated by cudaMallocHost(). Moreover, notice that the angle-bracketed
kernel launch also takes an optional stream argument stream[j], indicating that
the stream[j] is associated to this call.

234 L. Kuan et al.

Fig. 11.9 Excerpt of code with CUDA sequence of computations

Also notice that kernel launch is asynchronous, just like the preceding CPU to
GPU memory copy (copies) and the trailing GPU to CPU memory copy (copies).
Under this scheme, it is technically possible to end an iteration of the loop without
actually having started any of the memory copies or kernel execution. As previously
mentioned, it is guaranteed that the first copy placed into the stream will execute
before the other following copies. Moreover, the last copy will be complete before
the kernel starts, and the kernel will complete before the following copy starts.

When the for() loop has terminated, there could be still quite a bit of work
queued up for the GPU to finish. To guarantee that the GPU is done with its
computations and memory copies, it is important to synchronize it with the host,
instructing it to wait for the GPU to finish before proceeding. This is accomplished
by calling the cudaStreamSynchronize() function and by specifying the
stream that we want to wait for.

Finally, notice that in the presented code we have used one stream for each chunk,
where the inner for() loop computes each chunk of the problem for NSTEPS
time-steps.

11 Finite-Difference in Time-Domain Scalable Implementations on CUDA. . . 235

11.3.2 Implementation in OpenCL

This subsection presents the implementation of the scalable parallelization
approach, considering the OpenCL framework. As described in the beginning
of Sect. 11.3, it is necessary to take advantage of the non-blocking memory copy
functions and the available events1 as synchronization points, in order to develop
an efficient implementation.

In OpenCL, when the context is successfully created, command queues can be
created to allow commands to be sent to the compute devices associated with the
context. While commands are placed into the command queues in order, OpenCL
allows these queues to be executed out-of-order. In such a case, the execution
dependencies can be guaranteed by using events.

Assuming that the device has been chosen, the context and programs has been
created with success, and the kernels has been selected, the memory objects on the
host and the device can be created as shown in Fig. 11.10.

Fig. 11.10 Excerpt of code with OpenCL buffers allocation

As shown in the figure, in this implementation, the host buffer is allocated as a
normal buffer, while the device buffer is created using the clCreateBuffer(),
and allowing read and write operations for the device.

As mentioned previously, the use of events allows to implement the overlap-
ping of the memory transfer with the kernel execution. All clEnqueue* functions
take three arguments: the number of events to wait on, a list of events to wait on, and
an event that the command creates that can be used by another queue. Therefore, the
correct order of the operations is established by these three arguments.

The steps to create the necessary events is shown in Fig. 11.11. Nine events
are created: five for memory transfer into the GPU, one for the kernel execu-
tion, and three for collecting the data from the device. Typically one should
create one event for each operation that will be executed. The sequence of
computations will look like as shown in Fig. 11.12. In the presented code, the
non-blocking memory transfer is made by setting the third parameter of the
functions clEnqueueWriteBuffer() and clEnqueueReadBuffer() to
CL_FALSE.

1Notice that in CUDA the definition of events refers to timing features.

236 L. Kuan et al.

Fig. 11.11 Excerpt of code with the OpenCL events creation

Fig. 11.12 Excerpt of code with OpenCL sequence of computations

11 Finite-Difference in Time-Domain Scalable Implementations on CUDA. . . 237

The clEnqueueNDRangeKernel()waits for the five write_events and
the clEnqueueReadBuffer()waits for the kernel_event. Finally, in order
to guarantee data coherence at the end of each iteration, a synchronization point
is made with clFinish(), which it blocks host execution until all previously
queued commands in cmd_queue have completed.

11.4 Exploring Multi-GPU Systems

Many modern computing environments now possesses multiple GPUs. Developing
algorithms that allow exploring the full computing potential of such systems
is fundamental. To use multiple GPUs, the first step is to retrieve the number
of available devices. As shown before in CUDA, this can be done with the
cudaGetDeviceCount(). For OpenCL case this is performed by using the
clGetDeviceIDs() function. After gathering the number of available GPUs
one must choose a particular GPU to perform each operation. In CUDA this is done
as shown in Fig. 11.13.

In OpenCL, once the compute devices and their corresponding device_id(s)
have been identified, the device_id(s) need to be associated with the context
(see Fig. 11.14). Once the context is created, command queues can be created to

Fig. 11.13 Excerpt of code with CUDA device set

Fig. 11.14 Excerpt of code with OpenCL context creation

238 L. Kuan et al.

allow commands to be sent to the compute device associated with the context. To
use multiple GPUs, it is necessary to create one command queue for each GPU as
shown in Fig. 11.15.

Fig. 11.15 Excerpt of code with OpenCL command queues creation for multiple GPUs

11.4.1 Scalable Implementation with Multiple GPUs in CUDA

The sequence of computations in the implementation presented in Sect. 11.3.1 but
by using multiple GPUs looks like as shown in Fig. 11.16.

The main difference of this code when comparing to the one shown in
Sect. 11.3.1, is the lines highlighted in the rectangles that have been added. These
lines select a different GPU in each NSTEPS iteration. Moreover, additional buffers
were allocated, two buffers for each used GPU, one for the E field and other of the
H field.

11.4.2 Scalable Implementation with Multiple
GPUs in OpenCL

In this subsection we present the code of the scalable implementation presented in
Sect. 11.3.2 with the support for multiple devices in Fig. 11.17. The main differ-
ences when comparing with the code presented in Sect. 11.3.2 is the highlighted
rectangles. Here, one command queue was created for each GPU. The commands
are placed at each device command queue alternatively and also each device got its
own field buffer.

11 Finite-Difference in Time-Domain Scalable Implementations on CUDA. . . 239

Fig. 11.16 Excerpt of code with CUDA sequence of computations using multiple GPUs

11.4.3 Experimental Results

Using the experimental setup presented in Sect. 11.2.3, experimental results were
obtained for the scalable implementation.

Figure 11.18 shows the results of the implemented algorithm with one and two
GPUs. As it can be observed, by using multiple GPUs one can in fact reduce the
execution time. It should however be noticed that in this particular case, the achieved
speedup was not very significant. This is because ratio between computation
and memory transfers is not very high. To overcome this issue, more advanced
optimizations should be introduced in the program. Additionally, while in this case
the multi-GPU system uses similar performance GPUs, their relative performance
can be an issue. To efficiently utilize the computing power of devices with different
processing performances, efficient scheduling algorithms should be used. Examples
of such algorithms are presented in [1, 6, 12].

240 L. Kuan et al.

Fig. 11.17 Excerpt of code with OpenCL sequence of computations using multiple GPUs

GTX 580

8192

CUDA 1 GPU CUDA 2 GPU OpenCL 1 GPU OpenCL 2 GPU

819216384 16384
0E

xe
cu

ti
o

n
 T

im
e

(s
ec

)

IE

5

10

15

20

25

30

0

5

10

15

20

25

30
K20c

Fig. 11.18 Obtained results for a single and multiple devices

11 Finite-Difference in Time-Domain Scalable Implementations on CUDA. . . 241

11.5 Conclusions

In this chapter we presented a parallel FDTD algorithm and proposed some tuning
techniques for computing FDTD on GPUs. Optimizations were presented at a kernel
level, where the purpose was to reduce the kernel launch overhead. Experimental
results showed that the reduction of kernel launch overhead could achieved a
speedup up to 2.6. Moreover, the computation and data transfer overlapping and
the usage of multiple GPUs within the same system were also presented. The
obtained results for multi-GPUs in this particular case did not show significant
improvement, it requires further research to develop more advance optimization
techniques. Nevertheless, all the obtained results showed that reduction in the
execution times can be achieved by applying GPUs to compute the FDTD method.

Acknowledgements The work presented herein was partially supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) under projects Threads (ref. PTDC/ EEA-
ELC/117329/2010), P2HCS (ref. PTDC/EEI-ELC/3152/2012) and PEst-OE/ EEI/LA0021/2013,
and also with the Ph.D. grant with reference number SFRH/BD/ 65636/2009.

References

1. Acosta, A., Corujo, R., Blanco, V., Almeida, F.: Dynamic load balancing on heterogeneous
multicore/multiGPU systems. In: 2010 International Conference on High Performance Com-
puting and Simulation (HPCS), pp. 467–476 (2010). doi:10.1109/HPCS.2010.5547097

2. Kuan, L., Tomas, P., Sousa, L.: A comparison of computing architectures and paral-
lelization frameworks based on a two-dimensional FDTD. In: 2013 International Con-
ference on High Performance Computing and Simulation (HPCS), pp. 339–346 (2013).
doi:10.1109/HPCSim.2013.6641436

3. Nvidia: http://docs.nvidia.com/cuda/pdf/Kepler_Tuning_Guide.pdf. 7 Feb 2014
4. Nvidia: http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-

Whitepaper.pdf. 7 Feb 2014
5. Pratas, F., Trancoso, P., Stamatakis, A., Sousa, L.: Fine-grain parallelism using multi-core,

cell/BE, and GPU systems: accelerating the phylogenetic likelihood function. In: International
Conference on Parallel Processing, 2009 (ICPP’09), pp. 9–17. IEEE, Piscataway (2009)

6. Shirahata, K., Sato, H., Matsuoka, S.: Hybrid map task scheduling for GPU-based het-
erogeneous clusters. In: 2010 IEEE Second International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 733–740 (2010). doi:10.1109/CloudCom.2010.55

7. Taflove, A., Hagness, S.C.: Computational electromagnetics: The Finite-Difference Time-
Domain Method, Third Edition. Artech House, (2005)

8. Taflove, A., Brodwin, M.: Numerical solution of steady-state electromagnetic scattering
problems using the time-dependent Maxwell’s equations. IEEE Trans. Microw. Theory Tech.
23(8), 623–630 (1975). doi:10.1109/TMTT.1975.1128640

9. Wittenbrink, C.M., Kilgariff, E., Prabhu, A.: Fermi GF100 GPU architecture. IEEE Micro
31(2), 50–59 (2011)

10. Yee, K., Chen, J.: The finite-difference time-domain (FDTD) and the finite-volume time-
domain (FVTD) methods in solving Maxwell’s equations. IEEE Trans. Antennas Propag.
45(3), 354–363 (1997). doi:10.1109/8.558651

http://docs.nvidia.com/cuda/pdf/Kepler_Tuning_Guide.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

242 L. Kuan et al.

11. Zanjani, M., Akbari, A., Mirzaei, H., Shirdel, N., Gockenbach, E., Borsi, H.: Investigating
partial discharge UHF electromagnetic waves propagation in transformers using FDTD
technique and 3D simulation. In: 2012 International Conference on Condition Monitoring and
Diagnosis (CMD), pp. 497–500 (2012). doi:10.1109/CMD.2012.6416187

12. Zhong, Z., Rychkov, V., Lastovetsky, A.: Data partitioning on heterogeneous multicore and
multi-GPU systems using functional performance models of data-parallel applications. In:
2012 IEEE International Conference on Cluster Computing (CLUSTER), pp. 191–199. IEEE,
Piscataway (2012)

Part III
Random Numbers and Monte

Carlo Methods

Chapter 12
Pseudorandom Numbers Generation for Monte
Carlo Simulations on GPUs: OpenCL Approach

Vadim Demchik

12.1 Introduction

The rapid development of computer technology during last decades has evoked
intensive evolution of numerical methods. One of the most common classes of
numerical algorithms is related to the Monte Carlo (MC) methods which relay on
random numbers.

For several tasks, such as games or entertainment, special hardware, which
produces random numbers, is often used. Such devices are based on the thermal
noise in a resistor, the shot noise of a diode, illumination level, network traffic,
user keystrokes or mouse movements. These devices are called true random number
generators. The main flaws of such devices for MC simulations are low performance
and impossibility to reproduce previous sequences of random numbers. That is
why special algorithms, which can produce random numbers, are used in scientific
applications instead of true random number generators. In this case we speak of
pseudorandom number generators (PRNGs) in order to stress that random numbers
are produced with the help of some determined algorithm. Below we will use
this term.

Basic characteristics of any PRNG are its period, structure, size of generator
state and algorithm complexity. One must clearly understand that there is no ideal
PRNG, which is equally well suited to different tasks. Every PRNG has certain
flaws and, while developing practical applications, it is very important to choose
the generator which deficiencies can have a minimal impact on this particular task.
The usage of a specific PRNG is always a balance between the statistical properties
of the PRNG and its other characteristics. There are known cases when PRNG has
a rather big period and easy algorithm, passes mathematical tests, but its usage in

V. Demchik (�)
Dnipropetrovsk National University, Dnipropetrovsk, Ukraine
e-mail: vadimdi@yahoo.com

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__12, © Springer International Publishing Switzerland 2014

245

mailto:vadimdi@yahoo.com

246 V. Demchik

computer simulations causes erroneous results. The notorious generator R250 [1]
is an example. Its essential statistical defects were found 10 years afterwards
in real MC simulations. In [2] Ferrenberg, Landau and Wong report essential
discrepancies between known results of the exactly solvable Ising model and the
results obtained in MC simulations with using of R250 PRNG. The source of
these divergences (triplet correlations hxnxn�kxn�250i around k D 147) was found
several years later (see [3] and references therein). So, even if a generator passes
artificial mathematical tests, it does not guarantee reliable results obtained with
this generator. Besides, while choosing a generator for numerical experiment, one
should not take into consideration only its productivity, the size of PRNG state or
its simple implementation. The best way is to use one of the well-known generators
which have been tested and applied by the community in the field [3].

The usage of graphics processing units (GPUs) for scientific simulations became
an industrial standard in recent years. As known, GPU is massively parallel
computational system with the SIMD architecture and very specific features (like
high bandwidth memory, limited device memory, small register memory, etc.) The
essential differences of GPU from classical computational facilities brought new
requirements to the design and implementation of PRNGs for GPUs. During the
fledgling years of the general purpose computing on graphics processing units
(GPGPU) technology, random numbers were generated with CPU and then were
copied into GPU device memory for further utilization. At present, this method is
very low-efficient despite the enlargement of host-device bus bandwidth, although
sometimes it can be used for the control of results.

In this chapter we describe general ideas, methods and tricks for PRNG
implementation on GPUs with OpenCL framework by the example of the PRNGCL
library. We restrict our discussion with PRNGs suitable for MC simulations only and
do not consider PRNGs for cryptography (see [4] and references therein). Also we
briefly review existing PRNG libraries for GPUs.

12.2 PRNGs on GPU

During the long history of computer simulations, a certain list of PRNGs, which
are used in MC simulations, is formed. Such generators have well-known statistical
properties, have been tested on many tasks and show a high performance.

One of the most frequently asked questions in the context of MC simulations
is the choice of PRNG. The best practice is to use the generator exploited for
producing the key results in the corresponding field of research. Any new generator
employment requires additional testing the majority of known results because the
new generator may possess some rarely appearing statistical defects. Utilization of
the own generator without of serious theoretical background may cause substantial
numerical discrepancies. L’Ecuyer, the author of the most comprehensive library of
statistical tests TestU01, recommends to use MRG32k3a generator [5] as uniform
PRNG in other cases. This generator is very robust and reliable, based on a solid
theoretical analysis, and it also provides multiple streams and substreams.

12 PRN Generation for MC Simulations on GPUs: OpenCL Approach 247

In this section we briefly discuss a general structure of PRNG and methods of
PRNG parallelization, denote the basic classes of PRNGs and survey the existing
software for PRN generation on GPUs.

12.2.1 Structure of PRNGs

The present-day PRNGs are based on some algorithms. Let us consider such an
algorithm. This algorithm produces the next generator state Si from its previous
state Si�1 and allows to obtain an item of PRN sequenceXPRNG

i , which corresponds
to the state Si of the generator

Si D f .Si�1/; XPRNG
i D g.Si /: (12.1)

Here and below we will use the upper index PRNG to identify the sequence
produced by the generator PRNG. The maximum period of the generator, PPRNG ,
is the length of the cyclic sequences produced by the PRNG and it is limited by the
number of the states which can be represented by the PRNG. Thereby the algorithm
is deterministic—its application to a given state of the generator leads to generation
of the unique number and the unique next state. That is why the “randomness” can
be provided only by the initial state of the generator. Good statistical properties
of the generator are ensured both by the properties of the algorithm and a “good”
choice of initial state. The choice of the initial state can also influence the PRNG
period.

Generator state is a set of the seed (or lag) table, indices, flags and other PRNG
runtime information. The size and structure of PRNG state are permanent for a
specific PRNG. In some generators the last N numbers produced by the generator
are used as the seed table. Generator period depends also on the seed table size. For
optimal initialization of the seed table, as well as to reduce the number of initial
parameters, a separate bootstrap procedure is often used. The bootstrap procedure is
usually a simple PRNG with virtual small state, which fills the seed table according
to the required criteria.

The general structure of PRNG is shown in Fig. 12.1. The work of generator starts
with initializing its seed table—either by direct filling with initial seed values or by
using bootstrap procedure. Any PRNG runtime stage conditionally can be divided
into three phases:

• initialization: loading and preparing the previous PRNG state, carrying out all
the preparatory operations for the PRNG

• random number generation: all the operations related to one or several PRNs
production, updating the PRNG state

• finalization: storing the updated PRNG state for the next pass.

It is possible to store any PRNG state to continue PRN generation from the saved
point.

248 V. Demchik

There are two methods of PRN sequence generation: single PRN and batch PRN
generation per one PRNG call. In the first method, PRN is produced and utilized
directly by MC procedure (actually by means of inline procedures). This method
can be applied to minimize the capacity of the global memory used. The usage of
the single PRN generation method requires a direct correspondence of the number
of MC kernel and PRNG kernel threads. The second method is to prepare PRNs
by a procedure in the dedicated memory bucket with the following utilization of
the PRNs. In this case the numbers of MC kernel and PRNG kernel threads could
not coincide. It is obvious, that the second method allows to reach much higher
performance due to single pass of initialization and finalization phases for the whole
cycle of PRNs generation. This method is effective in the case of a relatively small
amount of PRNs for MC procedure. In other case, most of the global memory
is engaged only with the PRNs buffer, which shrinks the size of tasks we study.
In order to make the PRNs buffer size smaller, the fragmentation of original task
into several subtasks (for example, by dividing the whole lattice into several parts)
and separate PRNs generation for the subtasks are used. Moreover, because of the
hardware restrictions for the registered memory, the single PRN generation method
can be unacceptable for the tasks with resource-intensive MC kernels. The batch
PRN generation method allows to increase the productivity 1.3–5 times (see [6]).

To unify interfaces of PRNGs as well as to increase the productivity, we realize
the batch PRN generation scheme in the library PRNGCL.

H
O
S
T

initialization

direct

auto

production

initial
seeds

seed
table

PRNG state PRNG runtime PRNs

initialization

finalization

output
buffer

production

indices,
flags, etc.

PRNG bootstrap

init procedure

Fig. 12.1 The general structure of a PRNG

12.2.2 Basic Classes of PRNGs

Let us briefly introduce the following basic PRNG classes and present some
members of these PRNG classes.

• linear congruential generators (LCG): one of the oldest and the most popular
classes of PRNGs. It is based on the linear congruential integer recursion,

XLCG
n D .aXn�1 C c/ modm; (12.2)

12 PRN Generation for MC Simulations on GPUs: OpenCL Approach 249

where increment c and modulus m are desired to be positive coprime inte-
gers (c < m) to provide a maximum period, multiplier a is an integer
in the range Œ2I .m � 1/�. If increment c D 0 the LCG is often called
the multiplicative linear congruential generator (MLCG), or Lehmer PRNG [7].
RANDU and Park-Miller (PM) [8] generators are the examples of LCG PRNGs:

XRANDU
n D 65539Xn�1 mod 231; (12.3)

XPM
n D 16807Xn�1 mod .231 � 1/: (12.4)

The maximum period of LCG is PLCG � .m � 1/.
• feedback shift register generators (FSRG): another popular class of PRNGs.

In 1965 Tausworthe introduced linear feedback shift register (LFSR) algorithm
[9], based on the bit sequence

XLFSR
n D

rX
iD1

aiXn�i

!
mod 2; (12.5)

where ai ; Xi D f0I 1g, r � n. To obtain k-bit PRN Yn from Eq. (12.5), one can
group up k sequential bits,

Y LFSRn D
kX

jD1
2k�jXknCj�1: (12.6)

Such method is called the digital multistep method of Tausworthe. Another
method proposed by Lewis and Payne [10] is the generalized feedback shift
register (GFSR) algorithm. In GFSR scheme the bits in the positions j of the
PRN are filled with the copy of initial one-bit recursion with some offsets dj � 0,

Y GFSRn D
kX

jD1
2k�jXnCdj : (12.7)

R250 is an example of GFSR generators,

XR250
n D Xn�250 ^ Xn�103: (12.8)

Here ^ sign denotes an exclusive-or (XOR) logical operation, which is addition
modulo 2 for one-bit variables. The maximum period of FSRG is PLFSR �
2r � 1.

• lagged Fibonacci generators (LFG): a popular class of PRNGs, which is based
on the generalization of the well-known Fibonacci recurrence sequence

XLFG
n D .Xn�r ˇXn�s/ mod m; (12.9)

250 V. Demchik

where r and s are called “legs”, r � n and 1 < s < r . RAN3 is one of the
LFGs:

XRAN3
n D .Xn�55 � Xn�24/ mod 109: (12.10)

The LFG period for different operations ˇ is

PLFG �
(.2r � 1/m=2 for C or �
.2r � 1/m=8 for �
.2r � 1/ for ^

: (12.11)

• combined generators: a special and the widest class of PRNGs, which contains
the features of the different PRNG classes. The multiple recursive generator
(MRG) should be mentioned as the simplest extension of the LCG, which
determined as the combination of the MLCGs

XMRG
n D .a1Xn�1 C a2Xn�2 C : : :C akXn�k C c/ modm: (12.12)

When k > 1, MRG is usually called MRG of the k order. The maximum period
of the MRG is PMRG � mk � 1.

In contrast to the LCGs and FSRGs, which operates integer numbers only, the
LFGs and some subclasses of combined generators allow to use a floating point
numbers. It is particularly important when implementing on GPU-like computing
devices.

12.2.3 Parallelization of PRNGs

The main difference of PRNG implementation for massively parallel systems is
the necessity parallelization of computational streams. In addition, it is required
to provide the statistical independency of PRNs within each subsequences as
well as between the subsequences. Another requirement arises to enhance a high
efficiency—all the threads must elapse of the same time, the threads divergence
should be avoided or minimized. Besides, it is important that PRNG can be
parallelized without loosing its efficiency.

The common methods of PRNs sequence parallelization are

1. random seeding: a widely using technique, which resides that all the threads use
the same PRNG implementation, but each thread i operates its own PRNG state
Sij . The initial PRNG state Si0 is filled with different unique seeds.

Si0 ! f .Si0/ D Si1 ! f .Si1/ D Si2 ! : : : ! f .Sij�1/ D Sij ! : : : (12.13)

Xi
1 D g.Si1/; X

i
2 D g.Si2/; : : : ; Xi

j D g.Sij /; : : : ;

12 PRN Generation for MC Simulations on GPUs: OpenCL Approach 251

here and below the upper index denotes the PRNG thread index and the bottom
index stays for the serial number of PRNG state. The main threat of the random
seeding technique is the overlapping of PRN sequences produced by different
threads. Nevertheless, for the majority of the actual generators, utilized in MC
simulations, the probability of the overlaps is extremely low. The random seeding
parallelization technique does not reduce PRNG performance, it is independent
on the number of PRNG threads and is easy to be implemented for any PRNG

2. parametrization: a special technique for some PRNGs, which makes different
threads utilize the same PRNG implementation with different parameters pi
for each thread. The obvious disadvantage of this method is a large number of
independent unique parameters to be chosen, which makes this approach a rarely
used on GPUs

Si0!f .Si0; pi /DSi1!f .Si1; pi /DSi2! : : :!f .Sij�1; pi / D Sij! : : : (12.14)

Xi
1 D g.Si1; pi /; X

i
2 D g.Si2; pi /; : : : ; Xi

j D g.Sij ; pi /; : : :

3. block splitting: a method to split PRNs sequence into equal-size independent
subsequences, each of which is produced by the corresponding thread. Initial
PRNG states have to be computed. Main disadvantages of this method are the
strong dependence on the number of PRNG threads and its usage within a limited
class of PRNGs.

Si0 ! f .Si0/ D Si1 ! f .Si1/ D Si2 ! : : : ! f .Sij�1/ D Sij ! : : : (12.15)

X1 D g.S11 /; X2 D g.S12 /; : : : ; Xi D g.S1K/;

XKC1 D g.S21 /; XKC2 D g.S22 /; : : : ; X2K D g.S2K/;

X2KC1 D g.S31 /; X2KC2 D g.S32 /; : : : ; X3K D g.S3K/; : : :

4. leapfrogging: a method similar to the block splitting technique, when each
following member of PRNs sequence is produced by the next thread. The
sequence is built by union of several items of subsequences in one. To perform
the leapfrogging a PRNG must be able to skip a certain number of PRNs.

Si0 ! f .Si0/ D Si1 ! f .Si1/ D Si2 ! : : : ! f .Sij�1/ D Sij ! : : : (12.16)

X1 D g.S11 /; X2 D g.S21 /; : : : ; Xi D g.SN1 /;

XNC1 D g.S12 /; XNC2 D g.S22 /; : : : ; X2N D g.SN2 /;

X2NC1 D g.S13 /; X2NC2 D g.S23 /; : : : ; X3N D g.SN3 /; : : :

Properly speaking, the first two methods are artificial and do not guarantee full
independence of the PRNG subsequences. Moreover, the great majority of existing
PRNG libraries are optimized for using on single GPU device and parallelization
on multi-GPU or GPU-cluster level is performed with random seeding method.
Nevertheless, the first method seems to be the most applicable, since averaging of a

252 V. Demchik

considerable amount of data points is used in real numerical experiments to obtain
the final result. A parallelization technique by combining several PRNGs with
different parallelization methods is also often applied. However, we recommend
checking the key results using different PRNGs.

12.2.4 Existing Implementations of PRNGs on GPUs

During the existence of GPGPU technology, a number of libraries has been
developed to generate PRNs on GPUs. Most software are realized on the CUDA
base as the most widespread platform for GPU programming. Many libraries have
unique features and their application field. Some libraries are commercial software
and their source code is closed. Nevertheless, it is possible to make the list of
the PRNGs implemented in the libraries. The most comprehensive list of currently
existing software packages for generating PRNs on GPUs is presented below.

CUDA Implementations

• CURAND: the most popular PRNG library for CUDA-ready GPUs, which was
first released in 2010 [11]. It contains three PRNG implementations: XORWOW,
MRG32k3a and MTGP32 Mersenne Twister. XORWOW is a combination of
XORShift PRNG of period 2160 � 1 and the Weyl generator of period 232. The
period of XORWOW is 2192 � 232. The main advantages are good integration
with CUDA applications and high average performance. It should be noted that
Saito and Matsumoto reported in [12,13] that XORWOW PRNG of CURAND is
systematically rejected by three tests in the BigCrush battery of tests: Collision
Over (test 7), Simplified Poker Test (test 27) and Linear Complexity Test (test
81). The rejection by test 7 is serious for MC simulations, since it is about the
six most significant bits, whereas the rest two failed tests seem not to be very
significant for usual MC. Another weak point of MTGP32 implementation in
CURAND is the fixed limitation on independent PRN sequences. To increase

the number of parallel streams, the parameter search should be performed.
Unfortunately, it is very time consuming. For instance, finding a single parameter
set for k D 11;213 can take up to an hour on the current hardware [14]. Thus,
MTGP32 implemented in CURAND uses the predefined parameter set. The
source codes for the library are unavailable

• Thrust: a parallel algorithms library [15]. Now it is a part of CUDA SDK,
which contains the set of implementations of RAND0, RANLUX, RANLUX48,
TAUS88 PRNGs

12 PRN Generation for MC Simulations on GPUs: OpenCL Approach 253

• NAG: a collection of numerical routines for GPUs [16]. It contains imple-
mentations of MRG32k3a and MT19937 PRNGs. The library is commercial
software and its source codes are unavailable

• GASPRNG: GPU accelerated implementation of the Scalable Parallel Random
Number Generators Library [17] (LFG, MLFG, PMLCG, LCG48, LCG64 and
CMRG)

• TRNG: Tina’s Random Number Generator Library [18] (LCG64, LCG64_shift,
MRGn, MRGn_s, YARNn, YARNn_s, LFGn_xor, LFGn_plus, MT19937,
MT19937_64)

• Random123: a library of cryptographic PRNGs [4] (AES, Threefish, Philox).
A flexible implementation is applied in the library—due to the use of preproces-
sor directives and their dynamic redefinition the same code has both CUDA- and
OpenCL-APIs

• PRAND: a library for pseudorandom number generation for modern CPUs and
GPUs [19] (MRG32k3a, MT19937, LFSR113). The main feature of the library
is the ability to parallelize PRNGs with up to 1019 independent substreams by the
block splitting method

• MPRNG: a Massively Parallel Random Number Generation library [20]
(MTGP, RANECU, TT800, PM, TAUS88, LFSR113, KISS07, DRAND48)

• GPU-rand: a template library for multi-GPU PRNGs [21] (LCG, LFG, Wich-
mann-Hill WHG)

• ShoveRand: a framework defining common rules to generate random numbers
uniformly on GPUs [22] (MRG32k3a, MTGP32, TinyMT)

• MTGP: implementation of Mersenne Twister for Graphics Processors (MTGP)
by authors of MT [14]. It contains both CUDA and OpenCL implementation
of MT11213, MT23209 and MT44497 for 32-bit version and MT23209,
MT44497, and MT110503 for 64-bit version. MTGP can generate 128 indepen-
dent PRN sequences for each period. There is a variant of MTGP (MTGPDC,
Dynamic Creator for MTGP) to generate more PRN subsequences.

OpenCL Implementations

• Random123: see previous paragraph “CUDA implementations”
• MTGP: see previous paragraph “CUDA implementations”
• OpenCLRNG: OpenCL implementation of Dynamic Creator Mersenne Twister

(DCMT) [23]
• RANLUXCL: advanced implementation of RANLUX PRNG [24]
• MWC64X: OpenCL implementation of MWC64X PRNG [25]

As is obvious, the realization of MRG32k3a, MTGP and TAUS88 generators
is dominated in most libraries. It should be noted that the parallelization procedure
(block splitting and parametrization) exists for these generators, what makes these
PRNGs attractive for implementation on massively parallel systems.

254 V. Demchik

12.3 PRNGCL Construction

In this section we describe OpenCL implementation of a pseudorandom number
generator by the example of PRNGCL library.

Nowadays the most popular programming languages for general-purpose com-
puting on GPU are NVIDIA CUDA and OpenCL by the Khronos consortium. For
compatibility with the wider range of multi-core devices we chose OpenCL as a
software platform.

While developing the PRNGCL library, we are guided by the forthcoming key
requirements:

1. implementation of classical PRNGs, which are used for actual MC simulations
2. portability and computational hardware-independence
3. independence of a given PRN sequence from computational devices
4. independence from the number of started PRNG threads
5. simple change of PRNG (by one parameter) for further PRNs utilization
6. optimization of PRNG implementations for GPU-like devices
7. a possibility of simple supplement of the library with other PRNG

implementations

Below we will elaborate every point of these requirements and describe the main
principles of their solutions.

12.3.1 OpenCL Tricks

For the library development we use some language- and GPU-architecture specific
tricks to increase overall performance and portability.

12.3.1.1 Preprocessor Directives and Parameters Passing

To begin with, preprocessor directives are widely used in the library to define seldom
changed parameters. OpenCL 1.0 standard and above allows to define preprocessor
options directly through the compilation parameters of OpenCL programs by adding
constructs like “-D name” or “-D name=definition” in compilation options
(see clBuildProgram function in [26]). Here the constants defined in this
way will take the values specified in the compilation options. For example, such
parameters are the adjustable computational precision, luxury level for RANLUX
PRNG, etc. In this case the runtime performance does not decrease. However,
changing of such parameters requires rebuilding of the OpenCL program.

Other parameters that can be frequently changed (for example, a number of PRNs
to be generated per thread) are passed directly into a kernel as arguments. There is
some limitation to use the number of kernel arguments, which depends on hardware

12 PRN Generation for MC Simulations on GPUs: OpenCL Approach 255

and SDK. Besides, using a big amount of arguments slightly reduces the kernel
performance. If it is necessary to pass a bigger number of parameters into the kernel
(for example, passing initial seed values for PRNG bootstrap), it is possible to use
constant buffers. In terms of performance, a constant buffer is better to use than the
regular memory object. However, for many applications the allowed maximum size
of the constant buffer is also significantly less than the allowed size of the regular
input-output memory object.

Conditional preprocessor directives #ifdef/#else are widely used in
PRNGCL. This method allows to change the code flexibly depending on the
processing precision or to perform certain operations (like luxurization in RANLUX
PRNG, which depends on the luxury level).

Additionally, the operation system independence is provided by preprocessor
redefinition of operation system-dependent functions (like input-output and timer
operations) in source code of host program.

12.3.1.2 User-Defined Data Types

For flexible change of desired precision, we use own data types determined by
parameters of OpenCL programs compilation: hgpu_float—the adjustable type
for single or double precision float, hgpu_single for single precision and
hgpu_double for double precision:

#define hgpu_single float
#ifdef DOUBLE_PRECISION_SUPPORTED

#define hgpu_double double
#ifdef PRECISION_DOUBLE

#define hgpu_float double
#else

#define hgpu_float float
#endif

#else
#define hgpu_float float
#define hgpu_double float

#endif

To ensure compatibility with computing devices, which do not support double
precision, all of these data types are float data type on such devices. The
same is true for vector data types. Using user-defined types does not decrease the
performance of runtime phase of kernels. The host-side code should be adjusted
according to the chosen precision—we employed it via void pointers to the
memory objects of float or double data types.

256 V. Demchik

12.3.1.3 Data Types and Structures

Our observations show that native data types can improve OpenCL kernel perfor-
mance in compare with the data structures. This is due to the lack of efficiency of the
present-day OpenCL compilers (by different vendors) in scalar code optimization.
However, performance of kernels, which use data structures, can be increased with
compilers development. That is why the most library source codes are optimized for
float4 data type.

12.3.1.4 Binaries Caching

OpenCL allows program executables to be built using either source codes
(clCreateProgramWithSource), or using the precompiled device-sensitive
binaries (clCreateProgramWithBinary) [26]. Preparation of binary program
takes much less time, so it makes sense to keep the previously compiled program
for following use. Some OpenCL SDKs contain internal caching system (NVIDIA
CUDA SDK), but despite this tracking of changes in the dependent files (which are
included with #include directive) it is not always correct. So, it is reasonable to
use a separate caching procedure for OpenCL binaries.

12.3.1.5 Include Common Section

PRNGCL library is built according to the principle of all PRNG implementations
independence—every PRNG implementation is a separate .cl file. However, as
all PRNG implementations contain some common sections, they were carried out
to a separate .cl-file. In particular, in this file there are description of precision
definitions, user-defined data types and collection of functions for PRNs generation
with double precision from two PRNs with single precision. Meanwhile a compiler
option is added with path to the file with common program section, “-I path”.

12.3.1.6 Memory-Access Optimization

To maximize memory throughput the coalesced memory access to the buffer with
PRNG state is deployed—the neighboring threads access neighboring items in
global memory. If particular implementation of PRNG requires several memory
cell per one work-item, then such items spread in PRNG state with the interval,
which is equal to the number of started work-items. It is also necessary to take into
account the fact that for a wide range of OpenCL-compatible devices (especially,
AMD GPUs) there is a limitation on the size of allocable memory for one memory
object (half of total memory size).

The class of lagged generators requires storing PRNG state. Meanwhile PRNG
state contains not only a seed table, but also a current index in it. For example,

12 PRN Generation for MC Simulations on GPUs: OpenCL Approach 257

the seed table of RANMAR PRNG contains 97 float values, one float run
parameter and two integer indices per each thread. It is obvious that in order
to increase performance, it is reasonable to keep both the indices in PRNG state
as float values. However, using float as indices is only possible while their
converting into integer type. The type conversion is a “heavy” operation, so it is
better to avoid it, if possible. That is why for storing such indices in PRNG state, it
makes sense to use union data type to convert the type instantly.

12.3.1.7 Thread Divergence

Most OpenCL-compatible devices have a SIMD architecture—all processing ele-
ments execute a strictly identical instructions set. If a kernel contains a conditional
operator with branches and if at least one of the work-group threads goes along the
branch which is different from all other threads, then the remaining threads will wait
for the full implementation of instructions in the branch by this tread. This effect is
known as thread divergence and can significantly affect the performance. While
developing PRNG implementations, it is commonly used a procedure of checking
whether the variable resides in a given interval. It can be optimized by using vector
data types and build-in relational function select(). If it can not be done, one
should try to reduce the length of branches.

For further reading about general questions of OpenCL program optimization
please refer to the books of Scarpino [27] and Tay [28].

12.3.2 Data Type Selection

Many PRNGs have realization for integer and floating-point arithmetics. However,
the usage of integer arithmetic instead of floating-point arithmetic significantly
reduces performance for many OpenCL-compatible devices [29]. Hence, it is better
to use algorithms which are optimized for floating-point arithmetic.

It should be noted that PRNG implementation with integer arithmetics provides
an important feature—portability, because it is not dependent on internal rounding.
In some cases mad24() and mul24() build-in functions can be employed for
operations with 24-bit integer values. Such functions use faster floating point
hardware and can be executed on all compute units [26, 29]. However, the usage
of 24-bit of integers significantly narrows the scope of their application.

Moreover, it seems to be reasonable to produce PRNs in float4 or double4
format. This is due to the following reasons:

• our observations show that the using of 4-vector data types allows to reach a
great performance on most OpenCL-compatible devices. At the same time, even
on devices with a scalar architecture due to rather effective OpenCL-compiler,
within the drivers of correspondent devices, using 4-vector data types also allows
to accelerate kernels slightly in compare with the case of scalar data types;

• as a rule, in real numerical experiments it needs more than one PRN for
accomplishing each MC step

258 V. Demchik

12.3.3 Double Precision

The architecture of modern GPUs is designed to obtain the best performance in
single precision floating point operations. Top-end GPUs have performance on
double precision arithmetics as a half of single precision one [30]. At the same
time middle and low-end GPUs show much poorer performance in double precision
floating point operations. For example, the ratio of single-to-double precision
performance for NVIDIA Tesla K10 GPU reaches 24. Therefore the use of PRNGs,
specially designed for the production of PRNs with double precision are not always
effective.

Widely used recept, direct or indirect (for instance, by dividing integer 32-bit
value by double precision value) converting single-to-double precision, does not
allow to realize full double precision resolution. According to the IEEE 754
standard, the fractional part of floating point double precision number is stored in
the lowest 52 bits (in the lowest 23 bits for single precision number). It is clear that
operations with single precision value or even with 32-bit integers do not allow to
realize all 252 binary states. Thus it begs the obvious conclusion—to produce PRNs
with double precision from several PRNs with single precision. This approach is
PRNG-independent.

In PRNGCL library we offered and realized the general scheme when double
precision PRNs are assembled from two PRNs with single precision. The idea of
the scheme is rather simple—fulfil lower bits of output number with first PRN, and
upper bits with the second one. At the same time, our procedure allows to keep
the distribution uniformity of initial PRNs with single precision by discarding some
values which are outside of the acceptable range of values [31].

12.3.4 PRNG State

One of the major constraints in the implementation of the GPU version of PRNGs
is a low transfer rate between computing device and the host memory. This causes
the necessity of permanent storage of seed tables directly in the compute device
memory, and hence there are additional restrictions on the size and number of
copies of the PRNG states. Another important constrain while GPU programming
is a relatively low access rate of computing work-items to the global memory of
computing device. Often it is advantageous to increase the number of arithmetic
operations in the PRNG implementation to reduce the number of access to global
memory in runtime—for example, instead of storing some indices in PRNG state
they can be recalculated in runtime.

The standard technique to increase performance on data access operations is
to utilize a local memory of compute unit for frequently used data. For example,
PRNG state may be located in local memory for some PRNGs (like LFGs) in order
to co-using by work-items in one compute unit. The usage of this method allows

12 PRN Generation for MC Simulations on GPUs: OpenCL Approach 259

increase significantly performance of PRNG implementation and reduce the size
of memory for PRNG state storing. Unfortunately, this approach has a significant
drawback—PRNG implementation stays hardware-dependent because of different
number of work-items per one compute unit on different devices. So, we do not use
local memory in order to make hardware independent implementation.

12.3.5 PRNG Initialization and Portability

When developing a PRNG implementation on GPU for use in MC simulations, it is
important to seek independence of PRNG output sequence from utilized hardware.
On one hand, it is achieved by minimizing the possible rounding errors—by
exclusion the use of atomic operations like MAD in the kernel. From the other hand,
it is necessary to use external PRNG for generator initialization, but not build-in
rand() function. In our implementation, we used XOR128 PRNG, as it provides
portability, high productivity and has a small PRNG state. It allows to reproduce
the same PRN sequence for any computing device and various operating systems.
Besides, output PRN sequence generally depends on the amount of threads, which
produce its generation. However, in our approach this parameter is also adjustable.

Some PRNGs like RANLUX, RANMAR and MT have a bootstrap procedure,
which initializes PRNG seed table. This procedure is realized directly on the
computing device and does not require additional memory objects transfer between
host and computing device. Often, a bootstrap procedure has only one or two
input parameters, which uniquely determine the PRNG initial state. Obviously, it
is severely restricts the number of possible initial states of PRNG, but ensures
a correct PRNG initialization. So, we introduced in PRNGCL library a unified
initialization procedure for all PRNG threads based on only a single 32-bit unsigned
integer number (randseries parameter). Moreover, the initialization scheme by
only one parameter eliminates the problem of the PRNG initialization procedure
dependence on the architecture of the computing device used (the number of
available compute units and processing elements).

Another important question that arises while OpenCL programming—how
many work-item should be started for particular kernel. If the inline version
of PRNG implementation is used, then for each work-item of MC kernel the
corresponding number of PRNG work-items must be started. There is a practice
when several PRNG work-items may use the same PRNG seed table, but it is
usually unsafe due to non-deterministic starting of work-items. While using a
batch PRN generation method the number of PRNG work-items is in principle
arbitrary. So, the number of PRNG work-items must be chosen in order to maximize
the overall performance. As good variant we propose to use the number that is
equal to CL_DEVICE_IMAGE3D_MAX_WIDTH (max width of 3D image in pixels)
OpenCL parameter. In our opinion it provides the most optimal performance on a
various hardware.

260 V. Demchik

12.3.6 Testing of PRNs Sequence

Testing of PRNs is the standard way to qualify a PRNG. There are many statistical
tests to check the randomness of PRNs sequence. In 1969 Donald Knuth proposed
a set of statistical tests for PRNGs in famous multi-volume work “The Art of
Computing Programming” [32]. The first suite of random number tests DIEHARD
was written by Marsaglia in Fortran in 1990 [33]. Despite the fact that almost a
quarter of a century has passed since the DIEHARD creation, it is still used for the
necessary basic PRNGs checking. DIEHARD set of statistical tests is included in
all new batteries of tests. Special requirements for PRNGs used for cryptographic
purposes were a reason to create a separate tests set, offered by National Institute for
Standards and Technology (NIST)–STS [34], mandatory for security applications.
Another statistical tests set, DIEHARDER, initially developed by Brown [35],
includes D. Knuth’s, DIEHARD, NIST/STS, original and user-contributed tests.
The most complete and hard to pass battery of tests at present day is TestU01,
offered by L’Ecuyer [36]. Apart from separate statistical tests TestU01 includes
several predesigned sets of tests (SmallCrush, Crush and BigCrush). Passing
BigCrush test elapses about 7–10 h on modern CPUs.

There are two ways to test a PRNG with TestU01—to use a direct connection
of implementation to the test of statistical properties or to use a file with previously
prepared PRN sequence. Since the second method is universal for most batteries
tests, we implemented it in the library PRNGCL.

A broad review of many CUDA PRNG implementations (LCG32, LCG64,
MWC, LFG521, LFG1279, XORWOW, MTGP, XORShift/Weyl and Philo4x32)
and results of its testing in real MC simulations (two-dimensional Ising ferromagnet
model) could be found in [37].

Obviously, testing all the numbers producing by PRNG is not possible, so it is
preferable to use several testing procedure starts to identify potential correlations
between PRN subsequences. It should be understood that passed tests guarantees
nothing, but checking is a necessary condition for any PRNG implementation.

12.3.7 PRNG Example: XOR7

As an example of PRNG implementation we provide here an OpenCL implementa-
tion of XOR7 PRNG.

Originally the class of XORshift generators was proposed by Marsaglia in [38].
XORshift PRNG class is one of the variants of feedback shift register generators.
Let XXORshift

0 be a some initial k-bit row-state of XORshift and T is k � k

nonsingular binary matrix which sets linear transformation. The n-th PRNG state
may be derived through the following equation

XXORshift
n D .x1; x2; : : : ; xk�1; xk/XORshift

n D X0T
n: (12.17)

12 PRN Generation for MC Simulations on GPUs: OpenCL Approach 261

To ensure the performance requirements Marsaglia proposed the special form of
matrix T ,

T D .I C La/.I CRb/.I C Lc/; (12.18)

where I is an identity k � k matrix, matrices L and R are k � k binary matrices

L D

0
BBB@
0 0 : : : 0

1 0 : : : 0
:::
: : :

: : :
:::

0 : : : 1 0

1
CCCA ; R D LT D

0
BBB@
0 1 : : : 0
:::
: : :

: : :
:::

0 0 : : : 1

0 0 : : : 0

1
CCCA ; (12.19)

which effect shift of one to the left (L) and right (R), correspondingly,

.x1; x2; : : : ; xk�1; xk/L D .x2; x3; : : : ; xk; 0/; (12.20)

.x1; x2; : : : ; xk�1; xk/R D .0; x1; : : : ; xk�2; xk�1/:

So, if Xm is a k-bit state then La causes the new state LaXm 	 .Xm
 a/ as well
as .I CLa/ – the state .I CLa/Xm 	 Xm^ .Xm
 a/. Here
 stays for a bitwise
shift to the left operation.

Marsaglia lists in [38] all possible full-period triplets Œa; b; c� for 32-bit (648
combinations) and 64-bit (2,200 combinations) XORShift PRNG. In addition
Marsaglia present a 128-bit PRNG XOR128 Œa; b; c� D Œ11; 19; 8�, which is also
implemented in PRNGCL library. The key feature of XOR128 PRNG is matching
of PRNG state size with the size of GPU memory cell. The maximal period of
XORshift generator is

P XORshift � 2k � 1: (12.21)

In original paper [38] Marsaglia reported that XORShift PRNG passes the
DIEHARD battery of tests of randomness. In [39] Brent showed that the sequences
generated by this PRNG are identical to the sequences generated by certain linear
feedback shift register (LFSR) generators using XOR operations. So, XORShift
PRNG inherits all the good (and bad) theoretical properties of LFSR generators.
Later Panneton and L’Ecuyer appoint that XORShift PRNG “spectacular failed”
the SmallCrush and Crush battery of tests of TestU01 package [40]. They did
not recommend to use this class of the generators, but propose own variant of

262 V. Demchik

the XORShift PRNGs, which passes all the tests in Crush,—seven-XORShift
(XOR7) [40]. To improve the statistical robustness Panneton and L’Ecuyer proposed
to increase the number of xorshifts. Besides, Brent also performed empirical
studying of XORShift PRNGs with Magma computational algebra system to find
good Œa; b; c� parameter sets [41]. He showed how XORShift PRNGs can be
generalized by means of Weyl generator to give high-quality PRNGs with extremely
long periods, greater than 101232.

XOR7 generator is determined by the following recurrent relation:

XXOR7
n D .ICL17/XXOR7

n�1 C.ICL10/XXOR7
n�2 C.ICR9/.ICL17/XXOR7

n�4
C .I CR3/XXOR7

n�4 C .I CR12/XXOR7
n�5 C .I CR25/XXOR7

n�5
C .I CR3/.I CR2/XXOR7

n�6 C .I CR27/XXOR7
n�7

C .I CR22/XXOR7
n�7 C .I C L24/.I CR3/XXOR7

n�8 ; (12.22)

here XXOR7
i is a 32-bit word. So, the XOR7 PRNG state contains eight 32-bit

words or two uint4 items. Hence, it is very attractive to be implemented on GPU.
The core of XOR7 PRNG, recursion (12.22), may be optimized and presented as
following OpenCL function:

__attribute__((always_inline)) void
xor7step(uint4* seed1,uint4* seed2){

uint t, y;
t=(*seed2).w; t =tˆ(t
13); y=tˆ(t
9);
t=(*seed2).x; yˆ=tˆ(t
7);
t=(*seed1).w; yˆ=tˆ(t�3);
t=(*seed1).y; yˆ=tˆ(t�10);
t=(*seed1).x; t =tˆ(t�7); yˆ=tˆ(t
24);

(*seed1).xyz=(*seed1).yzw;
(*seed1).w =(*seed2).x;
(*seed2).xyz=(*seed2).yzw;
(*seed2).w =y;

}

Here seed1 and seed2 are 4-component unsigned integers, which contain the
PRNG state. After applying the xor7step function to PRNG state the last :w
component of seed2 takes new XXOR7

n value.
The OpenCL kernel xor7 to produce XOR7 PRN sequence with single

precision by using xor7step function is shown below:

12 PRN Generation for MC Simulations on GPUs: OpenCL Approach 263

__kernel void
xor7(__global uint4* seed_table,

__global hgpu_float4* randoms,
const uint N){

// Initialization
uint giddst = GID;
float4 r;
float4 m = (float4) (4294967296.0f); // D 232

uint4 seed1 = seed_table[GID];
uint4 seed2 = seed_table[GID + GID_SIZE];

// Production
for (uint i=0; i<N; i++) {

xor7step(&seed1,&seed2); r.x=(float) seed2.w;
xor7step(&seed1,&seed2); r.y=(float) seed2.w;
xor7step(&seed1,&seed2); r.z=(float) seed2.w;
xor7step(&seed1,&seed2); r.w=(float) seed2.w;
randoms[giddst] = r / m;
giddst += GID_SIZE;

}
// Finalization

seed_table[GID] = seed1;
seed_table[GID + GID_SIZE] = seed2;

}

It contains three arguments: seed_table – uint4 buffer with XOR7 seed table,
randoms – float4 buffer to store the resulting PRNs and N—the number of
PRNs to be produced per one kernel run. GID—is a scalar value that defines a
global ID of work-item (thread), GID_SIZE—is the total number of global work-
items (threads). In order to convert the 32-bit unsigned integer output r into Œ0I 1/
interval the m=232 multiplier is used. Each work-item stores own output PRN in
randoms buffer pointed by giddst index. All PRNs produced by a single work-
item in randoms buffer are separated by GID_SIZE samples generated by other
work-items to optimize memory access.

According to the classification introduced in Sect. 12.2.1 the xor7 kernel can
be divided into three parts: initialization, production and finalization. In the first
part the initial adjustment of variables as well as loading of seed table into private
memory are performed. In the second part the kernel generates PRNs and stores
them in the output buffer randoms. In the latter kernel part the final PRNG state is
saved into seed_table buffer.

The original version of XOR7 PRNG [40] does not have a bootstrap procedure
for PRNG state special initialization, so it is initialized by the host through the direct
filling of seed_table buffer with random numbers. After the preparing on the

264 V. Demchik

host side it is transferred into computing device. The random seeding method was
applied to parallelize the XOR7 PRNG. In such scheme the number of work-items
for xor7 kernel is not related to any particular value and may be chosen by any
value.

The efficiency of an OpenCL kernel on different hardware is determined by
arithmetics/memory-access operations ratio. On the other hand the overall perfor-
mance of the kernel depends on the number of memory-accesses operations and
their stretching with arithmetic instructions. Due to a few number of memory-
access operations, this kernel is well-balanced with arithmetics operations. So, it
demonstrates a good performance on different hardware.

There is also another fashion to store the XOR7 PRNG state—it may be stored
in eight independent uint4 memory cells (for four threads at once). In that case
it becomes possible to replace all operations in xor7step function directly with
vector instructions. It is easy to check that the falling of the overall performance will
be observed in that case.

12.3.8 Using PRNGCL Library

As an example of using PRNGCL library we choose a well-known problem of
� number approximation using MC method. The concept of this method is quite
simple—we take a square of side a D 2R, put inside it a circle of radius R
and begin to place points inside the square. Geometrically, the probability Pgeom
that point falls in a circle is the ration of the circle and square areas: Pgeom D
Scircle=Ssquare D �=4. On the other hand, the probability Pnum to hit a point in
the circle can be calculated in numerical experiment—if we take N pairs .xi ; yi / of
PRNs uniformly distributed in the interval Œ0IR/ and count the number M of such
pairs that hit the circle (x2i C y2i � R): Pnum D M=N . The probabilities Pgeom and
Pnum should coincide in the largeN limit: limN!1.Pgeom � Pnum/ D 0 and hence
� � 4M=N .

The kernel to calculate the probability Pnum in 2N numerical attempts per one
work-item is shown below,

__kernel void
PI(__global hgpu_float4* randoms,

__global float* acceptance,
const uint N){
uint index = GID;
float count=0.0;
hgpu_float4 rnd,rnd2;
uint4 seed1 = seed_table[GID];

(continued)

12 PRN Generation for MC Simulations on GPUs: OpenCL Approach 265

(continued)

for (uint i=0; i<N; i++) {
rnd = randoms[index];
rnd2 = rnd * rnd;
if ((rnd2.x+rnd2.y) <= 1.0) count += 1.0;
if ((rnd2.z+rnd2.w) <= 1.0) count += 1.0;
index += GID_SIZE;

}
acceptance[GID] += count;

}

Here randoms is float4 memory buffer with PRNs, generated with any of
the implemented PRNGs. The acceptance buffer contains the number M of
successful attempts per one work-item to hit a point inside the circle. Reducing
the acceptance buffer over all work-items and averaging over 2N we get the �
approximation.

The pseudocode of host-side program is listed below

examplePI(int argc, char** argv){
// Create and prepare OpenCL context
parameters=get_parameters(argc,argv);
context=context_select(parameters); // new context

// Create and prepare PRNG
uint passes=1000;
uint W=get_auto_instances(context); // # of work-items
uint N=1024; // # of samples per one work-item

PRNG_set_default_instances(W);
PRNG_set_default_samples(N);

PRNG* prng=PRNG_new(PRNG_XOR7); // create PRNG
uint pID=PRNG_init(context,prng); // init PRNG
uint RID=prng->parameters->id_buffer_randoms;

// Prepare, build and bind buffers to PI kernel
char* src=file_read(SRC); // read source code
cl_program prg=program_new(src,context);
cl_float* acc=calloc(W,sizeof(cl_float));
uint AID=context_buffer_init(context,acc,TYPE_IO,

W,sizeof(cl_float)); // create acceptance buffer

(continued)

266 V. Demchik

(continued)

K=context_kernel_init(context,prg,"PI",1,{W});
context_kernel_bind_buffer(context,K,RID);
context_kernel_bind_buffer(context,K,AID);
context_kernel_bind_constant(context,K,&N);

// Produce PRNs and approximate PI passes times
for (uint i=0; i<passes; i++){

PRNG_produce(context,pID); // produce PRNs into RID
context_kernel_run(context,K);

// run PI kernel
}

// Map result to host, reduce and print result
double result = 0.0;
cl_float* y=buffer_get_mapped(context,AID);
for (uint i=0; i<W; i++)

result += y[i];
printf("PI=%f",2*result/(passes*W*N));

}

In this example we use an automatically adjusted number of work-items for
PI kernel. On one hand, the usage of greater number of work-items increases a
kernel performance, on the other hand—the usage of greater number of work-items
leads to a greater compute device memory consumption. Thereby, as a number of
work-items W we usually use a value which is determined by OpenCL parameter
CL_DEVICE_IMAGE3D_MAX_WIDTH. Each work-item of PI kernel produces
4N D 4;096 PRNs. It is obvious that both these parameters (W and N) can be
adjusted manually.

Full sample source code with remarks is available in the PRNGCL library.

12.3.9 Performance

The average performance results for different OpenCL-ready computing devices for
both single and double precision generation are presented in Figs. 12.2 and 12.3,
correspondingly. We use six different graphics cards for benchmarks: AMD Radeon
HD5870, HD6970, NVIDIA GeForce GTX560M, GTX560, GTX780 and Tesla
K40m (with ECC turned on and off). Some of GPUs used here are the primary GPU
devices installed in the system (i.e. they also provide visualization for the operating

12 PRN Generation for MC Simulations on GPUs: OpenCL Approach 267

system) which lowers down the maximal performance of the system, but reflects
more precisely the usual configuration of the GPU computational system.

A standard PRNG benchmarking procedure is the generation of some number
of PRNs and measuring of elapsed time. All generated PRNs are stored in
device global memory. Because of high performance of the PRNs generation the
benchmarking procedure is started several times in order to increase the accuracy of
measurements. In our case we generate PRNs for 3 s per each set of parameters and
then measure the performance.

There are two parameters, which determine the total number of PRNs to be
produced: number of PRNG work-items N and number of PRNs per one PRNG
work-itemM . As the number of PRNG work-items we use the number that is equal
to the CL_DEVICE_IMAGE3D_MAX_WIDTH OpenCL parameter. The number of
PRNG work-items isN D 2048 for most used GPUs. For example, the performance
penalty may reach 100 % when using 4,096 work-items instead of 16,384 for Tesla
K40m GPU. In our benchmarks all available device memory are used for PRNs
generation. So, the maximum number of PRNs produced by one PRNG work-item is
limited to size of available GPU memory. This parameter is also chosen as 2 in some
power n, M D 2n, to provide a best performance. To determine the optimum value
of M we perform several benchmarks, which use a half of the previous M value.
We found that the best performance occurs not for the highest possible value of
Mhighest , but forMopt D Mhighest =2 or forMopt D Mhighest =4. The performance
falls with decreasing of M . The difference in performance when using M D 1 and
Mopt may be 1500 %.

Among the generators there are two “toy” PRNGs: CONSTANT and PM (Park-
Miller LCG). The first one is the simple kernel which just returns a given constant
and may be used for debugging purposes of MC procedure. The second one has a
very short period, which could be exhausted in millisecond on modern GPUs. The
performance results are shown here for both of them for comparison only.

The PM and XOR128 generators have the same size of PRNG state (single 32-
bit integer number) and perform the same number of memory-access operations.
However, these generators show the different performances. It is caused by the
following reason: the PM generator performs integer arithmetic operations on items
of the seed table while the XOR128 uses the fast bitwise operations on them.
The similar situation appears for XOR7 and RANECU, which contain two 32-bit
integers in corresponding seed tables, but uses different arithmetic types.

Memory access is a major bottleneck of GPU-applications. It is confirmed once
again by comparison of the performance results for different PRNGs on various
GPUs. The PRNGs with the greater number of the memory operations demonstrate
the worst performance results.

One of the key requirements in the developing of the PRNGCL library is full
platform-independence. It reduces the ability to fine optimization directly for a
specific hardware using special profilers. So, we left the opportunity to further
source code optimization, for example, by splitting a kernel source code for
particular computing devices with preprocessor directives.

268 V. Demchik

0
CONSTANT PM XOR128 XOR7 RANECU RANMAR RANLUX MRG32k3a

single precision
1

2

3

4

5

6

7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

GTX 560 M
GTX 560
HD 5870

GTX 780
Tesla K40m (ECC)
Tesla K40m (no ECC)

HD 6970

5

10

15

20

25

30

x1
09 P

R
N

s/
se

c
35

40

Fig. 12.2 Performance results for PRNGs in PRNGCL (single precision), �109 PRNs/s

0

2

4

6

8

10

12

CONSTANT PM XOR128 XOR7 RANECU RANMAR RANLUX MRG32k3a

double precision
1

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

2

3

4

5

6

7

GTX 560 M
GTX 560
HD 5870

GTX 780
Tesla K40m (ECC)
Tesla K40m (no ECC)

HD 6970

x1
09 P

R
N

s/
se

c

Fig. 12.3 Performance results for PRNGs in PRNGCL (double precision), �109 PRNs/s

12.4 Conclusions

Using PRNGs for MC simulations it is necessary to remember that it is based on
some deterministic algorithms, and therefore one needs to be prepared that some
statistical defects may occur in a given task. Back in 1951 John von Neumann
said: “Any one who considers arithmetical methods of producing random digits
is, of course, in a state of sin” [42]. It is important to use generators which are
well tested in relation to a specific class of tasks [3]. Intensive development of
computation performance on the background of limitation of PRNGs parallelization

12 PRN Generation for MC Simulations on GPUs: OpenCL Approach 269

techniques also limits the scope of application of proven generators. It is important
to demonstrate the independence of key results from PRNG used.

There is no “magic” PRNG, which can equally well work out all problems. If the
generator shows good statistical properties in a specific problem, it means we are
still within the scope of its applicability. Nevertheless, it does not guarantee that use
of this generator for any other task will lead to the same positive result. Notorious
generators R250 and RANDU can serve as examples.

GPGPU, as a new computing platform, brings its own requirements for the
implementation of PRNG. These are additional requirements for parallelization
mechanism of PRNGs by 1000 and more threads, limitation of the PRNG state
size and limitation of the memory-access operations density. In addition, existing
GPGPU-ready hardware is quite varied and those tricks, which lead to increased
performance on particular device, can reduce the performance of the program on
other devices. The maximum performance of software can be only achieved by using
hardware-specific information, which narrows the optimal use of such program.

In this chapter a general structure of PRNGs and main parallelization methods
are briefly described. A broad review of currently existing software packages for
generating PRNs on GPUs is presented. Some tricks for PRNG implementation
on GPUs with OpenCL framework by the example of the PRNGCL library are
considered. The PRNGCL library contains implementation of a number of the most
popular uniform generators.

For further reading, please refer the books by Gentle [43] and Niederreiter [44].
Additional information on PRN generation with GPUs are presented in [6, 19, 22,
37, 45, 46]. Complete bibliography concerning PRNGs could be found in [47].

We hope that more researchers will use, extend and contribute to the PRNGCL
project. PRNGCL is available via GitHub:
https://github.com/vadimdi/PRNGCL.

Acknowledgements Author thanks to my colleagues and friends Alexey Strelchenko for provid-
ing benchmarks for PRNGCL library on high-end NVIDIA GPUs, Natalia Kolomoyets, Alexey
Gulov and Yevgen Syetov for essential help with the text preparation.

References

1. Kirkpatrick, S., Stoll, E.P.: A very fast shift-register sequence random number generator.
J. Comput. Phys. 40, 517–526 (1981)

2. Ferrenberg, A.M., Landau, D.P., Wong, Y.J.: Monte Carlo simulations: hidden errors from
“good” random number generators. Phys. Rev. Lett. 69, 3382–3384 (1992)

3. Janke, W.: Pseudo random numbers: generation and quality checks. In: Grotendorst, J., Marx,
D., Muramatsu, A. (eds.) Quantum Simulations of Complex Many-Body Systems, vol. 10,
p. 447. John von Neumann Institute for Computing, Julich (2002)

4. Salmon, J., Moraes, M., Dror, R., Shaw, D.: Parallel random numbers: as easy as 1, 2, 3. In:
International Conference for High Performance Computing, Networking, Storage and Analysis
(SC), pp. 1–12. http://www.deshawresearch.com/resources_random123.html (2011). Cited 6
Feb 2014

https://github.com/vadimdi/PRNGCL
http://www.deshawresearch.com/resources_random123.html

270 V. Demchik

5. L’Ecuyer, P.: Uniform random number generators. In: Lovric, M. (ed.) International Encyclo-
pedia of Statistical Science, pp. 1625–1630. Springer, Berlin/Heidelberg (2011)

6. Demchik, V.: Pseudo-random number generators for Monte Carlo simulations on ATI Graphics
Processing Units. Comput. Phys. Commun. 182, 692–705 (2011)

7. Lehmer, D.: Mathematical methods in large-scale computing units. Annu. Comput. Lab.
Harvard Univ. 26, 141–146 (1951)

8. Park, S., Miller, K.: Randoms number generators: good ones are hard to find. Commun. ACM
31(10), 1192–1201 (1988)

9. Tausworthe, R.: Random numbers generated by linear Recurrence Modulo Two. Math.
Comput. 19, 201–209 (1965)

10. Lewis, T., Payne, W.: Generalized feedback shift register pseudorandom number algorithm.
J. ACM 20, 456–468 (1973)

11. NVIDIA, Corporation: CURAND Library: Programming Guide, p. 123. http://docs.nvidia.
com/cuda/curand/index.html (2013). Cited 6 Feb 2014

12. Saito, M., Matsumoto, M.: Variants of Mersenne Twister Suitable for Graphic Processors.
ACM Trans. Math. Softw. 39(2), 12:1–12:20 (2012)

13. Saito, M., Matsumoto, M.: A deviation of CURAND: standard pseudorandom number
generator in CUDA for GPGPU. In: Proceedings of 10th International Conference on Monte
Carlo and Quasi-Monte Carlo Methods in Scientific Computing (2012)

14. Saito, M., Matsumoto, M.: Variants of Mersenne Twister Suitable for Graphic Processors.
arXiv:1005.4973 [cs.MS], pp. 1–23. http://www.math.sci.hiroshima-u.ac.jp/~%20m-mat/MT/
MTGP/index.html (2013). Cited 6 Feb 2014

15. Bell, N., Hoberock, J.: Thrust: a productivity-oriented library for CUDA. http://docs.nvidia.
com/cuda/thrust/ (2013). Cited 6 Feb 2014

16. The NAG Library. The Numerical Algorithms Group (NAG), Oxford. http://www.nag.com/
(2013). Cited 6 Feb 2014

17. Gao, Sh., Peterson, G.: GASPRNG: GPU accelerated scalable parallel random number
generator library. Comput. Phys. Commun. 184(4), 1241–1249 (2013)

18. Bauke, H.: TRNG: Tina’s Random Number Generator Library. http://numbercrunch.de/trng/
(2013). Cited 6 Feb 2014

19. Barash, L., Shchur, L.: PRAND: GPU accelerated parallel random number generation
library: using most reliable algorithms and applying parallelism of modern GPUs and
CPUs. arXiv:1307.5869 [physics.comp-ph], pp. 1–24. http://www.comphys.ru/barash/prand.
tar.gz (2013). Cited 6 Feb 2014

20. Dammertz, H., Schied, C., Lensch, H.: Massively parallel random number generators. In: GPU
Technology Conference. http://mprng.sourceforge.net/ (2010). Cited 6 Feb 2014

21. Szalkowski, D., Stpiczynski, P.: Template library for multi-GPU pseudorandom number
recursion-based generators. In: IEEE Federated Conference on Computer Science and Infor-
mation Systems (FedCSIS), pp. 515–519 (2013)

22. Passerat-Palmbach, J., Mazel, C., Bachelet, B., Hill, D.R.C.: Shoverand: a model-driven
framework to easily generate random numbers on GP-GPU. In: Proceedings of International
Conference on High Performance Computing and Simulation (HPCS), pp. 41–48. https://
github.com/jHackTheRipper/ShoveRand (2011). Cited 6 Feb 2014

23. Arampatzis, G., Athanasopoulos, A.: Random Number Generator – Parallel Streams in
OpenCL. http://mira.math.udel.edu/ParallelKMC/doku.php?id=projects:opencl_prng (2011).
Cited 6 Feb 2014

24. Nikolaisen, I.: Bose-Einstein condensation in trapped bosons: a quantum Monte Carlo analysis
using OpenCL and GPU programming. Masteroppgave, University of Oslo. https://bitbucket.
org/ivarun/ranluxcl/overview (2011). Cited 6 Feb 2014

25. Thomas, D., Howes, L., Luk, W.: A comparison of CPUs, GPUs, FPGAs, and massively
parallel processor arrays for random number generation. In: Proceedings of FPGA, pp. 63–72.
http://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu.html (2009). Cited 6 Feb 2014

26. Munshi, A. (ed.): The OpenCL 1.0 Specification. Khronos OpenCL Working Group and others
(2008)

http://docs.nvidia.com/cuda/curand/index.html
http://docs.nvidia.com/cuda/curand/index.html
http://www.math.sci.hiroshima-u.ac.jp/~%20m-mat/MT/MTGP/index.html
http://www.math.sci.hiroshima-u.ac.jp/~%20m-mat/MT/MTGP/index.html
http://docs.nvidia.com/cuda/thrust/
http://docs.nvidia.com/cuda/thrust/
http://www.nag.com/
http://numbercrunch.de/trng/
http://www.comphys.ru/barash/prand.tar.gz
http://www.comphys.ru/barash/prand.tar.gz
http://mprng.sourceforge.net/
https://github.com/jHackTheRipper/ShoveRand
https://github.com/jHackTheRipper/ShoveRand
http://mira.math.udel.edu/ParallelKMC/doku.php?id=projects:opencl_prng
https://bitbucket.org/ivarun/ranluxcl/overview
https://bitbucket.org/ivarun/ranluxcl/overview
http://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu.html

12 PRN Generation for MC Simulations on GPUs: OpenCL Approach 271

27. Scarpino, M.: OpenCL in Action: How to Accelerate Graphics and Computation, 434 pp.
Manning, Shelter Island (2012)

28. Tay, R.: OpenCL Parallel Programming Development Cookbook, 302 pp. Packt Publishing,
Mumbai (2013)

29. Advanced Micro Devices, Inc.: AMD Accelerated Parallel Processing OpenCL Programming
Guide (2013)

30. Comparison of Nvidia graphics processing units. http://en.wikipedia.org/wiki/Comparison_of_
Nvidia_graphics_processing_units. Cited 6 Feb 2014.

31. Demchik, V., Gulov, A.: Increasing precision of uniform pseudorandom number generators.
arXiv:1401.8230 [cs.MS], pp. 1–4 (2014)

32. Knuth, D.: The Art of Computer Programming, vol. 2: Seminumerical Algorithms, 624 pp.
Addison-Wesley, Reading (1969)

33. Marsaglia, G.: DIEHARD: a battery of tests of randomness. Technical report, Florida State
University. http://www.stat.fsu.edu/pub/diehard/ (1996). Cited 6 Feb 2014

34. Rukhin, A., et al.: A Statistical Test Suite for the Validation of Random Number Generators and
Pseudo Random Number Generators for Cryptographic Applications. NIST special publication
800-22, 131 pp. http://csrc.nist.gov/groups/ST/toolkit/rng/ (2010). Cited 6 Feb 2014

35. Brown, R., Eddelbuettel, D., Bauer, D.: DIEHARDER: A Random Number Test Suite. http://
www.phy.duke.edu/~rgb/General/dieharder.php (2009). Cited 6 Feb 2014

36. L’Ecuyer, P., Simard, R.: TestU01: a C library for empirical testing of random number
generators. ACM Trans. Math. Softw. 33, 1–40 (2007) [article 22]. http://www.iro.umontreal.
ca/~simardr/testu01/tu01.html. Cited 6 Feb 2014

37. Manssen, M., Weigel, M., Hartmann, A.K.: Random number generators for massively parallel
simulations on GPU. Eur. Phys. J. ST 210, 53–71 (2012)

38. Marsaglia, G.: Xorshift RNGs. J. Stat. Softw. 8(14), 1–6 (2003)
39. Brent, R.: Note on Marsaglia’s Xorshift random number generators. J. Stat. Softw. 11(5), 1–5

(2004)
40. Panneton, F., L’Ecuyer, P.: On the Xorshift random number generators. ACM Trans. Model.

Comput. Simul. 15(4), 346–361 (2005)
41. Brent, R.: Some long-period random number generators using shifts and xors. ANZIAM J. 48,

C188–C202 (2006)
42. von Neumann, J.: Various techniques used in connection with random digits. Natl. Bur. Stand.

Appl. Math. Ser. 12, 36–38 (1951)
43. Gentle, J.: Random Number Generation and Monte Carlo Methods, 399 pp. Springer, Berlin

(2003)
44. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods, 241 pp.

SIAM, Philadelphia (1992)
45. Nandapalan, N., Brent, R., Murray, L., Rendell, A.: High-performance pseudo-random number

generation on graphics processing units. Parallel Process. Appl. Math. 7203, 609–618 (2012)
46. Bradley, T., du Toit, J., Giles, M., Tong, R., Woodhams, P.: Parallelisation techniques for

random number generators. In: Hwu, W.-M. (ed.) GPU Gems: Emerald Edition, pp. 231–246.
Morgan Kaufmann, Amsterdam (2011)

47. Beebe, N.: A Bibliography of Pseudorandom Number Generation, Sampling, Selection,
Distribution, and Testing, 631 pp. ftp://ftp.math.utah.edu/public_html/pub/tex/bib/prng.ps.gz
(2013). Cited 6 Feb 2014

http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units
http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units
http://www.stat.fsu.edu/pub/diehard/
http://csrc.nist.gov/groups/ST/toolkit/rng/
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html
ftp://ftp.math.utah.edu/public_html/pub/tex/bib/prng.ps.gz

Chapter 13
Monte Carlo Automatic Integration
with Dynamic Parallelism in CUDA

Elise de Doncker, John Kapenga, and Rida Assaf

13.1 Introduction

Problems in computational geometry, computational physics, computational finance
and other fields give rise to computationally expensive integrals. This chapter will
address applications of CUDA programming for Monte Carlo integration. A Monte
Carlo method approximates the expected value of a stochastic process by sampling,
i.e., by performing function evaluations over a large set of random points, and
returns the sample average of the evaluations as the end result. The functions that
are found in the application areas mentioned above are usually not smooth and may
have singularities within the integration domain, which enforces the generation of
large sets of random numbers.

The algorithms described here will be incorporated in the PARINT multivariate
integration package, where we are concerned with the automatic computation of an
integral approximation

QŒD �f � I ŒD �f D
Z
D
f .x/ dx;

and an estimate or bound E ŒD �f for the errorEŒD �f D jI ŒD �f �QŒD �f j. Thus
PARINT is set up as a black-box, to which the user specifies the integration problem
including a requested accuracy and a limit on the number of integrand evaluations.

In its current form, PARINT supports the computation of multivariate integrals
over hyper-rectangular and simplex regions. The user specifies the region D by the
upper and lower integration limits in case of a hyper-rectangular region, or by the
vertex coordinates of a simplex. The integrand f W D ! R

k is supplied as a
function written in C (or which consists of C-callable code). The desired accuracy

E. de Doncker (�) • J. Kapenga • R. Assaf
Western Michigan University, 1903 W. Michigan Avenue, Kalamazoo, MI 49008, USA
e-mail: elise.dedoncker@wmich.edu; john.kapenga@wmich.edu; rida.assaf@wmich.edu

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__13, © Springer International Publishing Switzerland 2014

273

mailto:elise.dedoncker@wmich.edu
mailto:john.kapenga@wmich.edu
mailto:rida.assaf@wmich.edu

274 E. de Doncker et al.

is determined by an absolute and a relative error tolerance, "a and "r , respectively,
and it is the objective to either satisfy the prescribed accuracy,

jQŒD �f � I ŒD �f j � E ŒD �f � maxf"a; "r jI ŒD �f jg; (13.1)

within the allowed number of function evaluations, or flag an error condition if the
limit has been reached. In the remainder of this chapter we will assume that the
integrand f is a single-valued function (k D 1), and D is assumed to be the d -
dimensional unit hypercube, D D Œ0; 1�d (and will generally be omitted from the
notation).

The available approaches in PARINT include adaptive, quasi-Monte Carlo and
Monte Carlo integration. For N uniform random points xi , the Monte Carlo
approximation,

Qf D Nf D 1

N

NX
iD1

fi ; (13.2)

with fi D f .xi /, is suitable for moderate to high dimensions d , or an irregular
integrand behavior or integration domain. In the latter case, the domain can be
enclosed in a cube, where the integrand is set to zero outside of D .

The main elements of MC methods are the error bounding and the underlying
Pseudo-Random Number Generators (PRNGs), which are discussed in Sects. 13.2
and 13.3, respectively. In particular, Sect. 13.3 covers the implementation and use
of parallel PRNGs in CUDA.

Section 13.5 describes dynamic parallelism, which became available with
CUDA-5.0, for GPU cards supporting compute capability 3.0 and up. The recursive
or “vertical” version in Sect. 13.5.1, and the iterative or “horizontal” version
in Sect. 13.5.2 are utilized for an efficient GPU implementation of automatic
integration in Sect. 13.5.3, which alleviates problems with memory restrictions
and kernel launch overhead. Section 13.6 further addresses issues with accuracy
and stability of the summations involved in the MC approximation of the result
and the sample variance. In the Appendix we include results showing speedups
and accuracy for a Feynman loop integral arising in high energy physics [7, 17].
Previously we covered problems from computational geometry in [5].

13.2 MC Convergence

In the following we give a derivation of the error estimate for the one-dimensional
case [4]; a similar formulation can be given for d > 1.

13 Monte Carlo Integration with Dynamic Parallelism in CUDA 275

Let x1; x2; : : : be random variables drawn from a probability distribution with
density function �.x/,

R1
�1 �.x/ dx D 1, and assume that the expected value of

f , I D R1
�1 f .x/ �.x/ dx exists. For example, x1; x2; : : : may be selected at

random from a uniform random distribution in Œ0; 1�, �.x/ D 1 for 0 � x � 1, and
0 otherwise.

According to the Central Limit Theorem, the variance

	2 D
Z 1

�1
.f .x/ � I /2 �.x/ dx D

Z 1

�1
f 2.x/ �.x/ dx � I 2 (13.3)

allows for an integration error bound in terms of the probability

P

�
Ef � �	p

N

	
D PI C O.

1p
N
/ (13.4)

where PI represents the confidence level PI D 1p
2�

R �
�� e

�x2=2 dx as a function

of �. For example, PI D 50% for � D 0:6745I PI D 90% for � D 1:645I
PI D 95% for � D 1:96I PI D 99% for � D 2:576. In other words we
can state that, e.g., with probability or confidence level of 99 % the error E �
2:567	=

p
N . The behavior of the error bound in (13.4) represents the 1=

p
N law of

MC integration. Note that (13.4) assumes that 	 exists, which relies on the integrand
being square-integrable, even though that is not required for the convergence of the
MC method [4].

To calculate the error estimate the sample variance estimate can be employed,

N	2 D 1

N � 1
NX
iD1
.fi � Nf /2 D 1

N � 1
.

NX
iD1

f 2
i � 2

NX
iD1

fi Nf CN Nf 2/

D 1

N � 1
.

NX
iD1

f 2
i � 2N Nf 2 CN Nf 2/

D 1

N � 1
.

NX
iD1

f 2
i �N Nf 2/: (13.5)

One can also make use of simple antithetic variates, This is known as a variance
reduction method, where for each sample point x in (13.2), an evaluation is also
performed at the point x� D 1 � x (symmetric with respect to the centroid of the
cube) [9]. Thus (13.2) becomes

Qf D 1

N

NX
iD1

fi C f �
i

2
; (13.6)

276 E. de Doncker et al.

and the variance estimate of (13.5) is updated as

N	2 D 1

N � 1

0
@ NX
iD1

�
fi C f �

i

2

	2
�N

 PN
iD1.fi C f �

i /

2N

!21
A :

In view of (13.4) one can then use

E � �p
N.N � 1/

0
@ NX
iD1

�
fi C f �

i

2

	2
�N

 PN
iD1.fi C f �

i /

2N

!21
A

1
2

(13.7)

as an error estimate or bound (under certain conditions).
Whereas the above formulas for the variance estimate are correct, they can suffer

from severe roundoff error due to cancellation. There are ways to address this; see
Sect. 13.6.3. There are a number of additional variance reduction techniques that
can be applied to Monte Carlo integration in addition to antithetic variates, such as
control variates, importance sampling and stratified sampling. These can be included
in a numerical integration package, such as PARINT, using the framework presented
here, but are not the focus of the chapter and will not be discussed here.

13.3 Pseudo-Random Number Generators (PRNGs)

A pseudo-random number generator (PRNG) is a deterministic procedure to
generate a sequence of numbers that behaves like a random sequence and can
be tested for adherence to relevant statistical properties. Several PRNG testing
packages are available [2,18,20]. Marsaglia’s DIEHARD [2,20] is nowadays being
superseded by the more stringent tests in SmallCrush, Crush and BigCrush by
L’Equyer [18] in the TESTU01 framework.

Whereas function sampling for Monte Carlo integration is considered embar-
rassingly parallel, some applications will involve large sets of evaluations, thus
requiring efficient high quality random number streams on various multilevel
architectures containing distributed nodes, multicore processors and many-core
accelerators. In particular, good pseudo-random sequences are required for multiple
threads or processes, and a much larger period of the sequence may be needed in
view of much intensified sampling and larger problems. Choosing new PRNGs may
also necessitate validation of streams of random numbers generated by different
methods being used together. The brief overview of parallel PRNGs in this section
is based on our AIAA SciTech 2014 paper [6].

Solutions for associating good quality streams of random numbers to many
threads can be sought by [19]: (1) employing a PRNG with a long period and
generating subsequences started with different seeds; (2) dividing a random number
sequence with a long period into non-overlapping subsequences; and (3) using
different PRNGs of the same class with different parameters.

13 Monte Carlo Integration with Dynamic Parallelism in CUDA 277

Continuous progress has been made in this area, and there are several open
source PRNG packages in wide use, such as the Scalable Parallel Random Number
Generators Library (SPRNG) [32]. To assure statistically independent streams of
random numbers, the SPRNG library incorporates particular parametrizations of:
additive lagged-Fibonacci, prime modulus linear congruential, and maximal-period
shift-register generators.

NVIDIA’s CURAND package includes: an XORShift type of generator based
on the XORWOW algorithm by Marsaglia [21], a Combined Multiple Recursive
generator (MRG32k3a) originally proposed by L’ Equyer[16] and a Mersenne
Twister (MTGP11213) type generator which was ported to GPUs by Saito [28].
It also has support for Sobol quasi-random number generators (including scrambled
and 64-bit PRNGs). A quasi-random sequence of multivariate points aims to
fill the multivariate space evenly. The uniform, normal, log-normal and Poisson
distributions are supported, as well as single and double precision. The CURAND
library is freely available as part of the CUDA Toolkit [1], and distributed with it
under the End User License Agreement (EULA).

Regarding their use on HPC co-processors such as GPUs, a problem with
SPRNG and many existing PRNGS, is that they were designed for architectures
where fast memory is cheap so that large state arrays can be used. This is critical as
on most HPC co-processors memory is often limited, and communication as a part
of random number generation is undesirable. Therefore, for applications where each
thread requires its own generator (as in highly parallel simulations of lattice models),
parallel PRNGs with large state are at a disadvantage [19], such as XORWOW [21]
and the standard Mersenne twister [22], which was originally used in the CUDA
SDK but has been replaced by MTGP (see Variants of Mersenne Twister suitable
for Graphic Processors) [28].

Manssen et al. [19] point to solutions for obtaining a small memory-load
overhead by: (1) using good quality generators with very small state, which has
been successful with the counter-based, stateless generators (CBRNGs) in the
RANDOM123 library [29, 30]; or (2) sharing the state between the threads of a
single (GPU) block. They further present a new massively parallel high-quality
generator in this class, based on an XORShift/Weyl scheme for a very large word
size, which performs favorably in their TestU01 suite comparison of (12) PRNGs
for GPUs with respect to: the number of bits per thread, number of tests failed in
SmallCrush, Crush and BigCrush, pass or failure in performing an application (Ising
test), and performance (time) in terms of the number of random numbers generated
per second. The XORShift/Weyl generator passes all tests in the rigorous TestU01
suite, and so do the Philox type generators from the RANDOM123 library.

13.3.1 Use of cuRAND

With the NVIDIA CURAND approach, the CPU initializes a PRNG and invokes
a GPU function to generate the sequence directly in the GPU memory, where it

278 E. de Doncker et al.

is kept for subsequent use. This avoids the overhead of having the CPU generate
the sequence and move it from main memory to the GPU memory. A potential
drawback with this approach arises, however, in that GPU memory is limited (e.g.,
to a maximum of about 5 GB on the Tesla K20 cards [24]), so that the number
of points needed to get the desired accuracy may exceed the available memory. In
that case one may be tempted to solve the problem at hand by doing several kernel
invocations, but that is undesirable because of the kernel launch overhead and the
overhead of the wait for CURAND to complete the generation of the sequence.

A CUDA C program section allocating space for Ndim D N � Dim floats in an
array numbers on the device, and calling the CURAND functions is shown below.
This section executes on the CPU before the GPU kernel is launched.

// allocate Ndim floats on device in array numbers
cudaMalloc ((void **) &numbers, Ndim * sizeof(float));
// create pseudo-random number generator
curandCreateGenerator (&gen, CURAND_RNG_PSEUDO_DEFAULT);
// set seed
curandSetPseudoRandomGeneratorSeed (gen, 1234ULL);
// generate Ndim random numbers on device
curandGenerateUniform (gen, numbers, Ndim);

Note that there are variations to the function curandGenerateUniform such as
curandGenerateUniformDouble, which generates points in double precision.

13.3.2 Use of RANDOM123

As opposed to the static generation of the pseudo-random sequence at the beginning
of the run by CURAND, the Philox type CBRNG of RANDOM123 allows generating
the numbers on the GPU as needed, requires little memory and reduces the number
of accesses to global memory. Furthermore it produces 264 or more unique parallel
streams of random numbers, each with a period of at least 2128, and is found faster
than CURAND on a single NVIDIA GPU [30].

For the CBRNG a statement of the form

result = CBRNGname(counter, key);

returns a (deterministic) value of result as a function of key and counter; i.e.,
using the same (counter, key) combination will always return the same result. The
RANDOM123 library is implemented entirely in header files [29]. So all what is
needed to start using the library is to #include it in the program source files, and
guide the compiler to find its header files that are unpacked from the downloaded
package.

Unlike CURAND, the RANDOM123 library requires no work by the CPU before
the kernel launch. When the GPU kernel is launched, the counter and key of the
Philox PRNG are initialized as follows:

philox4x32_key_t k = {{tid, 0xdecafbad}};
philox4x32_ctr_t c = {{0, 0xf00dcafe, 0xdeadbeef, 0xbeeff00d}};

13 Monte Carlo Integration with Dynamic Parallelism in CUDA 279

where the use of the global thread index tid, which is unique to the thread, ensures
the generation of unique random numbers by each thread. Next, the contents of the
counter can be set by accessing the constant array v:

c.v[0] = ... ; /* some loop-dependent application variable */

and executing

philox4x32_ctr_t r = philox4x32(c, k);

This generates 4 � 32 bit random numbers stored in an array in r, which will be
unique as long as c and k are not reused. One way to access the random numbers is:

float current_value = u01fixedpt_open_open_32_24(r.v[0]);

This returns the first random number in the array; to access the second one r.v[0] is
replaced by r.v[1], and so on for the third and the fourth numbers.

Note that u01fixedpt_open_open is a utility C function that converts 32- or 64-bit
random integers to uniformly distributed random values. The 32_24 suffix refers to
the conversion of 32-bit integers to floats determined with a 24-bit mantissa (24 is
replaced by 53 for doubles); _open_open indicates that the output range is open at
both ends.

13.4 MC CUDA Kernel

13.4.1 Methods

The Monte Carlo approximation is obtained in (13.2) as the average of the function
values on a set of N uniformly distributed random points. In general, an integration
rule approximation with function evaluations fi D f .xi / and weights wi ; 1 � i �
N can be considered as the dot product w � f D PN

iD1 wi fi : The MC “rule” has
constant weights wi D 1

N
; 1 � i � N , but its accumulation can be accomplished

in a CUDA kernel with a similar structure as a dot product [31].
For simplicity we first assume that the points have been generated by the

CURAND PRNG library and are available on the GPU device. The GPU kernel
MonteCarlo shown below evaluates the sum of function values and the sum of
squares needed for the computation of the integral and error estimates using
antithetic variates according to (13.6) and (13.7), respectively. The kernel can be
launched as:

//Launch the GPU Kernel
MonteCarlo<<<blocksPerGrid, threadsPerBlock>>>

(numbers, dev_partial_q, dev_partial_e, N);

The function evaluation results are accumulated as follows:

1. Each thread on the GPU performs a small number of function evaluations.
2. All threads in a block reduce their results to the first thread in the block.
3. The first thread in the block stores the reduced result in a global array on the

device.

280 E. de Doncker et al.

4. The global array is copied back to the CPU for a final reduction, to sum up the
partial results computed by the blocks.

5. The sum of the per-block partial results divided by N is the final result.

Thus the parameter dev_partial_q that is passed to the kernel MonteCarlo is
stored in the GPU’s global memory and will hold the per-block partial results.
The computations for dev_partial_e are performed in a similar way. The integrand
function f is implemented as a CUDA device function that takes a point as a
parameter (represented as a struct containing the random coordinates in an array
of dimension dim), and returns the function evaluation at that point.

The purpose of the cache arrays in the kernel is to utilize the GPU shared memory
whose access is much faster than that of the GPU global memory where the array
numbers is stored. The cache arrays are shared by all threads within the same block
only.

In the kernel note that threadIdx.x represents the thread’s index with respect
to all indices within the current block, blockIdx.x gives the block’s index with
respect to all the blocks in the grid, and blockDim.x is the dimension of each
block, which is the total number of threads in each block. Therefore, the global
index of the thread with respect to all forked threads in all blocks is computed as
threadIdx.x + blockIdx.x * blockDim.x.

Furthermore, as the number of evaluations may be much larger than the total
number of threads, the while loop while(tid<N) allows assigning evaluations to the
threads in a round-robin fashion; i.e., each thread performs evaluations starting with
its index and going up in increments of blockDim.x * gridDim.x. Within the while
loop we use Kahan summation as a roundoff error guard for the accumulations,
which are performed in single (float) precision. For a detailed explanation of
stability and condition numbers involving the summations see Sect. 13.6.

Implementing the kernel entirely in double precision may not be desirable
because:

• It requires Compute Capability 2.0 or higher, which few NVIDIA desktop video
cards currently support.

• It may require twice the compute time and memory.
• It may not be needed to obtain the requested accuracy.

The analysis outlined in Sect. 13.6 can be used to gauge the effect of various
precision choices.

struct point {
float coordinates[dim];

};

__global__ void MonteCarlo(float *numbers, float *partial_q,
float *partial_e, int N) {

// Make use of the GPU shared memory
__shared__ float cache[threadsPerBlock];
__shared__ float error_cache[threadsPerBlock];

13 Monte Carlo Integration with Dynamic Parallelism in CUDA 281

// tid holds thread’s global index with respect to
// all GPU threads
int tid = threadIdx.x + blockIdx.x * blockDim.x;

point current_point;
point second_point; // Point for antithetic variates
float eval, evaluations = 0, qk = 0, y, t;
float sum_of_squares = 0, qksq = 0, ysq, tsq;

while (tid < N) {
int i = 0;
int count = 0;
int tdim = tid * dim;
float temp = 0;
for(i = tdim; i < tdim + dim; i++) {

// Set point coordinates with random numbers
temp = numbers[i];
current_point.coordinates[count] = temp;
second_point.coordinates[count] = 1 - temp;
count++;

}
// Call the CUDA device function
eval = (f(current_point) + f(second_point));
// Kahan summation for: evaluations += eval;
y = eval - qk;
t = evaluations + y;
qk = (t - evaluations) - y;
evaluations = t;

// Kahan summation for: sum_of_squares += eval*eval;
ysq = eval*eval - qksq;
tsq = sum_of_squares + ysq;
qksq = (tsq - sum_of_squares) - ysq;
sum_of_squares = tsq;

// Let each thread do a number of evaluations
tid += blockDim.x * gridDim.x;

}

// Store the value obtained by each thread
cache[threadIdx.x] = evaluations;
error_cache[cacheIndex] = sum_of_squares;

// Synchronize threads in this block
__syncthreads();

// For reductions, threadsPerBlock must be a power of 2
// because of the following while loop
int i = blockDim.x/2;
while (i != 0) {

if (cacheIndex < i) {
cache[cacheIndex] += cache[cacheIndex + i];
error_cache[cacheIndex]

+= error_cache[cacheIndex + i];

282 E. de Doncker et al.

}
__syncthreads();
i /= 2;

}

// If this is the first thread of this block
if (threadIdx.x == 0) {

// Store the results of this block in the global arrays
partial_q[blockIdx.x] = cache[0];
partial_e[blockIdx.x] = error_cache[0];

}
}

After the kernel finishes executing, the control returns to the CPU, which copies the
contents of partial_results from the GPU to a local array declared on the CPU, by
the following statements:

// Copy the partial results from the GPU back to the CPU
cudaMemcpy(partial_q, dev_partial_q,

blocksPerGrid*sizeof(float), cudaMemcpyDeviceToHost);
cudaMemcpy(partial_e, dev_partial_e,

blocksPerGrid*sizeof(float), cudaMemcpyDeviceToHost);

Here partial_q and partial_e are the local arrays that hold the partial results, and
the number of bytes transferred is blocksPerGrid * sizeof(float) since each block
generates a partial result. As shown below, the partial results are summed by the
CPU, which returns the integral approximation final_result, and an error estimate
error_est according to (13.7).

// Sum up the partial results
double q = 0, e = 0, final_result, error_est;

for (int i = 0; i < blocksPerGrid; i++) {
q += partial_q[i];
e += partial_e[i];

}

final_result = q/(2*N);
error_est = sqrt(fabs((e/4 - q*q/(4*N))/(N-1)/N));

13.4.2 Numerical Validation

One issue associated with the need for large numbers of evaluations is the
occurrence of roundoff error. Another problem, specifically when using CURAND
for generating the random numbers, is the restricted global memory on the GPU.
A solution is not obtained by multiple kernel launches from the CPU in view of the

13 Monte Carlo Integration with Dynamic Parallelism in CUDA 283

kernel launch overhead. However, the memory restriction problem can be alleviated
by using a RANDOM123 PRNG to generate the random numbers as needed on
the GPU.

Figure 13.1 plots (on log10 scale) the absolute error (blue/diamonds curve) and
estimated error (red/rectangles curve) of the MC approximation, as a function of
(log10 of) the number of points N , for the integration of the function f .x/ D 3x20
over the 12D unit cube. Thus the length of the pseudo-random sequence used is
12N for each integration. The estimated error is based on (13.7) with � D 1. The
function log10.1=

p
N/ D � 1

2
log10 N is also plotted (green/triangles curve). The

error adheres closely to the 1=
p
N behavior through N D 1010I then is stagnant or

increases slightly throughN D 1012.
We used a version of the kernel in Sect. 13.4.1, employing the Kahan summation

technique for the accumulations in single precision. For comparison we also ran
the program with Kahan summation replaced by using doubles for the summation
variables (only). The accuracies as well as the times were very similar. When
plotted, the results were in fact indistinguishable from those of Fig. 13.1.

Fig. 13.1 Error behavior for MC approximation using Kahan summation. Shown are: log10(Error),
log10(Error Estimate) and log10.1=

p
N/ as a function of log10 N

13.5 Dynamic Parallelism

An important feature with NVIDIA’s release of CUDA-5.0, that works on GPU
cards supporting compute capability 3.0 and up is Dynamic Parallelism. We will
further refer to it as DP. From the NVIDIA Techbrief on DP, “additional parallelism

284 E. de Doncker et al.

can be exposed to the GPU’s hardware schedulers and load balancers dynam-
ically, adapting in response to data-driven decisions or workloads. Algorithms
and programming patterns that had previously required modifications to eliminate
recursion, irregular loop structure, or other constructs that do not fit a flat, single-
level of parallelism can be more transparently expressed.” [25] Consequently, DP
may eliminate the need for additional kernel launches, and thus eliminates the extra
kernel launch overheads that would be incurred. Basically a parent kernel can now
invoke a child kernel, without CPU intervention, keeping the control completely
on the GPU and eliminating the overhead of switching control between the GPU
and the CPU between kernel calls. With respect to the implementation of MC, DP
enables chunking, i.e., instead of launching one kernel with a huge number of points,
the CPU can launch one kernel with a smaller number of points, which in turn can
launch child kernels each with their chunk of a smaller number of points.

Furthermore, DP allows the number of threads to exceed the usual limit, since
threads running within the parent grid can invoke a child grid, so now instead of
having each thread take on an amount of work in the parent kernel, work can be
off-loaded to the child kernels. A child grid needs to complete before the parent grid
is considered complete.

13.5.1 Vertical (Recursive) Dynamic Parallelism

To make use of this, Dynamic Parallelism techniques were applied to the kernel
using RANDOM123. As opposed to letting the kernel be launched by the CPU do
all the work, this kernel does part of the work, say a chunk of limit = 200 million
points, and then launches another kernel to do another chunk of the work, until the
total number N is reached. This type of control is displayed in the parent kernel
(pseudo code) below.

__global__ void MonteCarlo(float *partial_results, int runs) {

// Make use of the GPU shared memory
__shared__ float cache[threadsPerBlock];

// tid holds thread’s global index w.r.t. all GPU threads
int tid = threadIdx.x + blockIdx.x * blockDim.x;

float current_point;
float second_point;
float evaluations;

//limit can be any number
while (tid < limit) {

Generate the current point using Random123;
Get a second point as 1 - current_point;
// Call the CUDA device function to evaluate it at

13 Monte Carlo Integration with Dynamic Parallelism in CUDA 285

// the current points using Kahan summation and/or
// double accumulators
evaluations = evaluations + f(current_point) +

f(second_point);
// Let each thread do a number of evaluations
tid += blockDim.x * gridDim.x;

}
// Store the value obtained by each thread
cache[threadIdx.x] = evaluations;

// Synchronize threads in this block
__syncthreads();

// For reductions, threadsPerBlock must be a power of 2
// because of the following while loop
int i = blockDim.x/2;
while (i != 0) {

if (cacheIndex < i) {
cache[cacheIndex] += cache[cacheIndex + i];

}
__syncthreads();
i /= 2;

}
// If this is the first thread of this block
if (threadIdx.x == 0) {

// Store the block’s result in the global array
partial_results[kernel_index * gridDim.x + blockIdx.x]

= cache[0];
}
// Recompute the original tid
tid = threadIdx.x + blockIdx.x * blockDim.x;
if(tid == 0) // the first thread of the current kernel
{

if(runs > 0) // and not all partitions have been run
{

MonteCarlo<<<gridDim.x,threadsPerBlock>>>
(partial_results, runs-1);

}
}

}

Here kernel_index is the index of the current kernel, which is used in this case
to indicate the global index of the current block with respect to all blocks of all
launched kernels to store the block result in the correct position of the global array.
The variable runs stores the number of kernels that remain to be launched, based on
the number of chunks, computed by the CPU as N/limit and passed as a parameter
to the kernel, where it is decremented and passed on to the subsequent kernel
launched.

286 E. de Doncker et al.

A drawback of vertical DP where the kernels are launched in depth one at a time,
is the maximum recursion depth, which currently limits the number of recursive
launches to 24 and may not be sufficient for some applications.

13.5.2 Horizontal (Iterative) Dynamic Parallelism

We implemented another approach where kernel calls are performed breadth-wise,
thereby creating DP in a horizontal/iterative way. The first kernel invokes all other
necessary kernels, and the runtime takes care of scheduling them over the resources.
The differences in the control, from the kernel of Sect. 13.5.1, are shown in the
section below.

// Recompute the original tid
tid = threadIdx.x + blockIdx.x * blockDim.x;
if(tid == 0) // The first thread of this kernel
{

while(runs > 0) // not all partitions have run
{

MonteCarlo<<<gridDim.x,threadsPerBlock>>>
(partial_results, 0);

}

}

In this approach the if(runs > 0) is replaced by a while statement, since all the
kernel launches take place in the beginning. The variable runs is passed as 0 to
all subsequent kernels, to ensure that no other kernel launches more kernels than
required.

Figure 13.2 gives the accuracy and estimated error obtained with horizontal DP
using a chunk size of 200M D 2�108 for 2�109 � N � 4�1011, and a chunk size
of 1B D 109 for 6 � 1011 � N � 1012 D 1T. No dynamic parallelism was used for
N � 200M. This version of the kernel used double precision accumulators. For the
legend description see that of Fig. 13.1. Figure 13.2 shows good accuracy through
N in excess of 1011 points.

13.5.3 Automatic Integration with Dynamic Parallelism

Automatic integration was introduced in Sect. 13.1. The integration algorithm works
as a black-box, which (minimally) takes as input: the user-specified integrand
function, domain, prescribed absolute and/or relative accuracy and a maximum
number of function evaluations. With the notations of (13.1), it is the goal of the
computations to improve the integral approximationQŒD �f and decrease the error
estimate E ŒD �f accordingly, until it no longer exceeds the tolerated error,

jQŒD �f � I ŒD �f j � E ŒD �f � error tolerance: (13.8)

13 Monte Carlo Integration with Dynamic Parallelism in CUDA 287

Fig. 13.2 Error behavior using horizontal DP and chunking. The plot shows (for integration of
f .x/ D 3x20 over the 12D unit cube): log10(Error), log10(Error Estimate) and log10.1=

p
N/ as a

function of log10 N

QŒD �f and E ŒD �f are returned when either (13.8) is achieved or the maximum
number of function evaluations has been reached (cf., the meta-algorithm of
Fig. 13.3).

while (estimated error too large and
evaluation limit not reached)

Compute new result and error estimate

Fig. 13.3 Automatic integration meta-algorithm

We use the Dynamic Parallelism approach above to launch successive MC
kernels on the GPU, and add a kernel (metaMC) implementing the controller of the
meta-algorithm. The controller is launched from the CPU and runs in one block
using one thread on the GPU. It sequences the MC kernel calls which perform
chunks of evaluations, until either the prescribed accuracy has been attained, or
the maximum number of chunks has been computed. Pseudo-code for the metaMC
controller is given below.

__global__ void metaMC(float *partial_results,
float *partial_errors, long long int N,
float sequence_factor, float tolerance,
float *gpu_results, int limit)

{
//Initialize all variables

288 E. de Doncker et al.

float partial_r = 0.0;
float partial_e = 0.0;
float final_result = 0.0;
float final_error = 0.0;
float error = tolerance+100.0; // just to enter loop
long long int totalN = 0;
float count = 1.0;

while(error > tolerance && count <= limit)
{

MonteCarlo<<<blocksPerGrid, threadsPerBlock>>>
(partial_results, partial_errors, N);

// Wait for the kernel to return
cudaDeviceSynchronize();

//Keep track of the total number of points used
// multiplied by 2 because of antithetic variates
totalN += 2.0 * N;

//Compute the value of N for the next kernel call
N = N * sequence_factor;

// Sum up the partial results returned by the
// MonteCarlo kernel to the old values
for (int i = 0; i < blocksPerGrid ; i++) {

partial_r += partial_results[i];
partial_e += partial_errors[i];

}
// Compute the final result and error estimate
final_result = partial_results/(totalN);
final_error = sqrt(fabs((partial_errors/4.0 -

partial_results*partial_results/(4.0*totalN))/
(totalN-1.0)/totalN));

// Set error to the correct value to be compared
// with the tolerance next
error = final_error;

count++;
}
// Store the final results and the number of times
// MonteCarlo was run
gpu_results[0] = count;
gpu_results[1] = final_result;
gpu_results[2] = final_error;

}

13.6 Accuracy and Stability in Numerical Integration

Some comments on the numerical evaluation of integrals using the methods
presented need to be pointed out. These comments focus on the Monte Carlo method
for simplicity, but apply to all methods. For a more complete discussion see [14].

13 Monte Carlo Integration with Dynamic Parallelism in CUDA 289

Table 13.1 IEEE 2008 floating point values

IEEE 754-2008 Common name Data type Base Precision e = Machine epsilon

binary32 Single precision float 2 24a 2�23 � 1.19e�07
binary64 Double precision double 2 53a 2�52 � 2.22e�16
binary80 Extended precision _float80 2 64 2�63 � 1.08e�19
aOne bit is implicit

First, IEEE floating point on hosts and NVIDIA GPUs will be mentioned. Then
the evaluation of the summation in (13.2) will be addressed, followed by problems
in evaluating the formula for the sample variance in (13.5). A robust integration
program, with the sizes of N now being used, must deal with these issues or the
results can be completely misleading.

The analysis of numerical integration methods can be broken down into several
parts: analytic errors in the method, errors in the computed points xi , errors in the
computed function values fi D f .xi /, and rounding errors in the rule’s application.
For Monte Carlo integration the analytics are simple, and the other errors can all
be addressed by considering the value of machine epsilon (defined in Sect. 13.6.1
below), used in the analysis of summations.

13.6.1 IEEE Floating Point Arithmetic

CUDA applications often require floating point operations on both the GPU and the
host CPU. The IEEE-fp standard [12, 13] is implemented on virtually all modern
general computing architectures. For an introduction to some of the practical details
of IEEE-fp computing see [10, 23].

NVIDIA CUDA GPUs with Compute Capabilities 2.0 and greater have single
and double IEEE-fp 754 support, including computing square root to nearest and
Fused Multiply Add (FMA) [33]. All four IEEE-fp rounding modes are supported
with “round to nearest, ties to even” being the default.

Modern Intel and AMD processors also support IEEE-fp. Some also support the
old x87 80-bit extended precision format, which is not IEEE-fp compliant and has
not been recommended for applications since 2008. These processors do support
various extended instruction sets, SSE, SSE2, AVX, AVX2,: : :, that provide additional
precision and capabilities, such as FMA.

Table 13.1 provides the values of e, the machine epsilon (relative machine
precision) [11], that will be used in the following sections. Although there are small
differences in opinion about what these e values should be, the current values will
suffice. Roughly, we usually expect the relative error in any arithmetic computation
(C;�;� or =) to only introduce an error in the 7th decimal place for single
operations and the 16th decimal place for double operations. These discussions will
not make use of the exponent ranges in IEEE-fp.

290 E. de Doncker et al.

Although the IEEE-fp standard and its implementations is a vast improvement
over the situation that formerly existed, the goal of reproducible results (exactly the
same binary results on any system on which a program is run) is very difficult to
obtain [8], and not practical in most circumstances. There are a number of reasons
for this in hardware, compilers, and even in using library functions, that generally
cannot return the best value (e.g., the table maker’s dilemma [23]).

The results from the same program on two different IEEE-fp compliant plat-
forms, consisting of the hardware (Intel, AMD, CUDA) and compiler (including
its flags), can totally disagree. This is a special concern for problems with large
condition numbers (see the next section). A more practical goal is to try to produce
reliable results with error estimates, and warnings when this may not be the case.

13.6.2 Computing Summations

The accurate evaluation of a summation, as in (13.2), is a classic problem.
Higham [11] gives a good review of several methods for summation, and there is
a lot of work still being done on the problem [8, 26, 27].

This is not a review of the current methods for summation. The presentation here
focuses on a couple of methods that are well suited for simple CUDA implementa-
tions in numerical integration. The analysis in this section considers summations of
1014 function values using doubles. This can be modified for other cases, e.g., where
floats are used throughout, or the accumulations (only) are done in doubles.

The CUDA architecture favors algorithms that:

• have very small global, block and thread memory footprints;
• do not have significant branching.

Many of the other known methods violate one or both of these. The general term
“online method” implies the method can be applied in a single pass through the data
(hence the data do not need to be stored), and does not require significant memory.
Such methods are of interest in the CUDA environment.

First consider SN , the exact value of the sum in (13.2).

SN D
NX
iD1

fi ;

and let OSN be the computed value of the sum; then EN is the error, where

EN D SN � OSN :

The interest here is in the relative error EN=SN , that is undefined when SN D 0.
When SN D 0, a bound on the absolute error can still be sought [14]. A bound
on the relative error indicates how many digits of precision can be lost due to

13 Monte Carlo Integration with Dynamic Parallelism in CUDA 291

roundoff. Under reasonable assumptions on the integrand, if the integral value is
I , the expected value of SN is NI . So if the integral is not 0, the value of jSN j is
expected to be non-zero and increase with N . In what follows it is assumed that
SN ¤ 0.

One way to accumulate the sum is naive summation as shown in Fig. 13.4.

Fig. 13.4 Naive recursive summation

This is a member of a class of summation algorithms called recursive summation,
where one element to be summed is selected at a time and accumulated. As another
example of a recursive summation method, the data could be sorted and then
summed. It is clear that naive summation can be done as an online method, but
sorting first cannot.

Letting e be machine epsilon and assuming N � e < 1, (13.9) below is a bound
on the relative error in OSN for naive summation [11],

jEN j
jSN j � ..N � 1/e C O.e2//

PN
iD1 jfi j

jPN
iD1 fi j

: (13.9)

In (13.9) the factor

�s D
PN

iD1 jfi j
jPN

iD1 fi j
(13.10)

is the condition number for the summation process. It is known that any summation
method that uses a fixed precision and takes time independent of the data (it can be
dependent on N) will have a factor �s in its condition number.

A condition number of a process is a measure of the sensitivity of the result
to the input. Note that �s D 1 if all the fi are positive, and the summation is
well conditioned. �s can be very large if there is significant cancellation in the
summation.

For positive fi the naive summation using doubles for N D 1014 results in a
relative error bound of 0:01 or 2 digits of precision. If �s D 105 there might be
serious problems. Note though that (13.9) gives the worst case situation in terms of
the accumulation of the rounding errors.

292 E. de Doncker et al.

Fig. 13.5 Kahan compensated summation

Next consider Kahan compensated summation (Fig. 13.5), proposed by Kahan
and later analyzed by Kahan and Knuth [11, 15]. Again assuming N � e < 1, the
relative error bound for Kahan summation is given by

jEN j
jSN j � .2e C O.Ne2//

Pn
iD1 jfi j

jPn
iD1 fi j

:

Here for positive fi , Kahan summation using doubles for N D 1014 results in a
relative error bound of 2e, nearly full double precision. If �s D 105 the relative error
bound is still about 10�11. As in naive summation, this is a worst case bound. It is
clear that Kahan summation meets the two criteria given above for a good CUDA
method. As a note, Kahan summation works best when jsumj > jfi j in Fig. 13.5.

If one considers using quad precision, e
 10�34, then the naive summation
error bound is close to the bound on Kahan summation using doubles. There is no
quad hardware support currently in CUDA, and a complete software implementation
would have several serious drawbacks. For these reasons, Kahan summation is
suggested in threads when the fi are doubles, and either Kahan summation or a
double accumulator in naive summation is used when the fi are single.

If applied directly to the fi , instead of partial sums, the parallel reduction of
the partial sum results of the threads in a block to a single value, presented in
Sect. 13.4.1, is another known summation method, pairwise summation [11]. In
pairwise summation the sum is the result of building a binary tree of intermediate
results. Again assumingN � e < 1, the relative error bound for pairwise summation
is given by

jEN j
jSN j �

�
e log2 N

1C e log2 N
C O.Ne2/

	 PN
iD1 jfi j

jPN
iD1 fi j

: (13.11)

13 Monte Carlo Integration with Dynamic Parallelism in CUDA 293

When applied to the parallel reduction in Sect. 13.4.1, the fi in (13.11) are the
partial sums stored in cache[threadsPerBlock] and N = threadsPerBlock. Currently
NVIDIA Compute Capability 3.5 has maxThreadsPerBlock D 1,024. So for the
parallel reduction a bound for the roundoff error is 10e�s, where the condition
number is associated with the partial sums from each thread. That condition number
can be much better than the original condition number for the fi in each thread,
where the majority of cancellation is expected to occur. Thus the parallel reduction
may result in the loss of one decimal place in single or double precision.

If results for each block are transferred to the host for final assembly by naive
summation, Kahan summation, or quad precision, the final result’s roundoff error
can also be bounded. For this final summation, the condition number should again
be better than that of the fi can be close to 1.

The roundoff error bounds presented are worst case bounds. If the roundoff
errors are treated as unbiased random normally distributed variates, which is not
unreasonable to assume with the default IEEE-fp rounding on CUDA Compute
capability 2.0 or later, then the rounding errors can be treated as a random walk
where the RMS error in SN is then given by ERMS D O.

p
Ne/. This implies that

the result may be much more accurate than the bounds might indicate.
It is also possible to consider the same arguments made here when the computa-

tion on a thread is being done in single precision. In that case, the overall error in
1014 terms will be dominated by the errors in each single precision fi .

A common three level summation (reduction) process has been described for
integration on GPUs, in threads, in blocks and finally on the host. In using dynamic
execution, or in combining results from many GPUs (say with MPI) there may
be four or more levels, and the same analysis outlined here can continue. A last
observation is that, using Kahan summation going from one level to the next, the
compensation term of the partial sum could be carried up as well and used at the
higher level. This can also be done in the pairwise summation.

In summary, using Kahan summation with a very little extra computation and
memory over naive summation in threads, roundoff error can be controlled for sums
of 1014 terms. The condition number for the result can also be provided and may be
useful in suggesting that the integral should be transformed to avoid cancellation for
better results. The bounding of roundoff in the higher levels of accumulation can be
done as in the pairwise reduction for blocks and in reductions combining blocks.

13.6.3 Computing the Sample Variance

As with the computation of a summation, the computation of the sample variance
in (13.5) has a long history [3, 11]. This section will simply point out some
major issues and similarities to the summation problem. For more detail on CUDA
implementations see [14]).

294 E. de Doncker et al.

Letting the sample variance be 	2 D 1
N�1SSE, where SSE is given by

SSE D
NX
iD1
.fi � Nf /2

D
NX
iD1

f 2
i �N Nf 2; (13.12)

it is clear that the second form in (13.12) can be implemented as an online method
in one pass by accumulating both

PN
iD1 f 2

i and
PN

iD1 fi . However, this “textbook
method” should in fact not be used in practice and often results in a very serious
cancellation error in the final subtraction, even resulting in negative values for SSE!

The condition number for SSE is given by �SSE where

�SSE D jjfjj2p
SSE

and f is the vector of the fi . It is easy to see that large values for the fi with small
variation between them will cause problems.

However, from the standpoint of using 	 as an estimate of the error in Monte
Carlo integration, the need for high precision in the SSE is not as important as it is
in the summation. Only a few decimal places of accuracy will suffice.

Just as with the summation process, there are more stable online methods
for computing running online values for SSE than the textbook method. Several
online methods have been proposed using single point updates and block updates.
Additionally, compensation can be done for extra precision if needed. Some of
these methods fit into the CUDA architecture well, much like the corresponding
summation methods, for single point updates on threads, pairwise parallel reduction
on blocks, and the block reduction on a host [3, 11, 14].

13.6.4 Other Methods

There are other methods beyond those mentioned here for computing accurate
summations and variances. Some of these can be reasonably implemented on CUDA
architectures, such as double compensation, cascading, and software multiple
precision to name a few. None of these appear to be as effective on CUDA
architectures in conserving resources as Kahan compensation, which looks to be
sufficient for numerical integration.

13 Monte Carlo Integration with Dynamic Parallelism in CUDA 295

13.7 Conclusions and the Future

It is clear that CUDA processors can be very effective in numerical integration.
Important high-dimensional integrals that were previously practically impossible
to evaluate can now be dealt with routinely, and the development of reliable open
source software to provide this support will be available shortly. This is possible
because of three factors:

• the advances in CUDA hardware and software by NVIDIA,
• the advances in efficient pseudo-random number generation for CUDA, and
• analysis and application of error and roundoff controls.

Rapid advances are happening in all three of these areas. NVIDIA GPUs
are planned and being released with more cores, memory and features. CUDA
6.0, now available in beta, has features for coordinating eight GPUs on a single
host. Effective pseudo-random and hopefully new quasi-random (low-discrepancy
sequence) number generation on CUDA continues to evolve. Finally, general
frameworks for CUDA implementation on workstations, clusters and clouds have
been demonstrated and are evolving.

Acknowledgements We acknowledge the support from the National Science Foundation under
Award Number 1126438, and from NVIDIA for the award of our CUDA Teaching Center.

Appendix

As an application we treated a Feynman (two-)loop integral, which was previously
considered in [7, 17]. This type of problem is important for the calculation of the
cross section of particle interactions in high energy physics.

Table 13.2 lists the integral approximation, absolute error and error estimate,
and the parallel time of a GPU computation on Kepler K20, using the MC kernel
with RANDOM123 as the PRNG, and Kahan summation on the GPU. The results
in the bottom part of the table (for N � 4 � 108) are obtained using the horizontal
dynamic parallelism strategy with a chunk size of 200 million. For the smaller values
of N in the top part of the table, the chunk size is set equal to N , so no child
kernels are launched. For these values of N , the execution time is compared to that
of a corresponding sequential calculation where erand48() is called to generate the
pseudo-random sequence on the CPU. Speedups of near full peak performance are
observed. Note that the error decreases to 9.9e�08 at N D 4 � 1010. The integrand
function is given below.

296 E. de Doncker et al.

Table 13.2 Times and speedup results for a Feynman loop integral

Seq. Time Par. Time
N Result Abs. Err. Err. Est. (ms) (ms) Speedup

103 7.725290e�02 8.1e�03 1.1e�02 3.4e�01 2.5e�01 1.37eC00
5� 103 8.380065e�02 1.6e�03 4.8e�03 1.7eC00 2.5e�01 6.64eC00
104 8.317693e�02 2.2e�03 3.2e�03 3.4eC00 2.6e�01 1.31eC01
5� 104 8.428590e�02 1.1e�03 1.6e�03 1.7eC01 2.8e�01 5.92eC01
105 8.421736e�02 1.1e�03 1.1e�03 3.3eC01 3.2e�01 1.04eC02
5� 105 8.467325e�02 6.8e�04 5.3e�04 1.6eC02 6.1e�01 2.70eC02
106 8.497359e�02 3.8e�04 3.9e�04 3.3eC02 9.7e�01 3.38eC02
5� 106 8.516875e�02 1.8e�04 1.8e�04 1.6eC03 3.6eC00 4.49eC02
107 8.535279e�02 1.4e�06 1.4e�04 3.3eC03 6.9eC00 4.71eC02
5� 107 8.528537e�02 6.6e�05 5.9e�05 1.6eC04 3.3eC01 4.89eC02
108 8.534221e�02 9.2e�06 4.2e�05 3.3eC04 6.6eC01 4.95eC02
2� 108 8.533084e�02 2.1e�05 3.0e�05 6.5eC04 1.3eC02 4.94eC02

4� 108 8.532608e�02 2.5e�05 2.1e�05 2.6eC02
109 8.531650e�02 3.5e�05 1.3e�05 6.6eC02
2� 109 8.533230e�02 1.9e�05 9.6e�06 1.3eC03
4� 109 8.534547e�02 5.9e�06 6.8e�06 2.6eC03
1010 8.535301e�02 1.6e�06 4.3e�06 6.6eC03
4� 1010 8.535130e�02 9.9e�08 2.2e�06 2.6eC04
1011 8.534716e�02 4.2e�06 1.4e�06 6.6eC04

13 Monte Carlo Integration with Dynamic Parallelism in CUDA 297

References

1. CUDA Library. http://www.nvidia.com/getcuda (last accessed May 2014)
2. Brown, R.: DIEHARDER. http://www.phy.duke.edu/~rgb/General/dieharder.php (last

accessed May 2014)
3. Chan, T.F., Golub, G.H., LeVeque, R.J.: Updating formulae and a pairwise algorithm for

computing sample variances. Technical Report STAN-CS-79-773, Stanford University ftp://
reports.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf (1979)

4. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Academic, New York (1975)
5. de Doncker, E., Assaf, R.: GPU integral computations in stochastic geometry. In: VII Workshop

Computational Geometry and Applications (CGA). Lecture Notes in Computer Science, vol.
7972, pp. 129–139 (2013)

6. de Doncker, E., Kapenga, J., Liou, W.W.: Open source software for Monte Carlo/DSMC
applications. In: 55th AIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics, and
Materials Conference, The American Institute of Aeronautics and Astronautics (AIAA) (2014).
doi:10.2514/6.2014-0348

7. de Doncker, E., Yuasa, F.: Distributed and multi-core computation of 2-loop integrals. In: 15th
International Workshop on Adv. Computing and Analysis Techniques in Physics (ACAT 2013),
Journal of Physics, Conference Series. To appear (2014).

8. Dremmel, J., Nguyen, H.D.: Fast reproducible floating-point summations. In: 2013 21st IEEE
Symposium on Computer Arithmetic (ARITH), pp. 163–172 (2013)

9. Genz, A.: MVNPACK. http://www.math.wsu.edu/faculty/genz/software/fort77/mvnpack.f
(2010)

10. Goldberg, D.: What every computer scientist should know about floating-point arithmetic.
ACM Comput. Surv. 23(1), 5–48 (1991)

11. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia,
Addison-Wesley (2002). ISBN 978-0-898715-21-7

12. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985. Institute
of Electrical and Electronics Engineers, New York (1985). Reprinted in SIGPLAN Notices
22(2), 9–25 (1987)

13. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-2008. Institute
of Electrical and Electronics Engineers, New York (2008)

14. Kapenga, J., de Doncker, E.: Compensated summation on multiple NVIDIA GPUs. HPCS
Technical Report HPCS-2014-1, Western Michigan University (2014)

15. Knuth, D.E.: The Art of Computer Programming, Volume 2, Seminumerical Algorithms, 3rd
edn. Addison-Wesley (1998)

http://www.nvidia.com/getcuda
http://www.phy.duke.edu/~rgb/General/dieharder.php
ftp://
reports.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf
http://www.math.wsu.edu/faculty/genz/software/fort77/mvnpack.f

298 E. de Doncker et al.

16. L’ Equyer, P.: Combined multiple recursive random number generators. Oper. Res. 44,
816–822 (1996)

17. Laporta, S.: High-precision calculation of multi-loop Feynman integrals by difference equa-
tions. Int. J. Mod. Phys. A 15, 5087–5159 (2000). arXiv:hep-ph/0102033v1

18. L’Equyer, P., Simard, R.: A C library for empirical testing of random number generators. ACM
Trans. Math. Softw. 33, 22 (2007)

19. Manssen, M., Weigel, M., Hartmann, A.K.: Random number generators for massively parallel
simulations on GPU (2012). arXiv:1204.6193v1 [physics.comp-ph] 27 April 2012

20. Marsaglia, G.: DIEHARD: a battery of tests of randomness. http://www.stat.fsu.edu/pub/
diehard

21. Marsaglia, G.: Xorshift RNGs. J. Stat. Softw. 8, 1–6 (2003)
22. Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-dimensionally equidistributed

uniform pseudorandom number generator. ACM Trans. Model. Comput. Simul. 8, 3 (2003)
23. Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefevre, V., Melquiond, G.,

Revol, N., Stehle, D., Torres, S. Handbook of Floating-Point Arithmetic. Birkhäuser, Boston
(2010). ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN 978-0-8176-4704-9

24. NVIDIA. Tesla Product Literature. http://www.nvidia.com/object/tesla_product_literature.
html (last accessed May 2014)

25. NVIDIA. http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/
TechBrief_Dynamic_Parallelism_in_CUDA.pdf (last accessed May 2014)

26. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part i: Faithful rounding.
SIAM J. Sci. Comput. 31(1), 189–224 (2008)

27. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part ii: Sign, k-fold
faithful and rounding to nearest. SIAM J. Sci. Comput. 31(2), 1269–1302 (2008)

28. Saito, M., Matsumoto, M.: Variants of Mersenne twister suitable for graphics processors. Trans.
Math. Softw. 39(12), 1–20 (2013)

29. Salmon, J.K., Moraes, M.A.: Random123: a library of counter-based random number gen-
erators. http://deshawresearch.com/resources_random123.html, and Random123-1.06 Docu-
mentation, http://www.thesalmons.org/john/random123/releases/1.06/docs (last accessed May
2014)

30. Salmon, J.K., Moraes, M.A., Dror, R.O., Shaw, D.E.: Parallel random numbers: as easy as
1, 2, 3. In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC11) (2011)

31. Sanders, J., Kandrot, E.: CUDA by Example - An Introduction to General-Purpose GPU
Programming. Addison-Wesley, Reading (2011). ISBN: 978-0-13-138768-3

32. SPRNG: The scalable parallel random number generators library. http://www.sprng.org (last
accessed May 2014)

33. Whitehead, N., Fit-Floreas, A.: Precision & performance: Floating point and IEEE 754 com-
pliance for NVIDIA GPUs. http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-
CUDA-Floating-Point.pdf Nvidia developers (2011)

http://www.stat.fsu.edu/ pub/diehard
http://www.stat.fsu.edu/ pub/diehard
http://www.nvidia.com/object/tesla_product_literature.html
http://www.nvidia.com/object/tesla_product_literature.html
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief _Dynamic_Parallelism_in_CUDA.pdf
http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/TechBrief _Dynamic_Parallelism_in_CUDA.pdf
http://deshawresearch.com/resources_random123.html
http://www.thesalmons.org/john/random123/releases/1.06/docs
http://www.sprng.org
http://developer.download.nvidia.com/assets/cuda/ files/NVIDIA-CUDA-Floating-Point.pdf
http://developer.download.nvidia.com/assets/cuda/ files/NVIDIA-CUDA-Floating-Point.pdf

Chapter 14
GPU: Accelerated Computation Routines
for Quantum Trajectories Method

Joanna Wiśniewska and Marek Sawerwain

14.1 Introduction

The Monte Carlo methods—starting the consideration from the first works of John
von Neumann, Stanisław Ulam and Nicholas Metropolis [11, 12]—are widely used
for calculations in the fields of: chemistry, astrophysics [15], quantum physics
(e.g. [22, 25]) and also in the field of quantum computations.

There are many projects concerned about quantum computing simulation using
Monte Carlo methods (a list of open source implementations is available at address
http://www.quantiki.org/wiki/List_of_QC_simulators).

The mentioned list of projects contains presently a few popular packages using
the Monte Carlo methods, in particular quantum trajectories [4] method (defined in
further part of this chapter as QTM), for example: the package by Tan [18], QuTIP
package [8] and also C++QED presented in [20]—the latest version of this package
is described in [19]. It is possible to simulate quantum computing with an older
solution [17] using quantum trajectories method as well.

Most listed packages do not use multi-core CPU and GPU systems. The
exception is QuTIP package using available CPU cores during calculations for
quantum trajectories (the GPU cores are not used). In [8] it is shown that for older
solutions, e.g. [18], the parallel processing of quantum trajectories allows to obtain
satisfactory linear acceleration. Using multi-core GPU systems for the quantum
trajectories method causes the increase of efficiency and allows to obtain a better

J. Wiśniewska
Institute of Information Systems, Faculty of Cybernetics, Military University of Technology,
Kaliskiego 2, 00-908 Warsaw, Poland
e-mail: jwisniewska@wat.edu.pl

M. Sawerwain (�)
Institute of Control and Computation Engineering, University of Zielona Góra,
Licealna 9, Zielona Góra 65-417, Poland
e-mail: M.Sawerwain@issi.uz.zgora.pl

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__14, © Springer International Publishing Switzerland 2014

299

http://www.quantiki.org/wiki/List_of_QC_simulators
mailto:jwisniewska@wat.edu.pl
mailto:M.Sawerwain@issi.uz.zgora.pl

300 J. Wiśniewska and M. Sawerwain

precision of computations in a shorter time—it is because the more trajectories are
calculated the more precisely the statistical (average) trajectory is specified.

This chapter presents the implementation of quantum trajectories method with
use of the CUDA technology. There is also shown an algorithm, which was
implemented for GPU, and performance tests of obtained final solution. The
quantum trajectories algorithm needs adequate methods for pseudorandom number
generation (the CUDA Toolkit offers pseudorandom generators with good perfor-
mance and fully optimized for a parallel environment) and for solving the initial
value problem. There are two methods presented for the initial value problem
(IVP): fourth-order Runge-Kutta method and fourth-order Backward Differentiation
Formula. In further part of this chapter acronyms IVP or ODE (ordinary differential
equation) will be used interchangeably.

14.2 The Quantum Trajectories Method

The quantum states’ dynamics can be described as an evolution of a closed or an
open quantum system. The closed system’s evolution is used for instance in quantum
circuits. The open system’s evolution is considered when the external environment
affects the computations. The mathematical details, describing closed and open
systems’ dynamics, are not needed to explain this chapter’s aims—more detailed
information can be found in [21] and [13].

However, it might be useful to mention that for closed systems the evolution is
an unitary operation and it can be denoted as Schrödinger equation:

.A/ i„ @
@t
‰ D OH‰; .B/ i„ d

dt
j i D H j i (14.1)

where (A) is the partial differential equation and (B) is used for the numerical
simulations. In (B) H is a Hamiltonian expressing system’s dynamics and j i
denotes the initial system’s state.

If the influence of external environment should be added then the evolution of
open quantum systems is given by the von Neumann equation:

P�tot.t/ D � i„ ŒHtot; �tot.t/�; Htot D Hsys CHenv CHint ; (14.2)

where Hsys describes the dynamics of closed system, Henv is the environment’s
dynamics and Hint denotes the dynamics for environment-system interaction. The
environment’s influence can be removed from (14.2) by the operation of partial trace
what is expressed by the Lindblad master equation:

P�.t/ D � i„ ŒH.t/; �.t/�C
X
n

1

2

�
2Cn�.t/C

C
n � �.t/CC

n Cn � CC
n Cn�.t/

�
(14.3)

14 GPU: Accelerated Computation Routines for Quantum Trajectories Method 301

where Cn denotes so-called collapse operators representing the influence of external
environment on a simulated system. Using a collapse operator on a quantum state
causes state’s change. However, simulating the behavior of quantum system in this
case requires enormous memory capacity (growing exponentially according to the
system’s size).

At present, a method used to reduce the memory requirements is the Quantum
Trajectories Method (QTM). The correct simulation of quantum system’s behaviour
needs calculating many single trajectories (as the natural consequence of Monte
Carlo methods’ random character). However, every trajectory may be simulated
separately and this feature makes possible and efficient the parallel implementation
for the quantum trajectories method.

Additionally, in a comparison to Lindblad master equation methods, where the
density matrix formalism is used, the quantum trajectories method utilizes the wave
function based on n-dimensional state’s vector, so-called pure state. Generally, the
number of vector’s entries is exponential, but using sparse matrices allows efficient
simulation of quantum system’s behavior. In spite of the fact that the simulation
based on the wave function concerns only one state of quantum system. Naturally,
it seems to be a disadvantage of this solution because for Lindblad master equation
methods the density matrix describes many different states of the same system and
this causes higher demands on memory and computing resources. Using density
matrices in most cases is not possible because of memory requirements—generally
the size of density matrix is 2n � 2n. In a case of the quantum trajectories method,
the collapse operator can be used to modify the state’s vector and to monitor the
influence of external environment on quantum state.

Summarizing, the system’s evolution for QTM is described by the following
Hamiltonian:

Heff D Hsys � i„
2

X
i

CC
n Cn; (14.4)

The probability of so-called quantum jump, that means using a collapse operatorCn
on current quantum state, is:

ıp D ıt
X
n

˝
 .t/jCC

n Cnj .t/
˛
; (14.5)

Whereas, the system’s state after the collapse operation can be presented as:

j .t C ıt/i D Cn j .t/iph .t/jCC
n Cnj .t/i

(14.6)

If there are more than one collapse operator, the probability of using i -th
operator is:

Pi.t/ D
˝
 .t/jCC

i Ci j .t/
˛

ıp
(14.7)

302 J. Wiśniewska and M. Sawerwain

In the process of simulation a random numbers generator is needed to ensure
the probabilistic choice of adequate collapse operator. All mentioned calculations
correspond to operations performed on matrices and vectors. In case of matrices they
are usually band matrices, so they may be treated as sparse matrices to economize
memory use and to speed up the calculations. The Compressed Sparse Row (CSR)
format will be used because of many matrix-vector multiplication—it also gives an
additional speed-up.

The above essential remarks constitute the idea of a following algorithm for a
single quantum trajectory simulation which can be presented as four computational
steps:

(I) the random value r 2 .0; 1/ is computed, where r denotes the probability of
quantum jump,

(II) the Schrödinger equation is integrated using HamiltonianHeff at time t in such
way to make the state’s vector norm equal or greater to r : h .t/j .t/i � r ,

(III) the quantum jump occurrence causes the system’s state projection, in moment
t , to one of the states given by Eq. (14.6). The operator Cn is selected to meet
the following relation for adequate n:

nX
iD1

Pn.t/ � r; (14.8)

particular Pn values are specified by Eq. (14.7).
(IV) the projected state of a wave function is a new initial value for moment t ; next,

the new value of r is randomly selected and the procedure repeats the process
of quantum trajectory simulation starting at the step (I)—more precisely: the
simulation is performed for previously given value t .

The presented algorithm refers to the solutions described in other publications,
e.g. in [8] and [1, 2].

14.3 Details of Implementation in CUDA C/C++

The Quantum Trajectories Method algorithm because of its basic property—
calculating many unrelated trajectories—can be presented as a parallel algorithm
consisting of two main steps:

• the first step—trajectories simulation—according to the method described in
Sect. 14.2,

• the second step—averaging the obtained trajectories to compute the final trajec-
tory.

The main task in a QTM algorithm is calculating quantum trajectories. The basic
strategy for the implementation of quantum trajectories method is to calculate every

14 GPU: Accelerated Computation Routines for Quantum Trajectories Method 303

trajectory without any correlations to one another. There are also some shared data
e.g. Hamiltonian’s definition, collapse operators’ definition, time described as a
variable in a form of list or table containing values of this variable. The mentioned
types of data may be constant during the process of calculating the trajectories and
during the whole simulation. Of course, the Hamiltonian and collapse operators may
be considered as time-depended as well. In such case for each trajectory there will
be a special variable representing mentioned structures. The presence of shared data
means also the possibility of using so-called constant memory, which additionally
simplify obtaining efficient implementation of QTM.

There should be a large area of local data in every thread for single trajectory
pointed out for QTM implementation. The set of local variables contains also
variables describing states of Pseudo-Random Number Generators (PRNGs). These
states must be controlled during the simulation to provide different numbers’
sequences in every thread (it is a very important feature for Monte Carlo methods,
ensuring simulation’s correctness). Unfortunately, a large number of local data,
caused by many instances of procedure solving ODEs as well, means that it is worth
to consider two following cases. The first case are simulations of small systems,
when fast local memory resources available in units of the GPU are sufficient to run
calculations efficiently. The second case are simulations of large systems, when it is
necessary to use the main memory of the GPU. In both cases calculated trajectories
are stored in the main memory. This approach allows to implement procedures using
the capacities of GPU more efficiently.

Generally, the task scheme performed in a computation kernel during the
quantum trajectories’ calculating is shown in Fig. 14.1.

The second stage of QTM is averaging the set of obtained trajectories to one
final trajectory. This step can be also efficiently implemented by the operation of
reduction, which is presented in [5]. The whole process can be presented as a
directed acyclic graph, shown in Fig. 14.2. Additionally, the solution described in
[5] is considered to be very efficient.

14.3.1 Data Types and Auxiliary Functions

The Quantum Trajectories Method algorithm’s implementation for GPU compu-
tation kernel needs a strictly specified data format. The data returned by the
QTM algorithm is a sequence of expectation values—presented as real numbers
obtained by using so-called expectation operator on system’s state when the process
of trajectories’ calculating is already completed. It should be stressed that the
entries of quantum state’s vectors and the entries of matrices representing quantum
operators are complex numbers. The CUDA package contains the adequate data
type cuComplex (it provides the cooperation with types float and double), but the
proposed implementation uses less advanced type for complex numbers because
the additional code ensuring the numerical stability for the division or calculating
absolute value of complex numbers is not necessary. This is justified by the

304 J. Wiśniewska and M. Sawerwain

Hamiltonian operator

collapse and expec-
tation operators

Common Shared Data
computation routine
for the first trajetory

PRN
data

YDOT fnc(H, T, Y)

evolution of Hamiltonian

int rk4_method(h,Tout, steps, T, Y, fnc); int bdf4_method(h,Tout, steps, T, Y, fnc);

computation routine
for the i-th trajetory

computation routine
for the last trajetory

time list contains N
elements

H(T) data for
time depended
Hamiltonian

k=1 k=N

time list

n1, n2 = two PR value

solve ODE
between two
time points

collapse has
occured

H(T) data for
time depended
Hamiltonian

k=1 k=N

time list

solve ODE
between two
time points

collapse has
occured

H(T) data for
time depended
Hamiltonian

k=1 k=N

time list

solve ODE
between two
time points

collapse has
occured

GPU device subroutines for ODE/IVP

pa
ra

lle
l
ex

ec
ut

io
n

of
 e

ac
h

ro
ut

in
e

fo
r

tr
aj

ec
to

ry
 c

om
pu

ta
ti

on
PRN
data

PRN
data

data for single trajectory data for single trajectory

n1, n2 = two PR value n1, n2 = two PR value

Fig. 14.1 The first stage’s task scheme for quantum trajectories method in GPU computation
system (PRN: pseudo-random numbers, H: Hamiltonian data, IVP: Initial Value Problem, RK4:
the 4th order Runge-Kutta method, BDF4: the 4th order Backward Differentiation Formulae, T:
time variable, Y: actual state of system)

se
t

of
 n

 t
ra

je
ct

or
ie

s
ca

lc
ul

at
ed

 i
n

th
e

fir
st

 s
te

p

j subsets of trajectories

av
er

an
gi

ng
av

er
an

gi
ng

av
er

an
gi

ng

final trajectory

parallel operation

parallel operation

av
er

an
gi

ng

Fig. 14.2 The second stage’s task scheme for quantum trajectories method in GPU computation
system, averaging obtained trajectories after the first step

14 GPU: Accelerated Computation Routines for Quantum Trajectories Method 305

normalization of all calculated values, which allows to use simpler methods and
results with system’s higher efficiency, and also does not cause numerical instability.
Although controlling the correctness of obtained results is recommended.

The definition of simpleComplex template used in proposed implementation
is a typical definition based on a structure:

1 t empla te <typename T> s t r u c t s impleComplex {
2 T r e ;
3 T im ;
4 } ;

Naturally, for a user’s convenience several additional operators (e.g. sum,
multiplying, etc.) were overloaded in the simpleComplex template what allows
clear presentation of arithmetic operations—both for host code and device code. The
uVector template is defined similarly and it may be used for host code and GPU
device code as well. To ensure the ease of use also the access operator for vector’s
elements was defined:

1 t empla te <typename T , s i z e _ t v _ s i z e >
2 s t r u c t uVec to r {
3 unsigned i n t s i z e ;
4
5 T m[v _ s i z e] ;
6
7 __host__ _ _ dev ice_ _ T& opera tor []
8 (c o n s t s i z e _ t i d x) { re turn m[i d x] ; } ;
9 __host__ _ _ dev ice_ _ c o n s t T& opera tor []

10 (c o n s t s i z e _ t i d x) c o n s t { re turn m[i d x] ; } ;
11 } ;

To increase the code’s performance the range is not verified.
Other definitions, e.g. the uMatrix template for full matrices and the uCRSMa-

trix template for sparse matrices, are based on uVector template. Using
templates ensures easy changes between the types (from float or double to other
type defined by the user) and simplify the process of memory management because
dynamic memory allocation is no longer needed by GPU device. Especially smaller
systems achieve higher performance when user-defined types are used instead of
CUDA Toolkit types.

Creating own templates needs defining many auxiliary functions, e.g. for mul-
tiplying a CRS matrix by a vector. A typical implementation for this operation is
given below:

1 typede f simpleComplex <double > SCD ;
2
3 template < s i z e _ t v_s i ze , s i z e _ t _S_ValueSize ,
4 s i z e _ t _S_RowPtr , s i z e _ t _S_ColInd >
5 __host__ __dev i ce__ s t r u c t uVector < SCD , v_s i ze >
6 mulCSRMatByuVec (
7 uCSRMatrix <SCD, _S_ValueSize , _S_RowPtr , _S_ColInd > m,

306 J. Wiśniewska and M. Sawerwain

8 uVector < SCD, v_s i ze > x)
9 {

10 s i z e _ t i , j ;
11 uVector < SCD, v_s i ze > y ;
12 y . s i z e = v _ s i z e ;
13
14 for (i =0; i < v _ s i z e ; i ++) {
15 y [i] = make_simpleComplex (0 . 0 , 0 . 0) ;
16 }
17
18 for (i =0; i < v _ s i z e ; i ++) {
19 for (j =m. row_p t r [i] ; j < m. row_p t r [i +1] ; j ++) {
20 y [i]= y [i] + (m. v a l u e s [j] * x [m. c o l _ i n d [j]]) ;
21 }
22 }
23
24 return y ;
25 }

The above definition is constructed for the simpleComplex<double> type,
which is necessary because with use of make_simpleComlex the initial values
may be given as double numbers in this case.

A very important issue for implementing the QTM is the selection of Pseudo-
Random Number Generator (PRNG). In this work the package cuRand [14],
offering sufficient efficiency and proper statistical properties, from CUDA Toolkit
was used. The available PRNGs in the cuRand package are XORWOW [10] and
MRG32k3A [9, 16].

Using cuRand generator from the CUDA Toolkit is an easy task. There should
be a global pointer, e.g. devStates, declared to keep the information about the
states of generators used in every thread and there must be some global memory of
GPU device allocated for proper use of PRNGs.

1 c u r a n d S t a t e * d e v S t a t e s ;
2 c u d a S t a t u s = cu d aMal lo c (
3 (void **)& d e v S t a t e s , N t r j * s i z e o f (c u r a n d S t a t e)) ;

The next step is the initialization of each generator. The number of generators
must correspond to the form of computing grid, which is considered as a line with
Ntrj elements and Ntrj is an integer number equal to the quantity of calculated
trajectories:

1 unsigned long long s e e d t i m e = t i m e (0) ;
2 s e t u p _ k e r n e l _ f o r _ c u r a n d < < <1 , N t r j >>>(d e v S t a t e s , s e e d t i m e) ;

The computation kernel’s form is quite simple because it is based on the initia-
lization of particular generators pointed by the indexes of threads—variable id.

1 __g l oba l __ void s e t u p _ k e r n e l _ f o r _ c u r a n d (
2 c u r a n d S t a t e * s t a t e , unsigned long long seed) {
3 i n t i d = t h r e a d I d x . x ;
4 c u r a n d _ i n i t (seed , id , 0 , &s t a t e [i d]) ;
5 }

14 GPU: Accelerated Computation Routines for Quantum Trajectories Method 307

Considering the simulation of quantum system’s dynamics with the use of QTM
it may turn out that instead of generating pseudorandom numbers in every thread,
the needed values can be prepared earlier: before the realization of QTM algorithm
(e.g. with use of PRNG or physical sources of randomness [3, 7]). This approach
does not affect significantly on data transfer but allows to free some local memory
resources. As a result, the number of trajectories computed within one block can be
increased.

14.3.2 Integration Methods

The second step leading to correct implementation of QTM is the selection of
numerical methods for solving IVP. The implementations of the fourth-order Runge-
Kutta method (RK4) and the fourth-order Backward Differentiation Formulae
(termed as BDF4) were done. Both methods have to be adjusted for a parallel
environment, so they were prepared as reentrant versions, this means that they will
not be using any variables outside their own namespace. Due to the limitations put
on this chapter, only the implementations for fixed step will be presented.

The implementation of the RK4 method, as a template, is shown at Listing 14.1.
Using templates allows: easy types changing (i.e. between float or double) and
specifying the size of structures which will be processed in the computational
procedure. This approach is necessary because QTM computes the solution from
a system of equations, where the number of equations equals to the size of analyzed
quantum state.

Listing 14.1 The fourth-order Runge-Kutta method (without additional code for error detection
like no convergence or exceeded iterations’ number) as reentrant version in a form of device
function for CUDA computation kernel

1 template <typename TYPE , s i z e _ t SIZE , s i z e _ t AlphaSize >
2 __dev i ce__ i n t rk4_method_for_mc (TYPE h , TYPE Tout , i n t s t e p s ,
3 simpleComplex <TYPE> &T ,
4 uVector < simpleComplex <TYPE> , SIZE > &Y,
5 uVector < simpleComplex <TYPE> , SIZE > (* fnc) (
6 cons t simpleComplex <TYPE>&,
7 cons t uVector < simpleComplex <TYPE> , SIZE >&))
8 {
9 i n t j = 0 ;

10
11 uVector < simpleComplex <TYPE> , A l phaS i ze > k1 , k2 , k3 , k4 ;
12
13 k1 . s i z e = Al phaS i ze ; k2 . s i z e = A l phaS i ze ;
14 k3 . s i z e = Al phaS i ze ; k4 . s i z e = A l phaS i ze ;
15
16 whi le ((j < s t e p s) && (T . r e < Tout)) {
17 k1 = h * fnc (T , Y) ;
18 k2 = h * fnc (T + h / 2 . 0 , Y + k1 / 2 . 0) ;
19 k3 = h * fnc (T + h / 2 . 0 , Y + k2 / 2 . 0) ;

308 J. Wiśniewska and M. Sawerwain

20 k4 = h * fnc (T + h , Y + k3) ;
21
22 Y = Y + ((1 . 0 / 6 . 0) * (k1 + 2 . 0* k2 + 2 . 0* k3 + k4)) ;
23
24 T = T + h ;
25 j ++;
26 }
27 return 0 ;
28 }

Naturally, the RK4 method can have a very compact implementation, which is
shown in Listing 14.1. This is a consequence of using templates simpleComplex
and uVector together with a rich set of overloaded operators, which makes the
implementation of arithmetic operations on vectors and scalars very clear. It should
be stressed that during the parallel trajectories’ calculation many instances of RK4
method reside in a memory and for calculations’ correctness the method needs
additional vectors: k1, k2, k3, k4, which allocate memory available for every
thread. For a small systems vectors k1, k2, k3, k4 may be placed in a register
memory by the compiler’s optimization process, because mentioned vectors are
static variables.

The sets of parameters for methods RK4 and BDF4 are the same and require
to supply: the width of integration’s interval (h), the final value of time (Tout),
a maximal number of iterations, an actual value of time variable, the present
system’s state Y. The very last parameter is a function specifying the state’s
evolution with use of previously given Hamiltonian.

Listing 14.2 shows the most important parts of the BDF4 method’s implementa-
tion. To simplify the implementation, both methods (RK4 and BDF4) do not use the
variable step integration.

Listing 14.2 The most significant parts of the fourth-order BDF method as reentrant version for
CUDA computation kernel

1 template <typename TYPE , s i z e _ t SIZE , s i z e _ t AlphaSize >
2 __dev i ce__ i n t bdf4_au t o fac_m e t hod_fo r_m c (TYPE h , TYPE Tout ,
3 i n t s t e p s , simpleComplex <TYPE> &T ,
4 uVector < simpleComplex <TYPE> , SIZE > &Y,
5 uVector < simpleComplex <TYPE> , SIZE > (* fnc) (
6 cons t simpleComplex <TYPE>&,
7 cons t uVector < simpleComplex <TYPE> , SIZE >&))
8 {
9 cons t i n t n = 8 ;

10 i n t i s t e p , e r r L v l = 0 , i , j ;
11 i n t m_size = A l phaS i ze ;
12 TYPE t ;
13
14
15 uVector < simpleComplex <TYPE> , A l phaS i ze > YY[n] ;
16 uVector < simpleComplex <TYPE> , Al phaS i ze > D1[n] ;
17 / / removed p a r t
18 uVector < simpleComplex <TYPE> , Al phaS i ze > D4[n] ;
19

14 GPU: Accelerated Computation Routines for Quantum Trajectories Method 309

20
21 uVector < simpleComplex <TYPE> , A l phaS i ze > p , p1 , c ;
22 p . s i z e = A l phaS i ze ;
23 / / removed p a r t
24
25 uMat r ix <TYPE , AlphaSize > J , IJ , id_mat ;
26 J . rows = A l phaS i ze ;
27 J . c o l s = A l phaS i ze ;
28 / / removed p a r t
29
30 e y e _ o f _ m a t r i x (id_mat) ;
31
32
33 z e r o v e c t o r (p) ; z e r o v e c t o r (p1) ; z e r o v e c t o r (c) ;
34
35 for (i =0; i <n ; i ++) {
36 YY[i] = p ; D1[i] = p ; D2[i] = p ; D3 [i] = p ; D4 [i] = p ;
37 }
38
39 for (i =0; i < A l phaS i ze ; i ++) {
40 YY[0] [i] = Y[i] ;
41 }
42
43 e r r L v l = rk4_method_for_mc <TYPE , SIZE , AlphaSize >(h ,
44 T . r e + 4*h , 1 , T , Y, fnc) ; YY[0] = Y;
45 / / . . . removed p a r t . . .
46 e r r L v l = rk4_method_for_mc <TYPE , SIZE , AlphaSize >(h ,
47 T . r e + 4*h , 1 , T , Y, fnc) ; YY[4] = Y;
48
49
50 D1 [0] = (YY[1] � YY[0]) ;
51 / / . . . removed p a r t . . .
52 D4 [0] = (D3 [1] � D3 [0]) ;
53
54
55 i =4; i s t e p =0;
56 whi le ((i s t e p < s t e p s) && (T . r e < Tout)) {
57 p = YY[i] + D1 [i �1] + D2[i �2] + D3 [i �3] + D4 [i �4];
58 t = 1 . 0 ; j =1;
59 whi le ((t > 1e �16) && (j < 6)) {
60 c = (1 . 0 / 2 5 . 0) * (48 . 0*YY[i] �36.0*YY[i �1]+16.0 *
61 YY[i �2]�3.0*YY[i �3] + 12 . 0
62 * h * fnc (T + h , p)) ;
63 J = 1 2 . 0 / 2 5 . 0 * h * num _j acob i an_vec t o r <TYPE ,
64 SIZE , AlphaSize >(T + h , p , fnc) � i d_mat ;
65 i n v e r s e _ o f _ m a t r i x (J , I J) ;
66
67 p1 = ((I J) * (p�c)) + p ;
68 t = norm i n f (p1 � p) ;
69 j = j + 1 ; p = p1 ;
70 T = T + h ;
71 } / / w h i l e ((t > 1e �16) && (j < 6))
72

310 J. Wiśniewska and M. Sawerwain

73 YY[i +1] = p ;
74
75 D1 [i] = (p � YY[i]) ;
76 / / . . . removed p a r t . . .
77 D4 [i �3] = (D3[i �2] � D3 [i �3]) ;
78
79 i ++; i s t e p ++;
80 } / / ((i s t e p < s t e p s) && (T . re < Tout))
81
82 for (j =0; j < A l phaS i ze ; j ++) {
83 Y[j] = YY[i] [j] ;
84 }
85
86 return e r r L v l ;
87 }

The BDF4 method before starting the main calculations needs the estimation
of value Y in the first four points—to obtain these values the BDF4 method
uses RK4 method (Listing 14.1). The BDF method needs also the results of
functions: num_jacobian_vector which calculates the numerical estimation
of Jacobian’s value; inverse_of_matrix to calculate inverse matrix.

It should be also noted that the solution of equations’ system is saved in the array
Y (lines 80–82). The partial solutions are placed in the array YY. When the main
loop is over (lines 55–69), the variable i points the element of array YY which is the
solution calculated by BDF4 method.

14.3.3 Quantum Trajectory Method: Implementation

There were auxiliary data structures, functions and two methods for solving
differential systems of equations presented in previous sections. This allows to
implement the Quantum Trajectories Method – an exemplary implementation,
according to the description from Sect. 14.2 is given below.

The first part of the implementation – Listing 14.3 – is responsible for local vari-
ables’ declaration, e.g. the variable h corresponds to the width of integration’s step.
The variables expressing time are: T , T f inal , etc. It is also necessary to declare
state variables Y and vector P to collect the information about the probability of
proper collapse operator’s choice. It should be explained that LEAD_NUM_TYPE
denotes basic data types (float or double) and LEAD_DIM corresponds to the size of
variable Y and points out the main dimension of analyzed quantum state.

Listing 14.3 The first part of computational routine for QTM realisation is responsible for local
variable declaration

1 __g l oba l __ void t r j _ s i m (c u r a n d S t a t e * s t a t e ,
2 simpleComplex <LEAD_NUM_TYPE> * t r j _ d a t a) {
3 i n t i = 0 , j =0 , k_ons = 0 ,
4 o d e s o l v e r s t a t e = 0 , ode_norm _s t eps = 5 , c n t = 0 ;
5

14 GPU: Accelerated Computation Routines for Quantum Trajectories Method 311

6 i n t m = 5 ;
7 i n t c o u n t e r I t e r ;
8
9 LEAD_NUM_TYPE a = (LEAD_NUM_TYPE) 0 . 0 ;

10 LEAD_NUM_TYPE b = (LEAD_NUM_TYPE) 1 0 . 0 ;
11 LEAD_NUM_TYPE h , hh , mu = 0 . 0 , nu = 0 . 0 ,
12 / / removed p a r t
13 sump = 0 . 0 ;
14
15 i n t k = 0 , c o l s = N;
16 i n t t h i d x = t h r e a d I d x . x ;
17 i n t t r j = (b l o c k I d x . x * blockDim . x) + t h r e a d I d x . x ;
18
19 uVector < simpleComplex <LEAD_NUM_TYPE> , N > P ;
20
21 simpleComplex <LEAD_NUM_TYPE> T ;
22 / / removed p a r t
23
24 uVector < simpleComplex <LEAD_NUM_TYPE> , 2 > Y;
25 / / removed p a r t
26
27 Y. s i z e = 2 ;
28 / / removed p a r t
29
30 simpleComplex <LEAD_NUM_TYPE> ev ;
31 P . s i z e = N;
32
33 for (k = 0 ; k < N ; k ++) {
34 P [k] . r e = 0 . 0 ;
35 P [k] . im = 0 . 0 ;
36 }
37
38 i f (t r j == 0) {
39 p r e p a r e _ d a t a _ f o r _ o p e r a t o r s () ;
40 }
41 _ _ s y n c t h r e a d s () ;
42
43 / / t h e second p a r t
44 }

A very important issue for implementing QTM in CUDA technology is the read-
out of trajectory’s number. An identification number of the thread and the block will
be used to calculate the trajectory’s number. For simplicity, the computing grid (see
also Fig. 14.3) will be considered as a line sized Ntrj � 1, where Ntrj denotes
the number of trajectories. It means that a single trajectory is calculated per block.
The read-out of thread’s number and assigning identifier to a trajectory is realized
in the following way:

1 i n t t h i d x = t h r e a d I d x . x ;
2 i n t t r j = (b l o c k I d x . x * blockDim . x) + t h r e a d I d x . x ;

The second important issue is checking if the thread’s identifier in block is equal
to zero. If it is so, the function called as prepare_data_for_operators

312 J. Wiśniewska and M. Sawerwain

Block(0,0) Block(1,0) Block(2,0) Block(n,0)

single thread for
trajectory t=0

single thread for
trajectory t=1

single thread for
trajectory t=2

single thread for
trajectory t=n

Block(0,0) Block(1,0) Block(2,0) Block(n,0)

several threads for
k trajectories

several threads for
k trajectories

several threads for
k trajectories

several threads for
k trajectories

in total n trajectories

in total n · k trajectories

Fig. 14.3 The thread’s allocation between blocks in presented method—shown implementation
uses only one thread per block, however, if the quantity of local data is not too large, more threads
may be activated in a one block

will initialize the instances of objects representing: Hamiltonian’s form, the vector
containing values of time, collapse operators and the operator used to calculate
expectation value. Therefore, there is a synchronization command in the line 40,
because all the threads have to wait until the process of initialization will be
completed.

Listing 14.4 The second part of computational routine for QTM which computes a single
trajectory

1 i f (t r j < N t r j) {
2 c u r a n d S t a t e l o c a l S t a t e = s t a t e [t r j] ;
3
4 mu = curand_un i fo r m (& l o c a l S t a t e) ;
5 nu = curand_un i fo r m (& l o c a l S t a t e) ;
6
7 T = make_simpleComplex ((LEAD_NUM_TYPE) a , (LEAD_NUM_TYPE) 0 . 0) ;
8
9 for (i = 0 ; i < LEAD_DIM ; i ++) Y[i] = a l p h a [i] ;

10
11 ev = e x p e c t _ c n v _ c s r d e n m a t (e_ops_0333 , Y) ;
12 t r j _ d a t a [t r j * c o l s + 0] = ev ;
13
14 c o u n t e r I t e r = 0 ;
15 T= t l i s t [0] ;
16
17 for (k = 1 ; k < N; k ++)
18 {
19 a=T . r e ;

14 GPU: Accelerated Computation Routines for Quantum Trajectories Method 313

20 b= t l i s t [k] . r e ;
21 h = (b � a) / m;
22
23 whi le ((T . r e < t l i s t [k] . r e) && c o u n t e r I t e r < 255)
24 {
25 T_prev = T ;
26 Y_prev = Y;
27
28 norm2_prev = norm (Y) ;
29
30 o d e s o l v e r s t a t e = rk4_method_for_mc <LEAD_NUM_TYPE, 2 , 2 >(
31 h , t l i s t [k] . re , 1 , T , Y,
32 &u s e r _ e v o l u t i o n _ f n c <LEAD_NUM_TYPE, 2>) ;
33
34 i f (T . r e > t l i s t [k] . r e)
35 {
36 T = T_prev ;
37 Y = Y_prev ;
38
39 o d e s o l v e r s t a t e = rk4_method_for_mc <LEAD_NUM_TYPE,
40 2 , 2 >(h , t l i s t [k] . re , m, T , Y,
41 &u s e r _ e v o l u t i o n _ f n c <LEAD_NUM_TYPE, 2>) ;
42 }
43
44 norm2_psi = norm (Y) ;
45
46 i f (norm2_psi <= mu) {
47 / / removed code i s a t h r i d p a r t o f t h i s r o u t i n e
48 } / / i f (norm2_ps i <= mu)
49
50 c o u n t e r I t e r ++;
51 } / / w h i l e (T . re < t l i s t [k] . r e)
52
53 o u t _ p s i = Y / no rm sqr t (Y) ;
54
55 ev = e x p e c t _ c n v _ c s r d e n m a t (e_ops_0333 , o u t _ p s i) ;
56 t r j _ d a t a [t r j * c o l s + k] = ev ;
57 } / / f o r (k = 1 ; k < N; k++)
58
59 s t a t e [t r j] = l o c a l S t a t e ;
60 } / / i f (t r j < N t r j)

The second part of computational routine—presented at Listing 14.4—computes
a single trajectory. In the lines 4–5 the PRNG is used to draw the values for the
evaluation whether the collapse operator may be used. It should be mentioned, that
the next drawing of these values takes place in the third part—Listing 14.5—which
contains the code for checking if the collapse operator may be used.

The next actions are: initializing the state’s value (line 9) and calculating the first
expectation value (lines 11–12). The next points of the trajectory are calculated in
the loop (lines 17–57). The points correspond to the moments in time—between
them the system of differential equations is solved. This action was described in the
step (II) of Sect. 14.2.

314 J. Wiśniewska and M. Sawerwain

Listing 14.5 The third part of computational routine for QTM realization

1 i f (norm2_psi <= mu)
2 {
3 T _ f i n a l = T ;
4 c n t = 0 ;
5
6 for (k_ons =0; k_ons < ode_norm _s t eps ; k_ons ++)
7 {
8 T_guess = T_prev + l og (norm2_prev / mu) /
9 l og (norm2_prev / norm2_psi) * (T _ f i n a l �T_prev) ;

10
11 Y = Y_prev ;
12 T = T_prev ;
13
14 a = T . r e ;
15 b = T_guess . r e ;
16 hh = (b � a) / (LEAD_NUM_TYPE)m;
17
18 o d e s o l v e r s t a t e = rk4_method_for_mc <LEAD_NUM_TYPE, 2 , 2 >(
19 hh , T_guess . re , m, T , Y,
20 &u s e r _ e v o l u t i o n _ f n c <LEAD_NUM_TYPE, 2>) ;
21
22 norm2_guess = norm (Y) ;
23 i f (abs (mu�norm2_guess) < ode_norm _t o l * mu)
24 {
25 break ;
26 }
27 e l s e i f (norm2_guess < mu)
28 {
29 T _ f i n a l = T_guess ;
30 norm2_psi = norm2_guess ;
31 }
32 e l s e {
33 T_prev = T_guess ;
34 Y_tmp = Y;
35 norm2_prev = norm2_guess ;
36 }
37 c n t = c n t + 1 ;
38 } / / f o r (k =1; k < ode_norm_s t eps ; k++)
39
40 i f (c n t > ode_norm _s t eps) {
41 / / The norm t o l e r a n c e v a l u e i s no t reached .
42 / / I n c r e a s e accuracy o f ODE s o l v e r or
43 / / norm _s t eps i s n e c e s s a r y .
44 o d e s o l v e r s t a t e = �1;
45 break ;
46 }
47
48 for (j = 0 ; j < c _ o p s _ s i z e ; j ++)
49 {
50 Y_tmp = mulCSRMatByuVec (c_ops [j] , Y) ;
51 P [j] . r e = norm (Y_tmp) ;
52 } / / f o r (j = 0 ; j < c _ o p s _ s i z e ; j++)

14 GPU: Accelerated Computation Routines for Quantum Trajectories Method 315

53
54 P = P / sum (P) . r e ;
55 sump = (LEAD_NUM_TYPE) 0 . 0 ;
56
57 for (j = 0 ; j < c _ o p s _ s i z e ; j ++)
58 {
59 i f ((sump <= nu) && (nu < sump+P [j] . r e))
60 {
61 Y = mulCSRMatByuVec (c_ops [j] , Y) ;
62 }
63 sump = sump + P [j] . r e ;
64 } / / f o r (j =0 ; j < c _ o p s _ s i z e ; j++)
65
66 mu = curand_un i fo rm (& l o c a l S t a t e) ;
67 nu = curand_un i fo rm (& l o c a l S t a t e) ;
68
69 n o r m a l i z e (Y) ;
70
71 } / / i f (norm2_ps i <= mu)

The realization of step (III), i.e. using collapse operator can be seen in lines 48–
64 at Listing 14.5. In analyzed procedure a variable odesolverstate is used for
error handling, e.g. when the norm will be lower than established accuracy—lines
23 and 41 in Listing 14.5—what is connected to the precision of BDF4 and RK4
methods. The return code after execution of RK4 and BDF4 methods is also written
in odesolverstate.

Running the above procedure, for previously introduced computing grid, shows
the following code line:

1 t r a j e c t o r y _ s i m u l a t i o n <<< N t r j ,1 > > >(d e v S t a t e s , t r j _ d a t a _ d e v i c e) ;

At this point using a shared memory may be proposed, so in a one block of
threads many trajectories can be calculated and the necessary data could be kept in
the shared memory.

Using only one thread for every block allows to skip the problems with memory
management and makes the implementation clear, but unfortunately reduces poten-
tial efficiency. It should be also considered, if the results for every trajectory should
be written in the local memory, because after the process of calculations the results
must be locally averaged or copied to the global memory.

For the discussed approach after the calculations the global variable trj_da-
ta_device contains the set of trajectories for further averaging, e.g. by GPU or
by traditional processor. Generally, the operation of averaging Ntrj trajectories,
where the size of every trajectory is given by N, may be presented as basic two “for”
loops:

1 f o r (k = 0 ; k < N; k ++) {
2 tmp . r e =0 ; tmp . im =0 ;
3 f o r (t r j = 0 ; t r j < N t r j ; t r j ++) {
4 tmp = tmp + t r j _ d a t a _ d o u b l e [t r j * c o l s + k] ;
5 }

316 J. Wiśniewska and M. Sawerwain

6 tmp = tmp / (LEAD_NUM_TYPE) N t r j ;
7 a v g _ t r j [k] = tmp ;
8 }

14.4 A Short Discussion About Performance

In this section the efficiency analysis is limited to the comparison between the
solution presented in the chapter and the QuTIP package [8] supporting QTM. Only
one example concerning the simulation of so-called unitary Hamiltonian will be
considered:

H D 2�

10
	x; and 	x D

�
0 1

1 0

�
: (14.9)

where 	x represents Pauli operator X – so-called negation operator. The initial
state is:

j 0i D j0i D
�
1

0

�
: (14.10)

The collapse operator C0 used during the simulation and the expectation value
operator can be expressed as:

C0 D 5

100
	x; E0 D 	z; and 	z D

�
1 0

0 �1
�
: (14.11)

where 	z stands for Pauli sign operator.
Although the above structures are quite small, the simulation process for 50

trajectories, using the QuTIP package on PC unit equipped with Intel Code 2 Duo
8400 3.0 GHz, takes 3–4 s—using only one core. Working with two cores does
not change the duration time significantly because the QuTIP package generates
additional operations associated with two threads’ support. Naturally, increasing the
number of trajectories allows to notice the calculations’ speed-up when more cores
is used.

The result for graphics card Geforce 460 1 GB RAM when RK4 method is used
equals 0.08 s—this means 50 times greater acceleration comparing to the single core
calculation, mentioned above. It should be stressed that time 0.08 s was achieved
using only one thread per block. For more complex BDF4 method the duration time
is 0.2 s, so the acceleration is not so impressing—only ten times greater. Naturally,
the calculations with use of CPU and GPU were carried out on double type numbers.

14 GPU: Accelerated Computation Routines for Quantum Trajectories Method 317

14.5 Conclusions and Future Goals

In comparison to other existing solutions, the proposed solution allows to achieve
the acceleration for computations based on the quantum trajectories method. Espe-
cially for RK4 method, the precision of presented implementation is comparable to
the precision of computations performed by serial or parallel solutions with use of
traditional universal processors.

The next step in the presented software’s evolution is implementing BBDF
(Block Backward Differentiation Formulae) methods [6, 23, 24]. The BBDF meth-
ods should reduce the computations’ time because they need less iterations to solve
ordinary differential equations, maintaining the same stability as the backward
differentiation formula methods. Using new technologies, like Dynamic Paral-
lelism (implemented in the latest NVIDIA devices and accessible with CUDA
C/C++ Toolkit ver. 5), might also help to obtain better efficiency for implemented
methods.

Another important issue is developing a new solution for pseudorandom number
generation. Instead of using pseudorandom number generators during the calcula-
tions, the pseudorandom numbers could be derived from previously prepared data
set. This approach allows to free the local resources and also enables using physical
devices and quantum sources of randomness e.g. [3] and [7].

Acknowledgements We would like to thank for useful discussions with the Q-INFO group at the
Institute of Control and Computation Engineering (ISSI) of the University of Zielona Góra, Poland.
We would like also to thank to anonymous referees for useful comments on the preliminary version
of this chapter. The numerical results were done using the hardware and software available at the
“GPU �-Lab” located at the Institute of Control and Computation Engineering of the University
of Zielona Góra, Poland.

References

1. Dalibard, J., Castin, Y., Molmer, K.: Wave-function approach to dissipative processes in
quantum optics. Phys. Rev. Lett. 68, 580 (1992)

2. Dum, R., Zoller, R., Ritsch, H.: Monte Carlo simulation of the atomic master equation for
spontaneous emission. Phys. Rev. A 45, 4879 (1992)

3. Frauchiger, D., Renner, R., Troyer, M.: True randomness from realistic quantum devices.
arXiv:1311.4547 (2013)

4. Garraway, B.M., Knight, P.L.: Evolution of quantum superpositions in open environments:
quantum trajectories, jumps, and localization in phase space. Phys. Rev. A 50, 2548–2563
(1994)

5. Harris, M.: Optimizing Parallel Reduction in CUDA. http://developer.download.nvidia.com/
compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf (2007)

6. Ibrahim, Z.B., Suleiman, M.B., Othman, K.I.: Fixed coefficients block backward differentia-
tion formulas for the numerical solution of stiff ordinary differential equations. Eur. J. Sci. Res.
21(3), 508–520 (2008)

7. ID Quantique SA: Quantis. http://www.idquantique.com/random-number-generators/
products.html (2013)

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projec ts/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projec ts/reduction/doc/reduction.pdf
http://www.idquantique.com/random-number-generators/products.html
http://www.idquantique.com/random-number-generators/products.html

318 J. Wiśniewska and M. Sawerwain

8. Johansson, J.R., Nation, P.D., Nori, F.: QuTiP 2: a Python framework for the dynamics of open
quantum systems. Comput. Phys. Commun. 184(4), 1234–1240 (2013)

9. L’Ecuyer P., Simard R., Chen J.E., Kelton W.W.: An object-oriented random-number package
with many long streams and substreams. Oper. Res. 50(6), 1073–1075. http://pubsonline.
informs.org/toc/opre/50/6 (2002)

10. Marsaglia, G.: Xorshift RNGs. J. Stat. Softw. 8(14), 1–6 (2003)
11. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341

(1949)
12. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state

calculation by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)
13. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniver-

sary Edition. Cambridge University Press, Cambridge (2010)
14. NVIDIA, CURAND Toolkit Documentation. http://docs.nvidia.com/cuda/curand/index.html

(2013)
15. Pattabiraman, B., Umbreit, S., Wei-keng, L., Rasio, F., Kalogera, V., Memik, G., Choudhary,

A.: GPU-accelerated Monte Carlo simulations of dense stellar systems. In: Innovative Parallel
Computing, IEEE InPar 2012, San Jose, CA, pp. 1–10 (2012)

16. Saito, M.: A variant of Mersenne twister suitable for graphic processors. arXiv:1005.4973v2
(2010)

17. Schacka, R., Brun, T.A.: A C++ library using quantum trajectories to solve quantum master
equations. Comput. Phys. Commun. 102, 210–228 (1997)

18. Tan, S.M.: A computational toolbox for quantum and atomic optics. J. Opt. B Quantum
Semiclassical Opt. 1(4), 424 (1999)

19. Vukics, A.: C++QEDv2: the multi-array concept and compile-time algorithms in the definition
of composite quantum systems. Comput. Phys. Commun. 183, 1381–1396 (2012)

20. Vukics, A., Ritsch, H.: C++QED: an object-oriented framework for wave-function simulations
of cavity QED systems. Eur. Phys. J. D 44, 585–599 (2007)

21. Wyatt, R.E.: Quantum Dynamics with Trajectories. Springer, New York (2005)
22. Yang, B., Lu, K., Liu, J., Wang, X., Gong, C.: GPU accelerated Monte Carlo simulation of

deep penetration neutron transport. In: Parallel Distributed and Grid Computing (PDGC), 2nd
IEEE International Conference, pp. 899–904 (2012)

23. Yatim, S.A.M., Ibrahim, Z.B., Othman, K.I., Ismail, F.: Fifth order variable step block
backward differentiation formulae for solving stiff ODEs. In: World Academy of Science,
Engineering and Technology, vol. 38, pp. 280–282 (2010)

24. Yatim, S.A.M., Ibrahim, Z.B., Othman, K.I., Suleiman, M.B.: Numerical solution of extended
block backward differentiation formulae for solving stiff ODEs. In: Proceedings of the World
Congress on Engineering, WCE 2012, vol. I, London, 4–6 July 2012

25. Zhong, Z., Talamo, A., Gohar, Y.: Monte Carlo and deterministic computational methods for
the calculation of the effective delayed neutron fraction. Comput. Phys. Commun. 184(7),
1660–1665 (2013)

http://pubsonline.informs.org/toc/opre/50/6
http://pubsonline.informs.org/toc/opre/50/6
http://docs.nvidia.com/cuda/curand/index.html

Chapter 15
Monte Carlo Simulation of Dynamic
Systems on GPU’s

Jonathan Rogers

15.1 Introduction

Monte Carlo is a highly flexible form of numerical quadrature used to solve a
variety of mathematical problems. At a fundamental level, Monte Carlo methods
use finite summations built from statistical samples to estimate definite integrals. In
the field of dynamical systems, Monte Carlo is a technique used for prediction and
uncertainty quantification. Given a system model, a set of sampling distributions
is defined involving stochastic inputs, uncertainty in initial conditions, and/or
uncertainty in system parameters. Simulations are then performed by sampling from
these distributions and propagating a dynamic model. These so-called Monte Carlo
simulations may be used to estimate the state probability density function (PDF), or
moments of the PDF such as mean and variance, as a function of input distributions.
As such, Monte Carlo simulation has become a standard tool in systems analysis in
which output distributions may be estimated in a straightforward manner from a set
of input distributions.

The popularity of Monte Carlo stems from both its flexibility in handling nonlin-
ear, non-Gaussian systems and its relative ease of implementation. At the same time,
Monte Carlo simulation suffers from poor computational scalability and is difficult
to employ for high-dimensional systems. The Law of Large Numbers, upon which
Monte Carlo is based, dictates that estimates of probability distributions obtained
from Monte Carlo are only accurate for large numbers of samples [1]. For instance,
it is well-known that if the expected value of a distribution is to be approximated via
Monte Carlo, the accuracy of the estimated mean is proportional to 1=

p
N where N

is the number of samples employed in the simulation. Thus if the number of Monte
Carlo samples is quadrupled, uncertainty in the estimated mean is only halved.

J. Rogers (�)
Woodruff School of Mechanical Engineering, Georgia Institute of Technology,
Atlanta, GA 30332, USA
e-mail: jonathan.rogers@me.gatech.edu

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__15, © Springer International Publishing Switzerland 2014

319

mailto:jonathan.rogers@me.gatech.edu

320 J. Rogers

While computational inefficiency is an important limitation, Monte Carlo
simulation remains the standard approach to probabilistic modeling for a wide
variety of dynamical systems. In the engineering community, control systems
designers use Monte Carlo to evaluate robustness to environmental disturbances
and/or modeling errors. Reliability engineers use Monte Carlo to evaluate mean time
between failures given probabilistic models of component fatigue. In the physics
community, Monte Carlo methods provide a technique for modeling radiation
transport. In mathematical finance, Monte Carlo is commonly employed to evaluate
expected value of investment options given sources of uncertainty and complex
market forces.

Monte Carlo analysis became viable only through the advent of digital computers
in the mid-twentieth century. Since sampling is the foundation of Monte Carlo, it
relies heavily on the ability to generate pseudorandom numbers and compute long
summations quickly, a capability which only digital computers can provide. Monte
Carlo is unique as a systems analysis tool in that its accuracy improves as a function
of computational throughput—more samples inherently leads to higher accuracy.
As a result, Monte Carlo methods are well-disposed to take advantage of new high-
throughput computing architectures such as Graphics Processing Units (GPU’s).

The ideal Monte Carlo simulation represents a so-called “embarrassingly paral-
lel” process in the sense that each sample is independent of each other sample [2].
For GPU’s, in which maximum throughput is obtained when there are no serial
dependencies between processing threads, Monte Carlo simulation is an extremely
efficient data-parallel method that exposes the architecture’s massive parallelism.
Numerous researchers over the past decade have implemented GPU-based Monte
Carlo simulations for a variety of scientific, engineering, and financial problems.
A few examples include GPU-based Monte Carlo radiation transport [3, 4],
stochastic control [5, 6], and option pricing [7].

This chapter will provide a recipe for implementation of Monte Carlo simulation
on GPU’s. The focus is on Monte Carlo simulation of dynamical systems, which
are represented by a dynamic model, rather than Monte Carlo quadrature of explicit
integrals. The chapter begins with an overview of the algorithmic implementation on
the GPU, followed by a discussion of optimization and best practices. A case study
is offered in which motion of a point-mass is simulated subject to viscous drag and
gravity effects. Example GPU-based Monte Carlo simulation codes are provided for
this example in both CUDA and OpenCL. These example codes are easily modified
for other dynamical systems of interest.

15.2 GPU-Based Monte Carlo Algorithm Overview

The basic GPU-based Monte Carlo algorithm is depicted in Fig. 15.1. It is assumed
that the Monte Carlo simulation is comprised of N simulations, where N is a
user-defined parameter intended to provide the desired level of accuracy. First,
initial conditions are established in device memory by the CPU (host) thread.

15 Monte Carlo Simulation of Dynamic Systems on GPU’s 321

Host Memory

Device Global Memory

(N)

Host
Thread

I.C.’s

I.C.’s,
Sampling
Distrib.

Host
Thread

System
States

System
States

GPU

1

2

3

4
GPU Thread (single simulation)

GPU Thread (single simulation)

GPU Thread (single simulation)

GPU Thread (single simulation)

•
•
•

Fig. 15.1 Overview of Monte Carlo simulation on GPU. A single system trajectory is simulated
by each GPU thread

These randomized samples may be generated directly on the GPU, or generated
on the host and transferred to device memory (as discussed later). Also during
initialization, space is allocated in GPU global memory for simulation results. Once
samples are available in GPU memory, N GPU threads are launched by the host
thread (labeled step 2 in Fig. 15.1). Each GPU thread is tasked to perform a single
system simulation from the initial condition to the desired end condition. Depending
on the chosen sampling method, each GPU thread may gather its assigned input
parameters from device memory and compute a single simulation or, if random
sampling was not performed before kernel launch, each GPU thread will generate its
own random sample before simulating the system. Upon completion of a simulated
trajectory, the GPU thread writes its output data to device global memory (labeled
as step 3). Once all threads complete execution, a host memory copy is initiated to
gather results from device memory to host memory, labeled as step 4. Pseudocode
listings are provided in Listings 1 and 2 for host thread and GPU thread execution
respectively.

Several implementation details are important to consider in order to maximize
computational throughput and efficiency. A discussion of several of these consider-
ations follows.

322 J. Rogers

Device Global
Memory

Device Global
Memory

Host Thread GPU Kernel
GPU Kernel

Populate
Samples

curandGenerate(…)

Retreive
Samples

Generate
Samples

curand(…)

Distribution
Parameters

Host Thread

Fig. 15.2 Two methods of sample generation for GPU-based Monte Carlo

Input Data: Sampling Distributions,
Initial Conditions, N
Result: Output Data from Monte
Carlo Simulation
start
1. Generate N sets of initial condi-
tions according to sample distribu-
tions

2. Allocate device global memory for
input data and simulation results
3. Launch N GPU threads
4. Gather output data from GPU
global memory to host memory

return

Listing 1 Host Thread
Pseudocode

15.2.1 Sampling Tasks

There are several ways to divide sampling tasks between the host and device.
The most memory-efficient method of sampling is to sample directly within the
GPU kernel itself using a device-side pseudorandom number generator such as that
provided by the CURAND library [8]. In this case, the host sends GPU threads
distribution parameters only (for instance, mean and standard deviation) either via

15 Monte Carlo Simulation of Dynamic Systems on GPU’s 323

Input Data: Initial Conditions and Sys-
tem Parameters in Global Memory
Result: Single System Trajectory Simu-
lation
start
1. if (samples present in global memory)

gather assigned sample
else

generate sample according to de-
sired distribution

end
2. while (end condition not met)

 integrate dynamic equations
end

3. Store final states in device global
memory.
return

Listing 2 GPU Kernel
Pseudocode

transfer to global memory or pass-by-value on the kernel argument list. The GPU
kernel then generates random samples itself prior to system simulation and stores
them in local memory. The second method involves population of device memory
with random samples by the host thread, using a GPU random number generation
library. CURAND provides this capability through its host-side API. In this case,
prior to kernel launch, the host thread generates random samples directly in device
memory through appropriate library calls. Each of these two methods is depicted
in Fig. 15.2. A final sampling method involves generating random samples first in
host memory, and then copying these samples into device memory prior to kernel
launch. This method may be required when input distributions are difficult to sample
or in the case of Markov Chain Monte Carlo analysis. However, since the number of
samples required is often quite large, copying random samples from host to device
memory may result in significant latency and should be avoided where possible. In
cases where host-side sampling is unavoidable, page locked memory should be used
to minimize memory-copy latencies [9].

15.2.2 Storing Output Data

Each simulation must have space to write its own output data. Typically, output
arrays are allocated in device memory by the host thread prior to kernel launch,
and each GPU thread is assigned space in the output array to store states of
interest. For many dynamical systems, the amount of data generated by Monte

324 J. Rogers

Carlo simulation can become quite large, especially if intermediate values of the
state must be stored. This problem is exacerbated in cases requiring extremely large
sample sizes (millions or more). Due to the low bandwidth of the PCI-express bus
used for memory transfers between host and device, transferring extremely large
output data sets from the device to host may become problematic, especially in cases
where Monte Carlo simulations must be run repeatedly or in a feedback manner. In
general, it is best practice to record the minimum possible data from each simulated
trajectory such that the goals of the Monte Carlo analysis can be met. For many
problems it is sufficient only to output the final state, or a portion of the final state,
without any of the intermediate data.

15.2.3 Maximizing Memory Throughput

Memory bottlenecks are a common reason for suboptimal performance of GPU-
based Monte Carlo. Two elements of memory management are critical to perfor-
mance optimization: efficient use of the GPU memory hierarchy (shared, local, and
constant memory), and minimizing data transfers between host and device.

A common set of parameters are typically used repeatedly by all component
simulations within a Monte Carlo run. These may take the form of system
parameters, input histories, or constants employed in system modeling. For instance,
in simulation of flight vehicles, the gravitational acceleration constant is used at
each timestep by each GPU thread to compute gravitational force. Alternatively,
in radiation transport codes the speed of light in a given medium may be required
regularly by component GPU threads. In general, these common parameters should
not be placed in global memory due to the potential for high latency. Constants
that are known at runtime should be placed in constant memory when possible [9].
Alternatively, quantities that are not constant (or known at compile time) should
be placed in shared memory. Shared memory latency is approximately 100 times
less than global or uncached local memory which can lead to substantial runtime
improvements for complex simulations. Care must be taken not to overload constant
or shared memory resources for the specific GPU architecture being used.

Minimizing data transfers between host and device is another critical aspect
of memory management. In the vast majority of Monte Carlo simulations, data
should be transferred once prior to kernel launch (input data), and once following
kernel execution (output data). The amount of data to be transferred depends on
the sampling methodology and the type of output data required. Repeated data
transfers during kernel execution should be either overlapped where possible or
avoided altogether.

15 Monte Carlo Simulation of Dynamic Systems on GPU’s 325

15.2.4 Maximizing Device Utilization

Maximum throughput is achieved when the GPU device, or devices, are occupied to
the maximum extent. For Monte Carlo simulation, higher throughput means lower
runtimes since the same number of samples are processed in a shorter amount
of time. Two strategies are typically employed to maximize utilization of the
device. First, the kernel execution configuration should be optimized for the device
being used either through trial and error or based on metrics of kernel memory
usage. Occupancy is defined as the number of warps that can run concurrently
on a multiprocessor divided by the theoretical maximum number of warps that
are allowed to run concurrently. Since memory resources on a multiprocessor are
limited, occupancy is determined by a kernel’s use of registers and shared memory.
The optimal execution configuration therefore depends on kernel memory demands.
More complex kernels requiring lots of registers and shared memory will run slower
due to both reduced occupancy and register spilling (in which register resources on
a multiprocessor are saturated and uncached local memory is used instead). For
CUDA kernels, memory usage may be determined using the nvcc compiler option
-ptxas-optionsD�v. The NVIDIA occupancy calculator uses these statistics
to determine an optimal execution configuration for a given device. A useful rule
of thumb is that the number of threads per block should be a multiple of the warp
size to avoid wasting computational resources with underpopulated warps. It should
be noted that optimizing the execution configuration may lead to significantly lower
runtimes, and experimentation is encouraged.

Leveraging multiple GPU’s for Monte Carlo simulation is rather straightforward
due to the directly parallel nature of the algorithm. In this case, the N sample
simulations are simply distributed across each GPU as appropriate. NVIDIA’s
Unified Virtual Addressing, which allows multiple GPU’s to share the same virtual
memory space, may be used to simplify memory transfers between the host and
multiple devices.

15.2.5 Maximizing Instruction Throughput

Data-dependent divergent branching within a GPU kernel is well-known to signif-
icantly reduce throughput. When two GPU threads in a warp travel down different
branches of execution, each thread must wait in a suspended state while the other
completes the branch. This divides throughput by half during these instruction
cycles. As a result, data-dependent divergent branching should be avoided whenever
possible.

Unfortunately, realistic dynamic simulation often requires conditional branching
and there are many instances where it is unavoidable. In such cases, it may be
possible to arrange thread blocks such that all threads in a given block travel only
down a single branch. Since all threads in a warp also reside in the same block,

326 J. Rogers

this guarantees that threads in the same warp will always travel down the same
branch and the throughput penalty is thus eliminated. It should be noted that this
arrangement of thread blocks may not always be achievable, especially for complex
dynamic models in which a thread’s path of execution may not be known a priori.

15.3 Cost-Benefit Considerations

The goal of implementing Monte Carlo on a GPU is nearly always to reduce runtime
over CPU implementations which must execute sample simulations in a serial
manner. By exposing the data-parallel aspect of Monte Carlo, GPU implementations
are expected to outperform their CPU counterparts. However, this is not always
the case. In fact, for any Monte Carlo simulations, sample sizes below a certain
value will actually run faster on the CPU than the GPU. There are two primary
causes for this. First, overhead memory transactions must be initiated for GPU-
based simulations in terms of transferring data between the host and device. Current
GPU’s leverage the PCI-express bus for this purpose, which exhibits a maximum
data transfer rate of only 3–6 GB/s. This is about ten times slower than the memory
bandwidth of a high-end CPU, and about 30 times slower than the maximum
memory bandwidth of the NVIDIA Tesla C2050. Thus, data transfer to and from
the device imposes a bottleneck that may be severe enough in some cases to cost the
GPU its data-parallel performance advantage.

The second reason why CPU runtimes may be lower than GPU runtimes is the
capability of the individual processors themselves. On a per-core basis, CPU cores
have higher clock rates and larger memory resources than GPU stream processors.
As a result, a single trajectory simulation will take less time to run on a CPU core
than a GPU stream processor (at least for high-end CPU’s). This has important
runtime implications for small sample sizes.

The combined effect of these two architectural characteristics is that a crossover
point exists in terms of sample size which determines which processing architecture
will yield better runtimes. For low sample sizes (small N) below the crossover point,
the cost incurred from CPU to GPU data transfer outweighs the data-parallel benefit
of the GPU, and CPU runtimes are lower. For large numbers of simulations (large
N), data-parallel execution outweighs the cost of data transfer and GPU runtimes
are lower. The position of this crossover point depends on the computational
intensity and memory requirements of the individual kernel simulations. For highly
computationally-intensive kernels, the crossover point will generally be observed at
smaller values of N since the data-parallel aspect of GPU execution has a larger
effect on runtime than data transfer latency. For kernels of low computational
intensity, the crossover point will exist at higher values of N since data transfer
has a larger effect on runtime than data-parallel execution. The sample size at which
this crossover point is observed is a function of not only the simulation model, but
also the degree to which the implementation is optimized and the specific GPU and
CPU hardware being used.

15 Monte Carlo Simulation of Dynamic Systems on GPU’s 327

An example runtime comparison is provided in Fig. 15.3, taken from [10].
Monte Carlo simulations of various sample sizes are run for a six-degree-of-freedom
missile trajectory code. The CPU is an Intel Xeon dual-core 1.87 GHz processor,
while the GPU is a NVIDIA Tesla C1060 with 240 cores clocked at 1.30 GHz.
Note that for small sample sizes, below about 20, CPU runtimes are lower, while
for sample sizes larger than 20 the GPU provides lower runtimes. Also notice that,
unlike CPU runtimes, GPU runtimes increase at a slower rate with sample size due
to the parallel nature of the architecture. At high sample sizes greater than 2,000,
memory resources of the GPU are saturated and runtimes begin to increase at an
equivalent rate to the CPU (but are still about 30 times lower than CPU runtimes for
an equivalent sample size). The relatively small sample size at which the crossover
point occurs in this example is due to the high computational intensity of the kernel.
For less complex dynamic models, such as the one considered later in this chapter,
the crossover point may occur at much higher values of N.

100 101 102 103
10-1

100

101

102

103

104

Number of Trajectories

R
un

tim
e

(s
)

CPU
GPU

Fig. 15.3 Runtime vs sample size for missile trajectory Monte Carlo simulation (taken from [10])

15.4 Example: Point Mass Monte Carlo Simulation

An example implementation of a GPU-based Monte Carlo simulation is provided.
This example simulates N point masses in atmospheric flight subject to gravity and
simple viscous drag. Let the position of a point mass in inertial space be given
by coordinates x, y, z. Furthermore, let g D 9.8 m/s2 be the gravitational constant
and CDV D 0.025 N/m/s be the viscous drag coefficient. The dynamic model of this
point mass is therefore given by the following six first-order ordinary differential
equations:

328 J. Rogers

8̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂:

Px1
Px2
Px3
Px4
Px5
Px6

9>>>>>>>=
>>>>>>>;

D

2
66666664

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 �CDV =m 0 0

0 0 0 0 �CDV =m 0

0 0 0 0 0 �CDV =m

3
77777775

8̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂:

x1
x2

x3
x4
x5

x6

9>>>>>>>=
>>>>>>>;

C

8̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂:

0

0

0

0

0

g

9>>>>>>>=
>>>>>>>;

(15.1)

In Eq. (15.1), x1, x2, x3 represent position coordinates x, y, z, while x4, x5, x6

represent velocities Px; Py; Pz. Also, m represents the mass of the object and is given by
0.145 kg. Equation (15.1) can be numerically integrated to solve for the trajectory
of the point mass given a valid set of initial conditions. Note that a negative value of
z represents positive height about ground.

The goal of this example Monte Carlo is to obtain an impact point dispersion
pattern on the ground given initial velocity perturbations. Nominal initial conditions
are given by x1 D x2 D x3 D 0, x4 D 34 m/s, x5 D 0, and x6 D �30 m/s. Initial
conditions are subject to perturbations in the initial velocity states x4, x5, x6. The
distribution of these perturbation terms is assumed to be Gaussian with a standard
deviation of 2 m/s. Both the model parameters and initial conditions are chosen
as reasonable example values for a batted baseball. In this example simulation, the
number of desired simulations N is set to 16,384.

15.4.1 Example CUDA Implementation

A CUDA implementation of this Monte Carlo simulation is provided in Listings
3–5. Listing 3 illustrates each device function with the exception of the kernel.
Note that the mass, drag coefficient, gravitational acceleration, and simulation
timestep are declared at file scope and placed in the GPU constant memory cache.
These parameters are accessed each time the derivatives routine is called, and thus
placing them in the constant memory cache reduces overall latency significantly.
The derivatives routine, based on Eq. (15.1), computes the state derivative based on
the current state (and potentially time for generic dynamic models). A numerical
integrator such as RK-4 also must be defined as a device function to integrate the
dynamic equations. Finally, Listing 3 shows a basic interpolation routine to compute
the exact ground impact location of the point mass.

Listing 4 provides the GPU kernel function for the CUDA implementation. In this
example, a nominal state is provided to each GPU kernel, and sampling is performed
within the kernel itself using the CURAND library. First, a linear array index is
computed from the thread indexing parameters, which is used for storing output data
in global memory. The CURAND pseudorandom number generator is initialized
and then exercised to generate initial velocity perturbations. Following state vector
initialization, the point mass trajectory is propagated forward by repeatedly calling

15 Monte Carlo Simulation of Dynamic Systems on GPU’s 329

Listing 3 Device Functions for CUDA Example Implementation

the RK-4 integration routine, with the end condition specified as ground impact.
Finally, the exact impact location is determined and the final (x,y) location is
recorded in the output vector (located in global memory) using the flattened array
index.

Listing 5 shows the host code for the example CUDA implementation. As
shown in Fig. 15.1, nominal initial conditions are first defined and copied to GPU
global memory. Storage locations are also allocated in GPU memory for simulation
outputs, in this case ground impact locations. Next, kernels are launched and the
velocity distribution (defined by a standard deviation) is passed by value to the
kernel function. Following kernel execution, outputs are gathered back to host
memory.

330 J. Rogers

Listing 4 GPU Kernel for CUDA Implementation

15.4.2 Example OpenCL Implementation

An example OpenCL implementation is provided in Listings 5–7. The primary
difference between the OpenCL and CUDA implementations is that random samples
are generated on the host (using a CPU-based random number generator), and then
transferred to GPU global memory prior to kernel launch. Kernel-based sampling
may of course be used in OpenCL, but this alternative approach is provided simply
as a demonstration.

15 Monte Carlo Simulation of Dynamic Systems on GPU’s 331

Listing 5 Host Code for Example CUDA Implementation

Listing 6 provides the host source code for the OpenCL Monte Carlo imple-
mentation. Following specification of nominal initial conditions, several routine
OpenCL initialization steps are performed (obtaining platform information, creating
a context, etc.). These steps are omitted for brevity but are quite standard.

332 J. Rogers

Listing 6 Host Code for Example OpenCL Implementation

15 Monte Carlo Simulation of Dynamic Systems on GPU’s 333

Listing 6 (continued)

Following initialization, global memory buffers are created for the sampled initial
velocity conditions and impact locations. Randomized initial velocity conditions are
then generated on the host using a CPU-based pseudorandom number generator.
These conditions are transferred to GPU global memory by enqueuing write
statements. Kernel arguments are defined, and the kernel is enqueued. Finally,
results are gathered from GPU memory by enqueuing read commands, and the
output data is written to a file.

Listing 7 shows the device code portions for the OpenCL example. Note
that this code must exist in a separate file from the host code according to the

334 J. Rogers

Listing 7 Device Code for Example OpenCL Implementation

OpenCL compilation model. The only function that differs substantially from the
CUDA implementation is the kernel function itself. Note that the OpenCL code
avoids random number generation within the kernel, instead retrieving precomputed
random samples from GPU global memory prior to trajectory simulation.

Runtime performance is explored between the CUDA, OpenCL, and an equiv-
alent host CCC implementation. Figure 15.4 shows an example Monte Carlo
simulation output (impact points) for N D 16,384, while Fig. 15.5 shows runtime

15 Monte Carlo Simulation of Dynamic Systems on GPU’s 335

performance comparisons. Timing for these comparisons is based solely on GPU-
related calculations, and thus for example does not include the OpenCL overhead
of context creation, etc. There are several interesting features in the runtime
comparison. First, CPU execution times grow at a constant linear rate with N as
expected, while GPU execution times are generally lower and grow at a slower rate,
at least for N< 105. Also note crossover points for both the CUDA and OpenCL
implementations.

The CUDA code yields substantially better performance over the OpenCL
implementation for N< 5 � 105 since random samples are computed directly within
the kernel itself and large memory transfers are not required before kernel launch.
Thus the CUDA code represents a more optimized implementation. Beyond about
105 samples, GPU multiprocessor memory resources are exhausted and runtime

80 90 100 110 120 130 140 150 160
-30

-20

-10

0

10

20

30

x (m)

y
(m

)

Fig. 15.4 Example Monte
Carlo simulation outputs
(ground impact points)

102 103 104 105 106 107
10-3

10-2

10-1

100

101

102

Number of Cases

R
un

tim
e

(s
)

CPU
CUDA
OpenCL

Fig. 15.5 Runtime results for example Monte Carlo simulations

336 J. Rogers

increases rapidly with N. In general, for reasonable sample sizes the GPU exhibits 1–
2 orders-of-magnitude runtime reduction over a serial CPU implementation which
corroborates results obtained in the literature.

References

1. Dunn, W.L.: Exploring Monte Carlo Methods. Elsevier, Amsterdam (2012)
2. Moler, C.: Matrix computation on distributed memory multiprocessors. In: Hypercube Mul-

tiprocessors. Society for Industrial and Applied Mathematics, Philadelphia (1986). ISBN
0898712092

3. Liu, T., Ding, A., Xu, X.: GPU-based Monte Carlo methods for accelerating radiographic and
CT imaging dose calculations: feasibility and scalability. Med. Phys. 39(6), 3876 (2012)

4. Humphrey, A., Meng, Q., Berzins, M., Harman, T.: Radiation modeling using the Uintah
heterogeneous CPU/GPU runtime system. In: Proceedings of the First Conference of the
Extreme Science and Engineering Discovery Environment (XSEDE’12), vol. 4, pp. 4.1–4.8
(2012)

5. Rogers, J., Slegers, N.: Robust parafoil terminal guidance using massively parallel processing.
J. Guid. Control. Dyn. 36(5), 1336–1345 (2013)

6. Rogers, J.: GPU-Enabled Projectile Guidance for Impact Area Constraints. In: SPIE Defense,
Security, and Sensing Symposium, Baltimore (2013)

7. Kolb, C., Pharr. M.: Option pricing on the GPU. GPU Gems 2, NVIDIA Corporation, Chapter
45 (2005)

8. CUDA Toolkit 4.2: CURAND Guide. NVIDIA Corporation, Santa Clara (2012)
9. CUDA C Programming Guide.: NVIDIA Corporation, Santa Clara (2012)

10. Ilg, M., Rogers, J., Costello, M.: Projectile Monte Carlo analysis using a graphics processing
unit. In: AIAA Atmospheric Flight Mechanics Conference, Portland (2011)

Part IV
Fast Fourier Transform and Localized

n-Body Problems

Chapter 16
Fast Fourier Transform (FFT) on GPUs

Yash Ukidave, Gunar Schirner, and David Kaeli

16.1 Introduction to FFT

The Fast Fourier Transform (FFT) is one of the most common algorithms used
in signal processing to transform a signal from the time domain to the frequency
domain and vice-versa. It is named after the French mathematician and physicist
named Joseph Fourier.

The FFT is a fast and efficient algorithm to compute the discrete fourier transform
(DFT) and the inverse discrete fourier transform (IDFT). There are many distinct
FFT algorithms involving a wide range of mathematics, from simple complex-
number arithmetic, to group theory and number theory. Considerable research
effort has been devoted towards optimizing FFT algorithms over the past four
decades. The algorithm presented by Cooley and Tukey [2] reduced the algorithmic
complexity when computing the DFT toO.N logN/ fromO.N2/, which is viewed
as a turning point for applications using the fourier transform.

16.2 How Does the FFT Work?

Every discrete function f .x/ of finite length can be described as a set of potentially
infinite sinusoidal functions. This representation is known as the frequency domain
representation of the function, defined as F.u/. The relationship between these two
functions is represented by the Discrete Fourier Transform (DFT).

Y. Ukidave • G. Schirner • D. Kaeli (�)
Northeastern University, Boston, MA, USA
e-mail: yukidave@ece.neu.edu; schirner@ece.neu.edu; kaeli@ece.neu.edu

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__16, © Springer International Publishing Switzerland 2014

339

mailto:yukidave@ece.neu.edu
mailto:schirner@ece.neu.edu
mailto:kaeli@ece.neu.edu

340 Y. Ukidave et al.

F ff .x/g D F.u/ D
N�1X
xD0

f .x/W ux
N (16.1)

F�1fF.u/g D f .x/ D 1

N

N�1X
uD0

F.u/W �ux
N (16.2)

whereWN D e
�j 2�
N is the Twiddle Factor and N is the number of input data points.

Equation (16.1) defines the forward DFT computation over a finite time signal
f .x/ and the inverse DFT computation over a frequency function F.u/, as shown
in Eq. (16.2).

The Fast Fourier Transform refers to a class of algorithms that uses divide-
and-conquer techniques to efficiently compute the Discrete Fourier Transform of
the input signal. For a one-dimensional (1D) array of input data size N , the FFT
algorithm breaks the array into a number of equal-sized sub-arrays and performs
computation on these sub-arrays. The process of dividing the input sequence in the
FFT algorithm is called decimation. Two major classifications of the FFT algorithm
cover all the variations of the computation based on the technique of decimation.

• Decimation in Time (DIT):
The decimation in time (DIT) algorithm splits the N-point data sequence into
two N

2
-point data sequences f1.N / and f2.N /, for even and odd numbered input

samples, respectively.
• Decimation in Frequency (DIF):

The decimation in frequency (DIF) algorithm splits the N-point data sequence
into two sequences, of first N

2
data points and last N

2
data points respectively.

The DIF algorithm does not consider the decimation as even and odd data points.

In this process of decimation, we exploit both the symmetry and the periodicity

of the complex exponential WN D e
�j 2�
N , known as the Twiddle Factor. The

algorithm using the divide-and-conquer technique was proposed by Cooley and
Tukey. Algorithm 1 shows the pseudocode of the basic Cooley-Tukey FFT.

The Radix-2 Cooley-Tukey algorithm recursively divides the N-point DFT
into two N/2-point DFTs, with a complex multiplication (the Twiddle Factor) in
between. The division is done into two half length DFTs with even indexed and odd
indexed samples, as described in Eq. (16.3). The recursive division continues until
we achieve N 2-point signals.

F ff .x/g D F.u/ D
X
x.even/

F .x/W ux
N C

X
x.odd/

F .x/W ux
N (16.3)

The butterfly computation transforms two complex input points to two complex
output points to compute the FFT. The 2-point, Radix-2 FFT butterfly is derived
by expanding the formula of the DFT for two point signal .N D 2/, as shown in
Eqs. (16.4)–(16.6). The 2-point, Radix-2 butterfly is also shown in Fig. 16.1.

16 Fast Fourier Transform (FFT) on GPUs 341

Algorithm 1 Cooley-Tukey Radix-2 FFT
Require: Input data A[0,: : :,n� 1]
1: Recursive-FFT(A)
2: n = lengthŒA�
3: if n = 1
4: return A
5: end
6: wn = e2i�=n

7: w = 1
8: Aeven = .AŒ0�; AŒ2�; : : : ; AŒn� 2�/

9: Aodd = .AŒ1�; AŒ3�; : : : ; AŒn� 1�/

10: yeven = Recursive-FFT(Aeven)
11: yodd = Recursive-FFT(Aodd)
12: for k = 0 ! n

2
- 1

13: yk = yevenk + wyoddk

14: ykCn=2 = yevenk - wyoddk

15: w = wwn
16: end
17: return y

F ff .x/g D F.u/ D
1X

xD0
f .x/W ux

2 (16.4)

F.0/ D f .0/C f .1/ (16.5)

F.1/ D f .0/ � f .1/ (16.6)

16.2.1 FFT as a Heterogeneous Application

Graphics Processing Units (GPUs) have been effectively used for accelerating a
number of general-purpose computation. The high performance community has
been able to effectively exploit the inherent parallelism on these devices, leveraging
their impressive floating-point performance and high memory bandwidth of GPU.
FFTs were one of the first algorithms ported to GPU [3]. The original GPU-based
FFT code was implemented as a shader code executed in the graphics pipeline. Since

f(0)

f(1)

F(0)+

+

W 2
0=1

W 2
1=–1

F(1)

Fig. 16.1 Radix-2 FFT
butterfly for a 2-point
computation. The butterfly
requires two complex
additions and two complex
multiplications

342 Y. Ukidave et al.

x(0) X (0)

X (8)

X (4)

X (12)

X (10)

X (14)

X (11)

X (13)

X (15)

X (7)

X (3)

X (6)

X (1)

X (9)

X (5)

X (2)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

w 16
0.0

w 8
1.0

w 8
0.0

w 8
2.0

w 8
3.0

w 8
0.1

w 8
1.1

w 8
2.1

w 8
3.1

w 8
0.0

w 8
1.0

w 8
2.0

w 8
3.0

w 8
0.1

w 8
1.1

w 8
2.1

w 8
3.1

w 4
1.1

w 4
0.1

w 4
1.0

w 4
0.0

w 4
1.1

w 4
0.1

w 4
1.0

w 4
0.0

w 4
1.1

w 4
0.1

w 4
1.0

w 4
0.0

w 4
1.1

w 4
0.1

w 4
1.0

w 4
0.0

w 16
2.1

w 16
3.1

w 16
4.1

w 16
5.1

w 16
6.1

w 16
7.1

w 16
1.0

w 16
2.0

w 16
3.0

w 16
4.0

w 16
6.0

w 16
5.0

w 16
7.0

w 16
0.1

w 16
1.1

Fig. 16.2 Radix-2 based DIF FFT with 16 input data points

this time, GPU computing has moved forward aggressively, overcoming many of the
limitations of programming in a shader-based language. The basic structure of the
FFT makes it a good candidate for parallel execution on heterogeneous platforms.
The use of heterogeneous programming models available in OpenCL and CUDA
simplify the porting of mathematical computations such as FFT to a GPU [4, 6].

The FFT is a non-causal algorithm, since it is solely dependent of the data inputs.
Thus, the FFT can be evaluated in parallel over allN input points by forming smaller
subsequences of the problem. Each subsequence carries out the required number of
FFT compute stages, which can be mapped to different computational cores (i.e.,
compute units) on the heterogeneous device. Figure 16.2 shows the computation of
a Radix-2 DIF FFT, computed over 16 input data points. The input data points are
transformed over four stages of compute using the FFT algorithm. This computation
can be parallelized effectively on a GPU by creating many threads, each of which
works on 2 input points at a given time for every stage. For the example presented in
Fig. 16.2, the problem can be divided over stages using 8 (N/2) threads. For a large
input data set, the FFT can be computed using a large number of threads. Thus,
the parallel hardware present on a GPU can be effectively leveraged to efficiently
compute the FFT.

Heterogeneous implementations of the FFT algorithm can be designed using
OpenCL programming model. OpenCL provides functionality to represent the FFT
computation for each work-item (i.e., thread). The memory model of OpenCL
allows the programmer to map the entire input data for the FFT on the device for
parallel execution on the available compute units (CUs) on the GPU.

16 Fast Fourier Transform (FFT) on GPUs 343

16.3 Implementing FFT on GPU Using OpenCL

Next, we discuss a Radix-2 FFT implementation using the Cooley-Tukey algo-
rithm [2]. We focus on the Radix-2 variant of the Cooley-Tukey algorithm due to its
ease of implementation and numerical accuracy. The strategies presented here can
be easily extended for higher-Radix cases.

Based on the structure of the Radix-2 Cooley-Tukey algorithm, we will design a
OpenCL kernel for the FFT computation. We begin by describing our methodology
to decompose the FFT into a number of simpler computations. Then we can use
these simple operations as building blocks to produce the final result.

The code block shown in Sect. 16.2 presented an implementation of a Radix-2
FFT computation using a 2-point butterfly. The kernel takes as input complex inputs,
which are represented using float2, a vector data type provided in OpenCL. The x
and y components of the float2 vector represent the real and imaginary parts
of the complex number, respectively. The kernel retrieves 2 input data points from
global memory of the GPU and performs a 2-point FFT computation over them.

__kernel void FFT_2_pt(__global float2* d_in,
__global float2* d_out)

{
int gid = get_global_id(0); // Global id of thread
float2 in0, in1;
in_0 = d_in[gid]; // Input data #0
in_1 = d_in[gid+1]; // Input data #1

/* 2-point FFT computation begins */
float2 Var;
Var = in_0;
in_0 = Var + in_1;
in_1 = Var - in_1;
/* 2-point FFT computation ends */

d_out[gid] = in_0; // Output data #0
d_out[gid+1] = in_1; // Output data #1

}

The 2-point FFT butterfly computation can be extended to a 4-point butterfly
representation. The 4-point butterfly is shown in Fig. 16.3a. To produce results in
the proper order, the input data points of the FFT computation are bit-reversed, as
seen in Fig. 16.3a. To obtain coalesced memory accesses in the 4-point butterfly, the
2-point butterfly structures have to be rearranged in order to preserve spatial locality
in the address stream, as shown in Fig. 16.3b. The 4-point FFT can compute two
stages of the Radix-2 computation in one single pass. Hence, an 8-point FFT can
be implemented using one pass of a 4-point FFT computation followed by one pass

344 Y. Ukidave et al.

ba

x(2)

x(0)

4-point butter fly with Bit-reversed input 4-point butterfly with linear indexed input

-1 -1

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
-j -1

-1

-1

-1-j

-
1

-
1

x(1)

x(3)

x(1)

x(0)

x(2)

x(3)

X(1)

X(0)

X(2)

X(3)

X(1)

X(0)

X(2)

X(3)

Fig. 16.3 A Radix-2 FFT using a 4-point butterfly with (a) bit-reversed input indexes and (b)
linear input indexes

0 4 2 6 1 5 3 7

Fig. 16.4 Bit-reversed input indexes of a 8-point FFT

0
Thread 0 Thread 1

2 4 6 1 3 5 7

Fig. 16.5 Input data mapping of a 8-point FFT computation to threads of a 4-point FFT kernel

of a 2-point FFT computation. If the computation is performed using only a 2-point
FFT, it would require 3 passes of the 2-point FFT kernel. This would increase the
kernel launch overhead on GPU and would also increase the number of accesses to
global memory. Both of these factors can cause performance degradation. Hence, a
large-scale FFT is computed using combinations of small FFTs.

To obtain coalesced memory accesses, the inputs to the FFT kernels should be
indexed in a linear order. We have to develop a generic indexing scheme for all
FFT kernels, since we want this code to work for different input sizes. We consider
the example of the 8-point FFT computation using 4-point FFT and 2-point FFT
kernels. The first two stages of the compute are implemented with 2 threads using
a 4-point FFT. The last stage of the compute is implemented using 4 threads each
computing a 2-point FFT. The inputs for a bit-reversed 8-point FFT are shown in
Fig. 16.4.

Figure 16.5 shows how inputs are mapped to the two threads that compute the
4-point FFT to implement the 8-point FFT. We observe that the first data element
required by each thread is located at an input index equal to the global id (gid) of the
particular thread. We define a set of parameters in the kernel code to help us develop
the desired indexing.

1. gid: Global Id of a thread
2. gbl_size: Work size (Total number of threads)
3. N: Number of input data points(complex)

16 Fast Fourier Transform (FFT) on GPUs 345

4. out_id : The index for each output data point
5. num_stage : Parameter that defines output index
6. kern_size: Kernel Size

We use these parameters and our observations of the 4-point FFT to develop the
input indexing of a 4-point FFT kernel. The code section for the input indexing is
given below:

int gid = get_global_id(0);
int gbl_size = N/4;
float2 in_0, in_1, in_2, in_3;
uint kern_size = 4;

in_0 = d_in[(0*gbl_size)+gid];
in_1 = d_in[(1*gbl_size)+gid];
in_2 = d_in[(2*gbl_size)+gid];
in_3 = d_in[(3*gbl_size)+gid];

The output index order of the kernel needs to be sequential. To insure preserving
spatial locality, we develop a generic indexing scheme for storing output data.
The output index (out_id) is computed using the parameters defined above. The
num_stage parameter must be set by the host code while executing the kernel.
The value of num_stage is 2Stagescompleted byFF T (i.e., the value of num_stage
after the completion of the 4-point kernel is 4). After careful study of the 2-point
and 4-point FFT computations, the following observations are made:

• In the first stage of the FFT computation, the output index out_id of each
thread is computed as the product of the kernel-size(kern_size) and global id
gid of that thread.

• For every stage of the FFT computation, each thread writes kern_size output
points to the global memory with a stride equal to num_stage

• For the last FFT stage, the output index out_id of each work item is equal to
the global id gid of the particular thread.

The value of the out_id can thus be calculated as follows for each FFT kernel:

out_id = (gid / num_stage) * num_stage * kern_size
+ (gid%num_stage);

A key portion of the FFT computation is the calculation of the Twiddle factor,
which was defined in Sect. 16.2. The Twiddle factor depends on the size of the FFT
computation and has to be computed at runtime during kernel execution.

W kn
N D e

�j 2kn�
N D cos

��2kn�
N

	
C jsin

��2kn�
N

	
(16.7)

The code used for computing the Twiddle factor using Eq. (16.7) is given below:

346 Y. Ukidave et al.

void twidle_factor(int k, float angle, float2 ip)
{

float2 twiddle, var;
twiddle.x = native_cos(k*angle);
twiddle.y = native_sin(k*angle);

var.x = twiddle.x*ip.x - twiddle.y*ip.y;
var.y = twiddle.x*ip.y + twiddle.y*ip.x;

ip.x = var.x;
ip.y = var.y;

}

Twiddle factors are sinusoidal components, and are symmetrical by definition.
Hence, developers can choose to hardcode the values of the Twiddle factors required
by the FFT computation in the OpenCL kernel code.

The kernel code for the 2-point, 4-point and 8-point kernels is given below.
The kernels are specialized implementations and use the input and output indexing
scheme as described earlier.

Kernel Code for 2-Point FFT:

void FFT2_comp(float2 in_0, float2 in_1)
{
float2 v0;
v0 = in0;
in0 = v0 + in1;
in1 = v0 - in1;

}

__kernel void FFT_MS_2(__global float2* d_in,
__global float2* d_out,
__global uint* comp_stage,
uint num_data)

{
uint N = num_data;
uint gid = get_global_id(0);
uint gbl_size = N/2;
float2 in_0, in1;
uint kern_size = 2;

in_0 = d_in[(0*gbl_size)+gid];
in_1 = d_in[(1*gbl_size)+gid];

uint num_stage = comp_stage[0];

16 Fast Fourier Transform (FFT) on GPUs 347

if (num_stage!=1)
{

float angle = -2*PI*(gid)/(N);
twidle_factor(1, angle, in1);

}

FFT2_comp(in_0, in_1);

uint I_dout = (gid/num_stage)*num_stage*kern_size
+(gid%num_stage);
d_out[(0*num_stage)+I_dout] = in_0;
d_out[(1*num_stage)+I_dout] = in_1;

}

Kernel Code for 4-Point FFT:

void FFT4_comp(float2 in_0, float2 in_1, float2 in_2,
float2 in_3) {
float2 v_0, v_1, v_2, v_3;
v_0 = in_0 + in_2;
v_1 = in_1 + in_3;
v_2 = in_0 - in_2;
v_3.x = in_1.y - in_3.y;
v_3.y = in_3.x - in_1.x;
in_0 = v_0 + v_1;
in_2 = v_0 - v_1;
in_1 = v_2 + v_3;
in_3 = v_2 - v_3;
}

__kernel void FFT_MS_4(__global float2* Data_in,
__global float2* Data_out,
__global uint* comp_stage,
uint num_data)

{
uint N = num_data;
int gid = get_global_id(0);
int gbl_size = N/4;
float2 in_0, in_1, in_2, in_3;
uint kern_size = 4;
in_0 = d_in[(0*gbl_size)+gid];
in_1 = d_in[(1*gbl_size)+gid];

348 Y. Ukidave et al.

in_2 = d_in[(2*gbl_size)+gid];
in_3 = d_in[(3*gbl_size)+gid];
uint num_stage = comp_stage[0];
if (num_stage!=1)
{

float angle = -2*PI*(gid)/(N);
twidle_factor(1, angle, in_1);
twidle_factor(2, angle, in_2);
twidle_factor(3, angle, in_3);

}

FFT4(in_0, in_1, in_2, in_3);
uint I_dout = (gid/num_stage)*num_stage*kern_size+
(gid%num_stage);
d_out[(0*num_stage)+I_dout] = in_0;
d_out[(1*num_stage)+I_dout] = in_1;
d_out[(2*num_stage)+I_dout] = in_2;
d_out[(3*num_stage)+I_dout] = in_3;

}

Kernel Code for 8-Point FFT:

void FFT8(in_0, in_1, in_2, in_3, in_4, in_5, in_6,
in_7) {
float2 v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7;
float2 s0, s1, s2, s3, s4, s5, s6, s7;
v_0 = in_0 + in_4;
v_1 = in_1 + in_5;
v_2 = in_2 + in_6;
v_3 = in_3 + in_7;
v_4 = in_0 - in_4;
v_5 = in_1 - in_5;
v_6.x = in_2.y - in_6.y;
v_6.y = in_6.x - in_2.x;
v_7.x = in_3.y - in_7.y;
v_7.y = in_7.x - in_3.x;
s0 = v_0 + v_2;
s1 = v_1 + v_3;
s2 = v_0 - v_3;
s3 = v_3 - v_1;
s4 = v_4 + v_6;
s5.x = v_5.y - v_7.y;
s5.y = v_7.x - v_5.x;
s6 = v_3 - v_6;

16 Fast Fourier Transform (FFT) on GPUs 349

s7.x = v_7.y - v_5.y;
s7.y = v_5.x - v_7.x;
in_0 = s0 + s1;
in_1 = s0 - s1;
in_2 = s2 + s3;
in_3 = s2 - s3;
in_4 = s4 + s5;
in_5 = s4 - s5;
in_6 = s6 + s7;
in_7 = s6 - s7;
}

__kernel void FFT_MS_8(__global float2* d_in,
__global float2* d_out,
__global uint* comp_stage,
uint num_data)

{
uint N = num_data;
int gid = get_global_id(0);
int gbl_size = N/8;
float2 in_0, in_1, in_2, in_3, in_4, in_5, in_6, in_7;

uint num_stage = comp_stage[0];
uint kern_size = 8;
in_0 = d_in[(0*gbl_size)+gid];
in_1 = d_in[(1*gbl_size)+gid];
in_2 = d_in[(2*gbl_size)+gid];
in_3 = d_in[(3*gbl_size)+gid];
in_4 = d_in[(4*gbl_size)+gid];
in_5 = d_in[(5*gbl_size)+gid];
in_6 = d_in[(6*gbl_size)+gid];
in_7 = d_in[(7*gbl_size)+gid];

if (num_stage!=1)
{
float angle = -2*PI*(gid%num_stage)/(num_stage*
kern_size);
twidle_factor(1, angle, in_1);
twidle_factor(2, angle, in_2);
twidle_factor(3, angle, in_3);
twidle_factor(4, angle, in_4);
twidle_factor(5, angle, in_5);
twidle_factor(6, angle, in_6);
twidle_factor(7, angle, in_7);

350 Y. Ukidave et al.

}
FFT8_comp(in_0, in_1, in_2, in_3, in_4, in_5, in_6,
in_7);
uint I_dout = (gid/num_stage)*num_stage*kern_size+
(gid%num_stage);

d_out[(0*num_stage)+I_dout] = in_0;
d_out[(1*num_stage)+I_dout] = in_1;
d_out[(2*num_stage)+I_dout] = in_2;
d_out[(3*num_stage)+I_dout] = in_3;
d_out[(4*num_stage)+I_dout] = in_4;
d_out[(5*num_stage)+I_dout] = in_5;
d_out[(6*num_stage)+I_dout] = in_6;
d_out[(7*num_stage)+I_dout] = in_7;

}

When using hard-coded FFT kernels (e.g., 16-point and 32-point) for large data
sets, each kernel will require a large number of registers per thread on the GPU.
This can cause a reduction in number of active threads scheduled on the GPU due
to unavailability of resources, which leads to degradation in execution performance
of the application.

Developers should track the number of registers per compute unit consumed by
the kernel, especially when using large-sized FFT kernels.

16.4 Implementation of 2D FFT

We have learned about the implementation of a 1D-FFT kernel on the GPU in
Sect. 16.3. Next, we proceed to implement the 2D-FFT computation kernel.

2D FFT computations are generally used in media applications, including video
and image processing. Such applications have input data arranged in a 2D matrix
format, with data stored using either row-major or column-major format. A 2D FFT
is defined as follows:

F ff .x; y/g D F.u; v/ D 1

MN

M�1X
yD0

N�1X
xD0

f .x; y/W ux
N W

vy
M (16.8)

where M and N are the dimensions of the input matrix.
Equation (16.8) describes the 2D FFT computation. As observed, the 2D-

FFT requires two summations over two dimensions. This computation can be
implemented leveraging the 1D-FFT kernel as a building block. This method of
computing the 2D-FFT is shown in Fig. 16.6.

16 Fast Fourier Transform (FFT) on GPUs 351

2D FFT
input
data

(0,0) (0,1)

(0,0) (0,1)

(1,0)

(0,1)

(0,2)

(0,3)

(0,0)

(0,1)

(0,2)

(0,3)

(0,2) (0,3)

(3,3)

(3,3)

(3,3)

(1,0) …

…

…

…

…

…

…

…

…

…

(0,0) (0,1) (0,2) (0,3)

(3,3)

(0,1) …

…

…

…

…

…

…

…

…

…

…

…

…

…

…

……

……

…

…

…

…

…

…

…

……

……

…

…

(0,0) (0,1)

(0,1)

(0,2)

(0,3) (3,3)

…

…

…

…

…

……

……

…

…

First stage
1D FFT
output

Stage 1: 1D FFT

Stage 3: 1D FFT

Second
stage
1D FFT
output

2D FFT
output
data

Stage 2: Matrix Transpose

Stage 4: Matrix Transpose

First stage
Transposed
FFT matrix

Fig. 16.6 Stages to compute a 2D FFT using a 1D FFT and a matrix transpose as building blocks

352 Y. Ukidave et al.

Figure 16.6 outlines the process of computing a 2D FFT for a 4 � 4 matrix.
The first stage of the transform performs an in-place 1D FFT for each row of the
input data matrix. The second stage performs a transpose over the output of the first
stage. At this point we have a transposed 1D FFT matrix. The third stage performs
another in-place 1D FFT over the rows of the matrix. The fourth stage again
performs a transpose over the matrix using the output of the third stage, producing
the resultant matrix. The output matrix has 2D FFT data output in its natural order
(non-transposed).

The matrix transpose is an additional step that must be performed to compute a
2D FFT. This transpose can be performed on the GPU device using the same data
buffers used for computing the FFT stages. This avoids the overhead of moving data
back and forth between the CPU and the GPU. A basic matrix transpose kernel is
provided below.

Kernel Code for Matrix Transpose:

#define BLOCK_SIZE 16
__kernel void Matrix_Transpose(__global float2* d_in,

__global float2* d_out,
int width,
int height)

{

// Read the matrix block into local memory

__local float2 block[BLOCK_SIZE * (BLOCK_SIZE + 1)]

unsigned int id_x = get_global_id(0);
unsigned int id_y = get_global_id(1);

if((id_x < width) && (id_y < height))
{

unsigned int in_index = id_y * width + id_x;
int I_din = get_local_id(1)*(BLOCK_SIZE+1)

+ get_local_id(0);
block[I_din]= d_in[in_index];

}

barrier(CLK_LOCAL_MEM_FENCE);

// Write transposed matrix block back to global
memory

id_x = get_group_id(1) * BLOCK_SIZE + get_local_id
(0);
id_y = get_group_id(0) * BLOCK_SIZE + get_local_id
(1);

16 Fast Fourier Transform (FFT) on GPUs 353

if((id_x < height) && (id_y < width))
{

unsigned int index_out = id_y * height + id_x;
int I_dout = get_local_id(0)*(BLOCK_SIZE+1)

+ get_local_id(1);
d_out[index_out] = block[I_dout];

}
}

The use of double precision data types is supported by setting a pragma
directive in the OpenCL kernel code. Data types such as double, double2,
double4, double8 and double16 can be used by specifying #pragma
OPENCL EXTENSION cl_khr_fp64 : enable in the kernel code. Use of
double precision data types can affect the execution performance of the FFT
application when compared to using the single precision version.

16.5 Performance Evaluation of FFT

In this section, we provide a performance evaluation of the FFT computation
described in the previous sections, as run on both AMD and Nvidia GPUs.

a bPerformance of FFT on AMD Radeon 7970
1D FFT

Input Points (logN)

600

500

400

300

200

100

2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24

G
F

LO
P

S

0

600
Single Precison
Double Precision

Single Precison

Double Precision
500

400

300

200

100

G
F

LO
P

S

0

Input Points (logN)

Performance of FFT on Nvidia K20
1D FFT

Fig. 16.7 Execution performance (in GFLOPS) for the 1D FFT, as run on a (a) AMD Radeon
7970 GPU and a (b) Nvidia K20 GPU

The evaluation is performed on a system consisting of an Intel Core i7 3770k
processor as the CPU host. The AMD Radeon 7970 discrete GPU and Nvidia K20
discrete GPU are used to accelerate execution of FFT. The performance of the GPU
is measured in Floating Point Operations per Second FLOPS. For an input of size
N, the FFT performs (5�Nlog2(N)) floating point operations (FLOPs) [7].

Figure 16.7a shows the performance of the 1D FFT using single and double
precision on AMD platform. Figure 16.7b shows the same for the Nvidia platform.

Figure 16.8 shows the performance of the 2D FFT as run on a Nvidia K20
and a AMD Radeon GPU. The 2D FFT uses 2 1D FFT computations and 2

354 Y. Ukidave et al.

Performance of 2D FFT on GPUs
300

200

250

100

150

0
128 256

Nvidia K20 AMD Radeon 7970

512 1024 2048

50

Input Matrix Size (N x N)

G
F

LO
P

S

Fig. 16.8 Execution
performance of 2D FFT
(Single Precision) on Nvidia
K20 and AMD Radeon 7970
GPU

transpose computations to carry out the transform. We can notice the added
overhead of launching the transpose in the kernels for the 2D FFT, as compared
to the performance of the 1D FFT.

GPU vendors provide a highly optimized FFT library for their devices. The
library provides customized APIs for computing 1D and 2D FFT on the GPU.
Developers can choose to use these optimized libraries to reduce code production
time. cuFFT by Nvidia and clAmdFFT by AMD are optimized libraries developed
in CUDA and OpenCL, respectively [1, 5].

In this chapter was have presented 1D and 2D implementations of an FFT. We
have discussed some of the tradeoffs when mapping these implementations to GPUs.
We have also provided samples runs of these codes developed in OpenCL when run
on state-of-the-art GPUs.

Appendix

Host code for FFT application

16 Fast Fourier Transform (FFT) on GPUs 355

356 Y. Ukidave et al.

16 Fast Fourier Transform (FFT) on GPUs 357

358 Y. Ukidave et al.

16 Fast Fourier Transform (FFT) on GPUs 359

360 Y. Ukidave et al.

16 Fast Fourier Transform (FFT) on GPUs 361

References

1. AMD: clAmdfft, OpenCL FFT library from AMD (2013)
2. Cooley, J., Tukey, J.: An algorithm for the machine calculation of complex Fourier series. Math.

Comput. 19, 297–301 (1965)
3. Moreland, K., Angel, E.: The FFT on a GPU. In: Proceedings of the ACM SIGGRAPH/EURO-

GRAPHICS Conference on Graphics Hardware, pp. 112–120 (2003)
4. Munshi, A.: The OpenCL 1.2 Specification. Khronos OpenCL Working Group, Beaverton

(2012)
5. Nvidia: Cufft library (2010)
6. NVIDIA: CUDA Programming Guide, Version 5 (2012)
7. Van Loan, C.: Computational Frameworks for the Fast Fourier Transform. Society for Industrial

and Applied Mathematics (1992). doi:10.1137/1.9781611970999. http://epubs.siam.org/doi/
book/10.1137/1.9781611970999

http://epubs.siam.org/doi/book/10.1137/1.9781611970999
http://epubs.siam.org/doi/book/10.1137/1.9781611970999

Chapter 17
A Highly Efficient FFT Using Shared-Memory
Multiplexing

Yi Yang and Huiyang Zhou

17.1 Introduction

Modern many-core graphics processor units (GPUs) rely on thread-level parallelism
(TLP) to deliver high computational throughput. To mitigate the impact of long
latency memory accesses, besides TLP, software managed on-chip local memory is
included in state-of-art GPUs. Such local memory, referred to as shared memory in
NVIDIA GPUs and local data share in AMD GPUs, has limited capacity. Therefore,
efficient utilization of shared memory is critical for many GPGPU (general purpose
computation on GPUs) applications. The Fast Fourier Transform (FFT), a classic
algorithm widely used in many scientific domains, is such an example. In an
optimized parallel implementation of 1-dimension (1D) FFT [1] on GPUs, as the
outputs of one thread are the inputs to others, shared memory is used to store these
temporary data to reduce off-chip memory accesses.

State-of-art GPUs manage shared memory in a relatively simple manner. When
a group of threads (called a thread block or a workgroup) is to be dispatched,
shared memory is allocated based on the aggregate shared memory usage of all the
threads in the thread block (TB). When a TB finishes execution, the allocated shared
memory is released. When there is not sufficient shared memory for a TB, the TB
dispatcher is halted. The major limitation of the abovementioned shared memory
management is that the allocated shared memory is reserved throughout the lifetime
of a TB, even if it is only utilized during a small portion of the execution time. This
limitation reduces the number of TBs that can concurrently run on a GPU, which
may impact the performance significantly as there may not be sufficient threads to
hide long latencies of operations such as memory accesses.

In this chapter, we first present a naïve FFT implementation on GPGPUs. We
show such an implementation has a large amount of off-chip global memory

Y. Yang • H. Zhou (�)
North Carolina State University, Raleigh, NC, USA
e-mail: yangyi@gmail.com; hzhou@ncsu.edu

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__17, © Springer International Publishing Switzerland 2014

363

mailto:yangyi@gmail.com
mailto:hzhou@ncsu.edu

364 Y. Yang and H. Zhou

accesses and fails to utilize computing resource efficiently. We then use the code
from AMD SDK [1] as an example to show how to overcome these limitations.
The key idea is to use a single thread to carry out multi-point FFT computations
and leverage shared memory to exchange data among threads. However, the shared
memory usage may reduce the number of threads running concurrently on each SM
of GPUs due to the limited capacity of shared memory. To address this challenge,
we made an important observation that as shared memory is primarily used for
data exchange among threads for FFT, it is actually utilized for a short amount
of time compared to the overall execution time of a TB. Based on this observation,
we propose novel ways to time-multiplex shared memory so as to enable a higher
number of TBs to be executed concurrently. Our software approaches work on
existing GPUs and they essentially combine two or more original TBs into a new
TB and introduce if-statements to control time multiplexing of the allocated shared
memory among the original TBs.

Our experimental results on NVIDIA GTX480 and Tesla K20c GPUs show that
our approaches can improve the FFT performance significantly. On an NVIDIA
GTX 480 GPU, our FFT kernel outperforms the vendor-tuned library NVIDIA
CUFFT V4.0 by 21 % for a 1 k-point FFT with a batch size of 2,048. On an
NVIDIA Tesla K20c GPU, our FFT kernel outperforms CUFFT V5.0 by 58 % for
the same inputs.

The remainder of the chapter is organized as follows. In Sect. 17.2, we present
a brief background on GPGPU architecture and a naïve implementation of 1D
FFT on GPGPUs. We discuss the limitation of such a naïve implementation and
use the 1D FFT code from AMD SDK to illustrate some key optimizations for
FFT in Sect. 17.3. In Sect. 17.4, we show that the optimized FFT code uses large
amount of shared memory to reduce off-chip memory access and we highlight the
characteristics of its shared memory data usage. In Sect. 17.5 we present our two
software approaches to time-multiplex shared memory to overcome the limitation
of aggressive usage of shared memory. The experimental methodology is addressed
in Sect. 17.6 and the results are presented in Sect. 17.7. Related work is discussed
in Sect. 17.8. Finally, Sect. 17.9 concludes this chapter.

17.2 Background

State-of-art GPUs use many-core architecture to deliver high computational
throughput. One GPU consists of multiple streaming multiprocessors (SMs) in
NVIDIA GPU architecture or computer units (CUs) in AMD GPU architecture.
Each SM/CU in turn includes multiple streaming processors (SPs) or thread pro-
cessors (TPs). Threads running on GPUs follow the single-program multiple-data
(SPMD) model and are organized in a hierarchy. A GPU kernel is launched to a GPU
with a grid of thread blocks (TBs) using the NVIDIA CUDA terminology [2], which
are called workgroups in OpenCL [3]. Threads in a TB form multiple warps, with

17 A Highly Efficient FFT Using Shared-Memory Multiplexing 365

each running in the Single Instruction Multiple Data (SIMD) mode. One or more
TBs run concurrently on one SM, depending on the resource requirement of a TB.

On-chip shared memory is a critical resource for GPGPU applications. Shared
memory provides a mechanism for threads in the same TB to communicate with
each other. It also serves as a software managed cache so as to reduce the
impact of long-latency memory accesses. Since each SM has a limited amount of
shared memory, for many GPGPU applications, the shared memory usage of a TB
determines how many TBs can run concurrently, i.e., the degree of thread level
parallelism (TLP), on an SM. Besides shared memory, the register usage of each
thread is another critical factor to determine the number of threads that can run
concurrently. In state-of-art GPUs, shared memory is managed as follows. When a
TB is to be dispatched to an SM, the TB dispatcher allocates shared memory based
on the aggregate usage of all the threads in the TB. The allocated shared memory
is released when the TB finishes execution. When there is not sufficient resource
available in an SM, the resource is not allocated and no TB will be dispatched to
the SM.

Between shared memory and RFs, current GPUs have higher capacity in RFs.
For example, on NVIDIA GTX285 GPUs, each SM has 16 kB shared memory and
a 64 kB RF. On NVIDIA GTX480 GPUs (i.e., the Fermi architecture), each SM
has a 128 kB RF and a 64 kB hybrid storage that can be configured as a 16 kB L1
cache C 48 kB shared memory or a 48 kB L1cache C 16 kB shared memory. The
latest NVIDIA GPU, GTX680 (i.e., the Kepler architecture), has the same size of
shared memory per SM as GTX480 and a 256 kB RF. With a high number of SPs and
a larger RF in each SM, the Kepler architecture is designed to host more concurrent
thread blocks/threads in each SM than the Fermi architecture, thereby increasing
the pressure on shared memory. On AMD HD5870 GPUs, each CU contains 32 kB
shared memory (called local data share) and a 256 kB RF. As a result, for many
GPGPU applications, shared memory presents a more critical resource to limit the
number of TBs/threads to run concurrently on an SM.

With the promising performance of GPGPUs, many algorithms have been
adapted to GPGPUs. One such algorithm is the Fast Fourier Transform (FFT).
Figure 17.1 shows the pseudo code of a naïve implementation for 1D 1 k-point
FFT on GPGPUs. In order to compute 1 k-point FFT, the kernel GPU_FFT2 needs
to be invoked ten times, i.e., ten passes, and in each pass GPU_FFT2 performs a
2-point FFT. The output array of a previous invocation will be the input to next
kernel innovation. The value of K in the function declaration is doubled in each
invocation from 1 to 1,024. Since each thread performs a 2-point FFT, there are 512
threads for 1 k input elements in a TB. In Fig. 17.1, we can see that, GPU_FFT2 first
loads two complex numbers to the array v from global memory, and then performs
the twiddle-factor computation. The device function FFT2 is called to calculate
the FFT results of two complex numbers. Finally, the results are stored to global
memory to finish a pass.

366 Y. Yang and H. Zhou

#define N 1024
__device__ inline void FFT2 (float2& v0, float2& v1) {

float2 v = v0;
v0.x = v.x + v1.x;
v0.y = v.y + v1.y;
v1.x = v.x – v1.x;
v1.y = v.y – v1.y;

}
__global__ void GPU_FFT2(float2* input, float2* output, int K) {

float2 v[2];
int gid = threadIdx.x;
float angle = -2*PI*(gid%K)/(K*2);
for (int r = 0; r < 2; r++) {

v[r] = dataI[gid+r*N/2];
float2 tw, vr;
tw.x = __cosf(r*angle);
tw.y = __sinf(r*angle);
vr.x = tw.x*v[r].x - tw.y*v[r].y;
vr.y = tw.x*v[r].y + tw.y*v[r].x;
v[r].x = vr.x;
v[r].y = vr.y;

}
FFT2 (v0, v1);
int ind = (gid/K)*K*2+(gid%K);
for (int r=0; r<R; r++) {

output [ind +r*K] = v[r];
}

}
int main(int argc, char** argv) {

……
int flip = 1;
for (int K = 1; K< 1024; K=K*2) {

GPU_FFT2<<< 1, 512 >>>(flip?in:out, flip?out:in, K);
flip = !flip;

}
……

}

Fig. 17.1 The pseudo code of a 1 k-point FFT implementation The GPU_FFT2 kernel is invoked
ten times from the main function. Each time GPU_FFT2 performs 2-point FFT with a total of 512
threads. The output array of previous invocation will be the input to the next invocation

17.3 Optimizations for FFT on GPGPUs

The code example in Fig. 17.1 is straightforward and easy to understand. However,
it does not utilize GPU resource efficiently to achieve high performance due to
the following limitations. First, each thread only performs a 2-point FFT at one
time, and therefore a large number of kernel invocations is needed. Second, in each
invocation, the kernel has to read the input array from and write the output array to
global memory, which has much longer latency and lower bandwidth than on-chip
memory.

17 A Highly Efficient FFT Using Shared-Memory Multiplexing 367

In order to overcome these limitations, many optimizations have been proposed
in previous studies [1, 4]. Here, we summarize the common optimizations. First,
instead of performing a 2-point FFT, each thread can perform a 4-point, 8-point, 16
(or more)-point FFT. The benefit of using a thread to compute a multi-point FFT is
to reduce the number of passes and the number of off-chip memory accesses. Since a
multi-point FFT may be computed using registers only, the workload of each thread
is determined by the register requirement. For example, NVIDIA GTX 480 and 680
GPUs limit the number of registers per thread to be less than 64, therefore each
thread can perform at most a 16-point FFT due to the register usage for data and
addresses. Second, shared memory is used to support inter-thread communication
and enable single kernel invocation for a 1 k-point FFT. To do so, threads in a
TB store the per-thread FFT computation results into shared memory, perform
synchronization, read data from shared memory, perform another multi-point FFT,
and so on. This procedure can be repeated until a thread requires the output from a
thread that is located in a different TB.

Next, we demonstrate these optimizations using the code example adapted from
the AMD SDK [1]. The kernel shown in Fig. 17.2 is used to perform 1 k-point
FFT using a TB containing 64 threads. The kernel has two inputs arrays: one for
the real part and the other for the imaginary part of the inputs. The results of the
kernel computation will be overwritten to the input array, and therefore there is no
additional output array.

Inside the kernel, we can see there are seven code sections as commented in the
code. The first code section is used to read data from global memory, and the last
one is used to store data to global memory. The remaining five sections correspond
to five passes with each pass performing four 4-points FFTs. The first FFT pass
uses the function FFT_P1, which is different from the function FFT_P used in the
second, third, and fourth passes. The reason is that float4 is used to load data from
global memory and the x, y, z, w fields of a float4 require different values of twiddle
factors in the first pass. For other passes, the data is loaded from shared memory and
the same twiddle factors are shared. The fifth pass is different as it does not need to
compute twiddle factors. The parameter of FFT_P is used to compute the twiddle
factors.

Within each pass, there is data interchange through shared memory, i.e., the
loadFromSM and the saveToSM functions. The parameters of loadFromSM or
saveToSM are used to determine where to load/store the data in shared memory.

Compared to the implementation in Fig. 17.1, the implementation in Fig. 17.2
requires only one kernel invocation. In the meanwhile, the number of off-chip
memory accesses has been reduced by 90 % due to data exchange in shared memory.
With this implementation, each TB has 64 threads and uses 8,736-Byte shared
memory (8,192 B for data, additional bytes for padding to avoid bank conflicts and a
few bytes reserved by CUDA). In other words, this optimized FFT implementation
requires a large amount of shared memory. For the purpose of clarity of our
discussion in remaining sections, we simplify the pseudo code in Fig. 17.2 to the
code shown in Fig. 17.3. As shown in Fig. 17.3, we reduce a code section into a
function call, and replace the parameters of function calls with the pass sequence
numbers.

368 Y. Yang and H. Zhou

__global__ void kfft(float *greal, float *gimag) {
__shared__ float lds[68*4*4*2]; // This is 8704 bytes
uint gid = threadIdx.x+blockIdx.x*blockDim.x;
uint me = gid & 0x3fU;
uint dg = (gid >> 6) * VSTRIDE;
float *gr = greal + dg;
float *gi = gimag + dg;

// section 1: load from global memory
float4 *gp = (float4 *)(gr + (me << 2));
float4 zr[4], zi[4];
zr[0] = gp[0*64]; zr[1] = gp[1*64]; zr[2] = gp[2*64]; zr[3] = gp[3*64];
gp = (float4 *)(gi + (me << 2));
zi[0] = gp[0*64]; zi[1] = gp[1*64]; zi[2] = gp[2*64]; zi[3] = gp[3*64];

// section 2: first FFT4 pass
FFT_P1();
savetoSM(66*4, 1, ((me << 2) + (me >> 3)), 66*4*4);__syncthreads();
loadfromSM(66, 66*4, (me + (me >> 5)), 66*4*4);

// section 3: second FFT4 pass
FFT_P(me << 2); __syncthreads();
savetoSM(1, 66*4, (((me << 2) + (me >> 3))), 66*4*4); __syncthreads();
loadfromSM(66, 66*4, (me + (me >> 5)), 66*4*4);

// section 4: third FFT4 pass
FFT_P((me >> 2) << 4);__syncthreads();
savetoSM(66*4, 66, me, 66*4*4);__syncthreads();
loadfromSM(16, 66, ((me & 0x3) + ((me >> 2) & 0x3)*(66*4) + ((me >> 4) <<

2)), 66*4*4);

// section 5: fourth FFT4 pass
FFT_P((me >> 4) << 6);__syncthreads();
savetoSM(68*4, 68, me, 68*4*4);__syncthreads();
loadfromSM(16, 68, ((me & 0xf) + (me >> 4)*(68*4)), 68*4*4);

// section 6: fifth FFT4 pass
FFT4();

// section 7: write back results to global memory
gp = (float4 *)(gr + (me << 2));
for (int i=0; i<4; i++) gp[i*64] = zr[i];
gp = (float4 *)(gi + (me << 2));
for (int i=0; i<4; i++) gp[i*64] = zi[i];

}

Fig. 17.2 The kernel of a 1 k-point FFT implementation, which uses 8,736-Byte shared memory
per thread block and there are 64 threads per thread block

17.4 Characterization of Shared Memory Usage

As discussed in Sect. 17.3, the optimized FFT kernel uses 8,736 B shared memory
per TB, and each thread block has 64 threads. Therefore, if each SM has only
16 kB shared memory, only one thread block can run in a SM at a time, resulting in
relatively low TLP.

17 A Highly Efficient FFT Using Shared-Memory Multiplexing 369

loadFromGlobal();
FFT4(0);
saveToSM(0); //define by multiple threads in a TB
__syncthreads();
loadFromSM(0); //use by multiple threads in a TB
FFT4(1);
__syncthreads();
saveToSM(1); //(re)define by multiple threads in a TB
__syncthreads();
loadFromSM(1); //use by multiple threads in a TB
….
FFT4(4);
writeToGlobal();

Fig. 17.3 The simplified pseudo code of a 1 k-point FFT implementation, which uses 8,736-Byte
shared memory per thread block and there are 64 threads per thread block

Next, we resort to microarchitectural simulation to analyze how shared memory
is actually utilized (see Sect. 17.6 for the detailed experimental methodology) in a
TB. Since the compiler may schedule shared memory accesses to interleave with
other types of instructions to improve instruction-level parallelism (ILP), if we
simply consider the lifetime of shared memory usage as between the first instruction
writing to shared memory and the last instruction reading from shared memory,
we may find that shared memory is used for almost the entire lifetime of kernel
execution. To isolate the usage of shared memory from other parts of the kernel
code, we insert ‘__syncthreads()’ instructions before the first write/define to and
after the last read/use from shared memory. We denote a code region surrounded by
our inserted ‘__syncthreads()’ as a shared memory access region. A redefine of the
shared memory variables will start a new shared memory access region. Here, any
define or use of shared memory variables is based on all the threads in a TB. Then,
we use the accumulated execution time of all shared-memory-access regions as the
duration for shared memory usage. Our simulation result shows that shared memory
is only used in 28.2 % of the execution time for FFT, which means in 71.8 % of the
execution time, shared memory is occupied but not used.

17.5 Shared Memory Multiplexing: Software Approaches

As discussed in Sect. 17.3, FFT suffers from insufficient TLP due to the limited
shared memory capacity. In the meanwhile, the allocated shared memory is only
utilized for a small fraction of the overall execution time. In this section, we propose
two software approaches to time-multiplex shared memory so as to boost TLP. The
key idea is to combine original TBs to a larger one and introduce control flow to
manage how shared memory is accessed by original TBs. The difference between
the two approaches lies in how to overlap shared memory accesses with other parts
of the code.

370 Y. Yang and H. Zhou

17.5.1 Virtual Thread Blocks (VTB)

In this approach, we first isolate the part(s) of a kernel function that accesses shared
memory variables. Second, we combine two original TBs into a new one. Here, we
refer to an original TB as a virtual TB. In other words, after TB combination, one
TB contains two virtual TBs. Third, we introduce the control flow “if(v_tb_idDD0)”
and “if(v_tb_id DD1)” to manage which virtual TB will access shared memory at a
time. The amount of the required shared memory of the combined TB remains the
same as either of the virtual TBs.

For the FFT code shown in Fig. 17.3, the code after we apply VTB is shown
in Fig. 17.4. The ‘if-statements’ on lines 4, 6, 8, and 10 are introduced to ensure
that only one virtual TB is accessing the allocated shared memory at a time. The
‘syncthreads()’ function on line 7 implicitly marks the last use of shared memory of
virtual TB 0 so that virtual TB 1 can use shared memory immediately afterwards.

1. int v_tb_id = threadIdx.x/64; //virtual thread block id
2. loadFromGlobal();
3. FFT4(0);
4. if (v_tb_id==0) saveToSM(0); //def. from threads in v_tb_0
5. __syncthreads();
6. if (v_tb_id==0) loadFromSM(0);//use. from threads in v_tb_0
7. __syncthreads();
8. if (v_tb_id==1) saveToSM(0); //def. from threads in v_tb_1
9. __syncthreads();
10. if (v_tb_id==1) loadFromSM(0);//use. from threads in v_tb_1
11.FFT4(1);
12. ….
13.FFT4(4);
14.writeToGlobal();

Fig. 17.4 The pseudo code of a 1 k-point FFT implementation using VTB. Each thread block uses
8,736-Byte shared memory and there are 128 threads in each thread block

Next, we illustrate the reason why our proposed VTB can improve the GPU
throughput and also highlight its overhead. Assuming a GPU with 16 kB shared
memory in each SM, since each TB requires more than 8 kB shared memory, two TB
dispatched to the same SM have to execute back to back with the code in Fig. 17.3.
This execution process is shown in Fig. 17.5a. For the purpose of clarity, in Fig. 17.4
we only show the execution time corresponding to the global memory access, the
first 4-point FFT and the data exchange via shared memory. The remaining code in
the kernel function simply repeats 4-point FFT and data exchange multiple times.
With the code in Fig. 17.4, the combined TB is equivalent to the two original TBs.
Due to the increased TLP, the execution time of the function loadFromGlobal()
and FFT4() of 128 threads is significantly less than the back-to-back execution of
the same functions of 64 threads, as shown in Fig. 17.5b. However, to control the
accesses to shared memory between the two virtual TBs, additional synchronization

17 A Highly Efficient FFT Using Shared-Memory Multiplexing 371

functions are added to ensure correctness. Besides the latency to perform such
‘__syncthread()’ functions, the barrier also limits the compiler’s capability to
schedule instructions across the barriers, which may result in reduced ILP and
additional register usage. The added control flow instruction “if(v_tb_idDD0)” has
minimal overhead as it does not generate any control divergence within a warp
since all 64 threads in the same virtual TB will follow the same direction and
each warp has 32 threads on NVIDIA GPUs. The global memory access functions
‘loadFromGlobal’ and ‘writeToGlobal’ benefit from VTB as the increased TLP
translate to increased memory-level parallelism (MLP).

Execution time

TB0

TB1

VTB0

VTB1

VTB0

VTB1

__syncthreads()Shared memory
access region

Non-shared
memory regions

a

b

c

Fig. 17.5 A comparison of execution time for (a) Two thread blocks (TB0 and TB1) use one
copy of shared memory (baseline), (b) Two virtual thread blocks (VTB0 and VTB1) multiplex one
copy of shared memory (VTB), and (c) Two virtual thread blocks (VTB0 and VTB1) multiplex
one copy of shared memory with a pipelined schedule (VTB_pipe)

From Fig. 17.5, we can also see that when a virtual TB accesses shared
memory, the other virtual TB is forced to be idle due to the control flow and the
‘__syncthread()’ functions. Our proposed second approach addresses this limitation
and we include the execution time information of these approaches in Fig. 17.5 for
comparison. We discuss this approach in detail in Sect. 17.5.2.

Note that although Figs. 17.4 and 17.5 show the case of combining two original
TBs into one, we can apply the same principle to combine more than two TBs.

372 Y. Yang and H. Zhou

The optimal number of TBs to combine is dependent on how many concurrent
threads can run on an SM. Typically, combining two TBs is sufficient to reap most
performance benefits.

17.5.2 Pipelined Virtual Thread Blocks (VTB_PIPE)

As discussed in Sect. 17.5.1, VTB combines two virtual TBs into a larger one and
it ensures that only one virtual TB is accessing shared memory by forcing the other
virtual TB to be idle. To reduce such idle cycles, we propose to overlap computation
with shared memory accesses. To do so, we make the first virtual TB to run faster
than the second one using an ‘if(v_tb_idDD0)’ statement. Then, when the first
virtual block reaches the code section of shared memory access, the second virtual
TB continues its computation instead of being forced idle. When the second virtual
block reaches the code section of shared memory accesses, the first will continue
to run ahead. This process is similar to letting the two virtual TBs to go through a
pipeline. Therefore, we refer to this approach as pipelined VTB (VTB_pipe).

1. int v_tb_id = threadIdx.x/64;
2. loadFromGlobal();
3. if (v_tb_id==0) FFT4(0);
4. if (v_tb_id==0) saveToSM(0);
5. __syncthreads();
6. if (v_tb_id==0) loadFromSM(0);
7. else FFT4(0);
8. __syncthreads();
9. if (v_tb_id==1) saveToSM(0);
10. __syncthreads();
11. if (v_tb_id==1) loadFromSM(0);
12. else FFT4(1);
13. __syncthreads();
14. if (v_tb_id==0) saveToSM(1);
15. __syncthreads();
16. if (v_tb_id==0) loadFromSM(1);
17. else FFT4(1);
18. ….
19. FFT4(4);
20. writeToGlobal ();

Fig. 17.6 The pseudo code of a 1 k-point FFT implementation using VTB_pipe. Each thread block
uses 8,736-Byte shared memory and there are 128 threads in each thread block. (The complete code
of our proposed VTB_pipe approach for FFT is available at: http://people.engr.ncsu.edu/hzhou/
fft_pipe.cu)

http://people.engr.ncsu.edu/hzhou/fft_pipe.cu
http://people.engr.ncsu.edu/hzhou/fft_pipe.cu

17 A Highly Efficient FFT Using Shared-Memory Multiplexing 373

For the FFT, the code after we apply our proposed VTB_pipe is shown in
Fig. 17.6. From Fig. 17.6, we can see that initially the two virtual TBs will both
execute the ‘loadFromGlobal()’ function. Then, the ‘if(v_td_idDD0)’ statements
on lines 3 and 4 as well as the ‘__syncthreads()’ on line 5 enable virtual TB
0 to execute the ‘FFT4()’ and ‘saveToSM’ functions, making it running ahead
of virtual TB1. The code on line 6 and line 7 shows the overlapping between
the function ‘loadFromSM()’ of virtual TB0 and the ‘FFT4()’ function of virtual
TB1. Since virtual TB1 is lagging behind, when it reads from shared memory via
‘loadFromSM()’ on line 11, the virtual TB0 proceeds to compute its next 4-point
FFT, the ‘FFT4()’ on line 12. The execution process is shown in Fig. 17.5c. Due to
the overlapping between shared memory accesses and computation, we can reduce
the idle cycles experienced by virtual TBs.

The complexity of VTB_pipe, however, is that we may need to partition the non-
shared memory access code section to create small computational/global memory
access tasks so that they can overlap with shared memory accesses. The ideal case
is that the small computational tasks have similar execution latency to the shared
memory accesses and can completely utilize the otherwise idle cycles. In the FFT
case, the FFT4() function is a convenient choice and does not require such partition.

17.6 Experimental Methodology

To evaluate our proposed software approaches, we use both an NVIDIA GTX 480
GPU with CUDA SDK 4.0 and an NVIDIA Tesla K20c GPU with CUDA SDK 5.5.
Because the shared memory size is configurable on these GPUs, we present two sets
of results: one with 48 kB shared memory and the other with 16 kB shared memory.

For our experiment in Sect. 17.4, we use the GPGPUsim V3.0 simulator [5]. The
simulator models an NVIDIA GTX285 GPU, which has 16 kB shared memory and a
64 kB register file on each SM. The off-chip memory frequency is set to 1,100 MHz.

17.7 Experimental Results

For 1 k-point FFT, we use batch execution [4] to evaluate the throughput and
vary the batch size from 128 to 2,048. The throughput results of GTX480 are
reported in Fig. 17.7. From the figure, we can see that our baseline implementation
running on GTX480 with 16 kB shared memory outperforms CUFFT [6] for
small batch sizes and not as good for large batch sizes. With the 48 kB shared
configuration, our baseline implementation consistently outperforms CUFFT. The
average throughput of ‘48K_BL’ is 168.3 GFLOPS compared to the average of 72.4
GFLOPS throughput of CUFFT. Our VTB_pipe further improves the throughput by
up to 33 % and achieves an average throughput of 205.9 GFLOS (a 2.84� speedup
over CUFFT). The results on Tesla K20c using CUDA SDK 5.5 are shown in

374 Y. Yang and H. Zhou

0

50

100

150

200

250

300

350

2048 1024 512 256 128

P
er

fo
rm

an
ce

 (
G

fl
o

p
s)

Batch size of 1K FFT

16K_BL 48K_BL 16K_VTB 48K_VTB 16K_VTB_pipe 48K_VTB_pipe CUFFT 4.0

Fig. 17.7 Performance comparison of FFT among the baseline (xK_BL), VTB_pipe
(xK_VTB_pipe) and CUFFT 4.0 on GTX 480. ‘xK’ denotes the size of shared memory

0

50

100

150

200

250

300

350

P
er

fo
rm

an
ce

 (
G

fl
o

p
s)

Batch size of 1K FFT

16K_BL 48K_BL 16k_VTB 48k_VTB 16K_VTB_pipe 48K_VTB_pipe CUFFT 5.5

2048 1024 512 256 128

Fig. 17.8 Performance comparison of FFT among the baseline (xK_BL), VTB_pipe
(xK_VTB_pipe) and CUFFT 5.5 on Tesla K20c. ‘xK’ denotes the size of shared memory

Fig. 17.8. As we can see from Fig. 17.8, the performance trend is similar to the one
on GTX 480. On average, our VTB_pipe achieves 1.21� speedup over the baseline
and 3.67� speedup over CUFFT 5.5 for the 48 KB shared memory configuration.
We also observe that K20c does not yield higher performance than GTX 480 for this
FFT implementation.

In the code shown in Fig. 17.5, we overlap the loadFromSM() function of
a virtual TB with the FFT4() function of the other virtual TB. Therefore, the
function saveToSM() is actually not utilized in this pipeline approach. Alternatively,
a different pipeline choice is to overlap the saveToSM() function of a virtual TB

17 A Highly Efficient FFT Using Shared-Memory Multiplexing 375

0

50

100

150

200

250

300

350

P
er

fo
rm

an
ce

 (
G

fl
o

p
s)

Batch size of 1K FFT

16K_VTB_pipe 16K_VTB_pipe_ALT 48K_VTB_pipe 48K_VTB_pipe_ALT

2048 1024 512 256 128

Fig. 17.9 Performance comparison of FFT among two different pipeline implementations.
xK_VTB_pipe is the implementation shown in Fig. 17.5 and xK_VTB_pipe_ALT is the imple-
mentation using saveToSM to overlap with FFT4. ‘xK’ denotes the size of shared memory

with the FFT4() function of the other virtual TB. We show the results of such
alternative pipeline approach in Fig. 17.9. As shown in figure, the alternative
approach has similar but slightly worse performance than the previous pipeline
approach. Since our approach tries to schedule the workload in a software way
which is interfered by the hardware schedule, it is difficult to predict the best
pipeline implementation. Therefore, a hardware approach proposed in [7], which
supports dynamic allocation and de-allocation of shared memory, reduces the
software overhead and avoids such interference between the software and hardware
schedules.

17.8 Related Work

On-chip shared memory is a critical resource for GPGPU applications. Previous
works mainly focus on utilizing shared memory to achieve coalesced memory
accesses [8–16], to provide data exchange among threads [4], to use shared memory
as software managed cache [14], etc. Although it is well known that heavy usage
of shared memory may limit TLP [14, 17], it is common that the benefits of
using shared memory overweigh the shortcomings of reduced TLP. As a result,
many GPGPU workloads have exhibited high shared memory usage. This is also
a reason why the NVIDIA Fermi and Kepler architecture provides larger shared
memory and an L1 cache. On the other hand, the high number of SPs in an SM
in the NVIDIA Fermi and Kepler architecture makes TLP more important to hide
instruction execution latencies.

376 Y. Yang and H. Zhou

17.9 Conclusions

In this chapter, we propose novel software approaches to time-multiplex shared
memory. Our approaches are based on our observation that for many GPGPU
applications with heavy use of shared memory, the duration of time, when shared
memory is utilized, is actually low. Our experimental results confirm that shared
memory is utilized for only 28.2 % of the execution time of a TB for an optimized
FFT implementation. Therefore, there exist significant opportunities to time mul-
tiplex shared memory. Among our software approaches, VTB is simplest and it
combines two TBs into a new one and adds control flow to ensure only one original
TB accesses shared memory at a time. VTB_pipe reduces the performance overhead
of VTB by overlapping non-shared memory access regions (e.g., computation or
global memory accesses) with shared memory accesses. Our experimental results
show that our proposed software schemes improve the performance significantly on
current GPUs.

Acknowledgments This work is supported by an NSF project 1216569, an NSF CAREER award
CCF-0968667, a grant from DARPA PERFECT program, and a gift fund from AMD Inc.

References

1. AMD Accelerated Parallel Processing SDK V2.3 (2011)
2. NVIDIA CUDA C Programming Guide 4.0 (2011)
3. OpenCL. http://www.khronos.org/opencl/
4. Govindaraju, N., Lloyd, B., Dotsenko, Y., Smith, B., Manferdelli, J.: High performance discrete

Fourier transforms on graphics processors. In: Proc. Supercomputing (2008)
5. Bakhoda, A., Yuan, G., Fung, W.W.L., Wong, H., Aamodt, T.M.: Analyzing CUDA workloads

using a detailed GPU simulator. In: IEEE International Symposium on Performance Analysis
of Systems and Software (2009)

6. NVIDIA CUDA Toolkit 4.0 CUFFT Library (2011)
7. Yang, Y., Xiang, P., Mantor, M., Rubin, N., Zhou, H.: Shared memory multiplexing: a

novel way to improve GPGPU throughput. In: Proc. International Conference on Parallel
Architecture and Compiler Techniques (2012)

8. Jang, B., Schaa, D., Mistry, P., Kaeli, D.: Exploiting memory access patterns to improve
memory performance in data-parallel architectures. In: IEEE Transactions on Parallel and
Distributed Systems (2010)

9. Zhang, E.Z., Jiang, Y., Guo, Z., Tian, K., Shen, X.: On-the-fly elimination of dynamic
irregularities for GPU computing. In: International Conference on Architectural Support for
Programming Languages and Operating Systems (2011)

10. Ruetsch, G., Micikevicius, P.: Optimize matrix transpose in CUDA. NVIDIA (2009)
11. Ryoo, S., Rodrigues, C.I., Stone, S.S., Baghsorkhi, S.S., Ueng, S., Stratton, J.A., Hwu, W.W.:

Optimization space pruning for a multi-threaded GPU. In: Proc. International Symposium on
Code Generation and Optimization (2008)

12. Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B., Hwu, W.W.: Optimization
principles and application performance evaluation of a multithreaded GPU using CUDA. In:
Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (2008)

http://www.khronos.org/opencl/

17 A Highly Efficient FFT Using Shared-Memory Multiplexing 377

13. Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra. In: Proc.
Supercomputing (2008)

14. Yang, Y., Xiang, P., Kong, J., Zhou, H.: A GPGPU compiler for memory optimization and
parallelism management. In: ACM SIGPLAN Conference on Programming Language Design
and Implementation (2010)

15. Yang, Y., Xiang, P., Mantor, M., Zhou, H.: Fixing performance bugs: an empirical study of
open-source GPGPU programs. In: International Conference on Parallel Processing (2012)

16. Zhang, Y., Cohen, J., Owens, J.D.: Fast tridiagonal solvers on the GPU. In: Proc. ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (2010)

17. Sim, J., Dasgupta, A., Kim, H., Vuduc, R.: A performance analysis framework for identifying
performance benefits in GPGPU applications. In: Proc. ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (2012)

Chapter 18
Increasing Parallelism and Reducing Thread
Contentions in Mapping Localized N-Body
Simulations to GPUs

Bharat Sukhwani and Martin C. Herbordt

18.1 Introduction

N-body simulations are applied to a variety of scientific problems, from space
simulations to modeling molecular interactions. Due to their computational com-
plexity, various parallelization techniques have been applied to reduce their exe-
cution time. In particular, the use of graphics processors to accelerate these
computations has been widely studied [1, 2]. Depending on the actual geometry
of the underlying system being simulated, however, the data structures and the
approach for parallelization vary significantly. For example, widely studied molec-
ular dynamics simulations that evaluate the interaction of the entire system of
particles often employ cell-lists, a data structure that may not be best-suited for other
problems that aim to simulate a localized region of the system involving only a small
subset of particles. An example of one such application is energy minimization as
employed in drug discovery. Here, the aim is to simulate a small probe molecule in
a potential drug binding site (pocket). A commonly-used representation of particle-
pairs in such applications is neighbor lists (Fig. 18.1), wherein for each particle in
the system, a list of its neighboring particles that affect its energy is maintained.
As the particles move around during subsequent simulation iterations, the neighbor
lists are updated. Computing the energy of a particle then involves iterating through
its neighbor list, computing the partial pair-wise energy value due to each of its
neighbor and accumulating the partial values into a total sum. The total energy of
the system is the sum of the energies of all the particles.

B. Sukhwani (�)
IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
e-mail: bharats@us.ibm.com

M.C. Herbordt
Boston University, Boston, MA, USA
e-mail: herbordt@bu.edu

V. Kindratenko (ed.), Numerical Computations with GPUs,
DOI 10.1007/978-3-319-06548-9__18, © Springer International Publishing Switzerland 2014

379

mailto:bharats@us.ibm.com
mailto:herbordt@bu.edu

380 B. Sukhwani and M.C. Herbordt

Cutoff

Neighbor list

Fig. 18.1 Neighbor list for
an atom

Note that neighbor lists are also often employed in molecular dynamics (MD)
simulations but the geometry of the problem and thus the characteristics of the
resulting neighbor lists are significantly different from those in energy minimization.
In MD, the geometry is dense, with each particle having a large number of particles
in its neighborhood and the neighbor lists for different particles are similar sized for
the bulk of the computation. In energy minimization, on the other hand, the neighbor
lists are relatively small and different particles have widely varying number of
particles in their neighborhood. Moreover, unlike MD where the neighbor lists
are updated every few iterations, the neighbor lists in energy minimization are
seldom updated, once every few hundred iterations. Though these differences appear
subtle, they lead to the need for significantly different approaches for effective
parallelization.

Effective parallelization of computations using the neighbor lists structure,
particularly for localized N-body problems, poses some challenges. Although there
is parallelism while computing the partial energies of the different particles, due to
the local nature of the problem, the runtime for a single iteration is usually relatively
small and much of the time per iteration is spent in the serial accumulation step,
making the parallelization, particularly on GPU threads, difficult due to inter-thread
communication overheads. The computation is typically repeated for a large number
of iterations, resulting in large total execution times. The loop-carried dependence
among the iterations, however, does not allow concurrent execution of multiple
iterations.

This chapter discusses efficient mapping of such class of localized N-body
problems to GPUs. Though modern GPUs have hundreds of processor cores, their
communication and synchronization pattern is very restrictive. This, combined with
the nature of the underlying computation, makes it difficult to achieve efficient
utilization of these available processors. This chapter discusses how this limitation
can be addressed by performing significant restructuring of the original data
structures and introduces modified data structures to achieve increased parallelism
and reduced serialization of, and communication among, GPU threads. In this
chapter, we assume an NVIDIA Tesla GPU with CUDA programming model,
though the techniques discussed in this chapter should be more broadly applicable
to newer generation GPUs and the OpenCL programming model.

18 Increasing Parallelism and Reducing Thread Contentions in Mapping. . . 381

18.2 Overview of Energy Minimization

Throughout this chapter, energy minimization is used as the candidate N-body
application for mapping to the GPU, though the techniques discussed can be
applied to other localized N-body problems employing neighbor lists or similar data
structures.

Energy minimization is a widely applied routine in many molecular modeling
algorithms. The purpose of energy minimization is to compute the minimum-energy
conformation of a system of particles that interact with each other under various
bonded and non-bonded forces. It is an iterative process, requiring many hundreds
to a thousand or more iterations to converge. Each iteration aims to compute
the total potential energy of the system by computing the different bonded and
non-bonded energies for all the atoms in the system. A move to a neighboring
position is then made using an optimization technique such as Newton–Raphson
or quasi-Newtonian (L-BFGS). This iterative process of energy evaluation followed
by position update is repeated until the energy of the system converges within a
threshold.

Though the underlying computation of energy minimization is superficially
similar to widely studied molecular dynamics (MD), it differs from MD simulations
in several ways. First, unlike MD, where the movement of the atoms is based
on Newtonian dynamic laws and produces a trajectory based on kinetic energy,
minimization simply adjusts the atom coordinates so as to lower the total energy
of the system [3, 4]. Minimization does not include the effect of temperature,
and the final state of the system corresponds to the atom configurations when the
temperature is approximately zero [4]. For these reasons, the final state achieved
after minimization does not depend on the initial state. Second, unlike MD, where
the system typically consists of millions of particles, energy minimization is often
performed on a local region of the complex, resulting in only a few thousand
atoms being simulated and requiring only up to a few tens of thousands of atom-
pair evaluations per iteration. Finally, even though the energy terms computed in
minimization are similar to those in MD, the actual energy expressions evaluated
are quite different. For example, rather than evaluating the van der Waals term with
a 12–6 Lennard-Jones function, a minimization routine often approximates it with a
sum of two or four Gaussians [5].

18.3 Mapping Localized N-Body Simulations to GPUs

In this section, three different methods for mapping the energy computations onto
the GPU processors are presented. The first uses the original neighbor-lists data
structure and does not result in any performance improvements compared to the
original serial software code. The difficulties in obtaining good performance from
this scheme are discussed, followed by a modified data structure for improved

382 B. Sukhwani and M.C. Herbordt

performance. The second method uses this modified data structure, leading to
improved distribution of work among GPU threads and better performance. This
approach, however, still requires serialized accumulations in the global memory
and thus results in modest overall speedup. In the third method, the data structure
is further modified to enable multiple parallel accumulations from shared memory,
resulting in significant performance improvements. Also, an additional data struc-
ture is used to statically assign the work to different GPU threads leading to better
work distribution and reduced inter-thread communication and conflicts.

Figure 18.2a shows the neighbor-lists and the energy array used for computing
the atom energies in serial CPU code. For each atom in the system, a neighbor-list
is maintained containing a list of its neighboring atoms that affects its energy. To
compute an atom’s energy, the atoms in its neighbor-list are accessed and the partial
energies of the two atoms are computed. These partial energies are accumulated,
as they are computed, into the energy array that stores the total individual energy of
each atom. There are several reasons why the neighbor-list structure is not suited for
mapping to GPUs. First, since the individual total energy value of each atom needs
to be computed and not just the total energy of the system, multiple accumulations
are required, one for each entry of the energy array. This leads to serialization during
energy accumulation. Second, due to the arbitrary, non-sequential occurrences of the
neighbor atoms in the neighbor-lists, the energy array cannot simply be divided and
distributed into the shared memories of different GPU multiprocessors. Rather, it
must be present in the GPU global memory, accessible from all the multiprocessors.
And third, having the energy array in the global memory can potentially lead to
write conflicts, since a particular neighbor atom can be present in the neighbor-list
of more than one atom (e.g. atom number 2 in Fig. 18.2).

Atoms

n-1

3

0

1

2
2

0

1

2
1

11
14

2
5

4
15

4

12

3

Energy update for the first atom

Energy update for the neighboring atom

Atoms

2

0

1

2
1

11
14

2
5

4
15

4

12

3

n-1

3

0

1

2
2

0

1

2
1

11
14

2
5

4
15

4

12

3

Energy update for the first atom

Energy update for the neighboring atom

Atom energy
array

n-1

3

0

1

2
2

0

1

2
1

11
14

2
5

4
15

4

12

3

Energy update for the first atom

Energy update for the neighboring atom

Atoms Neighboring
atoms

Neighboring
atoms

2

0

1

2
1

11
14

2
5

4
15

4

12

3

2

0

1

2
1

11
14

2
5

4
15

4

12

3

a b

Fig. 18.2 (a) Neighbor-lists data structure (b) Arbitrary, non-sequential updates in the energy
array cause write conflicts

18 Increasing Parallelism and Reducing Thread Contentions in Mapping. . . 383

18.3.1 Mapping Neighbor Lists to GPUs

The approach presented here attempts to map the unmodified neighbor-lists data
structure onto the GPU threads. Though there are various ways to map this neighbor-
list computation structure onto the GPU threads for parallel energy evaluations, most
of them run into two problems: (1) memory conflicts during parallel updates from
different threads and (2) serialization during the accumulation of partial energies
into the energy array. To enable parallel updates and accumulations on different
GPU multiprocessors, this first scheme maps one atom and its associated neighbor-
list onto a single multiprocessor at a time. In other words, each multiprocessor
computes the partial energies for exactly one atom due to all of its neighbors, plus
the partial energies of all its neighbors due to that atom. For ease of understanding,
we call the current mapped atom the first atom and atoms in its neighbor-list the
second atoms. On each multiprocessor, two different energy arrays are created in
shared memory. The first array stores the partial energies of the currently mapped
first atom, with one entry for its partial energy due to each second atom in its
neighbor-list. The second array stores the partial energies of the second atoms, with
one entry for each atom in the system (see Fig. 18.3).

Each thread in a thread block computes two partial energy values: the partial
energy of the current first atom (assigned to the thread block) due to one of the
second atoms in its neighbor-list and the partial energy of the second atom due to
the first. As the energies are computed by different threads, they are updated in these
shared memory arrays. Note that since a second atom will appear in the neighbor list
of a particular atom only once, no two threads will update the same shared memory
location at the same time. This enables parallel, conflict-free updates.

Once the entire neighbor-list of the current first atom is processed, a barrier is
reached. A master thread (thread 0 from each block) then computes the total energy
of the first atom by adding all the partial values in the first atom energy array. The
energies in the second atom array, however, are for different second atoms and are
only partial. As shown in Fig. 18.3, analogous partial arrays are present on the
shared memories of all the other multiprocessors. These must be combined to obtain
the total energy of each of the second atom. This is done by copying the second
atom energy arrays from the shared memories of the different multiprocessors to
the global memory. The corresponding values from these arrays are then summed
to obtain a single array with the total energies. This can be done in parallel by
employing multiple threads.

Though this method allows parallel execution and updates, it has three draw-
backs. First, since only one first atom is processed by a multiprocessor, the
GPU threads are heavily underutilized and the distribution of work on different
multiprocessors is uneven. This is because the distribution of the atoms in the
neighbor-lists is non-uniform with different first atoms having widely varying
number of atoms in their neighbor-lists, ranging from a few to a few hundred.
Second, transferring multiple large second atom energy arrays from the shared to
the global memory incurs high data transfer cost per iteration. Finally, accumulation

384 B. Sukhwani and M.C. Herbordt

Copy

SM

First
Atom 1

First
Atom 2

First
Atom 3

Shared Memory for
First Atoms

Shared Memory for
Second Atoms

First
Atom 0 Global Memory

SM

SM

SM

Copy Reduce

Fig. 18.3 Mapping the neighbor-lists onto GPU threads. Replicating the energy array enables
parallel updates

in global memory is slow due to the inherently slow global memory access. Overall
this method results in poor performance and is not preferred. It also underlines the
unsuitability of the original neighbor-lists data structure for mapping to the GPUs.

18.3.2 Improved Data Structures for Efficient Mapping

Due to the small amount of computation per iteration—each requires only a few
milliseconds on a serial computer—obtaining performance improvements from a
GPU implementation requires efficient distribution of work to maximize parallelism
and reduce communication overhead. Two methods are now presented; both use a
modified data structure.

18.3.2.1 Pairs List

Neighbor lists are pointers to lists of atoms. To better map this structure to GPUs, it
can be flattened into a table called the pairs list [6, 7, 8] (Fig. 18.4a).

A pairs list, as the name suggests, is a list of atom pairs that need to be processed
for energy computations. For each pair, the list contains the indices of the two atoms,
along with fields for storing the partial energies of the two atoms. For each atom
in the system, every atom in its neighbor list forms a pair with that atom and is
entered into the pairs list. Different atom pairs in this list are independent of each

18 Increasing Parallelism and Reducing Thread Contentions in Mapping. . . 385

Pair # Atom 1 Atom 2
0
1
2
3
4
5
6

0
0
0
0
1
1
2

7
8
9

2
2
3

5
4

15
12
4

Atom Index

Atom 1

Atom Energy

Atom 2

11

2
1

14
2

Energy update for the first atom

Energy update for the neighboring atom

Pair # Atom 1
0
1
2
3
4
5
6

0
0
0
0
1
1
2

7
8
9

2
2
3

2
1
11
14
2
5
4

15
12
4

Atom 2

ba

Fig. 18.4 (a) Pairs list data structure (b) Sequential updates in the energy array

other and can be processed in parallel. Note that flattening the neighbor lists into
a pairs list increases the storage requirements. This can potentially be a problem
if the neighbor lists are dense, e.g., with thousands of particles as is common for
MD computations. For localized N-body problems such as energy minimization,
however, the neighbor lists are usually small and flattening does not increase the
storage requirement significantly.

To compute the atom energies, the pairs list is stored in global memory. Atom
pairs are distributed equally among threads. Each thread processes the pairs assigned
to it and stores the partial energies of the two atoms at the corresponding index
in the pairs list. Once all the pairs have been processed, these partial energies are
accumulated to compute the total energy of each individual atom. Note that the
accumulation step must be done serially due to the unordered occurrences of the
second atoms in the pairs list.

There are two alternatives for performing the serial accumulation: on the GPU
using a single thread or on the host. On the GPU, since the energy values are
stored in the global memory, accumulation requires multiple slow accesses. Since
the accumulation is done serially using a single thread, depending on the size of the
lists, the accumulation on the host may outperform that on the GPU. Accumulation
on the host, however, incurs the extra overhead of transferring the two arrays of atom
energies from the GPU to the host memory in each iteration. In the case for energy
minimization example, accumulation on the host outperform that on the GPU, thus
the transfer overhead is lower than the gain from performing the accumulation using
the faster CPU core.

The limitation of this method is the serial accumulations. Though it enables
uniform distribution of work, parallel energy computations, and conflict-free par-
allel updates, serialization during the accumulation of the partial energies limits the
overall performance. With the accumulations performed on the host, this method
results in an overall speedup of around 3� over the original single-threaded CPU

386 B. Sukhwani and M.C. Herbordt

code running on a contemporaneous 3 GHz quad-core Intel Xeon Harpertown
processor.

18.3.2.2 Split Pairs Lists and Static Mapping

To enable faster and parallel accumulations from the GPU shared memory, the
third approach further modifies the data structure used in the previous section. This
approach still utilizes the pairs list structure, but with two changes in how the pairs
get mapped to the GPU threads.

The first change is to split the pairs list into two separate pairs lists. Recall that
the serialization during the accumulation in the previous section is caused mainly
due to the arbitrary occurrences of second atoms (atom 2) in the neighbor lists (now
the pairs list). The first atoms (atom 1) still appear in an ordered fashion. Thus,
splitting the list into two separate lists and processing each one separately will add
determinism to how the atoms appear in the list (see Fig. 18.5).

Atom 1 Atom 2

0
0
0
0
1
1
2
2
2
3

2
1

11
14
2
5
4

15
12
4

Atom 1 Atom 1 Atom 2

1
2
2
4
4
5

11
12
14
15

0
0
1
2
3
1
0
2
0
2

Atom 1Atom 1 Atom 2

0
0
0
0
1
1
2
2
2
3

2
1

11
14
2
5
4

15
12
4

Atom 1Pair # Atom 1 Atom 2

0
1
2
3
4
5
6

0
0
0
0
1
1
2

7
8
9

2
2
3

2
1

11
14
2
5
4

15
12
4

Atom Index

Atom 1

Energy

Atom 1 Atom 2

1
2
2
4
4
5

11
12
14
15

0
0
1
2
3
1
0
2
0
2

Atom 1Pair # Atom 1 Atom 2

0
1
2
3
4
5
6

1
2
2
4
4
5

11
7
8
9

12
14
15

0
0
1
2
3
1
0
2
0
2

Atom Index

Atom 1

Energy

Fig. 18.5 Split pairs lists: (left) forward list, (right) reverse list

The first pairs list is based on the original neighbor lists and is called the forward
list. The second list, called the reverse list, is generated by reversing the original
neighbor lists, i.e., by treating each second atom of the original neighbor list as a
first atom for the reverse neighbor list. While processing each of these lists, only the
energy of atom 1 in each pair must be computed and updated. This way, the energies
of the first atoms (in the original list) get updated while processing the forward list
and those of the second atoms (in the original list) while processing the reverse list.
This is shown in Fig. 18.5. Note that there is no column for storing the energies of
the second atom in the pair.

The second modification involves statically mapping the pairs from the new pairs
lists onto the GPU threads. This comes from the observation that the pairs in the
new lists can be grouped by the first atom in each list. This can be done since now
only the energies of the first atoms in the pair need to be computed and not of the

18 Increasing Parallelism and Reducing Thread Contentions in Mapping. . . 387

second atoms. These two changes allow better and more uniform distribution of
atom-pairs on the GPU and enable parallel and much faster accumulations in GPU
shared memory.

18.3.2.3 Assignment Tables for Static Mapping

Once the forward and reverse pairs lists have been generated, these can be statically
distributed to the GPU threads running on different multiprocessors. The central
idea is to have all the partial energies that need to be combined (accumulated) be
computed on the same multiprocessor so as to perform the accumulations using
the shared memory. The static mapping scheme does this by grouping together all
pairs in a list having the same first atom and mapping the entire group onto the
threads in the same thread block. Having all the pairs of a group mapped to the
same thread block allows accumulations using shared memory since all the partial
energies are present within the same multiprocessor. Moreover, multiple parallel
accumulations can be performed, both within each multiprocessor, one for each of
the group mapped to the thread block, as well as on different multiprocessors.

To determine the static assignment of work among the GPU threads, another data
structure called the assignment table is generated (Fig. 18.6). Table contains one (or
multiple) row(s) per thread id. Each row contains five fields: pair id, the two atom
indices, a master field indicating if this thread is the first thread for this pairs group,
and the number of pairs in the group. The master field and the number of pairs in
the group are used when the energies of the atoms are accumulated in the shared
memory.

Group 0

Group 3

Group 1

Group 2

Thread Block
0

Thread Block
1

Group 0

Group 3

Group 1

Group 2

PairsPair Id Atom 1

0
1
2
3
4
5
6

0
0
0
0
3
1
1

7
8
9

2
2
2

2
1
11
14
4
2
5
4

15
12

Thread Id

0
1
2
3
9
4
5
6
7
8

Master

1
0
0
0
1
1
0
1
0
0

4
4
4
4
1
2
2
3
3
3

Atom 2

Fig. 18.6 Assignment table for the GPU; atom-groups are mapped to the GPU thread-blocks in
their entirety

The assignment table indicates which thread must work on exactly which atom
pair and which threads are responsible for the accumulations. Two assignment tables
need to be generated, one for the forward pairs list and the other for the reverse.

388 B. Sukhwani and M.C. Herbordt

The generation of the assignment tables is a preprocessing step that is performed
on the host computer. Once generated, these assignment tables can be transferred to
the GPU and stored in the GPU global memory. Note that this is required only once,
at the beginning of the minimization process. There is no further data transfer per
iteration, unless the neighbor lists are updated, in which case the assignment tables
must be regenerated and transferred again to the GPU. As stated earlier, unlike MD,
the neighbor lists in energy minimization typically get updated only a few times per
1,000 minimization iterations; thus the preprocessing and transfer time is negligible.

As shown in Fig. 18.6, the groups of pairs are mapped to the thread blocks in
their entirety. More than one group can be mapped onto a particular thread block,
provided there are enough threads to accommodate all the pairs of the group. If the
current thread block does not have enough threads left to accommodate the entire
next group, the group is mapped onto the next available thread block (e.g., group 1).
Unused spaces in different thread blocks are claimed by other smaller pair-groups
(e.g., group 3). For the cases where the number of groups is larger than what can be
mapped onto the available thread blocks, the computation is performed in multiple
passes, with the threads being responsible for more than one group of pairs. This is
shown in Fig. 18.7. This leads to more than one row per thread in the assignment
table.

Pairs

Thread
Block 0

Pair Id Atom 1

0
1
2
3
4

0
1

0
0
0
0
3
1
1

2
3

4

2
2

2

2
1

11
14
4
2
5
4

15

12

Thread Id

0
1
2
3
9
4
5
6
7
8

Master

1
0
0
0
1
1
0
1
0

0

4

4
4
4
1
2
2
3
3

3

Thread
Block 1

Group 0

Group 3

Group 1

Group 2

Atom 2

Thread
Block 0

0
1
2
3
4

0
1

4
4

4

5
5

2
3

4

5
5

12

7
5

13
8
9

14

10
11
12
-1
-1

-1
-1

-1
-1

-1
-1 -1

-1-1-1-1-1

-1

13

14
15
16

1

0
0

1
0
0
0

3

3
3

4
4
4
4

Thread
Block 1

Group 4

Group 5

Unused

Unused

Work assignment
for the first pass

Work assignment
for the second

pass

Fig. 18.7 Multi-pass assignment table; threads process pairs from different groups in different
passes. Some of the threads may remain idle during some of the passes (shown with �1 in the
corresponding rows)

18 Increasing Parallelism and Reducing Thread Contentions in Mapping. . . 389

18.3.2.4 Computation Using the Assignment Table

The GPU threads work in parallel on the rows of the assignment table with each
thread computing the energy of only the first atom. Energies computed by the
different threads are stored in an array in the GPU shared memory. The length of this
array is equal to the number of threads in the thread block, with each thread storing
the computed energy at the index equal to its local thread id (within the block).
Note that the threads write to deterministic, sequential locations in the memory
irrespective of the atoms being processed by them.

Once all the threads finish processing their assigned pairs, the master threads
execute the accumulation round (see Fig. 18.8). Each master thread reads the
number of atoms for the group associated with it and accumulates that many
values from the shared memory, starting at its local thread id. This way many
threads perform accumulations both in parallel and from shared memory, resulting
in significantly better performance compared with the previous schemes. The master
threads then store the accumulated values in GPU global memory. If multiple passes
are required, the above process is repeated for each pass. Note that this method of
computation is enabled by splitting the pairs list into forward and reverse lists, with
each requiring the energies of just the first atoms to be computed and updated. For

Threads

Master
Thread
Tid=0

Master
Thread
Tid=5

Master
Thread
Tid=12

Shared
Memory

0

Group 0

Group 1

Group 2

1

2

N-1

Global
Memory

Fig. 18.8 Threads compute partial energies in parallel and store in the shared memory. Master
threads then perform the accumulations from the shared memory and store the accumulated value
in the global memory

390 B. Sukhwani and M.C. Herbordt

the second atoms, this process is repeated with the assignment table corresponding
to the reverse pairs list.

It is worth noting that processing the forward and reverse lists separately may
lead to repeating some of the computations in pair-wise evaluations. This can be
avoided by storing those values in the GPU global memory during the kernel for
the forward list and reusing them in the kernel for the reverse list. Depending on
the complexity of the underlying computations being reused this may result in a
slowdown due to the slower global memory access. For the current example of
energy minimization, performing redundant computations on the GPU is preferred
as opposed to accessing the slow global memory for reuse.

18.3.2.5 Support for Large Neighbor Lists: Modified Assignment Table

The main purpose of the static assignment scheme is to ensure that all the pairs
from the pairs list that have the same first atom (i.e., the entire group) are mapped to
the same GPU thread block. This allows for efficient accumulations, but also puts a
limit on the size of the neighbor lists. Since each second atom in the neighbor list of
a particular atom creates one pair in the group and since the above method requires
one thread for processing each pair in the group, the maximum number of atoms
in the neighbor list of any atom is equal to the number of GPU threads per block.
The actual number of threads per block is limited by the resources used by each
thread. Though the neighbor lists used in energy minimization are usually sparse,
nevertheless there can be cases where the neighbor lists are larger than the number
of threads per block. This could be especially true for complex computations where
the kernel resource requirements (registers and shared memory) are large, limiting
the number of threads per block.

To overcome the limitation on the size of the neighbor lists, a modified
assignment table with support for group partitioning is presented. Here each group
having more pairs than the number of threads per block is divided into multiple
partitions, each with its own pseudo first atom. These partitions can now be mapped
to separate multiprocessors as separate groups. The groups with pairs fewer than or
equal to the number of threads per block remain unchanged and can be mapped as
before. The computation of the partial energies and the accumulation within each
group or partitioned group is also done as before. A second round of accumulation
is required to gather the partially accumulated energies from the partitions and finish
computing the total energy.

The modified assignment table to support group partitioning is shown in
Fig. 18.9. It includes three new fields: Global Id, Number of partitions and
Partition Id. Global Id indicates the position in the global memory to store the
accumulated energy for this group (or partition). For the atoms which have not been
partitioned, the Global Id field takes the same values as Atom 1 field in the original
table. When a particular first atom is divided into multiple partitions, then for the
first (primary) partition, Global Id D id of Atom 1 and for the subsequent partitions,
Global Id D next sequential unassigned atom id. Since the atom ids 0 to natoms � 1

18 Increasing Parallelism and Reducing Thread Contentions in Mapping. . . 391

Pair Id

0
1
2
3
4
5
6

0
0
0
0
0
0
0

7
8
9

0
0
0

0
1
2
3

10
11

0
0

12
13
14

0
1
1

……

Size

Thread
Block 0

Atom 1

0
1
2
3
4
5
6

0
0
0
0
0
0
0

7
8
9

0
0
0

1
5
12
15
18

Thread Id

0
1
2
3

Master

1
-1

-1
-1

-1
-1
-1

-1

0

1

13
13
13
13
13
13
13
13
13
13

Thread
Block 1

Partition 0

Group 1

Atom 2 Global Id
of

Partitions
Partition

Id
3
3
3
3
3
3
3
3
3
3

31
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

-1
-1

-1

0
0
0
0
0
31
31
31
31
31

10
11

0
0

12
13
14

0
1
1

0
-1
-1
0
-1

13
13
13
2
2

Thread
Block 2

3
3
3
-1
-1

32
32
32
1
1

Group 0

Partition 1

Partition 2

……

Fig. 18.9 Assignment table to support group-partitioning; Group 0 has 13 pairs and there are
only five threads per block—it is thus divided into three partitions. With the number of atoms in
this example D 30, the Global Ids start from 31. The second-level master (with Master D 1) has
the corresponding Partition Id D 31. It reads three partially accumulated energies from the global
memory array, starting from position 31 and adds these values to its own accumulated partial
energy. Other master threads (Master D 0) do not perform second level accumulations. (Table
shown is just an example; actual assignment tables may contain tens of thousands of rows)

are used for the primary partitions or un-partitioned atoms, the unassigned atom id
starts from natoms and is incremented to natoms C 1, natoms C 2 and so on as they are
assigned to different partitions (natom is the total number of atoms in the system).
For all the partitions the value in the Atom 1 column remains the same as before
partitioning since that is the actual atom id of the first atom whose energy is being
computed.

The other two new columns are used by the master thread for the second level
accumulation. These are used for gathering the partially accumulated energies of
the different partitions from the global memory array and storing their sum back in
the global memory at the appropriate first atom id. The thread responsible for the
accumulation of the partial energies in the first partition is also responsible for this
second level accumulation. Number of partitions indicates how many partitions the
current first atom group has been split into. This depends on the size of its neighbor
list and the number of threads per block. This is how many entries of the global
memory array that a second-level master thread must add together. For the groups
that have not been partitioned, this field takes a value of �1. The Partition Id field
stores the Global Id for the second partition for the current group. This is used to
determine where in the global memory array should the second-level accumulation
start from. A second-level master thread accesses Num Partitions�1 partial energies
from the global memory array, starting from the index equal to the Partition Id, adds
them to its own accumulated energy and stores the result back in the global memory
at an index equal to the id of its Atom 1 (or the Global Id since for the second-
level masters, these two are the same). The Partition Id field is used only by the
second-level master threads. For all the other rows, this field takes a value of �1.

392 B. Sukhwani and M.C. Herbordt

In addition to the new fields in the assignment table, the previous entries also
take slightly different values. The Size column now indicates the number of second
atoms in the partitioned group, not the total. Total is not stored anywhere and is not
needed. In the new assignment table, the Master field can take one of three values:
�1 (not a master) 0 (master) and 1 (second-level master). If a thread is a master (or
a second-level master), it is responsible for accumulating the partial energies from
the shared memory and storing in the global memory at an index equal to the Global
Id. The threads which are marked as second-level masters additionally perform the
second-level accumulation, as described above. This second level accumulation is
done in a separate kernel that is called after the main energy computation kernel.

The modified assignment table described above provides the flexibility to support
large neighbor lists with no requirement on the minimum number of threads per
block. Another benefit of this scheme is better utilization of the available multipro-
cessors. In the original assignment table, since the groups are required to be mapped
on the multiprocessors in their entirety, each thread-block is required to have a
large number of threads but only a few thread blocks are used. As a result, some
of the multiprocessors remain idle. Partitioning the groups enables the distribution
of work across multiple multiprocessors. With this, different combinations of thread
block and grid sizes can be applied, allowing for improved processor utilizations
and hence improved performance.

18.4 Performance Measurements

This section presents the performance improvements obtained from mapping the
energy minimization computations on a GPU using the split-pairs-list method with
assignment tables. The GPU-accelerated code runs on an NVIDIA Tesla C1060
GPU, containing 240 processor cores and running at 1.3 GHz. The GPU is housed
in a Dell Precision workstation with a 3GHz quad-core Intel Xeon Harpertown
processor running Windows XP. The GPU code was written using NVIDIA CUDA
and compiled using Microsoft Visual Studio 8 with standard optimizations and the
NVIDIA nvcc compiler. The original unaccelerated energy minimization code runs
on a single core of the 3 GHz quad-core Intel Xeon Harpertown processor (2008 era
45 nm contemporaneous processor). The speedup reported is over a single core; see
the next section for a discussion about extrapolation to a full CPU.

The runtimes shown in Table 18.1 are per iteration times, averaged across
minimizing five different protein complexes, with 1,000 iterations per complex.
Table 18.2 shows the overall end-to-end speedup for minimizing these five com-
plexes. Each complex contains around 2,260 atoms and requires evaluations of
9,780 atom–atom pairs per iteration. The energy expressions evaluated during the
minimization iterations are shown in Appendix A. The computation is divided
into three GPU kernels: (1) computing the self energies, (2) computing the pair-
wise interaction energies and the van der Waals energies, and (3) updating the
forces acting on the atoms. All of these kernels use the same data structures and

18 Increasing Parallelism and Reducing Thread Contentions in Mapping. . . 393

Table 18.1 Speedups for different energy evaluation and force update steps of
energy minimization

Computation Serial runtime (ms) GPU runtime (ms) Speedup

Self energies 6.15 0.23 26.7�
Pair-wise energies 2.75 0.19 17�
van der Waals energies 0.5
Force updates 0.95 0.14 6.7�

Table 18.2 Overall speedup
for energy minimization for
different complexes

Complex Serial runtime (s) GPU runtime (s) Speedup

Complex 1 11.9 1.098 10.8�
Complex 2 11.87 1.078 11�
Complex 3 11.8 1.078 10.9�
Complex 4 10.74 0.906 11.8�
Complex 5 11.87 1.094 10.8�

the performance improvement is proportional to the computational complexity of
the expressions being evaluated—kernels with more complex evaluations achieve
higher speedups. In the case of the split pairs list, the GPU runtime reported is the
total time for kernel execution for both forward and reverse list.

Compared with the method presented in Sect. 18.3.1 that results in no per-
formance improvement and the one presented in Sect. 18.3.2.1 which achieves a
modest 3� improvement, the split pairs lists method with assignment table achieves
up to 26� per-iteration improvement and 11� overall speedup. Clearly, efficient
mapping of these computations on the GPU, so as to achieve better processor
utilizations and minimize data transfer overheads, requires significant restructuring
of the original data structures used in the serial CPU code. Moreover, the assignment
tables for static mapping of the particle-pairs on the GPU threads enable uniform
distribution and improved parallelism during energy accumulation.

18.5 Discussion

In this chapter we have described methods for creating efficient GPU implementa-
tions of an important variation of N-body simulation that is used, e.g., in modeling
interactions between molecules. Several characteristics distinguish these localized
simulations: one of the molecules is often much smaller than the other, the larger
molecule often moves little if at all, processing begins with the smaller molecule
close to its final orientation and in the binding pocket of the larger molecule, and
convergence is usually achieved after at most a few thousand iterations. These
characteristics lead to substantial changes in data structures and thus the algorithm.
In particular, neighbor lists are highly non-uniform but vary little once computed.
We optimize by first unrolling the list into an array of particle pairs and then creating
a second array consisting of the first array reversed and sorted. Doing so adds uni-
formity in the occurrence of particle-pairs, thus allowing for clustering of these pairs

394 B. Sukhwani and M.C. Herbordt

into different independent workgroups and efficient distribution of these workgroups
to GPU thread blocks. This results in higher concurrency during evaluation and
accumulation of the partial energy values and thus improved performance.

As with most performance studies, the results are for processors that are
necessarily limited in variety and have already been superseded by the time the
published work appears. The overall trend of the results, however, is likely to
remain. Addressing GPU variety: while we tuned the code specifically to the
NVIDIA Tesla C1060, the code fits into the OpenCL framework well supported
by most GPU families. As to more recent GPU models, we have found that the code
ports easily to more recent GPUs including the Kepler class from NVIDIA.

As noted in the results section, the speed-up factors achieved for the localized
N-body algorithm range from roughly 7� to 27� with respect to a single core
of a contemporaneous four core CPU. Assuming that perfect parallelism can be
achieved on the CPU, these results reduce by a factor of 4 to 1.75� to 6.75�.
When application specific overhead is included, the end-to-end speed-up is roughly
11�, reduced to 2.75� when assuming perfect scalability with the CPU. The
speed-up of GPU over CPU, however, could well remain closer the original
figure (11� rather than 2.75�). This is because coarse-grained parallelization of
energy minimization across different CPU cores is non-trivial and may not yield
any significant performance improvement. Considering next generation CPUs and
GPUs, since both families of devices continue to ride Moore’s Law, a reasonable
assumption is that without substantial change in architecture, these proportions will
remain roughly in line.

Appendix A: Energy Expressions

The total energy of a system of atoms is given as a sum of various bonded and
non-bonded energies for all the atoms:

Etotal D Evdw C Eelec„ ƒ‚ …
non�bonded

CEbond CEangle C Etorsion C Eimproper„ ƒ‚ …
bonded

(18.1)

Energy minimization involves repeated evaluation of this expression, once during
each minimization iteration. In the current discussion, only the non-bonded terms
are mapped to the GPU and evaluated using the neighbor lists.

The non-bonded energy of each atom is the sum of the contributions due to the
neighboring atoms within a cutoff distance. Non-bonded energy is a sum of the
electrostatic and van der Waals energy terms. A variant of the Lennard-Jones 6–12
potential representing the van der Waals energy term is shown in Eq. (18.2)

Evdw
ik D epsik

0
B@rm6

ik

r12ik
�
8rm6

ik

.
r6c

r6ik
C rm6

ik

r12c

�
1C 2r6ik

r6c

	1CA (18.2)

18 Increasing Parallelism and Reducing Thread Contentions in Mapping. . . 395

epsik D epsi :epsk

rmik D .rmi C rmk/
2

where epsi and rmi represent the van der Waals parameters of atom ‘i’, rik is the
distance between the atoms ‘i’ and ‘k’ and rc is the cut-off distance.

The electrostatic energy of a solute can be decomposed into two components; a
sum of the self energies Eself

i of all the charges and a sum of pair-wise interaction
energies Eint

ij [9] [Eq. (18.3)]

Eelec D
X
i

E
self
i C

X
i<j

E int
ij (18.3)

Using the Analytic Continuum Electrostatics (ACE) model [9], the self-energy
of an atom can be represented as a sum of its Born self-energy in the solvent and the
sum of effective pair-wise interactions, Eself

ik , due to all the other solute atoms [see
Eqs. (18.4) and (18.5)].

E
self
i D q2i

2"sRi
C
X
k¤i

E
self
ik (18.4)

E
self
ik D �q2i

0
BBB@
e

�

r2ik

,
	2ik

!

!ik
C

QVk
8�

�
r3ik

r4ik C �4ik

	4
1
CCCA (18.5)

where qi represents the charge on atom ‘i’, rik is the distance between the two atoms,
QVk is the size of the solute volume associated with atom ‘k’, !ik and 	 ik determine

the height and width of the Gaussian that approximates Eself
ik , and �ik is an atom-

atom parameter.
The pair-wise interaction term of Eq. (18.3) is given by the generalized Born

(GB) equation shown in Eq. (18.6), which is the sum of Coulomb’s law in a
dielectric and the Born equation [10]

E int
ij D 332

X
j¤i

qi qj

rij
� 166�

X
j¤i

qi qjs
r2ij C ˛i˛j e

�

r2ij
,
4˛i˛j

! (18.6)

where ˛i and ˛j represent the Born radii for atoms ‘i’ and ‘j’, respectively. These
in turn depend on the self energies of the atoms. The self energy of each individual
atom thus needs to be computed before computing the pair-wise interactions.

396 B. Sukhwani and M.C. Herbordt

Appendix B: Source Code

18 Increasing Parallelism and Reducing Thread Contentions in Mapping. . . 397

398 B. Sukhwani and M.C. Herbordt

18 Increasing Parallelism and Reducing Thread Contentions in Mapping. . . 399

400 B. Sukhwani and M.C. Herbordt

18 Increasing Parallelism and Reducing Thread Contentions in Mapping. . . 401

402 B. Sukhwani and M.C. Herbordt

18 Increasing Parallelism and Reducing Thread Contentions in Mapping. . . 403

404 B. Sukhwani and M.C. Herbordt

References

1. Stone, J.E., Hardy, D.J., Ufimtsev, I.S., Schulten, K.: GPU-accelerated molecular modeling
coming of age. J. Mol. Graph. Model. 29(2), 116–125 (2010)

2. OpenMM: GPU-accelerated toolkit for molecular simulations. https://simtk.org/home/
openmm/

3. Brooks, B.R., et al.: CHARMM: a program for macromolecular energy, minimization, and
dynamics calculations. J. Comput. Chem. 4, 187–217 (1983)

4. http://cmm.cit.nih.gov/intro_simulation/node22.html
5. Pappu, R.V., Hart, R.K., Ponder, J.W.: Analysis and application of potential energy smoothing

and search methods for global optimization. J. Phys. Chem. B 102, 9725–9742 (1998)
6. Sukhwani, B., Herbordt, M.C.: Fast binding site mapping using GPUs and CUDA. In:

Proceedings of the Ninth International Workshop on High Performance Computational Biology
(HiCOMB’10) (2010)

https://simtk.org/home/openmm/
https://simtk.org/home/openmm/
http://cmm.cit.nih.gov/intro_simulation/node22.html

18 Increasing Parallelism and Reducing Thread Contentions in Mapping. . . 405

7. Sukhwani, B., Herbordt, M.C.: FPGA-based acceleration of CHARMM-potential minimiza-
tion. In: Proceedings of the Third International Workshop on High-Performance Reconfig-
urable Computing Technology and Applications (HPRCTA’09) (2009)

8. Sukhwani, B., Herbordt, M.C.: Accelerating energy minimization using graphics processors.
In: Proceedings of the 2009 Symposium on Application Accelerators in High Performance
Computing (SAAHPC’09) (2009)

9. Schaefer, M., Karplus, M.: A comprehensive analytical treatment of continuum electrostatics.
J. Phys. Chem. 100(5), 1578–1599 (1996)

10. Still, W.C., et al.: Semianalytical treatment of solvation for molecular mechanics and dynamics.
J. Am. Chem. Soc. 112(16), 6127–6129 (1990)

	Preface
	Book Focus
	Audience and Organization
	Acknowledgments

	Contents
	Part I Linear Algebra
	1 Accelerating Numerical Dense Linear Algebra Calculations with GPUs
	1.1 Introduction
	1.2 BLAS
	1.3 Solving Linear Systems
	1.3.1 Cholesky Factorization
	1.3.2 Hybrid Algorithms
	1.3.3 Hybrid Cholesky Factorization for a Single GPU

	1.4 The Case for Dynamic Scheduling
	1.5 Eigenvalue and Singular Value Problems
	1.5.1 Background
	1.5.2 Classical Reduction to Hessenberg, Tridiagonal, or Bidiagonal Condensed Form
	1.5.3 Back-Transform Eigenvectors
	1.5.4 Two Stage Reduction
	1.5.4.1 First Stage: Hybrid CPU-GPU Band Reduction
	1.5.4.2 Second Stage: Cache-Friendly Computational Kernels

	1.5.5 Back Transform the Eigenvectors of the Two Stage Technique

	1.6 Summary and Future Directions
	References

	2 A Guide for Implementing Tridiagonal Solvers on GPUs
	2.1 Introduction
	2.2 Related Algorithms
	2.2.1 Thomas Algorithm
	2.2.2 Diagonal Pivoting Algorithm
	2.2.3 Cyclic Reduction
	2.2.4 Parallel Cyclic Reduction
	2.2.5 Recursive Doubling
	2.2.6 SPIKE Algorithm

	2.3 Optimization Techniques
	2.3.1 Partitioning Method
	2.3.2 Algorithms and Optimizations for Independent Solver
	2.3.3 Short Summary

	2.4 Case Study: SPIKE-CR
	2.4.1 Performance Comparison

	2.5 Conclusion
	References

	3 Batch Matrix Exponentiation
	3.1 Introduction
	3.2 Motivation
	3.3 Implementation
	3.3.1 NVIDIA Library Solutions
	3.3.2 Handwritten CUDA

	3.4 Tuning
	3.4.1 M=4 Case
	3.4.2 M=20 and M=60 Cases

	3.5 Alternative Methods for Matrix Exponentiation
	3.6 Conclusions
	References

	4 Efficient Batch LU and QR Decomposition on GPU
	4.1 Batch LU Decomposition
	4.1.1 Theory
	4.1.2 GPU Implementation
	4.1.3 LU Results

	4.2 QR Decomposition
	4.2.1 Theory
	4.2.1.1 Serial QR Decomposition
	4.2.1.2 Parallel QR Decomposition

	4.2.2 GPU Implementation
	4.2.3 QR Results

	4.3 Conclusion
	Appendix 1
	Appendix 2
	References

	5 A Flexible CUDA LU-Based Solver for Small, Batched Linear Systems
	5.1 Introduction and Motivations
	5.2 Preliminaries on Solvers and LU Decomposition
	5.2.1 LU-Based Linear Solvers

	5.3 Proposed Implementation: CUDA Code and Comments
	5.4 Other Implementations
	5.4.1 Warp Parallel Implementation
	5.4.2 Thread Block Parallel Implementation

	5.5 Trade-Offs Evaluation
	5.6 Conclusions/Summary
	References

	6 Sparse Matrix-Vector Product
	6.1 Introduction
	6.1.1 Sparse Matrix Formats
	6.1.2 Architecture-Specific Issues

	6.2 SpMV for Everyday Usage
	6.2.1 CuSPARSE
	6.2.2 CUSP
	6.2.3 Paralution

	6.3 Custom SpMV Kernels
	6.3.1 SpMV for ELL and ELL-Based Sparse Matrix Formats
	6.3.1.1 ELL
	6.3.1.2 ELL-Based Formats

	6.3.2 SpMV for CRS and CRS-Based Sparse Matrix Formats
	6.3.2.1 CRS
	6.3.2.2 CMRS: A CRS-Based Format for Multi-Row Matrix Processing

	6.4 Further Reading
	References

	Part II Differential Equations
	7 Solving Ordinary Differential Equations on GPUs
	7.1 Introduction
	7.2 Numerical Schemes
	7.2.1 Ordinary Differential Equations
	7.2.2 Runge-Kutta Schemes

	7.3 Generic Runge-Kutta Implementation
	7.3.1 Computational Requirements
	7.3.2 Modularized Design
	7.3.3 Lorenz Attractor Example

	7.4 GPU Backends
	7.4.1 Thrust Backend
	7.4.2 VexCL Backend

	7.5 The Boost.odeint Library
	7.6 Example Problems
	7.6.1 Lorenz Attractor Ensemble
	7.6.2 Chain of Coupled Phase Oscillators
	7.6.3 Molecular Dynamics

	7.7 Summary and Conclusions
	References

	8 GPU-Based Parallel Integration of Large Numbers of Independent ODE Systems
	8.1 Introduction
	8.2 Mathematical Background
	8.2.1 Runge–Kutta–Cash–Karp
	8.2.2 Runge–Kutta–Chebyshev

	8.3 Source Code
	8.3.1 RKCK Code
	8.3.2 RKC Code

	8.4 Performance Results
	8.4.1 RKCK Results
	8.4.2 RKC Results

	8.5 Conclusions
	Appendix
	References

	9 Finite and Spectral Element Methods on Unstructured Grids for Flow and Wave Propagation Problems
	9.1 Introduction
	9.2 Finite Element Analysis in a Nutshell
	9.2.1 Variational Formulation
	9.2.2 Galerkin Discretisation
	9.2.3 Element-Based Assembly
	9.2.4 Group Finite Element Formulation
	9.2.5 Edge-Based Assembly

	9.3 Implementation and Parallelisation Strategies
	9.3.1 Choice of the Outermost Loop
	9.3.2 Per-Element Loops
	9.3.3 An Improved Blocked Version
	9.3.4 Implementation on Multicore CPUs
	9.3.5 Implementation on GPUs

	9.4 Examples and Applications
	9.4.1 Low-Order Lagrangian-Type Elements
	9.4.2 High-Order Spectral Element Discretisations for Wave Propagation
	9.4.3 Group FEM for Gas Dynamics

	References

	10 A GPU Implementation for Solving the Convection Diffusion Equation Using the Local Modified SOR Method
	10.1 Introduction
	10.1.1 Related Work

	10.2 A General Description of the LMSOR Method
	10.3 GPU Implementation
	10.3.1 Applied Optimizations
	10.3.2 Kernel's Source Code

	10.4 Performance Results
	10.5 Remarks and Conclusions
	References

	11 Finite-Difference in Time-Domain Scalable Implementations on CUDA and OpenCL
	11.1 Finite-Difference in Time-Domain Numerical Method
	11.2 Single GPU Implementation
	11.2.1 Host Environment Initialization
	11.2.2 Straightforward Implementation
	11.2.2.1 General Optimizations

	11.2.3 Experimental Results

	11.3 Scalable Implementation for Large Problems
	11.3.1 Implementation in CUDA
	11.3.2 Implementation in OpenCL

	11.4 Exploring Multi-GPU Systems
	11.4.1 Scalable Implementation with Multiple GPUs in CUDA
	11.4.2 Scalable Implementation with Multiple GPUs in OpenCL
	11.4.3 Experimental Results

	11.5 Conclusions
	References

	Part III Random Numbers and Monte Carlo Methods
	12 Pseudorandom Numbers Generation for Monte Carlo Simulations on GPUs: OpenCL Approach
	12.1 Introduction
	12.2 PRNGs on GPU
	12.2.1 Structure of PRNGs
	12.2.2 Basic Classes of PRNGs
	12.2.3 Parallelization of PRNGs
	12.2.4 Existing Implementations of PRNGs on GPUs

	12.3 PRNGCL Construction
	12.3.1 OpenCL Tricks
	12.3.1.1 Preprocessor Directives and Parameters Passing
	12.3.1.2 User-Defined Data Types
	12.3.1.3 Data Types and Structures
	12.3.1.4 Binaries Caching
	12.3.1.5 Include Common Section
	12.3.1.6 Memory-Access Optimization
	12.3.1.7 Thread Divergence

	12.3.2 Data Type Selection
	12.3.3 Double Precision
	12.3.4 PRNG State
	12.3.5 PRNG Initialization and Portability
	12.3.6 Testing of PRNs Sequence
	12.3.7 PRNG Example: XOR7
	12.3.8 Using PRNGCL Library
	12.3.9 Performance

	12.4 Conclusions
	References

	13 Monte Carlo Automatic Integration with Dynamic Parallelism in CUDA
	13.1 Introduction
	13.2 MC Convergence
	13.3 Pseudo-Random Number Generators (PRNGs)
	13.3.1 Use of cuRAND
	13.3.2 Use of Random123

	13.4 MC CUDA Kernel
	13.4.1 Methods
	13.4.2 Numerical Validation

	13.5 Dynamic Parallelism
	13.5.1 Vertical (Recursive) Dynamic Parallelism
	13.5.2 Horizontal (Iterative) Dynamic Parallelism
	13.5.3 Automatic Integration with Dynamic Parallelism

	13.6 Accuracy and Stability in Numerical Integration
	13.6.1 IEEE Floating Point Arithmetic
	13.6.2 Computing Summations
	13.6.3 Computing the Sample Variance
	13.6.4 Other Methods

	13.7 Conclusions and the Future
	Appendix
	References

	14 GPU: Accelerated Computation Routines for Quantum Trajectories Method
	14.1 Introduction
	14.2 The Quantum Trajectories Method
	14.3 Details of Implementation in CUDA C/C++
	14.3.1 Data Types and Auxiliary Functions
	14.3.2 Integration Methods
	14.3.3 Quantum Trajectory Method: Implementation

	14.4 A Short Discussion About Performance
	14.5 Conclusions and Future Goals
	References

	15 Monte Carlo Simulation of Dynamic Systems on GPU's
	15.1 Introduction
	15.2 GPU-Based Monte Carlo Algorithm Overview
	15.2.1 Sampling Tasks
	15.2.2 Storing Output Data
	15.2.3 Maximizing Memory Throughput
	15.2.4 Maximizing Device Utilization
	15.2.5 Maximizing Instruction Throughput

	15.3 Cost-Benefit Considerations
	15.4 Example: Point Mass Monte Carlo Simulation
	15.4.1 Example CUDA Implementation
	15.4.2 Example OpenCL Implementation

	References

	Part IV Fast Fourier Transform and Localized n-Body Problems
	16 Fast Fourier Transform (FFT) on GPUs
	16.1 Introduction to FFT
	16.2 How Does the FFT Work?
	16.2.1 FFT as a Heterogeneous Application

	16.3 Implementing FFT on GPU Using OpenCL
	16.4 Implementation of 2D FFT
	16.5 Performance Evaluation of FFT
	Appendix
	References

	17 A Highly Efficient FFT Using Shared-Memory Multiplexing
	17.1 Introduction
	17.2 Background
	17.3 Optimizations for FFT on GPGPUs
	17.4 Characterization of Shared Memory Usage
	17.5 Shared Memory Multiplexing: Software Approaches
	17.5.1 Virtual Thread Blocks (VTB)
	17.5.2 Pipelined Virtual Thread Blocks (VTB_PIPE)

	17.6 Experimental Methodology
	17.7 Experimental Results
	17.8 Related Work
	17.9 Conclusions
	References

	18 Increasing Parallelism and Reducing Thread Contentions in Mapping Localized N-Body Simulations to GPUs
	18.1 Introduction
	18.2 Overview of Energy Minimization
	18.3 Mapping Localized N-Body Simulations to GPUs
	18.3.1 Mapping Neighbor Lists to GPUs
	18.3.2 Improved Data Structures for Efficient Mapping
	18.3.2.1 Pairs List
	18.3.2.2 Split Pairs Lists and Static Mapping
	18.3.2.3 Assignment Tables for Static Mapping
	18.3.2.4 Computation Using the Assignment Table
	18.3.2.5 Support for Large Neighbor Lists: Modified Assignment Table

	18.4 Performance Measurements
	18.5 Discussion
	 Appendix A: Energy Expressions
	 Appendix B: Source Code*-12pt
	References

