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Preface

This book is intended to serve as a practical guide for the development and
implementation of numerical algorithms on Graphics Processing Units (GPUs). The
book assumes that the reader is familiar with the mathematical context and has a
good working knowledge of GPU architecture and its programming sufficient to
translate specialized mathematical algorithms and pseudo-codes presented in the
book into a fully functional CUDA or OpenCL software. In case the reader is
not familiar with the GPU programming, the reader is directed to other sources,
such as NVIDIA’s CUDA Parallel Computing Platform website, for low-level
programming details, tools, and techniques prior to reading this book.

Book Focus

The main focus of this book is on the efficient implementation of numerical methods
on GPUs. The book chapters are written by the leaders in the field working for
many years on the development and implementation of computationally intensive
numerical algorithms for solving scientific computing and engineering problems.

It is widely understood and accepted that modern scientific discovery in all of
the disciplines requires extensive computations. It is also the case that modern
engineering heavily utilizes advanced computational models and tools. At the
heart of many such computations are libraries of mathematical codes for solving
systems of linear equations, computing solutions of differential equations, finding
integrals and function values, transforming time series, etc. These libraries have
been developed over several decades and have been constantly updated to track the
ever changing architecture and capabilities of computing hardware. With the intro-
duction of GPUs, many of the existing numerical libraries are currently undergoing
another phase of transformation in order to continue serving the computational
science and engineering community by providing the required level of performance.
Simultaneously, new numerical methods are under development to take advantage
of the revolutionary architecture of GPUs. In either case, the developers of such
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numerical codes face the challenge of extracting parallelism present in numerical
methods and expressing it in the form that can be successfully utilized by the
massively parallel GPU architecture. This frequently requires reformulating the
original algorithmic structure of the code, tuning its performance, and developing
and validating entirely new algorithms that can take advantage of the new hardware.
Itis my hope that this book will serve as a reference implementation and will provide
the guidance for the developers of such codes by presenting a collective experience
from many recent successful efforts.

Audience and Organization

This book targets practitioners working on the implementation of numerical codes
on GPUs, researchers and software developers attempting to extend existing numer-
ical libraries to GPUs, and readers interested in all aspects of GPU programming. It
especially targets community of computational scientists from disciplines known to
make use of linear algebra, differential equations, Monte Carlo methods, and Fourier
transform.

The book is organized in four parts, each covering a particular set of numerical
methods. First part is dedicated to the solution of linear algebra problems, ranging
from the matrix—matrix multiplication, to the solution of systems of linear equations,
to the computation of eigenvalues. Several chapters in this part address the problem
of computing on a very large number of small matrixes. The final chapter also
addresses the sparse matrix—vector product problem.

Second part is dedicated to the solution of differential equations and problems
based on the space discretization of differential equations. Methods such as finite
elements, finite difference, and successive over-relaxation with the applications to
problem domains such as flow and wave propagation and solution of Maxwell’s
equations are presented. One chapter also addresses the challenge of integrating a
large number of independent ordinary differential equations.

Third part is dedicated to the use of Monte Carlo methods for numerical
integration. Monte Carlo techniques are well suited for GPU implementation and
their use is widening. The part also includes chapters about random number
generation on GPUs as a necessary first step in Monte Carlo methods.

The final part consists of two chapters dedicated to the efficient implementation
of Fourier transform and one chapter discussing N-body simulations.
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Chapter 1

Accelerating Numerical Dense Linear Algebra
Calculations with GPUs

Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek,
Stanimire Tomov, and Ichitaro Yamazaki

1.1 Introduction

Enabling large scale use of GPU-based architectures for high performance
computational science depends on the successful development of fundamental
numerical libraries for GPUs. Of particular interest are libraries in the area of dense
linear algebra (DLA), as many science and engineering applications depend on
them; these applications will not perform well unless the linear algebra libraries
perform well.

Drivers for DLA developments have been significant hardware changes. In
particular, the development of LAPACK [1]—the contemporary library for DLA
computations—was motivated by the hardware changes in the late 1980s when its
predecessors (EISPACK and LINPACK) needed to be redesigned to run efficiently
on shared-memory vector and parallel processors with multilayered memory hierar-
chies. Memory hierarchies enable the caching of data for its reuse in computations,
while reducing its movement. To account for this, the main DLA algorithms were
reorganized to use block matrix operations, such as matrix multiplication, in their
innermost loops. These block operations can be optimized for various architectures
to account for memory hierarchy, and so provide a way to achieve high-efficiency
on diverse architectures.
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Challenges for DLA on GPUs stem from present-day hardware changes that
require yet another major redesign of DLA algorithms and software in order
to be efficient on modern architectures. This is provided through the MAGMA
library [12], a redesign for GPUs of the popular LAPACK.

There are two main hardware trends that challenge and motivate the development
of new algorithms and programming models, namely:

The explosion of parallelism where a single GPU can have thousands of cores
(e.g., there are 2,880 CUDA cores in a K40), and algorithms must account for
this level of parallelism in order to use the GPUs efficiently;

The growing gap of compute vs. data-movement capabilities that has been incre
asing exponentially over the years. To use modern architectures efficiently
new algorithms must be designed to reduce their data movements. Current
discrepancies between the compute- vs. memory-bound computations can be
orders of magnitude, e.g., a K40 achieves about 1,240 Gflop/s on dgemm but
only about 46 Gflop/s on dgemv.

This chapter presents the current best design and implementation practices that
tackle the above mentioned challenges in the area of DLA. Examples are given
with fundamental algorithms—from the matrix—matrix multiplication kernel written
in CUDA (in Sect. 1.2) to the higher level algorithms for solving linear systems
(Sects. 1.3 and 1.4), to eigenvalue and SVD problems (Sect. 1.5).

The complete implementations and more are available through the MAGMA
library.! Similar to LAPACK, MAGMA is an open source library and incorporates
the newest algorithmic developments from the linear algebra community.

1.2 BLAS

The Basic Linear Algebra Subroutines (BLAS) are the main building blocks for
dense matrix software packages. The matrix multiplication routine is the most
common and most performance-critical BLAS routine. This section presents the
process of building a fast matrix multiplication GPU kernel in double precision,
real arithmetic (dgemm), using the process of autotuning. The target is the Nvidia
K40c card.

In the canonical form, matrix multiplication is represented by three nested loops
(Fig. 1.1). The primary tool in optimizing matrix multiplication is the technique of
loop tiling. Tiling replaces one loop with two loops: the inner loop incrementing the
loop counter by one, and the outer loop incrementing the loop counter by the tiling
factor. In the case of matrix multiplication, tiling replaces the three loops of Fig. 1.1
with the six loops of Fig. 1.2. Tiling of matrix multiplication exploits the surface to
volume effect, i.e., execution of O(n?) floating-point operations over O(n?) data.

Thttp://icl.cs.utk.edu/magma/.
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Fig. 1.1 Canonical form of
matrix multiplication

for (m = 0; m< M; m++)
for (n = 0; n < N; n++)
for (k = 0; k< K; k++)
Cln][m] += A[k][m]+«B[n][k];

DSw N

O 00 J oy U W N

for (m. = 0; m_< M; m+=tileM)

for (n. = 0; n. < N; n_+=tileN)
for (k- = 0; k. < K; k-+=tileK)
for (m = 0; m< tileM; m++)

for (n =
for (k =

0; n< tileN; n++)
0; k< tileK; k++)
C[n_+n][m-+n] +=
A[k_+k ][ m_+m]=*
B[n_-+n][k-+k];

Fig. 1.2 Matrix multiplication with loop tiling

O 0 J o U W

for (m. = 0; m_-<M; m+=tileM)
for (n- = 0; n. < N; n_+=tileN)
for (k. = 0; k. < K; k.+=tileK)
{

instruction
instruction
instruction

Fig. 1.3 Matrix multiplication with complete unrolling of tile operations

Next, the technique of loop unrolling is applied, which replaces the three
innermost loops with a single block of straight-line code (a single basic block),
as shown in Fig. 1.3. The purpose of unrolling is twofold: to reduce the penalty of
looping (the overhead of incrementing loop counters, advancing data pointers and
branching), and to increase instruction-level parallelism by creating sequences of

independent instructions, which can fill out the processor’s pipeline.

This optimization sequence is universal for almost any computer architecture,
including “standard” superscalar processors with cache memories, as well as GPU
accelerators and other less conventional architectures. Tiling, also referred to as
blocking, is often applied at multiple levels, e.g., L2 cache, L1 cache, registers

file, etc.
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In the case of a GPU, the C matrix is overlaid with a 2D grid of thread blocks,
each one responsible for computing a single tile of C. Since the code of a GPU kernel
spells out the operation of a single thread block, the two outer loops disappear, and
only one loop remains—the loop advancing along the k dimension, tile by tile.

Figure 1.4 shows the GPU implementation of matrix multiplication at the device
level. Each thread block computes a tile of C (dark gray) by passing through a stripe
of A and a stripe of B (light gray). The code iterates over A and B in chunks of Kpx
(dark gray). The thread block follows the cycle of:

* making texture reads of the small, dark gray, stripes of A and B and storing them
in shared memory,

* synchronizing threads with the syncthreads () call,

* Jloading A and B from shared memory to registers and computing the product,

* synchronizing threads with the syncthreads () call.

After the light gray stripes of A and B are completely swept, the tile of C is read,
updated and stored back to device memory. Figure 1.5 shows closer what happens
in the inner loop. The light gray area shows the shape of the thread block. The dark
gray regions show how a single thread iterates over the tile.

Fig. 1.4 gemm at the device ‘ Naev ‘
level - ‘ ‘
Y
Ko, [
Kdev i
B
) Kdev —
I 1
Ky Npje
_ -~ _f—
Mdev
A C

Figure 1.6 shows the complete kernel implementation in CUDA. Tiling is defined
by BLK M, BLK N, and BLK_K. DIM X and DIM Y define how the thread block
covers the tile of C, DIM_XA and DIM_YA define how the thread block covers a
stripe of A, and DIM_XB and DIM_YB define how the thread block covers a stripe
of B.

In lines 24-28 the values of C are set to zero. In lines 32-38 a stripe of A is read
(texture reads) and stored in shared memory. In lines 40—46 a stripe of B is read
(texture reads) and stored in shared memory. The  syncthreads () call in line
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Fig. 1.5 gemm at the block Ny
level _

Kpik

Ky blockDim.y

]

=

blockDim.x

My

]

48 ensures that reading of A and B, and storing in shared memory, is finished before
operation continues. In lines 50-56 the product is computed, using the values from
shared memory. The  syncthreads () call in line 58 ensures that computing
the product is finished and the shared memory can be overwritten with new stripes
of A and B. In lines 60 and 61 the pointers are advanced to the location of new
stripes. When the main loop completes, C is read from device memory, modified
with the accumulated product, and written back, in lines 64—77. The use of texture
reads with clamping eliminates the need for cleanup code to handle matrix sizes not
exactly divisible by the tiling factors.

With the parametrized code in place, what remains is the actual autotuning part,
i.e., finding good values for the nine tuning parameters. Here the process used in
the BEAST project (Bench-testing Environment for Automated Software Tuning) is
described. It relies on three components: (1) defining the search space, (2) pruning
the search space by applying filtering constraints, (3) benchmarking the remaining
configurations and selecting the best performer. The important point in the BEAST
project is to not introduce artificial, arbitrary limitations to the search process.

The loops of Fig. 1.7 define the search space for the autotuning of the matrix
multiplication of Fig. 1.6. The two outer loops sweep through all possible 2D shapes
of the thread block, up to the device limit in each dimension. The three inner loops
sweep through all possible tiling sizes, up to arbitrarily high values, represented by
the INF symbol. In practice, the actual values to substitute the INF symbols can
be found by choosing a small starting point, e.g., (64, 64, 8), and moving up until
further increase has no effect on the number of kernels that pass the selection.

The list of pruning constraints consists of nine simple checks that eliminate
kernels deemed inadequate for one of several reasons:

* The kernel would not compile due to exceeding a hardware limit.
* The kernel would compile but fail to launch due to exceeding a hardware limit.



8 J. Dongarra et al.

1 extern "C" ._global..

2 void beast.gemm_kernel (

3 int M, int N, int K,

4 double alpha ., double =A, int Ida,

5 double +B, int Idb,

6 double beta . double «C, int ldc )

7| {

B int blx = blockldx.x; /f block's m position

g int bly = blockldx.y; /f block™s n pesition

10 int idx = threadldx.x; /f thread's m poesition in C

11 int idy = threadldx.y: £ thread's n positien in C

12 int idt = DIMX«idy+idx; £ thread 's number

13

14 int idxA = idt % DIMXA; /4 thread's m positien for loading A
15 int idyA idt / DIMXA; /f thread's n position for loading A
16 int idxB dt % DIMXB; ff thread 's m positien for loding B
17 int idyB = idt / DIMXE: ff thread 's n position for loading B
18

19 --shared.. double sA[BLE.K||BLEM+1]; A/ shared memory buffer for A
20 --shared_._ double sB[BLKN||BLKK+1]; A shared memory buffer for B
21 double rC[BLKN/DIM.Y |[BLKM/DIM.X | ; ff registers for C

22

23 int coord.A = blx+BLKM + idyAs=lda+idxA; £ A stripe’s initial locarion
24 Int coord.B = bly«BLK.N+Idb + idyB«ldb+idxB; £ B sirvipe's initial location
25 int m, n, k, kk; £/ loop counters
26

27 #pragma uwnroll

28 for (n = 0; n< BLKN/DIM.Y; n++)

29 #pragma unroll

30 for (m = 0; m < BLKM/DIM.X: m++)

31 rC[(n][m] = 0.0;

32

33 for (kk = 0: kk < K: kk += BLKK)

34 {

35 #pragma unroll

36 for (n = 0; n< BLKK; n += DIM.YA)

37 #pragma unroll

k] for (m = 0;: m< BLKM: m += DIMXA) {

39 int2 v = texIDfetch(tex.ref.A, coord.A + n=lda+m);
40 sA[n+idyA |[m+idxA] = ..hileint2double(v.y, v.x);

a1 it

42

43 #pragma unroll

44 for (n = 0; n< BLKN; n += DIM.YB)

45 fipragma unroll

46 for (m = 0; m< BLKK; m += DIMXB) {

47 int2 v = texIDfetch(tex_ref_B, coord.B + n=ldb+m):
48 sB[n+idyB | [m+idxB] = __hiloint2double(v.y. v.x);

49 1

50

51 --syncthreads () ;

52

53 #pragma unroll

54 for (k = 0; k < BLKK; k++)

55 fipragma unroll

56 for (n = 0; n< BLKEN/DIM.Y; n++)

57 #pragma unrell

58 for (m = 0; m< BLKM/DIMX; m++)

59 rCln][m] += sA[k][m+DIMX+idx] * sB[n+DIM.Y+idy |[k];
&0

61 --s¥yncthreads ();

[¥]

63 coord.A += BLK K«lda;

64 coord_B 4= BLKK;

65

&6

67 #pragma unroll

[3:] for (n = 0; n< BLKEN/DIM.Y; n++) {

69 int coord.dCn = bly+BLKN + naDIM_Y+idy:

T0 #pragma unroll

T1 for (m = 0; m< BLKM/DIMX; m++) {

72 int coord.dCm = blx«BLKM + meDIMX+idx;

73 if (coord.dCm < M && coord.dCn < N) {

T4 int offsC = coord_dCnxldc + coord.dCm;

75 double &regC = rCn][m];

76 double &memC = CloffsC |;

77 memC = alpha=regC + betasmemC;

8

79 }

80 }

81 }

Fig. 1.6 Complete dgemm (C = alpha A B + beta C) implementation in CUDA
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// Sweep thread block dimensions.
for (dim-m = 1; dim-m <=MAX_THREADS_DIM_X; dim-m++)
for (dim-n = 1; dim.n <=MAX THREADS_ DIM_Y; dim.n++)
// Sweep tiling sizes.
for (blkom = dim_m; blk.m < INF; blk-m += dim.-m)
for (blk.n = dim_n; blk.n < INF; blk.n += dim.n)
for (blk_k = 1; blk.k < INF; blk_k++)

// Apply pruning constraints.

O W o Jo U b W

[y

Fig. 1.7 The parameter search space for the autotuning of matrix multiplication

e The kernel would compile and launch, but produce invalid results due to the
limitations of the implementation, e.g., unimplemented corner case.

e The kernel would compile, launch and produce correct results, but have no
chance of running fast, due to an obvious performance shortcoming, such as very
low occupancy.

The nine checks rely on basic hardware parameters, which can be obtained by
querying the card with the CUDA API, and include:

. The number of threads in the block is not divisible by the warp size.

. The number of threads in the block exceeds the hardware maximum.

. The number of registers per thread, to store C, exceeds the hardware maximum.

. The number of registers per block, to store C, exceeds the hardware maximum.

. The shared memory per block, to store A and B, exceeds the hardware maximum.

. The thread block cannot be shaped to read A and B without cleanup code.

. The number of load instructions, from shared memory to registers, in the
innermost loop, in the PTX code, exceeds the number of Fused Multiply-
Adds (FMAs).

. Low occupancy due to high number of registers per block to store C.

9. Low occupancy due to the amount of shared memory per block to read A and B.

~N NN R W

oo

In order to check the last two conditions, the number of registers per block, and
the amount of shared memory per block are computed. Then the maximum number
of possible blocks per multiprocessor is found, which gives the maximum possible
number of threads per multiprocessor. If that number is lower than the minimum
occupancy requirement, the kernel is discarded. Here the threshold is set to a fairly
low number of 256 threads, which translates to minimum occupancy of 0.125 on the
Nvidia K40 card, with the maximum number of 2,048 threads per multiprocessor.

This process produces 14,767 kernels, which can be benchmarked in roughly
1 day. Three thousand two hundred and fifty six kernels fail to launch due to
excessive number of registers per block. The reason is that the pruning process uses
a lower estimate on the number of registers, and the compiler actually produces code
requiring more registers. We could detect it in compilation and skip benchmarking
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of such kernels or we can run them and let them fail. For simplicity we chose the
latter. We could also cap the register usage to prevent the failure to launch. However,
capping register usage usually produces code of inferior performance.

Eventually, 11,511 kernels run successfully and pass correctness checks.
Figure 1.8 shows the performance distribution of these kernels. The fastest kernel
achieves 900 Gflop/s with tiling of 96 x 64 x 12, with 128 threads (16 x 8 to compute
C, 32 x 4 to read A, and 4 x 32 to read B). The achieved occupancy number of
0.1875 indicates that, most of the time, each multiprocessor executes 384 threads
(three blocks).

Fig. 1.8 Distribution of the

dgemm kernels
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In comparison, CUBLAS achieves the performance of 1,225 Gflop/s using 256
threads per multiprocessor. Although CUBLAS achieves a higher number, this
example shows the effectiveness of the autotuning process in quickly creating well
performing kernels from high level language source codes. This technique can be
used to build kernels for routines not provided in vendor libraries, such as extended
precision BLAS (double—-double and triple-float), BLAS for misshaped matrices
(tall and skinny), etc. Even more importantly, this technique can be used to build
domain specific kernels for many application areas.

As the last interesting observation, we offer a look at the PTX code produced
by the nvcc compiler (Fig. 1.9). We can see that the compiler does exactly what is
expected, which is completely unrolling the loops in lines 50-56 of the C code
in Fig. 1.6, into a stream of loads from shared memory to registers and FMA
instructions, with substantially more FMAs than loads.
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Fig. 1.9 A portion of the PTX for the innermost loop of the fastest dgemm kernel

d.shared.f64
Id . shared . f64

%fd258 , [%rd3];
%fd259 , [%rdd];

fma.rn.f64 %fd260, %fd258, %fd259, %fd1145;

d.shared.f64

%fd261 , [%rd3+128];

fma.rn.f64 %fd262, %fd261, %fd259 , %fd1144;

Id . shared . f64

%fd263, [%rd3+256];

fma.rn.f64 %fd264, %fd263, %fd259, %fd1143;

d.shared.f64

%fd265 . [%rd3+384];

fma.rn.f64 %fd266, %fd265, %fd259, %fd1142;

d.shared.f64

%fd267 , [%rd3+512];

fma.rn.f64 %fd268, %fd267, %fd259, %fd1141;

Id . shared . f64

%fd269 , [%rd3+640];

fma.rn.f64 %fd270, %fd269 , %fd259, %fd1140;

d.shared.f64

%fd271, [Yrd4 +832];

fma .
fma.
fma .
fma .
fma.
fma .
d.shared.f64
fma .
fma.
fma .
fma .
fma.

fma

d.shared.f64
fma.
fma .
fma .
fma .
fma.
fma .

rn
mn
rn
rn
m
mn

rn
m
rn
rn
mn
n

rn

. f64
.fo4
.f64
.f64
.f64
.f64

. f64
.f64
.f64
. f64
.fo4
.f64

.fo4
.f64
.f64
. f64
.fo64
.f64

%fd272,
%fd273 ,
Y%fd274 ,
%fd275 ,
%fd276 ,
Y%fd277 ,

%fd279 ,
%fd280 ,
%fd281 ,
%fd282 ,
%fd283
%fd284 ,

Y%fd286 ,
Y%fd287 ,
%%fd288 ,
Y%fd289 ,
Y%fd290 ,
Y%fd291 ,

%fd258 ,
%fd261 ,
%fd263 ,
%fd265 ,
%fd267 ,
%fd269 ,

%fd258 ,
%fd261 ,
%fd263 ,
%fd265 ,
%fd267 ,
%fd269 ,

%fd258 ,
%fd261 ,
%fd263 ,
%fd265 ,
%fd267 ,
%fd269 ,

%fd271 ,
%fd271 ,
%fd271 ,
Y%fd271 ,
%fd271 ,
%fd271 ,

%fd278 , [Yerd4 +1664];

%fd278 ,
%fd278 ,
%fd278 ,
%fd278 ,
%fd278 ,
%fd278 ,

%fd285 , [Yerd4 +2496];

%fd285 ,
%fd285 ,
Y%fd285 ,
%fd285 ,
%fd285 ,
Y%fd285 ,

Yefd 11395
Yofd1138 ;
Yefd1137 ;
Yefd1136;
Yfd1135;
Yofd1134 ;

Yefd 11335
Yofd1132;
Yefd1131 ;
Yefd1130;
Yfd1129;
Yofd1128 ;

%fd1127;
%fd1126;
%fd1125;
%fd1124;
%fd1123;
%fd1122;

d.shared.f64

%fd292 , [%rd4+3328];

fma.rn.f64 %fd293,
fma.rn.f64 %fd294,
fma.rn.f64 %fd295,
fma.rn.f64 %fd296,
fma.rn.f64 %fd297,
fma.rn.f64 %fd298

%fd258 ,
%fd261 ,
%fd263 ,
%fd265 ,
%fd267 ,
%fd269 ,

%fd292, %fd1121;
%fd292, %fd1120;
%fd292, %fd1119;
%fd292, %fd1118;
%fd292, %fd1117;
%fd292, %fd1116;

d.shared.f64  %fd299, [%rd4+4160];

fma.rn.f64 %fd300,
fma.rn.f64 %fd301 ,
fma.rn.f64 %fd302,
fma.rn.f64 %fd303,
fma.rn.f64 %fd304,
fma.rn.f64 %fd305,

%fd258 ,
%fd261 ,
%fd263 ,
%fd265 ,
%fd267 ,
%fd269 ,

%fd299 , %fd1115;
%fd299 , %fd1114;
%fd299 , %fd1113;
%fd299 , %fd1112;
%fd299 , %fd1111;
%fd299 , %fd1110;

Id.shared.f64  %fd306, [%rd4+4992];

fma.rn.f64 %fd307,
fma.rn.f64 %fd308
fma.rn.f64 %fd309,
fma.rn.f64 %fd310,
fma.rn.f64 %fd311,
fma.rn.f64 %fd312,

%fd258 ,
%fd261 ,
%fd263 ,
%fd265 ,
%fd267 ,
%fd269 ,

%fd306 , %fd1109;
%fd306 , %fd1108;
%fd306 , %fd1107;
%fd306 , %fd1106;
%fd306 , %fd1105;
%fd306 , %fd1104;

Id.shared.f64  %fd313, [%rd4+5824];

fma.rn.f64 %fd314,
fma.rn.f64 %fd315,
fma.rn.f64 %fd316,
fma.rn.f64 %fd317,
fma.rn.f64 %fd318,
fma.rn.f64 %fd319,

%fd258 ,
%fd261 ,
%fd263 ,
%fd265 ,
%fd267 ,
%fd269 ,

%fd313, %fd1103;
%fd313, %fd1102;
%fd313, %fd1101;
%fd313, %fd1100;
%fd313, %fd1099;
%fd313, %fd1098;

d.shared.f64
d.shared.f64

%fd320, [%rd3+776];
%fd321, [Yrd4 +8];

fma.rn.f64 %fd322, %fd320, %fd321, %fd260;

Id . shared . f64

%fd323, [%rd3+904];

fma.rn.f64 %fd324, %fd323, %fd321, %fd262;

d.shared.f64

%fd325, [%rd3+1032];

fma.rn.f64 %fd326, %fd325, %fd321, %fd264;

d.shared.f64

%fd327, [%rd3+1160];

fma.rn.f64 %fd328, %fd327, %fd321, %fd266:

d.shared.f64

%fd329, [%rd3+1288];

fma.rn.f64 %fd330, %fd329, %fd321, %fd268;

d.shared.f64

%fd331, [%rd3+1416];

fma.rn.f64 %fd332, %fd331, %fd321, %fd270;

Id . shared . f64

%fd333, [%rd4+840];

fma.rn.f64 %fd334,
fma.rn.f64 %fd335,
fma.rn.f64 %fd336,
fma.rn.f64 %fd337,
fma.rn.f64 %fd338,
fma.rn.f64 %fd339,

%fd320 ,
%fd323,
%fd325 ,
%fd327 ,
%fd329 ,
%fd331,

%fd333, %fd272;
%fd333, %fd273;
%fd333, %fd274;
%fd333, %fd275;
%fd333, %fd276;
%fd333, %fd277;

Id.shared.f64  %fd340, [%rd4+1672];

fma.rn.f64 %fd341,
fma.rn.f64 %fd342,
fma.rn.f64 %fd343,
fma.rn.f64 %fd344,
fma.rn.f64 %fd345,
fma.rn.f64 %fd346,

%fd320 ,
%fd323,
%fd325,
%fd327 ,
%fd329 ,
%fd331,

%fd340 , %fd279 ;
%fd340 , %fd280;
%fd340, %fd281 ;
%fd340 , %fd282;
%fd340 , %fd283;
%fd340 , %fd284 ;

11
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1.3 Solving Linear Systems

Solving dense linear systems of equations is a fundamental problem in scientific
computing. Numerical simulations involving complex systems represented in terms
of unknown variables and relations between them often lead to linear systems
of equations that must be solved as fast as possible. This section presents a
methodology for developing these solvers. The technique is illustrated using the
Cholesky factorization.

1.3.1 Cholesky Factorization

The Cholesky factorization (or Cholesky decomposition) of an n x n real symmetric
positive definite matrix A has the form 4 = LLT, where L is an n x n real
lower triangular matrix with positive diagonal elements [5]. This factorization is
mainly used as a first step for the numerical solution of linear equations Ax = b,
where A is a symmetric positive definite matrix. Such systems arise often in
physics applications, where A is positive definite due to the nature of the modeled
physical phenomenon. The reference implementation of the Cholesky factorization
for machines with hierarchical levels of memory is part of the LAPACK library.
It consists of a succession of panel (or block column) factorizations followed by
updates of the trailing submatrix.

1.3.2 Hybrid Algorithms

The Cholesky factorization algorithm can easily be parallelized using a fork-join
approach since each update—consisting of a matrix—matrix multiplication—can be
performed in parallel (fork) but that a synchronization is needed before performing
the next panel factorization (join). The number of synchronizations of this algo-
rithm and the synchronous nature of the panel factorization would be prohibitive
bottlenecks for performance on highly parallel devices such as GPUs.

Instead, the panel factorization and the update of the trailing submatrix are
broken into tasks, where the less parallel panel tasks are scheduled for execution on
multicore CPUs, and the parallel updates mainly on GPUs. Figure 1.10 illustrates
this concept of developing hybrid algorithms by splitting the computation into
tasks, data dependencies, and consequently scheduling the execution over GPUs
and multicore CPUs. The scheduling can be static (described next), or dynamic (see
Sect. 1.4). In either case, the small and not easy to parallelize tasks from the critical
path (e.g., panel factorizations) are executed on CPUs, and the large and highly
parallel task (like the matrix updates) are executed mostly on the GPUs.
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Fig. 1.10 Algorithms as a
collection of tasks and
dependencies among them for
hybrid GPU-CPU computing

GPU

1.3.3 Hpybrid Cholesky Factorization for a Single GPU

13

Figure 1.11 gives the hybrid Cholesky factorization implementation for a single
GPU. Here da points to the input matrix that is in the GPU memory, work is a
work-space array in the CPU memory, and nb is the blocking size. This algorithm
assumes the input matrix is stored in the leading n-by-n lower triangular part of da,
which is overwritten on exit by the result. The rest of the matrix is not referenced.
Compared to the LAPACK reference algorithm, the only difference is that the hybrid

[ IR N RO
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13
14
15
16
17
18

for (j = 0; j<=n; j += nb){
jb = min(nb, xn—j);
cublasDsyrk (°1°,°n", jb, j.—1, da(j.0).xlda, 1, da(j,j).*lda);
cudaMemcpy2DAsync (work , jbxsizeof(double), da(j,j), *ldaxsizeof(double),

sizeof (double)*jb, jb, cudaMemcpyDeviceToHost, stream[1]);

if (j + jb< =*n)
cublasDgemm(’'n’, t", *n—j—jb, jb, j, —1, da(j+jb,0), xlda, da(j,0),
*lda, 1, da(j+jb.j).xlda);
cudaStreamSynchronize (stream[1]);
dpotrfi (”Lower”, &jb, work, &b, info);
if (xinfo != 0)
*info = xinfo + j, break;
cudaMemcpy2DAsync (da(j.j) . *ldaxsizeof (double), work. jb*sizeof(double),

sizeof (double)*jb, jb, cudaMemcpyHostToDevice, stream[0]);

if (j + jb< xn)
cublasDtrsm(’'r”,’1°,°t ,’n", *n—j—jb, jb, 1, da(j,j), *lda,
da(j+jb,j), *xlda);

Fig. 1.11 Hybrid Cholesky factorization for single CPU-GPU pair (dpotrf)
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one has three extra lines—4, 9, and 13. These extra lines implement our intent in
the hybrid code to have the jb-by-jb diagonal block starting at da(j,j) factored on
the CPU, instead of on the GPU. Therefore, at line 4 we send the block to the CPU,
at line 9 we synchronize to ensure that the data has arrived, then factor it on the
CPU using a call to LAPACK at line 10, and send the result back to the GPU at
line 13. Note that the computation at line 7 is independent of the factorization of
the diagonal block, allowing us to do these two tasks in parallel on the CPU and
on the GPU. This is implemented by statically scheduling first the dgemm (line 7)
on the GPU; this is an asynchronous call, hence the CPU continues immediately
with the dpotrf (line 10) while the GPU is running the dgemm.

The hybrid algorithm is given an LAPACK interface to simplify its use and
adoption. Thus, codes that use LAPACK can be seamlessly accelerated multiple
times with GPUs.

To summarize, the following is achieved with this algorithm:

* The LAPACK Cholesky factorization is split into tasks;

e Large, highly data parallel tasks, suitable for efficient GPU computing, are
statically assigned for execution on the GPU;

* Small, inherently sequential dpotrf tasks (line 10), not suitable for efficient GPU
computing, are executed on the CPU using LAPACK;

* Small CPU tasks (line 10) are overlapped by large GPU tasks (line 7);

* Communications are asynchronous to overlap them with computation;

e Communications are in a surface-to-volume ratio with computations: sending
nb? elements at iteration j is tied to O(nb x j?) flops, j > nb.

1.4 The Case for Dynamic Scheduling

In this section, we present the linear algebra aspects of our generic solution for
development of either Cholesky, Gaussian, and Householder factorizations based
on block outer-product updates of the trailing matrix.

Conceptually, one-sided factorization .% maps a matrix A into a product of two
matrices X and Y:

7 [An A12i| L |:X11 X12i| o« [Yn Y12i|
Az Ax Xo1 X Yo Yoo
Algorithmically, this corresponds to a sequence of in-place transformations of A,

whose storage is overwritten with the entries of matrices X and Y (P;; indicates the
currently factorized panels):

0 0 0 0 0
A 49 40 Py A9 4Y XYu Yo Yi3 XYn Y2 Yi3
1 1 1
A AD) AT | = | Py AD) AD) |~ | Xar A5 AR | > | Xa Pyp AL | >

0 0 0 0 0 1 1 1
A A A Py A% AY) Xy AY) AY X3 Py AY)
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Algorithm 1 Two-phase implementation of a one-sided factorization
// iterate over all matrix panels
fOl’P,'e{Pl,Pz ..... Pn}
FactorizePanel(P;)
UpdateTrailingMatrix(A®)

end

Table. 1'1. Routines for. panel Cholesky  Householder  Gauss

factorization and the trailing -

matrix update FactorizePanel dpotf2 dgeqf2 dgetf2
dtrsm
dsyrk dlarfb dlaswp

UpdateTrailingMatrix ~ dgemm dtrsm
dgemm

Algorithm 2 Two-phase implementation with the update split between Fermi and
Kepler GPUs

// iterate over all matrix panels

for P,' E{Pl,Pz,...}
FactorizePanel(P;)
UpdateTrailingMatrixXgepier(4®)
UpdateTrailingMatrixXgem (A7)

end
XY Yo Y3 XY Yo Y13 XY Y Y3
= | X1 XY Vo3 | > | Xo1 X Yo3 | > | Xoy XY5 Yo3 | > [XY].
X3 Xz AY X311 X3 Py X311 Xz XVi

where XY;; is a compact representation of both X;; and Y;; in the space originally
occupied by A4;;.

Observe two distinct phases in each step of the transformation from [A] to
[XY]: panel factorization (P) and trailing matrix update: A® — AC+D Tmple-
mentation of these two phases leads to a straightforward iterative scheme shown
in Algorithm 1. Table 1.1 shows BLAS and LAPACK routines that should be
substituted for the generic routines named in the algorithm.

The use of multiple accelerators complicates the simple loop from Algorithm 1:
we must split the update operation into multiple instances for each of the acceler-
ators. This was done in Algorithm 2. Notice that FactorizePanel() is not split for
execution on accelerators because it exhibits properties of latency-bound workloads,
which face a number of inefficiencies on throughput-oriented GPU devices. Due to
their high performance rate exhibited on the update operation, and the fact that the
update requires the majority of floating-point operations, it is the trailing matrix
update that is a good target for off-load. The problem of keeping track of the
computational activities is exacerbated by the separation between the address spaces
of main memory of the CPU and the GPUs. This requires synchronization between
memory buffers and is included in the implementation shown in Algorithm 3.
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Algorithm 3 Two-phase implementation with a split update and explicit communi-

cation

// iterate over all matrix panels

for P,' E{Pl,Pz,...}
FactorizePanel(P;)
SendPanelkepier(P;)
UpdateTrailingMatrixXgepier(4®))
SendPanelgeq; (P;)
UpdateTrailingMatriXpepm; (4)

end

Algorithm 4 Lookahead of depth 1 for the two-phase factorization

FactorizePanel(P;)
SendPanel(P;)
UpdateTrailingMatriX¢kepier, Fermi} (P1)
PanelStartReceiving(P,)
UpdateTrailingMatrixkepter, Fermiz (R")
// iterate over remaining matrix panels
for P; € {Pz, P, .. }
PanelReceive(P;)
PanelFactor(P;)
SendPanel(P;)
UpdateTrailingMatriX ¢kepier, Fermi} (P;)
PanelStartReceiving(P;)
UpdateTrailingMatrix ¢kepter, Fermi3 (R)
end
PanelReceive(P,)
PanelFactor(P,)

The complexity increases further as the code must be modified further to achieve
close to peak performance. In fact, the bandwidth between the CPU and the GPUs is
orders of magnitude too slow to sustain computational rates of GPUs.? The common
technique to alleviate this imbalance is to use lookahead [14,15].

Algorithm 4 shows a very simple case of a lookahead of depth 1. The update
operation is split into an update of the next panel, the start of the receiving of the
next panel that just got updated, and an update of the rest of the trailing matrix R.
The splitting is done to overlap the communication of the panel and the update
operation. The complication of this approach comes from the fact that depending
on the communication bandwidth and the accelerator speed, a different lookahead
depth might be required for optimal overlap. In fact, the adjustment of the depth
is often required throughout the factorization’s runtime to yield good performance:
the updates consume progressively less time when compared to the time spent in the
panel factorization.

2The bandwidth for the current generation PCI Express is at most 16 GB/s while the devices
achieve over 1,000 Gflop/s performance.
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Since the management of adaptive lookahead is tedious, it is desirable to use a
dynamic scheduler to keep track of data dependences and communication events.
The only issue is the homogeneity inherent in most of the schedulers which is
violated here due to the use of three different computing devices that we used. Also,
common scheduling techniques, such as task stealing, are not applicable here due
to the disjoint address spaces and the associated large overheads. These caveats are
dealt with comprehensively in the remainder of the chapter.

1.5 Eigenvalue and Singular Value Problems

Eigenvalue and singular value decomposition (SVD) problems are fundamental
for many engineering and physics applications. For example, image processing,
compression, facial recognition, vibrational analysis of mechanical structures,
and computing energy levels of electrons in nanostructure materials can all be
expressed as eigenvalue problems. Also, the SVD plays a very important role in
statistics where it is directly related to the principal component analysis method,
in signal processing and pattern recognition as an essential filtering tool, and in
analysis of control systems. It has applications in such areas as least squares
problems, computing the pseudoinverse, and computing the Jordan canonical form.
In addition, the SVD is used in solving integral equations, digital image processing,
information retrieval, seismic reflection tomography, and optimization.

1.5.1 Background

The eigenvalue problem is to find an eigenvector x and eigenvalue A that satisfy
Ax = Ax,

where A is a symmetric or nonsymmetric # X n matrix. When the entire eigenvalue
decomposition is computed we have 4 = XA X ™!, where A is a diagonal matrix of
eigenvalues and X is a matrix of eigenvectors. The SVD finds orthogonal matrices
U, V, and a diagonal matrix ¥ with nonnegative elements, such that 4 = U sV,
where A is an m x n matrix. The diagonal elements of ¥ are singular values of A,
the columns of U are called its left singular vectors, and the columns of V' are called
its right singular vectors.
All of these problems are solved by a similar three-phase process:

1. Reduction phase: orthogonal matrices Q (Q and P for singular value decom-
position) are applied on both the left and the right side of A to reduce it to a
condensed form matrix—hence these are called “two-sided factorizations.” Note
that the use of two-sided orthogonal transformations guarantees that A has the
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same eigen/singular-values as the reduced matrix, and the eigen/singular-vectors
of A can be easily derived from those of the reduced matrix (step 3);

2. Solution phase: an eigenvalue (respectively, singular value) solver further
computes the eigenpairs A and Z (respectively, singular values ¥ and the left
and right vectors U and I7T) of the condensed form matrix;

3. Back transformation phase: if required, the eigenvectors (respectively, left and
right singular vectors) of A are computed by multiplying Z (respectively, U and
V'T) by the orthogonal matrices used in the reduction phase.

For the nonsymmetric eigenvalue problem, the reduction phase is to upper
Hessenberg form, H = QTAQ. For the second phase, QR iteration is used to
find the eigenpairs of the reduced Hessenberg matrix H by further reducing it to
(quasi) upper triangular Schur form, S = ET HE. Since S is in a (quasi) upper
triangular form, its eigenvalues are on its diagonal and its eigenvectors Z can be
easily derived. Thus, A can be expressed as:

A=QHQ"=QESE" Q"

which reveals that the eigenvalues of A are those of S, and the eigenvectors Z of S
can be back-transformed to eigenvectorsof Aas X = Q E Z.

When 4 is symmetric (or Hermitian in the complex case), the reduction phase is
to symmetric tridiagonal T = QT AQ, instead of upper Hessenberg form. Since
T is tridiagonal, computations with 7" are very efficient. Several eigensolvers are
applicable to the symmetric case, such as the divide and conquer (D&C), the
multiple relatively robust representations (MRRR), the bisection algorithm, and the
QR iteration method. These solvers compute the eigenvalues and eigenvectors of
T = ZAZT, yielding A to be the eigenvalues of A. Finally, if eigenvectors are
desired, the eigenvectors Z of T are back-transformed to eigenvectors of A as
X=0Z

For the singular value decomposition (SVD), two orthogonal matrices Q and
P are applied on the left and on the right, respectively, to reduce A to bidiagonal
form, B = QT AP. Divide and conquer or QR iteration is then used as a solver
to find both the singular values and the left and the right singular vectors of B as
B = UxVT, yielding the singular values of A. If desired, singular vectors of B
are back-transformed to singular vectors of A as U = Q Uand VT = PTVT,

There are many ways to formulate mathematically and solve these problems
numerically, but in all cases, designing an efficient computation is challenging
because of the nature of the algorithms. In particular, the orthogonal transformations
applied to the matrix are two-sided, i.e., transformations are applied on both the left
and right side of the matrix. This creates data dependencies that prevent the use
of standard techniques to increase the computational intensity of the computation,
such as blocking and look-ahead, which are used extensively in the one-sided
LU, QR, and Cholesky factorizations. Thus, the reduction phase can take a large
portion of the overall time. Recent research has been into two-stage algorithms
[2,6,7,10, 11], where the first stage uses Level 3 BLAS operations to reduce A
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to band form, followed by a second stage to reduce it to the final condensed form.
Because it is the most time consuming phase, it is very important to identify the
bottlenecks of the reduction phase, as implemented in the classical approaches [1].
The classical approach is discussed in the next section, while Sect. 1.5.4 covers two-
stage algorithms.

The initial reduction to condensed form (Hessenberg, tridiagonal, or bidiagonal)
and the final back-transformation are particularly amenable to GPU computation.
The eigenvalue solver itself (QR iteration or divide and conquer) has significant
control flow and limited parallelism, making it less suited for GPU computation.

1.5.2 Classical Reduction to Hessenberg, Tridiagonal,
or Bidiagonal Condensed Form

The classical approach (“LAPACK algorithms”) to reduce a matrix to condensed
form is to use one-stage algorithms [5]. Similar to the one-sided factorizations
(LU, Cholesky, QR), the two-sided factorizations are split into a panel factorization
and a trailing matrix update. Pseudocode for the Hessenberg factorization is
given in Algorithm 5 and shown schematically in Fig. 1.12; the tridiagonal and
bidiagonal factorizations follow a similar form, though the details differ [17].
Unlike the one-sided factorizations, the panel factorization requires computing
Level 2 BLAS matrix-vector products with the entire trailing matrix. This requires
loading the entire trailing matrix into memory, incurring a significant amount of
memory bound operations. It also produces synchronization points between the
panel factorization and the trailing submatrix update steps. As a result, the algorithm
follows the expensive fork-and-join model, preventing overlap between the CPU
computation and the GPU computation. Also it prevents having a look-ahead panel
and hiding communication costs by overlapping with computation. For instance,
in the Hessenberg factorization, these Level 2 BLAS operations account for about
20% of the floating point operations, but can take 70 % of the time in a CPU
implementation [16]. Note that the computational complexity of the reduction phase
is about 13—0n3, 813, and %n3 for the reduction to Hessenberg, bidiagonal, and
tridiagonal form respectively.

In the panel factorization, each column is factored by introducing zeros below
the subdiagonal using an orthogonal Householder reflector, H; = I — tv; vjr. The
matrix Q is represented as a product of n — 1 of these reflectors,

0 =HH.. H_.

Before the next column can be factored, it must be updated as if H; were
applied on both sides of A4, though we delay actually updating the trailing matrix.
For each column, performing this update requires computing y; = Av;. For
a GPU implementation, we compute these matrix-vector products on the GPU,
using cublasDgemv for the Hessenberg and bidiagonal, and cublasDsymv for
the tridiagonal factorization. Optimized versions of symv and hemv also exist in



20

J. Dongarra et al.

Algorithm 5 Hessenberg reduction, magma_*gehrd

for i =1,...,nbynb

// panel factorization, in magma_*lahr2.
get panel A;. ;i +-np—1 from GPU

for j =i,...,i +nb
(vj, ;) = householder(a; )
send v; to GPU
yj = Ai+1:m.jmv; on GPU
get y; from GPU

compute T(;) = 0

T
Tij—y —1Ti—nVi—1yv;

update column a;+1 = (I = VTTVT)(aj41 —YT{VT};41)

end

// trailing matrix update, in magma_*lahru.

Yiitmp = Avi:V on GPU

A=(I—VTTVT)A—YTVT)on GPU

end

Yl:i, : :Alzi, :V
BLAS-3 on GPU

T = 40

BLAS-2
on GPU

Panel

Trailing
matrix
update

A=0"40

BLAS-3
on GPU

A

column a;

Fig. 1.12 Hessenberg panel factorization, trailing matrix update, and V' matrix on GPU with upper

triangle set to zero

MAGMA [13], which achieve higher performance by reading A only once and using
extra workspace to store intermediate results. While these are memory-bound Level
2 BLAS operations, computing them on the GPU leverages the GPU’s high memory

bandwidth.

After factoring each panel of nb columns, the trailing matrix must be updated.
Instead of applying each H; individually to the entire trailing matrix, they are
blocked together into a block Hessenberg update,

Qi=HH,...Hy=1-V,T,V"
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The trailing matrix is then updated as
A=0]40; = - VTV ) A=Y T;,V]) (1.1)
for the nonsymmetric case, or using the alternate representation
A=A-wy —viw] (1.2)

for the symmetric case. In all cases, the update is a series of efficient Level 3 BLAS
operations executed on the GPU, either general matrix—matrix multiplies (dgemm)
for the Hessenberg and bidiagonal factorizations, or a symmetric rank-2k update
(dsyr2k) for the symmetric tridiagonal factorization.

Several additional considerations are made for an efficient GPU implementation.
In the LAPACK CPU implementation, the matrix V' of Householder vectors is stored
below the subdiagonal of A. This requires multiplies to be split into two operations,
a triangular multiply (dtrmm) for the top triangular portion, and a dgemm for the
bottom portion. On the GPU, we explicitly set the upper triangle of V' to zero, as
shown in Fig. 1.12, so the entire product can be computed using a single dgemm.
Second, it is beneficial to store the small nb x nb T; matrices used in the reduction,
for later use in the back-transformation, whereas LAPACK recomputes them later
from V;.

1.5.3 Back-Transform Eigenvectors

For eigenvalue problems, after the reduction to condensed form, the eigensolver
finds the eigenvalues A and eigenvectors Z of H or T. For the SVD, it finds
the singular values X and singular vectors U and V of B. The eigenvalues and
singular values are the same as for the original matrix A. To find the eigenvectors or
singular vectors of the original matrix A, the vectors need to be back-transformed
by multiplying by the same orthogonal matrix Q (and P, for the SVD) used
in the reduction to condensed form. As in the reduction, the block Householder
transformation Q; = I — V,T,-Vf is used. From this representation, either Q can
be formed explicitly using dorghr, dorgtr, or dorgbr; or we can multiply by the
implicitly represented Q using dormhr, dormtr, or dormbr. In either case, applying
it becomes a series of dgemm operations executed on the GPU.

The entire procedure is implemented in the MAGMA library: magma_dgeev
for nonsymmetric eigenvalues, magma_dsyevd for real symmetric, and
magma_dgesvd for the singular value decomposition.
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1.5.4 Two Stage Reduction

Because of the expense of the reduction step, renewed research has focused
on improving this step, resulting in a novel technique based on a two-stage
reduction [6, 9]. The two-stage reduction is designed to increase the utilization of
compute-intensive operations. Many algorithms have been investigated using this
two-stage approach. The idea is to split the original one-stage approach into a
compute-intensive phase (first stage) and a memory-bound phase (second or “bulge
chasing” stage). In this section we will cover the description for the symmetric case.
The first stage reduces the original symmetric dense matrix to a symmetric band
form, while the second stage reduces from band to tridiagonal form, as depicted
in Fig. 1.13.
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Fig. 1.13 Two stage technique for the reduction phase

1.5.4.1 First Stage: Hybrid CPU-GPU Band Reduction

The first stage applies a sequence of block Householder transformations to reduce
a symmetric dense matrix to a symmetric band matrix. This stage uses compute-
intensive matrix-multiply kernels, eliminating the memory-bound matrix-vector
product in the one-stage panel factorization, and has been shown to have a good data
access pattern and large portion of Level 3 BLAS operations [3,4,8]. It also enables
the efficient use of GPUs by minimizing communication and allowing overlap of
computation and communication. Given a dense n X n symmetric matrix A4, the
matrix is divided into n¢ = n/b block-columns of size nb. The algorithm proceeds
panel by panel, performing a QR decomposition for each panel to generate the
Householder reflectors V' (i.e., the orthogonal transformations) required to zero out
elements below the bandwidth nb. Then the generated block Householder reflectors
are applied from the left and the right to the trailing symmetric matrix, according to

A=A-wvT —yvwT, (1.3)
where V' and T define the block of Householder reflectors and W is computed as
W =X—3iVT"VTX, where (1.4)
X = AVT.
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Since the panel factorization consists of a QR factorization performed on a panel
of size [ x b shifted by nb rows below the diagonal, this will remove both the
synchronization and the data dependency constraints seen using the classical one
stage technique. In contrast to the classical approach, the panel factorization by
itself does not require any operation on the data of the trailing matrix, making
it an independent task. Moreover, we can factorize the next panel once we have
finished its update, without waiting for the total trailing matrix update. Thus this
kind of technique removes the bottlenecks of the classical approach: there are no
BLAS-2 operations concerning the trailing matrix and also there is no need to wait
for the update of the trailing matrix in order to start the next panel. However, the
resulting matrix is banded, instead of tridiagonal. The hybrid CPU-GPU algorithm
is illustrated in Fig. 1.14. We first run the QR decomposition (dgeqrf panel on step
i of Fig.1.14) of a panel on the CPUs. Once the panel factorization of step i is
finished, then we compute W on the GPU, as defined by Eq. (1.4). In particular,
it involves a dgemm to compute VT, then a dsymm to compute X = AVT,
which is the dominant cost of computing W, consisting of 95 % of the time spent
in computing W, and finally another inexpensive dgemm. Once W is computed,
the trailing matrix update (applying transformations on the left and right) defined
by Eq. (1.3) can be performed using a rank-2k update.

However, to allow overlap of CPU and GPU computation, the trailing submatrix
update is split into two pieces. First, the next panel for step i + 1 (medium gray panel
of Fig. 1.14) is updated using two dgemm’s on the GPU. Next, the remainder of the
trailing submatrix (dark gray triangle of Fig. 1.14) is updated using a dsyr2k. While
the dsyr2k is executing, the CPUs receive the panel for step i + 1, perform the next
panel factorization (dgeqrf), and send the resulting V; 1, back to the GPU. In this
way, the factorization of panels i = 2,...,nt and the associated communication
are hidden by overlapping with GPU computation, as demonstrated in Fig. 1.15.
This is similar to the look-ahead technique typically used in the one-sided dense

3 g N
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v [ \ N
> - | |
[+ 9
= ] N
GPU: computeW(i) CPU: QR on GPU: update
and update next panel (i+1) panel (i+1) trailing matrix

Fig. 1.14 Description of the reduction to band form, stage 1
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Fig. 1.15 Execution trace of reduction to band form

matrix factorizations. Figure 1.15 shows a snapshot of the execution trace of the
reduction to band form, where we can easily identify the overlap between CPU and
GPU computation. Note that the high-performance GPU is continuously busy, either
computing W or updating the trailing matrix, while the lower performance CPUs
wait for the GPU as necessary.

1.5.4.2 Second Stage: Cache-Friendly Computational Kernels

The band form is further reduced to the final condensed form using the bulge chasing
technique. This procedure annihilates the extra off-diagonal elements by chasing the
created fill-in elements down to the bottom right side of the matrix using successive
orthogonal transformations. Each annihilation of the nb non-zero element below
the off-diagonal of the band matrix is called a sweep. This stage involves memory-
bound operations and requires the band matrix to be accessed from multiple disjoint
locations. In other words, there is an accumulation of substantial latency overhead
each time different portions of the matrix are loaded into cache memory, which is not
compensated for by the low execution rate of the actual computations (the so-called
surface-to-volume effect). To overcome these critical limitations, we developed
a bulge chasing algorithm, to extensively use cache friendly kernels combined
with fine grained, memory aware tasks in an out-of-order scheduling technique
which considerably enhances data locality. This reduction has been designed for
multicore architectures, and results have shown its efficiency. This step has been
well optimized such that it takes between 5 and 10 % of the global time of the
reduction from dense to tridiagonal. We refer the reader to [6, 8] for a detailed
description of the technique.
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We decide to develop a hybrid CPU-GPU implementation of only the first stage
of the two stage algorithm, and leave the second stage executed entirely on the
CPU. The main motivation is that the first stage is the most expensive computational
phase of the reduction. Results show that 90 % of the time is spent in the first stage
reduction. Another motivation for this direction is that accelerators perform poorly
when dealing with memory-bound fine-grained computational tasks (such as bulge
chasing), limiting the potential benefit of a GPU implementation of the second stage.
Experiments showed that the two-stage algorithm can be up to six times faster than
the standard one-stage approach.

1.5.5 Back Transform the Eigenvectors of the Two Stage
Technique

The standard one-stage approach reduces the dense matrix A to condensed form
(e.g., tridiagonal 7 in the case of symmetric matrix), computes its eigenval-
ues/eigenvectors (A, Z) and back transform its eigenvectors Z to computes the
eigenvectors X = Q Z of the original matrix A as mentioned earlier in Sect. 1.5.3.
In the case of the two-stage approach, the first stage reduces the original dense
matrix A to a band matrix by applying a two-sided transformations to A such that
0T AQ, = B. Similarly, the second, bulge-chasing stage reduces the band matrix
B to the condensed form (e.g, tridiagonal T') by applying two-sided transformations
to B such that QT BQ, = T. Thus, when the eigenvectors matrix X of A are
requested, the eigenvectors matrix Z resulting from the eigensolver needs to be back
transformed by the Householder reflectors generated during the reduction phase,
according to

X=00,Z=U-Vu,Vyd —=vau Vi) Z, (1.5)

where (V1, #1) and (V3, 1) represent the Householder reflectors generated during the
reduction stages one and two, respectively. Note that when the eigenvectors are
requested, the two stage approach has the extra cost of the back transformation
of Q,. However, experiments show that even with this extra cost the overall
performance of the eigen/singular-solvers using the two stage approach can be
several times faster than solvers using the one stage approach.

From the practical standpoint, the back transformation @, is not as straight-
forward as the one of Q;, which is similar to the classical back transformation
described in Sect. 1.5.3. In particular, because of complications of the bulge-chasing
mechanism, the order and the overlap of the Householder reflector generated during
this stage is intricate. Let us first begin by describing the complexity and the
design of the algorithm for applying Q,. We present the structure of V, (the
Householder reflectors that form the orthogonal matrix Q») in Fig. 1.16a. Note that
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these reflectors represent the annihilation of the band matrix, and thus each is of
length nb—the bandwidth size. A naive implementation would take each reflector
and apply it in isolation to the matrix Z. Such an implementation is memory-bound
and relies on Level 2 BLAS operations. A better procedure is to apply with calls
to Level 3 BLAS, which achieves both very good scalability and performance. The
priority is to create compute intensive operations to take advantage of the efficiency
of Level 3 BLAS. We proposed and implemented accumulation and combination
of the Householder reflectors. This is not always easy, and to achieve this goal we
must pay attention to the overlap between the data they access as well as the fact
that their application must follow the specific dependency order of the bulge chasing
procedure in which they have been created. To stress these issues, we will clarify it
by giving an example. For sweep i (e.g., the column at position B(i,i):B(i+nb,i)),
its annihilation generates a set of kX Householder reflectors (vf-‘ ), each of length nb,
the V¥ are represented in column i of the matrix V5 depicted in Fig. 1.16a. Likewise,
the ones related to the annihilation of sweep i + 1, are those presented in column
i 4 1, where they are shifted one element down compared to those of sweep i.
It is possible to combine the reflectors vfk) from sweep i with those from sweep
i+1,i+2,...,i 4+ £ and to apply them together in blocked fashion. This grouping
is represented by the diamond-shaped region in Fig. 1.16a. While each of those
diamonds is considered as one block, their back transformation (application to the
matrix Z) needs to follow the dependency order. For example, applying block 4 and
block 5 of the V,’s in Fig. 1.16a modifies block row 4 and block row 5, respectively,
of the eigenvector matrix Z drawn in Fig. 1.16b where one can easily observe the
overlapped region. The order dictates that block 4 needs to be applied before block 5.
It is possible to compute this phase efficiently by splitting Z by blocks of columns
over both the CPUs and the GPU as shown in Fig. 1.16b, where we can apply
each diamond independently to each portion of E. Moreover, this method does not
require any data communication. The back transformation of Q; to the resulting
matrix from above, Q| x (Q, Z), involves efficient BLAS 3 kernels and it is done
by using the GPU function magma_dormtr, which is the GPU implementation of
the standard LAPACK function (dormtr).

1.6 Summary and Future Directions

In conclusion, GPUs can be used with astonishing success to accelerate fundamental
linear algebra algorithms. We have demonstrated this on a range of algorithms,
from the matrix—matrix multiplication kernel written in CUDA, to the higher level
algorithms for solving linear systems, to eigenvalue and SVD problems. Further,
despite the complexity of the hardware, acceleration was achieved at a surprisingly
low software development effort using a high-level methodology of developing
hybrid algorithms. The complete implementations and more are available through
the MAGMA library. The promise shown so far motivates and opens opportunities
for future research and extensions, e.g., tackling more complex algorithms and
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0 5 10 15 20 25

Fig. 1.16 Blocking technique to apply the Householder reflectors 1, with a hybrid implementation
on GPU and CPU. (a) Blocking for V,; (b) eigenvectors matrix

hybrid hardware. Several major bottlenecks need to be alleviated to run at scale
though, which is an intensive research topic. When a complex algorithm needs to be
executed on a complex heterogeneous system, scheduling decisions have a dramatic
impact on performance. Therefore, new scheduling strategies must be designed to
fully benefit from the potential of future large-scale machines.
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Chapter 2
A Guide for Implementing Tridiagonal
Solvers on GPUs

Li-Wen Chang and Wen-mei W. Hwu

2.1 Introduction

The tridiagonal solver has been recognized as a critical building block for many
engineering and scientific applications [3, 8, 9, 11, 17, 18] on GPUs. However,
a general high-performance tridiagonal solver for GPU is challenging, not just
because the number of independent, simultaneous matrices varies greatly among
applications, but also because applications may require their tridiagonal solvers to
have customized requirements, such as: data with different layouts, matrices with
a certain structure, or execution on multi-GPUs. Therefore, although building a
tridiagonal solver library is crucial, it is very difficult to meet all demands. In this
chapter, guidelines are given for customizing a high-performance tridiagonal solver
for GPUs.

A wide range of algorithms for implementing tridiagonal solvers on GPUs,
including both sequential and parallel algorithms, was studied. The selected algo-
rithms were chosen for the requirement of applications, and to take the advantage of
massive data parallelism of GPU architecture. Meanwhile, corresponding optimiza-
tions were proposed to compensate for some inherent limitations of the selected
algorithms. In order to achieve high performance on GPUs, workloads have to
be partitioned and computed in parallel on stream processors. For the tridiagonal
solver, the inherent data dependence found in sequential algorithms (e.g. the Thomas
algorithm [5] and the diagonal pivoting method [10]), limits the opportunities
for partitioning the workload. On the other hand, parallel algorithms (e.g. Cyclic
Reduction (CR) [12], Parallel Cyclic Reduction (PCR) [12], or the SPIKE algorithm
[16,19]) allow the partitioning of workloads, but suffer from the required overheads
of extra computation, barrier synchronization, or communication.
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Two main kinds of components are recognized in most GPU tridiagonal solvers.
(1) Partitioning methods are applied to divide workloads for parallel computing.
Independent solvers compute massive independent workloads in parallel. In this
chapter, we first review cutting-edge partitioning techniques for GPU tridiagonal
solvers. Different partitioning techniques require different types of overheads, such
as computation or memory overhead. (2) State-of-the-art optimization techniques
for independent solvers are discussed. Different algorithms of independent solvers
might require different optimizations. Optimization techniques might perform
together for more robust independent solvers. Finally, a case study of a new
algorithm, SPIKE-CR, which replaces part of the traditional SPIKE algorithm
with Cyclic Reduction, is given to demonstrate how to systematically build a
highly optimized tridiagonal solver by selecting the partitioning method, and by
applying optimization techniques to the independent solver for each partition.
The main purpose of this chapter is to inspire readers building their own GPU
tridiagonal solvers to meet their application requirement, instead of demonstrating
high performance of SPIKE-CR.

The rest of the sections in this chapter are organized as following. Section 2.2
briefly reviews the selected algorithms used by GPU tridiagonal solvers. Section 2.3
reviews and compares corresponding optimizations applied to the GPU tridiagonal
solvers. Section 2.4 shows a case study of the new GPU tridiagonal solver, SPIKE-
CR; discusses its partitioning and optimizations; and compares its performance to
alternative methods. Section 2.5 concludes the chapter. In the following sections,
we use NVIDIA CUDA [14] terminology.

2.2 Related Algorithms

In this section, we briefly cover the selected tridiagonal solver algorithms used for
GPUs. Although, in general, most tridiagonal solvers may be used to solve multiple
systems of equations each with its own tridiagonal matrix, for simpler explanation
here, we only discuss the case of solving a single system with one tridiagonal matrix.
The tridiagonal solver solves Tx = d, where T is a tridiagonal matrix with n rows
and n columns, defined in Eq.(2.1), and x and d are both column vectors with n
elements. Note that the first row of T is row 0, and the first element of x and d is
element 0.

b() Co
aq bl C1
T = a .. 2.1

Cn—2
ap—1 bn—l
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2.2.1 Thomas Algorithm

The Thomas algorithm is a special case of Gaussian elimination without pivoting
(or LU decomposition with LU solvers) for a tridiagonal matrix. It consists
of two phases, a forward reduction and a backward substitution. The forward
reduction sequentially eliminates the lower diagonal of the original matrix, while
the backward substitution sequentially solves for unknown variables using known
variables and the upper and main diagonals in the resultant matrix. For Tx = d,
decompose T = LU by LU decomposition, let Ux = y, solve Ly = d, and then
solve Ux = y.

2.2.2 Diagonal Pivoting Algorithm

The diagonal pivoting algorithm for tridiagonal matrices was proposed by Erway
et al. [10]. Although Gaussian elimination with partial pivoting is widely used for
tridiagonal solvers on CPUs, it is not efficient on GPUs due to its inherent data
dependence and expensive row interchange operations. Erway’s diagonal pivoting
method avoids row interchanges by dynamically selecting 1-by-1 or 2-by-2 pivots.
The factorization is defined as follows:

_ P, B _ I, O P, 0 I Ph_lB
T‘[C T;]‘[CP;:I IMO TMO I, } 22

where Py is a 1-by-1 ([bo]) or 2-by-2 pivoting block (|:b0 ZO:|), and
a b

T __aico (n— 1) (n—1T

- , for 1-by-1 pivoting
T,=T,—CP'B=1{ " ¢ (2.3)
g {T,. — “Zb"“ (" 2 (" 7 , for 2-by-2 pivoting

where A = boby — aco and e§k) is the first column vector of the k-by-k identity
matrix. Since T is still tridiagonal (Eq. (2.3)), it can also be factorized by the same
Eq. (2.2). Therefore, a tridiagonal matrix T can be recursively factorized in LBM T,
where B only contains either 1-by-1 or 2-by-2 blocks in its diagonal. After LBM T
factorization, the tridiagonal matrix T can be solved by solving L, B, and M T
sequentially.
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Fig. 2.1 One step CR forward reduction on a 4-by-4 matrix: a, and ¢, on row 2 are eliminated by
row 1 and 3. Similarly, c¢ is eliminated by row 1. After that, row 0 and row 2 can form a smaller
matrix

2.2.3 Cyclic Reduction

The Cyclic Reduction (CR) algorithm, also known as an odd-even reduction,
contains two phases, forward reduction and backward substitution. In every step of
the forward reduction, defined in Eq. (2.4), each odd (or even) equation is eliminated
by using the adjacent two even (or odd) equations.

o« = a;/bi—siridze: B = Ci/bitsiride
’ ’
a; = —0dj—stride, b,’ =bi —acCi—giride — ,Bai+stridev 2.4)
/ , A
¢ = —BCitsirides d,‘ =d; —adi—sride® — Bdi+siride

where the stride starts from 1 and increases exponentially step-by-step, and the
domain of i starts from all odd and shrinks exponentially. The boundary condition
can be simplified by usinga; = ¢; = 0, and b; = 1. Figure 2.1 shows a CR example
for a 4-by-4 tridiagonal matrix. After a step of CR forward reduction, redundant
unknown variables and zeros can be removed, and a half-size matrix is formed of
the remaining unsolved equations. Each step of the backward substitution, defined
in Eq. (2.5), solves for unknown variables by substituting solutions obtained from
the smaller system.

’ ’ N
d,‘ —a; Xj—stride — CijXi+stride

b!

X = (2.5)

where the stride decreases exponentially step-by-step, and the domain of i increases
exponentially. The graph representation of CR for a 8-by-8 matrix is shown in
Fig. 2.2, where each vertical line represents an equation, and each circle represents
forward or backwards computation.

2.2.4 Parallel Cyclic Reduction

The PCR algorithm, different from CR, only performs the forward reduction,
Eq.(2.4). Also, the PCR forward reduction is performed on all equations, instead
of odd (or even). That means the domain of i does not decrease exponentially, but
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Fig. 2.2 The CR access
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the stride still keeps increasing exponentially step-by-step. Figure 2.3 shows a PCR
example for the same 4-by-4 tridiagonal matrix. After a step of PCR, two half-
size matrices are formed of the resultant new equation by reorganizing unknown
variables. It also illustrates how a matrix can be partitioned after each PCR (forward
reduction) step.

bo Co bé 0 Cb bb Cé
ap by ¢ 0 b 0 ¢ ay by
— >t =

a by a 0 by 0 I
az by dy 0 b ay bl

Fig. 2.3 One step PCR forward reduction on a 4-by-4 matrix: a; and ¢; on each row i are
eliminated by adjacent two rows. For example, a, and ¢, on row 2 are eliminated by row 1 and 3.
After that, row 0 and 2 can form a smaller matrix, and row 1 and 3 can form another

2.2.5 Recursive Doubling

The Recursive Doubling (RD) algorithm [21] can be considered as a reformulation
of a parallel tridiagonal solver into a second-order linear recurrence, Eq. (2.6). By
solving the relationship between x¢ and d,_1, all unknown variables, x;’s, can be
solved.

1 X0 X0
bo/co 1 X1 do/co
ay/cy by/c 1 X di/c
1/¢1 l 1 ' . .2 _ l' 1 (26)
an—a/Ch2 bpa/cha 1 Xn—1 dn—2/Cn—2
L adn—1 bp—1 1_ L 0 i L dy—
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However, in the Recursive Doubling algorithm, huge numerical errors might be
produced, even for a diagonally dominant matrix, since division operations are
performed on upper diagonal elements (c;’s). Because of this shortcoming, we skip
the discussion of RD in this chapter.

2.2.6 SPIKE Algorithm

The SPIKE algorithm was originally introduced by Sameh et al. [19] and the latest
version described by Pollizi et al. [16]. It is a domain decomposition algorithm, that
partitions a matrix into block rows containing diagonal sub-matrices, 7;, and off-
diagonal elements, aj;; and c¢;;. The original matrix, 7', can be further defined as
the product of two matrices, the block-diagonal matrix D and the spike matrix S,
Fig.2.4, where V; and W; of S can be solved by Eq. (2.7).

0 Ahi
: 0
nvi=| |, TTWi=| |. (2.7)
0 .
cl‘i 0

After the formation of the matrices D and S, the SPIKE algorithm solves Dy = d
for y, and then uses the special form of S to solve Sx = y [16]. The spike
matrix, S, can also be considered a specialized block tridiagonal matrix, and can be
solved by a block tridiagonal solver algorithm, such as the block Cyclic Reduction
algorithm [2].

I i-_I_-; Vv
T, Ct1 T, | | 1
ml [E——IS
4 Wl 1 v
an | T2 [Lco T, 2| i |V2
T= 1 = e =DS
|
ans | T3 | ¢ Ts W3|:|I l :|:|V3
1 ('S
L | |
ana | Ta Ts Walli 1
L | L L L

Fig. 2.4 A tridiagonal matrix T can be defined as T = DS, where D is a block diagonal matrix
and S is a spike matrix (a specialized block tridiagonal matrix)
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2.3 Optimization Techniques

As mentioned in Sect. 2.1, partitioning is necessary for high performance on GPUs.
Although sequential algorithms inherently cannot be partitioned, they are widely
applied to solving multiple independent systems in parallel. On the other hand,
although parallel algorithms are capable of both partitioning individual systems
and solving multiple independent systems, they might require high overheads. In
this section, all existing optimization techniques for GPU tridiagonal solvers are
examined. However, while not every optimization is discussed in detail, references
are provided for each technique to satisfy readers who need more information.

2.3.1 Partitioning Method

Many of the early tridiagonal solvers on GPUs [6, 8, 11, 17, 20, 23] can only be
applied to problems with multiple independent matrices. They simply assume no
partitioning occurs, and exploit only the inherent parallelism from multiple indepen-
dent matrices. This assumption works very efficiently, simply because parallelism
is inherent and no partitioning overhead is required. However, when the number of
independent matrices shrinks, the overall performance drops dramatically.

Partitioning is found in many studies of tridiagonal solvers for GPUs, and
particularly, the PCR algorithm was widely applied to partitioning. Sakharnykh
[18] first introduced PCR in his PCR-Thomas implementation to further extract
more parallelism for a limited number of independent matrices. Kim et al. [13] and
Davidson et al. [7] first recognized that partitioning is necessary for a tridiagonal
solver to handle a single large matrix on GPUs, and they proposed PCR-Thomas
tridiagonal solvers. In both papers, PCR was used to decompose one large matrix
into many smaller independent matrices. The main limitation of PCR is its compu-
tation overhead. In order to minimize the computation overhead of PCR, only a few
PCR steps are performed. Kim et al. further proposed the sliding window technique
to reduce the requirement of scratchpad memory size for PCR, and to make PCR
more efficient.

Compared to PCR, domain partitioning requires less computational overhead.
The CR-PCR implementation for the non-pivoting tridiagonal solver in NVIDIA
CUSPARSE [15] uses implicit domain partitioning by duplicating memory accesses
between two adjacent partitions. By storing data back to global memory between
two CR steps, the redundant equations of CR (see Fig. 2.1) can be removed to avoid
unnecessary memory overhead. Although this naive partitioning method simplifies
the source code, it may cost a large memory overhead, since each CR step requires
reloading data from global memory.

Argiiello et al. [1] proposed a split-and-merge method for CR by separating com-
putation workloads into two sets, called split and merge sets. The split sets represent
the independent workloads partitioned and are assigned to stream processors, while
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the merge sets represent computation workloads requiring data from two or more
independent split sets. Figure 2.5a illustrates the graph representation for the split-
and-merge method of CR forward reduction. The independent split sets can be
simply computed in parallel, while the merge sets are postponed and computed
in a separate kernel later. Compared to the NVIDIA CR-PCR implementation,
Argiiello’s method dramatically reduces memory access overhead, since multiple
steps of CR might be computed with shared data in a kernel. Chang et al. [2]
further refined Argiiello’s split-and-merge CR to support the larger split sets. The
corresponding illustration is shown in Fig. 2.5b.

N VY Y

e o _TJ__L split
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)

merge
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o

merge

Fig. 2.5 The graph representation of a 8-by-8 matrix for CR using split-and-merge. (a) Argiiello’s
split-and-merge method, which has smaller splits sets and larger merge sets; (b) Chang’s split-and-
merge method, which has larger splits sets and smaller merge sets

Chang et al. [4] and the pivoting tridiagonal solver in NVIDIA CUSPARSE
applied the SPIKE algorithm to decompose a matrix into disjoint partitions. The
SPIKE algorithm requires extra overhead for solving the spike matrix, Sx = y.
The computation cost for solving the spike matrix is relatively small, compared to
the cost for solving all of the independent partitions.

2.3.2 Algorithms and Optimizations for Independent Solver

After using a matrix partitioning method, or given multiple independent matrices,
the multiple independent workloads can be computed in parallel. The Thomas
algorithm was applied in [4, 7, 13, 17] simply for its low complexity and lack of
warp divergence. Chang et al. [4] first introduced the diagonal pivoting method [10]
for numerical stability, and the same method is also implemented in the CUSPARSE
pivoting tridiagonal solver. With Chang’s dynamic tiling technique, the overhead of
warp divergence in the diagonal pivoting method is dramatically reduced.

Different from the sequential algorithms, the parallel algorithms, such as CR,
require more optimization techniques to reduce possible overheads and to perform
efficiently. Goddeke et al. [11] eliminated bank conflict caused by the strided
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access of CR, by marshaling data on scratchpad memory. Davidson et al. [6]
proposed register packing for CR to hold more data in registers within a stream
processor without increasing the size of scratchpad memory. Figure 2.6 illustrates an
example of 4-equation register-packing CR forward reduction for an 8-by-8 matrix.
A 4-equation CR forward reduction is computed locally in packed vector4 registers.
The label S represents the data copied to scratchpad memory for communication
among threads. Note that the needed scratchpad size is equal to the number of
threads. Davidson’s optimization can potentially increase the size of each partition,
and further reduce the possible overhead of partitioning, though the benefits were
not explicitly mentioned in Davidson’s paper.

Fig. 2.6 The graph Vector4 Vectord
representation of a 8-by-8 Fr——— === D F—— === -
matrix for Davidson’s :
4-equation register-packing |
CR forward reduction: the :
label S represents the data
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|

|

|

|

the number of thread times |
the number of register :<>/ |
| |
|
|

packing equations in a thread

block. The needed scratchpad :
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threads. In this illustration, : //
I

I
the scratchpad size is only (Q/ : :
2 equations [ANS S5 N T N S R —

PCR can be used as an efficient independent solver for small-size matrices.
Zhang et al. [23] first demonstrated it in their CR-PCR method, and CUSPARSE
extended the CR-PCR method in a non-pivoting tridiagonal solver to support larger
matrices. A high-performance warp-level PCR that has no barrier overhead is
proposed in Sect. 2.4 and Listing 2.5.

Zhang et al. [23] first systematically introduced the hybrid methods for GPU
tridiagonal solvers, by combining the Thomas, CR, PCR, and RD algorithms, to
gain feasible complementary benefits. Although Zhang’s idea only worked for
small matrices, implementing an independent solver using his idea is extremely
efficient when running on a stream processor. The reading of Zhang’s paper is highly
recommended.

e

2.3.3 Short Summary

Table 2.1 summarizes the above partitioning methods, and the corresponding
limitation or overhead. Different applications may require different partitioning
methods, and have different overheads. Another possible overhead for all methods is
the data marshaling [22] overhead to glue two memory access patterns of the applied
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Table 2.1 Summary of partitioning methods

Methods Limitation or overhead

No partitioning No overhead, but only for massive
independent matrices

PCR Heavy computation overhead

Naive domain partitioning ~ Heavy memory access overhead

SPIKE algorithm Light computation/memory overhead

Split-and-merge Light memory access overhead

Table 2.2 Optimization of

. Optimization Algorithms

independent solver — - —
Dynamic tiling Diagonal pivoting method
Register packing CR

Bank conflict elimination =~ CR
Warp-level computation PCR
Hybrid method All tridiagonal algorithms

partitioning method and independent solver. For example, in Chang’s SPIKE-based
tridiagonal solver [4], data marshaling is used to guarantee a coalesced memory
access pattern in the independent solver. The data marshaling overhead is required
only if the output pattern of the partitioning method is different from the input
pattern of the independent solver.

Table 2.2 categorizes applicable optimizations for the algorithms used in inde-
pendent solvers. Different optimization techniques might perform better together
for more robust independent solvers. The concept of Zhang’s hybrid method [23]
can further enable more potential optimizations across different algorithms. For
example, in the case study (Sect.2.4), we use a hybrid of CR and PCR to enable
optimizations in the both algorithms.

2.4 Case Study: SPIKE-CR

In this section, a new hybrid algorithm, SPIKE-CR, is used as a case study to
demonstrate how to apply the optimization techniques that were summarized in
Sect.2.3. Using a systematic optimization analysis, the implementation of the
SPIKE-CR tridiagonal solver conceptually interacts with the GPU architecture.
Previous works did not discover the SPIKE-CR method. This is mainly because
the previous works did not systematically analyze the partitioning methods.

In the SPIKE-CR, the SPIKE algorithm is applied to partitioning for its lower
computation overhead than PCR and lower memory access overhead than the other
domain partitioning methods. After the partitioning method is selected, CR is
applied for the independent solver. Although the sequential algorithms are efficient
with the SPIKE algorithm [4], the CR algorithm is chosen to avoid the potential
data marshaling overhead from combining the SPIKE algorithm and the sequential
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algorithms. SPIKE-PCR is another potential direction for a GPU tridiagonal solver.
However, the computation cost of PCR is much higher than CR.

In order to implement an efficient SPIKE-CR, the following optimization
techniques are applied in this case study. First, Davidson’s register packing [6] is
applied to hold more equations in a partition. This optimization can potentially
reduce partitioning overhead of the SPIKE algorithm by reducing the number of
partitions. Second, Zhang’s hybrid idea [23] of CR and PCR is used to avoid the
potential low utilization of vector units in CR and to further enable more options of
optimization in PCR. Third, a new warp-level PCR is proposed to remove barrier
synchronization overheads in PCR. Last, another level partitioning using the SPIKE
algorithm is applied to minimize communication between warps within a thread
block. This strategy makes partitioning become hierarchical and further reduces
communication overheads.

Listing 2.1 The baseline kernel of CR forward

tx = threadIdx.x;
b dim = blockDim.x;

//CR iteration within a thread block
active_tx = b_dim;
for (int i=1;i<b _dim;ix=2)
{
active tx/=2;
if (tx < active_tx)

{
//CR forward computation using data in
scratchpad

}
__syncthreads() ;
if (tx < active tx)

{
}

__syncthreads() ;

//update scratchpad

=

isting 2.2 The optimized kernel of CR

tx = threadIdx.x;

b_dim = blockDim.x;
lane_id = tx % warpSize;
warp_id = tx / warpSize;

double2 a_reg,b_reg, c_reg, d_reg; //vectorize register
//load data into scratchpad using vector2

a_reg = alidl;

b reg = b[id];

c_reg = clid];

d _reg = d[id];

//code fragment 1, CR forward reduction

//code fragment 2, warp-level PCR

//code fragment 3, CR backward substitution

//store partial results and the spike matrix
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Since the source codes of the SPIKE algorithm have been provided by Chang
et al. [4] at http://impact.crhc.illinois.edu, and the computation cost for solving the
spike matrix is much smaller than the cost for solving all independent partitions,
we only discuss the detailed source codes of the independent solver. The reading of
Chang’s paper and source codes is highly recommended. Listing 2.1 shows the sim-
plified baseline of the CR forward reduction kernel, and Listing 2.2 shows the struc-
ture of our optimized CR. The code fragments are written for NVIDIA Fermi archi-
tecture, and possible changes for NVIDIA Kepler architecture are further discussed.

Listing 2.3 The code fragment 1: CR forward reduction

//CR forward in register

sh_altx] = a_reg.y;
sh bltx] = b_reg.y;
sh_cltx] = c_reg.y;
sh_d[tx] = d_reg.y;
//up side

kl=c_reg.x/b _reg.y;

b reg.x -= a_reg.yxkl;

d_reg.x -= d_reg.yxkl;

c_reg.x = -c_reg.y*kl;
}
// down side
if (lane_id>=1)
{

kl=a_reg.x/sh bltx-1];

b reg.x -= sh_cltx-1]+kl;
d reg.x -= sh_dltx-1]+kl;
a_reg.x = -sh altx-1]xkl;
}
sh_altx] = a_reg.x;
sh bltx] = b_reg.x;
sh_cltx] = c_reg.x;
sh_dltx] = d_reg.x;
Listing 2.4 The code fragment 3: CR backward substitution

//CR backward in register

kl = a_reg.y/b_reg.x;

a_reg.y = 0.0;

if (lane_id<warpSize-1)

{
k2 = c_reg.y/sh _bltx+1];
c_reg.y -sh_cltx+1] *k2;
a_reg.y -sh_altx+1]+k2;
d reg.y -= sh_dltx+1]+k2;

QO —~

[a]
(3

a3

(3
Q Q Q
SN

c_reg.xxkl;
a_reg.x*kl;
d _reg.xxkl;

S o
[}
13

Listing 2.3 shows the portion of 2-equation register-packing CR forward reduc-
tion using Davidson’s technique [6], and Listing 2.4 shows the portion of corre-
sponding CR backward substitution. Note that Listing 2.4 is the fragment 3, and is
performed after the warp-level PCR. Here, we change the order of the listings for an
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easier discussion by putting the two fragments of CR together. The packed registers
are defined in line 7 of Listing 2.2, and the computation of CR happens at line 3—14
of Listing 2.3 and all of Listing 2.4. Scratchpad memory, sh_a to sh_d, is used to
communicate among threads only within a warp. Compared to the baseline of CR
forward reduction, which contains at least two barrier synchronizations, line 14 and
19 of Listing 2.1, in a loop, the optimized CR requires no barrier synchronization,
since communication only happens within a warp. Also, for NVIDIA Kepler
architecture, shuffle instructions can replace those scratchpad memory accesses,
since communication happens within a warp. Moreover, since Kepler provides
larger register files, a larger size register packing can be applied to holding more
data.

Listing 2.5 shows the warp-level PCR fragment of our CR-PCR hybrid. Similarly,
since PCR only happens in a warp, no barrier synchronization is needed. Also, shuf-
fle instructions can be used for Kepler by replacing scratchpad memory accesses. In
these code fragments, our CR-PCR performs 1 CR forward reduction step, followed
by 5 PCR steps in the warp-level PCR and 1 CR backward substitution step, without
any barrier synchronization. After CR-PCR, the computed results are stored back to
global memory, and also the formed spike matrix is explicitly stored in another
space. Since each thread block is further partitioned into multiple warps, another
level of domain partitioning using SPIKE algorithm is implicitly applied.

Listing 2.5 The code fragment 2: warp-level PCR

//PCR for each warp, no barrier needed
for (int i=1;i<warpSize;i*=2)

// down side
if (lane_id>=i)

{

kl=sh al[tx]/sh bltx-i];

b_reg.x -= sh cltx-i]xkl;
d reg.x -= sh_d[tx-i]«kl;
a_reg.x = -sh_altx-i]«kl;
}
//up side

if (lane_id<warpSize-i)

{

kl=sh_c[tx]/sh_bltx+il;

b reg.x -= sh_altx+i]«kl;
d reg.x -= sh_dltx+i]«kl;
c_reg.x = -sh_cltx+i]«kl;

}

sh_altx] = a_reg.x;

sh b[tx] = b_reg.x;

sh_cltx] = c_reg.x;

sh_d[tx] = d_reg.x;
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Fig. 2.7 Performance results for solving a 16M-equation double-precision matrix using CUS-
PARSE non-pivoting tridiagonal solver(cusparseDgtsv_nopivot), Chang’s SPIKE-Thomas, and
SPIKE-CR on an NVIDIA Tesla C2050. The data marshaling overhead of Chang’s SPIKE-Thomas
implementation is shown in the right portion of the bar

2.4.1 Performance Comparison

Figure 2.7 shows the performance comparison for solving a 16M-equation (2%*)
double-precision matrix using CUSPARSE non-pivoting tridiagonal solver (CR-
PCR), Chang’s SPIKE-Thomas [4], and SPIKE-CR on an NVIDIA Tesla C2050.
Although the Thomas algorithm is extremely efficient as an independent solver,
in Chang’s SPIKE-Thomas, the overhead of data marshaling, required to maintain
coalescing memory access for Thomas algorithm, causes Chang’s SPIKE-Thomas
performing slightly slower than SPIKE-CR. Compared to CUSPARSE CR-PCR, the
domain partitioning using the SPIKE algorithm tends to have less memory access
overhead than the naive domain partitioning used by CUSPARSE. The memory
access overhead causes the main performance difference between the SPIKE-based
methods and CUSPARSE CR-PCR. In the end, SPIKE-CR has 1.23x and 2.23x
speedups over SPIKE-Thomas and CUSPARSE CR-PCR, respectively.

2.5 Conclusion

This chapter summarizes most cutting-edge optimization techniques, applied in both
partitioning methods and independent solvers, for GPU tridiagonal solvers, and
demonstrates how to apply optimization techniques for building a high-performance
tridiagonal solver in our case study, SPIKE-CR. The case study, SPIKE-CR,
shows 1.23x and 2.23x speedups, respectively, over Chang’s SPIKE-Thomas [4]
and CUSPARSE non-pivoting tridiagonal solver, since SPIKE-CR has no data
marshaling overhead and less memory access overhead.

As mentioned in Sect. 2.1, the main purpose of this chapter is to give readers
the current status of GPU tridiagonal solvers, and further to inspire readers to
customize GPU tridiagonal solvers to meet their application requirements, instead
of showing high performance of SPIKE-CR. Multiple partitioning methods, such as
the split-and-merge method [1, 2] and the SPIKE algorithm, tend to have very low
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overheads for a limited number of large matrices, while no partitioning is required
for a massive number of matrices. For independent solvers, the sequential methods
usually perform very efficiently, while the parallel algorithms, such as CR, can also
provide comparable performance after optimization. Therefore, the main concern of
building a high-performance GPU tridiagonal solver is how the applied algorithm
and its memory access pattern meet a given application.

Some unique properties, such as numerical stability, of a GPU tridiagonal solver
for the application are also very critical. So far, only few previous works [4, 23]
recognized the numerical stability issue of current GPU tridiagonal solvers, and
even fewer ones [4] investigated it. Numerical stability becomes the most important
future work for the research of GPU tridiagonal solvers.
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Chapter 3
Batch Matrix Exponentiation

M. Graham Lopez and Mitchel D. Horton

3.1 Introduction

Being the crucial component of numerical software packages such as LAPACK
[3], ScaLAPACK [6], MUMPS [2], and SuperLU [13], the general dense matrix—
matrix multiplication routine, GEMM,' is a common performance benchmark and a
typical target of early optimization efforts for new computing architectures [33,34].
Major hardware vendors such as Intel, IBM, AMD, and NVIDIA maintain their own
highly optimized GEMM implementations, which are included with their respective
BLAS libraries: MKL [35], ESSL [28], ACML [1], and CUBLAS [8]. Non-vendor
optimized implementations for various architectures are also available, examples
being ATLAS [44] and GotoBLAS [24]. Autotuning efforts are now commonplace
[33, 34], and GEMM is critical to the performance of the High Performance
LINPACK Benchmark (HPL) [16], the official benchmark of the TOP500 list.

All of this importance attributed to GEMM is explained by the fact that
many numerical algorithms, lower-upper (LU) factorization being one of several
examples, can be expressed in terms of GEMM, or at least designed to partially
use GEMM. This is achieved using delayed updates; the application of basic linear
transformations expressed in terms of matrix—vector multiplications are delayed
and accumulated, and then they are applied in aggregate as a GEMM [39]. LU
is a canonical linear algebra procedure for solving linear systems of equations;
improvements in the time to solution for LU has a direct impact on the execution
time of applications in domains such as airplane wing design, radar cross-section

n this work, we refer to general matrix—matrix multiplication as GEMM, in adherence with the
Basic Linear Algebra Subroutines (BLAS) standard [5].
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studies, flow around ships and other off-shore constructions, diffusion of solid
bodies in a liquid, noise reduction, diffusion of light by small particles, etc. [14]

Besides its applicability to a wide variety of numerical algorithms and resulting
application domains, GEMM has a high flops per memory access ratio and regular
memory access pattern, which makes it well suited to a many-core architecture with
a hierarchical memory such as the GPU [12]. Evaluation of GEMM is a well-studied
problem, and it is the canonical GPU programming example [9]; double precision
GEMM (DGEMM) can achieve 80 % of the peak theoretical performance on the
Kepler architecture [32].

Consequently, batch GEMM, the matrix—matrix multiplication of a large number
of relatively small matrices, is a growing area within dense linear algebra, and
is relevant to various application areas such as phylogenetics [42], finite element
modeling [29], image processing [11], fluid dynamics [11], and hydrodynam-
ics [15]. NIVIDA began providing a batch GEMM routine with CUDA 4.1:
cublasXgemmBatched, where X is one of S,D,C,Z [9]. With CUDA 5.5,
NVIDIA provides batch LU, and batch matrix inversion [9].

3.2 Motivation

Our problem, matrix exponentiation based on batch GEMM, comes from the field
of phylogenetics. Recent advances in sequencing technology (DNA sequencing,
amino-acid and protein characterization, gene expression data, and whole-genome
descriptions) are providing phylogenetics researchers with a plethora of biological
sequence datasets [4, 18, 22,23, 30, 36, 38, 40-42, 45]. Often, the goal is to infer
a most probable phylogenetic history, which is represented as a tree. However, as
the number of sequences increases, the number of trees that a brute force algorithm
would evaluate to determine the most probable history quickly becomes prohibitive.
The number of unrooted bifurcating trees, 7', for n observed sequences is given by

T(n) =[]@i-5). (3.1)
i=3

and while the number of observed sequences can number in the hundreds or
thousands, note that 7'(50) ~ 2.847° [19,21,23,45].

As a result of this intractability, a number of techniques have emerged for
reducing the number of trees that must be evaluated. Foremost among these is
Markov chain Monte Carlo (MCMC), which has been enthusiastically embraced
for phylogenetic inference [17,26]. An MCMC based phylogenetics algorithm for
inferring trees does its work in the following manner:

1. Randomly construct an initial tree. Call it the current tree.
2. Stochastically perturb the current tree (often this is simply a local regrouping and
branch length modification).
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3. Compute the acceptance ratio, R, of the probabilities of the modified tree and the
current tree.

4. If R > 1, accept the new tree and make it the current tree. Otherwise, draw a
uniform random number between 0 and 1. If it is less than R, accept the new tree
and make it the current tree. Otherwise, reject the new tree.

5. Go to step 2.

It turns out that for a properly constructed and adequately run Markov chain, the
proportion of the time that any tree is visited is a valid approximation of the
probability of that tree [27,43]. The tree that is visited the most would then also
be the tree with the highest probability.

The probabilities given in step 3 above are computed using Felsenstein’s algo-
rithm for likelihood [19-21]. This evaluation is the most computationally intensive
part of the algorithm, and is normally the prime candidate for GPU acceleration
[42]. Briefly, Felsenstein’s algorithm assumes independence of sites, independence
of branches, and finite-time transition probabilities P; ;(¢) that characterize how
state i mutates to state j along a branch of length ¢; it then computes the probability
of the given tree and set of branch lengths by summing across all possibilities for
interior nodes and multiplying across all branches and sites.

For phylogenetic models, there are three common choices for the number of
values a site can have: 4, 20, and 60 (nucleotide, amino acid, and codon model,
respectively). For the nucleotide model, the finite-time transition probabilities are
derived as follows [25]: a transition is a point mutation that changes a purine
nucleotide base (A, G) to another purine, or a pyrimidine nucleotide base (C, T)
to another pyrimidine. A transversion is a point mutation that changes a purine to a
pyrimidine, or a pyrimidine to a purine. Each site evolves according to a Markov
process in which a base i € {T,C, A, G} is replaced by another base j in an
infinitesimally short interval of time, d¢, with a probability P;; (dt) given by

amw;dt  (for transition)

Brjdt  (for transversion)

where « is the proportion of mutations that are transitions, 8 is the proportion of
mutations that are transversions, and 7; is the stationary composition of base ;.
The substitution probability matrix for an infinitesimally short interval of time can
then be written as:

T C A G
T [ 1—(anc + Brg + Brg)dt arcdt B qdt Brgdt
P = C amydt I — (any + Bryg + Brg)dt B qdt Brgdt
@n = 4 Brrd B di 1 — (ang + prp + Bre)dt angd
G Brrdt Brcdt amgdt 1 — (g + By + Brc)dt

= I+ Adt

For an arbitrary time interval ¢, the function P(¢) satisfies the Chapman—
Kolmogorov equation [25]
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P(t +dt) = P(t)P(d1)

= P(t)(I + Adt) . 3.3)
Therefore, we get
dP(t)
= P®)A. 34
o= PO (34
Since P(0) = I, we have
P(t) = . (3.5)

The right hand side of Eq. (3.5) is matrix exponentiation. Matrix exponentiation is
defined to be

Z ki (3.6)

where X is a matrix. For simple cases, matrix exponentiation can be computed
explicitly. Otherwise, diagonalization is used. Given an eigendecomposition for X,
the following holds:

o0
1
X =EDE'= XF=ED'E'= X =E (Z FDk) E~'= EePE!.
(3.7)

Because raising a diagonal matrix to a power amounts to raising each diagonal entry
to that power, Eq. (3.5) can be expressed as

P(1) = ' = E x diag(e', ..., ™) x ET' = ED,E7", (3.8)

where A1, ..., A4 are the eigenvalues of A.

It is from Eq. (3.8) that our motivating batch GEMM arises. For each MCMC
step, and for each tree branch, we must compute the finite time transition probability
P; () that characterizes how state i mutates to state j along a branch of length ¢.
Since an MCMC algorithm can run for hundreds of millions of steps, and tree
branches can number in the tens of thousands, this computation is a good candidate
for acceleration on the GPU. As part of the Keeneland project [31], optimizing the
acceleration of this batched matrix exponentiation was undertaken as a contribution
to the beast/beagle phylogenetics community code [4, 17].
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3.3 Implementation

As can be seen from Eq. (3.8), the fundamental operations for calculating the matrix
exponentiation involves two GEMMs, plus M floating point exponential operations”
to construct the diagonal D; matrix. Of course, the eigendecomposition of the
transition matrix is needed as well. For our models, the transition matrix 4 does not
change when a tree is modified. Only the branch lengths, ¢, of the trees in Eq. (3.5)
change (across branches, and across MCMC steps), and so D, in Eq. (3.8) must be
recalculated at each MCMC step for each branch.

This implies that our two outer matrices £ and E~' referred to as A and
B in the pseudocode examples also remain the same for every step in the
algorithm. The pseudocode examples given throughout this section assume A
and B are the same across steps, however, to generalize to unique matrices, the
cublasSgemmBatched and cublasSgemm examples need no modification,
and the handwritten CUDA needs only to be changed in how the input matrices
are read from global device memory to shared memory. The size of memory
transfers would also be different for the input A and B matrices being unique
in the batched operation. However, all of the performance data shown here for
comparison purposes excludes all memory transfers, since this cost is similar across
implementation methods anyway.

3.3.1 NVIDIA Library Solutions

As pointed out before, each tree can have tens of thousands of internal branches. The
exponentiation involves two GEMM operations per branch length evaluation, and
the number of flops required by the GEMMs dominates that for the exponentiation
of the diagonal matrix by O(n3) to O(n). NVIDIA has provided a batched GEMM
implementation, cublasXGemmBatched, since the release of CUDA 4.1, and so
we examine how to use this implementation for batched matrix exponentiation and
the resulting performance.

__global  void kernelComputeD(float* D,
float* eigenvals,
float* lengths,
int n) {

float* position;
float length;

<N oUW N

2Here, M is the dimension of the probability matrix and number of sites in the model. For example,
M = 4 for the nucleotide model.
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int bx=blockIdx.x;
int tx=threadIdx.x;

position=D+bxxn*n;
length=1lengths [bx] ;

position[n*tx+tx]=_ expf (eigenvls[tx] xlength) ;

int main(int argc,char sxargv) {

float **dAin=0;
float *+dAin d=NULL;
dAin=(floatx*)malloc (numLengths*sizeof (xdAin)) ;
for (i=0;i<numLengths;i++)
cudaMalloc ( (voidxx) &dAin[i] ,nxn*sizeof (float)) ;
!
for (i=0;i<numLengths;i++)
cudaMemcpy (dAin[i] ,hA,n*nxsizeof (float),
cudaMemcpyHostToDevice) ;
1

cudaMalloc ( (voidx«*) &dAin d,
numLengths*sizeof (xdAin))) ;
cudaMemcpy (dAin_d, dAin,numLengths+sizeof (xdAin),
cudaMemcpyHostToDevice) ;

dim3 dimBlock(n,1,1);
dim3 dimGrid (numLengths,1,1);
kernelComputeD<<<dimGrid, dimBlock>>> (dDout,
dEigenvls,
dLengths,
n);
cudaMemcpy (hDout,
dDout,
numLengths+nsnxsizeof (float),
cudaMemcpyDeviceToHost) ;
for (i=0;i<numLengths;i++)
cudaMemcpy (dinD[i],
hDout+ixnxn,
nxnxsizeof (float),
cudaMemcpyHostToDevice) ;

}

cudaMemcpy (dinD_d,
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52 dinD,
53 numLengths*sizeof (xdinD) ,
54 cudaMemcpyHostToDevice) ;

55 cublasSetStream(handle, streamArray[0]) ;
56 cublasSgemmBatched (handle, CUBLAS_ OP N,

57 CUBLAS_OP N,n,n,n,

58 &alpha,

59 (const float*x)dAin d,n,

60 (const float+)dDin d,n,

61 &beta, dOutl d,n,numLengths) ;

Code 1: cublasSgemmBatched for Matrix Exponentiation.

Code 1 shows the main points of computation associated with using
cublasSgemmBatched to evaluate the right hand side of Eq.(3.8) for a
single tree, for each branch length of that tree. For the sake of clarity, no error
checking is done. The variable holding the input matrix 4 in device memory, dA
on Ln. 59, is declared, allocated, and initialized according to the pattern set out in
batchCUBLAS.cpp from the NVIDIA SDK [10]. On Ln. 35, nn is the dimension of
D, from Eq. (3.5), in this case, 4. On Ln. 36, numLengths is the number of branch
lengths in a single tree and the number of matrices in the batch computation. On
Ln. 38, dEigenvals is the matrix of four eigenvalues from Eq. (3.5). On Ln. 39,
dLengths is an array of branch lengths. The second required batched GEMM,
multiplying the result of the first one shown with the matrix B, is done in the same
pattern as the one shown in Cd. 1, but is omitted here for brevity.

Another solution that is suggested by the CUBLAS documentation [8] for
a batched situation involves making multiple calls to the normal cublasSgemm
routine in separate streams. Accordingly, the solution for batched exponentiation
is unchanged, except for replacing the cublasSgemmBatched routine with a
loop which launches cublasSgemm in multiple streams, as shown in Cd. 2. In this
example, the computation on Ln. 56 from Cd. 1 is replaced with Lns. 2-8 in Cd. 2.

1 float %dAin;

for (i=0;i<numLengths;i++) {
cublasSetStream (handle, streamArray[i]);
cublasSgemm (handle, CUBLAS OP_N,
CUBLAS OP_N,n,n,n,
&alpha,dAin,n,
dbin[i] ,n, &beta,dDoutl,n) ;

W J 0 Ul b WN

}

Code 2: cublasSgemm with Streams.

The relative performance of these two solutions will be discussed in the following
section.
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3.3.2 Handwritten CUDA

As will be shown in Fig. 3.1, neither cublasSgemmBatched nor the streams
solution achieves a very high percentage of the theoretical peak performance of the
device. Hence, it makes sense to consider hand written CUDA for this algorithm.
Code 3 shows a first attempt at a hand written CUDA kernel that implements all
steps of the matrix exponentiation expressed on the right hand side of Eq. (3.8) into
a single kernel, while keeping performance considerations in mind, for example by
using shared memory where possible.

1 global  void exp4x4 (floatx output,
floatx A,
floatx D,
floatx B,
floatx lengths) {
__shared  floatx C;
__shared  float length;
int bx = blockIdx.x;
9 int tx threadIdx.x;
10 int ty = threadIdx.y;

W J 0 Ul b WN

11

12 if (tx == 0 && ty == 0) {

13 C = output + 4x*4+bx;

14 length = lengths [bx] ;
15}

16 _ syncthreads();

17

18 float Csub = 0;

19 __shared  float As[4] [4];
20 __shared  float Bs[4] [4];
21 __shared  float Ds[4];

22

23 if (ty == 0)

24 Ds[tx] = expf(D[tx] x length);
25 ___syncthreads () ;

26

27 As[ty] [tx] = A[4 » ty + tx];
28 Bs[ty] [tx] = B[4 % ty + tx];
29 ___syncthreads () ;

30

31 for (int k = 0; k < 4; k++)
32 Csub += As[ty] [k] * Dsl[k] % Bsl[k] [tx];
33 ___syncthreads () ;

34

35 Cltyx4 + tx] = Csub;

40 }
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41
42 int main(int argc, char sxargv) {

43 dim3 dimBlock(4,4,1) ;

44 dim3 dimGrid (numLengths,1,1);

45 expé4x4<<<dimGrid,dimBlock>>> (dOut,dA,dD,
46 dB,dLengths) ;

Code 3: Hand-written Kernel for Matrix Exponentiation.

The argument dA on Ln. 45 is E from Eq. (3.8), the argument dD on Ln. 45
is the matrix of eigenvalues referred to in Eq. (3.8), the argument dB on Ln. 45 is
E~! from Eq. (3.8), and the argument dLengths on Ln. 46 is an array of branch
lengths, one to be used in each computation of the batched exponentiation. Note that
on the Fermi architecture, there is a limit of 2! — 1 possible blocks along each grid
dimension. Therefore, additional logic is required to launch a kernel with more than
216 — 1 matrices in the batch, using more than one dimension of the grid. On Kepler,
this limit is larger at 23! — 1.

All of the input and output memory that holds the matrices is one-dimensional
linear; Line 13 simply points the current block’s threads to the right spot in memory
to record their output, and similarly Ln. 27 and 28 have the threads divide up the
work of reading input from global to shared memory. It is at Ln. 24 and 32 where the
computation takes place. First, D, from Eq. (3.8) is constructed. Next, rather than
doing two full GEMMs, the fact that the inner matrix is diagonal is exploited to turn
the computation into a matrix—vector combined with GEMM operation.

Figure 3.1 shows the performance® of the cublasSgemmBatched, streams,
and handwritten CUDA solutions on Fermi and Kepler with threaded MKL as
a baseline. The results for cublasSgemmBatched are consistent with those
published by NVIDIA for CUBLAS batched GEMM [7].

There are a couple of points to note about the streams solution performance as
shown in Fig. 3.1. First, the performance is not only less than that of cublasSgemm-
Batched, but also that of using MKL on the CPU alone. This is consistent with
NVIDIA’s CUBLAS documentation[8] where it is pointed out that the performance
of cublasSgemmBatched should be much greater than that of using multiple streams
for matrices where M < 100. Secondly, it is perhaps at first unexpected that the
Kepler architecture would underperform Fermi, especially in the case of using
multiple streams, given that Kepler has been enhanced with 32 work queues

3We use the following flop count throughout this work, regardless of the algorithm, implementa-
tion, or architecture:

flops = n * (3m*> + 2m) (3.9)

where n is the number of branch lengths, and m is the dimension of the matrix E from Eq. (3.8).
This count comes from Ln. 24 and 32 of Cd. 3.
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Performance of cublasSgemmBatched, streams, hand-written CUDA, MKL, 4x4
CPU Cores (2 x 8-cores) 2.6 GHz, Xeon E5-2670, 32 GB, 332 Gflops/s Double Precision Peak
Fermi (Telsa M2090) 1.3 GHz, 5.4 GB, 665 Gflop/s Double Precision Peak
Kepler (Telsa K20X) 0.732 GHz, 5.4 GB, 1320 Gflops/s Double Precision Peak
1000 T

T

Hand-written CUDA, Kepler —+—

Hand-written CUDA, Fermi ---x---

cublasSgemmBatched, Kepler ---*---

cublasSgemmBatched, Fermi &
100 MKL --s-— |

streams, Fermi ---0--:
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Fig. 3.1 Performance of NVIDIA library solutions vs. handwritten CUDA on Fermi and Kepler
for M =4

to Fermi’s single work queue. A possible explanation is that due to the extra
hardware involved in implementing the additional work queues for Kepler, there is
a greater launch overhead cost. Consistent with the suggestion from the CUBLAS
documentation, the matrices being used are too small to offset this extra overhead.

Figure 3.1 clearly indicates that the handwritten kernel from Cd. 3 outperforms
cublasSgemmBatched and cublasSgemm when called from multiple streams.
The simplification that turns two GEMMs into a GEMM plus a matrix—vector
computation is one immediate advantage over the library-provided solutions. Addi-
tionally, because the GPU code is now accessible, there are further opportunities for
optimization.

3.4 Tuning

Now that we have an algorithm in hand that performs reasonably well compared
to the NVIDIA-provided solutions already described, we want to explore ways to
further improve the performance of our hand-written CUDA kernel. Rather than
exploring the performance effects of each possible optimization in isolation, the
process will be presented incrementally, giving the results of each effort in the
context of all previously successful changes to the algorithm. The examples in this
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section are for matrix sizes from our problem domain. However, the same principles
that we show here for matrices of size M = 4, M = 20,and M = 60 can be applied
to matrices of any size from M € {2,...,8}, M € {9,...,32},and M > 32,
respectively—with some caveats mentioned near the end of this section.

341 M = 4Case

A first step is to adjust the kernel launch configuration. As seen in Cd. 3, each block
of 16 threads is responsible for computing a single matrix in the batch. With only 16
threads in each block, only half of a single warp is being scheduled on each block.
By having multiple matrices from the batch computed on a single block, more warps
per block can make more efficient use of the hardware.

One way to achieve this configuration change is to introduce a third dimension
of threads to address multiple matrices per block. We show how to do this using an
adjustable parameter, packsize, because in our experience, the optimal number
of warps per block can be hardware and problem-size dependent. For example, for
the 4 x 4 matrix batch exponentiation, having a packsize of 8 which results in 128
threads or 4 warps per block gives the best performance. Code 4 shows the basic
modifications needed to implement this change; a small amount of additional logic
would be needed in the kernel if the total number of matrices in the batch is not
evenly divisible by the packsize.

1  global void exp4x4 (float* output,

2 floatx A,

3 floatx D,

4 floatx B,

5 float* lengths) {
6

7 floatx C;

8 float length;

10 int bx
11 int tx
12 int ty

blockIdx.x;
threadIdx.x;
threadIdx.y;

13
14 int tz = threadIdx.z;
15 int matrix idx = bxxblockDim.z + tz;

16 int matrix addr = 4*4x* (bxs«blockDim.z + tz);
17

18 C = output + matrix addr;

19 length = lengths[matrix idx];

20

21 float Csub = 0;



56 M.G. Lopez and M.D. Horton

22 __shared  float As[4] [4];

23 __shared  float Bs[4] [4];

24 __shared  float Ds[4] [16];

25

26 if (ty == 0)

27 Ds[tx] [tz] =  expf(D[tx] * length);
28 ___syncthreads () ;

29

30 As[ty] [tx]
31 Bs[ty] [tx]

A4 * ty + tx];
B[4 » ty + tx];

32 ___syncthreads () ;

33

34 for (int k = 0; k < 4; k++)

35 Csub += As([ty] [k] * Ds[k] [tz] = Bsl[k] [tx];
40 ___syncthreads () ;

41

42 Clty*4 + tx] = Csub;

43 }

44

45 int main(int argc, char xxargv) {

46 dim3 dimBlock (Nsize,Nsize,packsize) ;

47 dim3 dimGrid( (numLengths+packsize-1)/packsize,1,1);
48 expé4xd<<<dimGrid,dimBlock>>>(dOut,dA,dD,

49 dB,dLengths) ;

Code 4: Adjusting Kernel Launch Configuration.

Two new variables are added to the kernel for convenience, matrix idx and
matrix addr. In Lns. 18 and 19 of Cd. 4, these variables function in the same
way as Lns. 13 and 14 of the original kernel in Cd. 3. However, now there are
multiple matrices per block, so the z-dimension of the thread index indicates which
matrix within the current block is being worked on. Since there are now multiple
matrices being handled within a block, 1ength and the address of the output matrix
are no longer shared as they were in Cd. 3. Finally, the shared D matrix, Ds in Cd. 4,
is now two-dimensional, with the second dimension being used to indicate which
matrix within the block is being used by addressing it with the z-dimension of the
thread index. Using these changes, we see a 4.5-5x speedup on both Fermi and
Kepler for 50,000 matrices of size 4 x 4 when going from a single matrix per block
to 8 matrices (packsize = 8) per block.

The next most obvious optimization that can be done is to remove all unnecessary
branching and barriers from the kernel. In fact, the kernel from Cd. 4 is already
quite compact, but a small amount of refactoring can have a nontrivial impact on
performance. Code 5 shows an improved kernel.
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38
39 }

__global  void exp4x4 (floats* output,

floatx C;

floatx A,
floatx D,
floatx B,
float* lenghts) {

float lengths;

int bx
int tx
int ty

int tz

blockIdx.x;
threadIdx.x;
threadIdx.y;

threadIdx.z;

int matrix idx = bxxblockDim.z + tz;

int matrix addr = 4x4x* (bxs«blockDim.z + tz);

C = output + matrix addr;
length = lenghts[matrix idx];

float Csub
__shared
__shared
__shared

As[ty] [tx]
Bs[ty] [tx]
Ds [tx] [tz]

0;

float As([4] [4];
float Bs([4] [4];
float Ds([4] [16];

A4 * ty + tx];
B[4 » ty + tx];
D[tx];

___syncthreads () ;

for (int k = 0; k < 4; k++)
Csub += As[ty] [k] =
___expf (Ds[tx] [tz] xlength) =*
Bs [k] [tx];
___syncthreads () ;

Clty*4 + tx]

= Csub;

Code 5: Removing Barriers and Branches.

57
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The main difference between Cd. 4 and 5 is the construction of the D matrix.
Lns. 26-28 from Cd. 4 have been eliminated, and the entire computation is done at
once on Lns. 32-34 of Cd. 5. Even though more threads will be doing redundant
work to compute D in Cd. 5, these threads actually would be waiting due to the
branch and barrier from Cd. 4, which has now been eliminated. Making this change
in Cd. 5 gives a roughly 20 % performance increase on Fermi, and around an 8 %
increase on Kepler over Cd. 4.

In certain situations, a performance improvement can result from reading the
input data from texture memory instead of device global memory. In Cd. 6, we
show how this is done for our problem.

1 texture <float> textured;

2 texture <float> textureD;

3 texture <float> textureB;

4 texture <float> textureLengths;

5

6 global  void exp4x4 (float* output,
7 floatx A,

8 floatx D,

9 floatx B,

10 float* lengths) {
11

12 floatx C;

13 float length;

14

15 int bx = blockIdx.x;

16 int tx = threadIdx.x;

17 int ty = threadIdx.y;

18

19 int tz = threadIdx.z;

20 int matrix idx = bxxblockDim.z + tz;
21 int matrix addr = 4x4x* (bxxblockDim.z + tz);
22

23 C = output + matrix addr;
24 length = texlDfetch(textureLengths, matrix idx) ;

26 float Csub = 0;

27 __shared  float As[4] [4];
28 __shared  float Bs[4] [4];
29 __shared  float Ds[4] [16];
30

31 As[ty] [tx] texlDfetch (textureA, 4 x ty + tx);
32 Bs[ty] [tx] texlDfetch (textureB, 4 x ty + tx);
33 Ds[tx] [tz] = texlDfetch(textureD, tx);
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35 ___syncthreads () ;

40

41 for (int k = 0; k < 4; k++)
42 Csub += As([ty] [k] =*

43 __expf (Ds[tx] [tz] xlength) =«
44 Bs [k] [tx];

45 ___syncthreads () ;

46

47 Clty*4 + tx] = Csub;

48

49 }

50 int main(int argc, char «+argv) {

51 cudaBindTexture
52 cudaBindTexture

NULL, textureA,dA,16«sizeof (float)) ;
NULL, textureD,dD, 4xsizeof (float)) ;

53 cudaBindTexture (NULL, textureB,dB,16«sizeof (float)) ;

54 cudaBindTexture (NULL, textureLengths, dLengths,

55 numLengthsxsizeof (float)) ;

—~ o~ o~ —~

Code 6: Using Texture Memory.

Lines 1-4 of Cd. 6 declare the texture memory that will be used for the input
data, while Lns. 51-55 bind the device memory to the texture memory. Note
that dA in Ln. 51 is device memory that has the input already copied to it
via cudaMemcpy (dA, . .., cudaMemcpyHostToDevice), and likewise for
Lns. 52-55. While there is no significant overall performance improvement on
Fermi or Kepler for small batches, there is a much larger improvement on Kepler
with large batches, up to a 30 % increase over the kernel shown in Cd. 5

Besides ensuring that each block has enough work allocated to it as was discussed
with Cd. 4, a performance gain can be seen for some problems by adding to the
amount of work that is assigned to each individual thread. Code 7 shows one way
to go about giving each thread more work. The x-dimension of the grid is divided
by some factor L, and each thread now steps through that grid dimension L times
during each execution.

1 global  void exp4x4 (floatx output,

2 floatx A,

3 floatx D,

4 floatx B,

5 float* lengths,
6 int L) {

7

8 floatx C;

9 float lengths;
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10

11 int bx blockIdx.x;
12 int tx threadIdx.x;
13 int ty = threadIdx.y;

14

15 int tz = threadIdx.z;

16

17 float Csub;

18 __shared  float As[4] [4];
19 __shared  float Bs[4] [4];
20 __shared  float Ds[4] [16];
21

22 As[ty] [tx]
23 Bs [ty] [tx]

texlDfetch (texturedA, 4 x ty + tx);
texlDfetch (textureB, 4 » ty + tx);

24 Ds[tx] [tz] = texlDfetch(textureD, tx);
25

26 ___syncthreads () ;

27

28 for (int 1=0;1<L;1l++)

29

30 Csub=0.0;

31 int matrix idx = lxgridDim.x +

32 bxxblockDim.z + tz;
33 int matrix addr = 4%4*(lxgridDim.x +
34 bxxblockDim.z + tz);
35

36 length = texlDfetch (textureLengths, matrix idx) ;
37

38 C = dMatrices + matrix addr;

39

40 for (int k = 0; k < 4; k++)

41 Csub += As[ty] [k] =

42 __expf (Ds[tx] [tz] xlength) =*
43 Bs [k] [tx];

44 ___syncthreads () ;

45

46 Clty*4 + tx] = Csub;

477

48 }

49

50 }

51 int main(int argc, char x+argv) ({

52 dim3 dimBlock (Nsize,Nsize,packsize) ;
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53 dim3 dimGrid ( (numLengths+packsize-1) /packsize/
L,1,1);

54 exp4xd<<<dimGrid,dimBlock>>>(dOut,dA,dD,

55 dB,dLengths, L) ;

Code 7: Adding Work for Each Thread.

On Ln. 53, the kernel launch parameters are changed so that the grid dimension as
previously calculated is now divided by a factor L, and this parameter is passed into
the kernel itself at Ln. 55. Then, in the kernel, a for loop is added at Ln. 28 which
loops over chunks of the batch and calculates the stride matrix index and address at
Lns. 31-34 using the width of the x-dimension of the grid as the stride length.

Similarly to the number of warps per block assignment, the optimal number of
matrices to assign each thread execution can depend on the problem type and size.
For our 4 x 4 batch matrix exponentiation, we found the greatest increase by setting
L = 16, resulting in an increase of 32 and 48 % over the kernel shown in Cd. 6 for
Fermi and Kepler, respectively.

Finally, there are a few things to point out regarding generalization of these
kernels to handle problems with different parameters. First, in order to handle
arbitrarily-sized batches of matrices, some hardware constraints must be kept in
mind. Of course one must consider the total amount of device memory required
to hold the input and output. However, for smaller matrices with constant A and B
input matrices, as with the case of our motivating problem, the maximum number of
blocks in a particular grid dimension must also be considered. This is especially true
for Fermi, which has a limit of 2!° — 1 for each dimension, whereas Kepler increases
this to 23! — 1. To get around such a limitation, multiple grid dimensions can be
used. However, caution and ideally prior knowledge about the problem specifics
must be used, because the additional logic and kernel launch overhead required to
accommodate the larger batch sizes can cause a performance decrease for smaller
batch sizes versus using the simpler configuration.

Figure 3.2 shows the performance of the final kernel given by Cd. 7 versus the
original kernel in Cd. 3 on both Fermi and Kepler for M = 4. An advantage
for Cd. 7 can be seen at a batch size of 10,000 matrices, and the difference in
performance grows significantly as the batch size increases from there. There is
a dip in the Fermi curve at around 60,000 matrices for Cd. 7 due to the effect of the
modified block allocation to allow for batch sizes larger than 2'¢ — 1 matrices as
discussed in the previous paragraph.

Another generalization that may be attempted is to allow for multiple matrix
sizes with the same kernel code, replacing the hard-coded values of M = 4 at
Lns. 18-20 and 42 of Cd. 7, for example. However, be aware that using a variable
loop limit at Ln. 42 can impose a performance penalty because the compiler can
no longer unroll this loop, which reduces performance by 35 and 48 % on Fermi
and Kepler, respectively. This issue is more pronounced in later versions of CUDA,
where the compiler has gotten better at increasing performance with automatic
unrolling. Adding #pragma unroll to try to alleviate this problem only recovers
a few percent of the performance that was lost.
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Fig. 3.2 Relative performance of handwritten kernels for M = 4 on Fermi and Kepler

342 M =20and M = 60 Cases

There are two other matrix sizes that are of interest to our motivating phylogenetics
problem, M = 20 and M = 60, as described in Sect. 3.2. These additional sizes
introduce a few considerations that can affect the performance of the kernels already
shown.

The M = 20 case is similar to the M = 4 case already discussed. However,
packing multiple matrices per block is not as important for the larger matrices.
Assigning only a single matrix to each block, there are still 400 threads and 13
warps per block, which is enough to make efficient use of the hardware. Besides this
difference, the kernel for the 20 x 20 case looks exactly like that in Cds. 3-7, except
that the constants of ‘4’ in the shared memory allocations and the loop limit for the
computation should be changed to ‘20°. The enhancements discussed in Cds. 5 and 7
are also relevant to the 20x20 case and yield significant performance improvements.

The performance of the cublasSgemmBatched solution from Cd. 1, along
with the original and optimized kernels presented in Cds. 3 and 7, as applied to the
20 x 20 case is shown in Fig. 3.3. Since the problem provides a denser computation,
the performance of all methods increases relative to the M = 4 case. However,
the ordering of relative performance of each method remains the same, with the
optimized kernel of Cd. 7 yielding a nice performance advantage, even at smaller
batch sizes.



3 Batch Matrix Exponentiation 63

Performance of Hand-written CUDA, Optimized CUDA, cublasSgemmBatched, 20x20
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Fermi (Telsa M2090) 1.3 GHz, 5.4 GB, 665 Gflop/s Double Precision Peak
Kepler (Telsa K20X) 0.732 GHz, 5.4 GB, 1320 Gflops/s Double Precision Peak
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Fig. 3.3 Relative performance of handwritten kernels and cublasSgemmBatched for M = 20 on
Fermi and Kepler

Since the beginning of this work, improvements have been made to NVIDIA’s
CUBLAS library and the cublasSgemmBatched implementation. In the most
recent CUDA version 5.5 as of this writing, cublasSgemmBat ched outperforms
our kernel for the 60 x 60 case. However, since the eigendecomposition algorithm
presented here outperforms cublasSgemmBatched for M = 4 and M = 20,
and if a unified solution is desired, there are a couple of considerations to adapting
the eigendecomposition method to the M = 60 case. On many devices the hardware
limit on shared memory necessitates the use of the common tiling algorithm which
brings the matrix into shared memory in smaller pieces to be worked on separately.
This algorithm is taught in most introductory CUDA programming materials and is
not repeated here. After tiling has been applied to the kernel as previously presented,
then the remaining optimizations (excepting the multiple matrices per block, which
has been replaced by tiling) can be applied, although the effect of increasing the
computational work of each thread is expected to be less pronounced since each
thread is already working on multiple tiles.
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3.5 Alternative Methods for Matrix Exponentiation

Besides the eigendecomposition method presented here, there are many other ways
to numerically compute matrix exponentiation[37]. We chose to evaluate two of
these alternative methods which appeared to have a computational pattern that
would fare well for a batched application on the GPU.

The first method is Lagrange interpolation, which can be applied to matrix expo-
nentiation as shown in Eq. (3.10). Note that for greatest efficiency, the eigenvalues
of the matrix A should be known and precomputed, as is the case of the matrix 4
from the phylogenetics problem in Eq. (3.5) because it does not change throughout
the batch operation (only 7 changes from case to case within the batch).

L A=)
e ="Mt A=-Md) (3.10)
;Z=:1 k=11;[7éj ) =)

Another viable option that was identified is Newton interpolation, which is shown
in Egs.(3.11) and (3.12) for matrix exponentiation. This method also presumes
knowing the eigenvalues of the A matrix beforehand,

n j—1
et =M Y e [T = aD), (3.11)
j=2 k=1
where the [A, -+, A;] are functions of ¢ and are recursively defined as [37],

[A1, 2] = (1 =€) /(A1 = Do),

Ao Akl = [A2s o5 Ak ]

Areee  Apa] =
[A1, k1] =i

*k>2). @312

The performance of the Lagrange and Newton interpolation for the simplest
M = 4 case is shown in Fig.3.4. While both the Lagrange and Newton
interpolation methods perform well compared to the cublasSgemmBatched
solution presented in Sect. 3.3.1, for much larger batch sizes, Newton interpolation
becomes preferable to Lagrange interpolation. However, neither of these methods
outperforms the eigendecomposition method as shown in Cd. 7.

3.6 Conclusions

We have focused here on batch matrix—matrix multiplication as applied to
matrix exponentiation, for the phylogenetics domain (fixed A and B, 4 x 4,
20 x 20, and 60 x 60), in single precision. The methods discussed also apply
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Performance of Lagrange Interpolation, Newton Interpolation, Optimized CUDA, 4x4
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Fermi (Telsa M2090) 1.3 GHz, 5.4 GB, 665 Gflop/s Double Precision Peak
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Fig. 3.4 Performance of Lagrange and Newton interpolation on Fermi and Kepler

to matrix exponentiation for variable A, B, and matrix size. The techniques
can easily be applied to the general matrix—matrix multiplication problem:
C:=alphaxop (A) xop (B) +beta*C, where op (X) is one of op (X)=X or
op (X) =X". Note that the matrices for the general problem can be rectangular. Our
methods apply to any of the four precisions: single precision real, double precision
real, single precision complex, and double precision complex. When all precisions
are supported, it is common practice to maintain the code base in one precision
only, say double precision complex, then generate the other three precisions
automatically. Finally, our techniques clearly lend themselves to auto-tuning.
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Chapter 4
Efficient Batch LU and QR Decomposition
on GPU

William J. Brouwer and Pierre-Yves Taunay

4.1 Batch LU Decomposition

While comparatively expensive, direct solvers based around matrix decomposition
are used in various applications, for reasons of numerical stability, over iterative
solvers. The implementation presented shortly was originally devised for the
solution of many decoupled systems simultaneously [4], for what amounts to a
domain decomposition approach [6]. The LU decomposition also provides a viable
method for the calculation of the matrix determinant; after execution of an in-
place implementation, the determinant is available from the product of the diagonal
elements. This is particularly useful in condensed matter physics, specifically in
studies of the fractional quantum Hall effect based on construction of the Pfaffian
wave function, which requires O(N!) determinant evaluations [9, 10].

4.1.1 Theory

The decomposition of matrix A into lower L (elements ;) and upper U (elements
Bij) matrix,

LU = A, @.1)

has the advantage of permitting the solution of linear systems in two steps,
comprised of forward and backward substitution procedures, for multiple right hand
sides in Ax = y. Crout’s approach to LU decomposition solves the set of equations
implicit to Eq. (4.1); these are:

W.J. Brouwer (<) ¢ P.-Y. Taunay
The Pennsylvania State University, University Park, PA, USA
e-mail: wjb19@psu.edu; py.taunay @psu.edu

V. Kindratenko (ed.), Numerical Computations with GPUs s, 69
DOI 10.1007/978-3-319-06548-9_4, © Springer International Publishing Switzerland 2014


mailto:wjb19@psu.edu
mailto:py.taunay@psu.edu

70 W.J. Brouwer and P.-Y. Taunay

i—1
Bij =aij — Zaikﬂkﬁ 4.2)

k=1

and

1 =
Oij = o— | 4ij — Zaikﬂkj . (4.3)
Bij h

=1

Numerical stability relies on suitable choice of pivot, or dividing element in the
solution for «;;. Pivoting may be partial (a row interchange) or full (both row
and column); the former is implemented in this chapter. Following the approach
detailed in Numerical Recipes [5], the choice of the best pivot is made only after
both Egs. (4.2) and (4.3) are solved for a given column, and thereafter the row swap
and a scaling performed. Recording the row permutations in a separate vector is
required for use with the solution of linear equations, in order that the right hand
side vector be subsequently rearranged to suit. Equations (4.2) and (4.3) give rise to
N? + N equations, whose overdetermined nature permits the setting of N elements
arbitrarily. A popular choice is to set the diagonal elements of « to one, followed in
this chapter. Crout’s approach to LU decomposition is summarized in Algorithm 1.

4.1.2 GPU Implementation

With the foreknowledge that the decomposition will be applied in batch, the
mapping of computational thread to matrix is a seemingly reasonable strategy
for a GPU implementation. However, on the device this virtually eliminates the
possibility of coalesced loads from global memory, and thread cooperation via
shared memory, key requirements for good performance. At the other extreme,
mapping thread to matrix element would introduce significant overhead in the
form of synchronization, owing to dependencies between the loops described in
Algorithm 1. In a compromise between the two extremes, O(N) threads were
assigned to the operations for each matrix, and individual CUDA thread blocks
assigned one or more matrices to process. Referring to Algorithm 1, there are at least
two key points at which threads must cooperate. The first is the determination of
scaling information, lines 1-5, which may be considered a separate scope to lines 6
forward. This task is readily solved using parallel reduction, a well known primitive.
Turning attention to the main steps of the algorithm, lines 7—13 perform updates to
matrix elements above the diagonal, specifically column j. By assigning the index
of the loop at line 7 to thread index, increasingly more threads in this scope work
as the outer loop progresses; a brief summary of this scope as executed in CUDA
is detailed in Table 4.1. Within a warp, one may rely on SIMD execution, and thus
updated column elements are available to threads of higher indices when needed.
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Algorithm 1 LU decomposition with partial pivoting
Input : A, Batch of N X N matrices
Output: A, In—place LU decomposed matrices

fori<0to N —-1do

=

2 for j <~ 0to N —1do
’ // find largest element ¢
3 end
4 scaleli] = 1.0/¢;
5 end
6 for j < 0to N—1do
7 for i<~ 0toj—1do
8 sum = Ali][j];
9 for k< 0toi—1do
10 | sum— = Ali][k] = A[K][j];
11 end
12 Ald][j] = sum;
13 end
14 for i+ jto N —1do
15 sum = Ald][4];
16 for k< 0toj—1do
17 | sum— = A[i][k] = A[K][j];
18 end
19 Ali][§] = sum;
20 end
// find index | of largest element ¢ = scale[i|*fabs(sum)
21 if j /=1 then
// swap rows j and [
// update scale
// save permutation details
22 end
23 if j! =N —1 then
24 sum = A[jl[j] ;
25 for k< jto N —1do
26 | A[i][j]/ = sum ;
27 end
28 end
29 end

As one might expect, matrices of side greater than a single warp require serialization
of warp execution, due to the unpredictable way in which instructions are scheduled
and dispatched within the Streaming Multiprocessor (SM), as illustrated in Fig. 4.1.
Some parallelism is regained by mapping matrix to warp, for this scope alone.

No such limitations pervade lines 14-20, where loop index is also mapped to
thread index, and column data is read from above the diagonal. Threads in this scope
update from diagonal downwards; however, barrier synchronization is necessary
before and after this scope. The particular column updated in a single iteration of
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Table 4.1 Global memory read[], shared memory read(), write{}, critical{
and arithmetic operations for several iterations and CUDA threads t_id of
algorithm lines 7-14

ko otid j=2 j=3 j=4 j=5
- (1,2) (1,3) (1,4) (1,5)
0 —[1,01%(0,2)  —[1,01%(0,3)  —[1,0]¥(0,4)  —[1,0]%(0.5)
{1,2} {1.3}7 {14}7 {15}
- 2.3) 2.4) 2.5)
0 —[2,0]%(03)  —[2,0]%(04)  —[2,0]%(0.5)
1 —[2,11%(1,3)7  —[211*AHF  —[2,1]%(,5)F
- {2,3} {2.4}7 {25}
(3.4) 3.5)

—[3,0]*%(0,4) —[3,0]*%(0,5)
—BAFAAT B HS)
—B2*eAHT  —B2ARS)
(3.4) (3.5}
@.5)
—[4.01%(0.5)
—[4,11%(1,5)t
—[4.21%2,5)t
—[4.3]%(3.5)t
{4,5)

W = O | N = O |
BA R PR AR LWWLWWLWW PRRODNDND == -

Fig. 4.1 An example of

instruction scheduling and
execution in a streaming Instruction Dispatch | | Instruction Dispatch
multiprocessor

Warp Scheduler

x32 x32
Warp 8 instruction 11
Warp 2 instruction 42
Warp 14 instruction 95
| |
Warp 8 inlstruction 12
Warp 14 instruction 96

Warp 2 instruction 43

the outer loop is cached in shared memory before line 7, and written back to global
after line 20. Shared memory buffers used for communication are declared using the
volatile keyword, to ensure that write operations are not optimized out during
compilation. Once the column update is complete, and working threads have written
elements g before line 20 to another shared memory buffer, parallel reduction is
employed in order to find the index of the pivot. Should the condition at line 21 be
satisfied, then a row swap is completed by threads, storing temporary elements in
registers. Thereafter, row elements are scaled by diagonal elements; once again loop
index k is mapped to thread. Barrier synchronization is employed before the end of



4 Efficient Batch LU and QR Decomposition on GPU 73

Table 4.2 LU algorithm

executed on K40 GPU Batch size Matrix size K40c (s) CPU(s) mats./blk

device versus 16 Intel 800 256 L5 L5 1
E5-2670 (Sandy Bridge) CPU 1,600 128 0.33 045 1
threads 8,000 64 0.20 0.30 2
16,000 32 0.05 0.11 4
64,000 16 0.03 0.15 8

the outer loop at line 29. An abbreviated listing of the main CUDA kernel is recorded
in Appendix 1, based around the £1o0at2 type, for processing complex data.

4.1.3 LU Results

An implementation of Algorithm 1 was written in C for execution on CPU, for
use with row-major storage format matrices and complex (single precision) floating
point data. This routine was compiled using a recent revision of the Intel compiler,
with flags -03 -xHost to ensure the highest degree of optimization, taking
advantage of AVX hardware and instructions of the Sandy Bridge CPU. OpenMP
was used to distribute matrices to separate threads for processing. The main GPU
kernel as described and supporting routines including parallel reduction were
compiled using nvcc, CUDA revision 5.5, for compute architecture 3.5 and with
optimization flag -03. Table 4.2 summarizes results, comparing execution times.
Profiling using nvvp revealed a total global memory bandwidth of approximately
62 GB/s (54.5GB/s read + 7.5 GB/s write). Both CPU and GPU routines were
devoted to calculating the in-place LU decomposition alone. No permutations were
stored; however, the sign of the permutation was recorded in memory, as is necessary
for any subsequent calculation of matrix determinants. Crout’s algorithm when
executed on the K40c device experienced a 1.0-5.0x performance improvement over
a single Sandy Bridge CPU socket, running 16 threads. The super-linear scaling of
the CPU results was investigated further using tools from the Valgrind suite [8].
As expected, the effect had little correlation with cache performance; miss rates for
both instructions and data were negligible for all matrix and batch sizes considered.
However, profiling with callgrind did reveal that instructions devoted directly
to the LU calculation itself steadily increased as a fraction of the total instructions,
with matrix size. This fraction was as little as 60 % for a matrix of side 32,
increasing to almost 100 % for matrices of side 256. Similarly, the percentage of
instructions derived from other sources, particularly the Intel KMP interface for
thread management and CPU affinity decreased to negligible contributions, for
matrices of side 256.
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4.2 QR Decomposition

While also a method that may be applied in the solution of systems of linear
equations, the QR decomposition,

QR =A, 4.4)

generally takes preeminence in a popular approach to eigendecomposition, the QR
algorithm. In numerical implementations of the QR decomposition algorithm, the
upper diagonal matrix R is constructed by the action of operations on A. R can be
produced by one of several means, the most popular being Householder reflections,
or Givens rotations [3]. This chapter focuses on the latter, whereby successive
rotations G; are applied, selectively eliminating elements below the diagonal of 4,
and producing the upper diagonal matrix R. One such step for the first column
of a 3x3 complex matrix is illustrated in Eq.(4.5), where * denotes the complex
conjugate.

1 00 ar ap aps an ap as
_ ’ ’ ’

0 ¢ s az1 A A3 | = | dyy Ay Apg (4.5)
/ /
0 —s*xc asy asp ass 0 az, az

4.2.1 Theory

4.2.1.1 Serial QR Decomposition

The kernel of rotation matrix G; is a 2x2 matrix that operates on pairs of values
a =a;jand b = a;11; in A, where elements ¢ and s are chosen to eliminate the
lower element in the operation:

c s||a r
= ) 4.6
RIHNH “o
Bindel et al. [1] give expressions for suitable ¢ and s in a variety of contexts; the

following are used in the remainder of this chapter for complex values, analogous
to those for real values:

. la|
c=f—— 4.7

Vial? + b

s = +sgn(a) (4.8)

b
VIaP + 1
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where

aflalifa #0

1 ifa=0" (49)

sgn(a) = {

The concatenation of all orthogonal operations G; comprises the transpose of the
orthogonal matrix Q ie., using O-based indexing,

oTa=| ] [[ 6/t]| Aa=R (4.10)

where the superscript on G refers to the matrix column operated on during a
particular iteration.

4.2.1.2 Parallel QR Decomposition

Sameh and Kuck [7] developed a parallel scheme dedicated to matrices of even
side, in which the elimination process pictured in Eq. (4.5) can be carried in parallel
across multiple rows and columns. Multiple independent Givens rotations Qm,n can
be executed at the same time, where m and n refer to the row and column indices
of the eliminated element. The product of these matrices constructs the matrix Q i
which is applied at the i -th step of the algorithm:

0i =[] O%ma- (4.11)

For a given step i, the matrices Qﬂm,n can be multiplied in any order to obtain Qi,
as they are a direct sum of plane rotations [7]. As a result, Q; is a block-diagonal
matrix, with Givens rotations matrices G; on the diagonal, as pictured in Eq. (4.12).

1

A Ckil Skl
0; = —Sk1* CkJ (4.12)

Cmn  Smn
_Sm,n* Cm,n

1

The scheme from Sameh and Kuck is completed in 2N — 3 steps, where N is the
rank of the matrix. The i-th transform is obtained by eliminating an entry in A4 at
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the row m and column n, where m and n are given by

(N—i,N—i+1,...,N—1-8()} 1<i<N-1
m=1 . . . . . (413)
{i—N+2,i—N+4,.... N—-1-6G{)} N<i<2N-3
and
1,2,...,[’51} l<i<N-—1
n= ; , (4.14)
i—N+2,i—N+3,...,[§]} N <i<2N-3
with § (7) defined as
§(i) = {0 fodd (4.15)
1ieven

Though other elimination patterns are possible, this approach has been proven to be
one of the most efficient, both from a practical and mathematical point of view, as it
is easy to implement and asymptotically optimal [2].

At each step of the process, the total number of rotations performed simulta-
neously, N, is obtained by counting the total number of columns » and rows m
affected:

[i/2] 1<i<N-1

Niot =3 .. . . . 4.16

' [i/21—i +N—1N <i <2N -3 (4.16)

An example of the entries successively eliminated by this algorithm is shown in

Fig. 4.2, for an 8 x8 matrix. Numbers in the matrix correspond to the order in which
the associated matrix element is eliminated in the algorithm.

EXE

* ok ok kX
Tk % % % % *x %
68 % % *x x % *
579 % % *x * x
Fig. 4.2 Illustration of the 46810 % * * %
successive elimination 357 9 11 % % %
scheme inithe QR parallel 246 8 1012 % «
decomposition algorithm, for
an 88 matrix 11357 9 1113 * |
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Algorithm 2 Outer loop of the parallel QR decomposition

Input: A, Batch of N x N matrices

Input: NMAT, Size of the batch

Input: NMPBL, Number of matrices to process per CUDA block

Input: NTH, Total number of CUDA threads per block

Input: blocks, CUDA Grid configuration

Output: A,Q, Upper diagonal batch of matrices R stored in place in A,
batch of the transpose of the orthogonal matrices @

NMAT
1 lﬁ?lOCkS.X < [m1
2 Q<+ In
3 for 1 < i <2*N-3 do
4 if ¢ < N then
5 ‘ blocks.z + (%]
6 else
‘ blocks.z <+ (%] —i+N-1
end
9 QR_Kernel <<< blocks,NTH >>> (Q,A,i)
10 end

4.2.2 GPU Implementation

The previous observations made in Sect. 4.1.2 related to global and shared memory
accesses are also valid for the QR decomposition; therefore, each CUDA thread
block is assigned one or more matrices to process, and N threads operate on a
single matrix. The parallel QR algorithm is driven by an outer loop executed on
the CPU, as detailed in Algorithm 2. This routine calculates the number of CUDA
blocks to run in the x-dimension of the CUDA grid, initializes the orthogonal matrix
Q as the identity matrix, and calculates the total number of Givens rotations that
can be executed in parallel, based on Eq. (4.16). This number sets the z-dimension
of the CUDA grid, to ensure that a total of N, Givens rotations are applied in
parallel to the same matrix, at each iteration of the outer loop. Finally, each iteration
launches the CUDA kernel to be executed on the GPU, shown in Algorithm 3.
Each CUDA block in the x-dimension performs operations on multiple matrices
A, and accumulates the results in the corresponding matrix Q. All threads first
calculate the indices m,n of the entry to eliminate in their corresponding matrix.
Threads then load rows m — 1 and m, on lines 10 and 11, subsequently calculating
their corresponding Givens rotation, on line 14. Algorithm 4 details this operation:
multiple threads load the elements @ and b defined in Eq.(4.6) through a shared
memory broadcast on lines 1 and 2. The components of the Givens rotation kernel,
¢ and s, are then evaluated on line 3 based on Egs. (4.7) through (4.9). Turning
attention back to Algorithm 3, the threads perform the Givens rotation on their
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Algorithm 3 QR_KERNEL Core GPU kernel for the parallel QR decomposition
Input : A, Batch of N x N matrices
Input : Q, Batch of N x N matrices
Input : NMPBL, Number of matrices to process per block
Input :i, Kuck—Sameh iteration number
Input : upperRow, lowerRow, Shared memory buffers

// Variables for convenience
1 tdx < threadldx.x
2 bdx < blockldx.x
3 bdz <« blockldx.z

// Calculate the location of the matrix on which to act
4 myMatrix < tdx / N
5 matrixLocation < ( bdx * NMPBL + myMatrix ) * N * N
6 mylndex <+ tdx % N

// Calculate the indices m and n on which to act
7 [m,n] < CalcIndices (i,bdz)

// Calculate the memory location of rows m and n
8 memLocUp « matrixLocation + (m-1)*N+myIndex
9 memLocLo <+ matrixLocation + m*N+myIndex

// Load the rows m and m-1 of the matrix in the shared memory
10 upperRow([tdx] < A[memLocUp]
11 lowerRow[tdx] +— A[memLocLo]

// Wait for all the data to be loaded
12 syncthreads ()

// Calculate the Givens rotation
13 smemldx < myMatrix*N + n
14 [c,s] < CalcGivens(upperRow, lowerRow, smemIdx)

// Apply the Givens rotation to all A matrices
15 ApplyGivens(A,upperRow,lowerRow,c,s,memLocUp,memLocLo)

// Load the rows m and m-1 of Q in shared memory
16 upperRow[threadldx.x] + Q[memLocUp]
17 lowerRow|[threadldx.x] < Q[memLocLo]

// Accumulate the Givens rotation for all Q matrices
18 ApplyGivens(Q,upperRow,lowerRow,c,s,memLocUp,memLocLo)

corresponding matrix with the APPLYGIVENS routine. The details of this function
are outlined in Algorithm 5. In the APPLYGIVENS routine, each thread within
a CUDA block operates on a single matrix element of the two rows loaded in
upperRow and lowerRow. The calculation presented in Eq. (4.6) is performed on
lines 5 and 6. The threads then store the data back in place, in global memory,
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Algorithm 4 CALCGIVENS Calculate the [c,s] values of a Givens rotation
Input: upperRow, lowerRow, Shared memory buffers
Input: smemldx, Location of the corresponding matrix in the shared
memory
Output: c,s, Givens rotation kernel values
// All threads calculate the Givens rotation for their

corresponding matrix

1 a <« upperRow[smemldx];

2 b < lowerRow[smemlIdx];

3 [c,8] < Givens (a,b);

Algorithm 5 APPLYGIVENS Apply the [c,s] Givens rotation to an array of matrices

input : M, Batch of N x N matrices to update
input : upperRow, lowerRow, Shared memory buffers
input : c,s, Givens rotation kernel values
input : memLocUp, memLocLo, Per thread location to update in M
1 tdx ¢ threadldx.x;
2 u « upperRow[tdx];
3 | + lowerRow[tdx];
// Perform the rotation
4 syncthreads ();

5 upperRow[tdx] « u*c+1*s;
6 lowerRow[tdx] < u*(-s)+1*c;
// Write the two modified rows back in global memory

7 M[memLocUp] <+ upperRow|tdx];
8 M[memLocLo] + (myIndex > n)*lowerRow[tdx];

on lines 7 and 8. Care is taken to introduce an exact zero for columns 1 through
n — 1 with the boolean condition myIndex > n on line 8, in order to avoid floating
point approximations. The remainder of the Algorithm 3—lines 16 through 18—
accumulates the rotations in the matrix Q. Note that the boolean condition on line 8
of Algorithm 5 does not apply to matrix Q, as can be discerned from the last line of
OR_Kernel in Appendix 2.

Memory optimizations are included in the QR kernel implementation. A few
constants, for example the current iteration number and the total batch size are stored
in constant memory to provide fast data access. The bandwidth-cost of copying
the data from the CPU to the GPU through a call to cudaMemcpyToSymbol ()
does not impact the overall performance of the algorithm. Care is taken to avoid
non-coalesced global memory accesses by providing contiguous indices for global
memory loads and stores.
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Table 4.3 QR parallel decomposition algorithm executed on K40c GPU device
versus 16 Intel E5-2670 (Sandy Bridge) CPU threads, in ms

Batch size
Matrix side 1,000 10,000 100,000 Matrices per block
16 1.370 (14.3)  7.475 (6.03) 68.14 (3.26) 64
32 6.732 (4.82)  55.76 (2.86) 534.0 (1.83) 32
64 48.70 (2.5) 457.9 (1.73) 4,630 (0.87) 16
128 404.9 (1.69) 4,025 (0.81) - 8
256 3,172 (0.76) 32,151 (0.57) - 4

The number in parenthesis indicates the speedup over the QR serial decomposition
executed on the CPU

4.2.3 OR Results

A serial implementation of the QR decomposition algorithm as described in the
first paragraph of Sect.4.2.1 was written in C for execution on the CPU. The
source code was compiled with the latest AVX optimizations available for Intel
processors, with flags -O3 -xHost. The core GPU kernel QR _Kernel was
compiled with the CUDA 5.5 revision of nvcc for compute architecture 3.5, and
with -03 optimizations. The GPU method was tested on a Kepler K40c, while
the CPU implementation was executed on a single Sandy Bridge CPU socket
running 16 OpenMP threads. Benchmarking results are presented in Table 4.3.
The GPU implementation of the QR algorithm as outlined here demonstrates a
0.6-14.3x performance improvement over a comparable CPU routine. The Nvidia
profiler nvvp revealed a global memory bandwidth of 195 GB/s (97.5 GB/s read +
97.5 GB/s write).

Table 4.3 shows that the GPU results scale linearly at a constant matrix size.
However, the scaling is not linear with the matrix size, at constant batch size; this
effect can be attributed to a decreasing total number of matrices processed per
block, as the size of the matrices increase. Therefore, more blocks are scheduled
and executed on the GPU, resulting in a larger overhead. The QR GPU kernel as
described was revealed to be memory-bound by the Nvidia profiler. Thus, additional
optimizations to help the code scale with the matrix size may include increasing the
total work performed by individual CUDA threads, in order to keep the total number
of matrices processed per block constant. The super-linear behavior observed in the
CPU scaling results was deduced to share similar origins as those of the CPU LU
implementation.
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4.3 Conclusion

This chapter has detailed new CUDA implementations of LU and QR decom-
position, for large batches of matrices of side less than 1,024 elements. The
kernels take advantage of several key GPU architectural features and display
highly favorable performance and scaling as compared to comparable CPU imple-
mentations. However, QR decomposition was relatively more performant than
LU decomposition, largely owing to the need for warp serialization and fairly
excessive synchronization in the latter. Performance for initial kernels was improved
significantly through introduction of several techniques guided by profiling. These
techniques included configuring cache and shared memory in software, as well as
optimizing thread blocksize and shared memory buffer size. Further optimizations
and alternative kernels for these important methods are the subjects of ongoing
work.
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Appendix 1

__global__ void luDecomposition ( float2 * inputMatrices, float * devSign ){

// NOTES:

// array indices have been simplified for readability

// eg.,

// #define buf_index ( vectorIndex + myMatrix * MATRIX_SIDE )

// common tasks have been relegated to device functions
// temporary variables
float2 sum,dum,tmp,tmpr,tmpl;

// scratch space

__shared__ float sign [ NUM_MATRICES 1;

__shared__ volatile float scale [ NUM_MATRICES * MATRIX_SIDE 1];
__shared__ volatile float2 reduce [ NUM_MATRICES * MATRIX_SIDE 1;
__shared__ volatile float2 vectors [ NUM_MATRICES * MATRIX_SIDE ];

__shared__ volatile int indices [ NUM_MATRICES * MATRIX_SIDE ];
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// index to matrix for processin

int myMatrix

g
= threadIdx.x / MATRIX_SIDE;

// index to vector for processi
int vectorIndex

// which warp
int myWarp

ng
= threadIdx.x % MATRIX_SIDE;

= vectorIndex / 32;

// initialize permutation signs
sign[threadldx.x % NUM_MATRICES]=1.0f;

// initialize shared memory
initFloat2Buffer( vectors, FLOAT_MIN );

// determine scaling information
for (int i=0; i < MATRIX_SIDE; ++i){

__syncthreads () ;

// load shared memory

vectors [ buf_index ].x
vectors [ buf_index ].y

__syncthreads () ;

// find maxima by reduction
findVectorMaxima ( vectors, vectorIndex, myMatrix );

__syncthreads() ;
// write scaling information
if ( vectorIndex ==i ){

}

// should test for singular

W.J. Brouwer and P.-Y. Taunay

inputMatrices [ row_i_index J].x;
inputMatrices [ row_i_index ].y;

scale [ scale_index ] = abs ( vectors [ buf_00 ].x );

// initialize shared memory
initFloat2Buffer ( vectors, 0.0f );

for (int j=0; j<MATRIX_SIDE; j++){

__syncthreads() ;

// load the j column to shared

vectors [ buf_index ].x
vectors [ buf_index ].y

__syncthreads() ;

myMatrix=myWarp;
if (( myMatrix < NUM_MATRICES ) && ( vectorIndex < j)){
for (int i=0; i<WARPS_PER_MATRIX; i++){

}
}

vectors [ buf_index ].x;
vectors [ buf_index ].y;

sum.x
sum.y

inputMatrices [ col_j_index ].x;
inputMatrices [ col_j_index 1.y;

for (int k=0; k< MATRIX_SIDE ; k++){

if (k>=vectorIndex) break;

tmpl = inputMatrices [ col_k_index ];

tmpr.x = vectors [ buf_k ].x;
tmpr.y = vectors [ buf_k ].y;
sum.x -= (tmpl.x * tmpr.x - tmpl.y * tmpr.y);
sum.y -= (tmpl.y * tmpr.x + tmpl.x * tmpr.y);

vectors [ buf_index J].x
vectors [ buf_index ].y

myMatrix = threadIdx.x / MATRIX_SIDE;

__syncthreads() ;

if ((vectorIndex >=j) && (vectorIndex < MATRIX_SIDE)){

sum.x
sum.y

vectors [ buf_index ].x;
vectors [ buf_index ].y;

sum.x;
sum.y;
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for (int k=0; k< j; k++){
tmpl = inputMatrices [ col_k_index ];

tmpr.x = vectors [ buf_k ].x;
tmpr.y = vectors [ buf_k ].y;

sum.x -= (tmpl.x * tmpr.x - tmpl.y * tmpr.y);
sum.y -= (tmpl.y * tmpr.x + tmpl.x * tmpr.y);
vectors [ buf_index ].x= sum.x;
vectors [ buf_index ].y= sum.y;
}
¥
__syncthreads () ;

// write j column back to global
inputMatrices [ col_j_index ].x = vectors [ buf_index ].x;
inputMatrices [ col_j_index ].y = vectors [ buf_index ].y;

// initialize shared memory
initFloat2Buffer ( reduce, FLOAT_MIN );

__syncthreads();
if (vectorIndex >= j){
// init for pivot search by reduction

reduce [ buf_index - j ].x = abs ( vectors [ buf_index ].x ) \
/ scale [ scale_index ];

indices [ buf_index - j ] = vectorIndex;
X
__syncthreads() ;
findVectorMaximaKey ( reduce, indices, vectorIndex, myMatrix );
__syncthreads() ;

// possible row swap
if (j !'= indices [ buf_00 1){

int i = indices [ buf_00 ];
// each thread swaps one row element with another row element

sum
inputMatrices [ row_i_index ]

inputMatrices [ row_i_index ];
inputMatrices [ row_j_index 1;

inputMatrices [ row_j_index ] sum;
if (vectorIndex==0){
scale [ buf_i ] = scale [ buf_j 1;
sign [ myMatrix ] *= -1.0f;
¥
3
__syncthreads() ;

// final scaling
if ( j '= MATRIX_SIDE-1){

dum = inputMatrices [ diag_j_index ];

if (vectorIndex >= j+1){

tmp = inputMatrices [ col_j_index 1;
tm = divide ( tmp, dum );
inputMatrices [ col_j_index 1] = tmp;
}
¥
__syncthreads() ;

}// end j loops

// write out sign
if (vectorIndex == 0) devSign [ sign_ind ] = sign [ myMatrix ] ;
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// Iteration number and total batch size are stored in constant memory

__device__ __constan

__global__ void QR_Kernel(float2 *matrices, float2 *q_complete) {

//// Shared

t__ int cmem_k, cmem_size;

memory buffer rows

// NOTE: This kernel as presented does not safeguard against buffer under/overflow

__shared__ float2 upper_row[NMPBL*MATRIX_SIDE] ;
_shared__ float2 lower_row[NMPBL*MATRIX_SIDE] ;

//// Convenience indices
// Index to matrix for processin

int myMatrix

= threadldx.x / MATRIX_SIDE;

// Index to vector for processin

int vectorInd
// Matrix offi
unsigned int

( blockIdx.x * NMPBL + myMatrix

//// Set column and line number we want to eliminate

int my_i, my_

int dk = delt:

if ( iter < MA’
ny_j =
my_i

} else {

my_j
my_i

}

g
ex = threadldx.x % MATRIX_SIDE;
set for this block
memoryStride =

j = 0; int iter = cmem_k;

a_k(iter);
TRIX_SIDE ) {

blockIdx.z;
(MATRIX_SIDE-iter) + 2my_j;

(iter-MATRIX_SIDE) + blockIdx.z + 1;
(iter-MATRIX_SIDE) + 2#%blockIdx.z + 2;

) * MATRIX_SIDE * MATRIX_SIDE ;

//// Load row data - if condition avoids out of bounds accesses
if (memoryStride + my_i*MATRIX_SIDE + vectorIndex < cmem_size_kuck*MATRIX_SIDE*MATRIX_SIDE) {
upper_row[threadIdx.x] = matrices[memoryStride + (my_i-1)*MATRIX_SIDE + vectorIndex];

// Lower row w/ leading zero after rotation

lower_row[threadIdx.x] = matrices[memoryStride + my_i*MATRIX_SIDE + vectorIndex];

}

//// Wait for
syncthreads

float2 u,v,c,
float f,g,den

u =

v =

/

f = u.xku.x +

g = V.X¥V.X +

// Algorithm

if( g < 2e-16
c.x =
s8.X =

} else if (f<
c.x =
// s =

den
5.X

} else {
// =
den =
// c

c.x =
/s =

den *=

< M
[

}

all the data to be loaded first
O3
EH

H

/// Calculate c and s

u.y*u.y;
V.y*V.y;

is provided in [BDK02]

) {
1.0f; c.y = 0.0f;
0.0f; s.y = 0.0f;

2e-16) {

0.0f; c.y = 0.0f;

conj(v)/g

1.0f/g;
v.x*den; s.y = -v.y*den;
sqrt(f + g)
rsqrt(f + g);

f/r

sqrt(f)*den; c.y = 0.0f;

x/f * conj(y) / r
= -1/(f*r)
rsqrt(£);

(u.x*v.x + u.y*v.y)*den;
(u.y*v.x - u.x*v.y)*den;

//// Compute the two rows update

// u¥c + v¥s
// Load data
= upper_row
= lower_row

[threadIdx.x];
[threadIdx.x];

u
v
// Perform product: real part
£

= (u.x*c.x

- u.y*c.y) + (V.x*s.x - V.y*s.y);

upper_row [myMatrix*MATRIX_SIDE + my_jl; // broadcast operation from SMEM
lower_row [myMatrix*MATRIX_SIDE + my_jl; // broadcast operation from SMEM
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// Perform product: imaginary part
g = (u.x*c.y + u.y*c.x) + (v.x*¥s.y + v.y*s.x);

float2 tmp;
tmp.x = f; tmp.y = g;

// ux-conj(s) + vxc

// Perform product: real part

f = -(u.x*s.x + u.yxs.y) + (v.xxc.x - v.y*c.y);
// Perform product: imaginary part

g = (u.x*s.y - u.y*s.x) + (v.x*c.y + v.y*c.x);

///// Store: synchronization is necessary to avoid overwriting data ...
///// ...for warps that are still getting data from the broadcast operation
__syncthreads() ;

upper_row [threadIdx.x] = tmp;

lower_row[threadIdx.x] .x
lower_row[threadIdx.x].y

= f;

=g

//// Vrite data in the original matrix

if (memoryStride + my_i*MATRIX_SIDE + vectorIndex < cmem_size*MATRIX_SIDE*MATRIX_SIDE) {
matrices [memoryStride + (my_i-1) * MATRIX_SIDE + vectorIndex ] = upper_row[threadIdx.x];

matrices [memoryStride + my_i * MATRIX_SIDE + vectorIndex J].x = \
(vectorIndex > my_j) * lower_row[threadIdx.x].x;

matrices [memoryStride + my_i * MATRIX_SIDE + vectorIndex J].y = \
(vectorIndex > my_j) * lower_row[threadIdx.x].y;

}

//// Load rows of Q to be updated

if (memoryStride + my_i*MATRIX_SIDE + vectorIndex < cmem_size*MATRIX_SIDE*MATRIX_SIDE) {
upper_row[threadldx.x] = q_complete[memoryStride + (my_i-1) * MATRIX_SIDE + vectorIndex J];
lower_row[threadIdx.x] = q_complete[memoryStride + my_i * MATRIX_SIDE + vectorIndex J];

}

//// Apply the Givens rotation
u = upper_row[threadIdx.x];
v = lower_row[threadIdx.x];

// Qli-1,k] = CxQ[i-1,k] + SxQ[i,k]

// Perform product: real part

f = (u.x*c.x - u.y*c.y) + (vV.x*s.x - v.y*s.y);
// Perform product: imaginary part

g = (u.x*c.y + u.y*c.x) + (v.x*s.y + v.y*s.x);

tmp.x = £; tmp.y = g;

// Qlik] = -S°*Q[i-1,k] + C*Q[i,k]

// Perform product: real part

f = -(u.x*s.x + u.y*s.y) + (v.x*c.x - v.y*c.y);
// Perform product: imaginary part

g = (u.x*s.y - u.yxs.x) + (v.x*c.y + v.y*c.x);

// No synchronization necessary here;
// each thread operates independently on a single matrix element
upper_row [threadIdx.x] = tmp;

lower_row[threadIdx.x].x
lower_row[threadIdx.x].y

f;
g

//// Write to global

if (memoryStride + my_i*MATRIX_SIDE + vectorIndex < cmem_size*MATRIX_SIDE*MATRIX_SIDE) {
q_complete [memoryStride + (my_i-1) * MATRIX_SIDE + vectorIndex ] = upper_row[threadIdx.x];
q_complete [memoryStride + my_i * MATRIX_SIDE + vectorIndex ] = lower_row[threadIdx.x];

}

// CPU driver loop
extern "C"{
blocks.x = (int)ceil((float)size/(float)NMPBL);
cudaMemcpyToSymbol (cmem_size,&size,sizeof (size));

// Set the shared memory bank size to 8 bytes / 64 bits
cudaDeviceSetSharedMemConfig(cudaSharedMenBankSizeEightByte) ;

for(int k = 1;k<=2+MATRIX_SIDE-3;k++) {
// Calculate the total number of rotations to apply at once
// Launch blocks.z additional rows of CUDA blocks to compute the Nrot rotations
if( k < MATRIX_SIDE ) {
blocks.z = (int)ceil((float)k/2.0f);
} else {
blocks.z = (int)ceil((float)k/2.0f) - k + MATRIX_SIDE-1;
¥

// Update constant memory
cudaMemcpyToSymbol (cmem_k ,&k,sizeof (k));
// Launch the main kernel;
// calculates the Givens rotations and places them in the temporary matrix Q_A
QR_Kernel <<< blocks,NTH >>> (matrices,q_complete);
}//end main loops
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Chapter 5
A Flexible CUDA LU-Based Solver for Small,

Batched Linear Systems

Antonino Tumeo, Nitin Gawande, and Oreste Villa

5.1 Introduction and Motivations

Many simulation models for hydrology, combustion and atmospheric modeling
require solvers that operate on a large amount of small, independent systems of
equations. These models typically operate by computing, at each time step of the
simulation, the flow and then the chemical reactions of fluids and solids in elements
over a large number of locations (a.k.a. physical grid nodes). The chemical reactions
are usually described through a set of non-linear equations. The profiling of typical
codes shows that these models can spend up to 95 % of the overall computation
time to solve the chemical reactions [1]. Typical simulations involve computing
tens to few hundreds chemical reactions, in tens of thousands up to millions of
uniform or non-uniform grid nodes, depending on the geometry and the resolution
of the problem to solve. The Newton—Raphson method is one of the most used
approaches for obtaining a solution for such systems of non-linear equations. The
technique involves the linearization of the systems by computing the Jacobian
matrix and a residual vector for each set of equations that represent the reactions
for a grid node. The method solves the linearized systems iteratively, performing
Gaussian elimination with LU factorization until achieving the desired convergence.
The method allows computing the LU factorization either with partial or full
pivoting, depending on the numerical characteristics of the problem, time-step of the
simulation and, ultimately, accuracy of the result. The Jacobian matrix is generated
from the chemical reactions, and its size is typically a square function of the number
of equations involved in the process. For example, the simulation of kinetic chemical
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reactions in combustion modeling [2] typically involves matrices up to ~40 x 40
in sizes, and is usually numerically stable by just using partial pivoting for the
LU decomposition. Reactive transport models for fluids through the Earth’s crust
over multiple phases, instead, require matrices with sizes up to ~100 x 100 and
traditionally use LU decomposition with full pivoting to increase numerical stability.
STOMP [3], HydroGeoChem [4], PRFLOTRAN [5], and TOUGH [6] use some of
these models. All of these applications require solving the chemical reactions for at
least thousands of grid nodes for the smallest problems they tackle.

There are many effective implementations of linear solvers for Graphic Pro-
cessing Units (GPUs) [7]. However, GPUs are more efficient when they perform
a large number of operations with respect to the amount of data involved in the
operations (flop/byte ratio). In fact, although new GPUs keep providing higher
and higher memory bandwidths, computational power is much higher and there
still are strict requirements to reach the peak memory transfer rates. For these
reasons, many of the available libraries focus on linear solvers for single, very
large, matrices. Conventional solvers, such as MAGMA [8] or those provided by
the CUDA library [9], target large matrices with several thousand of elements
per dimension, achieving speedups of one order of magnitude when compared to
CPUs. They exploit parallelism at the level of a single matrix solver and, in some
cases, they also make use of heterogeneity, by assigning the diagonal blocks and
interchange of row and columns to CPU cores and the reduction and scaling of
large sub-matrices to GPUs [10]. The combination of increased parallelism and
of solutions to increase bandwidth (e.g., through more effective and larger caches,
bigger register files, larger on-chip memories), recently made GPUs much more
interesting for operating in parallel on a large number of small matrices. Indeed,
the latest versions of the CUBLAS library [11] include support for batched LU
factorization. A software developer can use it to construct a solver operating on a
set of small, independent matrices.

In this book chapter we present the CUDA implementation of a batched linear
solver that operates on large numbers of small matrices, ranging from size 2 x 2
to 128 x 128. The presented implementation exploits, somehow counterintuitively,
thread level parallelism, exploiting a employs GPU thread for each matrix. With
respect to other existing implementations, the benefit of our approach resides in
the support of matrices with sizes over the 100 x 100 elements, and the support of
both partial and complete pivoting for the LU factorization. These are mandatory
requirements for reactive transport simulators, which historically use complete
pivoting, trading off some of the performance for higher accuracy. We discuss
our implementation in comparison to other currently available solutions, which
instead only integrate partial pivoting and support sizes up to 76 x 76 elements.
Beside presenting the code of our implementation, we also discuss the performance
tradeoffs, enabling a developer to choose the best implementation for his target
applications.

The remainder of this chapter is organized as follows. Section 5.2 provides
some preliminaries on linear solvers. Section 5.3 presents the commented code of
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our implementation. Section 5.4 briefly introduces other existing approaches and
Sect. 5.5 discusses the performance and flexibility tradeoffs with respect to our
solution. Finally, Sect. 5.6 concludes the chapter.

5.2 Preliminaries on Solvers and LU Decomposition

The Newton—Raphson method is a technique for solving nonlinear equations
numerically. It is an iterative technique, which works by linearly approximating the
equations until convergence. A typical problem gives N nonlinear equations to be
zeroed, involving variables x;,i = 1,2,..., N:

F,'()Cl,)Cz,...,)CN) =0i = 1,2,...,N
Denoting with x the vector of values x; and with F the vector of functions F;, we
can expand each of the functions F; in the neighborhood of X in Taylor series:

N
F;
F(x+6x) = F(x)+ Yy a—ij + 0(8x%)
= an

where:

g, =25
l]_ax]‘

is the Jacobian matrix J.
In matrix notation:

F(x + 6x) = F(x 4 J6x + O(8x?)
By neglecting terms of order §x and higher and by setting F(x + §x) = 0, we
obtain a set of equations for the corrections §x that move each function closer to
zero simultaneously:

Jox = —F

This matrix equation can be solved by LU decomposition. The corrections are
then added to the solution vector:

Xnew = Xold + dx

And the process is iterated to convergence.
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5.2.1 LU-Based Linear Solvers

A linear solver is a procedure that, given a system of linear equation described in
matricial form as Ax = b, finds the solution vector x. One of the most efficient
method for dense and semi-dense matrices is finding a decomposition of the matrix
A such that the solution is then obtained by back substitution. LU decomposition
(also called LU factorization) factorizes a matrix A as the product of a lower
triangular matrix L and an upper triangular matrix U such that LU = A. There
are two basic approaches for arriving at an LU decomposition:

» simulate Gaussian elimination by using row operations to zero elements in A
until an upper triangular matrix exists. Save the multipliers produced at each
stage of the elimination procedure as L;

e use the definition of matrix multiplication to solve directly LU = A for the
elements of L and U.

Approaches that exploit Gaussian elimination mainly differs in the order in
which A is forced into upper triangular form. The most common alternatives are
to eliminate subdiagonal parts of A either one row at a time or one column at a time.
The calculations required to zero a complete row or a complete column are referred
as one stage of the elimination process.

At the k' stage of Gaussian elimination:

(k)
kD) _ k) Gk (k) -
a;; = a; (k))al.j , wherei, j >k
A

)
The term %k (referred as multiplier) describes the effect of eliminating element
Ak
a;; on the other entries in row i during the k’" stage of the elimination. These

multipliers are the elements of the lower triangular matrix L, i.e.:

(k)
— %k

lix =
(k)
A

Considering the Gaussian elimination procedure, LU decomposition fails when
the value a](fk) (called the pivot element) is zero. Furthermore, Gaussian elimination
is numerically unstable even if there are no zero pivot elements, because of the
errors in approximation in finite precision representation of real numbers. A solution
to numerical instability is to interchange the rows and columns of A to avoid zero
and unstable pivot elements. These interchanges do not affect the solution of the
approximated linear equations of the system as long as the permutations are logged
and taken into account during the substitution process. The choice of pivot elements
is referred as pivot strategy. There is not an optimal pivot strategy, but two common
heuristics are:
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e Partial pivoting: at the k' stage of the computation, select the largest element
in column k as the pivot. When using partial pivoting, the factorization produces
matrices L and U that satisfy the equation:

LU =PA

where P is a permutation matrix. Initially, P is initialized to I, then each row
interchange that occurs during the decomposition of A causes a corresponding
row swap in P. Starting from the linear system of equations Ax = b and
premultiplying both sides by P, we obtain PAx = Pb. Substituting PA with LU,
we obtain LUx = Pb. Thus, we can achieve a solution for A by the sequential
solution of two triangular systems: y = Pb, Lc =y, Ux = c.

s Complete pivoting: at the k'" stage of the computation, choose the largest
remaining element in A as the pivot. If pivoting has proceeded along the diagonal
in stages 1 through k — 1, this implies that the next pivot should be the largest
element al(k_l)j where k < i < nand k < j < n. When using complete

pivoting, factorization produces matrices L and U that satisfy the equation:

LU = PAQ

where P is a row permutation matrix and Q is a column permutation matrix.
Q is derived from column interchanges in the same way P is derived from
row interchanges. The linear system of equations Ax = b can be solved by the
sequential solution of two triangular systems: y = Pb, Le =y, Uz = ¢, x = Qz.

The computational complexity of the LU factorization is O(2/3 * n®). Par-
tial pivoting contributes for a further O((n? + n)/2), while full pivoting adds
0O(2/3 *n® 4+ 1/2 * n* 4 1/6 * n). Once the matrix is decomposed, each triangular
solver has computational complexity O(n?). Asymptomatically, a solver with partial
pivoting has computational complexity of O(2/3 * n®), while with full pivoting
complexity is O(4/3 * n®).

5.3 Proposed Implementation: CUDA Code and Comments

This section presents the implementation of our LU-based solver with complete
pivoting. Listing 5.1 shows both the kernel invocation and the code of the kernel.
The Jacobian matrix A has n x n elements, and the residual vector b has n elements.
n is the size of the system. Our approach employs a single CUDA thread to find the
solution for a single system (matrix). Because complete pivoting involves both a row
and a column permutation, the procedure is difficult to parallelize effectively for a
single matrix. Parallelization is achieved by batching multiple systems together. By
using a single thread per matrix, and by directly accessing and storing the matrices
and the residual vectors in memory, this implementation can potentially manage
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matrices of arbitrary sizes. In our experiments with Tesla M2090 boards based on
the Fermi architecture and integrating 6 GB of memory, we easily reached sizes
up to 128 x 128 elements, which allow solving a typical simulation integrated in
a reactive transport simulator such as STOMP. At first glance, this implementation
violates basic GPU programming principles, because it assigns a different “task”
to different threads inside a warp. Generally applying this technique can lead
to very poor performance due to thread divergence within the warp. However,
in our code, each thread is exactly performing the same operations on all the
independent matrices, except when it discovers pivot elements and swaps rows. The
key observation is that, when the matrix is larger than 32 x 32 elements, the cost of
these operations is much smaller than the cost of updating the lower matrix and back
substituting in the triangular systems. Vice-versa, when the matrix is smaller than
32 x 32 elements, the cost of pivoting and row interchange can be compared to the
cost of updating the matrices and performing back-substitution, resulting in possible
thread divergence. However this is true with any other implementation, because
with matrices smaller than 32 x 32 elements warps are not fully utilized. Another
important issue of this approach is that the input matrices A and vectors b and x
are stored as arrays of structures, meaning that big arrays contain all the elements
of the different matrices and vectors. If each thread is accessing its own matrix, the
threads in a warp are accessing elements that are strides of the number of elements
in the matrix: i.e., they access elements at a distance of » X n memory locations.
When accessing arrays b and x, data are instead at distance n. This results in un-
coalesced accesses to memory, which are a main cause of performance degradation.
To alleviate this problem, our code performs a transformation of the matrix A and
of the arrays b and x before and after the solver phase, such that the resulting data
structure is a structure of arrays, meaning that a given element (i,j) of a matrix is
rearranged together in memory with those of the other matrices. This operation may
appear quite expensive, in particular for the matrices, because the transformation
must access their elements at least once in un-coalesced manner. However, the
transformation has cost O(N?), while the entire computational complexity of the
algorithm is O(N?3).

Given the iterative nature of the solver, we want our code to preserve the original
matrices A, without transforming them back after the solver completes. Thus, we
need to store the transformed matrices in a temporary space. Unfortunately, the on-
chip shared memory is not big enough. In fact, we need at least space for a number
of matrices equal to the thread block size. To minimize divergence, the minimum
effective thread block size obviously is 32 (warp size). Consequently, for a thread
block of 32 threads, simultaneously operating on 32 matrices of size 100 x 100 with
double precision elements (64 bits), we would need at least 2.5 MB. For this reason,
although this may again seem counterintuitive for usual GPGPU programming,
we utilize another portion of GPU memory that is allocated and deallocated on a
thread block basis by a single thread in the block. These allocations are performed
on a heap space that is set during initialization of the device by using the CUDA
library call cudaThreadSetLimit(cudaLimitMallocHeapSize, bytes). Allocations and
de-allocations inside the heap space are performed with _malloc/_free primitives,
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which wrap the standard malloc/free that align to 128 bytes inside in the heap. As the
heap space is reused across thread blocks that are executed on the same Streaming
Multiprocessor, we do not need to have a heap space as large as the total dataset.

Finally, since the proposed implementation does not use the shared memory, we
set the architecture to employ as much as possible the 64 kB of on-chip memory
as L1 cache (i.e., 48kB on both Fermi and Kepler architectures), exploiting the
cudaFuncSetCacheConfig primitive.

Listing 5.1 GPU implementation of LU solver with complete pivoting

#include <stdio.h>
#include <assert.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define BLOCKSIZE 96
#define T(id) (threadIdx.x + blockDim.x * (id))

int axb_solve_d_gpu_batch(double % d_A, double x d_B,

double % d_X, int n, int batch) {
cudaFuncSetCacheConfig(_axb_solve_d gpu batch, cudaFuncCachePreferLl) ;
int gridDim = batch / BLOCKSIZE + 1;
_axb_solve_d gpu batch<<<gridDim, BLOCKSIZE>>>(d A, d B, d X, n, batch);
cudaError_t err = cudaGetLastError();
if (cudaSuccess != err) ({

printf ("ERROR__%d\n", err);

return -1;

}

return 0;

}

__global__ void _axb_solve d gpu batch(double * d_A,
double % d_B, double x d_X, int n, int batch)
{

int matrixId = blockIdx.x * blockDim.x + threadIdx.x;
if ( matrixId >= batch) return;
int i, j, k;

_ shared  double x A;

_ shared  double x B;

_ shared  double x X;

__shared_ int * pivot;

if (threadIdx.x == 0)

{
A = (doublex) malloc (blockDim.x * n * n % sizeof (double)) ;
B = (doublex) malloc (blockDim.x * n = sizeof (double)) ;
X = (doublex) malloc (blockDim.x * n * sizeof (double)) ;
pivot = (int % ) malloc(blockDim.x * n = sizeof (int)) ;

}

__syncthreads() ;

// Check for failure

if (A == NULL || B == NULL || X == NULL || pivot == NULL ) {
printf ("Error_allocating, inside_kernel\n") ;
return;

}

/+* coalescing A and B x/
for (j = 0; j < n; Jj++)
{
BIT(j)] = d_B[ matrixId * n + jl;
for (i = 0; i < n; i++)
A[T(] * n + 1)] = d Al matrixId * n » n + j » n + i ];

40

42

44

46

48
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// For each row and column, k = 0, ..., n-1,
for (k = 0; k < n; k++) {

// f£ind the pivot row
int col = k;
double max = fabs( A[T(k * n + k)1 );
for (3 =k + 1; § < n; j++) {
if ( max < fabs(A[T(j » n +
max = fabs(A[T(j * n + k)]
cel = 9)p

}

K1) ) |
)

i

}

// and if the pivot row differs from the current row, then
// interchange the two rows.
if (col != k) {
for (j = 0; j < n; j++) {
double max = A[T(k * n + j)];
A[T(k * n + j)] = A[T(col » n + j)I1;

A[T(col » n + j)] = max;
}
}
// and if the matrix is singular, return error
if (A[T(k * n + k)] == 0.0 ) {
printf ("Inside, Kernel: Matrix_singular!!\n");
return;
}

// otherwise find the lower triangular matrix elements for column k.

for (i = k+l; 1 < n; 1i++)
A[T(i * n + k)] /= A[T(k * n + k)];

// update remaining matrix
for (1 = k+1; 1 < n; i++)
for (j = k+1l; J < n; j++)
A[T(i » n + j)] -= A[T(1 » n + k)] %= A[T(k » n + J)];

pivot [T (k)] = col;

}

// Solve the linear equation Lx = B for x, where L is a lower
// triangular matrix with an implied 1 along the diagonal.

for (k = 0; k < n; k++) {
)

if (pivot[T(k)] != k) {
double dum = B[T(k)];
B[T(k)] = BI[T(pivot[T(k)1)];
B[T (pivot [T(k)])] = dum;
X[T(k)] = B[T(k)];
for (i = 0; i < k; i++)
X[T(k)] -= X[T(1)] * A[T(n = k + i)];

// Solve the linear equation Ux = y, where y is the solution
// obtained above of Lx = B and U is an upper triangular matrix.
for (k = n-1; k >= 0; k--) {
if (pivot[T(k)] != k) {
double dum = B[T(k)];
B[T (k)] = B[T(pivot[T(k)])];
B[T (pivot[T(k)])] = dum;
}
for (i =k + 1; 1 < n; i++)
X[T(k)] -= X[T(1)] * A[T(k * n + 1)];
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if (A[T(k * n + k)] == 0.0) {
printf ("Inside_Kernel: Matrix_singular!!\n");
return;

}

X[T(k)] /= A[T(kk » n + k)];

}

/* un-coalescing X */
for (j = 0; j < n; Jj++)
d X[ matrixId * n + j] = X[T(3)];

__syncthreads() ;

if (threadIdx.x == 0)

{
free
free
free
free

}

return;

(a) ;
(B) ;
(X);
(pivot) ;

5.4 Other Implementations

There are two other implementations we are aware of that try to address the problem
of solving a set of small systems in a batch. The first one requires the batched
interfaces provided in the CUBLAS library [11] starting from CUDA 5.0. It exploits
parallelism at the warp-level. The second one [12], provided by NVIDIA on its
developer site, exploits parallelism at the thread block level. We briefly discuss
the features of these solutions, and present a tradeoff analysis with respect to our
proposed thread parallel implementation.

5.4.1 Warp Parallel Implementation

A software developer can implement a batched LU-based solver by exploiting the
batched interfaces of the CUBLAS library [11], provided in CUDA 5.0. Such
a solver performs a sequence of four GPU kernel calls for all the matrices, as
follows:

. LU decomposition of A (PA = LU);

. permutation of the array b with the array of pivots P (y = Pb);

. solution of the triangular lower system (Lc = y);

. solution of the upper system to obtain the final solution (Ux = ¢).

RSN S

The library directly provides batched functions for three kernel calls: cublas-
DgetrfBatched for step 1 (batched LU decomposition), and cublasDtrsmBatched
for steps 3 and 4. A developer can implement a simple kernel that performs
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step 2 to complete the solver. Compared to the other steps, step 2 has negligible
execution time. With respect to our proposed implementation, this implementation
has several limitations in terms of flexibility. First of all, it can perform the
batched LU decomposition only with partial pivoting, because it is the only method
provided in CUBLAS. Our approach supports complete pivoting, and can easily
use partial pivoting by just substituting the related code. Second, the batched
functions assign a warp (32 threads) per matrix, and they are limited to matrices
at most of 32 x 32 elements. Thus, this solver can deal with a subset of the
problems that our implementation can support solve. Because matrices are small,
the implementation exploits shared memory (a matrix with 64 bit values occupies
8kB). However, CUDA does not preserve the content of shared memory across
subsequent kernel calls. Thus, every kernel has to reload the data in shared memory,
with a performance penalty for the operation.

5.4.2 Thread Block Parallel Implementation

This implementation [12] is available on the NVIDIA developer site. It selects
among three mutually exclusive kernels, depending on the size of the input matrices.
The implementation exposes a dsolve_batch() function that, in turn, calls a single
templatized function. This templatized function is parametrized by data type and
architecture. The implementation loads the entire system to solve in shared memory,
thus the size of the matrices it can handle are limited. For Fermi architectures,
the maximum size is 76 x 76 double precision elements. When the solver loads
the matrix into the shared memory, it augments the matrix on the right with
the right hand side vector, allowing parallel manipulation. The two-dimensional
shared memory layout of the matrix uses padding to minimize bank conflicts.
The configuration class allows optimizing the padding for each matrix size. Each
thread block solves a single system, so the number thread blocks in the launch
configuration is identical to the batch size. The implementation exploits two-
dimensional thread blocks: the x dimension is configured by the template class,
the y dimension corresponds to the number of columns of the augmented matrix.
In this way, each thread “row” handles one row of the augmented matrix in
parallel. The three kernels used are gauss_jordanl (for dimensions 2 through 9),
gauss_jordan?2 (used for dimension 10), and gauss2 (for dimensions 10 through 76),
with switch-over points empirically determined. The first two kernels implement the
Gauss—Jordan algorithm with partial pivoting, while the third implements Gaussian
elimination with partial pivoting. In the first Gauss—Jordan kernel the number of
thread rows is identical to the number of rows in the matrix (i.e., each thread
handles one element of the augmented matrix), while in the second there are fewer
thread rows than the number of matrix rows (i.e., each thread handles more than one
element). The implementation performs the maximum search for partial pivoting as
a two-stage process. In the first stage, a small number of threads search a maximum
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for a subset of column elements. In the second stage, a single thread finds the overall
maximum. Row swapping is implemented by physical exchange.

5.5 Trade-Offs Evaluation

In the following, we refer to the CUBLAS-based solution as the Warp parallel one
and to the custom NVIDIA solution as the Thread block parallel one. We refer to our
custom implementation as the Thread parallel one. To perform a fair comparison,
we execute our implementation with both the partial pivoting and the full pivoting
implementation.

We present a brief performance evaluation of the three different implementations
on two different GPUs. The objective of this analysis is to provide to developers an
informed view of which implementation to prefer, depending on the requirements of
their target applications. For certain applications, it may also be useful to integrate
a switching logic able to select the best implementation depending on the size of
the systems to solve, on the number of systems and on the required numerical
accuracy (choosing between complete or partial pivoting). For this analysis, we
selected a Fermi-based and a Kepler-based Tesla board. The Fermi-based solution
is a Tesla M2090 board, which includes the Fermi T20a GPU, with 16 Streaming
Multiprocessors (SMs), providing a total of 512 Streaming Processors (SPs) at
1.3 GHz, and 6 GB of GDDRS at 1.85 GHz connected through a 384-bit interface.
The peak memory bandwidth is 177 GB/s. The Kepler-based solution is a Tesla
K20 board with a GPU that implements 13 SMXes (2,496 SPs). The GPU works at
706 MHz, and the board includes 5 GB of GDDRS at 2.6 GHz, connected through a
320-bit bus with 5 memory controllers. The peak memory bandwidth is 208 GB/s.

We underline that the architectures of the two GPUs are radically different. The
Fermi architecture exploits a set of Streaming Multiprocessors (SMs) that include
32 Streaming Processors (SPs), 4 Super Function Units (SFUs), 16 Load/Store
Units and 64 kB of on-chip memory configurable either as 48 kB of L1 cache and
16 kB of shared memory or as 16kB of L1 cache and 48kB of shared memory.
A Fermi’s SM can simultaneously execute two single precision Warps (group of
32 threads) or one double precision Warp in a minimum of 2 clock cycles. Thus,
peak double precision is half of the single precision. Each SM includes a total
of 32,768 registers and can maintain up to 1,536 threads in-flight. All the SMs
in a chip interface to a L2 cache of 768 kB. The SMs access the global memory
through a crossbar connected to several 64 bits memory controllers. In Fermi, the
SMs run at higher clocks (double) than the rest of the chip. In Kepler, instead,
a SM, now called SMX, includes 192 single precision streaming processors, 64
double precision streaming processors, 32 SFUs, 32 Load/Store Units. The number
of threads and of registers per SMX is, respectively, 2,048 and 65,536. Kepler can
dispatch 8 instructions (2 independent instructions from 4 Warps) simultaneously
and can pair double precision instructions with other instructions. Each SMX still
has 64kB of configurable shared memory, but now there is also a 32/32kB split.
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This results in a higher number of warps competing for the same shared memory.
An SMX also includes a new 48 kB cache for read-only data. Kepler doubles the L2
cache both in terms of size (1,536 kB) and bandwidth with respect to Fermi.
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Fig. 5.1 Performance of the three implementations on a Tesla M2090 when solving 20,000
systems of linear equations while increasing the number of double precision elements in each
matrix

Figure 5.1 shows the performance of the three implementations on a Tesla M2090
board when simultaneously solving 20,000 systems of variable size (the matrices
have from 2 x 2 to 128 x 128 elements). The Thread block parallel implementation
results the fastest. However, the performance varies a lot by changing the matrix
size. Performance significantly degrades with matrices larger than 56 x 56 elements.
This happens because increasing the size of the matrices increases shared memory
occupation. Because shared memory is a limited resource allocated per thread
block, over a certain threshold there is a reduction in the number of thread
blocks that are simultaneously active, determining resulting in under-utilization.
The Warp parallel implementation is the second fastest. Up to 16 x 16 elements,
it provides performance very near to the Thread block parallel implementation,
but over 16 x 16 elements its performance significantly reduces. The reason is
the use of multiple kernels, which does not allow to fully exploit the increased
bandwidth provided by the shared memory. The only implementation that manages
matrices bigger than 76 x 76 elements is our proposed Thread parallel solution. It
presents the lowest performance of the three implementations, but it is also the most
stable: the execution time almost linearly increases with the size the systems. Our
implementation is mainly limited by the number of registers used by each thread,
which limits utilization of the SMs. Our proposed implementation is also the only
one that supports full pivoting. Full pivoting is slower, for the higher computational
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complexity, than single pivoting. However, it follows the same behavior of linearly
increasing its execution time with the size of the systems.
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Fig. 5.2 Performance of the three implementations on a Tesla K20 when solving 20,000 systems
of linear equations while increasing the number of double precision elements in each matrix

Figure 5.2 proposes the evaluation on the Tesla K20 (Kepler). The Thread parallel
implementation still results the slowest in average. However, with Kepler, it is faster
than both the Warp level and the Thread block parallel implementations for certain
dimensions. The switch points are dimensions of 16 x 16 for the Warp parallel
implementation and 56 x 56 for the Thread block parallel implementations. The
Thread parallel implementation utilizes almost all the available global memory
bandwidth, thus it benefits of its increase in Kepler. At the opposite, Kepler provides
less bandwidth to the on-chip shared memory for each active warp. This limits
the effectiveness of the Warp parallel and Thread block parallel implementations.
The performance spread between the Warp parallel and the Thread block parallel
implementation with matrices over sizes of 16 x 16 is more significant. The Thread
parallel implementation with full pivoting is the slowest, but it still follows the
same general behavior of when partial pivoting is used. The figure also shows
that, for small matrices, the performance of Kepler with the Thread parallel
implementation is comparable to a reference x86 implementation (Xeon X5650 at
2.67 GHz, 6 Nehalem cores with 12 threads at 12 MB of L3 cache), while for larger
matrices it becomes slower. Therefore, it may be useful to provide heterogeneous
implementations able to distribute the workload across GPUs and CPUs, depending
on the characteristics of the applications and the systems to solve.
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5.6 Conclusions/Summary

In this chapter we presented and discussed the CUDA implementation of a batched
linear solver based on LU factorization for small matrices. These matrices are
usually generated from small sets (up to 100) of non linear equations, typical in
reactive transport simulators, that are then solved through the Newton—Raphson
iterative technique. The code presented in this chapter exploits a thread parallel
implementation (a matrix is assigned to a CUDA thread), does not exploit the on-
chip shared memory and employs dynamic allocation inside the kernel. Although
these approaches may appear counterintuitive, our code can manage bigger matrices
(well over 100 x 100 elements) than other currently available solutions, which can
only reach 76 x 76 elements. Furthermore, our approach supports both partial and
complete pivoting for the LU decomposition. The support of larger matrices and
full pivoting are strict requirements for certain reactive flow transport simulators
for fluids through the Earth’s crust over multiple phases, such as STOMP from
Pacific Northwest National Laboratory (PNNL). We also presented an evaluation of
our implementation against the other solutions, discussing tradeoffs in performance
and flexibility. This may allow a developer to select and then integrate in its target
application the best approach, depending on the requirements, or even implementing
dynamic switching solutions among the different methods to maximize perfor-
mance, depending on the characteristics and sizes of the problems to solve.
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Chapter 6
Sparse Matrix-Vector Product

Zbigniew Koza, Maciej Matyka, L.ukasz Mirostaw, and Jakub Pola

6.1 Introduction

The sparse matrix-vector (SpMV) multiplication is one of the key kernels in
scientific computing. Efficient SpMV is crucial for the performance of several
popular algorithms of computational linear algebra, especially sparse linear solvers
and sparse eigenvalue solvers. The former are common, for example, in codes
that solve partial differential equations like those governing the air flow round an
airplane or propagation of seismic waves through the Earth. The latter are essential,
for example, in quantum physics, but also in the PageRank algorithm used by
Google in its web search engine to rank websites.

From a mathematical point of view, the aim of the SpMV kernel is to calculate the
producty = Ax, where A is a large sparse matrix and X, y are dense vectors. While
SpMYV operation belongs to the most simple operations of linear algebra, it is rather
surprising—and instructive—to realize to what extent its efficient implementation
on GPUs requires a deep understanding of the hardware. The SpMV kernel can thus
serve as a good illustration of the GPU programming principles. Moreover, the ideas
behind this kernel turn out to be helpful in other GPU kernels that deal with sparse
data structures.

Z. Koza (P<) « M. Matyka
Faculty of Physics & Astronomy, University of Wroctaw, Wroctaw, Poland
e-mail: zkoza@ift.uni.wroc.pl; maq@ift.uni.wroc.pl

L. Mirostaw
Institute of Informatics, Wroctaw University of Technology, Wroctaw, Poland
e-mail: lukasz.miroslaw @vratis.com

J. Pota
Institute of Physics, University of Silesia, Katowice, Poland
e-mail: jakub.pola@gmail.com

V. Kindratenko (ed.), Numerical Computations with GPUs s, 103
DOI 10.1007/978-3-319-06548-9__6, © Springer International Publishing Switzerland 2014


mailto:zkoza@ift.uni.wroc.pl
mailto:maq@ift.uni.wroc.pl
mailto:lukasz.miroslaw@vratis.com
mailto:jakub.pola@gmail.com

104 Z. Koza et al.

o 1 2

o/A B —

1|l— C —

2|D — E

| T
COO CRS ELL
Allo]||o o/Allo]|o A B||0 1
Bll1]/0 11B|1[2 C—||1—
Cll1]1 2lCl[1]|8 D EJ|O 2
D|(o]|2 aD|lo]|5
Ell2]2 4E‘y
5

Fig. 6.1 A simple matrix encoded in various sparse formats

We start the chapter with a short introduction into two main issues each SpMV
designer must cope with: sparse matrix storage and architecture-specific aspects of
the problem.

6.1.1 Sparse Matrix Formats

To perform numerical algebra on matrices, we have to keep them in computer
memory. With sparse structures this is a non-trivial task. The straightforward usage
of a two-dimensional array is impractical as sparse data written this way could easily
exceed the computer memory. Moreover, reading all these zeroes would increase
the execution time by several orders of magnitude. Therefore, compact formats
for sparse matrices that omit an unnecessary storage of zeroes are required. Below
we focus on three most representative formats used in the context of the GPU (cf.
Fig.6.1):

(a) COO (coordinate format), in which non-zero matrix elements together with
their row and column indices are stored in separate arrays;

(b) CRS (compressed row storage), in which references to the first nonzero element
within each matrix row are stored instead of the row indices;

(c) ELL, in which relatively small two-dimensional dense arrays are used to store
the nonzero matrix elements and their column indices.

The simplest sparse matrix format is the coordinate (COO) format, in which the
information about the row index, column index, and the value of each non-zero
matrix element is stored in three 1D arrays, RowInd, ColInd, and Val, respec-
tively. As an example, consider a matrix:
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1002 0
0300 4
M=]100506 |. 6.1
0078 9
000010

Its COO representation (with zero-based indexing) reads

Val=[12345678910].
ColInd=[0314242344],
RowInd=[00 1122333 4].

To complete the definition of a sparse matrix representation, one also needs to
supply three integers: the number of matrix rows (rows), columns (cols) and
non-zero elements (nnz).

In the above example the row-major ordering was used, i.e., the arrays were first
sorted by row indices and then by column indices. In such a case array RowInd
will typically contain sequences of many identical entries. This property is utilized
in the compressed row storage (CRS, also known as compressed sparse row, CSR)
format to reduce the memory footprint by replacing array RowInd with a shorter
array RowPtr. This array has exactly rows+1 elements and is defined by the
requirement that RowPtr [j] be equal to the number of non-zero elements in all
the rows preceding the j-th row (j = 0,...,rows — 1) and RowPtr [rows]
= nnz. If the matrix contains no empty rows, RowPtr[j] gives the index into
Val corresponding to the first non-zero element in the j-th matrix row. The CRS
representation of M reads

Val=[123456728910],
ColInd=[0314242344],
RowPtr=[02 46 9 10].

Note that arrays Val and ColInd are the same as in COO format.

In the ELLPACK/ITPACK (ELL) format an n X m sparse matrix is represented
by two n x k dense arrays, Val and ColInd, where k is the maximum number of
non-zero elements per row. Array Val is constructed from the original matrix by
removing all zeros, while ColInd holds column indices into Val. The rows with
less than k non-zero elements are padded in Val and ColInd arrays with 0 and
—1, respectively. The ELL representation of M is thus:
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120 0 3-1
340 I 4-1
Val=|[ 560]|, ColInd=|2 4-1]|. (6.2)
789 2 3 4
1000 4—-1-1

6.1.2 Architecture-Specific Issues

The ideal sparse matrix representation should

— store only the non-zero matrix elements,

— require no extra storage space,

— require no additional computation (e.g. sorting),

— allow for efficient utilization of the hardware,

— allow for a single-kernel implementation of the SpMV product.

Unfortunately, this ideal representation does not exist and one has to strike a balance
between conflicting requirements. Here we briefly present the hardware-related
issues that must be taken into account in designing an efficient SpMV kernel running
on the GPU.

Matrix size. Modern GPUs are massively parallel, throughput-oriented architec-
tures that need to process at least tens of thousands of threads to hide a high latency
of the off-chip memory. Moreover, one should take into account a relatively high
kernel launch time, ~ 4 s for Tesla K20M. Note that during 4 s a GPU with the
memory bandwidth of 200 GB/s can read ~ 8 x 10° bytes, or 10° numbers in double
precision. This means that for today’s hardware the minimal number of nonzero
matrix elements that could saturate the GPU and amortize the kernel launch time is
of order of 10°. Thus, the sparse matrices that can be processed efficiently on GPUs
need to be large.

Rows are preferred to columns. If different threads were allowed to write to
the same entry in the output vector, they would have to be synchronized, e.g.,
by atomic operations, which would diminish the performance. Therefore GPU
implementations of the SpMV kernel are based on matrix formats that facilitate
accessing the matrix elements by rows (CRS and ELL) or assume the row-
major ordering of the data (COO). This, in turn, hinders the development of
implementations of algorithms where a sparse matrix should be traversed along its
columns, e.g., multiplication by a matrix transpose.

Memory boundedness. Calculation of a sparse matrix-vector product essentially
reduces to many “multiply and add” operations, which in modern GPUs are
implemented as a single fused multiple-add (FMA) instruction. Since SpMV
multiplication involves several memory accesses per arithmetic instruction, the
SpMYV kernel is inherently memory-bound. For example, a server-class Tesla K20X
GPU can perform ~6.5 x 10! FMA operations per second and can access its main
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memory at ~2.5 x 10" B/s, which yields approximately 2.5 operations per byte.
For the SpMV kernel this sets the upper bound for the processor computational
efficiency to ~2 % of its peak theoretical value. It is therefore of utmost importance
to focus on the memory utilization as well as on reducing the memory footprint of
the SpMV kernel.

Storage overhead. CRS generally needs less memory than COO. As for ELL,
the situation is far more complex. If each matrix row contains exactly the same
number of nonzero elements (we shall call this parameter “a row length”), then
ELL is the most storage-efficient format of the three. However, if row lengths vary,
shorter rows must be padded with explicit zeroes. For example, if the length of the
first matrix row is 10 and all other rows contain only 1 nonzero element, the ELL
format imposes a huge, ten-fold memory overhead. On the one hand, this makes
ELL impractical as a general sparse matrix format. On the other hand, for regular
matrices ELL is really fast on GPUs, approximately three times faster than COO,
so many attempts have been made to reduce its potentially unacceptable storage
overhead. Two main ideas have been used to achieve this goal. The first one consists
in partitioning the matrix into a regular part, stored in ELL, and an irregular part,
stored in a storage-efficient format, e.g., COO. This is exactly the thought behind
the HYB format from NVIDIA:

HYB = ELL 4 COO.

The second idea is to use some kind of matrix transformation, e.g., permutation
of rows according to their size and then to divide the matrix into several slices,
each represented separately in ELL, to reduce padding. This approach has led to the
development of several ELL-based formats, e.g., sliced-ELL and sliced ELLR-T.

Coalescing memory transfers. Once the storage has been optimized, we still
have to make sure that the off-chip memory can be read from or written to efficiently.
In the case of the GPU, this is equivalent to requiring that the accesses to the data
stored in the computer representations of A, x and y can be coalesced. This is a key
condition for the SpMV performance: failure to coalesce global data transfers can
decrease the kernel performance by an order of magnitude.

The output vector, y, can be coalesced quite easily; besides, it often contributes
only a small fraction of all data transfers involved in SpMV. The input vector, X,
has a much serious impact on the kernel performance, as its elements are requested
as often as the matrix values. As this is the only data array whose elements can be
used many times during an SpMV kernel invocation, it would be very advantageous
to have it buffered on-chip. However, the access pattern for the elements of x
is completely unpredictable and so an SpMV kernel designer has a very limited
control over the way x can be cached. The most common strategy is to bind it to a
texture cache (on devices supporting OpenCL or CUDA with compute capability cc
< 3.5) or to the 48 kB read-only cache (only for CUDA cc > 3.5). Perhaps the best
thing that can be done regarding x is to reduce the so called matrix bandwidth, i.e.,
permute matrix rows and columns so that to move the nonzero elements towards its



108 Z. Koza et al.

main diagonal. We have seen physics simulations in which renumbering the mesh
cells with the Cuthill-McKee algorithm accelerated the SpMV by a factor of six.

Let’s now consider the matrix data. In ELL all data accesses for both the value
and column index arrays can be fully coalesced by assigning consecutive threads to
consecutive matrix rows. One point worth noticing is that the data in these arrays
are stored in column-major order, so in order to ensure the same coalescing for each
column, the number of rows must be a multiply of a warp size (currently: 32). This
can be achieved by padding the matrix with up to 31 empty rows.

The data transfer coalescence is much harder to achieve in COO and CRS
because in these formats the row lengths can vary and, consequently, there is no
simple functional mapping between the position in the internal array holding the
nonzero matrix values, val, and the matrix row number. Hence, the data in COO
and CRS must be stored in a row-major order. In CRS, the simplest choice is to
assign consecutive threads to consecutive matrix rows. This is the essence of the
so called scalar CRS kernel. In this approach threads process matrix elements in
essentially the same order as in ELL, however, in contrast to ELL, the data are now
arranged in a row-major order. This precludes any data coalescing except when the
row lengths are extremely short. Thus, for most sparse matrices the scalar kernel is
easy to write but very slow to run. Another option is to process matrix rows using
whole warps, which leads to the so called vector CRS kernel. This mapping allows
for good global memory coalescing and results in a kernel that is very efficient for
matrices in which the mean row length is quite high, 100 or more. To understand this
phenomenon, consider a matrix with row lengths equal to 5. In this case a warp of
32 threads would read only 5 data items per clock tick. Moreover, these 5 data items
are quite likely to be located in different 128-byte-long global memory segments
and hence two data transfers may be necessary to complete the read request. In this
particular case the CRS vector loses to the ELL kernel at least 5:32 and perhaps even
5:64. This problem can be mitigated by making a warp process several consecutive
rows, an idea that has led to the development of several CRS-based, GPU-oriented
formats, e.g., CRS SIC and CMRS.

As for COO, this format allows for an elegant implementation based on a
segmented reduction, an algorithm which is, however, beyond the scope of the
present study. While the data transfers turn out to be well coalesced, several kernels
must be launched sequentially to complete the job, each transferring data from or to
the global memory. The COO kernel is not very fast for regular matrices, but since
its computational performance is largely independent of the matrix structure, it can
be found useful for matrices with a very irregular pattern of nonzero elements.

Work imbalance and thread divergence. Some matrices, e.g., those describing
the WWW connections, exhibit a high variability of row lengths. If a block of
threads is assigned one long and many short rows in the “vector” CRS kernel, then
the warps processing short rows will quickly finish their job and stay idle waiting for
the warp processing the long row to finish (work imbalance). If a warp is assigned a
short row, than only a few of its threads will be active (thread divergence). Both of
these problems can be mitigated by reordering the rows and processing more than
one row per warp.
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In summary, ELL excels in data coalescing, CRS in reduction of the storage
overhead, and COOQ is a good alternative for the most irregular sparsity patterns.
The main drawback of ELL is the memory overhead related to zero padding, CRS
is inefficient for matrices with short rows, and COQ is too slow for regular matrices.
These problems can be mitigated in ELL either by combining it with a storage-
efficient format or by some kind of matrix preprocessing involving row permutation,
whereas disadvantages of CRS can be counteracted by processing several matrix
TOWS per warp.

6.2 SpMY for Everyday Usage

Whenever we have to use a nontrivial piece of code, our first thought is to use
a ready-made library. Many implementations of the SpMV kernel are already
available to download from the Internet, both for the CUDA and OpenCL platforms.
Among them, the cuSPARSE, CUSP and Paralution libraries are certainly worth
recommendation.

6.2.1 CuSPARSE

The NVIDIA CUDA Sparse Matrix library (cuSPARSE) is a highly-optimized
C/C++ library of basic linear algebra subroutines used for handling sparse matrices
on the NVIDIA GPUs. It is freely available as part of the CUDA toolkit and contains
implementations for several sparse matrix formats, including CRS and HYB. All
functions are thread-safe and can be called from many host threads. Moreover, they
are executed asynchronously with respect to the CPU and may return control to the
application on the host before they complete their job.

The SpMV product for matrices in CRS format is handled by a family of
functions cusparse[S,D, C, Z] csrmv, where exactly one of the upper-case
letters in the square brackets must be selected to indicate whether the function
accepts real data in single (S) or double (D) precision or perhaps complex data
in single (C) or double (Z) precision. Each of these functions performs a general
matrix-vector operation

y=akxop(A)xx+ B x*y,

where x, y are vectors, A is a sparse matrix stored in CRS, «, B are some constants,
and op is one of three operators that can modify A: either the identity operator
(op(A) = A) or the matrix transpose operator (op(4) = AT), or the conjugate
transpose operator (op(A) = A'"). This operation reduces to the SpMV product for
a=1,8=0,and op(4) = A.



110 Z. Koza et al.

Performing the SpMV operation in HYB is a bit more complicated. CuSPARSE
implements HYB in a opaque data type that can only be manipulated by calling
appropriate subroutines. The first step is to create and initialize an internal data
structure by calling cusparseCreateHybMat. Then one has to fill it with data
by converting a matrix from CRS format using an appropriate subroutine from a
cusparse [S,D, C, Z] csr2hyb family. Now it is possible to perform the SpMV
operation by calling a cusparse [S, D, C, Z] hybmv function.

Tests show that NVIDIA HYB often yields better performance than NVIDIA
CRS. However, HYB requires more storage, especially during conversion from CRS
format, as at this stage a matrix is stored in two disjoint representations.

6.2.2 CUSP

CUSP is a C++ template library for sparse linear algebra operations on the
CUDA platform. Its distinguishing feature is a flexible, high-level interface for
manipulating sparse matrices and solving sparse linear systems. CUSP provides
various linear solvers, preconditioners, sparse linear algebra and graph computation
subroutines and can handle matrices in various sparse formats, including COO,
CRS, ELL and HYB. While its SpMV routines are not as efficient as those available
in NVIDIA cuSPARSE, CUSP is an open-source project based on a liberal Apache
2.0licence, which makes it an excellent starting point for any CUDA-based software
project that exploits sparse linear algebra. The library is available from https://
github.com/cusplibrary.

Listing 6.1 shows an example of how simple and elegant can programming
with CUSP be. This complete program declares a matrix in HYB format, loads its
elements from a file stored in the MatrixMarket file format (* . mtx), allocates and
initializes storage for the input and output vectors, performs the SpMV operation
(cusp: :multiply), and finally prints the result out.

Listing 6.1 An SpMV example in CUSP

#include <cusp/hyb_matrix.h>
#include <cusp/multiply.h>
#include <cusp/io/matrix_market.h>
#include <cusp/print.h>

int main()

{
cusp::hyb_matrix<int, float, cusp::device_memory> A;
cusp::io::read_matrix_market_file (A, "1.mtx");
cusp::arrayld<float, cusp::device_memory> x(A.num_rows, 1);
cusp::arrayld<float, cusp::device_memory> y(A.num_rows, 0);
cusp::multiply (A, x, y);
cusp::print(y);
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6.2.3 Paralution

Paralution is another open-source C++ library for sparse linear algebra. Its unique
feature is a high-level hardware and software abstraction, which enables its users to
develop a portable software that can be compiled for various hardware accelerator
and software backend configurations, including NVIDIA GPUs (CUDA, OpenCL),
AMD GPUs (OpenCL), Intel Xeon Phi (OpenCL, OpenMP) and multicore CPUs
(OpenMP). The target backend can be set at compile time by defining an appropriate
preprocessor macro: SUPPORT CUDA, SUPPORT_OCL or SUPPORT MIC for the
CUDA, OpenCL or Intel Xeon Phi, respectively.

An exemplary Paralution code, a direct counterpart of the program from
Listing 6.1, is presented in Listing 6.2.

Listing 6.2 An SpMV example in Paralution

#include <paralution.hpp>

int main(int argc, charx argv[])
{

paralution::init_paralution();

paralution::LocalMatrix<float> mat;
paralution::LocalVector<float> x, y;

mat.ReadFileMTX("1.mtx");
mat.ConvertToHYB();

x.Allocate("x", mat.get_nrow());
y.Allocate("y", mat.get_nrow());
x.0nes();
y.Zeros();

mat.MoveToAccelerator();
x.MoveToAccelerator();
y.MoveToAccelerator();
mat.Apply(x, &y); 7/ y = A=

paralution::stop_paralution();

}

As can be seen, the matrix and the vectors are first allocated on the host. The matrix
is read from a file (default format: CRS). Next, its format is converted to HYB. All
the data are then moved to the accelerator, if the library can detect one; otherwise
member functions MoveToAccelerator return immediately. If no accelerator is
attached to the host, the data will remain on the CPU and Paralution will attempt to
use the OpenMP backend (it is also possible to use the Intel MKL library instead).
The SpMV operation is executed with the Apply member function. The library is
available from http://www.paralution.comontheGPL-3licence.
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6.3 Custom SpMV Kernels

Sometimes the structure of our sparse matrices exhibit some characteristic patterns
or the problems we are solving require that some other operations, besides SpMYV,
should be implemented efficiently. In both cases a solution may consist in designing
a special matrix format and writing an appropriate SpMV kernel. Such “custom”
sparse formats are usually derived from simpler ones, especially ELL and CRS.
Below we present CUDA and OpenCL implementations for these two basic formats
and discuss the way these formats (and corresponding SpMV implementations)
could be extended to improve the SpMV eperformance.

6.3.1 SpMYV for ELL and ELL-Based Sparse Matrix Formats

As it was already stated, ELL belongs to the most efficient formats for sparse
matrices in which all rows have the same lengths. Moreover, as we shall see, writing
an efficient SpMV implementation for ELL is relatively simple, which makes this
format a good starting point for our further discussion.

6.3.1.1 ELL

Complete SpMYV kernels for matrices stored in ELL, written in OpenCL and CUDA,
are shown in Listings 6.3 and 6.4, respectively.

As might be expected, the two implementations share a lot of features. They
both take eight identical arguments: four integers that define the size of the
original matrix (rows, cols), and the size of its ELL representations (e11_rows,
ell cols) followed by four pointers to 1D arrays that hold the column indices
(col _ind), values (val), input (x) and output (y) vectors. Note that while in
theory ELL holds the values and column indices in dense 2D arrays, in practice they
are implemented as 1D arrays, which leads to instructions like

const int index =i « ell_rows + row;

that transform indices from 2D to 1D representation. Since rows are processed by
individual threads, this formula ensures that all accesses to the output vector (y),
matrix values (val) and column indices (col ind) are fully coalesced provided
that ell rows is a multiply of the warp size. This, in turn, explains why the
number of rows in the internal ELL representation need not be equal to the number
of rows in the matrix and must be passed as a separate argument.

The bodies of the OpenCL and CUDA implementations are almost identical,
the main difference being the mapping of a current thread id into a matrix row. In
OpenCL this is achieved by calling get _global id, whereas CUDA utilizes a
more cumbersome method

const int row = blockDim.x « (gridDim.x « blockldx.y + blockldx.x) + threadldx.x;
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Listing 6.3 An OpenCL kernel for ELL Listing 6.4 A CUDA kernel for ELL
#pragma OPENCL EXTENSION \ template <typename T, size_t BLOCK_SIZE>
cl_khr_fp64 : enable __launch_bounds__ (BLOCK_SIZE,1)
#define T double
__kernel void ell_spmv_d( __global__ void ell_spmv(
const int rows, const int rows,
const int cols, const int cols,
const int ell_rows, const int ell_rows,
const int ell_cols, const int ell_cols,
__global const int »col_ind, const int « __restrict__ col_ind,
__global const T »val, const T« __restrict__ val,
__global const T »x, const T » __restrict__ x,
__global T «y) T « __restrict__y)
{ {
const int row = get_global_id(0); const int row = blockDim.x « (gridDim.x «

blockldx.y + blockldx.x) + threadldx.x;

if (row >= rows) if (row >= rows)
return; return;
T sum = (T)0; T sum = (T)0;
for (int i=0; i<ell_cols; ++i) for (inti=0; i < ell_cols; ++i)
{
const int index =i * ell_rows + row; const int index =i « ell_rows + row;
const int column = col_ind[index]; const int column = col_ind[index];
if (column >=0) if (column >=0)
sum += val[index] * x[column]; sum += val[index] » LOAD(x[column]);
} }
y[row] = sum; y[row] = sum;

which contains a typical expression for a thread id in CUDA kernels invoked on
2D grids of thread blocks. Some implementations, e.g., CUSP, use 1D grids with a
simplified expression for the thread id,

const int thread_id = blockDim.x = blockldx.x + threadldx.x;

This, however, brings about a problem on pre-Kepler architectures, where the
maximum number of threads that can be launched in a 1D grid configuration is
limited to ~2%% ~ 6.7 x 107. If matrices with a larger number of rows are to be
processed by the SpMV kernel, the implementation must be modified to allow a
thread to process several matrix rows (see the CUSP source code for details).

The differences between OpenCL and CUDA versions are mostly technical.
An important advantage of CUDA is that it fully supports C++ templates. This
facilitates writing a generic code that can be used for single or double precision
kernels. In contrast to this, OpenCL requires that a separate function be written
for each data type. Listing 6.4 shows also how template arguments can be used in
CUDA to pass to the compiler some additional bits of information to help it optimize
the code. Function qualifier launch bounds (BLOCK SIZE, 1) asserts
that the kernel will never be launched with more than BLOCK SIZE threads
per block, which the compiler can use to optimize the register usage. Another
interesting feature of the CUDA code is that all the pointers are marked with the
___restrict  qualifier to assert to the compiler that the pointers are not aliased
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and writing through y will never overwrite elements of other arrays. This helps
the compiler to cache the read-only data (pointed to by const pointers) in the
read-only data cache introduced in devices of CUDA compute capability > 3.5.
We may also explicitly demand that some data be fetched via this cache using the
___1dg function. In Listing 6.4 we do it through a macro LOAD, which is defined in
Listing 6.5.

Listing 6.5 A macro to speed up loading of read-only data on the newest CUDA-capable hardware

#if _ CUDA_ARCH__ < 350
# define LOAD(x) x

#else

# define LOAD(x) __ldg(&x)
#endif

6.3.1.2 ELL-Based Formats

ELL is a great starting point for devising new sparse matrix formats tailored to our
needs. Here we only list several extensions of ELL that were recently examined in
the context of GPUs. The details can be found in the original research papers.

— ELL-R: This is ELL with an additional 1D array that stores the actual matrix row
lengths.

— ELLR-T: This is ELL-R in which a warp processes w/ T rows, where w is a warp
sizeand T =1,2,4,...,w.

— Sliced ELL: The matrix is partitioned into strips of S adjacent rows, and each
strip is stored in ELL. Further performance improvement can be achieved by
reordering matrix rows according to their length. For § = 1 this ELL-based
format reduces to CRS.

— Sliced ELLR-T: The matrix is partitioned into slices and each slice is stored in
ELLR-T.

6.3.2 SpMYV for CRS and CRS-Based Sparse Matrix Formats

While GPU-oriented extensions of ELL focus on reducing its storage overhead,
CRS-based formats concentrate on mitigating problems with thread divergence and
memory access coalescence. Writing an efficient SpMV kernel for vector architec-
tures, like GPUs, is more challenging if the matrix is stored in CRS. However, as we
shall see, CRS-based kernels can compete with or even surpass ELL-based kernels.
To further improve CRS kernels, some extensions were suggested, i.e.:

— CRS SIC (CRS with segmented interleave combination) format: The matrix is
partitioned into many strips of a constant height 4 > 2 and the matrix values are
interleaved within each strip, with zero-padding of shorter rows. For example, if
h = 2 and the two rows in a strip have the nonzero values [6, 4, 2] and [1, 5, 3, 7],
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they are interleaved to form a “longer row” [6, 1,4,5,2, 3,0, 7]. These “longer
rows” are then stored in CRS. To reduce zero padding and work imbalance, the
matrix is reordered according to row lengths and may be further partitioned into
several segments containing rows with approximately equal lengths. A separate
CRS SIC kernel is then launched for each segment. Implementation of the SpMV
product for CSR SIC is thus quite complex.

— CMRS (compressed multi-row storage) format: The matrix is partitioned into
strips of hight /. Strips are stored in CRS. An additional array is then used to
identify the actual row index within a strip.

Below we present in a greater detail CUDA implementations of the SpMV kernel
for the CRS and CMRS formats.

6.3.2.1 CRS

One of the problems in designing SpMV kernels for CRS format is how to map GPU
threads into matrix rows. Listing 6.6 shows a “vector” implementation in which each
matrix row is processed by all threads in a corresponding warp.

The kernel begins with a definition of a shared memory array shared. This
array is marked with the volatile keyword to inform the compiler that the array
will be used as a communication vehicle between threads of a block so that the
compiler should never buffer its elements in registers. The size of the array is equal
to the number of threads in a block of threads plus WARP_ SIZE/2 (=16) additional
elements to avoid buffer overrun. Here WARP _SIZE has of course the same value as
that in CUDA’s warpSize register, but the latter cannot be used as a compile-time
constant.

The expression for the thread id,

const int thread_id = blockDim.x = blockldx.x + threadldx.x;

is written with the assumption that the kernel will be launched in a 1D grid
configuration. This implies that a warp may be forced to process more than one
matrix row on devices of cc < 3.5, which explains the outer for loop that runs
over all rows assigned to the current warp. However, there is a deeper thought
behind the outer loop: an attempt to balance warp load. The implementation assumes
that a fixed number of warps has been launched that persist over the duration of
the computation. This approach tends to even out moderate imbalances in per-row
workload related to the variability of the matrix row lengths. Another strategy to
reduce work imbalance is to use small, but not too small blocks. Tests show that
BLOCKSIZE = 128 is a good choice for modern NVIDIA devices.

Each thread accumulates the partial sum it has been assigned to compute and
stores it in register sum, which is private to a thread. Once the whole row has been
processed, all threads in the warp use the shared memory buffer shared to reduce
these values to the actual sum, which is then written to the output vector y. Since
they work in parallel, it suffices to perform only 5 instruction to work out the sum of
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Listing 6.6 A CUDA SpMYV kernel for CRS

template<typename T, int BLOCK_SIZE = 128>

__launch_bounds__ (BLOCK_SIZE,1)

__global__ void spmv_crs(const int « __restrict__ row_ptr,
constint « __restrict__ col_ind,
const T« __ restrict__ val,
const T« __restrict__ x,

T« __restrict__y,
const int rows)

const int WARP_SIZE = 32;
__shared__ volatile T shared[BLOCK_SIZE + WARP_SIZE/2];

const int thread_id = blockDim.x = blockldx.x + threadldx.x;

const int warp_id = thread_id / WARP_SIZE;

const int thread_lane = threadldx.x % WARP_SIZE;

const int num_warps = ( (blockDim.x + WARP_SIZE — 1) / WARP_SIZE ) « gridDim.x;

for(int row = warp_id; row < rows; row += num_warps)
{
const int row_start = row_ptr[row];
const int row_end = row_ptr[row+1];
T sum = T(0);
for(int j = row_start + thread_lane; j < row_end; j += warpSize)
sum += val[j] * LOAD(x[col_ind[j]);

shared[threadldx.x] = sum;

shared[threadldx.x] = sum += shared[threadldx.x + 16];
shared[threadldx.x] = sum += shared[threadldx.x + 8];
shared[threadldx.x] = sum += shared[threadldx.x + 4];
shared[threadldx.x] = sum += shared[threadldx.x + 2];
sum += shared[threadldx.x + 1];

if (thread_lane == 0)
y[row] = sum;

32 numbers. Note that the parallel reduction code in Listing 6.6 explicitly assumes
that the warp size is 32, which may change in future GPU architectures.

Listing 6.6 shows only a basic implementation of the “vector” CRS kernel. It
can be still improved by several techniques, at the cost of increased complexity. For
example, the CUSP library can virtually divide each warp into 2, 4, 8 or 16 smaller
parts and assign them to different rows. This can improve the performance for
matrices with short rows. Another technique, applicable for matrices with long rows,
is to first process the unaligned part of each row to ensure fully coalesced accesses
for the remaining part. It is also possible to speed up the parallel reduction by using
shuffle instructions introduced in CUDA-capable devices of compute capability
> 3.5. These instructions allow to exchange data between the threads of a warp
directly, bypassing the shared memory.
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6.3.2.2 CMRS: A CRS-Based Format for Multi-Row Matrix Processing

The main drawback of the CRS SpMV kernel discussed in Sect. 6.3.2.1 is its low
performance for matrices with relatively short rows. A natural solution to this
problem is to group some rows into strips and process them in parallel, which is the
key idea behind compressed multi-row storage (CMRS). In Fig. 6.2 an exemplary
3 x 3 matrix is encoded both in CRS and CMRS.

01 2

00A B —

11— C —

2|D — E

/
CRS CMRS
0/A[[0](0 0(A||0||0]|0
T gl 12 stip14/g|118]|0
Crow2 2C(118 2|C( 1|51
T 8Dllolls . Djjo| \|0
row 3

4 0

Fig. 6.2 A simple matrix encoded in CRS and CMRS formats, the latter with strip height = 2

CMRS uses four arrays to encode the sparse matrix, the first two of them being
exactly the same as in CRS, while two arrays are specific to CMRS:

Val—a list of non-zero elements;

ColInd—column indices of all entries in Val;

StripPtr—Iocates the first elements of each strip (indices into Val);
RowInStrip—Ilocates rows within a strip (for each element in Val).

If we assume the constant height of all strips (denoted by height or HEIGHT
in the following text) then the number of strips is equal to [rows/height] (the
smallest integer greater than or equal to the ratio rows /height). As an example,
let us consider matrix M introduced in Sect.6.1.1. Assuming height = 2, the
CMRS representation of M reads:

Val=[12345678910],

ColInd=[0314242344],
StripPtr=[04 9 10],

RowInStrip=[0011001110].

Conversion between the CRS and CMRS formats is trivial and easy to parallelize.
In particular, StripPtr[j] = RowPtr[j *x height] for j < strips and
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StripPtr[strips] = nnz, whereas RowInStrip [k] is the remainder of the
row number divided by height. It is also clear that both formats are equivalent if
height = I, hence CMRS can be regarded as a generalization of the CRS format.

By introducing strips, we enlarged the number of contiguous data items pro-
cessed by a warp at the cost of an extra array, without any need for zero-padding
or row permutation. This extra array turns out to be a minor problem: it contains
small integers, as height is assumed to be <16. Consequently, they can be stored
on 4 bits of array Col Ind—the remaining 28 bits are enough to identify column
indices of the matrices that fit into 12 GB of modern GPUs. The main problem with
CMRS is that while in the CRS kernel shown in Listing 6.6 we reserved in the
shared memory only one word (float or double) per thread, with CMRS one should
reserve height such words per thread. As the size of the shared memory is limited,
for large height this will reduce the occupancy (i.e., the ratio of the number of
resident threads to the maximum number of resident threads) and, consequently,
kernel efficiency. For the Kepler-class architecture this sets the upper bound for
height to 4. This problem can be mitigated by the fact that array RowInStrip
allows to dynamically assign threads to rows. In other words, the order of the items
within a strip is essentially arbitrary. In particular, we can try to order them in such
a way that each warp will be assigned to process, at a given time, at most M values
from the same matrix row, where 1| <M < WARPSIZE, all arranged in a contiguous
manner. It turns out that for such arrangement of data items within a strip, the shared
memory per thread is proportional to M. Fortunately, for most sparse matrices from
real applications, one can assume M = 8, a number far smaller than the warp size.
This allows to increase HEIGHT to 16. For most other matrices for which M = 8
cannot be achieved, the solution is. .. zero padding. In a vast majority of cases the
resulting storage overhead is negligible. With height = 16 the mean number of
nonzeroes per strip is 16 times larger than for CRS, usually 2100, and hence we
can apply one more optimization: pad each strip with zeroes to make sure its length
is a multiply of the warp size. This final optimization ensures the full coalescence
of memory accesses to the matrix data at a price of an acceptable additional storage
overhead (usually below 10 %).

The SpMV kernel for the CMRS format is shown in Listing 6.7. Its general
structure resembles that of the CRS “vector” kernel (Listing 6.6): after the current
thread identifies itself, a big for loop is executed that runs over several different
strips and consists of three main parts: the inner for loop running over all elements
of a given strip, the parallel reduction and, finally, the storage of the results. For
convenience, the shared memory buffer is allocated dynamically at run time, as its
size depends on various parameters. A warp has an access to part of the shared
memory buffer via ptr pointer. As this buffer is local to a warp, no explicit
synchronization of different warps is necessary, which allows for massively parallel
processing of strips.

The inner loop is a bit more complicated, as the row and column indices have
to be decoded from a single value stored in col ind. At this point the row index
() is local to the strip and its value is between 0 and HEIGHT — 1. The parallel
reduction is modified to account for the fact that now M x HEIGHT values must be
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reduced to HEIGHT values. Finally, the results are written out in a coalesced way
by HEIGHT contiguous threads.

Tests performed on NVIDIA K20M GPU in double precision show that the
speed-up of the CMRS kernel over both NVIDIA HYB and NVIDIA CRS can be
as high as three-fold, although for some matrices the former implementation yields
the shortest SpMV times—there is no such a thing as a single, universal SpMV
kernel for all sparse matrices. The speedup over the “vector” CRS kernel shown in
Listing 6.6 turns out to be the largest for matrices with short rows and can be as high
as ten-fold (!).

6.4 Further Reading

Perhaps the best way to improve one’s skills in designing SpMV kernels is to consult
the source codes of high quality open-source GPU libraries for sparse linear algebra.
These include:

— CUSP, http://cusplibrary.github.io (CUDA)
— Paralution, http://www.paralution.com (CUDA, OpenCL)

A thorough presentation of many sparse matrix formats and SpMV optimization
techniques on traditional, cache-based processor designs can be found in Vuduc’s
thesis [11]. As for SpMV on GPUs, the primary source of information is a paper by
Bell and Garland [1], which discusses the implementations of several SpMV kernels
that can be found in the CUSP library. The ELL-R format in the context of SpMV on
GPUs was discussed by Vazquez et al. [9]. For Sliced-ELL see Monakov et al. [6],
for ELLR-T see Vazquez et al. [10], for Sliced ELLR-T see Dziekonski et al. [3],
for CRS-T see Yoshizawa and Takahashi [13], and for CSR SIC see Feng et al. [4].
Blocked sparse formats are a separate class of matrix formats not covered here, see
Choi et al. [2] for an example of such a format and the corresponding SpMV kernel.

Listing 6.7 A CUDA SpMYV kernel for matrices stored in CMRS. For conciseness HEIGHT = 16
and 2 < M < 8is assumed

template<typename T, int M>
__global__ void
cmrs_multiply( const int « __restrict__ strip_ptr,
constint » __restrict__ col_ind,
const T » __ restrict__ val,
const T » __ restrict__ x,
T« __restrict__ vy,
int rows )

assert (M >=2 && M <=8);

const int CMRS_BITS = 4;

const int CMRS_MASK = (1 << CMRS_BITS) — 1; /15

const int WARP_SIZE = 32;

const int HEIGHT = 16; // parts of the code below rely implicitly on this particular value
const int asize = HEIGHT+M; // size of warp—owned array in shared memory

// shared memory is assigned dynamically at kernel invocation
extern __shared__ char cdata[];
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// the buffer in shared memory actually contains T’s

T volatile « sdata = reinterpret_cast<T volatile «>(cdata);
// ptr points to the warp—owned buffer in shared memory

T volatile « ptr = &sdata[(threadldx.x / WARP_SIZE)+asize];

const int thread_id = blockDim.x = blockldx.x + threadldx.x;

const int warp_id = thread_id / WARP_SIZE;

const int thread_lane = threadldx.x % WARP_SIZE;

const int num_warps = ( (blockDim.x + WARP_SIZE — 1) / WARP_SIZE)  gridDim.x;

for(int strip = warp_id; stripHEIGHT < rows; strip += num_warps)

// let’s zero the buffer local to the current warp
#pragma unroll
for(int k = 0; k < M/2; k++)
ptrithread_lane + WARP_SIZE+k] = 0;

const int strip_start = strip_ptr[strip];

const int strip_end = strip_ptr[strip + 1];

for(int j = strip_start + thread_lane; j < strip_end; j += WARP_SIZE)
{

int ¢ = col_ind[j];
intr = c & CMRS_MASK;
¢ >>= CMRS_BITS;
r += HEIGHT «(thread_lane % M);
ptr[r] += LOAD(x[c]) = val[j];
}

// Now the parallel reduction of the data pointed by ptr.
Tz=0;
if (M ==2)
z = ptr[thread_lane];
if (M > 4)

ptrithread_lane] += ptr[thread_lane + HEIGHT+4];
ptrithread_lane + 32] += ptrthread_lane + HEIGHT+4 + 32];

}
if (M >2)

z = ptr[thread_lane] += ptr[thread_lane + HEIGHT+2];
if (thread_lane < HEIGHT)

z += ptrlthread_lane + HEIGHT];

// write the results to y

int row = stripHEIGHT + thread_lane;

if (thread_lane < HEIGHT && row < rows)
y[row] = z;

Special optimization techniques necessary for sparse matrices with a power-law
distribution of row lengths were studied by Yang et al. [12]. Optimization techniques
for Kepler-class GPUs were discussed by Mukunoki and Takahashi [7]. Autotuning
of the parameters for the SpMV kernels on GPUs was discussed, for example, by
Choi et al. [2] and Su and Keutzer [8]. Finally, the CMRS format with two SpMV
implementations was described by Koza et al. [5] and examples of its application
are available at http://speedit.vratis.com.
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Chapter 7
Solving Ordinary Differential Equations
on GPUs

Karsten Ahnert, Denis Demidov, and Mario Mulansky

7.1 Introduction

One of the most common problems encountered in Physics, Chemistry, Biology,
but also Engineering or Social Sciences, is to find the solution of an initial value
problem (IVP) of an ordinary differential equation (ODE). In fact, many physical
laws are written in terms of ODEs, for example the whole classical mechanics, but
ODEs also emerge from discretization of partial differential equations (PDEs) or
in models of granular systems or when studying networks of interacting neurons.
In the most cases one faces ODEs that are too complicated to be solved with
analytic methods and one has to rely on numerical techniques to find at least an
approximate solution. Of course, there exists a wide range of numerical algorithms
to find such solutions of IVPs of ODEs. An introduction to both the mathematical
background and the numerical implementation can be found in the textbooks from
Hairer, Ngrsett and Wanner [14,15]. The standard work for numerical programming,
the “Numerical Recipes” [29] also contains detailed sections on solving ODEs.
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There are also several special classes of ODEs that require specific numerical
methods, e.g. the Hamiltonian systems in physics which are typically solved using
symplectic routines [21].

Obviously, there is a variety of numerical tools and libraries dedicated to solving
ODEs. All mathematical software packages, like Matlab, Maple, Mathematica, or
even R [30, 34] contain routines for integrating ODEs. However, the focus here lies
on the direct implementation of ODE simulations. For this task, one also finds a
vast selection of numerical libraries, typically with Fortran or C/C++ bindings.
Most prominent are probably the codes shipped with the “Numerical Recipes”
book [29] containing several sophisticated explicit and implicit routines. The GNU
scientific library (GSL) also provides ODE functionality [10], and finally the
SUNDIALS suite [16] offers a modern implementation of all important algorithms.
Unfortunately, none of those libraries supports GPU devices. However, there exists
a highly flexible C++ library dedicated to ODEs: Boost.odeint,! which is designed
in such a generic way that the algorithms are implemented completely independent
from the computational backend. Thus, by providing a computational backend that
employs GPUs one immediately gets a GPU implementation of the ODE solver.
Boost.odeint already includes several backends for GPU computations: for the
NVIDIA CUDA-framework based on the Thrust? library or the CUDA MTL4? [8]
and for the OpenCL-framework based on VexCL,* ViennaCL,’ or Boost.Compute.®
In this text we will show how to implement ODE algorithms in such a generic way
that separates the computational backend and thus greatly simplifies the portability
to GPUs. Furthermore, we present two such backends, based on CUDA and OpenCL
and develop several example simulations using these ODE codes. However, the
most difficult part when writing an ODE simulation is the implementation of the
right-hand-side (RHS) of the ODE, as it will be explained later. Hence, although
Boost.odeint provides all the functionality to find a numerical solution of a given
ODE, implementing the RHS of the ODE remains a non-trivial task.

The examples presented later will use modern C+4- techniques and thus require
the reader to be familiar with several advanced C++4 concepts, e.g. we will
make heavy use of templates to write generic code. Moreover, knowledge of
the C+4 Standard Library is also useful, specifically containers, iterators and
algorithms. For the ODE algorithms implementation we make use of the C+-+03
standard only, but in some of the examples we employ the new C++11 and even
C+-+14 abilities.

In the following sections we will give a short introduction to ODEs and the
basic numerical schemes for finding approximate solutions (Sect. 7.2), followed by

'http://www.odeint.com.
Zhttp://thrust.github.com.
3http://www.simunova.com/gpu_mtl4.
“https://github.com/ddemidov/vexcl.
Shttp://viennacl.sourceforge.net/.
Shttps://github.com/kylelutz/compute.
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a description of the generic implementation of those algorithms in Sect. 7.3. Then
in Sect. 7.4 we will specifically describe how to use the various GPU backends and
how they are implemented. The Boost.odeint library is introduced in Sect. 7.5 and
Sect. 7.6 contains several examples on how to efficiently implement the RHS of
different ODE problems together with a discussion of the performance implications
of possible implementations. Finally, Sect.7.7 contains a short summary and
conclusions.

7.2 Numerical Schemes

Before describing the generic implementation of ODE solvers and how to adapt
them for GPU usage we will give a short introduction to ODEs and some mathe-
matical background about the numerical schemes. This is mainly to familiarize the
reader with our notation; for a more detailed description of the mathematics behind
ODE integration we refer to standard textbooks, e.g. [14, 15].

7.2.1 Ordinary Differential Equations

Generally, an ODE is an equation containing a function x(¢) of an independent
variable ¢ and its derivatives x’, x”,...:

F(e,x',x",....x" 1) =0. (7.1

This is the most general form, including implicit ODEs. However, we will here only
consider explicit ODEs, which are of the form x™ = f(x,x’,x”,...,x" V) and
are much simpler to be addressed numerically. The highest derivative n that appears
in the ODE is called the order of the ODE. But any ODE of order n can be easily
transformed into an n-dimensional ODE of first order. Therefore, it is sufficient to
consider only first order differential equations where n = 1. The numerical routines
presented later will all deal with initial value problems (IVP) where additionally to
the ODE one has also given the value for x at a starting point x (¢ = #p) = xo. Thus,
the mathematical formulation of the problem that will be numerically addressed
throughout the following pages is:

C%X(t) = f(x(?),1), x(t = ty) = Xo. (7.2)

Here, we use bold face x to indicate a possible vector character. Typically, the ODE
is defined for real-valued variables, i.e. x € RV, but it is also possible to consider
complex valued ODEs where x € CV. The function f(x, ¢) is called the right-hand-
side (RHS) of the ODE. The most simple physical example for an ODE is probably
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the harmonic oscillator, e.g. a point mass connected to a spring. Newton’s equation
of motion for such a system is:

d2
3240 = —wyq(1), (7.3)

where ¢(¢) denotes the position of the mass and wy is the oscillation frequency, a
function of the mass m and the stiffness of the spring k: wy = /k/m. This can be
brought into form (7.2) by introducing p = dg/d¢, using x = (¢, p)” and defining
some initial conditions, e.g. ¢(0) = ¢go, p(0) = 0. Using the short-hand x = dx/dt
and omitting explicit time dependencies we get:

x = f(x) = (_ £2q)’ x(0) = (‘f(’)o). (7.4)
0

Note, that f in Eq. (7.4) does not depend on the variable ¢, which makes Eq. (7.4) an
autonomous ODE. Also note that in this example the independent variable ¢ denotes
the time and x a point in phase spaces, hence the solution x(¢) is the trajectory of
the harmonic oscillator. This is a typical situation in physical ODEs and the reason
behind our choice of variables ¢ and x.”

For the harmonic oscillator in Eq. (7.4), one can easily find an analytic solution
of the IVP: ¢(¢) = go cos wpt and p(t) = —qgowy sin(wyt). For more complicated,
non-linear ODE:s it is often impossible to find an analytic solution and one has to
employ numerical methods to at least find an approximate solution. One specific
example are systems exhibiting chaotic dynamics [26], where the trajectories can
not be described in terms of analytic functions. One of the first models where this
has been explored is the so-called Lorenz-system [35], a three-dimensional ODE
given by the following equations for x = (x1, X2, x3)7 € R3:

X; =o0(x2—x1)
)'62 = Rxl — X2 — X1X3 (75)

fC3 = X1X2 — bX3,

where o, R, b € R are parameters of the system. Although the solution might be
impossible to find analytically, there are mathematical proofs about its existence and
uniqueness under some conditions on the RHS f, e.g. the Picard-Lindel6f theorem
which requires f to be Lipschitz continuous [37]. Provided that this condition is
fulfilled and a unique solution does exist, as it is the case for almost all practical
problems, one can apply a numerical algorithm to find an approximate solution.

7In Mathematics, the independent variable is often called x and the function is y(x).
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7.2.2 Runge-Kutta Schemes

The most common general-purpose schemes for solving initial value problems of
ordinary differential equations are the so-called Runge-Kutta (RK) methods [14].
We will focus on the explicit RK-schemes as those are easier to implement and
well-suited for GPUs. They are a family of iterative one-step methods that rely on
a temporal discretization to compute an approximate solution of the IVP. Temporal
discretization means that the approximate solution is computed at time points .
So we use x, for the numerical approximation of the solution x(#,) at time #,. In
the simplest, but most frequently used case of an equidistant discretization with a
constant step size At, one writes for the numerical solution:

X, ~ X(t,), with ¢, =ty +n- At. (7.6)

The approximate points X,, are obtained sequentially using a numerical algorithm
that can in the most general form be written as:

Xpt1 = Fa(X,). (7.7)

The mapping F 4, here represents the numerical algorithm, i.e. the Runge-Kutta
scheme, that performs one iteration from x, to x,4+; with the time step Az. The
numerical scheme is said to have the order m if the solution it generates is exact up
to some error of order m + 1:

x| = x(t;) + O(A™ 1), (7.8)

where x(#;) here is the exact solution of the ODE at ¢, starting from the initial
condition x(#y) = X¢. Hence, m denotes the order of accuracy of a single step of the
scheme.

The most basic numerical algorithm to compute such a discrete trajectory
X1, X2, ... is the Euler scheme, where F,;(x,) = x,, + At - f(x,, t,), which means
the next approximation is obtained from the current one by:

X,+1 =X, + At -£(X,, 1,). (7.9)

This scheme has no practical relevance because it only offers accuracy of order
m = 1. A higher order can be reached by introducing intermediate points and
thus dividing one step into several stages. For example, the famous “RK4” scheme,
sometimes also called the Runge-Kutta method, has s = 4 stages and also
order m = 4. Itis defined as follows:
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Table 7.1 Generic Butcher c
Tableau with s stages o

(&] as,y asp

Cg g1 (2% e Css—1

bl bZ e bxfl bA\'

Table 7.2 Butcher tableau 0
with coefficients for the RK4 12 1 12
method 2| o 1

10 0 1
[ 16 13 13 1/6

1
Xp+1 =X, + gAt(kl + 2k, + 2k3 + k4), with

k= f(X,,,ln),
At At

k =f(x,+ —k.t, + — |, (7.10)
2 2
At At

k; = f(Xn + Tkz,fn + 7) s

ks =f(x, + At K3, 1, + At).

Note, how the subsequent computations of the intermediate results k; depend on the
results of the previous stages k; ;.

More generally, a Runge-Kutta scheme is defined by its number of stages s and a
set of parameters ¢y ...cs, as1,d31,d3y,...,ds—1 and by . .. bs. The algorithm to
calculate the next approximation x,, 1 is then given by:

Xn+1 = Xp + At Zbikiv where
i=1
i (7.11)

ki = f(x, + Alzaijkjvtn + ¢ Ar).

J=1

The parameter sets a; ;, b; and ¢; define the so-called Butcher tableau (see Tables 7.1
and 7.2) and fully describe the specific Runge-Kutta scheme. The Butcher tableau
for the RK4 scheme above is given in Table 7.2. Note, that the above schemes have
a lower triangular structure. For tableaus with entries in the upper right region the
method becomes an implicit RK-scheme and can not easily be implemented.
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Table 7.3 Computational requirements of the Runge-Kutta algorithms

Requirement Representation in C++  Example

Represent mathematical entities ~ Template parameter vector<double>, double
Memory management Function specialization resize<state type>
Vector iteration Template parameter container algebra
Elementary operations Template parameter default operations

7.3 Generic Runge-Kutta Implementation

In this section, we will develop an implementation of the Runge-Kutta schemes
described above. The code will be designed in such a way that it separates the
algorithm from the underlying computations and thus can be easily ported to GPUs.
We will therefore analyze the computational requirements of the Runge-Kutta
algorithms and produce a modularized implementation. In this way, we will be able
to replace, for example, the memory management and the computational backend
with GPU variants and thus obtain a GPU implementation without re-implementing
the algorithm itself. This will allow us to easily use the same code with different
GPU technologies, i.e. CUDA and OpenCL.

7.3.1 Computational Requirements

To analyze the algorithmic parts involved in a Runge-Kutta scheme, we will
start with a straight-forward implementation that does not yet provide any mod-
ularization. Listing 7.1 shows such an implementation for the RK4 algorithm as
given by Eq.(7.10). It defines a class runge kutta4 that provides a member
function do_step which performs a single RK4 step given a system function
system, the current state x, the current time t and the time step dt. Note how
we use a template parameter System to specify the system function. This gives
us already some flexibility as do_step immediately works with function pointers
and functor object, but also in more complicated cases like generalized functions
objects from std: : function or boost: : function [3,12] or even C++11 lamb-
das. Basically anything that defines a function call operator with the signature
operator () (state type &x, state type &k, double t) can be Supplied as
systemin do_step.

In the following we will extract the computational requirements for the Runge-
Kutta algorithms from the simple implementation in Listing 7.1. First, we need to
define a representation of the dependent variable x. In the runge kutta4 class a
vector<double> from the Standard Template Library [36] is used for that purpose
(Line 7). After that, we need to define the type of the independent variable ¢ (called
the time type below). In Listing 7.1 (Line 13) we use double for this purpose.
Then we need to introduce variables for temporary results (Line 38) and allocate
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Listing 7.1 Simple Runge-Kutta4 implementation simple runge kutta4.hpp

class runge kuttad
public:
typedef std::vector<double> state type;
runge kutta4 (size_t N)
N(N), x tmp(N), k1(N), k2(N), k3(N), ka(N) { }
template<typename System>
void do step (System system, state type &x, double t, double dt)
{
const double dt2
const double dt3
const double dté = dt / 6;
system(x, k1, t);

o
28
~ O
w N

for(size t i = 0; 1 < N; ++1)

x _tmp[i] = x[i] + dt2 = k1[i];
system(x_tmp, k2, t + dt2);
for(size t i = 0 ; 1 < N; ++i)

x tmp[i] = x[i] + dt2 = k2[i];
system(x_tmp, k3, t + dt2);
for(size t i = 0; 1 < N; ++1)

x tmp[i] = x[i] + dt = k3[i];
system(x_tmp, k4, t + dt);
for(size t i = 0; 1 < N; ++1)

x[1i] += dtéxk1[i] + dt3xk2[i] + dt3xk3[i] + dtéxk4[i];

1
private:

const size t N;
state type x tmp, k1, k2, k3, k4;

b

Listing 7.2 Runge-Kutta class with templated types

templatec<
class state_ type,
class value_type = double,
class time_type = value type
>

class runge kuttad {

}i

typedef runge kutta4< std::vector<double> > rk stepper;

enough memory for the temporaries, done in the constructor (Line 10). And finally
we have to perform the summation and multiplication, in general operations of the
form:

Yy =aiX; + axXy + - + agX,, (7.12)
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where y and x, are of state type and a, are of floating point type, typically
double. Hence, from a mathematical view point, these operations are vector-vector
addition and scalar-vector multiplication. In the runge kutta4 class above we
specifically perform the iteration over the elements of the state type and use the
intrinsic operators + and « on those elements which are just double values here.
All the requirements identified above are again listed in Table 7.3. Note how in the
runge kutta4 class in Listing 7.1 the parts to satisfy these requirements are hard-
coded into the class. If we want to change, for example, the state type to some
construct that resides on the GPU, we have to completely rewrite the class for a new
state_type, but also to change the memory allocation and the vector operations,
thus rewriting the whole algorithm, e.g. in terms of a new class runge kutta4 gpu.
In the next section, however, we will present a modularized implementation based
on the requirements identified here, which allows to exchange the fundamental
types, memory allocation and vector computations so that the code can be ported
to GPUs without changing the algorithm itself.

7.3.2 Modularized Design

In the following, we will generalize the basic implementation above by moving
the parts addressing the several requirements out of the runge kutta4 class and
keeping only the essential algorithm.

We start with the fundamental types used to represent the mathematical objects
in the Runge-Kutta schemes Eq. (7.10). From a computational point of view we
identify three different kinds of objects:

1. The state of the solution at some time x(¢), typically more dimensional and
represented by a vector<doubles.

2. The independent variable ¢, typically the time and represented by a double.

3. Parameters of the Runge-Kutta scheme as given in the Butcher Tableau
(Table 7.2), usually also represented by double values.

The standard way to generalize an algorithm for arbitrary types in C4++ is to
introduce template parameters. We will also follow this approach and define three
class template parameters state type, value type and time type. Listing 7.2
shows the skeleton of the new runge kutta4 class. Note how we use default
template parameters to provide value type and time type as double, so for the
most typical case the user only has to specify the state type, as shown exemplarily
in Line 9. It should be noted that the derivatives might require a representation
different from the state, especially if arithmetic types with dimensions are used, for
example the ones from Boost.Units [33].

Let us now consider the memory allocation. In the basic implementation in
Listing 7.1 this is done in the constructor which therefore requires the system
size. This implementation relies on the existence of a constructor accepting the
numbers of elements N, which is not generic enough because the state type
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does not need to be a vector anymore, or even a container at all. Therefore we
will change the implementation and introduce a templated helper function resize
that takes care of the resizing and can be specialized by the user for any given
state_type. The result is outlined in Listing 7.3. The resize function here adjusts
the allocated memory of some object out using the size of the given object in.
This is the most flexible way. With this technique the runge kutta4 class takes
care of the memory automatically, and it works out-of-the-box for all containers
that provide a size and resize member functions. If some other state type is
employed, the user can implement an overload of the resize function to tell the
runge kutta4 how to allocate memory. One example could be fixed-size arrays
boost : :array<double, N>, which live on the stack and do not require manual
memory allocation. Hence, the resize function would just be empty (and disappear
during the optimization step of the compilation), shown in Lines 7—11 in Listing 7.3.
Note that this implementation already supports the case when the system size
changes during the integration, i.e. if the size of x changes between do_step calls.
However, checking the system size at each step of the algorithm is not necessary
for almost all situations and thus it is a waste of performance. This can be solved
by adding a trivial logic that only calls resize during the first call of do_step (not
shown here for clarity).

Now we arrive at the final and most difficult point: the abstraction of the numer-
ical computation. As seen from the mathematical definition of the Runge-Kutta
scheme in Eq.(7.11), we need to calculate vector-vector sums and scalar-vector
products to perform a Runge-Kutta step. In the simplistic implementation above
(Listing 7.1), this is done by explicit for loops and arithmetic operators + and «. In
our abstraction of this computation, we divide these computations into two distinct
parts: iteration and operation. The first one will be responsible for iterating over
the elements of the involved state types, i.e. it addresses the vector character of
the computation. The code structure that performs these iterations will be called
Algebra. The operation on the other hand represents the computation that is
performed for each element, i.e. within the iteration. The respective code structure
will be called operation.

We start with the Algebra. For the RK4 algorithm we need to provide two func-
tions that do iteration over three and six container instances. A possible Algebra is
presented in Listing 7.4, where for the sake of clarity only the for each3 method
is shown.

The iteration is performed in terms of for each functions that are gathered in
a struct called container algebra. The for each functions expect a number
of containers and an operation object as parameters. They simply perform the
iteration over the elements of the containers and execute the given operation on
each of the container’s elements. Here we use a raw hand written for-loop which
requires a size () member function and the []-operator for the given container
types s1,s2.... This loop could easily be generalized to use iterators which is the
preferred and recommended way in C++- to iterate over containers. Inside the loop
the functors op are applied to the elements of the containers. Listing 7.5 shows
an exemplary implementation of such operations designed to be used within the
container algebra above. It consists of functor types organized in a struct
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Listing 7.3 Memory allocation

template<class state_ type>

void resize (const state type &in, state type &out) {
// standard implementation works for containers
out.resize(in.size()) ;

}

// specialization for boost::array

template<class T, size t N>

void resize (const boost::array<T, N> &, boost::array<T,N>& ) {
/% arrays don’t need resizing =/

}

template< ... >
class runge kuttad {
/).

template<class Sys>
void do step(Sys sys, state type &x, time type t, time type-~dt)
{
adjust_size (x);
//
1

void adjust_size (const state type &x) {
resize (x, x_tmp) ;

resize (x, kl1);
resize (x, k2);
resize (x, k3);
resize (x, k4);
1
}
Listing 7.4 Example algebra for the RK4 container algebra.hpp

struct container algebra ({
template<class S1, class S2, class S3, class Op>
static void for each3 (S1 &sl, S2 &s2, S3 &s3, Op op) {
const size t dim = sl.size();
for(size t n = 0; n < dim; ++n)
op(sl[n], s2[n]l, s3[n]);

called default operations. The scale sum2 works with the for each3 above,
while the scale sums that interacts with for eaché is again omitted. Those
functors consist of a number of parameters alphal,alpha2... and a function call
operator that calculates a simple product-sum (Listing 7.5).

With these abstractions we have moved the computational details away from the
algorithm into separate code structures and thus reached a generic implementation
of the RK4 algorithm (shown in Listing 7.6). The runge kutta4 class got two
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Listing 7.5 Example operations for the RK4 default operations.hpp

struct default operations ({
template<class Facl = double, class Fac2 = Facl>
struct scale sum2 {
typedef void result type;
const Facl alphal;
const Fac2 alpha2;
scale sum2 (Facl alphal, Fac2 alpha2)
alphal (alphal), alpha2(alpha2) { }
template<class TO0, class Tl, class T2>
void operator () (TO &t0O, const Tl &tl, const T2 &t2) const {
t0 = alphal % tl + alpha2 * t2;

more template parameters specifying the algebra and operations, i.e. the compu-
tational backend used for the calculation. We use the container algebra and
default operations from Listings 7.4 and 7.5 as the default values that will work
for almost all cases. In the do_step method we now use the for each functions
from the given Algebra in combination with the scale sum functors from the
given Operations to perform the required computations. So the explicit for-loops,
that were hard-coded into the algorithm in the first implementation (Listing 7.1),
have been separated into two parts, an algebra and operations. Those parts are
supplied to the algorithm in terms of template parameters and can thus be easily
replaced without changing the algorithm itself. This flexibility now allows us to
port the RK4 implementation to GPUs. The idea is to first provide a GPU data
structure, e.g. a gpu_vector with the respective resize functions as required by the
algorithm (Listing 7.3). Then we only need a gpu_algebra and gpu_operations
to do the vector computations on the GPU in a parallelized way. Assuming we
have implemented those pieces, the following code would give us a RK4 algorithm
running on the GPU:

typedef runge kutta4< gpu vector<double>, double, double,
gpu_algebra, gpu operations > gpu_ stepper;

So with the generalized implementation we have greatly simplified the problem
of implementing a Runge-Kutta scheme on the GPU. Instead of having to start
from scratch, we now only have to implement a basic data structure for the
GPU (gpu_vector), provide low-level functions for memory allocation (resize),
iteration (algebra) and fundamental calculations (operations). But the real
strength of this approach is that these remaining problems are so fundamental that
they are already solved for GPUs. Of course, there are libraries that provide data
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Listing 7.6 Generic RK4 implementation runge kutta4.hpp

template<class state type, class value type = double,
class time type = value type,

class algebra = container algebra,
class operations = default operationss>
class runge kuttad

public:
template<typename System>
void do_step (System &system, state type &x,
time type t, time type dt)

{

adjust_size( x );

const value type one = 1;

const time type dt2 = dt/2, dt3 = dt/3, dte = dt/6;

typedef typename operations::template scale sum2<
value type, time type> scale sum2;

typedef typename operations::template scale sum5<
value type, time type, time type,
time type, time type> scale sum5;

system(x, k1, t);

algebra::for each3 (x tmp, x, kl, scale sum2 (one, dt2));

system(x_tmp, k2, t + dt2);

algebra::for each3 (x tmp, x, k2, scale sum2 (one, dt2));

system(x_tmp, k3, t + dt2);

algebra::for each3 (x tmp, x, k3, scale sum2 (one, dt));

system(x_tmp, k4, t + dt);

algebra::for eaché6 (x, x, k1, k2, k3, k4,

scale_sumS(one, dte, dt3, dt3, dte6));
1
private:

state type x tmp, k1, k2, k3, k4;

void adjust_size (const state type &x) {
resize (x, x_tmp);
resize (x, k1l); resize(x, k2);
resize (x, k3); resize(x, k4);

structures and memory management for the GPU, as well as parallelized iteration
and element-wise computations. In the following sections we will introduce two
such libraries and show how they are combined with the RK4 implementation from
Listing 7.6 to produce a GPU-version.

It should be noted that this approach of separating the algorithm from the
computations is not only valuable when aiming at GPU computations. With the
implementation above we can, for example, also easily create a RK4 algorithm
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that works with arbitrary precision types instead of the usual double. Another
example would be an ODE solver based on interval arithmetic [22], also easily
implementable by providing some interval operations.

7.3.3 Lorenz Attractor Example

Before considering the GPU backends we want to show how to use the codes above
to compute a trajectory of the famous Lorenz system (7.5) introduced earlier in
Sect.7.2.1. Listing 7.7 shows the implementation of a simulation of a trajectory for
this system based on the runge kutta4 class developed above. As seen there, all
that is left to do is to define the state type, implement the RHS of the ODE, here
done in terms of a functor lorenz, and define the initial conditions (Line 30). Now
we can use the Runge-Kutta algorithm implemented above (Listing 7.6) to iterate
along the trajectory using a step size of At = 0.1.

7.4 GPU Backends

Having reduced the problem of running the ODE solver on GPUs to memory
management and some basic algebra operations, we finally come to the point of
implementing those necessities. Instead of relying on low-level GPU programming
and thus essentially reinventing the wheel, we will use existing high-level libraries
that offer GPU data structures as well as routines for algebraic operations. To
cover all available GPU technologies we will develop two GPU backends, the first
one based on the NVIDIA CUDA technology, the second one for the OpenCL
framework. For the CUDA environments, we will employ the Thrust library [4],
which is part of the NVIDIA CUDA SDK [24]. In the case of OpenCL, we will rely
on the VexCL library [7], an open source library developed at the Supercomputer
Center of Russian Academy of Sciences.

7.4.1 Thrust Backend

The Thrust library is a C++ template library that provides containers and algo-
rithms similar to the Standard Template Library (STL) [36], but capable of running
parallel on a CUDA GPU. Besides the CUDA backend, Thrust also supports CPU
parallelization via OpenMP [25] and Intel’s Thread Building Block (TBB) [31],
configurable at compile time by preprocessor variables. As said above, Thrust is part
of the NVIDIA CUDA framework and thus requires the use of the nvcc compiler
to generate code that can be executed on GPUs. For a thorough introduction
into CUDA programming and Thrust in particular, we refer to the respective
documentation [4,24].



7 Solving Ordinary Differential Equations on GPUs 139

Listing 7.7 Computing a trajectory of the Lorenz system lorenz_single.cpp

#include <iostream>
#include <vectors>
#include "runge kutta4.hpp"
using namespace std;
typedef std::vector<double> state type;
typedef ncwg::runge kutta4< state type > rk4 type;
struct lorenz (
const double sigma, R, b;
lorenz (const double sigma, const double R, const double b)
sigma(sigma), R(R), b(b) { }
void operator () (const state type &x,state type &dxdt,double t)

{

dxdt [0] = sigma * ( x[1] - x[0] );
dxdt [1] = R * x[0] - x[1] - x[0] * x[2];
dxdt [2] = -b % x[2] + x[0] *» x[1];
1
Vi
int main()

const int steps = 5000;
const double dt = 0.01;
rk4_ type stepper;
lorenz system(10.0, 28.0, 8.0/3.0);
state type x(3, 1.0);
x[0] = 10.0;
for( size t n=0 ; n<steps ; ++n ) {
stepper.do_step (system, x, nxdt, dt);
cout << n*xdt << ' ' ;
cout << x[0] << ' ' << x[1] << ' ' << x[2] << endl;

To handle the memory on the GPU, Thrust provides a thrust: :device vector
template class similar to std::vector from the STL. This will be our basic
state_type representing the state x of the dynamical system. As Thrust mimics the
STL, the thrust : :device vector also has size and resize member functions,
which means that the memory management for std: : vectors given in Listing 7.3
also works nicely with thrust: :device vectors—no specialization is required.
This is a nice example of how well-designed libraries, such as Thrust, decrease the
required programming effort by increasing the re-usability of your code.

To ensure that the vector computations are executed in parallel on the GPU, we
introduce a thrust_algebra as a replacement of the container algebra (see
Listing 7.4) above. To implement the for each3 and for_eachsé functions required
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Listing 7.8 The Thrust algebra thrust algebra.hpp

struct thrust algebra {
template<class S1, class S2, class S3, class Op>
static void for each3 (S1 &sl, S2 &s2, S3 &s3, Op op) {
thrust::for_each(
thrust::make zip iterator ( thrust::make_ tuple (

sl.begin(), s2.begin(), s3.begin() ) ),
thrust::make zip iterator ( thrust::make_ tuple (
sl.end(), s2.end(), s3.end() ) ),

op) ;

in the algebra, we will employ Thrust’s thrust: : for each routine. This routine
has the following signature:

thust::for each(Iterator begin, Iterator end, UnaryOperator op)

where the iterators begin and end define a range of data in a device vector
and op defines the operation performed for each element of the sequence. As seen
from the signature above, thrust::for each iterates only over a single range
from begin to end, but for our for each3 and for eache we need to iterate over
several device vectors at once. Fortunately, this can be easily achieved by using
zip iterators that combine an arbitrary number of iterators into a single iterator
and thus allows us to use thrust::for each for iterating over several ranges at
once. The implementation of the thrust algebra based on thrust::for each
and make zip iterator in combination with make tuple is shown in Listing 7.8.
The usage of make zip iterator and make tuple is almost self-explanatory:
make tuple combines the given parameters (iterators in this case) into a single
tuple, and make zip iterator then converts this tuple of iterators into a single
zip iterator that can then be passed to the for each algorithm. Note that the
implementation of the for eachse algorithm is omitted here for clarity.

Of course, we also need to replace the default operations, containing the
scale sum functors (see Listing 7.5), by a CUDA-compatible implementation.
These functions contain the code that in the end will run in parallel on the GPU,
which means that they will be compiled into so-called kernels. Therefore, they
need to be decorated by specific compiler instruction to make the nvcc compiler
generate specific GPU code for those functions. For this purpose, CUDA provides
the keywords device and host . The former indicates that a function will
run on a GPU, and the latter assures that the compiler will also generate a CPU
version. Listing 7.9 shows the implementation of the thrust operations. The
keywords are used before the function definition in Line 19.

Furthermore, we have to bear in mind that since we used zip iterators in the
for each,the scale sumfunctors also get the elements from several ranges packed
in a single tuple. To access the individual elements, we have to unpack the tuple,
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Listing 7.9 The Thrust operations thrust operations.hpp

struct thrust operations {
template<class Facl = double, class Fac2 = Facl>
struct scale sum2 {
const Facl m_alphal;
const Fac2 m_alpha2;
scale_sum2 (const Facl alphal, const Fac2 alpha2)
: m_alphal (alphal), m_alpha2 (alpha2) { }
template< class Tuple >
__host _ device  void operator () (Tuple t) const {
thrust::get<0>(t) = m_alphal * thrust::get<l>(t) +
m_alpha2 % thrust::get<2>(t);

which can be done by the Thrust’s get<N> (tuple) function that simply returns the
N-th entry of the given tuple. Together with the thrust algebra (see Listing 7.8)
this completes the CUDA backend for the RK4 scheme. The following code defines
a gpu_stepper class that computes an approximate trajectory using the GPU:

typedef thrust::device vector<double> state type;
typedef runge kutta4< state type, double, double,
thrust algebra, thrust operations > gpu_ stepper type;

With this, we have successfully ported the RK4 scheme to GPUs using func-
tionality from the Thrust library. However, for a complete simulation we also have
to implement the RHS function such that it is also computed on the GPU. This is
highly non-trivial and will be discussed in detail for several examples in Sect. 7.6.

7.4.2 VexCL Backend

The Thrust backend above allows to run ODE integration on NVIDIA GPUs only
as it is based on the CUDA technology. To address a wider range of hardware, we
will now present a computational backend based on OpenCL (Open Computing
Language) [23]. OpenCL supports NVIDIA as well as AMD/ATI GPUs, but can
also be used for parallel runs on multi-core CPUs.

As above, we will not start from scratch but rather employ the modern, well-
designed GPGPU library VexCL [7]. The library does not only provide the required
data structures, but also covers the vector operations which makes our work even
simpler than with Thrust. As the data structure for representing a state_type we
will use a vex: :vector, which is again similar to a std: :vector. Listing 7.10
shows the resize function specialized for the vex: : vector<T>. Note how we have
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Listing 7.10 Memory allocation for VexCL vexcl resize.hpp

template<class T>
void resize (const vex::vector<T> &in, vex::vector<Ts> &out) {
out.resize (in.queue list (), in.size());

template<class T, size t N>

void resize (const vex::multivector<T,N> &in,
vex::multivector<T,N> &out)

}

out.resize (in.queue list (), in.size());

Listing 7.11 Vector space algebra vector space algebra.hpp

struct vector space algebra {
template<class S1, class S2, class S3, class Op>
static void for each3 (S1 &sl, S2 &s2, S3 &s3, Op op) {
op(sl, s2, s3);
1

Vi

to pass on the list of OpenCL command queues that contains crucial information
about where the data will reside (i.e. which compute device) to the vector’s resize
function. Just like the required size, we extract this information from the given
vex::vector instance in. Additionally to the usual vectors, VexCL also pro-
vides a vex::multivector<T, N>, which is basically a group of N instances of
vex::vector<T> and can be quite handy for some problems. Hence, we also
provide the resize functionality for vex: :multivector<T, N> in Listing 7.10.

We are left with the vector operations, but as mentioned above this is very simple
with VexCL. Being a library designed specifically for linear algebra, VexCL natively
supports vector-vector addition and scalar-vector multiplication. Assuming x, y and
z are of type vex: : vector<double> and a and b are double values, the following
code performs the element-wise summation and scalar multiplication of the vectors:

Z =a* X+ b *vy;

That means that the VexCL library intrinsically performs the iteration over the
elements of the vector in parallel on an OpenCL compute device (i.e. a GPU).
Mathematically, one can say that the vex: :vector together with the standard +
and « operators form a vector space. Hence, it is not required for us to implement
a parallelized iteration ourselves and the existence of an algebra is not necessarily
required, in contrast to the Thrust backend above (c.f. Listing 7.8). But as the
algebra is part of the structure of our ODE solver and can not be neglected,
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we provide a trivial vector space algebra that simply forwards the operation
directly to the vectors without performing an iteration. This is shown in Listing 7.11.

This implementation is not only useful for VexCL and its vex: :vector, but
also for any other vector library that provides vector operations in terms of + and
operators, e.g. MTL4 [11] or Boost.uBLAS [39]. To account for this generality we
call this trivial algebra a vector_ space algebra, as it works with any type that
forms a vector space. From the above it is also clear that for VexCL we do not
need to take special care of the operations. As VexCL redefines the operators +
and « itself, we can simply plug in the default operations from the beginning
(Listing 7.5). Therefore, the computational backend for OpenCL based on VexCL
is finished and we can construct an algorithm that is capable of running on a GPU
device with the following code:

typedef vex::vector<double> state type;
typedef runge kutta4< state type, double, double,
vector_ space algebra, default operations > gpu stepper type;

7.5 The Boost.odeint Library

Above, we have shown how to implement the RK4 scheme in a generic way such
that it can be easily ported to GPUs. We have demonstrated the strengths of this
approach by providing two backends that address CUDA and OpenCL devices
respectively. However, there is a vast potential for improvement and extension
of this code. Although this goes well beyond the scope of the present text, we
want to mention that a highly sophisticated implementation of the ideas and
techniques above exists in the Boost.odeint library [1,2]. Boost.odeint also separates
memory allocation, iteration and fundamental operations from the actual algorithm
in the same way as described above in Sect.7.3.2. But in contrast to the ad hoc
implementation presented here, Boost.odeint is a fully grown library consisting of
about 25,000 lines of C4+ code. It includes a vastly larger functionality and we
shortly list the most important points below:

* Arbitrary explicit Runge-Kutta schemes, predefined schemes: Dormand-Prince
5, Cash-Karp, Runge-Kutta78.

* Symplectic Runge-Kutta-Nystrom schemes.

e Variable order method: Bulirsch-Stoer.

e Multistep methods: Adams-Bashforth, Adams-Bashforth-Moulton.

» Implicit routines: Rosenbrock method, implicit Euler.

* Step-size control and dense output.

» Integrate routines with observer support.

* [Iterator and range interfaces.

* Support of arbitrary precision arithmetic with Boost.Multiprecision.

* Support of additional backends: eigen [13], GSL vectors [10], Math Kernel
Library [17], Matrix Template Library [11], ViennaCL [32].
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Listing 7.12 lorenz_ thrust vl.hpp

typedef thrust::device vector<double> state type;
struct lorenz_ system {
struct lorenz functor ({
double sigma, b;
lorenz_ functor (double sigma, double b)
sigma (sigma), b(b) {}
template<class T>
__host _ device  void operator () (T t) const

double x = thrust::get<0>( t );

double y = thrust::get<l>( t );

double z = thrust::get<2>( t );

double R = thrust::get<3>( t );
thrust::get<4>( t ) = sigma » (y - x );
thrust::get<5>( t ) =R *» X -V - X *x Z;
thrust::get<6>( t ) = -b * 2 + x * y;

}
}i
template<class State, class Derivs>
void operator () (const State &x, Deriv &dxdt, double t) const {
BOOST AUTO (start,
thrust::make zip iterator ( thrust::make tuple (

x.begin (),
x.begin() + n,
x.begin() + 2 * n,
R.begin(),

dxdt .begin(),

dxdt .begin() + n,
dxdt.begin() + 2 * n
) )

)i

thrust::for each(start, start+n, lorenz functor (sigma, b));

If Boost.odeint provides the necessary algorithms and functionality to solve a
problem, we strongly advise to use this library. However, some problems require
specialized schemes or additional computations. In this case the code developed
in the previous pages should represent a good starting point to develop a specific
algorithm in a generalized way that is easily portable to GPUs.
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Listing 7.13 lorenz_vexcl vl.cpp

typedef vex::multivector<double, 3> state type;
struct lorenz_system ({
void operator () (const state type &x, state type &dxdt,
double t) const
{

dxdt = std::tie(

sigma * (x(1) - x(0)),
R « x(0) - x(1) - x(0) % x(2),
x(0) * x(1) - b » x(2) );

7.6 Example Problems

7.6.1 Lorenz Attractor Ensemble

In the first example we consider the Lorenz system (7.5). Solutions of the Lorenz
system usually furnish very interesting behavior in dependence on one of its
parameters. For example, one might want to study the chaoticity in dependence
on the parameter R. Therefore, one would create a large set of Lorenz systems
(each with a different parameter R), pack them all into one system and solve
them simultaneously. In a real study of chaoticity one may also calculate the
Lyapunov exponents [26], which requires to solve the Lorenz system and their linear
perturbations.

In the Thrust version of the example we define the state type as device vector
of size 3n, where n is the system size. The X, Y, and Z components of the state are
held in the continuous partitions of the vector. The system functor holds the model
parameters and provides a function call operator with the necessary signature. Here
we use the standard Thrust technique of packing the state components into a zip
iterator which is then passed to a thrust: : for_each algorithm (Listing 7.12).

The system function object for the VexCL version of the Lorenz attractor
example is more compact than the Thrust variant because VexCL supports a rich
set of vector expressions. We represent the three components of attractor trajectory
as a multivector<double, 3>. Since VexCL provides all necessary overloads for
the multivector type, we are able to use the vector space_algebra in this case
(Listing 7.13).

Figure 7.1 shows performance results for the Thrust, VexCL, and CPU versions
of the Lorenz attractor example. Time in seconds required to make a 1,000 of
RK4 iterations is plotted against the ensemble size N. Lines denoted “Thrust v1”
and “VexCL v1” correspond to the versions presented above. “CPU v1” is the
Thrust version compiled for the OpenMP backend. Times for the Thrust and the
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VexCL versions of the code are given for the NVIDIA Tesla K20c GPU. Times
for the CPU runs are given for the Intel Core i7 920 CPU (all four cores of which
were used through OpenMP technology). It is clear from the figure that the initial
implementations for the Thrust and the VexCL libraries perform equally well for
large problem sizes and are about 14 times faster than the CPU version. VexCL has
higher initialization costs and hence is a bit slower than Thrust for smaller problems.
However, the distinction seems not as important once we note that both the Thrust
and the VexCL versions loose to the CPU version for N < 10*.

Note that both the Thrust and the VexCL versions above have the same drawback.
Namely, both of them use device vectors as state type. Hence, intermediate state
variables used in the steppers are stored in the global GPU memory. Moreover,
each operation results in a launch of a separate compute kernel. A kernel launch
has nonzero overhead both in CUDA and in OpenCL, but more importantly, each
kernel needs to both read and write intermediate states from/to the global GPU
memory. Since the problem is memory bound, this leads to a severe drop in
performance.

We could overcome the above problem by providing a monolithic kernel which
would encode the stepper logic and provide the complete solution in a single launch.
However, the use of such kernel would also mean the loss of the flexibility we
achieved so far by separation of algorithm and the underlying computations: one
would have to completely re-implement the kernel for each new problem. Luckily,
VexCL library allows us to generate such a fused kernel automatically by providing
the vex: : symbolic<T> class template. Instances of the type dump to the specified
output stream any arithmetic operations they are being subjected to. For example,
in the following code snippet two symbolic variables are declared and participate in
an arithmetic expression:

10 ‘
o—o CPU vl
S CPU v2
10 o—o Thrust vl
2 v—v VexCL v1
2 T VexCL v2
<
e
et
g 100
; 107!
&
1072
Fig. 7.1 Performance results 1073

for the Lorenz attractor
example N
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vex::generator::set recorder (std::cout) ;
vex::symbolic<double> x = 6, y = 7;
x = sin( x x y );

This generates the following output:

double varl = 6;
double var2 = 7;
varl = sin( (varl x var2) );

This is implemented by overloading arithmetic operators and mathematical func-
tions for the symbolic classes. So when two symbolic variables are being added,
the overloaded addition operator just outputs names of the variables divided by
symbol “+” to the specified output stream. By defining the state type to be
boost: :array< vex::symbolic<double>, 3>, and using the same algebra and
the system function as in Listing 7.7, we are able to record the sequence of arithmetic
operations made by a Runge-Kutta stepper. This gives us a fused kernel which is as
effective as a manually written one (Listing 7.14).

This approach has some obvious restrictions: namely, it only supports embar-
rassingly parallel problems (no data dependencies between threads of execution),
and it does not allow conditional statements or loops with non-constant number of
iterations. But when the method works, it works very well. This version of the code
is denoted “VexCL v2” in Fig. 7.1 and is about ten times faster than the initial VexCL
implementation.

We use a similar approach in order to accelerate the CPU version of the
example. Namely, we create a Boost.odeint stepper for a single Lorenz attractor
(state type is boost: :array<double, 3>), and then we use an outer loop which
iterates over the complete ensemble (Listing 7.15). This version of the code
(“CPU v2”) uses less memory and is more cache-friendly. As a result, it is about
6 times faster than the Thrust example with the OpenMP backend. Unfortunately,
the Thrust library does not allow the same type of optimization. We could in
principle create a device function that would operate on a single attractor (by calling
runge kuttad<...>::do_step from inside the function), and apply the function
to the complete ensemble with the help of the thrust::for each algorithm. But
CUDA requires all device functions to be decorated with device keyword, and
the Boost.odeint functions are not marked as such.

7.6.2 Chain of Coupled Phase Oscillators

As a second example we consider a chain of coupled phase oscillators. A phase
oscillator describes the dynamics of an autonomous oscillator [18]. Its evolution is
governed by the phase ¢, which is a 2w-periodic variable growing linearly in time,
i.e. ¢ = w, where w is the phase velocity. The amplitude of the oscillator does
not occur in this equation, so interesting behavior can only be observed if many of
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Listing 7.14 lorenz_vexcl v2.cpp

typedef vex::symbolic<double> sym vector;
typedef boost::array<sym vector, 3> sym state;
// Custom kernel body will be recorded here
std::ostringstream body;
vex::generator::set_recorder (body) ;
// State types that would become kernel parameters
sym_state sym S = {{
sym vector (sym vector::VectorParameter),
sym vector (sym_vector::VectorParameter),
sym vector (sym vector::VectorParameter)
b
sym vector sym R(sym vector::VectorParameter, sym vector::Const);
// Stepper type
odeint::runge kutta4 classicc
sym state, double, sym state, double,
odeint::container algebra, odeint::default operations
> stepper;
// Record single RK4 step
lorenz_system sys(sym R);
stepper.do_step(sys, sym S, 0, dt);
// Generate the kernel from the recorded sequence
auto kernel = vex::generator::build kernel (ctx, "lorenz",
body.str(), sym S[0], sym S[1], sym S[2], sym R);
// Real state initialization
vex: :vector<double> X(ctx, n), Y(ctx, n), Z(ctx, n), R(ctx, n);
X =Y =2 =10.0;
R = Rmin + dR » vex::element index() ;
// Integration loop
for(double t = 0; t < t max; t += dt)
kernel (X, Y, Z, R);

such oscillators are coupled. In fact, such a system can be used to study phenomena
like synchronization, wave and pattern formation, phase chaos, or oscillation death
[20,27]. It is a prominent example of an emergent system where the coupled system
shows a more complex behavior than its constituents.

The concrete example we analyze here is a chain of nearest-neighbor coupled
phase oscillators [5]:

@i = w; +sin(@i+1 — @;) + sin(p; — @i—1). (7.13)

The index i denotes here the i -th phase in the chain. Note, that the phase velocity is
different for each oscillator.

From the implementation point of view, the main difference between the phase
oscillator chain and the Lorenz attractor examples is that in the former example the
values of neighboring vector elements are needed in order to compute the system
function. In the Thrust version this is implemented with help of fancy iterators.
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Listing 7.15 lorenz_ cpu v2.cpp

#pragma omp parallel for
for(size t i = 0; 1 < n; ++1i) {
odeint::runge_kutta4 classicc<
state_type, double, state type, double,
odeint::container algebra, odeint::default_ operations
> stepper;
lorenz_ system sys(RI[i]);
for(double t = 0; t < t max; t += dt)
stepper.do_step(sys, x[i], t, dt);

First, we define device functors left_nbr and right nbr returning left and right
neighbor positions for the i-th element. Then we create a couple of permutation
iterators from transformed counting iterators (with left nbr and right nbr used
as transformation functors), pack the resulting iterators together with iterators x,
omega, and dxdt into a zip iterator. Finally we call the thrust::for each
algorithm with the accordingly defined system functor (Listing 7.16).

We use a similar technique for the VexCL version of the example. VexCL
provides the vex::permutation function that allows to permute arbitrary
expressions (Listing 7.17). Note how the use of C++-11 auto keyword in Lines 38—
40 allows us to conveniently capture intermediate expressions and thus simplify the
code in Line 42.

Fig. 7.2 Performance results
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po_thrust.cpp

typedef thrust::device vector< double > state type;
struct phase oscillators ({

struct left nbr

}i

thrust::unary function<size t, size_t> {

__host _ device  size t operator() (size t i) comst ({

return

}

(i > 0)

struct sys functor ({
template< class Tuple >

}i

void operator ()

{

? i -

1

0;

__host _ device  void operator () ( Tuple t ) {
double phi ¢ = thrust::get<0>(t);
double phi 1 = thrust::get<l>(t);
double phi_r = thrust::get<2>(t);
double omega = thrust::get<3>(t);
thrust::get<4>(t) = omega +

sin(phi r - phi c)

}

double

dt)

BOOST AUTO (start,

)i

)

+ sin(phi ¢ - phi 1);

(const state type &x, state type &dxdt,

thrust::make zip iterator(
thrust::make tuple (
x.begin (),
thrust::make permutation iterator (
x.begin(),
thrust::make transform iterator (
thrust::counting iterator<size_ t>(0),
left nbr ()

)

thrust::make permutation iterator (
X.begin(),
thrust::make_ transform iterator (
thrust::counting iterator<size t>(0),
right nbr(n - 1)

)

)

omega.begin (),
dxdt .begin ()

)

thrust::for each(start,

S

tart + n, sys_functor());
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Listing 7.17 po_vexcl.cpp

typedef vex::vector<double> state type;
struct phase oscillators (
void operator () (const state type &phi, state type &dxdt,
double t) comnst

{
VEX_ FUNCTION (left, size t(size t),
"return (prml > 0) ? prml - 1 : 0;");
VEX_ FUNCTION (right, size t(size t, size t),
"return (prml >= prm2) ? prm2 : prml + 1;");
auto idx = vex::element index () ;
auto phi l=vex::permutation (left (idx)) (phi) ;
auto phi r=vex::permutation (right (idx,phi.size()-1)) (phi) ;
dxdt = omega + sin(phi r - phi) + sin(phi - phi 1);
}

The performance results for the chain of coupled phase oscillators are presented
in Fig. 7.2. Again, the Thrust and the VexCL versions show similar results for large
problems (with VexCL being faster by about 20 %). The GPU versions are 70-80
times faster than the CPU version (which is the Thrust version compiled for the
OpenMP backend). The higher acceleration w.r.t. the Lorenz attractor example is
explained by the higher FLOP/byte ratio of the problem.

7.6.3 Molecular Dynamics

Molecular dynamics (MD) are a simulation technique for a large number of small
interacting particles, typically with local interaction forces. Examples are systems of
molecules [9], granular systems [28], or coarse-grained models of fluid molecules.

Here, we study a two dimensional MD simulation described by the following
equations of motion for particle i

m;x; = floc(-xi) + ffric(xi) + Z finz‘(-xis-xj) . (7.14)

JESi

m; is the mass of the particle, fj,. is a local external force, for example the gravity.
fint(xi, x;) is the (low-range) interaction between the particles i and j and the sum
goes over all particles in an appropriate surrounding S; of particle i. The second
term is the friction which usually is only velocity dependent. Of course, other terms
might also be included here, but for our purposes the above equation is generic
enough to explain most details of implementing a molecular dynamics simulation.
The restriction to two dimensions is easily generalizable to three dimensions. In
fact, most of the following code is already independent of the concrete dimension.
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For the interaction we use the Lennard-Jones potential [19]

r dVv
|r| dr

Sint(xi, xj) = — with r =x; —x; (7.15)

with

V(r) = 4¢ ((%)12 - (g)é) . (7.16)

It is used to describe the interaction of chemically unbounded atoms and molecules.
Here ¢ is the strength of the interaction and o denotes the interaction radius. The
interaction decreases very fast with increasing distance of the particles f ~ r~7.
So, to speed up the simulations one usually restricts the interactions for particle i to
particles withing its surrounding S; = {j : |[x; — x| < 40}. Of course, this means
that mathematically the Lennard-Jones is not continuous anymore, but this is only
of minor importance for our sample application. In practice several possibilities to
overcome this discontinuity exist.

How can one implement such rather complicated systems of ODEs in a high-
performance way on GPUs? The obvious idea would be to discard the locality of
the potential and calculate all pairwise interaction for all particles. Unfortunately,
this brute-force solution is far from being optimal. The computational complexity is
O (n?) since all possible pairwise interactions are calculated. As explained above the
interaction decreases very fast with increasing particle distance, so one should only
take neighboring particles into account. In the following we present an algorithm
for this problem and its GPU-implementation.

The basic idea is to assign particles to a regular grid of relatively large cells and
calculate the interaction of particle i only with the particles located in neighboring
cells, see Listing 7.18. This method is also known as cell list algorithm. Another
popular ansatz for the interaction computation,—the neighbor list—takes only the
neighbors of particle i into account [38]. In the following we will only concentrate
on the first method.

In the two-dimensional case each cell can be identified either by a two dimen-
sional index (jx, j,) or by a one dimensional index j = iy + n,j, where n, is the
number of cells in x-direction. The ordering of the particles is done in two steps.
First, the cell index j of each particle is calculated and stored in a vector cell idx,
lines 213-220. Secondly, the particles are sorted in ascending order according to the
cell index. Of course, the vector of particles is not ordered itself. Instead, a vector
with indices is created and sorted according to the cell indices. This is done by the
sort_by key algorithm from Thrust which sorts the first container and reorders the
second container according to the order of the first one. The part_ord vector is then
used as the index to refer to the original element in the particles vector. This kind of
sort algorithm is also know as bucket sort [6].

The cell idx vector now consists of a sorted array of the cell indices for each
particles. Next we find the range (begin and end) for each cell in cell idx which
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Listing 7.18 mdc_thrust v2.cu
71 template< typename LocalForce , typename Interaction >
72 struct md_system bs {
204 void operator () (point vector const &x, point vector const &v,
205 point vector &a, double t) const
206 {
207 typedef thrust::counting iterator< size t > cij;
209 // Reset the ordering.
210 thrust::copy(ci(0), ci(prm.n), part ord.begin()) ;
212 // Assign each particle to a cell.
213 thrust::for each(
214 thrust::make zip iterator ( thrust::make_ tuple (
215 x.begin(), cell coo.begin(), cell idx.begin()
216 ) ) r
217 thrust::make zip iterator ( thrust::make tuple (
218 x.end (), cell coo.end(), cell idx.end()
219 ) ) r
220 fill index n hash( prm ));
$353 // Sort particle numbers in part ord by cell numbers.
223 thrust::sort by key(cell idx.begin(), cell idx.end(),
24 part_ord.begin()) ;
26 // Find range of each cell in cell idx array.
227 thrust::lower_bound (cell idx.begin(), cell_ idx.end(),
28 ci(0), ci(prm.n_cells), cells begin.begin()) ;
230 thrust::upper_bound (cell idx.begin(), cell_ idx.end(),
231 ci(0), ci(prm.n_cells), cells end.begin()) ;
233 // Handle boundary conditions
234 thrust::transform(x.begin(), x.end(), x_bc.begin(),
235 bc_ functor (prm)) ;
237 // Calculate the local and interacttion forces.
238 thrust::for_ each(
239 thrust::make zip iterator ( thrust::make tuple (
240 X bc.begin(), v.begin(), cell coo.begin(),
241 ci(0), a.begin()
242 ) ) 2
243 thrust::make zip iterator ( thrust::make tuple (
244 X bc.end(), v.end(), cell coo.end(),
245 ci(prm.n), a.end()
246 ) ) 2
247 interaction functor (cells begin, cells end, part ord,
248 X, Vv, prm)

249 ) ;
250 }
w8 )

corresponds to particles located in each of the cells (Lines 227-231). The range
limits are stored in the cells begin and cells end arrays.

The final step is to compute the local forces and interactions for all particles,
see Lines 238-249. Here we loop over all particles and velocities. The result is
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Listing 7.19 mdc_thrust v2.cu

template< typename LocalForce , typename Interaction >
struct md_system bs {
struct interaction functor
template< typename Tuple >
__host _ device  void operator () ( Tuple const &t ) const {
point type X = thrust::get<0>( t );
point _type V = thrust::get<l>( t );
index type index = thrust::get<2>( t );
size t cell idx = thrust::get<3>( t );
point_type A = local force (X, V);

for(int i = -1; 1 <= 1; ++1i) {
for(int j = -1; j <= 1; ++3) {
index type cell index = index + index type (i, j);
size t cell hash = get cell idx(cell index, nx, ny);
for(size t ii = cells begin[cell hash],
ee = cells end[cell hash]; ii < ee; ++ii)

{

size t jj = order[iil;

if( jj == cell idx ) continue;

point type Y = x[jjl;
if ( cell index[0] >= nx ) Y[0] += xmax;

if ( cell index[0] < 0 ) Y[0] -= xmax;
if ( cell index[1] >= ny ) Y[1] += ymax;
if ( cell index[1] < 0 ) Y[1l] -= ymax;

A += interaction (X, Y);

}
}

thrust::get<4>( t ) = A;

the acceleration which is stored in the vector a. The vector cell coo contains the
index of the cell in which the current particle is located. The interaction functor
is shown in Listing 7.19. First, the local force is calculated in Line 176. Then two
loops iterate over all neighboring cells of the current particle. Inside that loop the
interaction between all particles in this cell and the particle is calculated. Lines 190-
193 perform checks and corrections if particles are out of boundaries or are located
on the opposite side of the considered domain.

At this point we only need to define the concrete solver type. A classical solver
for molecular dynamic simulation is the Velocity-Verlet algorithm [9], which is used
for second order ODEs and makes single RHS evaluation during one step. Here we
use the implementation of the method from Boost.odeint.

The VexCL implementation follows the Thrust variant closely, so we omit the
code for the sake of conciseness. VexCL provides sort_by key primitive, and we
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Fig. 7.3 Performance results
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had to implement lower bound and upper bound algorithms in form of custom
VexCL functions. We also had to use custom kernel in order to compute the
interaction force. The kernel source is very similar to the Thrust interaction functor
(Listing 7.19). See md_vexcl_v2.cpp file for the complete VexCL solution.
Figure 7.3 shows performance results for the different versions of the molecular
dynamics example. Versions denoted by “v1” implement the straight-forward algo-
rithm with O(n?) complexity. “v2” versions employ the bucket sort optimization.
Both of the CPU versions use separate code which was again omitted from the
text. The versions that use bucket sort optimization are expectedly faster than the
“v1” algorithm. The Thrust and the VexCL versions show similar performance
for large enough problems on the same hardware (with VexCL by 10-30 % faster
than Thrust). For both versions the GPU implementations are orders of magnitude
faster than the CPU implementation (factor 75 for “v1” and 25 for “v2”). But the
biggest performance boost comes from the algorithmic complexity reduction: e.g.
the optimized VexCL version runs 300 times faster than the straight-forward one.

7.7 Summary and Conclusions

We have presented a high-level approach to compute numerical solutions of ODEs
by developing a generic implementation of common ODE solvers. The proposed
framework is very flexible and is able to adapt several CPU and GPU backends. The
Thrust and the VexCL backends considered here are very different with respect to
their interface design, but nevertheless are easily incorporated with our approach to
generic algorithms. The proposed ideas and techniques are already implemented in
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the Boost.odeint library, which offers a vastly larger functionality, including more
steppers and more backends.

Regarding the backend choice, it seems that the use of VexCL results in generally
shorter and cleaner code for the kind of problems we considered here. Admittedly,
for the more advanced molecular dynamics example we had to implement a custom
OpenCL kernel, although the implementation was very similar to the corresponding
Thrust functor. Performance-wise, VexCL showed slightly better results for the
larger problems, but due to OpenCL initialization cost was slower for the smaller
problem sizes. The main advantage of VexCL (and of OpenCL libraries in general)
seems to be the larger set of supported hardware. It should be noted that Boost.odeint
supports many other backends, which allows the user to choose the one best suited
for the problem at hand, or the one they feel most comfortable with. This freedom
is the great advantage of the modularized, generic design that we presented here
for ODE solvers. It is clear that this technique can be applied to other numerical
algorithms as well.
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Chapter 8
GPU-Based Parallel Integration of Large
Numbers of Independent ODE Systems

Kyle E. Niemeyer and Chih-Jen Sung

8.1 Introduction

In a number of science and engineering applications, researchers are faced with
the task of solving large numbers of independent systems of ordinary differential
equations (ODEs). One prominent example is the simulation of reactive flows
for modeling combustion [5, 15, 25, 27, 28], atmospheric chemistry [1, 13], and
groundwater transport [2,3], where operator splitting [31,33] decouples the solution
of the fluid transport (e.g., advection, diffusion) and chemical kinetics terms. This
results in large numbers of independent ODESs for the conservation of chemical
species masses, with one system for each spatial location. The solution of the
aggregate of these ODEs consumes most of the total wall-clock time of such
simulations, >90 % in some cases. Simulations of electrical behavior in cardiac
tissue use a similar operator splitting technique, which results in ODE systems
for cell membrane dynamics [23, 34]. Other areas that deal with solving many
independent systems of ODEs include systems biology [6, 40] and Monte Carlo
methods for sensitivity analysis of ODEs [10, 16, 18].

In such problems, large numbers of the same governing ODEs with different
initial conditions and/or input parameters must be integrated; since each system is
independent, the entire set of ODEs can be integrated concurrently. While perfor-
mance can be improved by using parallel central processing unit (CPU) methods,
this embarrassingly parallel problem is especially well-suited to acceleration with
the thread-based parallelism of graphics processing units (GPUs), as demonstrated
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for reactive-flow simulations [21, 22,29, 32]. In particular, Niemeyer and Sung [21]
recently developed a GPU-based approach for the integration of moderately stiff
chemical kinetics ODEs using explicit integration algorithms, using an adaptive
fifth-order Runge—Kutta—Cash—Karp (RKCK) method for nonstiff cases and a
stabilized second-order Runge—Kutta—Chebyshev (RKC) method for problems with
greater stiffness. For large numbers of ODEs, they demonstrated that the GPU-based
RKCK and RKC algorithms performed up to 126 and 65 times faster, respectively,
than CPU versions of the same algorithm on a single CPU core. Furthermore,
with moderate levels of stiffness, the GPU-based RKC offered a speedup factor
of 57 compared to a conventional implicit algorithm executed in parallel on a
six-core CPU. The specific acceleration factor demonstrated depended on the
problem studied (e.g., the kinetic mechanism) and number of ODEs considered.
Due to the favorable performance of these methods, in this chapter we present the
integration algorithms, associated GPU source code, and implementation details so
that interested readers can apply them to more general applications (e.g., the areas
described above).

8.2 Mathematical Background

In this chapter, we represent a generic system of ODESs using

dy

d_l = f(ts y(t)v g) ) (81)

where y(¢) is the vector of unknown dependent variables at some time ¢, f is the
right-hand-side vector function, and g is a vector of constant parameters (e.g.,
pressure or temperature for chemical kinetics). The size of y (i.e., the number
of equations/unknowns) is N. For the types of problems with which we are
concerned here, a large number of ODE systems, Ny, each given by Eq.(8.1)
must be integrated independently from some time ¢ = ¢, to t,4+1, with different
initial conditions y (#,) and constant parameters g for each system. The numerical
approximation to the exact solution y(¢,) is y,, and the step size for a given step is
Stn =lIn+1 —Iln-

Nonstiff ODEs, or those with little stiffness, can be solved using explicit
integration methods. Many such methods exist, and algorithms can be classified
in general into Runge—Kutta and linear multistep methods, and also into explicit or
implicit methods; see Hairer and Wanner [9] for more details. Stiffness, a concept
somewhat difficult to quantify, refers to the quality of an ODE making standard
explicit methods perform poorly due to the requirement for unreasonably small
time-step sizes—otherwise the solutions become unstable and oscillate wildly [8].

Traditionally, implicit integration algorithms such as those based on backwards
difference formulas have been used to handle stiff equations, but these require
expensive linear algebra operations on the Jacobian matrix (e.g., LU decomposition,
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matrix inversion). The complex logical flow of such operations results in highly
divergent instructions for different initial conditions, making implicit algorithms
unsuitable for operation on GPUs. In fact, Stone and Davis [32] implemented a
traditional high-order implicit algorithm on GPUs, and found that it performed
only slightly better than a multi-core CPU version of the same algorithm would.
While implicit algorithms may be required for ODE systems with extreme levels
of stiffness (suggesting that new solutions need to be found for GPU acceleration
of such problems), other options can be used for cases of little-to-moderate
stiffness. Here, we describe two integration algorithms suitable for use solving many
independent systems of ODEs on GPUs.

8.2.1 Runge—Kutta—Cash—Karp

For nonstiff ODEs, an appropriate explicit algorithm is the fifth-order Runge—Kutta
method developed by Cash and Karp [4]: the RKCK method. The RKCK method
estimates the local truncation error using an embedded fourth-order method, by
taking the difference between the fourth- and fifth-order solutions. It then uses this
estimate to adaptively select the step size [26].

Using the terminology established above, the RKCK formulas—which also
apply to any general fifth-order Runge—Kutta method—are

ki = 61, £ (20, yn. 8) . (8.2)
ko = 68t,£(ty +ax8t,,y, + baiky, 8) (8.3)
k; = 81, £(t, + a3 8t,,yn + ba1k; + bioks, g) (8.4)
ky = 81, £(ty + a4 81y, yn + baiki + biky + bssks, g) (8.5)
ks = 81, £(t, + as8t,,yn + bsiky + bsoks + bssks + bssky, g) (8.6)
ke = 81, £ (1, + a6 81y, yn + be1ki + be2ks + besks + besky + besks, 8)
8.7
Yu+1 = ¥Yn + ciky + c2ko + c3kz + c4ky + csks + ceks (8.8)
Yoi1 =Yn + ik + 5k + i ks + ks + ks + cg ks | (8.9)

where y, 1 is the fifth-order solution and y;_ , is the solution of the embedded
fourth-order method. The RKCK coefficients are given in Table 8.1. The local error
A, 4+ is estimated using the difference between the fourth- and fifth-order solutions:

[3
An-‘rl = Y¥Yn+1 _y:+1 = Z (Ci _Cl*) ki . (810)
i=1

Then, this error is compared against a desired accuracy, A, defined by

Ao = e(|ynl + 82, f (1. ¥n. 8) +0) . (8.11)
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Table 8.1 Coefficients for the fifth-order Runge—Kutta—Cash—Karp method, adopted from Press

et al. [26]
i a; b[j Ci Ci*
1 37 2825
. . 378 27648
2 A 3 0 0
3 3 3 9 250 18575
10 40 40 621 48384
4 3 3 2 6 125 13525
5 10, S 10 500 2 59 5529
5 1 54 2 7 27 0 14336
6 7 1631 175 575 44275 253 512 1
B 55296 512 13824 110592 4096 1771 4
j 1 2 3 4 5

where ¢ is a tolerance level and § represents a small value (e.g., 1073°). When the
estimated error rises above the desired accuracy (A, | > Ay), the algorithm rejects
the current step and calculates a smaller step size. Correspondingly, the algorithm
accepts a step with error at or below the desired accuracy (A,+; < Ay) and
calculates a new step size for the next step using

CN1/5
S §t, max; (‘AA%D ifApp1 < Ag ,or

Stnew = (8.12)

Li

S\ /4
§ 61, max; (|22 |) " ifAuer > Ao

Here, i represents the ith element of the related vector and S denotes a safety factor
slightly smaller than unity (e.g., 0.9). Equation (8.12) is used to calculate the next
time step size both for an accepted step and also for a new, smaller step size in the
case of a step rejection. In practice, step size decreases and increases are limited to
factors of 10 and 5, respectively [26].

8.2.2 Runge—Kutta—Chebyshev

For ODEs with moderate levels of stiffness, one alternative to implicit algorithms
is a stabilized explicit scheme such as the RKC method [30, 35-39]. While the
RKC method is explicit, it handles stiffness through additional stages—past the first
two required for second-order accuracy—that extend its stability domain along the
negative real axis of eigenvalues.

Our RKC implementation is taken from Sommeijer et al. [30] and Verwer

et al. [39]. Following the same terminology as above, the formulas for the second-
order RKC are

(8.13)
(8.14)

Wo =Yn,

w, = wo + fi; §t, fo ,
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Wi= (1= =vj)Wo+ [;Wj-1
+Ujo_2+ﬁj51nfj_1+)7j81nf0, j=2,...,5, (8.15)
Yut+1 = W, (8.16)

where s is the total number of stages and w; are internal vectors for the stages. The
right-hand-side derivative vector function, f;, is evaluated at each stage, such that
f; = £(t, + c; 8t,, w;, g). The recursive nature of w; allows the use of only five
arrays for storage. The coefficients used in Egs. (8.14) and (8.15) can be obtained
analytically for any number of stages s > 2:

- 2b‘a)o —b‘ - 2b~a)1
= b, = =7 , .=_/’ .:/_’ 8.17
H1 w1, M b Vj b, K b, ( )

s — 1 T} (wo)
Vi =—aj—1it;, bo=0>by, b= o bj = ’ 2 (8.18)

' (7/(@0)

K TS‘/(Q)O)

W0=1+s—2, w) = TS//(a)o)’ a; =1—bjTj (C()()) s (819)

for j = 2,...,s, where k > 0 is the damping parameter (e.g., k = 2/13 [30,
39]). The Chebyshev polynomials of the first kind, 7’ (x), with first and second
derivatives 7'/ (x) and T’ (x), respectively, are defined recursively as

Ti(x) = 2xTj 1 (x) = Tja(x). j=2,....5, (8.20)

where To(x) = 1 and 7Ty (x) = x. The ¢; used in the function evaluations are

C2 C2
= ~ — . 8.21
C T~ 4 (8.21)
T!(wo) Tj'(wo)  j2—1 .
= ~ , 2<j<s—1, 8.22
O Tion) Ty~ -1 2R 22
e =1. (8.23)

As with the RKCK method in Sect. 8.2.1, the RKC method can also be used
with an adaptive time stepping method for error control, as given by Sommeijer
et al. [30]. The error accrued in taking the step #,+1 = ¢, + 8¢, and obtaining y,+;
is estimated using

4 2
Ay = g()’n —¥Yn+1) + §3ln(fn +1f41) . (8.24)

We then obtain the weighted RMS norm of error using this error estimate with
absolute and relative tolerances:
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n+1

[An+1llrms = H (8.25)

T=A+ R max (Iyn|7 |Yn+1|) , (8.26)

where N represents the number of unknown variables as defined previously, A is the
vector of absolute tolerances, and R is the relative tolerance. The norm ||- ||, indicates
the Euclidean or L, norm. If || A, 4+ ||rms < 1, the step is accepted; otherwise, it is
rejected and repeated using a smaller step size. Finally, a new step size is calculated
using the weighted RMS norm of error for the current and prior steps, as well as the
associated step sizes, via

8ty+1 = min (10, max(0.1, 1)) 6z, , (8.27)
1/(p+1)
A1 [l 8t 1A, [l

where p = 2, the order of the algorithm. We use Eq. (8.27) with a modified relation
to calculate a new step size for a step rejection:

0.8

= (p+D) °
1A, [l

(8.29)

Determining the initial time step size requires special consideration. First, the
algorithm takes a tentative integration step, using the inverse of the spectral radius
o—the magnitude of the largest eigenvalue—of the Jacobian matrix as the step size.
Then, after estimating the error associated with this tentative step, it calculates a new
step size following a similar procedure to that given in Egs. (8.27) and (8.28):

1
51 = L (8.30)
o
Ay = 8ty (£(to + Sto, yo + 819 £(20, yo)) — £(20,¥0)) , (8.31)
8t
5ty = 0.1—01/2 , (8.32)
”AOHRMS

where || Ag||rMs is evaluated in the same manner as || A , 4+ ||rms using Eq. (8.25).

After selecting the optimal time step size to control local error, the algorithm
next determines the optimal number of RKC stages in order to remain stable. Due
to stiffness, too few stages could lead to instability; in contrast, using more stages
than required would add unnecessary computational effort. The number of stages is
determined using the spectral radius and time step size:

s=14++1+1546t,0, (8.33)
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as suggested by Sommeijer et al. [30], where the value 1.54 is related to the
stability boundary of the algorithm. Note that s may vary between time steps due
to a changing spectral radius and time step size. We recommend using a nonlinear
power method [30] to calculate the spectral radius with our RKC implementation;
this choice costs an additional vector to store the computed eigenvector, but avoids
storing or calculating the Jacobian matrix directly. Following Sommeijer et al. [30],
our RKC implementation estimates the spectral radius every 25 (internal) steps or
after a step rejection.

8.3 Source Code

Next, we provide implementation details and source code for the GPU versions
of the algorithms described above. The number of unknowns (and corresponding
equations) N is represented with the variable NEQN, and the number of ODE systems
Noge 1s defined as numoODE in the following code. In order for the GPU algorithms to
offer a performance increase over CPU algorithms, Ny should be relatively large.
Although the exact number of ODEs where the GPU algorithm becomes faster than
its CPU equivalent is problem dependent, Niemeyer and Sung [21] showed that a
GPU implementation of the RKCK algorithm for chemical kinetics outperforms an
equivalent serial CPU version for as little as 128 ODE systems. All operations are
given here in double precision, although depending on the particular needs of the
specific application single-precision calculations may be preferable to reduce the
computational expense.

In order to take advantage of global memory coalescing on the GPU, we
recommend storing the set of dependent variable vectors y;, wherei = 1,..., Noge,
in a single one-dimensional array, where variables corresponding to the same
unknown for consecutive systems sit adjacent in memory. In other words, if Y is a
two-dimensional matrix with Nyg. rows and N columns, where the ith row contains
the unknown vector y;, then Y should be stored in memory as a one-dimensional
array in column-major ordering. This ensures that adjacent GPU threads in the same
warp access adjacent global memory locations when reading or writing equivalent
array elements. See Kirk and Hwu [14] or Jang et al. [12] for more details and
examples on global memory coalescing.

The following code snippet shows the proper loading of a host array yHost from
an arbitrary array y that contains initial conditions for all ODEs:

double xyHost;
yHost = (double %) malloc (numODE * NEQN x sizeof (double)) ;

for (int j = 0; j < NEQN; ++j
yHost [1 + numODE * j] = yI[i

{

for (int i = 0; i < numODE; ++1i) {
)
10315
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A similar procedure should be used for the constant parameter vector g if needed.
Next, the GPU global memory arrays should be declared and initialized, and the
block/grid dimensions set up using

double =xyDevice;
cudaMalloc ((void*x) &yDevice, numODE x NEQN * sizeof (double)) ;

int blockSize;

if (nUmODE < 4194304) {
blockSize = 64;

} else if (numODE < 8388608) {
blockSize = 128;

} else if (numODE < 16777216) {
blockSize = 256;

} else {
blockSize = 512;

}

dim3 dimBlock (blockSize, 1);
dim3 dimGrid (numODE / dimBlock.x, 1);

Here, we use simple one-dimensional block and grid dimensions; reshaping the
grid should not affect performance, but can be done for convenience. We chose 64
as the block size for problems with less than 4,194,304 ODEs based on experience
for chemical kinetics problems [21]. The size should remain a power of two, but
different block sizes may be optimal for other problems.

The final step is to set up the ODE integration loop and kernel function execution.
The integration driver kernel, to be described shortly, will perform internal sub-
stepping as necessary to reach the specified end time. Depending on the objectives,
there are various ways to approach this:

» If only the final integrated results are needed, then a single GPU kernel can be
invoked.

» If intermediate integration results are needed, then an acceptable outer step size
over which results will be spaced should be chosen, and the GPU kernel should
be invoked inside a loop.

We will leave the code as general as possible by following the second approach,
although modifications should be made depending on the desired functionality.
In both cases, the global memory array holding the variables to be integrated
needs to be transferred to the GPU before, and from the GPU after, each kernel
invocation.

// set initial time

double t = tO0;
double tNext = t + h;

while (t < tEnd) {
// transfer memory to GPU
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7 cudaMemcpy (yDevice, yHost, numODExNEQN=*sizeof (double),
cudaMemcpyHostToDevice) ;

8 intDriver <<<dimGrid, dimBlock>>> (t, tNext, numODE, gDevice,
yDevice) ;

10 // transfer memory back to CPU
11 cudaMemcpy (yHost, yDevice, numODExNEQN=*sizeof (double),
cudaMemcpyDeviceToHost) ;

13 t = tNext;
14 tNext += h;

17 cudaFree (gDevice) ;
18 cudaFree (yDevice) ;

Here, to refers to the initial time, tEnd the desired final time, and h the outer
step size. In the current form, each outer integration step performed by the GPU
will be a “restart” integration, meaning no information about previous steps (e.g.,
error estimates, step sizes) will be used to assist the startup. This is necessary in
certain applications such as reactive-flow simulations (and other simulation methods
that use operator splitting), where, after each outer step, integration results are
combined with changes due to fluid transport, thereby invalidating stored integration
information. However, where possible, better performance may be obtained by
transferring the appropriate data from the GPU and using it in the next overall
integration step.

The next code snippet contains the general integration driver kernel, suitable for
either algorithm:

1 __global  void
2 intDriver (const double t, const double tEnd, const int numODE,
3 const doublex gGlobal, doublex yGlobal) {

// unique thread ID, based on local ID in block and block ID
int tid = threadIdx.x + (blockDim.x % blockIdx.X) ;

// ensure thread within limit
if (tid < numODE) ({

10 // local array with initial values
11 double yLocal [NEQON] ;

13 // constant parameter (s)
14 double gLocal = gGlobal [tid];

16 // load local array with initial values from global array
17 for (int i = 0; i < NEQN; ++1i) {
18 yLocal [i] = yGlobal [tid + numODE * 1i];

19 }

21 // call integrator for one time step
2 integrator (t, tEnd, yLocal, gGlobal) ;
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21 // update global array with integrated values
25 for (int i = 0; i < NEQN; ++1i) {
26 yGlobal [tid + numODE * i] = yLocal [i];

The function integrator should be replaced with rkckDriver or rkcDriver
(given below) depending on the desired integration algorithm.

8.3.1 RKCK Code

In the following, the source code for the RKCK driver device function is given in
functional snippets. First, the minimum and maximum allowable time step sizes are
defined, and the initial step size is set as half the integration time.
__device  void
rkckDriver (double t, const double tEnd, const double g,

doublex y)

const double hMax = fabs (tEnd - t);

1
2
3
4
5 // maximum and minimum allowable step sizes
6
7 const double hMin = 1.0e-20;

8

9

// initial step size
10 double h = 0.5 % fabs (tEnd - t);

Then, inside the time integration loop, the algorithm takes a trial integration step
and estimates the error of that step.

// integrate until specified end time
while (t < tEnd)

// limit step size based on remaining time
h = fmin(tEnd - t, h);

// v and error vectors temporary until error determined
double yTemp [NEQN], yErr [NEQN] ;

10 // evaluate derivative

11 double F[NEQN] ;

12 dydt (t, y, g, F);

13

14 // take a trial step

15 rkckStep (t, v, g, F, h, yTemp, yErr);
16

17 // calculate error

18 double err = 0.0;

19 int nanFlag = 0;

20 for (int i = 0; i < NEQN; ++i) {

21 if (isnan(yErr[i]l)) nanFlag = 1;
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err = fmax(err, fabs(yErr[i] / (fabs(yl[i]) + fabs(h % F[i])
+ TINY)));

}

err /= eps;

If the error is too large, the step size is decreased and the step retaken; otherwise,
the algorithm accepts the step and calculates the next step size, then repeats the
process.

// check if error too large

if ((err > 1.0) || isnan(err) || (nanFlag == 1)) {
// step failed, error too large
if (isnan(err) || (nanFlag == 1)) {
h = P1;
} else {

h = fmax (SAFETY * h » pow(err, PSHRNK), Pl * h);

}

} else {
// step accepted
t += h;

if (err > ERRCON) {

h = SAFETY * h % pow(err, PGROW) ;
} else {

h x= 5.0;

}

// ensure step size is bounded
h = fmax (hMin, fmin (hMax, h));

for (int i = 0; 1 < NEQN; ++1i)
yl[i]l = yTemp[i];

The device function dydt evaluates the derivative function F for the particular
problem as in Eq.(8.1) using the input time t, vector of dependent variables y,
and constant parameter(s) g. The device function rkcStep, not given here, takes
a single integration step using Egs. (8.2)—(8.9), returning the vector of integrated
values yTemp as well as the error vector yErr. A number of constants were used in
this function, given here:

#define UROUND (2.22e-16)
#define SAFETY 0.9

#define PGROW (-0.2)
#define PSHRNK (-0.25)
#define ERRCON (1.89e-4)
#define TINY (1.0e-30)
const double eps = 1.0e-10;
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8.3.2 RKC Code

The RKC driver algorithm is next given. For this algorithm, the number of
stages must be determined at each step to handle local stiffness; to avoid excess
computation, a maximum number of stages is first set. In addition, minimum and
maximum allowable time step sizes are defined.

__device  void
rkcDriver (double t, const double tEnd, const double g, doublex y)

{

// number of steps
int numStep = 0;

// maximum allowable number of RKC stages
int mMax = (int) (round (sqgrt (relTol / (10.0 % UROUND)))) ;

// RKC needs at least two stages for second-order accuracy
if (mMax < 2) mMax = 2;

// maximum allowable step size
const double stepSizeMax = fabs(tEnd - t);

// minimum allowable step size
double stepSizeMin = 10.0+UROUND=*fmax (fabs (t), stepSizeMax) ;

Then, the algorithm evaluates the derivative using the initial conditions for use
as the initial eigenvector estimate for the spectral radius calculation. The calculated
eigenvectors are stored and used as initial guesses in later steps.

// internal y vector

double y n[NEQN] ;

for (int i = 0; 1 < NEQN; ++1i)
y_nlil = yI[il;

// calculate F n for initial y
double F_n[NEQN] ;
dydt (¢, y . n, g, F n);

// internal work vector
double work[4 + NEQN];

// load initial estimate for eigenvector
if (work[2] < UROUND) ({
for (int i = 0; i < NEQN; ++i) {
work[4 + i] = F nl[i];
1

}

Inside the time integration loop, the algorithm calculates the spectral radius for
the first step—which it next uses to determine the initial step size—and every 25
steps thereafter.

// perform internal sub-stepping
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while (t < tEnd) ({
double tempArr [NEQN], tempArr2 [NEQN], err;

// 1f last step, limit step size
if ((1.1 % work[2]) >= fabs(tEnd - t)) work[2] = fabs(tEnd -
£);

// estimate Jacobian spectral radius if 25 steps passed
if ((numStep % 25) == 0) {
work [3] = rkcSpecRad (t, y n, g, F_n, stepSizeMax, &work
[4], tempArr2) ;

}

For the initial step, a trial step is taken using the inverse of the spectral radius as

the step size; the resulting error is used to determine an appropriate step size that
satisfies error control.

// if this is initial step

if (work[2] < UROUND) ({
// estimate first time step
work [2] = stepSizeMax;

if ((work[3] % work[2]) > 1.0) work[2] = 1.0 / workI[3];
work [2] = fmax (work[2], stepSizeMin) ;

for (int i = 0; i < NEQN; ++i) ({
temp arr[i] = y nl[i] + (work[2] » F n[i]);

}

dydt (t + work[2], tempArr, g, tempArr2);

err = 0.0;
for (int i = 0; i < NEQON; ++i) ({
double est = (tempArr2[i] - F n[i]) / (absTol + relTol =*
fabs(y nlil));

err += est % est;

}

err = work[2] * sgrt(err / NEQN) ;

if ((P1 % work[2]) < (stepSizeMax x sqrt(err))) {

work [2] = fmax (Pl % work[2] / sgrt(err), stepSizeMin) ;
} else {

work [2] = stepSizeMax;

}
}

For all steps following the first, the value stored in work [2] is used for the time

step size.

Next, the number of stages is determined using the spectral radius and current

time step size, and a tentative integration step performed.

// calculate number of steps
int m = 1 + (int) (sqgrt(1.54 * work[2] % work[3] + 1.0));

// modify step size based on stages
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if (m > mMax) {
m = mMax;
work [2] = ((double) (m * m - 1)) / (1.54 % workI[3]);

}

// perform tentative time step
rkcStep (t, y.n, g, F_n, work[2], m, y);

The algorithm then estimates the error of that step.

// calculate derivative F npl with tentative y npl
dydt (t + work([2], y, g, tempArr);

// estimate error
err = 0.0;
for (int i = 0; i < NEQN; ++i) {
double est = 0.8 » (y n[i] - yI[i]) + 0.4 % work[2] » (F_n[i
1 + tempArr[i]);

est /= (absTol + relTol * fmax(fabs(y[il), fabs(y n[i])));
err += est x est;

1

err = sqgrt(err / ((double)N));

Based on the error magnitude, the algorithm determines whether to accept the

step and proceed to the next step or to decrease the step size and repeat the current
step.

// check value of error
if (err > 1.0) {
// error too large, step is rejected
// select smaller step size
work [2] = 0.8 % work[2] / (pow(err, (1.0 / 3.0)));

// reevaluate spectral radius

work [3] = rkcSpecRad (t, y n, g, F_n, stepSizeMax, &work
[4], tempArr2) ;
} else {

// step accepted
t += work([2];
numStep++;

Finally, for an accepted step, the current step size and error are stored and the

next step size is calculated.

double fac = 10.0;
double templ, temp2;

if (work[1] < UROUND) ({

temp2 pow(err, (1.0 / 3.0));
if (0.8 < (fac % temp2)) fac = 0.8 / temp2;
} else {
templ = 0.8 » work[2] * pow(work[0], (1.0 / 3.0));

temp2 = work([l] x pow(err, (2.0 / 3.0));
if (templ < (fac * temp2)) fac = templ / temp2;
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// set "old" values to those for current time step
work [0] = err;
work [1] = work[2];

for (int i = 0; i < NEQN; ++i) {
y nli] yI[il;
F n[i] = tempArr[i];

}

work [2] x= fmax (P1l, fac);
work [2] = fmax (stepSizeMin, fmin (stepSizeMax, work[2])) ;

As before, we do not provide the RKC integration step device function rkcStep,
which evaluates Egs. (8.13)—(8.16). The absolute and relative tolerances absTol and
relTol are set as defined constants, e.g.,:

const double abs tol = 1.0e-10;
const double rel tol = 1.0e-6;

Note that these may be modified to more stringent tolerances if desired. The constant
UROUND is defined the same as in the RKCK code above. The local work array work
contains, in element order:

0 the previous step error estimation,
1 previous time step,

2 current time step,

3 spectral radius, and

4 vector of eigenvalues (of size N).

The device function rkcSpecRad returns the spectral radius, the largest magnitude
eigenvalue; various methods may be used for this purpose depending on the case. We
provide GPU source code for a nonlinear power method adopted from Sommeijer
et al. [30] that may be used for general applications in the Appendix.

8.4 Performance Results

We tested the performance of the GPU-based RKCK and RKC integration algo-
rithms using two ODE test cases, ranging the number of ODE systems from 10’
to 10°. For both cases, all calculations were performed in double precision using a
single GPU and single CPU; we compared the performance of the GPU algorithm
against serial CPU calculations as well as parallelized CPU performance—via
OpenMP [24]—on four cores. We performed the GPU calculations using an
NVIDIA Tesla c2075 GPU with 6 GB of global memory, and an Intel Xeon X5650
CPU, running at 2.67 GHz with 256 kB of L2 cache memory per core and 12 MB
of L3 cache memory, served as the host processor both for the GPU calculations and
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the CPU single- and four-core OpenMP calculations. We used the GNU Compiler
Collection (gcc) version 4.6.2 (with the compiler options “-03 -ffast-math
-std=c99 -m64”) to compile the CPU programs and the CUDA 5.5 compiler
nvce version 5.5.0 (“-03 -arch=sm 20 -mé4”) to compile the GPU versions.
We set the GPU to persistence mode, but also used the cudasSetDevice () to hide
any further device initialization delay in the CUDA implementations prior to the
timing.

The integration algorithms take as input initial conditions and a global time
step, performing internal sub-stepping as necessary. The computational wall-clock
times reported represent the average over ten global time steps, which for the GPU
versions includes the overhead required for transmitting data between the CPU
and GPU before and after each global step. The integrator restarts at each global
time step, not storing any data from the previous step—although any sub-stepping
performed by the algorithm within these larger steps does benefit from retained
information from prior sub-steps. Interested readers should refer to Niemeyer and
Sung [21] for more detailed performance evaluations of these algorithms in the
context of chemical kinetics problems.

8.4.1 RKCK Results

We used the Pleiades ODE test problem (PLEI) of Hairer et al. [9, 20] to test the
GPU- and CPU-based versions of the RKCK integrator. This nonstiff test case
originates from a celestial mechanics problem tracking the coordinates of seven
stars; it consists of a set of 14 second-order ODEs based on Newtonian gravitational
forces, in the form

"
v X)) _ £ (x,y) 14
o (y) N (f(z) xy) 2eN (839
X =0y =Y my(x;—xi) /ry (8.35)
J#i
=2y =Y my (v —vi)/ry (8.36)
J#i
3/2
rij =((x,-—xj)2+(yi—yj)) L ij=1,....7, (8.37)

where (x;, y;) and m; = i are the coordinates and mass of the ith star, respectively.
This second-order system can be converted into a system of 28 first-order ODEs of
the form by defining w = Z/, such that

z /_ w z 28
() -(o) ()
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Fig. 8.1 Speedup factors offered by GPU-based explicit RKCK integration algorithm over single-
and four-core CPU-based versions for Pleiades ODE problem. Note that the horizontal axis is
displayed in logarithmic scale

While the original problem offers specific initial conditions for a single ODE
system, here we consider a large number of ODEs with the initial conditions
randomly perturbed by a small factor to emulate a sensitivity analysis. We integrated
the ODE systems from ¢ = 0 to 1.0s using 1.0 x 10! s as the global time step size.
We set the RKCK tolerance ¢ (eps in the code) to 1.0 x 10719,

Figure 8.1 shows the speedup factors, measured as the ratio of computational
times per step, offered by the GPU-based RKCK algorithm over the baseline
CPU version for both serial and four-core parallel operation, for numbers of ODE
systems ranging from 1,024 to 262,144. The GPU-based algorithm ran faster
than the serial and parallel CPU-based algorithms for Ny¢. larger than 4,096 and
8,192, respectively. For the current problem, at best the GPU offered speedup
factors of nearly four and two over the serial and four-core CPU implementations,
respectively. The non-smooth performance scaling resulted from the randomly
perturbed initial conditions.

Note that since each ODE system used randomly perturbed initial conditions,
adjacent threads in the GPU implementation handled potentially extremely different
initial condition values, resulting in thread divergence due to varying internal time
step sizes. Therefore, the results shown here represent a worst-case GPU algo-
rithm performance, particularly compared to applications involving operator-split
reactive-flow codes where adjacent threads/ODE systems correspond to neighboring
spatial locations. In such situations, initial conditions would be more similar
and therefore follow similar instruction pathways. In either case, GPU-based
integration algorithms offer performance benefits over the baseline CPU versions.
See Niemeyer and Sung [21] for more discussion on this topic.
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Furthermore, the current problem involved a relatively simple system of ODE:s,
limiting the calculations performed on the GPU between the memory transfers
before and after each integration step. ODE systems with more complex derivative
functions would saturate the GPU with operations, increasing performance. For
example, the RKCK algorithm demonstrated by Niemeyer and Sung [21] performed
up to 126 times faster on a GPU than on a serial CPU, integrating a chemical
kinetics ODE system with nine species participating in 38 reaction steps—requiring
significantly more floating-point calculations than the case studied here.

8.4.2 RKC Results

To demonstrate the performance of the GPU-based RKC algorithm, we used
a chemical kinetics problem: the ODE system describing the constant-volume
autoignition of ethanol (C,H;OH). We implemented the reaction mechanism of
Marinov [19] to describe the oxidation of ethanol, with 57 species participating in
766 irreversible reaction steps. The governing ODE system contained 58 equations:
one for temperature T and the rest for species mass fractions Y:

dy dT dY, dYn,\T

= .. =) 8.39

dt (dt dt dt ) (®3

N,

dT Q—

- = s Wi 8.40

o pc‘,;ew (8.40)

dY; Wiw;

O 1N, 8.41

d[ P 1 sp ( )
Nreac NSp \1/

o =y (v -vy) e [T (8.42)
j=l1 k=1

where p indicates the density, ¢, the mass-averaged constant-volume specific heat,
e; the internal energy of the ith species, W; the molecular weight of the ith species,
v,’]’ and v/ ; the forward and reverse stoichiometric coefficients for the ith species
in reaction j, Cy the molar concentration of the kth species, and Ny, and N, are
the numbers of species and reactions, respectively. For a reaction j without pressure

dependence, the rate coefficient k; is given in Arrhenius form by

—E;
kj = AjTﬂj exXp (ﬁ) s (843)

where % is the universal gas constant, A; the pre-exponential coefficient, 8;
the temperature exponent, and E; the activation energy. Note that reactions
can be pressure-dependent (see, e.g., Law [17] for examples of various
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Fig. 8.2 Speedup factors offered by GPU-based explicit RKC integration algorithm over single-
and four-core CPU-based versions for chemical kinetics ODE problem. Note that both axes are
displayed in logarithmic scale

pressure-dependence formulations); these were also considered in the current
implementation.

This problem is moderately stiff using a time step size of §t = 1.0 x 1076 s for
ten global time steps. In this case, we generated initial conditions for the set of ODE
systems by sampling the solutions obtained from constant-pressure homogeneous
ignition simulations, initiated at 1,600 K, 1 atm, and an equivalence ratio of one.!
We assigned these initial conditions sequentially, such that adjacent threads in the
GPU implementation contained data from consecutive time steps in the sample—
and therefore such threads handled the integration of similar conditions, emulating
adjacent spatial locations in an operator-split reactive-flow simulation.

Figure 8.2 shows the speedup factors offered by the GPU-based RKC algorithm
over the baseline CPU version for both serial and four-core parallel operation,
for numbers of ODE systems ranging from 64 to 16,384. In this case, the GPU-
accelerated code ran faster than the serial CPU version for the entire range of
ODE system sizes considered, while it offered better performance than the four-
core parallel CPU version for 256 ODEs and higher. At best, the GPU-based
RKC algorithm ran nearly 64 and 17 times faster than the serial and four-core
CPU implementations, respectively. The discontinuity in speedup seen in Fig. 8.2
corresponded to the inclusion of initial conditions leading to greater stiffness.

! An equivalence ratio of one indicates the mixture of fuel and oxidizer set to an appropriate ratio
for complete combustion.
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8.5 Conclusions

In this chapter, we presented two explicit algorithms appropriate for integrating
large numbers of independent ODE systems on GPUs. Specifically, we proposed
the fifth-order adaptive Runge—Kutta—Cash—Karp (RKCK) method for nonstiff
problems and the stabilized second-order adaptive Runge—Kutta—Chebyshev (RKC)
method for problems with moderate levels of stiffness. Source code and implemen-
tation details were presented to ease the adoption of such methods, and performance
comparison results were presented for each method. The examples shown here
served to demonstrate the potential of GPU acceleration where many independent
systems of ODEs need to be integrated; in the case of the RKC algorithm, we
demonstrated more than an order of magnitude performance increase over an
equivalent parallel CPU code running on four cores. The types of scientific and
engineering problems dealing with large numbers of ODEs—in particular, reactive-
flow models that rely on operator splitting—can benefit significantly from GPU
acceleration; interested readers can directly implement the algorithms presented
here to such ends, or use them as the beginnings for their own solution.
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Appendix

Various methods may be used to calculate the spectral radius, including the
Gershgorin circle theorem [7, 11] that provides an upper-bound estimate. Here, we
provide a function based on a nonlinear power method [30].

1 __device  double

> rkcSpecRad (const double t, const doublex y, const double g,
const doublex F, const double hMax, doublex v, doublex Fv) {

3 // maximum number of iterations
4 const int itmax = 50;

5

6 double small = 1.0 / hmax;

7

8 double nrml = 0.0;

9 double nrm2 = 0.0;

o for (int i = 0; i < NEQN; ++i) {
1 nrml += (y[i] * yI[i]l);

12 nrm2 += (v[i] = vI[i]);

14 nrml = sgrt (nrml) ;
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nrm2 = sqrt (nrm2) ;

double dynrm;
if ((nrml != 0.0) && (nrm2 != 0.0)) {
dynrm = nrml x sgrt (UROUND) ;
for (int i = 0; i < NEQN; ++i) {
v[i] = y[i]l + v[i] * (dynrm / nrm2) ;
1
} else if (nrml != 0.0) f{
dynrm = nrml * sgrt (UROUND) ;
for (int i = 0; i < NEQN; ++i) {
v[i] = y[i] * (1.0 + sqgrt (UROUND)) ;

} else if (nrm2 != 0.0) f{
dynrm = UROUND;
for (int i = 0; i < NEQN; ++i) {
v[i] *= (dynrm / nrm2) ;

} else {
dynrm = UROUND;
for (int i = 0; i < NEQN; ++i) {
v[i] = UROUND;
}
}

// now iterate using nonlinear power method
double sigma = 0.0;
for (int iter = 1; iter <= itmax; ++iter) ({

dydt (t, pr, v, Fv);

nrml = 0.0;
for (int i = 0; i < NEQN; ++i) {
nrml += ((Fv[i] - F[i]) = (FvI[i]l - FI[il));
1
nrml = sqgrt(nrml);
nrm2 = sigma;

sigma = nrml / dynrm;

nrm2 = fabs(sigma - nrm2) / sigma;
if ((iter >= 2) && (fabs(sigma - nrm2) <= (fmax(sigma,
* 0.01))) {
for (int i = 0; i < NEQN; ++i) {
v[i] -= yl[il;

}

return (1.2 x sigma);

}

if (nrml != 0.0) {
for (int i = 0; i < NEQON; ++i) ({
v[i] = y[i] + ((Fv[i] - F[i]) * (dynrm / nrml));

}

} else {
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}

int ind = (iter % NEQN) ;
v[ind] = yl[ind] - (v[ind] - yl[ind]);
1
1

return (1.2 * sigma);
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Chapter 9

Finite and Spectral Element Methods

on Unstructured Grids for Flow and Wave
Propagation Problems

Dominik Goddeke, Dimitri Komatitsch, and Matthias Moller

9.1 Introduction

Many relevant processes and phenomena from a wide range of scientific areas and
application domains can be described by mathematical models comprising (a system
of) partial differential equations (PDEs). A simple example is the Poisson equation

—Au=f 9.1)

which is fulfilled by the scalar quantity u that represents the state of minimal energy
subject to load f and appropriate boundary conditions. As an illustration, consider
the deformation due to loading of an elastic membrane that is fixed on a frame.

A large class of model problems can be written as first-order systems of the form

3U +V-FU) =0, (9.2)

where F = [F!, ..., F"] represents an n-dimensional flux function that depends on
the solution U but not on its derivatives. As an example, consider the flow of air
around an aeroplane at high speeds, which can be modelled by the equations of gas
dynamics.
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A third ex