
c© 2014 Li-Wen Chang

SCALABLE PARALLEL TRIDIAGONAL ALGORITHMS WITH
DIAGONAL PIVOTING AND THEIR OPTIMIZATION FOR

MANY-CORE ARCHITECTURES

BY

LI-WEN CHANG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Adviser:

Professor Wen-mei W. Hwu

ABSTRACT

Tridiagonal solvers are important building blocks for a wide range of scientific

applications that are commonly performance-sensitive. Recently, many-core

architectures, such as GPUs, have become ubiquitous targets for these ap-

plications. Therefore, a high-performance general-purpose GPU tridiagonal

solver becomes critical. However, no existing GPU tridiagonal solver provides

comparable quality of solutions to most common, general-purpose CPU tridi-

agonal solvers, like Matlab or Intel MKL, due to no pivoting. Meanwhile,

conventional pivoting algorithms are sequential and not applicable to GPUs.

In this thesis, we propose three scalable tridiagonal algorithms with diag-

onal pivoting for better quality of solutions than the state-of-the-art GPU

tridiagonal solvers. A SPIKE-Diagonal Pivoting algorithm efficiently par-

titions the workloads of a tridiagonal solver and provides pivoting in each

partition. A Parallel Diagonal Pivoting algorithm transforms the conven-

tional diagonal pivoting algorithm into a parallelizable form which can be

solved by high-performance parallel linear recurrence solvers. An Adaptive

R-Cyclic Reduction algorithm introduces pivoting into the conventional R-

Cyclic Reduction family, which commonly suffers limited quality of solutions

due to no applicable pivoting. Our proposed algorithms can provide com-

parable quality of solutions to CPU tridiagonal solvers, like Matlab or Intel

MKL, without compromising the high throughput GPUs provide.

ii

To my parents and my family

for their unconditional love and support.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Wen-mei W. Hwu, for his tremen-

dous mentorship and support. He has always motivated my work and been

patient with me. His wisdom will keep inspiring me in my professional career

and personal life.

I would like to thank all members of the IMPACT research group, past

and present, for their help and camaraderie. They are, in no particular order,

Chris Rodrigues, Sara Baghsorkhi, Alex Papakonstantinou, John Stratton, I-

Jui Sung, Xiao-Long Wu, Nady Obeid, Victor Huang, Deepthi Nandakumar,

Hee-Seok Kim, Nasser Anssari, Tim Wentz, Daniel Liu, Izzat El Hajj, Steven

Wu, Abdul Dakkak, Wei-Sheng Huang, Carl Pearson, Tom Jablin, and Jon

Larson.

Also, I want to thank Marie-Pierre Lassiva-Moulin, Andrew Schuh, and

Xiaolin Liu for their help, and convey my gratitude to a lot of people I met

during my time here, including Wooil Kim, Chia-Jen Chang, Chih-Sheng

Lin, Judit Planas, Jose Cecilia, Juan Gómez Luna, Javier Cabezas, Isaac

Gelado, Nacho Navarro, Hiroyuki Takizawa, Xuhao Chen, and those people

I forget to mention or do not know the names of, especially the cleaner of

my office.

Finally, I would like to thank my parents and my significant other for their

unconditional love and support. Thank you everyone.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . ix

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 RELATED TRIDIAGONAL SOLVER ALGORITHMS 5
2.1 Parallel Tridiagonal Solver Algorithms 5
2.2 Diagonal Pivoting Algorithm 11

CHAPTER 3 SPIKE-DIAGONAL PIVOTING 13
3.1 SPIKE-Diagonal Pivoting Algorithm 14
3.2 Optimization for SPIKE-Diagonal Pivoting Algorithm 15
3.3 Extensions of SPIKE-based Algorithm 22
3.4 Limitation of SPIKE Algorithm 23

CHAPTER 4 PARALLEL DIAGONAL PIVOTING ALGORITHM . 25
4.1 Linear Recurrence-based Parallel Diagonal Pivoting Algorithm 27
4.2 Optimization for Parallel Diagonal Pivoting Algorithm 30
4.3 Extensions of Linear Recurrence-based Tridiagonal Solvers . . 34
4.4 Limitation of Parallel Diagonal Pivoting Algorithm 34

CHAPTER 5 ADAPTIVER-CYCLIC REDUCTION ALGORITHM
WITH DIAGONAL PIVOTING . 36
5.1 Extended Support for Different R’s in R-Cyclic Reduction

Algorithm . 37
5.2 Structure of Diagonal Blocks 39
5.3 Comparison with SPIKE Algorithm 40
5.4 Optimization for Adaptive R-Cyclic Reduction Algorithm . . . 41
5.5 Limitation of Adaptive R-Cyclic Reduction Algorithm 41

CHAPTER 6 EVALUATION . 42
6.1 Numerical Stability Evaluation 42
6.2 Single GPU Performance Evaluation 46

v

CHAPTER 7 RELATED WORK . 48

CHAPTER 8 CONCLUSION . 49

REFERENCES . 50

vi

LIST OF TABLES

6.1 Matrix types used in numerical stability evaluation 43
6.2 Backward residuals among algorithms 44

vii

LIST OF FIGURES

2.1 The SPIKE algorithm partitions a tridiagonal matrix T
into 4 diagonal sub-matrices, and forms T = DS, where D
is a block diagonal matrix and S is a spike matrix. 6

2.2 One level of the CR forward reduction on a 4-by-4 matrix:
a2 and c2 on Row 2 are eliminated by Row 1 and 3. Simi-
larly, c0 is eliminated by Row 1. After that, Row 0 and 2
can form an effective 2-by-2 matrix. 10

2.3 The local elimination of TR forward reduction on a 6-by-
6 matrix One level of CR forward reduction on a 6-by-6
matrix: Row 1 and Row 2 can eliminate each other, and
Row 4 and Row 5 can eliminate each other. 10

2.4 One level of the TR forward reduction on a 6-by-6 matrix:
a3 and c3 on Row 2 are eliminated by Row 1 and 4 from
the left matrix in Figure 2.3. Similarly, c0 is eliminated by
Row 1 from Figure 2.3. After that, Row 0 and 3 can form
an effective 2-by-2 matrix. 11

3.1 The flowchart of the SPIKE-Diagonal Pivoting algorithm. . . . 15
3.2 An illustration for data layout transformation for 2 warps.

Each warp contains 3 threads, and each thread solves a
4-row sub-matrix. 16

3.3 Performance improvement in the thread-parallel sub-matrix
solver by applying data layout transformation on 3 types
of 8M-size matrices. 17

3.4 An illustration for dynamic tiling for 4 threads. 18
3.5 Performance improvement in the thread-parallel sub-matrix

solver by applying dynamic tiling on 3 types of 8M-size ma-
trices. 20

3.6 Performance counters for dynamic tiling. 20

4.1 An illustration for lock-free message passing. 31

6.1 Single GPU performance comparison among GPU tridiag-
onal solvers. 46

viii

LIST OF ABBREVIATIONS

A-R-CR Adaptive R-Cyclic Reduction

CF Continued Fraction

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

CR Cyclic Reduction

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

HSA Heterogeneous System Architecture

MATLAB Matrix Laboratory

MAGMA Matrix Algebra on GPU and Multicore Architectures

MKL Math Kernel Library

MPI Message Passing Interface

OpenCL Open Computing Language

OpenMP Open Multi-Processing

PCR Parallel Cyclic Reduction

PDE Partial Differential Equation

RHS Right Hand Side

SM Streaming Multiprocessor

SPMD Single Program, Multiple Data

TR Tricyclic Reduction

ix

CHAPTER 1

INTRODUCTION

Tridiagonal solvers are ubiquitous routines for performance-sensitive scien-

tific computing. Partial differential equation (PDE) solvers are the most

common applications applying tridiagonal solvers, since PDEs with neighbor-

ing references can be modeled as one or multiple tridiagonal systems [1, 2].

Moreover, tridiagonal solvers commonly serve as pre-conditioners in iterative

numerical solvers [3]. Interpolation, such as cubic spline interpolation [4],

is also a classic application of tridiagonal solvers for deriving coefficients

or interpolated values. Parallelization is the most intuitive way to accel-

erate performance-sensitive computing. Recently, many-core architectures,

like graphics processing units (GPUs), have dominated parallelized compu-

tational domains, not only because of the high-throughput computation and

memory system GPUs deliver, but also because of general-purpose program-

ming model, such as CUDA [5] and OpenCL [6], GPUs provide. However,

developing an efficient parallel tridiagonal solver is challenging due to in-

herent dependence within a tridiagonal matrix, and implementing it on a

massively parallel architecture like a GPU is even more challenging.

Most GPU tridiagonal algorithm research, especially the early studies [4,

7, 8, 9, 3, 10, 11, 12, 13], focused on applications solving a massive number of

independent tridiagonal matrices. This strategy exploits embarrassing paral-

lelism from independent matrices for efficiently utilizing GPUs. However, the

performance might become limited when the number of independent matrices

shrinks. Also, when applications solve multiple huge matrices, the limited

size of GPU device memory may prefer to solve one entire large matrix at a

time on a GPU instead of multiple portions from multiple independent ma-

trices, to avoid redundant data transfer between host and device. In other

words, when the size of single matrix increases, the number of independent

matrices solved on a GPU decreases. Therefore, those studies for a massive

number of matrices only provide limited, context-specific applications.

1

In order to build a more broadly applicable tridiagonal solver, it is neces-

sary to develop a scalable tridiagonal solver for one or a few large matrices.

However, only few of recent GPU tridiagonal solvers [14, 15, 16, 17] can

efficiently solve a single large tridiagonal matrix. A scalable partitioning

method is extremely critical for solving a single large matrix efficiently. Be-

yond partitioning, low memory requirement and high memory efficiency are

also important for a tridiagonal solver, since most tridiagonal algorithms are

memory-bound. Most previous studies, however, are still far from peak GPU

memory bandwidth.

Most importantly, to the best of our knowledge, all existing GPU tridi-

agonal solvers exhibit a potential problem for providing unstable numerical

solutions for general matrices. It is mainly because the algorithms, the LU

algorithm or the Cyclic Reduction algorithm [1, 18], used by those solvers

are known to be numerically unstable for certain distributions of matrices.

Although, in practice, those tridiagonal solvers can be still applicable for spe-

cific kinds of matrices, such as strictly column diagonally dominant matrices,

a stable tridiagonal solver is still extremely important for general applications

on GPUs. Pivoting algorithms, such as partial pivoting or diagonal pivoting,

are widely used to maintain numerical stability for CPU tridiagonal solvers

but are less naturally suited to GPUs due to inherent dependence of those

algorithms. A recent development [19] of linear algebra libraries for het-

erogeneous architectures (CPUs and GPUs) applied hybridization of partial

pivoting on CPU and the rest parallel computation on GPUs to multiple

classical routines. This strategy might not be efficient for tridiagonal solvers

due to the relatively high ratio of data transfer overhead between CPU and

GPU to kernel computation time on GPUs. In other words, in order to build

an efficient, numerically stable tridiagonal solver, it is crucial to develop a

scalable GPU pivoting algorithm.

In this thesis, we investigate the possibility of efficient pivoting algorithms

on GPUs by using the diagonal pivoting method [20], which potentially has a

more cache-friendly memory access pattern due to no row interchange. Three

parallel tridiagonal algorithms related to the diagonal pivoting method are

proposed. First, we propose a SPIKE-based tridiagonal solver on GPUs

(Chapter 3). The SPIKE algorithm [21, 22] partitions a large matrix into

multiple small disjoint sub-matrices, which can be solved in parallel, and

provides a scalable GPU solution for a tridiagonal solver. Most importantly,

2

diagonal pivoting can be further enabled in each disjoint sub-matrix for a

more numerically stable solution. Second, we develop a scalable parallel di-

agonal pivoting algorithm for a single tridiagonal matrix (Chapter 4). This

algorithm models the diagonal pivoting method as one or few linear recur-

rences, and then solves them using scalable parallel linear recurrence solvers.

Third, we design an adaptive R-Cyclic Reductions algorithm with diagonal

pivoting (Chapter 5). In this algorithm, the R value (1 or 2) of the R-Cyclic

Reduction algorithm [23, 1, 18] changes row-by-row by the structure (1-by-1

or 2-by-2 pivots) of diagonal pivoting. This strategy can avoid numerical

instability of the classic Cyclic Reduction or R-Cyclic Reduction algorithms.

This thesis makes the following contributions:

• We first introduce pivoting methods into GPU tridiagonal solvers. To

the best of our knowledge, none of existing GPU tridiagonal solvers ap-

plies pivoting method. All three of our proposed tridiagonal algorithms

provide comparable quality of solutions to the CPU tridiagonal solvers

in Intel MKL [24] and Matlab [25].

• We first introduce the SPIKE algorithm into the field of GPU com-

puting. The SPIKE algorithm is a powerful domain partitioning algo-

rithm, which provides high scalability and has only a low overhead. Our

SPIKE-based tridiagonal solver demonstrates comparable performance

to the art-of-the-state GPU tridiagonal solvers.

• We first parallelize the full-range diagonal pivoting method. A parallel

diagonal pivoting algorithm is proposed to provide the functionality

of diagonal pivoting within the full range of matrix. Our parallel di-

agonal pivoting algorithm can benefit from the scalable parallel linear

recurrence solvers, and demonstrates comparable performance to the

art-of-the-state GPU tridiagonal solvers.

• We first enable a pivoting method in the R-Cyclic Reduction algo-

rithms. The R-Cyclic Reduction algorithms are conventionally consid-

ered to have a potential numerically instability problem. An adaptive

R-Cyclic Reduction algorithm is proposed to enable the functionality

of pivoting.

• We introduce multiple optimization mechanisms to improve memory

3

efficiency or reduce memory requirement. Multiple optimization mech-

anisms are applied to enable scalable pivoting on GPU tridiagonal

solvers. Our optimization strategies are not only applicable to GPU

tridiagonal solvers and/or GPU diagonal pivoting, but also able to

support general computation on other architectures.

In the rest of thesis, we use the following terminology. Each function

executed on a GPU device is called a “kernel” function, written in a single-

program, multiple-data (SPMD) form in CUDA or OpenCL. Each instance

of a kernel is executed by a “thread”, and a group of threads is called a

“thread block”, guaranteed to perform concurrently on the same streaming

multiprocessor (SM). Within a thread block, subgroups of threads called

“warps” are guaranteed to perform in lockstep, executing one instruction for

all threads in the warp at once. If threads in a warp have branch divergence,

those branches are executed one-by-one for all of the threads in that warp.

Commonly, one GPU device contains multiple SMs. Each SM has a register

file for data or instruction operands privately accessed by each thread and

scratchpad memory for shared data among threads within a thread block.

A modern GPU SM tends to have an L1 cache, shared by thread blocks

executed in the same SM. Multithreading switches different warps (within

a thread block or among thread blocks) to hide the latency of memory or

computation. A shared L2 cache exists among all or some SMs on a GPU

device, while global memory is shared among all SMs.

The remaining chapters in the thesis are organized as follows: Chapter 2

defines the terminology of tridiagonal solvers and reviews the selected algo-

rithms related to our proposed algorithms. Chapters 3, 4 and 5 describe our

proposed algorithms, the SPIKE-Diagonal Pivoting algorithm, the Parallel

Diagonal Pivoting algorithm, and the Adaptive R-Cyclic Reduction algo-

rithm, respectively, and cover their optimization strategies and limitations.

Chapter 6 evaluates our proposed algorithms in terms of numerical stability

and single GPU performance. Chapter 7 covers related work and Chapter 8

concludes.

4

CHAPTER 2

RELATED TRIDIAGONAL SOLVER
ALGORITHMS

This chapter covers all of related tridiagonal algorithms to our work. Al-

though, as mentioned in Chapter 1, modern parallel tridiagonal solvers can

solve multiple independent matrices simultaneously, for a simpler explana-

tion, a single matrix case is used in the following thesis without extra anno-

tation. In the single matrix case, the tridiagonal solver solves a nonsingular

tridiagonal system, Tx = d, where T is an n-by-n tridiagonal matrix, and

both x and d are one-column vectors with n elements. Equation 2.1 defines

the scalar entries in T , x and d. Note that both rows and columns of T , and

entries of x and d begin at 0 and end at n− 1.

Tx =

b0 c0

a1 b1 c1

a2
.
. cn−2

an−1 bn−1

x0

x1

x2

...

xn−1

=

d0

d1

d2

...

dn−1

= d (2.1)

2.1 Parallel Tridiagonal Solver Algorithms

The selected parallel tridiagonal solver algorithms are categorized into three

major types of algorithms, which are SPIKE-based, Linear recurrence-based,

and R-Cyclic Reduction algorithms, for a systematic explanation. In the

following section, only one representative algorithm per category is mainly

discussed, and the corresponding modified or extended algorithms are further

discussed when they are related.

5

2.1.1 SPIKE Algorithm

The SPIKE algorithm [21, 22], illustrated in Figure 2.1, is a domain decom-

position algorithm that partitions a band matrix into multiple disjoint block

diagonal sub-matrices with the rest off-diagonal sub-matrices. In this the-

sis, we only focus on the tridiagonal matrix, which is a special type of band

matrices. The original tridiagonal matrix, T , is decomposed into multiple

invertible block diagonal sub-matrices, Ti, and off-diagonal entries, ahi and

cti. Meanwhile, the corresponding vectors, x and d, have similar partitions, xi

and di. In the sub-matrix, the partial results yi’s can be defined for satisfying

Equation 2.2.

Tiyi = di (2.2)

The matrix, T , can be further defined as the product of two matrices, the

block-diagonal matrix, D, and the spike matrix, S, illustrated in Figure 2.1,

where vi and wi can be solved by Equation 2.3.

Tivi =

0
...

0

cti

 and Tiwi =

ahi

0
...

0

 (2.3)

Note that, in practice, Equation 2.2 and 2.3 can be further merged and solved

in one routine, since they share the same matrix Ti.

	

T0

T1

T2

T3

I

I

I

I

v0

v1

v2

w1

w2

w3

T0

T1

T2

T3

ct0

ct1

ct2

ah1

ah2

ah3

T= = =DS

Figure 2.1: The SPIKE algorithm partitions a tridiagonal matrix T into 4
diagonal sub-matrices, and forms T = DS, where D is a block diagonal
matrix and S is a spike matrix.

After forming the matrices D and S, the SPIKE algorithm solves Dy = d

for y, and then uses a special form of S to solve Sx = y [22]. The spike matrix,

S, can also be considered a block tridiagonal matrix and can be solved by a

6

block tridiagonal solver algorithm, such as the block Cyclic Reduction (block

CR) algorithm [1]. Since S has identity block diagonal sub-matrices and

single-column off-diagonal sub-matrices, the computation for solving S can be

further reduced to solving the dependencies among the first and last variables,

called the glue variables (superscript with (h) and (t)), of each block, Ŝ in

Equation 2.4. This strategy can dramatically reduce the computation cost

from O(n) to O(P), where n is the size of a matrix and P is the number of

partitions. The complete solution of x can be solved by propagating the glue

variables.

Ŝ =

1 0 v
(h)
0

0 1 v
(t)
0

w
(h)
1 1 0 v

(h)
1

w
(t)
1 0 1 v

(t)
1

w
(h)
2 1 0 v

(h)
2

w
(t)
2 0 1 v

(t)
2

w
(h)
3 1 0

w
(t)
3 0 1

(2.4)

It is worth mentioning that since the SPIKE algorithm is a domain decom-

position algorithm, it does not limit applied algorithms to solve Equation 2.2

and 2.3, and Sx = y. Different applied solvers might give different numerical

stability for the entire tridiagonal solver.

2.1.2 Linear Recurrence-based Tridiagonal Solver: Parallel
Continued Fraction-LU Algorithm

The parallel Continued Fraction (CF)-LU algorithm [26] is a tridiagonal

solver algorithm based on the parallel LU decomposition algorithm. In the

LU decomposition, the original tridiagonal matrix, T , is decomposed into a

product of two bidiagonal triangular matrices, L and U , Equation 2.5. The

LU algorithm solves Ly = d for y and then Ux = y.

L =

1

l1 1

l2 1
.

ln−1 1

and U =

f0 c0

f1 c1

.

fn−2 cn−2

fn−1

(2.5)

7

The coefficients li’s and fi’s can be defined as follows:

li = ai/fi−1, 1 ≤ i ≤ n− 1 and fi =

{
b0, i = 0

bi − lici−1, 1 ≤ i ≤ n− 1
(2.6)

The coefficients fi’s can be further formulated as continued fractions, Equa-

tion 2.7.

fi =

 b0, i = 0

bi −
aici−1

fi−1

, 1 ≤ i ≤ n− 1
(2.7)

Meanwhile, fi’s can be also defined as fi = θi/θi−1, and θi can be solved as

a linear recurrence, Equation 2.8.

θi =

1, i = −1

b0, i = 0

biθi−1 − aici−1θi−2, 1 ≤ i ≤ n− 1

(2.8)

The parallel CF-LU algorithm parallelizes the LU decomposition by com-

puting coefficients li’s and fi’s in parallel using parallel linear recurrence

solvers [27, 28].

Also, the bidiagonal solver for L and U can be formulated to linear recur-

rences, as follows:

yi =

{
d0, i = 0

−liyi−1 + di, 1 ≤ i ≤ n− 1,
(2.9)

xn−i−1 =

 yn−1, i = 0

− cn−i−1

fn−i−1

xn−i + yn−i, 1 ≤ i ≤ n− 1
(2.10)

Therefore, the parallel CF-LU algorithm can solve a tridiagonal matrix in

parallel.

The CF-LU algorithm is not the first linear recurrence-based tridiagonal

solver. Before the CF-LU algorithm, the linear recurrence-based tridiagonal

8

solvers [29, 30] tend to formulate xi’s as Equation 2.11.

xi =

−b0

c0

x0 +
d0

c0

, i = 1

−bi−1

ci−1

xi−1 −
ai−1

ci−1

xi−2 +
di−1

ci−1

, 1 < i ≤ n− 1

(2.11)

All xi’s can be represented as a linear composition of x0 by solving the

linear recurrence (Equation 2.11), and x0 can be solved using the last row,

an−1xn−2 + bn−1xn−1 = dn−1, of T . After that, xi’s can be solved based on

its own linear composition of x0. Although these algorithms require only

one linear recurrence, they suffer from severe numerical instability even in a

strictly column diagonally dominant matrix due to using ci’s as denominators.

2.1.3 R-Cyclic Reduction Algorithm

The R-Cyclic Reduction (R-CR) algorithms [23, 1, 18] are a family of al-

gorithms, including the classic Cyclic Reduction (CR) algorithm [23, 1, 18]

(R = 2) and the Tricyclic Reduction (TR) algorithm [31] (R = 3). For a

simpler explanation, we first explain the CR algorithm in detail, and then

generalize the concept to the R-CR algorithms by comparing the TR algo-

rithm with the CR algorithm.

The CR algorithm recursively eliminates the variables in radix-2 rows of

a tridiagonal matrix using its adjacent two radix-2 rows; e.g., the variables

of Row k2p can be eliminated using Row k2p + 2p−1 and Row k2p − 2p−1,

where p is the level of recursion, k is a positive integer, and an undefined

row index can be directly ignored. After a level of recursion, an effective

tridiagonal matrix can be extracted in terms of a half unknown variables of

the matrix before the recursion. Figure 2.2 illustrates the first level of CR

on a 4-by-4 tridiagonal matrix, which is reduced to a 2-by-2 then a 1-by-1

effective matrix. These processes form a forward reduction phase.

When the effective matrix becomes 1-by-1 or small enough to be solved

directly, the corresponding variables can be solved. After a effective matrix

is solved, the resolved variables can be used to solve a larger effective matrix,

which is the matrix before the recursive step. Using the same example in

Figure 2.2, we can get x0 and x2 by solving the small effective matrix. After

that, x0 and x2 can be used to solve x1 and x3 using Row 1 and 3 on the large

9

b0 c0

a1 b1 c1

a2 b2 c2

a3 b3

→

b′0 0 c′0
a1 b1 c1

a′2 0 b′2 0
a3 b3

⇒ [
b′0 c′0
a′2 b′2

]

Figure 2.2: One level of the CR forward reduction on a 4-by-4 matrix: a2

and c2 on Row 2 are eliminated by Row 1 and 3. Similarly, c0 is eliminated
by Row 1. After that, Row 0 and 2 can form an effective 2-by-2 matrix.

matrix, since the variables (x0 and x2) coupled with the coefficients a1, a3,

and c1 are known. Therefore, the effective matrices can be solved from small

to large recursively. The solving processes form a backward substitution

phase.

The TR algorithm is similar to the CR algorithm but recursively eliminates

the variable in radix-3 rows instead of radix-2 rows. Row k3p + 1 and k3p + 2

locally eliminate the variables of each other, Figure 2.3. The results of this

local elimination can be used to eliminate Row 0 and 3, and meanwhile are

commonly not stored back for reducing memory requirement. Figure 2.4

shows the computed results in the memory system, and the last small matrix

is the corresponding effective matrix of the TR algorithm.

b0 c0

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5

→

b0 c0

a′1 1 0 c′1
a′2 0 1 c′2

a3 b3 c3

a′4 1 0
a′5 0 1

Figure 2.3: The local elimination of TR forward reduction on a 6-by-6
matrix One level of CR forward reduction on a 6-by-6 matrix: Row 1 and
Row 2 can eliminate each other, and Row 4 and Row 5 can eliminate each
other.

By increasing the number of rows for elimination, the performance might

be improved due to the number of recursive levels decreased. Different rows

or variables in the same level of recursion can be eliminated or solved in

parallel, while ones in the different level might be in sequential. The R-

Cyclic Reduction algorithms generalize the idea by recursively eliminating

10

b0 c0

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5

→

b′0 0 0 c′0
a1 b1 c1

a2 b2 c2

a′3 0 0 b′3 0 0
a4 b4 c4

a5 b5

⇒
[
b′0 c′0
a′3 b′3

]

Figure 2.4: One level of the TR forward reduction on a 6-by-6 matrix: a3

and c3 on Row 2 are eliminated by Row 1 and 4 from the left matrix in
Figure 2.3. Similarly, c0 is eliminated by Row 1 from Figure 2.3. After that,
Row 0 and 3 can form an effective 2-by-2 matrix.

variables for the radix-R rows for a tridiagonal matrix.

Two modifications of the CR algorithm are worth mentioning. First, the

Parallel Cyclic Reduction (PCR) algorithm [32] recursively eliminates vari-

ables in all rows instead of the radix-2 rows in the CR algorithm. Therefore,

the PCR algorithm can avoid the backward substitution phase, but intro-

duces more computation in the forward reduction phase. In the end, the

PCR algorithm tends to have higher total complexity when the size of a

matrix increases. Second, the block CR algorithm solves a block tridiag-

onal matrix, instead of a (scalar) tridiagonal matrix, by extending scalar

operations into matrix (or block) operations. For a special form of block

tridiagonal matrices, e.g. a spike matrix in the SPIKE algorithm, the block

CR algorithm can be further simplified.

2.2 Diagonal Pivoting Algorithm

The diagonal pivoting algorithm [20] for tridiagonal solvers is proposed to

improve numerical stability of the classic LU algorithm. Although the LU

algorithm with partial pivoting provides a similar quality of solution and is

widely used for tridiagonal solvers on CPUs, it is not efficiently applicable on

GPUs due to inefficient memory operations of row interchange. The diagonal

pivoting algorithm avoids row interchange by selecting a 1-by-1 or 2-by-2

diagonal pivot blocks. The original tridiagonal matrix can be factorized

11

using Equation 2.12.

T =

[
Pd C

A Tr

]
=

[
Id 0

AP−1
d In−d

][
Pd 0

0 Ts

][
Id P−1

d C

0 In−d

]
, (2.12)

where Pd is either a 1-by-1 (
[
b0

]
) or a 2-by-2 (

[
b0 c0

a1 b1

]
) pivot block, and the

Schur complement Ts can be defined in Equation 2.13.

Ts = Tr − AP−1
d C =

Tr −

a1c0

b0

e
(n−1)
1 e

(n−1)T
1 , for 1-by-1 Pd

Tr −
a2b0c1

∆
e

(n−2)
1 e

(n−2)T
1 , for 2-by-2 Pd,

(2.13)

where ∆ = b0b1 − a1c0, e
(k)
1 is the first column vector of the k-by-k identity

matrix, and the superscript T means a transpose matrix.

Since Ts is still tridiagonal (Equation 2.13) and can be further factorized

using Equation 2.12, the original matrix T can be recursively factorized in

LBMT , where L and M are lower triangular matrices and B is a block-

diagonal matrix with either 1-by-1 or 2-by-2 blocks. After the LBMT fac-

torization, the diagonal pivoting algorithm solves Lz = d for z, then By = z

for y, and finally MTx = y.

Multiple applicable pivoting criteria [20] to determine how to choose 1-

by-1 or 2-by-2 Pd in Eq. 2.12 have been proposed. In this thesis, we im-

plement the asymmetric Bunch-Kaufman pivoting. The asymmetric Bunch-

Kaufman pivoting chooses a 1-by-1 pivot at Row 0 if the leading entry b0

is sufficiently large relative to adjacent entries, i.e., |b0|σ ≥ κ |a1c0|, where

σ = max {|a1| , |a2| , |b1| , |c0| , |c1|} and κ =
√

5−1
2
≈ 0.62. Otherwise, a 2-by-2

pivot is chosen.

12

CHAPTER 3

SPIKE-DIAGONAL PIVOTING

As mentioned in Chapter 1, scalable partitioning and supporting pivoting

are extremely important for building a broadly applicable tridiagonal solver.

However, partitioning is still challenging due to extra overheads introduced

from sharing data, communication, and increased complexity. Only few pre-

vious studies can efficiently partition the workload of a tridiagonal solver.

Adding a pivoting support for a tridiagonal solver is even more challenging.

To the best of our knowledge, no existing GPU tridiagonal solvers support

pivoting. The main reason is because most of the existing tridiagonal solvers

use the R-CR algorithms, especially the CR or PCR algorithms. Since the

R-CR algorithms have a regular access pattern with small data sharing in

a level of recursion, the workloads can be partitioned in a near-trivial way.

However, the same fact makes pivoting almost impossible. These motivate

us to investigate another scalable partitioning method for a pivoting support.

We propose a SPIKE-Diagonal Pivoting tridiagonal solver for GPUs. The

SPIKE algorithm (Section 2.1.1) can decompose a tridiagonal matrix into

multiple disjoint block diagonal sub-matrices, which can be solved in par-

allel. The SPIKE algorithm guarantees high scalability due to its disjoint

partitioning and its low overhead for solving the spike matrix S. Then, the

diagonal pivoting algorithm (Section 2.2) is applied to solve each block di-

agonal sub-matrices (Equation 2.2 and 2.3 in Section 2.1.1) for guaranteeing

numerical stability in each sub-matrix. Our solver is the first tridiagonal

solver using the SPIKE algorithm and/or a pivoting method on GPUs.

Since the sub-matrices are solved independently in the SPIKE algorithm

and each of them is solved by the sequential diagonal pivoting method, it

is intuitive to let each thread solve a sub-matrix. In order to maximize

performance, three optimization strategies are applied. First, since each

Parts of this chapter appeared in the International Conference on High Performance
Computing, Networking, Storage and Analysis [33]. The material is used with permission.

13

sub-matrix in the SPIKE algorithm contains consecutive rows, which are

stored consecutively in memory and solved by a thread, therefore, threads

in a warp have a strided access pattern, which dramatically reduces GPU

memory performance. A data layout transformation method (Section 3.2.1)

is applied to ensure our kernels have a stride-one memory access pattern

and gain the most bandwidth possible from the GPU memory. Second, the

heavily data-dependent control flow in the thread-parallel diagonal pivoting

method causes thread divergence and further widely scattered memory ac-

cesses, which makes GPU caches nearly useless. A dynamic tiling technique

(Section 3.2.2) is introduced to keep divergence under control so the GPU

caches can be effectively utilized and deliver competitive memory perfor-

mance. Last, since our tridiagonal solver is memory-bound, a kernel fusion

strategy is proposed to further reduce memory bandwidth requirement by

merging the LBMT decomposition and the following L and B solvers.

In the end of this chapter, we discuss the potential extensions and/or lim-

itations for the SPIKE-Diagonal Pivoting algorithm. These not only demon-

strate applicability the SPIKE-Diagonal Pivoting algorithm can provide, but

also lead us to the next proposed algorithm, the Parallel Diagonal Pivoting

algorithm.

3.1 SPIKE-Diagonal Pivoting Algorithm

The SPIKE-Diagonal Pivoting algorithm is a hybrid algorithm of the SPIKE

algorithm and the diagonal pivoting method. The flowchart of the algorithm

is shown in Figure 3.1. A massive number of sub-matrices decomposed by

the SPIKE algorithm can fully utilize GPUs. The partitioning step deter-

mines the number of sub-matrices by the degree of thread-level parallelism

of GPUs. Also, to ensure a stride-one memory access pattern for the major

kernels, the partitioning step marshals the data using the number of sub-

matrices.

Then, the thread-parallel sub-matrix solver for the collection of indepen-

dent sub-matrices Ti’s computes both the solutions yi (Equation 2.2) to the

sub-matrices as well as the wi and vi components (Equation 2.3) of the spike

matrix S. It can be considered as a RHS matrix with 3 column vectors that

are solved together. In our SPIKE-Diagonal Pivoting algorithm, the diago-

14

	

Partitioning

Thread-‐parallel	 Sub-‐matrix	
Solver

Spike	 Matrix	 Solver

Reduced	 Spike	 Solver

Backward	 Substitution

T d

Ti’s di’s ahi’s cti’s

yi’s wi’s vi’s

Result	 Collection

xi’s

x

Figure 3.1: The flowchart of the SPIKE-Diagonal Pivoting algorithm.

nal pivoting method is applied. For wi, since only the leading entry (ahi) is

nonzero, the computation for solving L can be further simplified. Similarly,

for vi, the last entry (cti) is nonzero, so the computation for solving L, B,

and MT can be reduced. Therefore, the overhead of solving 3 column vectors

over the cost of solving 1 column vector is ignorable.

After all sub-matrices are solved, the spike solver for solving Sx = y is

invoked, first solving the reduced system (Equation 2.4), then followed by

the computation of all remaining variables through backward substitution.

This strategy dramatically reduces the computation cost for solving Sx = y.

Therefore, the thread-parallel sub-matrix solver constitutes the majority of

the computation in our solver. Finally, the result collection step marshals

the computed results back to the original layout, since the data layout has

been changed by the partitioning step.

3.2 Optimization for SPIKE-Diagonal Pivoting

Algorithm

Three optimization mechanisms are proposed to boost the performance of our

SPIKE-Diagonal Pivoting solver. Data layout transformation is introduced

to improve memory efficiency for regular memory access patterns. Then,

15

dynamic tiling is proposed to keep divergence under control and improve

memory efficiency for irregular memory access patterns. Meanwhile, kernel

fusion is applied to reduce memory bandwidth requirement.

3.2.1 Data Layout Transformation

d0	 d1	 d2	 d3	
d4	 d5	 d6	 d7	
d8	 d9	 d10	 d11	
d12	 d13	 d14	 d15	
d16	 d17	 d18	 d19	
d20	 d21	 d22	 d23	

d0	 d4	 d8	
d1	 d5	 d9	
d2	 d6	 d10	
d3	 d7	 d11	
d12	 d16	 d20	
d13	 d17	 d21	
d14	 d18	 d22	
d15	 d19	 d23	

address

address

local
transpose

(a) Original layout (b) Proposed layout

Figure 3.2: An illustration for data layout transformation for 2 warps. Each
warp contains 3 threads, and each thread solves a 4-row sub-matrix.

For the GPU memory system to perform well, the memory address ac-

cessed by a warp should be either coalesced or very close together. However,

in our thread-parallel solver, adjacent rows are accessed by a single thread

sequentially, and widely spread rows are simultaneously accessed by a warp.

Therefore, in the partitioning step of the proposed algorithm, these spread

rows are marshaled into consecutive addresses by data layout transforma-

tion. Figure 3.2 illustrates the relationships between layouts before and after

data marshaling with 2 warps, each containing 3 threads, each solving a 4-

row sub-matrix. In the original layout, all coefficients (di) are placed into

consecutive locations, such as d0, d1, d2, and d3. When the threads start

accessing data from the left (dashed-boxed) column, a strided access pattern

is created. In our proposed data layout, a local transpose on the data in

each warp relocates a column to a row, which provides a coalesced memory

access. This local transpose is similar to the Array of Structures of Tiled

Arrays layout analyzed by Sung et al. [34].

Figure 3.3 demonstrates the performance improvement on an NVIDIA

16

69.46	 	

38.63	 	
34.59	 	

59.87	 	

9.68	 	 7.07	 	 4.73	 	

0	

10	

20	

30	

40	

50	

60	

70	

80	

random	 diagonally	
dominant	

zero	 diagonal	 data	 marshaling	
overhead	

(ms)	 original	 layout	 proposed	 layout	

Figure 3.3: Performance improvement in the thread-parallel sub-matrix
solver by applying data layout transformation on 3 types of 8M-size
matrices.

GTX480 GPU for the proposed data layout transformation by comparing

three kinds of matrices (8 million rows), which are either randomly gener-

ated, strictly column diagonally dominant, or having a zero diagonal with

nonzero off-diagonal entries. The random matrix has strong branch diver-

gence due to randomly chosen pivots, while the strictly column diagonally

dominant matrix and the zero diagonal matrix result in no branch divergence

with always 1-by-1 diagonal pivots or 2-by-2 pivots, respectively. Our pro-

posed data layout outperforms the original one up to 4.89×, due to better

memory efficiency. For the regular memory accesses without branch diver-

gence, such as the strictly column diagonally dominant matrix and the zero

diagonal matrix, our proposed data layout shows perfectly coalesced memory

accesses and gives speedups over the original one by a factor of 3.99-4.89×.

A small overhead of data marshaling is also observed, and it might be amor-

tizable in iterative applications. On the random matrix, which has irregular

memory accesses due to branch divergence, the performance improvement

drops to only 1.16×. Since the memory access pattern is irregular and data-

dependent, the (static) data layout transformation can only provide limited

performance improvement. At the same time, since each thread on the ran-

dom matrix chooses 1-by-1 or 2-by-2 pivots independent of other threads, the

cache lines of data required by each thread on a particular iteration become

fragmented and cause the low cache efficiency.

17

3.2.2 Dynamic Tiling

1	 1	 1	 1	

2	 2	 1	 1	

3	 3	 2	 2	

3	 4	 4	 2	

4	 5	 4	 4	

4	 5	 5	 4	

6	 6	 5	 6	

7	 6	 6	 6	

1	 1	 1	 1	

2	 2	 1	 1	

3	 3	 2	 2	

3	 4	 3	 2	

4	 5	 3	 3	

4	 5	 4	 3	

5	 6	 4	 4	

6	 6	 5	 4	

scattered
footprint

compact
footprint

T0 T1 T2 T3

real sync
happened

Tiling size
= 3

tiling boundary
estimated

T0 T1 T2 T3 Thread ID

address address

tiling boundary
estimated

footprint turns
compact!

(a) Data layout
transformation only

(b) Dynamic tiling +
data layout

real sync
happened

Figure 3.4: An illustration for dynamic tiling for 4 threads.

Figure 3.4(a) illustrates the fragmented memory footprint on the random

matrix when 4 threads iterate through rows of their sub-matrices in the

proposed layout of the previous section. The numbers in the boxes represent

the number of iteration. In Iteration 1, the threads touch two lines of data.

Although the access is not perfectly coalesced, the GPU L1 cache mechanism

can still deliver reasonable bandwidth. Data accessed on Iteration 1 can be

cached and might be used by Thread T0 and T1 on Iteration 2 if the cache

line is not replaced. However, as threads consume different numbers of rows

through each iteration, by the time they get to Iteration 4, the accessed

data are scattered across 5 lines. If data touched by the threads are far

enough apart, the number of cache lines to avoid evicting before all threads

consume their data increases. At the same time, since the threads bring more

cache lines into the L1 cache, it also increases the chances of evicting useful

cache lines. Therefore, when the memory access footprint exceeds a certain

number, which is related to the cache capacity and the number of scheduled

threads, the memory system performance degrades significantly.

In order to counteract this problem, we propose a dynamic tiling mecha-

nism, which bounds the size of the memory access footprint of the threads in

a warp by inserting an intentional barrier synchronization for a warp. List-

18

ing 3.1 and 3.2 show the relationships between pseudo codes before and after

dynamic tiling. Since a warp executes in lockstep, it is always synchronized if

no branch divergence. Therefore, we change the loop structure of iterations

to make the control flow converged every Lth (L = 3 in our example in Fig-

ure 3.4(b)) cache line the threads in a warp access. Here, k is the local row

index in each sub-matrix, and is used to represent the memory footprint of

each thread. Note k does not represent the index of iteration. Since the orig-

inal while loop becomes two nested loops, a hidden barrier synchronization

is automatically inserted before the for loop ends. This barrier synchroniza-

tion for a warp between the smaller while loops bounds the number of cache

line the threads access by forcing “fast” threads to wait for “slow” threads

within a warp. At the first barrier synchronization in Figure 3.4(b), two fast

threads (Thread T2 and T3) idle one iteration to wait for the other two slow

threads (Thread T0 and T1). After dynamic tiling, the size of the footprint

is bounded by a tuned tiling parameters and the footprint becomes more

compact.

Listing 3.1: Baseline

1 k=0

2 while (k<n) {
3 i f (cond i t i on) {
4 1−by−1 p ivo t ing

5 k+=1

6 } else {
7 2−by−2 p ivo t ing

8 k+=2

9 }
10 }

Listing 3.2: Dynamic tiling

1 k=0

2 for (i =0; i<n/L ; i++) {
3 n b a r r i e r =(i +1)∗L
4 while (k<n b a r r i e r) {
5 i f (cond i t i on) {
6 1−by−1 p ivo t ing

7 k+=1

8 } else {
9 2−by−2 p ivo t ing

10 k+=2

11 }
12 }
13 //a hidden b a r r i e r

14 // f o r a warp

15 }

Figure 3.5 demonstrates the performance improvement of dynamic tiling.

Our dynamic tiling strategy provides an extra 3.56× speedup on top of data

layout transformation when branch divergence is heavy, and shows a com-

19

59.87	 	

9.68	 	
7.07	 	

16.83	 	

9.88	 	
7.13	 	

0	

10	

20	

30	

40	

50	

60	

70	

random	 diagonally	 dominant	 zero	 diagonal	

(ms)	 data	 layout	 only	 dynamic	 <ling	 (with	 data	 layout)	

Figure 3.5: Performance improvement in the thread-parallel sub-matrix
solver by applying dynamic tiling on 3 types of 8M-size matrices.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

baseline,	
random	

8ling,	 random	 baseline,	
diagonally	
dominant	

8ling,	
diagonally	
dominant	

baseline,	 zero	
diagonal	

8ling,	 zero	
diagonal	

%	
Global	 Memory	 Load	 Efficiency	 Global	 Memory	 Store	 Efficiency	
L1	 Hit	 Rate	 Warp	 Execu8on	 Efficiency	

Figure 3.6: Performance counters for dynamic tiling.

pletely ignorable overhead when there is no divergence. Figure 3.6 further

analyzes dynamic tiling using the hardware performance counters from the

NVIDIA Visual Profiler [35]. The non-divergent matrices exhibited perfect

memory utilization with or without dynamic tiling, as expected, and there-

fore they have the 0% L1 rates because of coalescing memory accesses. With-

out dynamic tiling, the random matrix can only have 11.7% and 25.3% in

the global memory load efficiency and global memory store efficiency respec-

tively. The low L1 cache hit rate of 17.2% implies that the memory footprint

is too large that the cache could not contain all data, evicting cache lines

before the data are consumed. By applying dynamic tiling, the global mem-

ory load efficiency and global memory store efficiency are improved from

11.7% to 32.5% and 25.3% to 46.1% respectively. At the same time, the

L1 cache hit rate is significantly boosted from 17.2% to 48.0%, with only a

20

minor decrease in warp execution efficiency (branch divergence). These met-

rics support our conclusion that dynamic tiling improves memory efficiency

by more effectively utilizing the hardware cache, and show that the random

matrix can have compatible performance to the non-divergent matrices by

applying dynamic tiling.

An alternative dynamic scratchpad tiling might be applied to replace our

proposed dynamic (cache) tiling by moving data into scratchpad memory

instead of relying on L1 cache. Using scratchpad instead of L1 caches might

avoid possible cache evicting for useful data, but might cause extra costs for

scratchpad memory access requests and a small unused portion of scratchpad

due to irregular accesses. On the other hand, dynamic scratchpad tiling

might be extremely useful for a GPU without L1 caches or with L1 caches

that do not support global accesses. One example for the latter case is the

NVIDIA Kepler architecture. The L1 cache on Kepler is accessible only by

local memory accesses, such as register spills and stack data, but not by global

memory accesses. Therefore, different GPU architectures might benefit one

or the other.

3.2.3 Kernel Fusion

Since the L and B solvers access the same data and have a memory access

pattern similar to that of the LBMT decomposition, these two parts can

be merged to reduce memory bandwidth requirement. Kernel fusion might

degrade kernel performance due to increased resource pressure. However,

in our case, the LBMT decomposition tends to have much higher resource

pressure than the L and B solvers and can tolerate the increased resource the

kernel fusion introduces. Therefore, kernel fusion is completely applicable in

our case, and can significantly reduce memory bandwidth requirement. To

be clear, after the kernel fusion, the matrices L and B can be consumed on

the fly without storing back in memory. However, the matrix U and the

pivoting structure have to be stored in memory and would not be used until

the whole LBMT decomposition completes.

21

3.3 Extensions of SPIKE-based Algorithm

Multiple extensions are further investigated. Our SPIKE-Diagonal Pivoting

method can be extended to support multi-GPUs or heterogeneous clusters

(CPUs + GPUs) by using OpenMP and MPI. Also, since the SPIKE algo-

rithm does not limit applied solvers for sub-matrices, either the LU algo-

rithm (Thomas algorithm) or the CR algorithms can be used for sub-matrix

solvers. However, as mentioned in Chapter 1, in either the LU algorithm

or the CR algorithm, stable solutions are only guaranteed for strictly col-

umn diagonally dominant matrices. Two extensions, SPIKE-Thomas [33]

and SPIKE-CR [36] solvers, can provide higher throughputs over the exist-

ing tridiagonal solvers on diagonally dominant matrices. Last, for multiple

right-hand-side (RHS) vectors, the LBMT decomposition can be shared by

multiple RHS vectors.

3.3.1 Multi-GPU and Cluster Extension

Our SPIKE-Diagonal Pivoting algorithm can support multi-GPUs or hetero-

geneous clusters (CPUs + GPUs). OpenMP [37] can be applied for multi-

threads or multi-GPUs in a node, while MPI [38] can be used for communi-

cation among different nodes. Intel MKL gtsv is used for CPUs, while our

thread-parallel diagonal pivoting solver is applied for GPUs.

3.3.2 SPIKE-Thomas Algorithm

Since the SPIKE algorithm does not restrict the algorithm applied for the

sub-matrix solver, the Thomas algorithm (LU algorithm) can be applied to

replace the diagonal pivoting algorithm if the input matrix is known as a

strictly column diagonally dominant matrix. Under this situation, consid-

ering the branch of 1-by-1 pivot is always taken in the diagonal pivoting

algorithm, the Thomas algorithm can provide a simpler control flow, fewer

memory accesses, and less register pressure than the original diagonal pivot-

ing algorithm. By hard-coding the Thomas algorithm instead of the diagonal

pivoting algorithm as the sub-matrix solver, performance can be further im-

proved.

22

3.3.3 SPIKE-CR Algorithm

Similar to the SPIKE-Thomas algorithm, the CR algorithm can be applied

as the sub-matrix solver if the input matrix is known as a strictly column

diagonally dominant matrix. In the SPIKE-CR algorithm, each sub-matrix is

solved collaboratively by threads in a thread block instead of being solved by

a single thread. The CR algorithm potentially can provide finer parallelism

within a sub-matrix than the Thomas algorithm. Also, since threads in a

thread block access a single sub-matrix, it has a perfectly coalesced access

pattern, requiring no data layout transformation. Moreover, both ahi and cti

can be considered as parts of computation in the CR algorithm, so there is

no overhead for solving wi and vi. However, a high-performance CR-based

tridiagonal solver requires more optimizations than a Thomas-based solver.

Common optimization techniques for the CR algorithm can be applied to

the SPIKE-CR Algorithm. First, a register packing mechanism [7] is widely

applied to reduce the required size of scratchpad memory the CR algorithm

desires. Also, a hybrid of CR-PCR [13] by applying a warp-level PCR can be

used to avoid the potential low utilization within a warp in the CR algorithm.

Another level of the SPIKE algorithm can be further applied to minimize

communication cost among warps within a thread block. By applying the

above optimization techniques, the SPIKE-CR algorithm can outperform the

SPIKE-Thomas by a factor of 1.23×.

3.3.4 Multiple Right-Hand-Side Vectors

Since multiple RHS vectors share the same input matrix, which has the same

diagonal pivots, there is no need to re-execute the LBMT decomposition on

multiple RHS vectors. Therefore, the matrices L and B might be stored back

in memory for sharing across multiple RHS vectors.

3.4 Limitation of SPIKE Algorithm

One major limitation of the SPIKE-Diagonal Pivoting algorithm lies in the

assumption that each sub-matrix has to be invertible (non-singular). In a

general matrix, a singular sub-matrix might happen during partitioning. At

23

the same time, since most SPIKE-based algorithms, including ours, parti-

tion a matrix only based on the size of the matrix, it is extremely difficult to

eliminate this corner case. Therefore, in this situation, the undefined solution

returned by the SPIKE-Diagonal Pivoting algorithm does not match the re-

sult computed by the sequential diagonal pivoting algorithm. This limitation

leads us to parallelizing the full diagonal pivoting algorithm.

24

CHAPTER 4

PARALLEL DIAGONAL PIVOTING
ALGORITHM

A small range (within a sub-matrix) of diagonal pivoting provides stable nu-

merical solutions of sub-matrices in the SPIKE-Diagonal Pivoting algorithm

without compromising parallelism. However, due to this limited range of

diagonal pivoting, the SPIKE-Diagonal Pivoting algorithm might not give

a comparable quality of solution to the conventional diagonal pivoting algo-

rithm in a certain type of matrix. This motivates us to investigate a Parallel

Diagonal Pivoting algorithm for providing pivoting within the whole range

of a tridiagonal matrix instead of a single sub-matrix.

A classic failure for a domain decomposition method like the SPIKE algo-

rithm is mainly caused by singular or near-singular partitioning. Although

the disjoint partitioning without communication used the SPIKE algorithm

leads us to a highly scalable tridiagonal algorithm, this pattern causes the sin-

gular partitioning. Therefore, instead of relying on the partitioning without

communication, our Parallel Diagonal Pivoting algorithm uses linear recur-

rences, which can be solved in parallel with a small amount of communication

between two adjacent partitions.

First, we model the diagonal pivoting algorithm as a linear recurrence.

Inspired by the CF-LU Algorithm (Section 2.1.2), the LBMT decomposition

can be modeled as a second-order linear recurrence. A major challenge of

modeling the LBMT decomposition is its branch divergence. Although by

definition a linear recurrence can have a condition, it may potentially degrade

the performance, especially on GPUs. We propose a linear recurrence-based

LBMT decomposition without branch divergence. Then, since our method

takes a CF-LU -like strategy, the method also suffers from the drawback of

the parallel CF-LU algorithm, which is a potential overflow problem. In

Equation 2.8, θi’s might overflow due to the large-value coefficients ai’s, bi’s,

and ci’s. In order to counteract this problem, a normalization strategy is

introduced. Last, similar to the CF-LU algorithm, the solvers for L and

25

MT can be represented as linear recurrences and the solver for B only has

local computation. Therefore, the proposed linear recurrence-based diagonal

pivoting algorithm is completely parallelizable.

Since our Parallel Diagonal Pivoting algorithm is tightly coupled with lin-

ear recurrences, the throughput of parallel linear recurrence solvers com-

pletely dominates the efficiency of our method. Three optimization tech-

niques are proposed to customize the parallel linear recurrence solvers for

our Parallel Diagonal Pivoting algorithm. First, for a second-order linear

recurrence solver, communication exists among threads and even among

thread blocks. Since each thread block executes independently in the mod-

ern GPU programming models, communication among thread blocks is not

well-defined during kernel execution and requires kernel termination, which

creates massive redundant memory accesses and huge memory bandwidth re-

quirement. Two methods are proposed to address inter-block communication

and boost memory throughput.

Second, though our solutions for inter-block communication are efficient,

they are not cost-free. Given a fixed-size matrix, the frequency of inter-block

communication is inversely proportional to the amount of data processed in

a thread block. By tiling more data in a thread block, the total cost of inter-

block communication decreases. In order to tile maximal data in a thread

block, a unified tiling mechanism is proposed to fully utilize SM resources,

including both registers and scratchpad. Overusing SM resources might im-

pact GPU multi-threading and then downgrade performance significantly.

Our proposed unified tiling mechanism can balance each resource usage to

avoid overusing one or both of them.

Last, the L and B solvers can be further merged with the LBMT decom-

position phase to reduce memory bandwidth requirement. A major possible

challenge for this kernel fusion is branch divergence of the L and B solvers.

This branch divergence is unavoidable and that is the reason that dynamic

tiling is proposed for the SPIKE-Diagonal Pivoting algorithm to improve its

cache efficiency instead of eliminating the branch divergence. By merging the

L and B solvers into the LBMT decomposition, the branch divergence is re-

introduced to our non-divergent decomposition. Another possible challenge

is increased resource pressure, which might degrade kernel performance. A

kernel fusion optimization is proposed to reduce memory bandwidth require-

ment without introducing high overheads.

26

Similar to the previous chapter, in the end of this chapter, we also discuss

the potential extensions and/or limitations for the Parallel Diagonal Pivoting

algorithm. These demonstrate the applicability of the algorithm.

4.1 Linear Recurrence-based Parallel Diagonal

Pivoting Algorithm

4.1.1 Linear Recurrence Formulation

In the diagonal pivoting method (Section 2.2), the leading entry b̂i of the

Schur complement Ts (Equation 2.13) can be further defined in Equation 4.1.

Without loss of generality, we assume a pivot happens at Row 0.

b̂i =

b̂1 = b1 −

a1c0

b0

, for a 1-by-1 pivot Pd

b̂2 = b2 −
a2b0c1

∆
, for a 2-by-2 pivot Pd,

(4.1)

where b̂i can be also considered as the leading entries of the sub-blocks in

B, and apparently b̂0 can be defined as b0. Since Equation 2.13 is used

recursively to define the LBMT decomposition, the coefficients b̂i can be

defined recursively using equations similar to Equation 4.1. Particularly

when a 1-by-1 pivot happens, b̂1 becomes f1 in Section 2.1.2. If 1-by-1 pivots

are always picked, the LBMT decomposition can be simplified into the LU

decomposition, where U is equal toBMT , and b̂i’s and fi’s become equivalent.

In this case, θi of Equation 2.8 in Section 2.1.2 is well-defined and satisfies

b̂i = fi = θi/θi−1.

Now, considering a 2-by-2 pivot happens at b0, we have b̂2 = b2 − a2b0c1
∆

.

Since θ−1 = 1 and θ0 = b0 are defined (in Equation 2.8), ∆ is equal to θ1,

Equation 4.2.

θ1 = b1θ0 − a1c0θ−1 = b1b0 − a1c0 = ∆ (4.2)

Then, since θ1 is nonzero, by multiplying θ1 on both sides, we have the

following equation,

b̂2θ1 = b2θ1 − a2b0c1 = b2θ1 − a2c1θ0 = θ2 (4.3)

27

Therefore, b̂2 = f2 = θ2/θ1 is still satisfied. The above deduction shows a

2-by-2 pivot does not change the leading entries of b̂2. To be clear, the b̂2

from one 2-by-2 pivot is the same as the b̂2 from two 1-by-1 pivots. A 2-by-2

pivot happening at b0 only changes the definition of b̂1 without changing b̂2

if two 1-by-1 pivots happen at b0. Due to a 2-by-2 pivot at b0, b̂1 is not

a leading entry anymore. More importantly, Equation 2.8 is still satisfied

in the LBMT decomposition, and can be used to compute the well-defined

leading entries b̂i’s of B.

The linear recurrence of the LBMT decomposition can be written as fol-

lows:

θi =

1, i = −1

b0, i = 0

biθi−1 − aici−1θi−2, 1 ≤ i ≤ n− 1,

(4.4)

which is the same as Equation 2.8, and then

b̂i =
θi
θi−1

, for a 1-by-1 pivot at i− 1 or a 2-by-2 pivot at i− 2 (4.5)

The pivoting criterion (Section 2.2) can be rewritten as follows:

|θi|σ ≥ κ |ai+1ciθi−1| , (4.6)

where σ = max {|ai+1| , |ai+2| , |bi+1| , |ci| , |ci+1|}.

4.1.2 Linear Recurrence-based LBMT Decomposition

There are two major types of parallel linear recurrence solvers, which are a

group-structure and a tree-structure linear recurrence solvers. The group-

structure solvers take a divide-and-conquer approach for computing prop-

agation coefficients of different groups in parallel, while the tree-structure

solvers execute feasible non-dependent computation or communication within

a whole linear recurrence in parallel. Intuitively, the group-structure solvers

are similar to the SPIKE algorithm, while the tree-structure solvers are sim-

ilar to the R-Cyclic Reduction algorithms.

A hierarchal, hybrid-structure parallel linear recurrence solver is used for

our high-performance LBMT decomposition. The hierarchy of our algo-

rithm is shown as follows: within each thread, a sequential solver is applied;

28

within each warp, either a group-structure or a tree-structure (using the

Kogge-Stone algorithm [28]) solver is applied; within each thread block, a

tree-structure (also using the Kogge-Stone algorithm) solver is applied for

different warps; among thread blocks, a group-structure solver is applied

with (sequential) producer-consumer communication.

4.1.3 Normalization to Avoid Overflowing

The variables θ’s might overflow, since Equation 4.4 (or Equation 2.8) is

only related to coefficients ai’s, bi’s and ci’s but no di’s. If Row i of a matrix

is multiplied by a large value P , θi and all θ’s after i also increase by P .

Considering multiple rows of a matrix are multiplied by large values, after a

certain row j, θj and all θ’s after j may overflow and then generate wrong

coefficients b̂i’s or fi’s. However, in the conventional (sequential) LBMT or

LU decomposition, this overflow never happens. This is mainly because the

conventional decomposition directly computes the leading coefficients b̂i’s or

fi’s instead of using a linear recurrence of θi’s. To counteract this problem, a

normalization scheme is necessary to avoid θ overflowing. Intuitively, each θi

should be normalized by θi−1, and then θi becomes b̂i. However, this strategy

cannot work since b̂i might not be well-defined for each i in the diagonal

pivoting algorithm. For example, b̂1 is not a leading entry when a 2-by-2

pivot happens at Row 0. Therefore, a division by zero or a small value might

happen at b̂1. To avoid this situation, we can use Equation 4.6 to enable

normalization. Therefore, normalization does not happen at a non-leading

entry.

Since a normalization scheme indeed is a division operation, it is expensive

and might degrade the performance of our solver. An alternative normaliza-

tion scheme, optionally performing a division when the values of θ or the

coefficients are larger than a threshold, is proposed to avoid expensive divi-

sion operations.

29

4.2 Optimization for Parallel Diagonal Pivoting

Algorithm

Three optimization mechanisms are proposed to boost the performance of

our Parallel Diagonal Pivoting algorithm. First, efficient inter-block com-

munication for our producer-consumer communication pattern is introduced

to reduce memory bandwidth requirement. Then, unified tiling is proposed

to minimize the frequency and the total cost of inter-block communication.

Kernel fusion is further applied to reduce memory bandwidth requirement.

4.2.1 Producer-Consumer Inter-block Communication

As mentioned above, inter-block communication is critical for our parallel

linear recurrence-based diagonal pivoting algorithm. In our algorithm, a

producer-consumer inter-block communication pattern is applied to minimize

inter-block communication for a fixed number of thread blocks. In order to

support this inter-block communication pattern, we propose the following

two methods.

Lock-free Message Passing is proposed to avoid the high overhead of

kernel termination for global synchronization. Different from conventional

GPU lock-free inter-block communication mechanisms [39], which rely on

memory fences or atomic operations, our message passing strategy packs mes-

sages (data for communication) and a ready signal into an uncached memory

request. This can avoid high-cost memory fences and atomic operations, and

then dramatically boost performance. Figure 4.1 illustrates our proposed

method. Through micro-benchmarking, we recognize that a memory request

on a small range of (aligned) consecutive addresses is always completed at

the same time. A memory request is commonly formed by a whole cache

line or word that is read or written at the same time. Since it is a single

memory request, no other threads can see a partial result of this cache line

or word. This is similar to the atomicity property in a database system.

Therefore, this property can be used as a ready signal to confirm whether a

message is ready. By using micro-benchmarking, the range is determined as

128 Bytes (a cache line size) for both NVIDIA Fermi and Kepler GPUs. A

producer writes a package, containing both a signal and a message of data,

30

signal	 data	

signal	 data	 signal	 data	

Written by a warp Read by a warp

L2 Cache Line
Address

Aligned

Thread	
0	

Thread	
1	 …	 Thread	

N-‐1	
Thread	

0	
Thread	

1	 …	 Thread	
N-‐1	

Check the
ready signal

Mark the
ready signal

Global memory

Local memory

Figure 4.1: An illustration for lock-free message passing.

to a pre-determined address using a warp, which executes in lockstep, while

a consumer keeps pooling the address to check the signal also using a warp.

When the signal becomes ready, the consumer can confirm that it receives

the correct message from the producer.

A similar method related to ours was proposed by Yan et al. [40]. Yan’s

method merges the single-variable message and the signal together, and a

single address is used by both the message and signal at the same time. A

specialized unused value of the message is chosen to represent the ready sig-

nal. Yan’s method is not practical as our method, since not every message

has an unused value for the ready signal, and Yan’s method only supports

single-variable messages. Our method splits addresses for the message and

the signal, and then packs them into a single memory request. Our lock-free

message passing method potentially can support different types communica-

tion patterns other than the producer-consumer pattern, but in this thesis it

is applied only for the producer-consumer pattern.

Dynamic Parallelism is an alternative for implementing inter-block com-

munication. Dynamic parallelism [41] is supported in NVIDIA Kepler GPUs

to allow kernel launch within a kernel. This functionality can be applied for

inter-block communication by launching a consumer kernel in a producer ker-

nel. The message from the producer to the consumer can be passed through

arguments of the consumer kernel. This strategy is extremely efficient due

to eliminating pooling of the consumer. Different from our lock-free message

passing method, allowing overlapping the consumer’s execution with the pro-

31

ducer’s before the inter-block communication, dynamic parallelism serializes

this overlapped part. Although this sequentialization might introduce a risk

for degrading performance, massive multi-threading of GPUs might still fully

utilize the memory bandwidth. Dynamic parallelism is only supported by a

few most advanced GPUs. Therefore, for the GPUs without dynamic paral-

lelism, our proposed lock-free message passing can be applicable.

High-throughput platform atomic operations supported by HSA [42] might

be applied for either lock-free message passing or dynamic parallelism in the

producer-consumer inter-block communication pattern. Also, a dedicated

hardware support for GPU cache coherence from HSA might also simplify

the implementation of this inter-block communication pattern.

4.2.2 Unified Tiling

Since inter-block communication is not completely cost-free, it is still impor-

tant to control its usage rate, which is proportional to the number of thread

blocks and is inversely proportional to the amount of data processed in a

thread block. Therefore, intuitively, tiling more data processed in a thread

block can decrease the frequency of inter-block communication, and then

can further reduce the total communication cost. We propose a unified tiling

mechanism that systematically tiles data to on-chip resources (registers and

scratchpad) and fully utilizes these resources. In our unified tiling, registers

and scratchpad are forming a unified tiling space (UTS) for data tiling. All

private variables of a thread are stored in the UTS, and are assigned to ei-

ther a register or scratchpad memory. This strategy eliminates the redundant

storage if there are two copies.

The UTS strategy has the following benefits. First, since our method

includes both registers and scratchpad memory, it can potentially generate

a bigger tile in the UTS instead of two small tiles in the register file and

scratchpad memory. Second, since the sizes of a register file and scratchpad

memory vary from architecture to architecture, our method simplifies auto-

tuning for different architectures. Third, our method can resolve avoidable

register spilling or avoid low occupancies due to an imbalanced resource al-

location, which means one resource is overused and the other resources are

underutilized.

32

The UTS allocation can be implemented as a register allocation step of a

compiler. Our method is implemented in an alternative way in this thesis as

follows: All UTS variables are assigned into register file in the beginning, and

the feedbacks of register pressure from the compiler are used to determine the

UTS allocation. To address high register pressure, we intentionally spill pri-

vate variables into scratchpad memory instead of global memory. The spilled

variables are selected preferentially from the private variables used for data

tiling due to their longer live ranges. Intuitively, our alternative UTS imple-

mentation can be considered as a simplified register allocator with register

spilling on scratchpad memory. Also, the pressure of scratchpad memory is

monitored to avoid low occupancies due to overusing scratchpad memory.

To be precise, the scratchpad memory used for inter-block communication

is pre-reserved and not considered as a part of the UTS. Our implementa-

tion may require multiple iterations for compiling since it uses the compiler

feedback.

4.2.3 Kernel Fusion

As discussed in Section 3.2.3, kernel fusion is applicable for the LBMT de-

composition with the following L and B solvers. In our linear recurrence-

based method, this merging might introduce the unavoidable branch diver-

gence of the L and B solvers to the LBMT decomposition. However, as we

demonstrate in dynamic tiling, memory efficiency, instead of divergence, is

the first-order effect for performance. By using the non-divergent LBMT

decomposition, the memory access pattern is already regularized. Therefore,

the re-introduced branch divergence from the L and B solvers has a limited

performance influence.

Since MT is solved by a reverse-ordered linear recurrence solver, it cannot

be merged with the other in-ordered linear recurrences. However, since a

group-structure solver is applied among thread blocks and the LBMT de-

composition does access the same data the MT solver uses, potentially the

workload for computing propagation coefficients can be migrated into the

LBMT decomposition kernel. Due to the almost identical sizes of the prop-

agation coefficients and the original matrix coefficients of MT , there is no

memory requirement reduction in this merging. On the other hand, this mi-

33

gration might change the ratio of the computation costs between the LBMT

decomposition kernel, which is already merged with the L and B solvers, and

the MT solver. Different sizes of matrices or different GPUs might prefer dif-

ferent kernel fusion.

4.3 Extensions of Linear Recurrence-based Tridiagonal

Solvers

Similar to Section 3.3, multiple extensions are further investigated for the

linear recurrence-based tridiagonal solvers. The parallel CF-LU algorithm is

the most intuitive extension. Also, for RHS vectors, the LBMT decomposi-

tion can be shared for multiple RHS vectors.

4.3.1 Parallel CF-LU Algorithm

Since the parallel CF-LU algorithm (Section 2.1.2) shares the same linear

recurrence with the parallel diagonal pivoting algorithm, most of our opti-

mization techniques discussed above are applicable for the parallel CF-LU

algorithm. Since the CF-LU algorithm does not have divergence, multiple

conditions and branches can be avoided. The parallel CF-LU algorithm can

provide a stable solution if the input matrix is known as a strictly column

diagonally dominant matrix.

4.3.2 Multiple Right-Hand-Side Vectors

Similar to the discussion in the SPIKE-Diagonal Pivoting algorithm (Sec-

tion 3.3.4), there is no need to re-execute the LBMT decomposition on mul-

tiple RHS vectors. The matrices L and B might be stored back in memory

for sharing across multiple RHS vectors.

4.4 Limitation of Parallel Diagonal Pivoting Algorithm

One major limitation of the Parallel Diagonal Pivoting algorithm might be

lack of high-performance extensions for multi-GPUs or heterogeneous clus-

34

ters. In a GPU, results of adjacent groups in a group-structure linear re-

currence solver are computed on adjacent thread blocks to avoid long laten-

cies. However, in multi-GPUs, if consecutive groups are scheduled on the

same GPU, that might cause long latencies across the groups among differ-

ent GPUs; if interleaved groups are on the same GPU, that might require

inter-GPU communication, which is not applicable without kernel termina-

tion for the current architectures. Kernel termination enables the extension

for multi-GPUs but increases memory bandwidth requirement on each GPU.

That becomes a trade-off. Similar to multi-GPUs, in multi-nodes, inter-node

communication is required. Although MPI provides this functionality, kernel

termination is still needed.

35

CHAPTER 5

ADAPTIVE R-CYCLIC REDUCTION
ALGORITHM WITH DIAGONAL

PIVOTING

Conventionally, the R-Cyclic Reduction algorithms (Section 2.1.3) are con-

sidered only working for strictly column diagonally dominant matrices. As

mentioned in Chapter 3, using the R-CR algorithms, such as the CR or

PCR algorithms, is the main reason causing no pivoting in most existing

GPU tridiagonal solvers. In this chapter, we investigate the possibility of

supporting pivoting in an R-CR-like algorithm.

We propose an Adaptive R-Cyclic Reduction (A-R-CR) algorithm with di-

agonal pivoting. Considering the R-Cyclic Reduction algorithms are a family

of algorithms, each of which has a different R, we investigate a modified R-

cyclic algorithm to dynamically support different R values on different rows.

Inspired by the diagonal pivoting method, we recognize that different R val-

ues on different rows can be considered as different diagonal pivots.

Our A-R-CR algorithm is the first R-CR algorithm with pivoting. This

chapter focuses on the design of our A-R-CR algorithm instead of its opti-

mization techniques, since the optimization techniques for the R-CR algo-

rithms are widely studied. Our A-R-CR algorithm currently requires the

diagonal pivoting method to determine the structure of diagonal blocks, i.e.

R values of rows. Although the diagonal pivoting method might be merged

into the A-R-CR algorithm for reducing memory bandwidth requirement, it

still introduces a large overhead. However, our A-R-CR algorithm is still

applicable for those matrices with known or pre-computed pivoting struc-

tures. Also, the diagonal pivoting method might not be the most efficient

pivoting strategy for the A-R-CR algorithm. We leave the investigation of

other pivoting methods for the A-R-CR algorithm as future work.

36

5.1 Extended Support for Different R’s in R-Cyclic

Reduction Algorithm

In the following explanation, we use a terminology, m-(u, l), to define an R-

CR operation eliminating dependence of an m-row block using u prior rows

and l posterior rows. Apparently, 1-(1, 1), 1-(2, 2), 1-(R,R), and k-(k, k)

operations can be defined for the conventional CR, TR, R-CR, and block

CR with a block size k, respectively. Since only tridiagonal matrices are

considered, each parameter of m, u, or l can be limited to either 1 or 2,

resulting eight kinds of combination for different R-CR operations.

5.1.1 1-(u, l) R-Cyclic Reduction

The 1-(u, l) is considered operating on Row i by using information of Row

i− u to Row i+ l (Equation 5.1).

T =

.

ai−2 bi−2 ci−2

ai−1 bi−1 ci−1

ai bi ci

ai+1 bi+1 ci+1

ai+2 bi+2 ci+2

.

(5.1)

Two diagonal blocks are chosen as follows:

D− =

bi−1, for 1-by-1 D−[

bi−2 ci−2

ai−1 bi−1

]
, for 2-by-2 D−

(5.2)

and

D+ =

bi+1, for 1-by-1 D+[

bi+1 ci+1

ai+2 bi+2

]
, for 2-by-2 D+

(5.3)

Here, we can assume both D− and D+ are invertible by choosing u and

l wisely. If u is equal to 2, three linear operations for D− can be further

37

defined as follows:

D−w− = D−

[
w−h
w−t

]
=

[
ai−2

0

]

D−v− = D−

[
v−h
v−t

]
=

[
0

ci−1

]

D−y− = D−

[
y−h
y−t

]
=

[
di−2

di−1

] (5.4)

Otherwise, u = 1, we have

D−w− = D−w−h = D−w−t = ai−1

D−v− = D−v−h = D−v−t = ci−1

D−y− = D−y−h = D−y−t = di−1

(5.5)

Similarly, D+ has the corresponding linear operations. In the end, the 1-(u, l)

R-CR operation at Row i can be defined as follows:

b′i = bi − aiv−t − ciw+
h

a′i = −aiw−t
c′i = −civ+

h

d′i = di − aiy−t − ciy+
h

(5.6)

5.1.2 2-(u, l) R-Cyclic Reduction

Then, we define the 2-(u, l) CR operates on Row i and Row i + 1 using

information from Row i− u to Row i+ 1 + l (Equation 5.7).

T =

.

ai−2 bi−2 ci−2

ai−1 bi−1 ci−1

ai bi ci

ai+1 bi+1 ci+1

ai+2 bi+2 ci+2

ai+3 bi+3 ci+3

.

(5.7)

38

We can define similar diagonal blocks, D’s, and vectors w’s, v’s, and y’s.

Then, D
−

, w−, v− and y− are identical as D−, w−, v−, and y−, respectively,

while D
+

, w+, v+ and y+ are similar to D+, w+, v+, and y+, respectively,

by increasing one row. To be clear, we define D
+

as follows:

D
+

=

bi+2, for 1-by-1 D

+[
bi+2 ci+2

ai+3 bi+3

]
, for 2-by-2 D

+ (5.8)

The 2-(u, l) R-CR at Row i and Row i+ 1 can be defined as follows:

b′i = bi − aiv−t
a′i = −aiw−t
c′i = ci

d′i = di − aiy−t

(5.9)

and
b′i+1 = bi+1 − ci+1w

+
h

a′i+1 = ai+1

c′i+1 = −ci+1v
+
h

d′i+1 = di+1 − ci+1y
+
h

(5.10)

5.2 Structure of Diagonal Blocks

As mentioned above, the structure of diagonal blocks in our A-R-CR algo-

rithm performs as diagonal pivots. In order to get a proper structure of

diagonal blocks, the parallel diagonal pivoting algorithm or the conventional

diagonal pivoting algorithm can be applied. However, similar to the conven-

tional R-CR algorithm, the A-R-CR performs recursively. The structure of

diagonal blocks might change in different levels of recursion. For example,

a row in a 1-by-1 diagonal block in a level of recursion might form a 2-by-2

diagonal block with another row in another level of recursion. Therefore,

after each level of recursion, the structure of diagonal blocks needs to be

reorganized before another level of recursion is performed.

This restructuring diagonal blocks might limit the applicability of the A-

39

R-CR algorithm due to introducing a large pivoting overhead. On the other

hand, the A-R-CR algorithm is still applicable to those matrices with known

or pre-computed structures. One of the applications for the A-R-CR al-

gorithm is solving a tridiagonal matrix with multiple RHS vectors, each of

which shares the same structure of diagonal blocks.

5.3 Comparison with SPIKE Algorithm

The A-R-CR algorithm has multiple similarities with the SPIKE algorithm.

Both of them decompose a matrix into multiple diagonal sub-matrices or

diagonal blocks. Also, the SPIKE algorithm tends to use the block CR

algorithm to solve the reduced spike matrix. Similarly, the A-R-CR algorithm

solves a matrix recursively using adaptive R-CR operations.

However, the A-R-CR algorithm has few differences from the SPIKE al-

gorithm and provides following benefits. First, the A-R-CR algorithm has

a fine-grained and adaptive decomposition, only including either 1-by-1 or

2-by-2 diagonal blocks, while the SPIKE algorithm tends to use a coarse-

grained and regular decomposition. Although the SPIKE algorithm does

allow a fine-grained and adaptive decomposition, that might dramatically

increase the complexity of solving the reduced spike matrix Ŝ. Also, as

mentioned in Section 3.4, the regular decomposition of the SPIKE algorithm

might introduce singular sub-matrices, while the adaptive decomposition can

avoid this situation in the A-R-CR algorithm. Second, the block CR algo-

rithm used for solving the reduced spike matrix S in the SPIKE algorithm

is not adaptive, while adaptive R-CR operations are used in each level of

recursion of the A-R-CR algorithm. The non-adaptive block CR algorithm

might also introduce an unstable numerical solution.

Due to the benefits of the adaptive decomposition, the A-R-CR algorithm

can be applied to refine the SPIKE algorithm. One potential application is

using the A-R-CR algorithm to replace the block CR algorithm for solving

the reduced spike matrix Ŝ. Although the A-R-CR algorithm has a higher

overhead than block CR algorithm, the overhead is ignorable due to the small

size of Ŝ. Another potential application is applying the adaptive structure

of diagonal pivots, which in fact is a part of diagonal pivoting, to avoid the

singular partitioning in the SPIKE algorithm.

40

5.4 Optimization for Adaptive R-Cyclic Reduction

Algorithm

Most of the optimization techniques applied to the conventional CR algo-

rithm potentially can be applied to the A-R-CR algorithm. However, reg-

ister packing, as one critical optimization technique for the CR algorithm,

might not be applicable due to its requirement for a regular access pattern.

Conventional scratchpad tiling is more suitable for the A-R-CR algorithm

due to its support for an irregular access pattern. Depending on the size of

a matrix, partitioning methods, such as [14, 13], might be applicable.

5.5 Limitation of Adaptive R-Cyclic Reduction

Algorithm

As mentioned in the above sections, the A-R-CR algorithm restructures diag-

onal blocks in each level of recursion and introduces the overhead for adaptive

decomposition. Also, irregularity of adaptive decomposition can cause heavy

unavoidable branch divergence and might impact the performance on cur-

rent GPU architectures. These two factors limit the A-R-CR algorithm only

applicable for small tridiagonal matrices or those matrices with known struc-

tures. In order to counteract these limitations, an efficient pivoting strategy

for the A-R-CR algorithm needs to be further investigated.

41

CHAPTER 6

EVALUATION

In this chapter, we evaluate both the numerical stability and performance

of our proposed algorithms, the SPIKE-Diagonal pivoting algorithm, the

parallel diagonal pivoting algorithm, and the A-R-CR algorithm. All of our

solvers are double-precision and running on an Intel Xeon X5680 CPU and

an NVIDIA C2050 GPU with CUDA 4.1.

In the numerical stability evaluation, we compare the proposed algorithms

against the tridiagonal solvers in CUSPARSE, Matlab, and Intel MKL. We

use a non-pivoting GPU tridiagonal solver, gtsv (renamed as gtsv nopivot

in CUSPARSE 5.5), in CUSPARSE 4.1, and pivoting CPU tridiagonal solvers,

backslash and gtsv, in Matlab 2013b and MKL 11.1, respectively. Then,

in the single GPU performance evaluation, we use CUSPARSE 4.1 as the

baseline.

6.1 Numerical Stability Evaluation

In this evaluation of numerical stability, we test the quality of a solution

using the l2-norm backward residuals (Equation 6.1) instead of providing a

mathematical proof of the backward stability.

backward residual =
‖Tx− d‖2

‖d‖2

(6.1)

We test 18 types of nonsingular tridiagonal matrices of size 512, including

16 matrices chosen to challenge the robustness and numerical stability of

the tridiagonal algorithm in recent literature [33, 43, 20, 44] and 2 matrices

carefully chosen with singular or near-singular decomposition to challenge

the parallel algorithms. The description and the condition number of each

tridiagonal matrix are listed in Table 6.1, while the corresponding backward

42

Table 6.1: Matrix types used in numerical stability evaluation

Matrix
Type

Condition
Number

Description

1 4.41e+04 Matrix entries randomly generated from a uniform distri-
bution on [-1,1] (denoted as U(-1,1))

2 1.00e+00 A Toeplitz matrix, main diagonal entries are 1e8, off-
diagonal entries are from U(-1,1)

3 3.52e+02 gallery(‘lesp’,512) in Matlab: real eigenvalues smoothly
distributed in the interval approximately [-2*512-3.5, -4.5]

4 2.75e+03 Matrix entries from U(-1,1), the 256th lower diagonal
entry is multiplied by 1e-50

5 1.24e+04 Main diagonal entries from U(-1,1), off-diagonal entries
chosen with 50% probability either 0 or from U(-1,1)

6 1.03e+00 A Toeplitz matrix, main diagonal entries are 64 and off-
diagonal entries are from U(-1,1)

7 9.00e+00 inv(gallery(‘kms’,512,0.5)) in Matlab: Inverse of a Kac-
Murdock-Szego Toeplitz matrix

8 9.87e+14 gallery(‘randsvd’,512,1e15,2,1,1) in Matlab: a randomly
generated matrix, condition number is 1e15, 1 small sin-
gular value

9 9.97e+14 gallery(‘randsvd’,512,1e15,3,1,1) in Matlab: a randomly
generated matrix, condition number is 1e15, geometrically
distributed singular values

10 1.29e+15 gallery(‘randsvd’,512,1e15,1,1,1) in Matlab: a randomly
generated matrix, condition number is 1e15, 1 large sin-
gular value

11 1.01e+15 gallery(‘randsvd’,512,1e15,4,1,1) in Matlab: a randomly
generated matrix, condition number is 1e15, arithmeti-
cally distributed singular values

12 2.20e+14 Matrix entries from U(-1,1), then the lower diagonal en-
tries are multiplied by 1e-50

13 3.21e+16 gallery(‘dorr’,512,1e-4) in Matlab: an ill-conditioned, di-
agonally dominant matrix

14 1.14e+67 A Toeplitz matrix, main diagonal entries are 1e-8, off-
diagonal entries are from U(-1,1)

15 6.02e+24 gallery(‘clement’,512,0) in Matlab: main diagonal entries
are 0; eigenvalues include plus and minus odd integers
small than 512

16 7.1e+191 A Toeplitz matrix, main diagonal entries are 0, off-
diagonal entries are from U(-1,1)

17 3.27e+02 Main diagonal entries are 1 and off-diagonal entries are 0
on both Row 0 and 511, the rest diagonal entries are 0
and off-diagonal entries are 1

18 3.78e+18 Main diagonal entries are 0 and off-diagonal entries are 1
on both Row 255 and 256, the 254th main diagonal entry
is 1e15, the rest entries are from U(-1,1)

43

Table 6.2: Backward residuals among algorithms

Matrix
Type

SPIKE-
Diagonal
Pivoting

Parallel
Diagonal
Pivoting

A-R-CR CUSPARSE MKL Matlab

1 1.82e-14 3.72e-14 1.23e-13 7.14e-12 1.88e-14 1.21e-14
2 1.27e-16 1.28e-16 1.18e-16 1.69e-16 1.03e-16 1.03e-16
3 1.55e-16 1.46e-16 1.45e-16 2.57e-16 1.35e-16 1.32e-16
4 1.37e-14 5.09e-15 3.76e-14 1.39e-12 3.10e-15 3.24e-15
5 1.07e-14 7.84e-15 1.29e-14 1.82e-14 1.56e-14 1.07e-14
6 1.05e-16 1.05e-16 9.97e-17 1.57e-16 9.34e-17 9.34e-17
7 2.42e-16 2.41e-16 2.37e-16 5.13e-16 2.52e-16 2.20e-16
8 2.14e-04 1.40e-03 2.14e-04 1.50e+10 3.76e-04 2.14e-04
9 2.32e-05 3.82e-05 9.80e-05 1.93e+08 3.15e-05 1.35e-05
10 4.27e-05 4.27e-05 3.38e-05 2.74e+05 3.21e-05 2.68e-05
11 7.52e-04 6.79e-04 2.91e-02 4.54e+11 2.99e-04 3.03e-04
12 5.58e-05 4.88e-05 5.04e-05 5.55e-04 2.24e-05 3.06e-05
13 5.51e-01 3.42e+01 3.37e-01 1.12e+16 3.34e-01 3.47e-01
14 2.86e+49 3.19e+49 2.97e+55 2.92e+51 1.77e+48 2.21e+47
15 2.09e+60 1.53e+60 9.79e+59 Nan 1.47e+59 3.69e+58
16 Inf Inf Inf Nan Inf 4.7e+171
17 Nan 8.14e-16 7.38e-16 Nan 4.87e-16 4.87e-16
18 3.26e-03 3.13e-14 3.31e-14 Nan 9.93e-15 9.10e-15

44

residuals of each solver are shown in Table 6.2. Since the size of matrices

is only 512, the SPIKE-Diagonal Pivoting and Parallel Diagonal Pivoting

algorithms perform with 64 partitions, instead of the maximal number of

partitions for a GPU. Both CUSPARSE and the A-R-CR algorithm use the

fine-grained parallelism for each row and block respectively, while both of

the solvers in Intel MKL and Matlab are sequential.

In Table 6.2, bold numbers indicate solutions with backward residuals

100× larger than the baseline results, which are from the default Matlab

tridiagonal solver, while struck-through ones highlight solutions with signifi-

cantly worse backward residuals (1 million times) than the baseline results.

Among 18 types of test matrices, the SPIKE-Diagonal Pivoting algorithm

fails Type 17 and 18 due to singular or near-singular decomposition dis-

cussed in Section 3.4, and fails Type 16 due to an extreme ill-conditioned

matrix; the Parallel Diagonal Pivoting algorithm, the A-R-CR algorithm,

and MKL only fail Type 16 for the same reason; the A-R-CR algorithm fails

one more matrix, Type 14, probably also due to an extreme ill-conditioned

matrix; CUSPARSE fails 9 matrices due to no pivoting applied and Matlab

produces results with finite backward residuals to all matrices.

Pivoting is extremely important for robust quality of solutions. Non-

pivoting tridiagonal solvers, such as gtsv in CUSPARSE 4.1, only provides

tolerable solutions for context-specific applications. In general applications,

non-pivoting tridiagonal solvers are not reliable.

In our proposed algorithms, the SPIKE-Diagonal Pivoting algorithm tends

to provide solutions of quality comparable to those of Intel MKL and Matlab,

when good partitioning happens in the SPIKE-Diagonal Pivoting algorithm.

However, singular or near-singular partitioning might dramatically degrade

the quality of solutions in the SPIKE-Diagonal Pivoting algorithm and limit

its applicability. Adaptive partitioning such as our A-R-CR algorithm can

avoid this singular or near-singular partitioning and restore the robust quality

of solutions. Similarly, communication among partitions, such as our Parallel

Diagonal Pivoting, allowing more accurate diagonal pivoting also provides a

robust quality of solutions.

45

0	 10	 20	 30	 40	 50	 60	 70	 80	

SPIKE-‐Diagonal	 Pivo0ng	

Parallel	 Diagonal	 Pivo0ng	

A-‐R-‐CR	

CUSPARSE	

Data	 transfer	 (pinned)	

Data	 transfer	 (pageable)	

0me	 (ms)	

Figure 6.1: Single GPU performance comparison among GPU tridiagonal
solvers.

6.2 Single GPU Performance Evaluation

We evaluate the performance of our proposed GPU tridiagonal solvers, in

which we compare against the results of gtsv in CUSPARSE 4.1 on an

NVIDIA C2050 GPU.

Figure 6.1 shows the performance for an 8-million row random (Type 1)

matrix. In our evaluation, both the SPIKE-Diagonal Pivoting algorithm and

the A-R-CR algorithm have comparable performance (1.5% and 41.1% slow-

downs, respectively) to CUSPARSE, while the Parallel Diagonal Pivoting

algorithm outperforms CUSPARSE by a factor of 2.25×.

Although the SPIKE-Diagonal Pivoting algorithm is extremely scalable

for partitioning the workloads, the CR algorithm used in CUSPARSE is also

able to divide the workloads in multiple SMs with a small overhead due to

a regular access pattern with small data sharing. On the other hand, both

data layout transformation and dynamic tiling introduce small overheads for

handling the irregularity in the SPIKE-Diagonal Pivoting algorithm, while

the CR algorithm does not have this overhead due to its regular pattern. In

the end, they have similar performance.

Different from the SPIKE-Diagonal Pivoting algorithm, the A-R-CR al-

gorithm has all of the overheads the CR algorithm has. On top of those,

the A-R-CR algorithm needs to restructure diagonal blocks in each level of

recursion and has an irregular access pattern. Therefore, the A-R-CR algo-

rithm tends to have more execution time than CUSPARSE, while in terms

of quality of solutions, the A-R-CR algorithm is much better.

Compared to the CR algorithm or the SPIKE algorithm, the Parallel Di-

46

agonal Pivoting algorithm has a negligible overhead for both partitioning

and irregular computation. Meanwhile, both inter-block communication and

kernel fusion significantly reduce the memory bandwidth requirement. All

of these factors make the Parallel Diagonal Pivoting algorithm extremely

suitable for GPUs.

47

CHAPTER 7

RELATED WORK

Most early GPU tridiagonal solvers are application-driven and focus on solv-

ing a massive number of small-size tridiagonal matrices. Sengupta et al. [12],

Goddeke et al. [3], and Davidson et al. [7] implemented the CR algorithm

on GPUs, while Egloff [8, 9] applied the PCR algorithm. Davidson’s regis-

ter packing technique can efficiently reduce the required size of scratchpad

memory the CR algorithm desires. Sakharnykh first proposed a thread-

parallel tridiagonal solver using the Thomas algorithm (LU algorithm) and

then extended it to a PCR-Thomas algorithm using the PCR algorithm as

a partitioning method. Zhang et al. [13] first systematically introduced a

hybrid strategy for GPU tridiagonal solvers, by combining the Thomas, CR,

PCR, and Recursive Doubling (RD) algorithms. The RD algorithm is a

linear recurrence-based algorithm using ci’s as denominators (Section 2.1.2).

Only a few GPU solvers support a small number of large-size matrices.

Kim et al. [17] and Davidson el al. [16] both extended Sakharnykh’s PCR-

Thomas algorithm to further support a large-size matrix. CUSPARSE [15]

implemented the CR algorithm for supporting a large-size matrix by divid-

ing workloads into multiple SMs. Argüello et al. [14] proposed a scalable

partitioning method, called split-and-merge, for the CR algorithm to further

reduce its memory bandwidth requirement. Murphy [45] applied the LU de-

composition on a CPU and then the CR algorithm for both L and U solvers

on a GPU. Murphy’s strategy potentially pipelines the workloads between

CPUs and GPUs.

No existing GPU tridiagonal solver had pivoting. For a general matrix

solver, MAGMA [19] applied hybridization of partial pivoting on CPU and

the rest parallel computation on GPUs. Also, as mentioned is Section 2.1.1,

the SPIKE algorithm can support a band matrix in general. Li et al. [46]

implemented a GPU SPIKE solver without pivoting for a band matrix. Our

SPIKE-Diagonal Pivoting algorithm was published earlier than Li’s work.

48

CHAPTER 8

CONCLUSION

In this thesis, we study scalable parallel tridiagonal algorithms with pivot-

ing for providing robust quality of solutions for general-purpose applications

on many-core architectures, such as GPUs. Previous GPU tridiagonal li-

braries were relatively context-specific, only applicable for certain kinds of

matrices, such as a massive number of independent matrices, limited sizes of

matrices, or matrices with specific properties, to efficiently compute a valid

solution with a certain quality. We propose three scalable tridiagonal al-

gorithms that are much more broadly applicable. Our proposed algorithms

can provide solutions of comparable quality to the most common, general-

purpose CPU tridiagonal solvers in existing packages like Matlab or Intel

MKL, and demonstrate comparable performance on the state-of-the-art high-

performance GPU tridiagonal solvers in existing packages like CUSPARSE.

The proposed algorithms can be extended to other parallel architectures,

such as multi-core CPUs, FPGAs, or clusters, and still maintain reasonable

quality of solution and high performance because of scalable diagonal piv-

oting. Meanwhile, the proposed optimization techniques can also be gener-

alized to other applications or architectures. Our SPIKE-Diagonal Pivoting

algorithm is published in [33] and included as gtsv in NVIDIA CUSPARSE

5.5 or later versions. The extended SPIKE-Thomas algorithm is published

in [33], while the SPIKE-CR algorithm is published in [36].

49

REFERENCES

[1] R. W. Hockney, “A fast direct solution of Poisson’s equation using
Fourier analysis,” Journal of the ACM (JACM), vol. 12, pp. 95–113,
January 1965.

[2] J. Zhu, Solving partial differential equations on parallel computers.
World Scientific, 1994.

[3] D. Göddeke and R. Strzodka, “Cyclic reduction tridiagonal solvers on
GPUs applied to mixed-precision multigrid,” IEEE Transactions on
Parallel and Distributed Systems, vol. 22, pp. 22–32, 2011.

[4] L.-W. Chang, M.-T. Lo, N. Anssari, K.-H. Hsu, N. E. Huang, and
W.-m. W. Hwu, “Parallel implementation of multi-dimensional ensem-
ble empirical mode decomposition,” in International Conference on
Acoustics, Speech, and Signal Processing, May 2011, pp. 1621–1624.

[5] CUDA Programming Guide 5.5, NVIDIA Corporation, 2013.

[6] The OpenCL C Specification Version: 2.0, Khronos OpenCL Working
Group, 2013.

[7] A. Davidson and J. D. Owens, “Register packing for cyclic reduction: A
case study,” in Proceedings of the Fourth Workshop on General Purpose
Processing on Graphics Processing Units, 2011.

[8] D. Egloff, “GPUs in financial computing part II: Massively parallel
solvers on GPUs,” Wilmott, vol. 50, pp. 50–53, 2010.

[9] D. Egloff, “GPUs in financial computing part III: ADI solvers on GPUs
with application to stochastic volatility,” Wilmott, vol. 52, pp. 51–53,
2011.

[10] N. Sakharnykh, “Tridiagonal solvers on the GPU and applications to
fluid simulation,” in NVIDIA GPU Technology Conference, 2009.

[11] N. Sakharnykh, “Efficient tridiagonal solvers for ADI methods and fluid
simulation,” in NVIDIA GPU Technology Conference, 2010.

50

[12] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan primitives
for GPU computing,” in Graphics Hardware 2007, 2007, pp. 97–106.

[13] Y. Zhang, J. Cohen, and J. D. Owens, “Fast tridiagonal solvers on the
GPU,” ACM Sigplan Notices, vol. 45, no. 5, pp. 127–136, 2010.

[14] F. Argüello, D. B. Heras, M. Bóo, and J. Lamas-Rodŕıguez, “The split-
and-merge method in general purpose computation on GPUs,” Parallel
Computing, vol. 38, no. 6-7, pp. 277–288, June 2012.

[15] CUSPARSE Library, NVIDIA Corporation, 2013.

[16] A. Davidson, Y. Zhang, and J. D. Owens, “An auto-tuned method
for solving large tridiagonal systems on the GPU,” in Proceedings
of the 25th IEEE International Parallel and Distributed Processing
Symposium, May 2011.

[17] H.-S. Kim, S. Wu, L.-W. Chang, and W.-m. W. Hwu, “A scalable
tridiagonal solver for GPUs,” in Parallel Processing (ICPP), 2011
International Conference on, 2011, pp. 444–453.

[18] R. A. Sweet, “A generalized cyclic reduction algorithm,” SIAM Journal
on Numerical Analysis, vol. 11, no. 3, pp. 506–520, 1974.

[19] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Lan-
gou, H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear algebra
on emerging architectures: The PLASMA and MAGMA projects,” in
Journal of Physics: Conference Series, vol. 180, no. 1. IOP Publishing,
2009, p. 012037.

[20] J. B. Erway, R. F. Marcia, and J. A. Tyson, “Generalized diago-
nal pivoting methods for tridiagonal systems without interchanges,”
IAENG International Journal of Applied Mathematics, vol. 40, no. 4,
pp. 269–275, 2010.

[21] A. H. Sameh and D. J. Kuck, “On stable parallel linear system solvers,”
Journal of the ACM, vol. 25, no. 1, pp. 81–91, 1978.

[22] E. Polizzi and A. H. Sameh, “A parallel hybrid banded system solver:
The SPIKE algorithm,” Parallel Computing, vol. 32, no. 2, pp. 177–194,
Feb. 2006.

[23] P. P. de Groen, “Base-p-cyclic reduction for tridiagonal systems of equa-
tions,” Applied Numerical Mathematics, vol. 8, no. 2, pp. 117–125, 1991.

[24] “Math kernel library,” 2014, Intel. [Online]. Available:
http://developer.intel.com/software/products/mkl/

51

[25] MATLAB version 8.2 (R2013b). Natick, Massachusetts: The Math-
Works Inc., 2013.

[26] Ö. Eğecioğlu, “LU factorization and parallel evaluation of continued
fractions,” in Proceedings of the 10th IASTED International Conference
on Parallel and Distributed Computing and Systems. ACTA Press,
1998.

[27] G. E. Blelloch, “Scans as primitive parallel operations,” Computers,
IEEE Transactions on, vol. 38, no. 11, pp. 1526–1538, Nov. 1989.

[28] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” Computers, IEEE
Transactions on, vol. 22, no. 8, pp. 786–793, Aug. 1973.

[29] H. S. Stone, “An efficient parallel algorithm for the solution of a tridiag-
onal linear system of equations,” Journal of the ACM (JACM), vol. 20,
no. 1, pp. 27–38, Jan. 1973.

[30] Ö. Eğecioğlu, C. K. Koc, and A. J. Laub, “A recursive doubling algo-
rithm for solution of tridiagonal systems on hypercube multiprocessors,”
Journal of Computational and Applied Mathematics, vol. 27, no. 1, pp.
95–108, 1989.

[31] D. S. Dodson and S. A. Levin, “A tricyclic tridiagonal equation solver,”
SIAM Journal on Matrix Analysis and Applications, vol. 13, no. 4, pp.
1246–1254, 1992.

[32] R. A. Sweet, “A parallel and vector variant of the cyclic reduction algo-
rithm,” SIAM Journal on Scientific and Statistical Computing, vol. 9,
no. 4, pp. 761–765, 1988.

[33] L.-W. Chang, J. A. Stratton, H.-S. Kim, and W.-m. W. Hwu, “A
scalable, numerically stable, high-performance tridiagonal solver us-
ing GPUs,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, 2012, pp.
27:1–27:11.

[34] I.-J. Sung, J. A. Stratton, and W.-M. W. Hwu, “Data layout transfor-
mation exploiting memory-level parallelism in structured grid many-core
applications,” in Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques. ACM, 2010, pp.
513–522.

[35] Compute Visual Profiler User Guide, NVIDIA Corporation, 2013.

[36] L.-W. Chang and W.-m. W. Hwu, “A guide for implementing tridiagonal
solvers on GPUs,” in Numerical Computations with GPUs. Springer,
2014, pp. 29–44.

52

[37] “The OpenMP API specification for parallel programming,” 2014,
OpenMP. [Online]. Available: http://openmp.org

[38] “Message Passing Interface (MPI) forum home page,” 2014, MPI
Forum. [Online]. Available: http://mpi-forum.org

[39] S. Xiao and W.-c. Feng, “Inter-block GPU communication via fast bar-
rier synchronization,” in Parallel & Distributed Processing (IPDPS),
2010 IEEE International Symposium on. IEEE, 2010, pp. 1–12.

[40] S. Yan, G. Long, and Y. Zhang, “StreamScan: fast scan algorithms
for GPUs without global barrier synchronization,” in ACM SIGPLAN
Notices, vol. 48, no. 8. ACM, 2013, pp. 229–238.

[41] CUDA Dynamic Parallelism Programming Guide, NVIDIA Corpora-
tion, 2012.

[42] W.-m. W. Hwu, “HSA application programming techniques,” Heteroge-
neous System Architecture (HSA): Architecture and Algorithms Tuto-
rial, 2014.

[43] I. S. Dhillon, “Reliable computation of the condition number of a tridi-
agonal matrix in O(N) time,” SIAM Journal on Matrix Analysis and
Applications, vol. 19, no. 3, pp. 776–796, July 1998.

[44] G. I. Hargreaves, “Computing the condition number of tridiagonal and
diagonal-plus-semiseparable matrices in linear time,” SIAM Journal on
Matrix Analysis and Applications, vol. 27, no. 3, pp. 801–820, July 2005.

[45] B. J. Murphy, “Solving tridiagonal systems on a GPU,” in High
Performance Computing (HiPC), 2013 20th International Conference
on. IEEE, 2013, pp. 159–168.

[46] A. Li, A. Seidl, and D. Negrut, “SPIKE::GPU - a GPU-based banded lin-
ear system solver,” University of Wisconsin-Madison, Tech. Rep., 2012.

53

