
c© 2014 Izzat El Hajj



DYNAMIC LOOP VECTORIZATION FOR EXECUTING OPENCL
KERNELS ON CPUS

BY

IZZAT EL HAJJ

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Adviser:

Professor Wen-Mei Hwu



ABSTRACT

Heterogeneous computing platforms are becoming increasingly important in

supercomputing. Many systems now integrate CPUs and GPUs cooperating

together on a single node. Much effort is invested in tuning GPU-kernels.

However, it can be the case that some systems may not have GPUs or the

GPUs are busy. Maintaining two versions of the same code for GPUs and

CPUs is expensive. For this reason, it would be ideal if one could retarget

GPU-optimized kernels to run efficiently on a CPU.

Many efforts have been made to compile OpenCL kernels to run efficiently

on CPUs. Such approaches typically involve running work-groups in parallel

on different CPU threads, and executing work-items within a work-group in

one thread serially via loop-based serialization or in parallel via SIMD vector-

ization. SIMD vectorization is particularly difficult where control divergence

is present. This thesis proposes a technique for transforming divergent loops

in OpenCL kernels such that vectorization opportunities can be extracted

when possible and memory access patterns can be improved. The trans-

formations presented show promising speedups for kernels that follow GPU

programming best practices, and slowdowns for kernels that do not.
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CHAPTER 1

INTRODUCTION

Computing systems are moving toward heterogeneity with accelerators such

as Graphics Processing Units (GPUs) and Intel Xeon-Phi’s playing an in-

creasingly important role in supercomputing. Heterogeneity provides the

advantage of specialization where each device has its own class of computing

patterns that it performs best, and the programmer orchestrates matching

computing tasks to various kinds of devices.

Because devices in a heterogeneous system have different properties, they

require different programming models to best utilize their characteristics and

maximize their performance. For example, a program running on a heteroge-

neous platform with CPUs and GPUs working together is typically composed

of a heterogeneous codebase such as a mixture of C/C++ modules targeting

the CPUs and OpenCL or CUDA modules targeting the GPUs.

The problem with such an arrangement is that a computation pattern

becomes bound to a particular hardware device. For example, if a program

contains matrix multiplication code in OpenCL to run on the GPU, it will

be slowed down or run into trouble if the GPU is busy or if the code needs

to be run on a system without GPUs. One solution for this problem is to

maintain two versions of the module in the codebase: one C/C++ version

for the CPU and another OpenCL/CUDA version for the GPU. However,

code maintenance is an expensive operation and ideally one would want to

maintain a single version only. For this reason, it would be desirable if we

could compile to multiple platforms from a single piece of source code and

still obtain reasonable performance.

The work presented in this thesis is part of an OpenCL compiler and

runtime system that aims to retarget GPU-optimized OpenCL kernels to

CPUs. Various attempts have been made to compile OpenCL kernels for

CPUs. Work-groups are commonly distributed among various CPU threads

and run in parallel which is enabled by the fact that they are independent
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and do not synchronize. However, the different approaches have dealt with

work-items within a single work-group in different ways such as user-level

threads, loop serialization, or SIMD vectorization. The approach that is

built upon in this thesis adopts the vectorization approach.

Work-items in a work-group can easily be vectorized when they are con-

vergent because it is known at compile time that they will all execute so the

vectorization code can statically be generated. However, static vectorization

is not possible for regions where the work-items diverge. The focus of this

thesis is on a method for vectorization of divergent loops. Various trans-

formation techniques are proposed and evaluated which seek to maximize

CPU performance by: (1) extracting vectorizable statements from the diver-

gent loops where possible, and (2) preserving the intended memory access

order for better locality. In doing so, these loops are executed on the CPU

in a way that best mimics the GPU execution model thereby maximizing

efficiency and improving performance.
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CHAPTER 2

BACKGROUND

2.1 Overview of OpenCL and GPUs

Multiple GPU programming languages exist with varying terminology.

OpenCL terminology will be used throughout this document because the

framework in which the work was done uses OpenCL. The OpenCL GPU

programming model is as follows. A sequential thread running on a host

invokes an OpenCL function (called a kernel) that runs on a device. The

kernel is run in an NDRange which is subdivided into multiple work-groups

which can run independently and in parallel. The work-groups are further

subdivided into multiple work-items that can also run in parallel. Work-

items within the same work-group can synchronize with one another, and

they can share data with one another via a fast scratchpad memory called

local memory. Work-items in different work-groups cannot synchronize with

one another, and can only share data via the global device memory.

A GPU is composed of multiple compute units also called streaming multi-

processors which operate in parallel and have a common L2 cache and device

memory. Each compute unit has multiple sequential cores which operate in

parallel and have a common L1 cache and local memory. When an OpenCL

kernel runs on a GPU, work-groups are assigned to different compute units

and execute on those compute units until completion. Work-items in a work-

group execute on the different cores of the compute unit. There could be more

work-groups than compute units and more work-items than cores, in which

case the hardware needs to manage sharing and scheduling of resources. This

architectural model is diagrammed in Figure 2.1.

While writing GPU kernels may be easy, a great deal of tuning is required

to make them run efficiently. Oftentimes, performance optimizations are

geared toward maximizing resource utilization. Two such optimizations are

3



GPU 

L2 Cache 

Device Memory 

Compute Unit 

L1 

Cache 

Local 

Memory 

Compute Unit 

L1 

Cache 

Local 

Memory 

Compute Unit 

L1 

Cache 

Local 

Memory 

… 

Kernel 

Work-group Work-group Work-group … 
Work- 

items 

Figure 2.1: OpenCL and GPU architecture overview.

avoiding control divergence and coalescing memory accesses which maximize

efficiency of the functional units and memory subsystem respectively. These

two optimizations are important considerations for the transformations pro-

posed in this thesis.

2.2 Control Divergence

On current GPU hardware, a work-group is divided into multiple subsections

called wavefronts or warps, and the work-items of a wavefront are executed

together in SIMD on the cores of the compute unit. The typical size of a

wavefront is 32 (NVIDIA) or 64 (AMD) work-items. When work-items in

the same wavefront encounter a branch where different work-items take dif-

ferent paths, the execution is said to exhibit control divergence. Because

the work-items operate in lock-step on the SIMD hardware, all work-items

end up taking all execution paths together with the inactive work-items on

each path predicated out. Such behavior is unfavorable because it underuti-

lizes the execution units. For maximal resource utilization, programmers are

encouraged to avoid control divergence and write their code in such a way

where work-items in the same wavefront always take the same path [1].
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2.3 Memory Coalescing

When a GPU kernel contains a load instruction, multiple loads are issues

simultaneously – one for each work-item in the wavefront. These loads cannot

all be processed simultaneously by the memory subsystem which results in a

serialization of memory accesses. However, in the case where adjacent work-

items load data from adjacent memory locations, loads to the same cacheline

can be consolidated into a single load which maximizes the efficiency of the

memory hierarchy and improves performance. This access pattern is referred

to as memory coalescing and is considered a good programming practice [1].

5



CHAPTER 3

PREVIOUS WORK

The technique proposed in this thesis is an improvement on the work done

in MxPA [2] which itself is an improvement on MCUDA [3]. In both MxPA

and MCUDA, parallelization on CPU threads is done at work-group granu-

larity. In other words, work-groups are divided across multiple CPU threads

and work-items within a work-group are performed within the same thread.

This arrangement is the most natural because work-groups do not cooper-

ate and can execute in any order so they present an ideal unit of work for

parallelization. On the other hand, CPU parallelization at the work-item

granularity would incur too much overhead because CPU threads are much

heavier weight than GPU work-items.

MxPA improves on MCUDA in the treatment of work-items within a work-

group. In MCUDA, work-items are serialized via a thread-loop. The ker-

nel must be divided into regions around synchronization barriers and each

region must be serialized separately so that the senchronization semantic is

preserved. On the other hand, in MxPA, the work-items within a work-group

are vectorized if the code region is convergent. A static analysis is employed

to determine whether the code region is convergent or not. A code region

is convergent if it is inside a conditional control structure that has a work-

item-independent condition. If a region is convergent, work-item-dependent

statements are vectorized (for convenience of representation, Intel CEAN [4]

is used for the vectorization). If not, then the compiler falls back onto the

thread-loop approach for handling divergent regions.

Consider the example code in Figure 3.1(a) where the condition cond is

work-item-independent making the loop convergent. When executed on a

GPU, the execution order is such that the first iteration is executed for a

bundle of work-items, followed by the second iteration, and so on. When

serialization is applied in MCUDA, the statement execution order changes

to that shown in Figure 3.1(b). When vectorization is applied in MxPA, it
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(a) Original OpenCL kernel 

(b) C kernel with thread-loops 

(MCUDA approach) 

(c) C kernel with vectorization 

(MxPA approach) 

Figure 3.1: Behavior of convergent loops in previous approaches.
The expression cond is independent of the work-item id making the loop

convergent. The variable i in (b) represents the work-item id for which the
code will be executed. The notation body(0:N) in (c) indicates that body is

executed for N work-items starting from 0 using vector instructions.
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becomes as shown in Figure 3.1(c) which is identical to the order assumed

in 3.1(a). The advantage of vectorization is that it improves performance

by extracting more parallelism from the program. It also matches the order

in which the iterations of the work-items are executed which is better if

the programmer was optimizing for data locality. As mentioned earlier, the

programmer will tend to have adjacent work-items access adjacent memory

locations when executing a load to achieve better memory coalescing. In

such cases, the pattern in 3.1(b) is likely to thrash the cache, whereas that

in 3.1(c) is likely to achieve better performance.

The vectorization of convergent regions, as opposed to serialization, is

beneficial because it leverages the work-item parallelism to utilize the CPU’s

SIMD execution units for better performance. Moreover, it corrects the order

of memory access to that which is assumed by the programmer which results

in a better memory access pattern if the programmer had memory coalescing

in mind when writing the program.

However, this technique is limited when the loop is divergent (i.e. cond is

dependent on the work-item index). The reason is that not all work-items

are in the loop all the time so the statement cannot be vectorized as shown

in Figure 3.1(c). Therefore the technique must fall back on the serialization

approach if the divergence property of the loop is not known statically. In

this thesis, we show how to overcome this limitation.
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CHAPTER 4

VECTORIZATION OF DIVERGENT
LOOPS

Although a loop may seem divergent when analyzed statically, it is often

the case that the loop converges dynamically for some iterations. This can

happen in computations with boundary conditions where the input data size

is not a perfect multiple of the work-group or NDRange size so work-items

must iterate over multiple elements. It can also happen in generally divergent

loops where each work-item has a different loop bound, but the loop is still

convergent at least for the first few iterations. In such cases, it can be a

waste of vectorization opportunities as well as potentially better memory

access patterns to serialize the work-items.

Consider the example code in Figure 4.1(a) where cond is work-item de-

pendent. On the GPU, the iterations will be executed as shown in the figure

because GPUs have hardware support for masking out inactive work-items.

However, a regular vectorization of body will not work on the CPU because

body does not always execute for all work-items. For this reason, the previous

approach handles this case by serializing the loop as shown in Figure 4.1(b).

4.1 Dynamic Loop Vectorization

Continuing with the example in Chapter 3, the intuition for the approach

to be proposed is based on the observation that although the loop diverges

toward the latter part of the execution, all work-items are indeed active for

the first two iterations. This means that vectorization could be performed

for those iterations. Unfortunately, it is difficult if not impossible to deter-

mine statically how many iterations converge. For this reason, we propose

a dynamic checking technique where the transformed code checks on every

iteration whether the loop converges, vectorizing if so and serializing other-

wise. The transformed code and resulting execution pattern looks like that

9
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Figure 4.1: Behavior of divergent loops in previous approaches.
The expression cond is dependent on the work-item id making the loop

divergent. The variable i in (b) represents the work-item id for which the
code will be executed.

in Figure 4.2.

First, the condition is evaluated for all work-items and assigned to a pred

vector (line 01). Next, the total number of active work-items is computed

(line 02), and then the loop begins (line 03). At the beginning of every

loop iteration, the number of active work-items is checked (line 04). If all

work-items are active, a vectorized version of the body and next condition

is executed (lines 05-06). Otherwise, a serialized version of the body and

next condition is executed (lines 08-13). At the end, the total number of

work-items in the next iteration is computed (line 15) and the next iteration

begins. Iterations end when all work-items have dropped out. Note that even

in the cases when a loop iteration across work-items is not vectorized, the

serialization happens horizontally across work-items as opposed to vertically

across iterations. Such change in iteration order is beneficial for the mem-

ory access pattern because the programmer is expected to access adjacent

memory locations across multiple work-items on the same iteration.
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work-items 

01  pred[0:N] = cond(0:N) 

02  numTrue = sum(pred[0:N]) 

03  while(numTrue > 0) { 

04    if(numTrue == N) { 

05      body(0:N); 

06      pred[0:N] = cond(0:N); 

07    } else { 

08      for(i=0; i<N; ++i){ 

09        if(pred[i]) { 

10          body; 

11          pred[i] = cond(i); 

12        } 

13      } 

14    } 

15    numTrue = sum(pred[0:N]) 

16  } 
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time goes from lighter to darker 

and in direction of arrows 

Figure 4.2: Dynamic loop vectorization execution pattern and pseudocode.
The array pred contains a predicate variable for each work-item indicating
whether the work-item is active in each iteration. The function sum counts

the number of true values in the array. The remaining variables and
notations are as in Figures 3.1 and 4.1.
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4.2 Dynamic Loop Sub-Vectorization

While the technique in Section 4.1 can successfully extract vectorization op-

portunities from divergent loops and rearrange the loop iteration order for

a better memory access pattern, the vectorization can no longer be done

when the first work-item in the work-group drops out. This can be improved

by performing vectorization at a smaller granularity when the vectorization

across the entire work-group fails. This technique is called dynamic sub-

vectorization.

Continuing with the same example, Figure 4.3 shows the impact of sub-

vectorization on the execution patterns. Previously, after the first two iter-

ations ended, the remaining iterations were completely serialized. However,

in this example, by dividing up the work-group into multiple sub-groups and

checking each sub-group for convergence separately, more vectorization op-

portunities can be extracted. This results in better utilization of the SIMD

execution units at the expense of additional checking overhead. The addi-

tional logic for sub-vectorization involves looping over each sub-group (line

08), computing the number of active work-items in that sub-group only

(lines 09-10), vectorizing the sub-group if all work-items are active (lines

11-14), and serializing the sub-group otherwise (lines 15-22). The final over-

all decision-making flow for the transformation is diagrammed in Figure 4.4.

4.3 Handling Irregular Control Flow

The presence of irregular control flow makes the transformations a bit more

tricky. Goto statements are not handled in this approach. On the other hand,

break and continue statements must be treated differently based on whether

the execution is in the full vectorization, sub-vectorization, or serialization

phases. Table 4.1 summarizes how breaks and continues are handled in each

of the execution phases.

When a break statement is executed in the full vectorization body, it im-

plies that all work-items want to break out of the loop. Therefore it can

simply be kept as a break statement without any changes. When a break

statement is encountered in the sub-vectorization phase, it means that only

the work-items in the sub-group want to terminate. Therefore keeping the

12
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01  pred[0:N] = cond(0:N) 

02  numTrue = sum(pred[0:N]) 

03  while(numTrue > 0) { 

04    if(numTrue == N) { 

05      body(0:N); 

06      pred[0:N] = cond(0:N); 

07    } else { 

08      for(subStart=0; subStart<N; subStart+=32) { 

09        subSize = min(32, N-subStart); 

10        numSubTrue = reduce(pred[subStart:subSize]); 

11        if(numSubTrue == subSize) { 

12          body(subStart:subSize); 

13          pred[subStart:subSize] =  

14            cond(subStart:subSize); 

15        } else { 

16          for(i=subStart; i<subStart+subSize; ++i){ 

17            if(pred[i]) { 

18              body; 

19              pred[i] = cond(i); 

20            } 

21          } 

22        } 

23      } 

24    } 

25    numTrue = sum(pred[0:N]) 

26  } 

time goes from lighter to darker 

and in direction of arrows 

Figure 4.3: Sub-vectorization execution pattern and pseudocode.
The variable subStart indicates the id of the first work-item in the

sub-group. The variable subsize indicates the size of the sub-group. The
remaining variables and notations are as in Figures 3.1, 4.1, and 4.2.
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Figure 4.4: Overall decision-making flow of dynamic loop vectorization.

Table 4.1: Handling break and continue statements.

OpenCL break; continue; 

Full 

Vectorization 

break; pred[0:N] = cond(0:N); 

continue; 

Sub-

vectorization 

pred[subStart:subSize] =  

  0; 

continue; 

pred[subStart:subSize] = 

  cond(subStart:subSize); 

continue; 

Serialization pred[i] = 0; 

continue; 

pred[i] = cond(i); 

continue; 
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break is incorrect because it will break out of the loop over sub-groups pre-

venting succeeding work-items from executing. Instead, the break needs to

be replaced with a continue to ensure subsequent sub-groups execute as well.

To ensure that the sub-group that is breaking does not execute on the next

iteration, all the predicates of the sub-group must be set to false. Therefore,

a break statement is replaced with an assignment of all sub-group predi-

cates to false followed by a continue statement. When a break statement is

encountered in the serialization phase, it implies that only that work-item

wants to break. For the same reasoning as the sub-groups, the break must be

replaced with an assignment to that work-item’s predicate to false followed

by a continue statement.

When a continue statement is encountered in any of the three phases, it

remains a continue. However, before the continue statement is executed, the

next iteration condition must be evaluated for the continuing work-items.

Therefore a condition evaluation of the entire work-group, the sub-group, or

the single work-item must be inserted before the continue statement in the

full vectorization, sub-vectorization, and serialization phases respectively.

4.4 Handling Nested Loops

When two divergent loops are nested, the dynamic loop vectorization trans-

formations get more complicated. Every work-item that is inactive in the

outer loop continues to be inactive in the inner loop. The inner loop must

inherit the divergence information of the outer loop and use it as a starting

point for computing its own divergence information. The inner loop, however,

must not overwrite the divergence information because once a work-item be-

comes inactive in the inner loop, it must remain active in the outer loop to

finish the execution.

The way to handle nested loops is explained using a simple code example

shown in Figure 4.5. The condition computation for the outer loop is done

in the same way as before (lines 01-02). The first part of the loop denoted by

A is transformed on its own by using the same convergence checking meth-

ods as before (lines 04-08). Upon encountering the divergent inner loop, the

condition computation must be predicated by the predicate of the outer loop

(line 09). That is because only work-items which are active inside the outer
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while(cond1) { 

  A 

  while(cond2) { 

    B 

  } 

  C 

} 

01  pred1[0:N] = cond1(0:N); 

02  numTrue1 = reduce(pred1[0:N]); 

03  while(numTrue1 > 0) { 

04    if(numTrue1 == N) { 

05      vectorize A 

06    } else { 

07      sub-vectorize or serialize A 

08    } 

09    pred2[0:N] = pred1[0:N] && cond2(0:N); 

10    numTrue2 = reduce(pred2[0:N]) 

11    while(numTrue2 > 0) { 

12      if(numTrue2 == N) { 

13        vectorize B and cond2 

14      } else { 

15        sub-vectorize or serialize B and cond2 

16      } 

17      numTrue2 = reduce(pred2[0:N]) 

18    } 

19    if(numTrue1 == N) { 

20      vectorize C and cond1 

21    } else { 

22      sub-vectorize or serialize C and cond1 

23    } 

24    numTrue1 = reduce(pred1[0:N]) 

25  } 

(a) Nested OpenCL Divergent Loop 

(b) Dynamic Vectorization of Nested Loop 

Figure 4.5: Handling nested loops.
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loop must evaluate the condition. The inactive work-items will inherit the

0 predicate from the outer loop which will short circuit the condition check.

Once the inner loop is entered, its body denoted by B is dynamically vector-

ized using the same methods as before (lines 12-16). Finally, the remaining

part of the outer loop denoted by C is also dynamically vectorized.

One important observation is that for this transformation to work, the loop

must be divided into multiple regions and each region is transformed sepa-

rately. All of region A is executed, then all of B, and then all of C. This means

that the divergent loops begin to act as synchronization points in the gen-

erated code. This must be taken into consideration in the region formation

algorithm which previously only considered explicit barrier synchronization

points. Another observation is that the condition evaluation must take place

in the last region inside the loop. For example, in Figure 4.5, cond1 is only

evaluated in region C (line 22). It can also be treated as its own region at

the end of the loop and dynamically vectorized on its own.

4.5 Dynamic Work-Item Compaction

Dynamic work-item compaction is an experimental technique that was at-

tempted without success. This technique is described in this section but no

results will be shown because the technique was abandoned before comple-

tion.

Dynamic work-item compaction attempts to compact the active work-

items into adjacent SIMD lanes so that they can be vectorized. To do so, an

additional level of indirection is necessary on every memory load to convert

from the SIMD-lane index to the work-item index. The advantage of this

technique is that it enables vectorized computation all the time, at the ex-

pense of some checking overhead as well as additional intermediate memory

loads.

An example of how the technique works is shown in Figure 4.6. First, an

intermediate list active is generated which contains a contiguous list of all

the active work-items in the work-group (lines 01-06). The number of active

work-items is also tracked. Next, the loop begins and iterates until all work-

items are no longer active (line 07). The body of the loop is executed as a

vector operation, however all references to the thread index are now replaced

17
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01  numTrue = 0; 

02  for(i=0; i<N; ++i) { 

03    if(cond(i)) { 

04      active[numTrue++] = i; 

05    } 

06  } 

07  while(numTrue > 0) { 

08    body(active[0:numTrue]); 

09    oldNumTrue = numTrue; 

10    numTrue = 0; 

11    for(i=0; i<oldNumTrue; ++i) { 

12      if(cond(active[i])) { 

13        active[numTrue++] = i; 

14      } 

15    } 

16  } 

time goes from lighter to darker time goes from lighter to darker 

Figure 4.6: Work-item compaction execution pattern and pseudocode.
The numbers in the figure indicate the id of the work-item for which the

loop iteration is being executed. The array active contains a contiguous list
of the work-items which are still executing the loop. The remaining

variables and notations are as in the previous figures.

with an access to the active array which indexes just the active threads (line

08). Next, a new active list is generated with the work-items that are to be

active in the next iteration (lines 09-15).

Although this technique is very promising in the amount of vectorization

it can achieve, the increase in memory accesses due to the additional level

of indirection to access the active array proved to be too high. It is particu-

larly expensive when the thread index is used to access an array because it

transforms a vector access such as arr[0:N] to a scatter or gather operation

such as arr[active[0:N]] which is serialized by the compiler. An implementa-

tion of several relevant benchmarks using this technique showed significant

degradation in locality and performance. For this reason, the technique was

abandoned before maturity and no thorough analysis of its impact on all

18



benchmarks was made.
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CHAPTER 5

A WORKING EXAMPLE

This chapter goes through a simple example of sparse matrix-vector multipli-

cation (SpMV) using the JDS format to show how the transformations pro-

posed apply to a real application. The JDS format is illustrated in Figure 5.1

with the corresponding variables from the code indicated. The following is

an OpenCL version of SpMV from the Parboil benchmark suite [5].

01 int ix = get_global_id (0);

02 float sum = 0.0f;

03 int bound = sh_zcnt_int[ix /32];

04 for(int k = 0; k < bound; k++) {

05 int j = jds_ptr_int[k] + ix;

06 int in = d_index[j];

07 float d = d_data[j];

08 float t = x_vec[in];

09 sum += d*t;

10 }

11 dst_vector[d_perm[ix]] = sum;

The loop (line 04) in this kernel is statically divergent. The reason is that the

loop condition (k < bound) is work-item dependent because bound is work-

item dependent. However, by design of the JDS format, the loop has a great

amount of convergence. Because rows are sorted according to the number of

non-zeros, neighboring work-items will tend to process a similar number of

elements. This makes the loop a good candidate for dynamic vectorization.

The rest of this section goes through how this code is transformed.

The variables ix, sum, and bound are all work-item dependent so they

must be expanded to have one version for each work-item so that the work-

item executions can continue in parallel. The variable assignments (lines

01-03) become like the following where sx is the number of work-items in the

work-group.

int ix[sx]; ix[:] = get_global_id0 [:];

float sum[sx]; sum[:] = 0;

int bound [sx]; bound [0:sx] = sh_zcnt_int[ix[0:sx ]/32];
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Figure 5.1: JDS format.
The rows in the JDS format are sorted by number of non-zeros so that
adjacent work-items would process similarly sized rows, thereby having

similar loads which reduces control divergence. The transposition ensures
that adjacent threads access adjacent memory locations which results in

memory coalescing. An additional optimization not shown in the figure is
that rows can be padded with zeros such that rows in the same wavefront

all have the same number of elements which reduces control divergence. As
a result, a bound only needs to be stored for each wavefront instead of each
row, which is why the index to sh zcnt int is divided by 32 (wavefront size)

in the code.
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The next variable to be dealt with is the loop index k. Although k is work-

item dependent, the dependence analysis is intelligent enough to find out

that it does not need to be expanded. The details of the dependence analysis

are beyond the scope of this thesis. Therefore the initialization in the loop

header remains:

int k = 0;

Next, the loop condition must be evaluated for the first iteration and stored

in a predicate array. The condition check is vectorized as follows where p0 is

the predicate array.

unsigned int p0[sx]; p0[:] = k < bound [:];

After that, the number of active work-items (or threads) is calculated by

summing up the predicate array using the CEAN function sec reduce add

and the loop begins to iterate until all work-items become inactive.

unsigned int numActiveThreads0 = __sec_reduce_add(p0[:]);

while(numActiveThreads0 > 0) {

...

}

Inside of the loop, the local variables are declared. The variables j, in, d, and

t are all expanded because they are all work-item dependent.

int j[sx];

int in[sx];

float d[sx];

float t[sx];

After variable declarations, the number of active work-items is checked. If it

is equal to the number of work-items in a work-group, the body of the work

group (lines 05-09) and condition of the next iteration are vectorized for the

entire work-group.

if (numActiveThreads0 == sx) {

j[:] = jds_ptr_int[k] + ix[:] ;

in[:] = d_index[j[0]:sx];

d[:] = d_data[j[0]:sx];

t[:] = x_vec[in[0:sx]];

sum [:] += d[:]*t[:] ;

p0[:] = k < bound [:];

} else {

...

}

Notice how instead of using j[0:sx] to express the values of j, the transformed

code uses j[0]:sx. This optimization saves on memory accesses by taking

advantage of the fact that it knows j is stride 1. In other words, it knows
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that j[n + 1] = j[n] + 1 for n ranging from 0 to sx-1, so it can replace all

instances of j[0 + k] with j[0]+k for k in bounds, and only need to load j[0].

While executing d index[j[0:sx]] results in a gather operation serialized by

the compiler, d index[j[0]:sx] will result in a vectorized load which is much

more efficient. The details of this optimization are outside the scope of this

work. If the work-items are not all active, the execution next goes into the

sub-vectorization mode and loops over each individual sub-group. Here, bsx

is the sub-group size and bx is the id of the first work-item in the sub-group.

const unsigned int bsx = 32;

for (unsigned int bx = 0; bx < sx; bx += bsx) {

...

}

For each sub-group, the code first counts the number of active work-items

in the sub-group. The code is actually more complicated when sx is not a

multiple of bsx, but we ignore that case in this example to keep the code

simple.

unsigned int numActiveThreadsInTile = __sec_reduce_add ((p0[bx:bsx ]));

If all work-items in the sub-group are active, then the sub-group is vectorized.

if (numActiveThreadsInTile == bsx) {

j[bx:bsx] = jds_ptr_int[k] + ix[bx:bsx] ;

in[bx:bsx] = d_index[j[bx]:bsx];

d[bx:bsx] = d_data[j[bx]:bsx];

t[bx:bsx] = x_vec[in[bx:bsx]];

sum[bx:bsx] += d[bx:bsx]*t[bx:bsx] ;

p0[bx:bsx] = k < bound[bx:bsx];

} else {

...

}

Otherwise it will be serialized with a check on every predicate.

for (unsigned int x = bx; x < (bx + bsx); x++) {

if ((p0[x])) {

j[x] = jds_ptr_int[k] + ix[x];

in[x] = d_index[j[x]];

d[x] = d_data[j[x]];

t[x] = x_vec[in[x]];

sum[x] += d[x]*t[x];

p0[x] = k < bound[x];

}

}

The number of active work-items is recomputed for the next iteration.

numActiveThreads0 = __sec_reduce_add(p0[:]);

Finally, once the loop is over, the last statement (line 11) is executed.
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dst_vector[d_perm[ix[0]: _sx_]] = sum[0: _sx_];

The fully transformed code for this example is shown in Appendix A.

24



CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Experimental Setup

The transformations proposed in this thesis were implemented as part of the

MxPA [2] codebase. The Intel C Compiler (ICC) 13.13 is used for compiling

the output C+CEAN code to final machine code.

The evaluation hardware includes an Intel i7-3820 processor and 16G of

DDR3 DRAM with dual channel configuration. The system was running

a 64-bit Ubuntu 12.04. The evaluation kernels were extracted from two

benchmark suites to evaluate the performance of each implementation: Par-

boil 2.5 [5] and Rodinia 2.4 [6]. Only kernels that contained divergent loops

which dominated performance were used in the evaluation because other ker-

nels are not relevant to the transformations proposed.

Throughout this section, results are shown for three incremental versions

of the transformation:

1. SVEC: which is the original static vectorization of convergent regions

in [2]. Divergent regions always serialized. This version is used as a

baseline.

2. DVEC: which is the dynamic vectorization of divergent loops using just

the all-or-none approach for vectorizing work-items in a work-group.

3. DVEC-S: which is the dynamic vectorization of divergent loops includ-

ing sub-vectorization attempts before falling back on serial code.

The evaluation will consist of an analysis of the impact of the proposed

technique on dynamic instruction count, data locality, and overall execution

time.
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6.2 Impact on Dynamic Instruction Count

The vectorization technique proposed in this thesis is expected to decrease

the dynamic instruction count for kernels with loops that are convergent

dynamically under the assumption that programmers will aim to minimize

control divergence when optimizing their kernels. However, if kernels are not

well optimized and contain loops that have a high amount of control diver-

gence, then the transformation is expected to make the dynamic instruction

count worse because it incurs a large amount of unnecessary overhead for

dynamic convergence checking then falls back to the serialization approach.

The results in Figure 6.1 show the dynamic instruction count for each

technique normalized to the baseline SVEC implementation. The results in

Figure 6.2 show the dynamic convergence rate of the loops in each kernel.

The convergence rates for heartwall could not be obtained because the kernel

was too large to instrument.

It is evident from the results that the kernels having an improved instruc-

tion count due to vectorization (spmv and lavaMD) both have high conver-

gence rates and respectively take the full vectorization and sub-vectorization

paths most of the time. This demonstrates the effectiveness of the dynamic

vectorization approach and improving performance when vectorization op-

portunities are present despite the checking overhead.

On the other hand, the two kernels having low convergence rate (mri-

gridding and bfs-rodinia) both show the most significant slowdown. Because

these kernels fall back on the serial version most of the time, they incur

the extra cost of dynamic convergence checking but do not benefit from

vectorization to offset that cost. It would be ideal if one could predict the

likelihood that a loop would dynamically converge or diverge and back off

from applying dynamic vectorization entirely to avoid the unnecessary cost.

However, it is very difficult to make such a prediction statically. One possible

remedy to this problem would be to dynamically track the behavior of a loop.

If the loop has been diverging most of the time during execution, then at some

threshold the transformed code could stop attempting to vectorize it and run

the serial version from the start.

The remaining five benchmarks (bfs-parboil, histo, sad, tpacf, and par-

ticlefilter) are anomalous in that they all show good dynamic convergence

rates but still show degradation in dynamic instruction count. These bench-
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marks fall into two categories. The first category is the benchmarks where

the loop body is very small such that there is not enough work done in the

vectorized loop to amortize the checking overhead. The benchmarks that

suffer from this problem are tpacf and particlefilter. A remedy for this prob-

lem would be to apply a cost function that would evaluate the amount of

work a loop performs and avoid vectorizing it if it is too little. The second

category is the benchmarks where the loop body contains code that cannot

be vectorized by the compiler. In other words, after the dynamic checking

is performed and the vectorization or sub-vectorization versions are selected,

the execution gets serialized anyways and the potential performance benefit

is lost. The benchmarks falling into this category are bfs-parboil, histo, and

sad. The reason these benchmarks cannot be vectorized is the presence of

calls to device/intrinsic functions which get serialized by the compiler. One

remedy for this problem is to inline the device functions before vectorizing

the code so that the device functions can be vectorized as well. In the case

where a function or intrinsic cannot be inlined and vectorized such as an

atomic operation, this can be included in the cost function suggested earlier

which statically decides whether it should attempt to dynamically vectorize

the loop or not.

6.3 Impact on Data Locality

The vectorization technique proposed in this thesis is expected to improve

the memory access pattern and decrease the number of data cache misses for

well-optimized kernels with loops where work-items access adjacent memory

locations on the same iteration. However, if kernels are not well optimized

and memory access is arbitrary, then the transformation is expected to in-

crease the number of cache misses because the extra variables needed for

dynamic convergence checking increase the memory footprint as a whole.

The results in Figure 6.3 show the L1 data cache load misses for each tech-

nique normalized to the baseline SVEC implementation. Three benchmarks

show a significant improvement in data locality: histo, spmv, and heart-

wall. Code inspection of these three benchmarks reveals that all three are

optimized for memory coalescing where adjacent work-items access adjacent

elements.
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Figure 6.3: L1 cache data load miss rates of each kernel normalized to the
baseline previous approach.
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The remaining seven kernels all show a degradation in locality. However,

it turns out that all these kernels are not well optimized for memory access

on the GPU because work-items do not access adjacent elements. In fact,

five out of the seven kernels (bfs-parboil, mri-gridding, sad, bfs-rodinia, and

particlefilter) have the pattern where each work-item loops over a continuous

segment in memory. With such a memory access pattern, serialization is

expected to have better performance. Tpacf has an arbitray memory access

pattern. LavaMD has a thread coarsening loop which executes only once so

the iterations execute in the same order for both techniques and no benefit is

gained there. Moreover, the kernel uses an Array-of-Structures (AoS) storage

format instead of Structure-of-Arrays (SoA) and accesses all array elements

in the loop which is why serialization results in better memory behavior (see

Appendix B for explanation). All such access patterns are not consistent

with GPU programming best practices. A remedy for these situations could

be to perform a static analysis to detect the memory access patterns in the

loop. If memory access indices are dependent on the loop index and/or if AoS

storage formats are used, then the compiler could statically avoid applying

the dynamic vectorization transformation.

6.4 Impact on Overall Execution Time

The results in Figure 6.4 show the speedup of each technique normalized to

the baseline SVEC implementation. The benchmarks that show speedup are

spmv and lavaMD. The first benefits from improvement in both instruction

count and locality whereas the second benefits from improvement in instruc-

tion count that is significant enough to compensate for the performance hit to

the locality degradation. The benchmark histo shows little change because it

experiences an improvement in locality and degradation in instruction count

that offset each other. For heartwall, there is an improvement in locality,

but the degradation in instruction count results in a net degradation in the

execution time. The remaining six benchmarks all show degradation in both

metrics, hence degradation in execution time. The reasons for why each

benchmark performs the way it does have been described in Sections 6.2 and

6.3. The benchmarks performing well are those that conform to the GPU

best practices of minimizing control divergence and coalescing memory ac-
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Figure 6.4: Speedup of each kernel over the baseline previous approach due
to dynamic vectorization.
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cesses. However, it happens that most benchmarks used for evaluation do

not exhibit these properties in the divergent loops under study. A summary

of the behavior of each benchmark is shown in Table 6.1.
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Table 6.1: Summary of the impact of dynamic vectorization.

Benchmark 
Impact on 

Time 

Impact on 

Dynamic 

Instruction 

Count 

Divergence or 

Vectorization 

Pattern 

Impact on 

Data 

Locality 

Memory 

Access 

Pattern 

bfs-parboil - - 
serialization 

(atomics) 
- 

sequential 

and indirect 

histo 0 - 

serialization 

(device 

function) 

+ coalesced 

mri-gridding - - 
high rate of 

divergence 
- sequential 

sad - - 

serialization 

(intrinsic 

function) 

- sequential 

spmv + + 
high rate of 

convergence 
+ coalesced 

tpacf - - 
little work in 

loop 
- arbitrary 

bfs-rodinia - - 
high rate of 

divergence 
- 

sequential 

and indirect 

heartwall - - N/A + coalesced 

lavaMD + + 
high rate of 

convergence 
- AoS 

particlefilter - - 
little work in 

loop 
- sequential 

Note: The symbol “+” means that the metric improved, i.e. a decrease in
time, decrease in dynamic instruction count, and decrease in L1 cache

misses. The symbol “-” means that the metric got worse. The symbol “0”
means that there was no change in the metric. The term “serialization”

refers to when code in the fully vectorized phase needs to be serialized so
the benefit of vectorization is lost. The term “sequential” refers to when the

same work-item iterates sequentially over a contiguous chunk of memory
instead of there being a coalesced memory access pattern in the kernel.
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CHAPTER 7

RELATED WORK

Many OpenCL stacks have been proposed targeting multicore CPUs.

AMD’s Twin Peaks [7] is an OpenCL stack provided which handles work-

items within a work-group by using user-level threads that context switch

at barrier synchronization points. Twin Peaks has the advantage of not

relying on compiler techniques for work-item scheduling, but moves it into the

runtime system which allows for incorporating runtime information into the

scheduling, not to mention reusing of off-the-shelf compilers and debugging

tools. Twin Peaks’ user-level threading approach makes it more difficult to

incorporate the vectorization techniques presented in this thesis because the

vectorization is not made explicit.

Intel also has an OpenCL implementation [8] for CPUs and Xeon Phis,

but details about their code generation and compilation techniques are not

publicly known.

Karrenberg and Hack [9] present an OpenCL compilation technique for

CPUs which, like this work, also uses SIMD vectorization for mapping work-

items to the CPU. However, their approach is fundamentally different in the

way divergent regions are handled. While the approach in this work generates

multiple static versions of the divergent loop body and selects between them

dynamically, their approach generates a single version only and uses software

predication techniques for divergence handling. Their work also differs in the

granularity of vectorization. While vectorization of a region in this work is

performed at the level of an entire work-group, their work only vectorizes at

the granularity of the SIMD width (W). In other words, they execute the

entire region for just W work-items before moving on to the next W. Finally,

regions in their work are coarser-grain because divergence is not used as a

criterion for region formation.

The portable computing language (pocl) [10] uses a similar methodology

as MCUDA for translating the kernels except that it does so at the LLVM
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IR level. It depends on the LLVM inner loop vectorizer to perform vector-

ization (if any) by annotating work-item loops using the LLVM parallel loop

annotations.

SnuCL [11] is another OpenCL compiler for CPU platforms. Its approach

is very similar to MCUDA. The treatment of work-items is very similar to

MCUDA’s thread-loops. The name given to the technique is work-item co-

alescing. There does not seem to be an active effort toward any SIMD vec-

torization.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

In this thesis, a technique has been proposed for vectorizing divergent loops

when retargeting GPU-optimized OpenCL kernels for multicore CPUs. Be-

cause actual convergence cannot always be determined statically, the pro-

posed transformation generates multiple static versions of the loop body that

are fully vectorized for the entire work-group, partially vectorized for each

sub-group, or serialized and selects between these three versions based on a

runtime evaluation of the divergence property of the loop. The results show

that the technique performs well for kernels that conform to GPU program-

ming best practices such as minimizing control divergence and coalescing

memory accesses. On the other hand, kernels that exhibit large amounts

of control divergence and poor memory access patterns on the GPU do not

translate well to the CPU relative to previous approaches.

There are multiple techniques that could be used to improve the perfor-

mance of the code generated by the transformations proposed in this thesis.

The technique needs to be applied selectively based on whether it is expected

to be beneficial or not. This can be done statically via a cost function that

ensures that there is enough work being done in the loop to amortize the vec-

torization overhead, and that the proximity of memory accesses is present

across work-items not loop iterations. It can also be done dynamically via

a divergence prediction mechanism where the divergence of a loop can be

predicted based on its history such that dynamic vectorization of frequently

divergent loops can be avoided. Finally, additional support for inlining de-

vice functions is expected to avoid serialization of code where vectorization

opportunities exist.

37



APPENDIX A

JDS SPMV TRANSFORMED CODE
EXAMPLE

Original OpenCL Code [5]:

int ix = get_global_id (0);

float sum = 0.0f;

int bound = sh_zcnt_int[ix/32];

for(int k = 0; k < bound; k++) {

int j = jds_ptr_int[k] + ix;

int in = d_index[j];

float d = d_data[j];

float t = x_vec[in];

sum += d*t;

}

dst_vector[d_perm[ix]] = sum;

Transformed Code:

int ix[sx]; ix[:] = get_global_id0 [:];

float sum[sx]; sum[:] = 0;

int bound [sx]; bound [0:sx] = sh_zcnt_int[ix[0:sx ]/32];

int k = 0;

unsigned int p0[sx]; p0[:] = k < bound [:];

unsigned int numActiveThreads0 = __sec_reduce_add(p0[:]);

while(numActiveThreads0 > 0) {

int j[sx];

int in[sx];

float d[sx];

float t[sx];

if (numActiveThreads0 == sx) {

j[:] = jds_ptr_int[k] + ix[:] ;

in[:] = d_index[j[0]:sx];

d[:] = d_data[j[0]:sx];

t[:] = x_vec[in[0:sx]];

sum [:] += d[:]*t[:] ;

p0[:] = k < bound [:];

} else {

const unsigned int bsx = 32;

for (unsigned int bx = 0; bx < sx; bx += bsx) {

unsigned int numActiveThreadsInTile = __sec_reduce_add ((p0[bx:bsx ]));

if (numActiveThreadsInTile == bsx) {

j[bx:bsx] = jds_ptr_int[k] + ix[bx:bsx] ;

in[bx:bsx] = d_index[j[bx]:bsx];

d[bx:bsx] = d_data[j[bx]:bsx];

t[bx:bsx] = x_vec[in[bx:bsx]];

sum[bx:bsx] += d[bx:bsx]*t[bx:bsx] ;
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p0[bx:bsx] = k < bound[bx:bsx];

} else {

for (unsigned int x = bx; x < (bx + bsx); x++) {

if ((p0[x])) {

j[x] = jds_ptr_int[k] + ix[x];

in[x] = d_index[j[x]];

d[x] = d_data[j[x]];

t[x] = x_vec[in[x]];

sum[x] += d[x]*t[x];

p0[x] = k < bound[x];

}

}

}

}

}

numActiveThreads0 = __sec_reduce_add(p0[:]);

}

dst_vector[d_perm[ix[0]: _sx_]] = sum[0: _sx_];
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APPENDIX B

ARRAY OF STRUCTURES AND
STRUCTURE OF ARRAYS

Figure B.1 shows that the array-of-structures (AoS) storage format performs

poorly if the loop is vectorized because it results in a scattered access pattern,

whereas it performs well when the loop is serialized because the access pattern

is linear. On the other hand, the structure-of-arrays (SoA) format performs

well when the loop is vectorized because the accessed memory is contiguous,

whereas the access pattern is not as ideal as AoS when the loop is serialized.

struct { 

  int x; 

  int y; 

} s[100]; 

 

unsigned i; 

for(i = 0; i < 100; ++i) { 

  foo(s[i].x); 

  bar(s[i].y); 

} 

… 

… 

… 

struct { 

  int x[100]; 

  int y[100]; 

} s; 

 

unsigned i; 

for(i = 0; i < 100; ++i) { 

  foo(s.x[i]); 

  bar(s.y[i]); 

} 

… … 

… … 

… … 

Array-of-Structures (AoS) Code Structure-of-Arrays (SoA) Code 

AoS Vectorized Loop 

Access Pattern 

SoA Vectorized Loop 

Access Pattern 

AoS Serialized Loop 

Access Pattern 

SoA Serialized Loop 

Access Pattern 

Figure B.1: Array-of-structures and structure-of-arrays.
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