
J. Parallel Distrib. Comput. () –

Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

More IMPATIENT: A gridding-accelerated Toeplitz-based strategy for
non-Cartesian high-resolution 3D MRI on GPUs
Jiading Gai a, Nady Obeid b, Joseph L. Holtrop a,c, Xiao-Long Wu b, Fan Lam a,b, Maojing Fu a,b,
Justin P. Haldar d, Wen-mei W. Hwu b, Zhi-Pei Liang a,b, Bradley P. Sutton a,c,∗

a Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
b Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
c Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
d Signal and Image Processing Institute, Dornsife Cognitive Neuroscience Imaging Center, Brain and Creativity Institute, Ming Hsieh Department of Electrical Engineering, University
of Southern California, Los Angeles, CA, USA

a r t i c l e i n f o

Article history:
Received 29 June 2012
Received in revised form
8 January 2013
Accepted 9 January 2013
Available online xxxx

Keywords:
MRI
Non-Cartesian
GPU
CUDA
Gridding
Toeplitz

a b s t r a c t

Several recent methods have been proposed to obtain significant speed-ups in MRI image reconstruction
by leveraging the computational power of GPUs. Previously, we implemented a GPU-based image
reconstruction technique called the IllinoisMassively Parallel Acquisition Toolkit for Image reconstruction
with ENhanced Throughput in MRI (IMPATIENT MRI) for reconstructing data collected along arbitrary
3D trajectories. In this paper, we improve IMPATIENT by removing computational bottlenecks by using
a gridding approach to accelerate the computation of various data structures needed by the previous
routine. Further, we enhance the routine with capabilities for off-resonance correction and multi-
sensor parallel imaging reconstruction. Through implementation of optimized gridding into our iterative
reconstruction scheme, speed-ups of more than a factor of 200 are provided in the improved GPU
implementation compared to the previous accelerated GPU code.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Magnetic resonance imaging (MRI) is a unique clinical and re-
search imaging technology that enables users to visualize different
anatomical, metabolic, and physiological properties of the human
body. For example, through adjustments in acquisition parameters,
MRI scans can give information about the proton density and local
chemical environment of various tissues, visualize flowing blood,
or even probe micro scale restrictions to water diffusion.

MRI image reconstruction consists of solving a large linear
system relating the measured data points to the object being
imaged, using a system matrix F that models the MRI physics,
the data sampling trajectory in the data space or k-space, and
other physical effects such as receiver coil sensitivities and
inhomogeneity in the magnetic field. The image reconstruction
seeks to find the best fit image, f, that fits the measured data,
y, as y = Ff. For usual-sized MRI imaging problems, F is too
large to store, being of size M × N3 for a 3D image with N

∗ Corresponding author at: Beckman Institute, University of Illinois at Urbana-
Champaign, Urbana, IL, USA.

E-mail addresses: bsutton@illinois.edu, brad.sutton@gmail.com (B.P. Sutton).

voxels (i.e. 256) in each dimension and with M data samples in k-
space (i.e. approximately the same as N3). Since F is composed of
complex floating point entries, its size can exceed tens of Petabytes.
Instead of computing F and finding its inverse, several other
methods have been developed to solve the image reconstruction
problem in MRI. A common approach for data acquired along a
regular grid in k-space, i.e. Cartesian sampling, implements F as
a Fast Fourier Transform (FFT). Thus, direct image reconstruction
can be performed through an inverse Fourier transform if no
other physical experiment effects are needed (such as receiver
coil sensitivities [27], magnetic field inhomogeneity [31], or
incorporation of image regularization through a priori information
from other scans or an image roughness penalty [37]). Often,
other physical effects or image regularization must be included
to achieve reasonable image acquisition time and sufficient image
quality. Incorporation of these other physical effects may inhibit
the application of the FFT even for Cartesian-sampled data. In
these cases, the Fmatrix is often inverted using iterative methods.
We will refer to this inverse problem approach as iterative image
reconstruction, see [10] for a recent review.

Non-Cartesian data acquisition trajectories have been devel-
oped to provide more time-efficient sampling of k-space. These
non-Cartesian trajectories can make more optimal use of the

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2013.01.001

http://dx.doi.org/10.1016/j.jpdc.2013.01.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:bsutton@illinois.edu
mailto:brad.sutton@gmail.com
http://dx.doi.org/10.1016/j.jpdc.2013.01.001

2 J. Gai et al. / J. Parallel Distrib. Comput. () –

system gradient performance and allow for a wider range of trade-
offs in total imaging experiment time versus potential image dis-
tortions. When data are sampled on a non-uniform grid, such as
with spiral sampling trajectories, the system matrix cannot be ap-
proximated by a simple FFT, although, fast algorithms have been
developed to leverage the FFT in performing the evaluation. Ad-
ditionally, the data acquisition may have long readouts that re-
quire magnetic field inhomogeneity corrections [37] and several
receiver coils may have been used in the acquisition to compen-
sate for undersampling k-space, necessitating parallel imaging re-
construction [27,26]. In these cases, application of the advanced
MRI image acquisition technique is impeded by the computational
requirements of the image reconstruction problem. Several algo-
rithms have been proposed to address this problem, including al-
gorithms based on gridding [26,16] and the non-uniform FFT with
time-segmented interpolation to compensate for field inhomo-
geneities [37]. These algorithms have been successful in keeping
reconstruction times for 2D high resolution data to tolerable lev-
els. However, for high spatial resolution 3D acquisitions, there is a
strong need for massively parallel hardware to perform the recon-
structions in clinically-feasible times, on the order of minutes, so
that we can obtain information about quality of the image while
the patient is still in the MRI scanner.

In our previous work, we implemented a direct evaluation or
brute force implementation of the non-Cartesian sampling system
matrix with magnetic field inhomogeneity terms on graphics
processor units (GPUs) [35,42]. Instead of storing the large system
matrix, its entries are computed on demand for performing
the required matrix–vector multiplications. This implementation
leveraged the massively parallel hardware of GPUs to perform
matrix–vector multiplication with the full system matrix, which
is similar to a matrix version of the discrete Fourier transform. If
there areM sample locations andN3 image locations in a 3D object,
our original implementation had a computational complexity of
MN3. In order to leverage the computational advantages of the
FFT for non-Cartesian data, an algorithm called gridding can be
used to approximate the application of the MRI system [16].
Gridding can be used in both direct and iterative reconstruction
approaches. In a direct reconstruction using gridding, data is
compensated for non-uniformdensity, interpolated onto a uniform
grid using a fixed kernel interpolator, then the FFT is used to get the
Fourier transform of the data, followed by deapodization, which
removes the effect of the fixed-kernel interpolator shape. Gridding
provides an approximation of the discrete Fourier transform,
which has been shown to be very accurate with proper choice
of interpolation and oversampling factors [16,2]. In addition, the
computational complexity of the problem is reduced to MK 3

+

(V 3N3) log(V 3N3), where K is the interpolation kernel width and
V is the oversampling factor as data is usually gridded onto a
denser grid than the original problem size to reduce interpolation
errors [16]. In this work, we implement gridding on the GPU and
incorporate it into our previous iterative image reconstruction
scheme to evaluate the potential for speeding up reconstructions
beyond our direct evaluation of the matrix products for F on the
GPU.

There has been previous work on implementing gridding on
GPUs to accelerate direct reconstruction approaches, i.e. reconstruc-
tions that approximate the inverse using the inverse Fourier trans-
form in a gridding scheme with a single, non-iterative calculation.
Schiwietz et al. implemented gridding for radial trajectories, allow-
ing for easy handling of sample locations that were contributed to
by adjacent rungs of the radial acquisition [30]. Sorensen et al. [34]
described a fine-grained gridding algorithm,with an output-driven
work assignment approach to avoid potentially expensive syn-
chronization. Gregerson [12] implemented an improved version
of Sorensen’s gridding algorithm with a coarse-grained thread

parallelism for a better utilization of the vector cores on a GPU.
This method works well when a sample’s neighboring sample
locations can be easily computed analytically for a structured sam-
pling pattern. This is not generally the case for non-Cartesian sam-
pling trajectories and the gridding algorithm that we will use will
handle general non-Cartesian trajectories. To handle general non-
Cartesian trajectories with GPU-based gridding, Obeid et al. [24]
developed a novel compact binning algorithm to reorganize ir-
regular input data onto a constant number of compact bins with
Cartesian coordinates. Gridding computation was partitioned into
several kernels and partly offloaded to the CPU.

These direct reconstruction implementations, based on approx-
imating the inverse as the inverse Fourier transform, are generally
designed for specific imaging contexts and can be hard to general-
ize for the variety of imaging physics that are encountered inmod-
ern imaging experiments. There are also many cases where simple
direct reconstructions do not yield acceptable results because the
inverse problem is complicated enough that the inverse problem
solution is not well-approximated by applying simple Fourier op-
erations to themeasured data. Inverse problem approaches, which
find the solution based on an accurate representation of the data
acquisition operator, have the benefit that they are very flexi-
ble and can be applied across a large range of imaging scenarios
with various combinations of coil sensitivities, magnetic field in-
homogeneity, and complicated constraints [10]. In these cases, it
is generally necessary to perform some kind of matrix inversion.
However, because the matrices involved are very large, direct ma-
trix inversion is not feasible, and it ismore practical to use iterative
methods. Our iterative method will use gridding to accelerate the
required pre-computations. The resulting fast iterative image re-
construction will include the ability to incorporate other physical
effects or prior information, such as: 1. the magnetic field distri-
bution, 2. parallel imaging with multi-coil acquisitions, and 3. the
incorporation of a priori information about the imaging object, such
as is achieved through spatial regularization.

Before we describe our algorithm, we note that several other
groups have presented GPU implementations of the parallel imag-
ing (PI) reconstructions and various regularization approaches
with clinically-feasible runtimes. Roujol et al. [28] proposed a GPU
parallelization of temporal sensitivity encoding (TSENSE) for high
temporal resolution interventional imaging. Sorensen et al. [33]
presented a fast iterative SENSE implementation which performs
2D gridding on GPUs. Nam et al. [20] implemented an iterative
3D compressed sensing (CS) reconstruction method for 3D radial
trajectories on a GPU, in which both the forward and backward
operator are evaluated through a gridding-based approximation.
Uecker [38] described a GPU implementation of a non-linear ap-
proach to estimate the coil sensitivitymaps, which are needed dur-
ing PI image reconstruction. Knoll et al. [18,17] demonstrated a
TV regularization for MR artifact elimination on GPU using radial
sampling trajectories. Murphy et al. [19] described the GPU im-
plementation of an autocalibrating reconstruction method, called
ℓ1-SPIRiT. It solves a constrained non-linear optimization over the
image domain and its implementation on GPU leverages the data
parallelism among the multiple CPUs and GPUs on a single node.
ℓ1-SPIRiT operates on data that is initially transformed into a Carte-
sian space to simplify further steps in the reconstruction at the
expense of potential interpolation errors initially. ℓ1-SPIRiT pro-
vides an approximation for non-Cartesian data and implements
compressed sensing features to achieve high quality image recon-
structions. Our algorithm differs from ℓ1-SPIRiT in several ways.
First we operate in the non-Cartesian domain throughout the re-
construction, whereas ℓ1-SPIRiT uses an initial interpolation step.
Second, our algorithm uses SENSE parallel imaging compared to a
GRAPPA framework in ℓ1-SPIRiT. Finally, we incorporate magnetic
field inhomogeneity correction and general regularizing penalty
functions.

J. Gai et al. / J. Parallel Distrib. Comput. () – 3

In this work, we further develop the Illinois Massively Parallel
Acquisition Toolkit for Image reconstruction with ENhanced
Throughput inMRI (IMPATIENTMRI) a software tool to incorporate
a variety of reconstructionmethods common to non-CartesianMRI
on GPUs to enable clinically-feasible reconstruction times [41].
In our previous work, an iterative Toeplitz strategy [40,11] was
used on the GPU [35], with a direct, brute-force evaluation to
calculate the necessarymatrix–vectormultiplications with system
matrix F . In this work, we speed up the reconstructions through
incorporation of an optimized GPU gridding approach [24] to
speed computations associated with the Toeplitz strategy. We
further adapt the strategy to include parallel imaging andmagnetic
field inhomogeneity-correction as in [11]. The resulting speed-
ups enable clinically-feasible reconstructions of 3D non-Cartesian
arbitrary sampling trajectory, parallel imaging, magnetic field
correction, and incorporation of a priori constraints.

The remainder of the paper is structured as follows. Section 2
outlines the derivations of the Toeplitz reconstruction strategy
and its GPU parallelization. Section 3 discusses an output-driven,
input binning based approach to perform gridding using GPU.
The achieved acceleration over classic gridding implementations
on CPU is up to 26.3x. Section 4 presents the comparison of the
performances of the full reconstruction utility on an example
3D diffusion weighted MRI data set. The paper is concluded in
Section 5 with a discussion of several aspects of future work.

2. The Toeplitz strategy with gridding acceleration

The ideal MR signal equation relates the two- (or three-)
dimensional data in k-space to the image through a Fourier
transform. In reality, tissues possess a property called magnetic
susceptibility which alters the effective magnetic field inside the
brain. For this reason, the IMPATIENT solver adopts amore accurate
model of the complex baseband signal during an MRI experiment,
following the setup in [37]:

dm =


f (x)s(x) · e−iω(x)tm · e−i2πkmxdx+ ϵ(tm), (1)

where dm is the received data at time tm, f (x) is a continuous
function of the object’s transverse magnetization at location x;
s(x) is the spatial sensitivity of the receiver coil; ω(x) is the field
inhomogeneity present at x; km is the k-space sampling location at
sampling time tm, with m indicating the index of the sample point
form = 1, . . . ,M , withM samples; and ϵ(tm) is the noise term.

2.1. Iterative image reconstruction formulation

We assume a discrete image model to assist in the numerical
implementation. The problem is simplified by parameterizing the
object f (x) using a linear combination of N basis functions:

f (x) =
N

n=1

fnφ(x− xn). (2)

Therefore, MR reconstruction becomes that of estimating the
parameter vector f = (f1, . . . , fN) of expansion coefficients. For
simplicity, IMPATIENT sets the basis function φ(x) to be the Dirac
delta functions (i.e., φ(x) = δ(x)). Inserting Eq. (2) into Eq. (1), we
can derive the forward operator as:

[FSf]m =
N

n=1

fnsn · e−iω(xn)tm · e−i2πkmxn , (3)

where Fmodels the forward operator for a single coil with uniform
sensitivity taking into account field inhomogeneity, sn is a scalar

sensitivity valuemeasured at the nth voxel location, i.e. xn, and S is
the diagonal sensitivity matrix with sn on the diagonal [27].

Similarly, the adjoint operator for each coil is

[SHFHd]n = s∗n
M

m=1

dm · eiω(xn)tm · ei2πkmxn , (4)

where FH denotes the adjoint operator for a uniform sensitivity
coil with field inhomogeneity correction (the superscript H
denotes complex conjugate transpose) and s∗n denotes the complex
conjugate of sn.

Parallel imaging is performed by placing an array of receiver
coils around the object to be imaged, with each receiver coil
lending spatially distinct reception profiles to the acquired data
sets [27,26]. Eq. (1) shows that the signal equation includes
coil sensitivity information. The data from multiple coils can
be combined together and each coil has its own sensitivity
incorporated into a larger system of equations. Letting c = 1,
. . . , C indicate which coil of C coils that are being used in the
experiment, then Sc(xn) is the complex spatial sensitivity profile
of coil c at spatial location xn. With these coil sensitivity maps,
the parallel imaging model in matrix form can be represented as
follows [27,26]:

y1
y2
...
yC


  

ỹ

=


F · S1
F · S2

...
F · SC


  

A

f+


ϵ1
ϵ2
...
ϵC

 , (5)

where yc is the signal vector, d, received from coil c and ỹ is
formed by stacking yc ’s into a single column; Sc is the diagonal
matrix holding the complex spatial sensitivity profiles on the
diagonal entries from the cth coil; A denotes the parallel imaging
augmented system matrix.

To find the solution of f from Eq. (5), IMPATIENT MRI solves a
penalized least squares problem of the following form:

f̂ = argmin
f
∥ARf− ỹ∥22 + λ∥WDRf∥22, (6)

where f is the vector of image voxel coefficients to be reconstructed
with f̂ the estimated best-fit image, A is the full system matrix
from Eq. (5), ỹ is the vector of measured k-space data, W is an
optional diagonalweightingmatrix (e.g., to incorporate anatomical
structures extracted from some reference images [13]), R is the
binary image mask indicating the support of the object, D is
a sparse matrix for incorporating regularization penalties based
on prior information such as spatial derivatives (described in
Section 2.5), and λ is a regularization parameter. The first term
in the above cost function measures the closeness between
the expected signal from the estimated MR image and the
acquired k-space data. The second term introduces additional prior
information to constrain and regularize the solution.

Minimizing Eq. (6) with respect to f gives the following linear
system:

RH(AHA+ λDHWHWD)Rf̂ = RHAH ỹ. (7)

Direct matrix inversion of the resulting matrix in front of f̂ would
require a large amount of memory, even for a small sized problem.
Therefore, the iterative conjugate gradient (CG) algorithm [32]
is preferable for solving the linear equations in Eq. (7). Starting
from an initial guess, the CG algorithm searches for the image
estimate f iteratively to minimize the cost function Eq. (6). The
key bottlenecks in the overall computational complexity of the CG
method are two dense matrix–vector multiplication operations.

4 J. Gai et al. / J. Parallel Distrib. Comput. () –

One of the operations requires an evaluation of matrix–vector
multiplication using AH ỹ. The other one requires an evaluation of
two consecutive matrix–vector multiplications of the form AHAf.
The evaluation of AH ỹ only happens once per image, while AHAf
is evaluated repeatedly in the iterations. DHWHWD is usually
not a significant factor for computational performance because
matrix D and W often have sparse matrix structures that permit
efficient multiplication by exploiting the properties of addition
and multiplication with zeros. Therefore AHAf and AH ỹ are the
two most expensive computations in the advanced reconstruction
algorithm.

CG is used to solve the optimal linear system in Eq. (7). Most
of the linear algebra operations involved in such a CG solver
(dot product, summation reduction, vector addition) are memory
bounded. Thus, the main performance bottleneck lays in the
calculation of AH ỹ and AHAf. In addition, both AH ỹ and AHAf can
be computed as a sum of C terms, with C denoting the number
of coils. In the case of AHAf, for instance, each such term involves
two point-wise vector multiplications (using the sensitivity map
values for the coil) and one evaluation of FHF in between. Again,
because point-wise vector multiplications are memory bounded
operations, FHF becomes the main performance bottleneck of
AHAf. Similar reasoning shows that FHyc is the main bottleneck of
AH ỹ. This paper focuses on accelerating the calculation of FHyc and
FHF so as to accelerate the entire 3D non-Cartesian high-resolution
MRI reconstruction approach to clinically-feasible times.

2.2. Field inhomogeneity correction via time segmentation

As discussed in the previous section, the dominant computation
in each iteration of the CG algorithm is computing FHF and
FHyc . Computing FHyc corresponds to evaluating Eq. (4) with the
input data from coil c . For Cartesian k-space trajectories, one can
evaluate Eq. (4) quickly via the FFT if the field inhomogeneity is
ignored. However, for non-Cartesian k-space trajectories (spirals,
etc.) direct evaluation of Eq. (4) is very time consuming.When field
inhomogeneity is ignored, an efficient algorithm, such as gridding,
can be used to rapidly and accurately evaluate the discrete signal in
Eq. (4) even for non-Cartesian trajectories. However, the gridding
method is not directly applicable when the field inhomogeneity
is included because Eq. (1) is not a Fourier transform integral. We
circumvent this problemby approximating FHyc in Eq. (4) by a time
segmented version, as in [37,22]. This allows the use of the gridding
technique to compute Eq. (4) rapidly and accurately.

Similarly, it has been previously shown in [40] that in
the absence of the field inhomogeneity, matrix FHF has a
Toeplitz structure that allows for efficient computation of matrix
multiplication via convolution and the FFT. However, in the
presence of the field inhomogeneity term, the matrix FHF is not
Toeplitz anymore. The problematic part is also the non-Fourier
exponential terms introduced to correct the field inhomogeneity.
In the case of computing FHF, applying the time segmentation
method again allows an efficient, yet accurate, approximations by
recovering the Toeplitz structure, as demonstrated in [11].

We follow the approach outlined in [11]. Eq. (4) has non-Fourier
effects due to the field inhomogeneity term e−iω(xn)tm . One way
to approach this problem is through time segmentation, using
small time segments over which t is approximately constant [22].
This allows us to approximate the term e−iω(xn)tm as a linear
combination of two products that separately depend on xn and tm:

e−iω(xn)tm ≈

L
l=0

al(tm)e−iω(xn)(τ l+t[0]), (8)

where the acquisition window is partitioned into L time segments
of width τ with L + 1 break points. t[0] is the starting time of the

acquisition. The parameter L is a parameter that the user is free
to choose, with more time segments yielding better accuracy. An
approximation at intermediate time points are evaluated by inter-
polating between these break points. For the interpolation across
time segments, we use al(tm) as the Hanning window interpolator
for the lth time segment at time tm. Other window options for the
interpolator includes the min–max interpolators [37].

Combining Eqs. (4) and (8), the adjoint operator can be
approximated as follows:

[AH ỹ]n ≈
L

l=0

eiωn(τ l+t[0])
M

m=1

dm · al(tm) · ei2πkmxn . (9)

The key property of Eq. (9) is that the inner Fourier transform
(the weighted sum of the signal dm · al(tm) with the coefficients
eiωn(τ l+t[0])) can be approximated efficiently using a gridding
method.

The mathematical expression for AHAf can be similarly derived
in Eq. (10) by applying the time segmentation technique to
approximate the ‘‘joint’’ field inhomogeneity term, which depends
now on two locations in the image as ei[ω(xn)−ω(xn′)]tm .

[AHAf]n ≈
L

l=0

eiωn(τ l+t[0])
N

n′=1

fn′ · e−iωn′ (τ l+t[0])Ql(xn − xn′). (10)

Eq. (10) shows that AHAf is a weighted sum of convolution
products between the signal fn · e−iωn(τ l+t[0]) and the convolution
data structure Ql(xn), weighted by the coefficients eiωn(τ l+t[0]). The
convolution data structure Ql is defined as follows:

Ql(xn) =
M

m=1

al(tm) · ei2πkmxn . (11)

In Eq. (10), the inner convolution can be calculated efficiently using
the FFT algorithm. Hence, the task of computing AHAf is divided
into two phases, with the first phase computing Ql and the second
phase computing AHAf using Ql via FFT. For a fixed scan trajectory,
Ql needs only to be computed once as it depends only on the k-
space trajectory and the image size.

Algorithm 1: Compute AHAf using Ql, Eq. (10).
Input: f; Q[L]; k = (kx, ky, kz); x = (ix, iy, iz);
t = (t1, .., tM); ω = (ω1, . . . , ωN).
Output: AHAf.
Interface: computeAHA(f,Q [l], ω, k, x, t,M,N, l).
Initialization: τ = max(t)−min(t)

L ; AHAf← 0.0+ 0.0i.
foreach l = 0:L do

foreach n’=1:N do
F[n’] = f[n’] ·e−i·ω[n′]·(τ l+t[0]);

end
Qf[l] = FFT(Q[l]);// Qf is the Fourier transform of Q
tempVar = IFFT(F


Qf[l]);

foreach n = 1:N do
AHAf[n] += ei·ω[n]·(τ l+t[0])· tempVar[n];

end
end

Algorithm 1 shows the pseudo-code for computing AHAf
given the input image f and Ql. The implementation starts with
modulating the input image f with the field inhomogeneity term
and computing the Fourier transform Qf [l] of a Ql matrix. Note
that because only the Fourier transform of Ql is needed for
the subsequent calculation, it is recommended to release the
storage space allocated to Q [l] after its Fourier transform Qf [l]

J. Gai et al. / J. Parallel Distrib. Comput. () – 5

is calculated. Then, the inverse Fourier transform is taken on the
point-wise product between the two vectors F and Qf [l]. Finally,
the output vector AHA is computed in a cumulative fashion. The
symbol


stands for the point-wise product of two vectors, which

produces another vector as the outputwith each element being the
product of the associated elements of the two input vectors.

2.3. Computing Ql and FHy: the gridding approach

The equations for computing FHy and Ql are quite similar.
However, Ql requires considerably more computation time and
memory because it is two-fold bigger in size in each dimension.
In our previous work, Ql and FHy were computed directly based
on their mathematical definitions [35]. In this paper, we utilize the
more computationally efficient but less accurate approximation of
gridding.

Eq. (11) can be viewed as a Fourier transform of the signal
al(tm). As a result, gridding techniques can be used to compute
this discrete Fourier transform efficiently. In our gridding code,
each data point in our time-segmented interpolator is convolved
with a Kaiser–Bessel window [16], then resampled on a Cartesian
grid preparatory to an FFT. The Kaiser–Bessel function is used to
determine the weight of the contribution of a sample point onto a
grid point, based on thedistance between the two. A cutoff distance
(i.e., kernel width) is imposed on the Kaiser–Bessel kernel beyond
which the contribution is considered to be insignificant. After the
Fourier transform, a process called deapodization is used to remove
the effect of the chosen interpolation kernel from the resulting
transform. Our approach toward efficient gridding on GPU will be
described in detail in Section 3.

The main motivation for substituting the direct evaluation of
Eq. (11) with gridding is significant reduction in computational
complexity. As mentioned previously, using gridding only takes
MK 3
+ V 3N3 log(V 3N3) arithmetical operations, while the direct

evaluation takesMN3 operations to compute the same result. For a
hypothetical examplewith 32,768 k-space points and a 256×256×
128 image, the gridding reconstruction reduces computation time
bynearly 3 orders ofmagnitude. Gridding can be further spedupby
non-integer oversampling factors V ∈ [1.0, 2.0) with acceptable
error levels compared to noise in the data [2].

Although we have not experienced stability problems in our
application, we note that our implementation stresses speed
over numerical accuracy and stability. A less aggressive approach
(e.g., using LSQR [25], or brute force, or no time segmentation)
might be appropriate in certain situations where the numerical
accuracy and stability are bottlenecks.

2.4. Implementation of the conjugate gradient linear solver

The reconstructed image is found by iteratively solving Eq. (7)
by using a conjugate gradient linear solver. The solver terminates
when the number of iterations exceeds a threshold. During each
iteration, the solver performs a large FFT and inverse FFT, several
BLAS and sparse BLAS operations (including multiplication of
vectors and sparse matrices, as well as addition, scaling, and scalar
multiplication of vectors), and several other computations (such
as summation reduction, shifting, and sampling). The linear solver
uses NVIDIAs CUDA CUFFT Library [23] for the FFT and inverse FFT
operations, and implements the other operations as customized
code. CUDA’s cufftComplex structure type is used to represent
complex-valued objects.

2.5. Incorporation of a priori information in image reconstruction

The IMPATIENT package allows the incorporation of a priori
information and constraints into image reconstruction. In addition

to prior information that can be incorporated using the weighted-
least squares regularization penalty of Eq. (6), it is also possible to
use Eq. (6) within the multiplicative half-quadratic optimization
framework [21,8,7] to solvemore general cost functions of the form

f̂ = argmin
f
∥ARf− ỹ∥22 + Φ(f), (12)

where Φ(f) is an appropriate regularization function (e.g., the
popular total variation [29] and ℓ1 normpenalties, ormore compli-
cated penalties that are evenmore tailored to expected image char-
acteristics (e.g. [4,14]). Specifically, multiplicative half-quadratic
approaches solve Eq. (12) for non-quadratic regularization func-
tions by iteratively solving Eq. (6) while updating the diagonal
weight matrixW based on the current estimate of f.

The IMPATIENT package provides two alternative ways to im-
plement the regularization function: (1) Using explicit finite differ-
ence calculations through template shift-and-subtract operations.
(2)Using sparsematrix vectormultiplication to evaluateDHWHWD
operating on a given vector. The first approach is limited to finite-
difference based regularization that imposes spatial smoothness
on the image, but requires no effort in managing sparse matrices.
Although the second approach requires extra effort to optimize
sparse matrix storage and related computations on the GPU, it en-
ables a more general form of regularization. The sparse matrices
used for regularization penalties are stored in compressed row for-
mat [9,3] and are able to be tailored by the user to the penalty that
fits the prior information that they wish to enforce.

2.6. Overall architecture of the IMPATIENT algorithm

Fig. 1 shows a summary of the reconstruction architecture of the
Toeplitz-based strategy in IMPATIENT. The Toeplitz reconstruction
algorithm in IMPATIENT consists of three steps: computing the
data structure Ql, computing the vector FHy, and solving the linear
system for the image iteratively via a conjugate gradient linear
solver. The two selector switches select between direct evaluation
(previous implementation) and gridding (current work) for the
computation of Ql and FHy.

3. Gridding on GPU

Although Toeplitz reconstruction was previously implemented
on GPUs [35], the use of the direct evaluation approach for
calculation of Ql and FHy on GPUs has been impractical for
3D high-resolution data. Despite significant speed-ups over CPU
implementations, the direct matrix–vector evaluation approach
cannot provide the needed reconstruction speed for such large
problems. Alternatively, gridding provides an approximation of
these computationally costly operations. Therefore, the remainder
of this section describes the gridding algorithms for computing FHy
and Ql efficiently on the GPU.

Implementing a gridding algorithm on a GPU can be challeng-
ing. As demonstrated in Fig. 2, CPU gridding algorithms are tra-
ditionally implemented in an input driven approach, where every
sample point contributes to all of the grid points within the neigh-
borhood defined by the gridding kernel width, which results in an
O(M) algorithm instead of an O(N3M) one, where M is the num-
ber of non-Cartesian input sample points and N3 is the number of
image locations, which is proportional to the number of Cartesian
grid output elements. Mapping the input-driven approach naively
onto a GPU’s vector architecture, each k-space point is assigned
to a different parallel processing unit. If all the k-space points are
processed in parallel, inputs attempting to update the same out-
put element may suffer from data races. This results in multiple
processing elements potentially writing to the same output grid
point simultaneously, which will lead to incorrect results in the

6 J. Gai et al. / J. Parallel Distrib. Comput. () –

Fig. 1. Overview of the entire reconstruction pipeline of the Toeplitz-based strategy in IMPATIENT. The Toeplitz strategy implemented in IMPATIENT provides two ways
to compute Ql and FHy. The black solid line is the direct evaluation approach introduced in our previous work [35]. Alternatively, the red dashed line represents the faster
gridding alternative proposed in this paper.

Fig. 2. Parallel implementations of the gridding algorithm on GPU. Left: the output-driven approach is free of write-conflict contention, but has a quadratic computational
complexity; Right: Using compact binning as a data pre-processing step allows the output-driven approach to complete in linear time.

absence of time consuming synchronization. The three input el-
ements highlighted in Fig. 2 (left) may suffer from a data race if
they attempt to update their shared output simultaneously. How-
ever, ensuring this synchronization is costly and can deteriorate
the computing performance, especiallywhen several threads try to
simultaneously update the same element, since atomic operations
causes threads’ updates to be serialized. Several previous methods
have been published which implement gridding on the GPU, in-
cluding [30,34,12]. They rely either on atomic operations to handle
data races or particular data acquisition trajectory structures to al-
low for straightforward combination of multiple points gridded to
the same location, such as for radial trajectories in [30] or for radial
and spiral with a pre-processing distribution plan in [34]. In con-
trast to these methods, and required for our target application, we
develop here a gridding algorithm that handles any non-Cartesian
3D trajectory.

The alternative approach to the commonly used input-driven
algorithm is an output-driven algorithm, where every output is
computed by a single processing thread and all the processing
elements share the input elements in a read-only manner. By
letting each thread compute exclusively the value of an output grid
point, data races are avoided while calculating the contributions
from all the neighboring input k-space sample points. By
privatizing the output among the threads,multiple outputmay end
up reading the same input elements. Since read accesses do not
modify the input elements’ values, no synchronization is needed.
However, in arbitrary 3D k-space sampling patterns, the sample
point locations cannot simply be inferred nor can neighboring

sample points be calculated analytically. Every output element
must check each of the M sample points to determine which fall
within its cutoff before computing their contribution. The result is
an O(MN3) algorithm, despite the amount of useful computation
being only O(N3).

The GPU-accelerated gridding algorithm in IMPATIENT is
adapted from the work of Obeid et al. [24]. It is an optimized,
output-driven algorithm, where every output pixel is computed
by a single thread and the input k-space data is shared among all
the threads. Input binning is used to ensure that the output-driven
gridding algorithm runs in the same O(M) time as the traditional
input-driven approach does on the CPU. This is achieved by sorting
the k-space points into binswith non-uniform capacity and regular
k-space coordinates. Overlapping computations on CPU and GPU
is used to further improve the load imbalance caused by varying
bin sizes. A bin is a container corresponding to a sub-region of
the k-space containing all of the input points that fall within this
space. These containers have known characteristics, such as the
size of the sub-regions they cover and their element capacity, and
this makes them easier to access than individual input elements.
Easy access to input elements is enabled by placing them within
the bins. Instead of each output element having to traverse the
array of all the input elements, it only needs to access the bins
that fall within its kernel width to get to the neighboring input
elements. Fig. 2 (right) depicts the execution of the output-driven
approach with binning. Note that some elements that fall within
a neighboring bin may not themselves be neighbors of the output
element, so it is still necessary to calculate their distance from the

J. Gai et al. / J. Parallel Distrib. Comput. () – 7

Fig. 3. Illustration of regular binning, compact binning and partitioned execution of compact binning based GPU gridding.

output before computing their contribution. In fact binning cannot
completely prevent an output from reading input elements that are
outside of its kernel width, but it can reduce the number of these
occurrences significantly.

3.1. Compact binning based gridding on GPU

One simple way to make all the bins easily accessible is to
make them all identical (equal in capacity). This is referred to as
regular binning in Fig. 3. This bin configuration provides ease of
access to the bin, and better control over coalescing and alignment
of memory accesses. However, in a non-Cartesian acquisition, the
k-space sampling density can vary substantially from region-to-
region in k-space, such as in spiral trajectories where the sample
density is much higher in the center of the trajectory than it is
on the outside. To maintain a uniform size for all the bins, the
incurred large memory requirement from padding renders the
regular binning infeasible.

In this situation, compact binning is necessary to eliminate the
need for padding, see compact binning in Fig. 3. The main idea
behind compact binning is to allow each bin to have its own bin
depth regardless of all the other bins. As a result, the overhead
of memory padding is eliminated, and the size of the bin data
structure becomes only as large as the number of input elements.
The variable bin depth and elimination of padding come at the
expense of more complicated access methods to these bins. Since
the size of each bin is independent of all the other bins, accessing
a bin can no longer be computed as a function of the bin index
and the bin capacity. Therefore, additional overhead is incurred
in trying to determine the starting offset of each bin. The added
overhead stems from the need to pre-compute the starting index
of every bin and store it in an array which will then be used as a
look-up table for accessing the bins during the gridding.

The compact binning algorithm implemented as part of
our GPU-accelerated gridding algorithm consists of four steps:
(1) Determine the size of each input bin. (2) Determine the starting
index of every bin. (3) Binning the input k-space sample points.
(4) Perform the gridding operation by convolving the input points
in the bins with the Kaiser–Bessel kernel.

Step 1: The size of each input bin calculated in this step
will be used to determine the starting index of each bin. The
basic idea is to determine, for each input point, the bin index
it belongs to and to count the total number of input elements
that are all put in the same bin. Determining the bin sizes
can be done either on the CPU sequentially or on the GPU in
parallel. In fact, IMPATIENT implements both versions and uses the
CUDA_NO_SM_11_ATOMIC_INTRINSICS macro to branch between
the two based on the GPU version. The sequential CPU version
is necessary for GPUs with compute capability 1.0, in which
atomic updates of global memory are not supported. The bin size

calculation starts with a zero-initialized integer array of a size
equal to the number of bins, and as each k-space point is visited and
its bin index determined, the integer corresponding to that bin is
incremented by 1. When performed in parallel on GPU, generating
the integer array is simply done using atomic updates into the
array.

Step 2: The operation that determines the start of each bin is
called an exclusive prefix sum [5]. Since each entry in the bin size
array (from Step 1) corresponds to the size of a bin, computing the
starting offset of a bin corresponds to the sum of the sizes of all the
bins that precede it. The prefix sum can be explained as follows. Let
p be an index of some element in an array, the exclusive parallel
prefix operation computes for each i, except i = 0, the sum of all
the elements from index 0 to index i−1. Our GPU implementation
of the parallel prefix sum is a variant of the work by Mark Harris
in GPU Gems 3 [15], with a few optimizations applied to achieve
more efficient memory usage.

Step 3: Using the starting index of every bin recorded in Step
2, Step 3 places each input element in its correct bin. Similar to
Step 1 and 2, this step is also implemented in two ways (namely,
both sequentially and in parallel) to accommodate all GPU series.
In order to perform binning, another zero-initialized integer array
of offsets into each bin is needed to determine the offset within
the bin at which to place a given input element. The offset array is
important because multiple input points may have the same bin
index and we do not want to put them all in the same location
in the bin. For each input element, we determine once again the
bin it belongs to, place it at the current offset within the bin,
then increment the offset. If performed in parallel, binning can
be achieved by atomically incrementing the offset counter, and
the effects of this atomicity are not too severe, since the only
contention is between elements trying to update the same bin, and
all other bins can be populated in parallel.

Step 4: In order to perform the actual parallel gridding on GPU,
the output grid is first divided into tiles, where each tile is a subset
of spatially local output grid points. Each tile is assigned to a thread
block where every thread computes exclusively the result of one
or more output elements from that subset. The spatial locality of
the output in a tile is important to maximize sharing of input data
among threads within the block. Algorithm 2 shows the pseudo-
code for the gridding computation. sharedLocalBin is an array
in shared memory that is accessible by all the threads within a
block. Each thread is shown to compute only one output element
and compute that output’s index based on the 2D blockIdx and
3D threadIdx. Since every thread computes an output element
exclusively, the result can be accumulated on-chip in a local
register.

Every output element is computed by a single thread exclu-
sively, and that thread can compute the value of that element lo-
cally (line 2). Every block iterates over all the bins that its output

8 J. Gai et al. / J. Parallel Distrib. Comput. () –

Algorithm 2: Pseudo-code for parallel gridding operation on GPU with the compact binning.
00 __shared__ inElem sharedLocalBin[/*max size*/];
01 outputIdx index = computeOutputIndex(blockIdx, threadIdx);
02 outElem myOutElem = initOutElem(index);
03 int zLo = z0 - cutoff;
04 int zHi = z0 + blockDim.z + cutoff;
05 // compute yLo, yHi, xLo, xHi similarly
06 for z = [zLo:zHi]{
07 for y = [yLo:yHi]{
08 for x = [xLo:xHi]{
09 int start = binOffsetArray[z][y][x];
10 int end = binOffsetArray[z][y][x+1];
11 if(threadIdx < end-start){
12 sharedLocalBin[threadIdx] = globalBinArray[start+threadIdx];
13 }
14 __syncthreads();
15 for i=[0:end-start]{
16 if(|sharedLocalBin[i].coords - myOutElem.coords| < kernel-width){
17 /*compute the contribution of this input onto the output*/
18 } } } } }
19 globalOutputGrid[index] = myOutElem;

tile intersects: zLo to zHi, yLo and yHi, and xLo to xHi are the 3D
bounds of the region intersected by a given tile. For each bin that
is visited, all of its elements are loaded cooperatively into shared
memory by all the threads in the block. Note that a bin is visited
if at least one of the outputs within the block’s tile intersects that
bin; however, that bin may fall outside the kernel width of other
outputs in the tile. That is why it is still necessary to checkwhether
a given input point is within the kernel width of the output point
before computing its contribution to that output (Line 15). Once all
the bins and all the elementswithin themhave been inspected, and
their contributions added, each thread writes its privately com-
puted output to the global array that is the final result. binOffsetAr-
ray in line 9 and 10 stores the starting offsets of the bins generated
in Step 2 when performing the input binning and is used to deter-
mine how many elements are in a given bin.

Two comments about the efficient use of global and shared
memory are important for our implementation. The first important
implementation detail is that, instead of accessing each bin sepa-
rately as shown in Algorithm 2, an entire range of contiguous bins
is accessed simultaneously in the actual code.More specifically, for
any given z and y bin coordinates, bins xLo through xHi, which oc-
cupy consecutive memory locations, can all be loaded simultane-
ously since compact bins do not contain any padding elements; all
the elements between the start of xLo and xHi are in fact useful to
the computation and all need to be loaded into on chip memory.
For that reason, rather than simply reading the start of each bin
and the one following it to determine the range of a single bin in x,
we can read the start and end indices of the entire range in x once,
and load all the elements within that range into on chip memory.
The benefits of this optimization are three-fold. First, the number
of accesses to the bin offset array is reduced from two accesses per
bin to two accesses amortized over the number of bins within the
range. Second, the access into the bins is more efficient as mem-
ory bursts are better utilized by not breaking bins’ bounds. Finally,
by accessing entire ranges rather than individual bins, the loop for
the x dimension is removed, thereby reducing the overall number
of loops within the kernel.

Another comment concerns the optimal data layout in global
memory. One of the potential drawbacks of compact binning is the
resultingmisalignment of bins inmemory. To fix themisalignment,
the actual implementation lays out the input elements in the
form of arrays of float vector types (float2) since the effect of

misalignment on float2 arrays is less severe than on single float
arrays. This approach involves a reorganization of the bin data
structures from array of structures to structure of arrays. Sung
et al. discuss the benefits of this transformation in their work [36];
however, unlike the strided access pattern they discuss, in our case,
all the elements within the structures are of the float type, we
can have every thread load a single float element from within the
structure to shared memory, thus maintaining a coalesced access
since the stride of the access is one. Since the accesses into the
array of structures are already coalesced, laying out the data in a
structure of array format is not expected to significantly impact
the performance. However, if we laid out the data in a structure
of short vector arrays, we would expect to see better performance
for misaligned accesses.

Finally, to improve load balance, the gridding task is partitioned
evenly between the GPU and CPU. A bin depth is determined that
achieves the optimal balance between CPU and GPU execution,
and all of the elements that exceed this bin depth are offloaded
to the CPU when performing binning. Since kernel execution on
the GPU is asynchronous to the CPU, the optimal bin depth is
defined as that which results in equal execution time on the GPU
and CPU. Fig. 3 compares regular binning, compact binning and the
execution model for the partitioned compact bins.

4. Experimental results and discussions

This work uses the NVIDIA Tesla M2070 GPU as the hardware
target for its advanced MRI reconstruction study. The Tesla M2070
is an example of a Fermi based graphics card, which consists of
448 CUDA cores, with groups of 32 CUDA cores being organized
into 14 Stream Multiprocessors (SM). Running at 1.15 GHz, the
Tesla M2050 GPU coprocessor is rated at 1288 GFLOPS of peak
theoretical performance (single precision).

4.1. Diffusion weighted imaging as an enabled application

High resolution 3D diffusion weighted imaging (DWI) is a
technique that requires significant computational power in order
to reconstruct images. In addition to large image sizes, high
resolution images also typically are acquired using multiple
receiver coils, requiring parallel imaging, and using long readouts,
making field inhomogeneity correction desirable. Additionally,

J. Gai et al. / J. Parallel Distrib. Comput. () – 9

Fig. 4. Percentage of computation time spent in each step. Left: The baseline Toeplitz strategy with the direct evaluations of Ql and FHy; Right: The fast Toeplitz strategy
with Ql and FHy computed via the GPU-accelerated gridding. The total execution times are normalized between 0 and 1 to emphasize the relative time of each step. For
comparison, Step 3 is identical for both methods. The performance benefits from gridding are clearly demonstrated by the reduction of the fraction of the time spent in
Steps 1 and 2.

multi-shot diffusion imaging is subject to errors from subject
motion during diffusion encoding. These motion induced phase
errors result in random shifts of the k-space trajectories and
random offset phase in the data [1,39]. Correcting for these errors
results in k-space trajectories that are shifted for each shot and
are unique to each acquisition. A stack-of-spirals 3D acquisition
would normally allow for separate FFT in the slice direction prior
to 2D processing of each slice. However, with the motion-induced
phase errors in diffusion imaging, each shot of the stack of spirals
acquisition is randomly shifted resulting in a truly 3D trajectory,
requiring a 3D reconstruction. The motion-induced phase errors
are estimatedby collecting navigator data associatedwith each line
of k-space through an additional echo in the acquisition, see [39]
for details on the sequence, navigation, and estimation of k-space
shifts from the navigator.

Normally Ql can be pre-computed because it only depends
on k-space trajectory and image size. However with multi-shot
diffusion imaging, the k-space trajectory is not known prior to
the data acquisition. This causes a need for a new Ql to be
computed for each acquisition of a 3D data set. The performance
of IMPATIENT MRI was tested on five 3D diffusion imaging
datasets with imaging matrix sizes ranging from 32×32×4 to
256×256×32, for benchmarking purposes. The 3D datasets are
multi-shot stack of constant density spirals with matrix size in
the x and y directions increased with an accompanying increase in
the number of spiral interleaves and the z dimension increased by
increasing the number of phase encoding steps. Although the data
would normally be amenable to gridding in-plane and a separate
FFT across the slice direction, due to motion-induced phase errors
in diffusion, the resulting k-space trajectories are truly 3D and
change for each data set. The ability to efficiently calculate Q,
makes IMPATIENT an ideal platform for reconstructing images in
caseswheremany k-space trajectories are possible, such as in DWI.

Additional parallelization of the MRI image reconstruction
problem is possible for data sets, such asDWI, that acquiremultiple
volumes. DWI data sets acquire multiple image volumes and
multiple diffusion directions, all of which must be reconstructed
to visualize the underlying physical process of interest. Access
to computational nodes with multiple GPUs can provide trivial
acceleration over the multiple volumes to be reconstructed.

4.2. Performance measurements and results

To evaluate the performance of our GPU gridding implemen-
tation, we isolate the gridding GPU kernels into a standalone
application and compare execution time with the CPU code imple-
menting the same gridding algorithm. Performancemeasurements
on a Tesla M2070 GPU show that the proposed output-driven grid-
ding GPU implementation achieves a performance of 4.3 GFLOPS in

single floating-point calculation for an image size of 240×240×32.
The achieved speedup is 26.3-fold compared to the same algorithm
implemented on a single CPU core. All kernels, including the two
binning steps, prefix sum and the actual gridding operations, are
considered in the measurement of GFLOPS rate. The amount of
memory on TeslaM2070 (6 GB) limits the grid size to nomore than
256×256×128 in single precision on the GPU. In order to measure
the performance in GFLOPS on a GPU, given a fixed data set, the
number of floating point operations of the CPU code is counted
using the performance counters provided by the Performance API
(PAPI) [6]. Then, the GPU performance (in terms of GFLOPS) is eval-
uated using the obtained counts and the GPU computation time.
The CPU performance of the original CPU code written in C++, im-
plementing the identical gridding algorithm, is measured on a 3.3
GHz Xeon E5520 CPU and calculations are also done in single pre-
cision.

The proposed GPU gridding algorithm was implemented as an
integral part of the Toeplitz reconstruction strategy of IMPATIENT.
Our GPU gridding code provides a fast approximation to the
direct evaluation of Ql and FHy. The performance of the Toeplitz
strategy equipped with GPU gridding was compared with that of
the original Toeplitz implementation using direct evaluation [35].
All reconstructions were performed on the same workstation.
The speed benefit of the new gridding-accelerated Toeplitz
strategy is substantial as demonstrated by typical image sizes in
Figs. 4 and 5. All reconstructions execute 10 conjugate gradient
iterations and use 8 time segments. To emphasize speed over
accuracy, a gridding oversampling factor of 1.4 is chosen for
both Ql and FHy. The gridding kernel width is hard-coded to
4 (measured in Nyquist k-space sampling distances) and the
rest of the gridding parameters are determined based on the
results in [2]. The execution timings are broken down into three
steps. The baseline algorithm for comparison is the basic Toeplitz
strategy, which evaluates Ql and FHy using direct evaluation
of the matrix–vector products [35]. Using a Tesla M2070, five
3D DWI data sets were tested: 256×256×32, 240×240×32,
128×128×16, 64×64×16 and 32×32×4. All data was acquired
with on a Siemens 3 T MRI scanner with 4 receiver coils, using
a custom-designed multi-shot 3D stack-of-spirals DWI sequence,
with 4-shots covering the in-plane encoding and separate shots
for each slice encoding. The sequence includes a second echo for
the navigator acquisition which is a single-shot, low-resolution
stack-of-spirals to allow for estimation of phase errors associated
with each shot of the high-resolution acquisition. The images
were reconstructed with a SENSE reconstruction, although full
data sampling was acquired [26]. Due to random shifts of the k-
space trajectories, some undersampling will occur at random and
the SENSE reconstruction provides a robust reconstruction despite
these random trajectory shifts. All data was acquired on healthy

10 J. Gai et al. / J. Parallel Distrib. Comput. () –

Fig. 5. The execution time and the computational speedup between the two versions of the Toeplitz reconstruction strategy on one Tesla M2070 GPU. In step 1, a reduction
in execution time of 17.5 h (63098.20 to 55.64 s, about 1134× speedup) was obtained for the image size of 256×256×32 with 1574656 input samples per coil. Note that
Step 3 takes the same amount of time across the two versions as they use the same conjugate gradient solver.

(a) Example slice 1. (b) Example slice 2.

Fig. 6. Two pairs of reconstructed images to demonstrate the effect of the field inhomogeneity correction for 3D DWI on GPU. Left: SENSE reconstruction without field
inhomogeneity correction; Right: SENSE reconstruction with field inhomogeneity correction. The blurring artifacts, which is most noticeable around the area pointed to by
the arrows, have been reduced considerably with field inhomogeneity correction.

volunteers in accordancewith the local Institutional Review Board.
All calculations are done in single precision mode.

Cylinder charts in Fig. 4 show the ratio of computing time spent
in each of the three steps during reconstruction of the five data
sets. The length of the cylinder represents the normalized total
execution time. In the baseline Toeplitz strategy with the direct
evaluation (Fig. 4, Left), the time spent on the CG step (Step 3)
is negligible (less than 0.5% for larger data sizes) compared to
the combined time spent on Steps 1 and 2. Furthermore, the
corresponding execution pipeline is highly unbalanced as the
first two steps dominates the pipeline. With the performance
contributed by gridding, the gridding-accelerated Toeplitz strategy
(Fig. 4, Right) becomes much more balanced. The proportional
times spent on Steps 1 and 2 become closer to that spent on
Step 3, making the total runtime almost evenly distributed among
the pipeline. In summary, we observed consistent decreases in
computation time by using gridding, with the maximum speedups
of more than 1134× in Step 1 and 39× in Step 2. An interesting
exception is 32×32×4,where in Step 2we see a slowdown instead
of a speedup. This is likely due to the eight time segments for
the time-segmented gridding approach requiring eight sets of
weighting, convolution, and FFT. The FFTs require synchronization
prior to computation, incurring some time penalty on the GPU.
However, direct calculation of the Toeplitz formulation fits well
with the ideal GPU problem, small amount of data per kernel and
large amounts of computationwithout a required synchronization.
The small sized problem results in a very quick direct evaluation on
theGPU,with no time segmentation and only final synchronization
needed. This shows that the direct evaluation Toeplitz is faster

on small data sizes than the gridding-accelerated Toeplitz. It is
interesting to note that for the CPU, there is less penalty in the
required synchronization for the FFT and there is no capability for
massively parallel calculations in the Toeplitz formulation. So this
tradeoff of problem size and computation time is expected to be
different for GPU than for CPU.

As a comparison of our computational time performance
with a previously implemented gridding reconstruction, we can
examine just the component FHy, which is equivalent to a time-
segmented gridding reconstruction across all coils. In our results,
we see that for a 256×256×32 reconstruction, the time for
gridding was 89.27 s on the GPU. If we divide this number by
the 32 slices, the 4 coils, and the 8 time segments, we get a
value of 0.09 s per 256×256 gridding. However, this gridding
time for our technique includes all of the operations of binning,
coil sensitivity weighting, multiplication of phase maps for the
field inhomogeneity correction, and time interpolation. As a
comparison, in [34], for a 2D spiral with a matrix size of 256×256,
they obtained 0.02 s for gridding with no coil sensitivities or field
inhomogeneity. Additionally, in [34], they used a pre-computed
kernel to determine how to assign incoming data points to
particular GPU kernels to handle the overlapping contributions
from data. In our method, the time to compute the plan is included
in the gridding operation. If gridding of fixed trajectories is desired,
other gridding implementations may bemore efficient where they
can leverage pre-computed data structures. However, for a general
gridding technique, our gridding algorithm performs at a similar
rate without the need for pre-computed plans.

Fig. 6(a) and (b) shows two reconstructed brain images from
a high resolution diffusion imaging scan reconstructed with

J. Gai et al. / J. Parallel Distrib. Comput. () – 11

the IMPATIENT reconstruction utility. It gives the reconstruction
results for the gridding-accelerated Toeplitz strategy using a
240×240×32 matrix size and a full SENSE parallel imaging
reconstruction with and without field inhomogeneity correction.
Notice that the field inhomogeneity correction reduces the
blurring induced by magnetic field inhomogeneities.

5. Conclusion

This paper describes the gridding-accelerated IMPATIENT MRI
reconstruction toolkit which can achieve clinically-feasible 3D,
non-Cartesian, field-inhomogeneity corrected, regularized, itera-
tive image reconstruction from parallel acquisition arrays in MRI.
We have shown that, through the use of gridding on the GPU,
we are able to diminish the computational barrier associated with
non-Cartesian, arbitrary trajectory MRI reconstructions and facili-
tate incorporation of advanced image acquisition and reconstruc-
tion techniques in the clinic. Our toolkit has demonstrated the
feasibility of utilizing GPU compute power to inject computational
intensive algorithms into the advanced MRI reconstruction work-
flowwhilemaintaining clinically-relevant reconstruction times on
the order of minutes. As a proof of concept, we demonstrated
a 3D DWI application enabled by the IMPATIENT MRI package.
The same application, would otherwise take too long for both
clinical and research imaging practitioners, requiring up to 15 h
with a previous GPU-accelerated software platform compared to
5 min with the current IMPATIENT MRI software. The IMPATIENT
MRI software package is available for download at our web site:
http://impact.crhc.illinois.edu/mri.php.

Acknowledgments

The project described was supported by Award Number
R21EB009768 from the National Institute of Biomedical Imaging
and Bioengineering. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the
National Institute of Biomedical Imaging and Bioengineering or the
National Institutes of Health.

References

[1] A.W. Anderson, J.C. Gore, Analysis and correction of motion artifacts in
diffusion weighted imaging, Magn. Reson. Med. 32 (1994) 379–387.

[2] P.J. Beatty, D.G. Nishimura, J.M. Pauly, Rapid gridding reconstruction with a
minimal oversampling ratio, IEEE Trans. Med. Imaging 24 (2005) 799–808.

[3] N. Bell, M. Garland, Efficient sparse matrix–vector multiplication on CUDA,
NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, 2008.

[4] M.J. Black, A. Rangarajan, On the unification of line processes, outlier rejection,
and robust statistics with applications in early vision, Int. J. Comput. Vis. 19
(1996) 57–91.

[5] G.E. Blelloch, Scans as primitive parallel operations, IEEE Trans. Comput. 38
(1989) 1526–1538.

[6] S. Browne, J. Dongarra, N. Garner, K. London, P.Mucci, A portable programming
interface for performance evaluation on modern processors, Int. J. High
Perform C 14 (2000) 189–204.

[7] P. Charbonnier, L. Blanc-Feraud, G. Aubert, M. Barlaud, Deterministic edge-
preserving regularization in computed imaging, IEEE Trans. Image Process. 6
(1997) 298–310.

[8] A.H. Delaney, Y. Bresler, Globally convergent edge-preserving regularized
reconstruction: an application to limited-angle tomography, IEEE Trans. Image
Process. 7 (1998) 204–221.

[9] J. Dongarra, Compressed Row Storage (CRS), 2000. http://netlib.org/utk/
papers/templates/node91.html.

[10] J. Fessler,Model-based image reconstruction forMRI, IEEE Signal Process.Mag.
27 (2010) 81–89.

[11] J.A. Fessler, S. Lee, V.T. Olafsson, H.R. Shi, D.C. Noll, Toeplitz-based iterative im-
age reconstruction for MRI with correction for magnetic field inhomogeneity,
IEEE Trans. Signal Process. 53 (2005) 3393–3402.

[12] A. Gregerson, Implementing fast MRI gridding on GPUs via CUDA, Technical
Report, 2008. NVIDIA Tech. Report on Medical Imaging using CUDA.

[13] J. Haldar, D. Hernando, S.-K. Song, Z.-P. Liang, Anatomically constrained
reconstruction from noisy data, Magn. Reson. Med. 59 (2008) 810–818.

[14] J.P. Haldar, V.J. Wedeen, M. Nezamzadeh, G. Dai, M.W. Weiner, N. Schuff,
Z.-P. Liang, Improved diffusion imaging through SNR-enhancing joint
reconstruction, Magn. Reson. Med. 69 (2013) 277–289.

[15] M. Harris, S. Sengupta, J.D. Owens, Parallel prefix sum (scan) with CUDA,
in: H. Nguyen (Ed.), GPU Gems 3, Addison Wesley, 2007, pp. 851–876.

[16] J.I. Jackson, C.H.Meyer, D.G. Nishimura, A.Macovski, Selection of a convolution
function for Fourier inversion using gridding, IEEE Trans. Med. Imaging 10
(1991) 473–478.

[17] F. Knoll, K. Bredies, T. Pock, R. Stollberger, Second order total generalized
variation (TGV) for MRI, Magn. Reson. Med. 65 (2010) 480–491.

[18] F. Knoll, M. Unger, C. Diwoky, C. Clason, T. Pock, R. Stollberger, Fast reduction
of undersampling artifacts in radial MR angiography with 3D total variation
on graphics hardware, MAGMA 23 (2010) 103–114.

[19] M. Murphy, M. Alley, J. Demmel, K. Keutzer, S. Vasanawala, M. Lustig,
Fast ℓ1-SPIRiT compressed sensing parallel imaging MRI: scalable parallel
implementation and clinically feasible runtime, IEEE Trans. Med. Imaging 31
(2012) 1250–1262.

[20] S. Nam,M. Akcakaya, T. Basha, C. Stehning,W.J. Manning, V. Tarokh, R. Nezafat,
Compressed sensing reconstruction for whole-heart imaging with 3d radial
trajectories: a graphics processing unit implementation, Magn. Reson. Med.
69 (2013) 91–102.

[21] M. Nikolova, M.K. Ng, Analysis of half-quadratic minimization methods for
signal and image recovery, SIAM J. Sci. Comput. 27 (2005) 937–966.

[22] D.C. Noll, C.H. Meyer, J.M. Pauly, D.G. Nishimura, A. Macovksi, A homogeneity
correction method for magnetic resonance imaging with time-varying
gradients, IEEE Trans. Med. Imaging 10 (1991) 629–637.

[23] NVIDIA Corporation, CUDA CUFFT Library, 2011. Version 4.0.
[24] N.M. Obeid, I.C. Atkinson, K.R. Thulborn, W.-M.W. Hwu, GPU-accelerated

gridding for rapid reconstruction of non-Cartesian MRI, in: Proc Intl Soc. for
Magn Reson Med, ISMRM, 2011, p. 2547.

[25] C.C. Paige, M.A. Suanders, Lsqr: an algorithm for sparse linear equations and
sparse least squares, ACM Trans. Math. Software 8 (1982) 43–71.

[26] K.P. Pruessmann, M. Weiger, P. Bornert, P. Boesiger, Advances in sensitivity
encoding with arbitrary k-space trajectories, Magn. Reson. Med. 46 (2001)
638–651.

[27] K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, SENSE: sensitivity
encoding for fast MRI, Magn. Reson. Med. 42 (1999) 952–962.

[28] S. Roujol, B.D. de Senneville, E. Vahala, T.S. Sorensen, C. Moonen, M. Ries,
Online real-time reconstruction of adaptive TSENSEwith commodity CPU/GPU
hardware, Magn. Reson. Med. 62 (2009) 1658–1664.

[29] L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal
algorithms, Physica D 60 (1992) 259–268.

[30] T. Schiwietz, T. chiun Chang, P. Speier, R. Westermann, Mr image reconstruc-
tion using the gpu, in: Proc. SPIE, vol. 6142.

[31] K. Sekihara, M. Kuroda, H. Kohno, Image restoration from non-uniform
magnetic field influence for direct fourier nmr imaging, Phys. Med. Biol. 29
(1982) 15–24.

[32] J.R. Shewchuk, An introduction to the conjugate gradient method without the
agonizing pain, Technical Report, Carnegie Mellon University, Pittsburgh, PA,
USA, 1994.

[33] T.S. Sorensen, D. Atkinson, T. Schaeffter,M.S. Hansen, Real-time reconstruction
of sensitivity encoded radial magnetic resonance imaging using a graphics
processing unit, IEEE Trans. Med. Imaging 28 (2009) 1974–1985.

[34] T.S. Sorensen, T. Schaeffter, K.O. Noe, M.S. Hansen, Accelerating the
nonequispaced fast fourier transform on commodity graphics hardware, IEEE
Trans. Med. Imaging 27 (2008) 538–547.

[35] S.S. Stone, J.P. Haldar, S.C. Tsao, W.-M.W. Hwu, B.P. Sutton, Z.-P. Liang,
Accelerating advanced MRI reconstructions on GPUs, J. Parallel Distrib.
Comput. (2008) 1307–1318.

[36] I.-J. Sung, J.A. Stratton, W.-M.W. Hwu, Data layout transformation exploit-
ing memory-level parallelism in structured grid many-core applications,
in: Proceedings of the 19th International Conference on Parallel Architec-
tures and Compilation Techniques, PACT’10, ACM, New York, NY, USA, 2010,
pp. 513–522.

[37] B.P. Sutton, D.C. Noll, J.A. Fessler, Fast, iterative image reconstruction for MRI
in the presence of field inhomogeneities, IEEE Trans. Med. Imaging 22 (2003)
178–188.

[38] M. Uecker, T. Hohage, K.T. Block, J. Frahm, Image reconstruction by regularized
nonlinear inversion — Joint estimation of coil sensitivities and image content,
Magn. Reson. Med. 60 (2008) 674–682.

[39] A.T. Van, D. Hernando, B.P. Sutton,Motion-induced phase error estimation and
correction in 3D diffusion tensor imaging, IEEE Trans. Med. Imaging (2011)
1933–1940.

[40] F.T.A.W. Wajer, K.P. Pruessmann, Major speedup of reconstruction for
sensitivity encoding with arbitrary trajectories, in: Proc Intl Soc. for Magn
Reson Med, ISMRM, 2001, p. 767.

[41] X.-L. Wu, J. Gai, F. Lam, M. Fu, J.P. Haldar, Y. Zhuo, Z.-P. Liang, W.-M.W. Hwu,
B.P. Sutton, IMPATIENTMRI: Illinois massively parallel acceleration toolkit for
image reconstruction with enhanced throughput in MRI, in: Proc of IEEE Intl
Symp Biomed Imaging, 2011, pp. 69–72.

[42] Y. Zhuo, X.-L. Wu, J.P. Haldar, T. Marin, W.-M. Hwu, Z.-P. Liang, B.P.
Sutton, Using GPUs to accelerate advanced MRI reconstruction with field
inhomogeneity compensation, in: W.-M. Hwu (Ed.), GPU Computing Gems,
Morgan Kaufmann Publishers, 2010.

http://impact.crhc.illinois.edu/mri.php
http://netlib.org/utk/papers/templates/node91.html
http://netlib.org/utk/papers/templates/node91.html
http://netlib.org/utk/papers/templates/node91.html
http://netlib.org/utk/papers/templates/node91.html
http://netlib.org/utk/papers/templates/node91.html
http://netlib.org/utk/papers/templates/node91.html
http://netlib.org/utk/papers/templates/node91.html
http://netlib.org/utk/papers/templates/node91.html

12 J. Gai et al. / J. Parallel Distrib. Comput. () –

Jiading Gai is currently a postdoc researcher in Bioengi-
neering and the Beckman Institute for Advanced Science
and Technology at the University of Illinois at Urbana-
Champaign. Dr. Gai received his B.S. degree in automation
andM.E. degree in pattern recognition from Tsinghua Uni-
versity in 2001 and 2004, andM.S. degree in appliedmath-
ematics and Ph.D. in computer vision from University of
Notre Dame in 2007 and 2010. His research interests fo-
cus on developing GPU scientific computing applications.

Nady Obeid completed a Masters in Computer Engineer-
ing under Prof. Wen-Mei Hwu in Dec 2010. His research
led to the application of a sparse data structure optimiza-
tion to the gridding step in MRI reconstruction. He is
currently a software engineer at KLA-Tencor focusing on
high-performance computing using various architectures
and programming languages.

Joseph L. Holtrop is a Ph.D. candidate in Bioengineering
at the University of Illinois at Urbana-Champaign. He
received his B.S. degree in Electrical and Computer
Engineering from Calvin College in 2009. He received his
M.S. degree in Bioengineering fromUniversity of Illinois in
2012. His research interests include data acquisition and
image reconstruction, with a focus on diffusion weighted
imaging and its applications.

Xiao-Long Wu is a Ph.D. candidate in Electrical and
Computer Engineering and a graduate research assistant
in the IMPACT research group at the University of Illinois
at Urbana-Champaign. He received his B.S. and M.S.
degrees in Computer Science and Engineering in 1999 and
2001, respectively all in Yuan-Ze University, Taiwan. His
research interests involve compiler design for parallelism,
application acceleration, and debugging and performance
tuning for many-core parallelism. His current research
includes the acceleration of magnetic resonance image
reconstruction and the development of DNA sequence

assembly algorithms.

Fan Lam is a Ph.D. candidate in Electrical and Com-
puter Engineering at the University of Illinois at Urbana-
Champaign. He received his B.S. degree in Biomedical
Engineering from Tsinghua University, China, in 2008. He
received his M.S. degree in Electrical and Computer Engi-
neering from University of Illinois, in 2011. His research
interests include data acquisition, image reconstruction,
denoising and parameter estimation for magnetic reso-
nance imaging, with focus on high resolution brain imag-
ing. Fan is also a recipient of Computational Science and
Engineering Fellowship and Beckman Fellowship at Uni-

versity of Illinois.

Maojing Fu is a Ph.D. candidate in electrical and com-
puter engineering at the University of Illinois at Urbana-
Champaign.He receivedhis B.S. degree in electrical science
and engineering fromNanjing University in China in 2010.
He received his M.S. degree in electrical and computer
engineering from the University of Illinois at Urbana-
Champaign in 2012. He is interested in data acquisition,
image reconstruction and physiological modeling meth-
ods for dynamic magnetic resonance imaging.

Justin P. Haldar received his Ph.D. in Electrical and Com-
puter Imaging from the University of Illinois at Urbana-
Champaign in 2011. He is currently an Assistant Professor
in the Ming Hsieh Department of Electrical Engineering at
the University of Southern California. His research inter-
ests include multidimensional signal processing, parame-
ter estimation, experiment design, and inverse problems,
with a primary focus on the development of new data ac-
quisition and signal processing methods for improved and
accelerated magnetic resonance imaging.

Wen-mei W. Hwu is a Professor and holds the Walter
J. (‘‘Jerry’’) Sanders III-Advanced Micro Devices Endowed
Chair in Electrical and Computer Engineering of the
University of Illinois at Urbana-Champaign. His research
interests are in the area of architecture, implementation,
and compilation for parallel computer systems. He directs
the IMPACT research group (www.crhc.uiuc.edu/Impact).
For his contributions, he received the ACM SigArch
Maurice Wilkes Award, the ACM Grace Murray Hopper
Award, and the ISCA Most Influential Paper Award. He
is a fellow of IEEE and ACM. Hwu received his Ph.D. in

Computer Science from the University of California, Berkeley in 1987.

Zhi-Pei Liang received his Ph.D. in Biomedical Engineering
from Case Western Reserve University in 1989. He is
currently Professor of Electrical andComputer Engineering
at the University of Illinois at Urbana-Champaign. He is
also affiliated with the Beckman Institute for Advanced
Science and Technology, the Computational Biophysics
Program, and the Department of Bioengineering. Dr.
Liang’s research interests include magnetic resonance
imaging, superresolution image reconstruction using a
priori constraints, statistical and learning-based methods
for biomedical image analysis, and their application to

functional brain mapping, cancer imaging, and cardiac imaging.

Bradley P. Sutton is currently an Associate Professor in
Bioengineering and the Beckman Institute for Advanced
Science and Technology at the University of Illinois at
Urbana- Champaign. Dr. Sutton received M.S. degrees in
Biomedical and Electrical Engineering (2001) and a Ph.D.
in Biomedical Engineering from theUniversity ofMichigan
in 2003. Dr. Sutton’s research focuses on development of
novel acquisition techniques in structural and functional
brain imaging.

http://www.crhc.uiuc.edu/Impact

	More IMPATIENT: A gridding-accelerated Toeplitz-based strategy for non-Cartesian high-resolution 3D MRI on GPUs
	Introduction
	The Toeplitz strategy with gridding acceleration
	Iterative image reconstruction formulation
	Field inhomogeneity correction via time segmentation
	Computing Ql and FH y : the gridding approach
	Implementation of the conjugate gradient linear solver
	Incorporation of a priori information in image reconstruction
	Overall architecture of the IMPATIENT algorithm

	Gridding on GPU
	Compact binning based gridding on GPU

	Experimental results and discussions
	Diffusion weighted imaging as an enabled application
	Performance measurements and results

	Conclusion
	Acknowledgments
	References

