
CRITICAL ISSUES REGARDING HPS,
A HIGH PERFORMANCE MICROARCHITECTURE

Yale N. Patt, Stephen W. Melvin, Wen-mei Hwu, and

Computer Science Diuiaion
University of Calqornia, Berkeley

Berkeley, CA 94720

ABSTRACT

HPS is a new model for a high performance
microarchitecture which is targeted for implement-
ing very dissimilar ISP architectures. It derives its
performance from executing the operations within
a restricted windopr of a program out-of-order,
asynchronously, and concurrently whenever possi-
ble. Before the model can be reduced to an
effective working implementation of a particular
target architecture, several issues need to be
resolved. This paper discusses these issues, both
in general and in the context of architectures with
specific characteristics.

1. Introduction

HPS is a new microarchitecture targeted for implement-
ing high performance computing engines. Like most other
proposals for high performance, we too recognize that one
must exploit concurrency. Our approach for doing this is a
major variation on the classical fine grain data flow theme.
Our model allows a control flow architecture to be imple-
mented by a data flow oriented microarchitecture. We call
our approach “restricted data flow” because at any one time,
the only data flow nodes present in onr microengine are
those corresponding to a restricted subset of the dynamic
instruction stream. An introduction to this new model of
execution and the rationale for why we believe it has great
potential for high performance microengines is contained in

PI*
The HPS concept is stated, intentionally, in general

terms since we expect it to be a viable microarchitecture for
implementing very dissimilar ISP architectures. The particu-
lar characteristics of a given target architecture will dictate
many of the parameters of an HPS design. This paper
explores many of the tradeoffs that are involved.

The paper is divided into six sections. Each section
deals with a particular part of an HPS design. Section 2
addresses the problems inherent in decoding the instructions
of the control flow ISP architecture into the data flow nodes,

Permission lo copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

including the issue of whether or not a node cache is neces-

Michael C. Shebanow

sary. Section 3 covers the control flow issues, including the
importance of branch prediction. Section 4 describes the
tradeoffs involved in designing the main data path. Section
5 treats memory and I/O. Finally, Section 6 discusses two
issues that are very important to a machine that implements
a sequential instruction stream with a microengine that
allows out of order execution: retirement and repair. We
close the paper with a few concluding remarks.

2. Decoding Issues

Decoding is the process of converting the instruction
stream into nodes for the HPS microengine. The decoder
reads in machine language instructions of the architecture
being implemented and sends data flow nodes into the main
data path. It also must do some additional processing on
the instruction stream that is not directly reflected in the
data flow nodes in order to handle control flow changes.
How much processing it needs to do depends on how control
flow changes are handled, and this will be covered in the
next section. In this section we will be concerned with the
process of converting non-control instructions into data flow
nodes, and related issues.

2.1. Node Cache

The 6rst question is: how much implicit sequentiality is
there in the instruction stream? The more there is, the
harder it will be to decode quickly. By implicit sequentiality,
we mean semantics that assume sequentiality, even when it
is not required by the operation being specified. One exam-
ple is sequential operand evaluation (i.e. the architecture
assumes operands will be evaluated in order, thus any
evaluation with side effects could affect the operands that
follow). Another example is a highly variable instruction
format (which makes determining the location of the next
instruction harder).

We must then figure out how fast the decoding process
can be as a function of how much hardware we put into the
decoder. This speed must be related to how fast we would
like to merge the nodes into the main data path. We will
probably conclude, even for fairly easy to decode instruction
streams, that a node cache is a good idea. This is a cache
that holds instructions after they have been decoded, thus
relieving pressure on the decoding process itself. The size of
the node cache (and therefore the hit ratio) will affect how
fast the decoder has to be in order that the merging process

109
0 1985 ACM 0-89791.172.5/85/0012/0109900.75

doesn’t have to wait for
the decoder and the cost
against each other.

node generation. Thus, the cost of
of the node cache must be balanced

The structure of the cache itself is also an important
issue. The main problem is that a machine level instruction
can potentially map into a variable number of nodes, If the
architecture being implemented is fairly simple, then the
variation will probably not be very great, and a simple cache
scheme with a constant number of node slots per instruction
wou]d be acceptable. Even if the variation is great, this
approach could still be used as long as ma’st instructions gen-
erate a small number of nodes, Then, instructions that gen-
erate more nodes than there are slots w’ould simply not be
caehable. Of course, the time to decode a non-cachable
instruction would have to be weighed againist its frequency
of occurrence.

If the variation in nodes per instruction is great, and a
significant portion of instructions generate many nodes, then
a two table approach might be more practical. One table
would contain instruction entries, each of which would con-
tain the instruction address and a pointer into another table.
This second table would contain the actual nodes. The first
table would have the associative sear& mechanism, while
the second table would be where the actual nodes would be
stored. This scheme has the disadvantage that replacement
is more dificult. The second table could become fragmented,
causing space to be wasted unless some kind of compaction
mechanism is used. Also, the two table approach incurs an
extra level of indirection when nodes are retrieved. The
replacement algorithm is also something to be considered.
LRU would seem to be the most favorable, but in the case of
the two table scheme, a variation that reduces fragmentation
might be better. Also, a cheaper to implement algorithm
might be almost as effective

Another important issues is what to cache. This has to
do with on what the nodes for an instruction depend. If the
nodes depend only on the instruction itself, then everything
is cachable and the nodes can be generated easily. If the
nodes depend on the instruction plus other constants in the
instruction stream, then everything is still eachable, but the
node generation process is a little more difficult. This situa-
tion arises for example in relative addressing modes where
the current PC is added to an o&et, or for instructions that
have literals in the instruction stream. A third situation
arises when the nodes for an instruction depend on the
instruction stream as well as variables not present in the
instruction stream. In this case, some of the nodes may not
be cachable, but it’s not clear that these nodes are definitely
not cachable. For example, consider a CALL instruction
that gets a register save mask from the subprogram being
called. If the destination is static, and if the code is not
self-modifying, then the same CALL will always save the
same registers, so it would probably be acceptable to cache
the nodes that save the registers. There may be cases where
the nodes can definitely not be cached, such as a CALL
instruction where the destination is provided through a regis-
ter, but the cache still might be able to provide useful infor-
mation;

Finally, consider the question of caching a process
identifier along with the nodes. On a multiprogxammed
uniprocessor, it may be desirable to allow the bode cache to
retain its contents between process switches, so each

instruction would have to be associated with a process.
There could’also be a reserved section for system nodes as
opposed to user nodes. (Note that if HPS were implemented
to allow simultaneous execution of multiple instruction
streams, then process identifiers would not only have to be
in the node cache, but attached to each node in the
machine.)

2.2. Predictive Decoding

Another decoding issue haa to do with how we deter-
mine what to fetch from the instruction stream and decode.
If the decoding process is very fast and no node cache exists,
then the decoder will closely follow the merger. There would
not be much of a question of what to decode next. However,
if decoding is slow and the node cache is large, determining
how to predecode intelligently .isn’t as simple. One idea
would be to decode the first few instructions of the side of a
branch that is not taken. This would be especially helpful if
the branch predictor could provide a confidence level, indi-
cating the expected probability of a wrong guess. Then, the
decoder could decide how much to decode down each side of
a branch based on this confidence level. If the- frequency of
control nodes in the program being run is low, then predic-
tive decoding would probably not make much difference, but
if the frequency is high, it could be quite significant.

2.3. Node Generation Optimality

The next decoding issue we will discuss is the optimal-
ity of the node generation process. The more optimally we
generate nodes, the faster the machine will execute au
instruction, but the slower and more extensive the decoder
will be. It may be counter-productive to handle a special
case that reduces the number of nodes by one in every mil-
lion. It might seem that determining the best way to gen-
erate nodes for a particnlar instruction is simple, but con-
sider instructions with complicated operand evaluation. If
the operands within an instruction are to be interpreted
sequentially and they successively modify the same register
(such as for auto-increment), then more than the optimal
number of nodes could be generated if the operands are
decoded independently. The mechanism for coordinating
them could be complicated, however. Another example of
sub-optimality occurs when the value of an operand affects
the nodes generated (e.g. when a literal operand would sim-
plify the nodes generated). This could be important for
instructions that are highly general, but for. which most
instances of them don’t use much of the generality (e.g. if
there are some operands that are literal zeros in the instruc-
tion stream that significantly simplify the instruction).

2.4. Special Cases of Instructions

Another issue is what to do for certain special cases of
instructions. First we will consider the case of instructions
that stall. A stall is defined as that time when the decoder
must wait for the main data path or the memory and I/O
unit until it can proceed. There are two basic types of stalls:
stalls for the next instruction address, and stalls for node
generation. Stalls for the next instruction address are cases
where the point of next execution cannot be determined (or
even predicted) until a node is distributed. These types of
stalls will be discussed more thoroughly in the next section.
Stalls for node generation are cases where the nodes to com-

110

plete an instruction cannot be generated until a node iv
distributed (an example is a CALL instruction that needs to
wait for a register save mask before it can generate the
nodes that save the registers). Most architectures have at
least some instructions that cause the first type of stall, but
the number of instructions that cause the second type of
stall can vary greatly. More complex architectures, that are
characterized by control points inside an instruction are
more likely than simple architectures to have instructions
that cause node generation stalls.

One issue that comes up for handling instructions that
stall is how to handle the cache. If it has been determined
that the instruction should cache all of its nodes, then the
problem is only one of putting the two groups of nodes (i.e.
the nodes generated before the stall, and the nodes generated
after the stall) under the same instruction entry. If the
instruction cannot cache its post-stall nodes, then it could
still cache the pre-stall nodes, but it might be simpler to not
cache the instruction at all. Another issue is the interaction
between the decoder and the rest of the machine. As far as
the decoder is concerned, it must generate a node and wait
until the result gets distributed before it can continue decod-
ing. This probably means that the decoder needs to watch
the distribution bus. But suppose that an instruction
depends on a register, and that register is ready. Then, the
decoder would generate a redundant move node and wait
until it is distributed unless is has access to the registers
directly. The first option generates spurious nodes and the
second option makes the mechanism more complicated.
Another question is should the nodes that the decoder iv
waiting on be given extra priority, and if so, how does this
mechanism work (we will discuss this further in the main
data path section).

Another special case that some architectures may have
is instructions that operate on large blocks of memory (for
example block move, pattern search, etc.). How should the
nodes be generated for instructions such as these? The
decoder could simply generate all of the nodes, but in the
cave of a pattern search, it would have to stall between each
pair of memory nodes. Also, the cache could be wiped out,
so it would be more desirable to not cache these instructions.
A better solution might be to implement the move as a loop,
visible at the machine instruction level, so the branch predic-
tion mechanism could help out on each iteration. If this
were done, then caching the instruction would be a lot
simpler. Alternative ways of handling these instructions will
be covered in the memory and I/O section of the paper.

3. Control Flow Issues

In this section we will discuss the issues related to han-
dling the flow of control in the machine. Recall that there
are no control nodes. The only nodes that are merged into
the data path are data flow nodes. This means that the
decoder must handle the changes in flow of control that are
specified by the machine language. In this section, we will
use the term “branch” to mean any change in the flow of
control of the machine. There are two basic issues here: 1.
what are the conditions of the branch? and 2. can the
destination(s) be determined statically? If the destination
address or addresses are known to the decoder, then it can
make a prediction on the outcome and proceed to decode
more nodes. (Unless we have a many-way branch, for which
the outcomes are uniformly distributed, making the payoff

for predicting overweighed by the cost of backw UP). If,
however, the destination address iv unknown we can only

stall and wait until it becomes known, regardless of the con-
ditions of the branch. (We could, of course, predict a desti-
nation address, and with a history mechanism of some sort
this might be worthwhile, but for many cases, any prediction
at all would just be a stab in the dark.)

Therefore, we can group branches into two categories:
those which we can effectively predict, and those which we
cannot. Exactly what it means to “effectively” predict a
branch is, of course, somewhat nebulous but it would depend
on the quality of the branch prediction algorithm, the cost of
the repair mechanism, av well as the behavior of the program
being run. Examples of instructions that will generally be
predictable are simple two-way branches where the destina-
tion for both sides of the branch are static. Examples of
instructions generally unpredictable are return instructions
which have to pop the top of the stack to determine the
next address, and jump indirect instructions that have to
read the contents of a register or a memory location to
determine the next address. The decision of what to predict
and what to let stall, as well as the characteristics of the
branch prediction algorithm are fairly critical issues. The
objectives are to predict as correctly as possible to minimize
repair and to cover as many cases as possible to minimize
stalls. A version of HPS has been simulated using an auto-
correlation branch predictor that detects patterns in the
behavior of branches, and has been shown to be quite
effective.

Given that a branch has been predicted and the
decoder has gone on to decode more instructions, how does
the confirmation mechanism work? One alternative is to put
the mechanism in the decoder. Then, the decoder would
associate a particular node with the branch condition SO that
when that node gets distributed, the branch can be verified.
In the case of branches on condition codes, the node iv vim-
ply the last node which generated the particular condition
code. This mea& that the decoder probably needs access to
the condition code alias table. For more complicated
branches, where the condition must be computed, the node
that does the computation will be the one that the branch
predictor watches for.

Another scheme would be to have branch nodes that
are merged into the main data path just as any other node,
and to have a branch function unit that executes the branch
nodes. The branch nodes would take their inputs from the
nodes that the decoder was waiting for in the previous
scheme. With either method, when a branch prediction error
is detected, t-he decoder, the predictor, and the main data
path must be notified. Some sort of mechanism is necessary
to associate instances of branches to node indexes used by
the main data path so that the correct repair point is
referred to. The main data path must back up the node
tables and the decoder must redirect its decoding (the repair
mechanism will be discussed more fully in section 8).

4. Main Data Path Iasue~

The main data path is that portion of the machine that
contains the active nodes and the function units that are
executing them (except for memory and I/O nodes). The
node tables hold the active nodes, and the three processes
associated with the main data path are merging, scheduling

Ill

and distribution. First we will talk about the structure of
the node tables and then we will talk about each of the
above processes.

4.1. Node table structure

One of the main ideas of HPS is that more than one
node can become active on each cycle, and more than one
node can be executed on each cycle. A logical way to
achieve this throughput is to partition the node tables. If
there is only one node table, then the bandwidth required
would be enormous. If there are several node tables, then a
single node can be merged into each node table on each
cycle, and we will still have several nodes merged per cycle.
The main question that arises is how to divide up the node
tables with regard to the function units. A straightforward
way is to divide the node tables by the function being per-
formed. So, for example, there would be a fixed point node
table, a floating point node table, a memory node table, etc.
Then, a particular node could only be merged into one par-
ticular node table. There are also other possible ways to
partition the node table. There could be several node tables
that serve the same type of function unit, or the node tables
could overlap only partially in functionality. This would
mean that a particular node could be merged into more than
one node table, making the merging process more compli-
cated. This partitioning of the node tables gives rise to what
we call the “multinodeword”. A multinodeword is a group
of nodes that are all merged together, each part of it going
to a different node table.

Another issue relating to the node tables is whether or
not the node values are stored in the node table, or in a
separate structure. Each node in the the node table must by
necessity bold the tags and the ready bits for the nodes that
it depends on, but it doesn’t have to contain the actual
values. A possible organization would be to separate the
values from the node table in a “value buffer”. Then, nodes
would get their operands from the value buffer and their
results would go back into the value buffer. The advantage
of this scheme is that it makes the node tables smaller, and
since they must have associative memories, this could be
important. The main disadvantage is that when a node is
determined to be ready and it is read from the node table,
the tags must then index into the value buffer to get the
values. This gives an extra level of indirection, which could
slow the machine down.

4.2. Merging

Merging is the process of taking nodes from the decoder
and installing them into the node tables. The amount of
processing that the merger must do on the nodes depends on
several things. One is the question of how the nodes are
grouped into multinodewords. If the cache stores nodes in a
free format, then the merger must group them into mul-
tinodewords before they go into the node tables. This has
the disadvantage of putting a lot of pressure on the merger.
Alternatively, the nodes could be grouped together between
the decoder and the cache, or within the decoder itself. Hav-
ing the decoder generate the uodes already in multinodeword
format might not be practical for complicated architectures.
It might be better to have the decoder generate the nodes
and then have a post-processor put them into multinode-
words. Another option, if the architecture being imple-
mented involves direct execution of nodes, is to have the

nodes grouped together by the complier before they .ever
reach the decoder. This would relieve the most pressure

from the hardware.

Auother merging issue is the handling of the register
alias table (or RAT). Recall that the RAT is the table that
stores t,be node tags that are forwarded in order to remove
false dependencies as in the Tomasulo algoritbm[2]. Since
there are potentially several read/write accesses per mul-
tinodeword (each node could read from two entries and cause
a write to one), the RAT must be a multiported memory.
The complication could be reduced if restrictions were placed
on how register reads and writes could be used in multinode-
words, but this could slow down the machine. This brings
up the more important issue of the interpretation of two
nodes within the same multinodeword, and two nodes within
the same instruction that have register conflicts. If the RAT
is updated for register writes between each multinodeword,
then a node that writes into a register and a node that reads
from the same register could be placed in any order within a
multinodeword, but not within an instruction. If, alterna-
tively, the RAT is only updated for register writes in
between each instruction, then these two nodes could be
placed in any order within the instruction. This would allow
more complicated instructions to be implemented simpler
(e.g. swap could be done with two nodes instead of three).
The disadvantage of this scheme is that it makes the RAT
more complicated.

Another issue is the mechanism for sending literals into
the data path. A literal present in the instruction stream
that is needed for computation nodes must somehow be
entered into the data path. If the operand values are stored
with the nodes in the node table, then the merger could sim-
ply insert the literals in the onerand fields of the nodes
before they are merged. This requires that the literals be
known before the nodes that use them are merged. Also, a
literal wouldn’t need to have a tag associated with it, since it
is never distributed. Another alternative would be to associ-
ate tags with literals and then distribute them normally and
let every node that needs them grab them. Note that the
literal could then be distributed at any point in the instruc-
tion and the scratch pad alias table would handle things.
This scheme requires the merger to have source access to the
distribution bus, which might complicate things significantly.

4.3. Scheduling

Abstractly, scheduling is the process of determining
which nodes are ready, selecting a subset of them to be exe-
cuted and sending them to the function units. The simplest
and easiest to understand algorithm is oldest node first.
Since the nodes must by necessity be merged into the node
tables in the order that they were decoded, it should be
fairly simple to select the oldest node and send, it to the
function unit to be executed. This is not necessarily the
optimal algorithm, of course, but it probably performs close
enough, and at a cost far below a more complicated algo-
rithm, to be a win. Also, there are other factors besides
optimality that must be considered. For one thing, we don’t
want old nodes banging around in the machine too long
because then we can’t retire instructions soon enough.
Another thing is that the oldest nodes have the lowest pro-
bability of having to be undone because of a branch predic-
tion miss or an exception. Actual simulations will probably
be the only way to really settle the scheduling algorithm

112

question, and of course it could vary significantly from one
architecture to another.

An issue that was raised in the decoding section of the
paper was the question of giving certain nodes high priority.
It would seem that if the decoding process is waiting for a
node before it can continue, that node should be given
higher priority. But should it be given the highest priority?
And what about nodes that confirm branch predictions,
should they be given high priority also? It would seem that
since confirming branches and minimizing stalls are fairly
important to the overall speed of the machine, some sort of
priority scheme should be devised, but it is not clear how it
should work.

4.4. Distribution

Distribution is the process of sending the computed
results back to the node tables as tag-value pairs so that the
ready bits can be updated and the values can be stored for
subsequent use. There are many function units and each
function unit could in general be sending its result to any
node table. So, the most general distribution scheme is to
have one bus for each function unit and to have each bus go
to every node table. The mechanism could get expensive
since we need to handle the case where every function unit
wants to update every node table. If there is a value buffer,
then the problem gets a little bit better because then only
the tags need to go to every node table. The values would
go to the value buffer, which can be partitioned to allow
multiple writes. If some restrictions were placed on the
nodes, such as where they could take their inputs from, then
perhaps the distribution could be made easier but this is at
the cost of requiring more nodes in some cases. We really
haven’t developed an effective alternative mechanism to total
distribution, but it is clear that this may be one of the major

bottlenecks of the machine.

6. Memory and I/O IBSU~S

The memory and I/O unit is that portion of the
machine that holds all the nodes that access memory and
I/O devices, and interacts with the memory and I/O systems
of the machine. First we will discuss a couple of fundamen-
tal problems that this unit must cope with and then some
overall issues. In this section, we will use the terms
“memory system” and “I/O system” to refer to those parts
of the machine concerning memory and I/O operations
respectively that are not part of the memory and I/O unit
(e.g. the data cache, the translation mechanism, main
memory, etc., and the I/O devices, I/O control register, etc.
respectively).

5.1. The Unknown Address Problem

One of the main ideas in HPS is to allow out of order
execution of nodes but to preserve the sequential semantics
of the instruction stream. This means that the result of exe-
cuting memory reads and writes must be the same as if all
nodes were executed in the order that they were merged. If
the addresses that the memory operations use are static (i.e.
they are all known to the decoder) the problem of resolving
dependencies is quite simple. It would just involve compar-
ing the addresses and determining which memory operations
conflict. Memory operations to the same address could be
resolved in the same way that arithmetic operations to the

same register are. Furthermore, this would all be known
when the nodes were merged. However, if the addresses of
the memory operations are determined dynamically (i.e. they
cannot be determined by the decoder) then the problem
becomes more complicated. This would be the case for many
memory nodes, for example indirect and indexed accesses.
The dependencies between the memory operations would
have to be determined as the information becomes available.

Consider only simple memory read and memory write
nodes with the following definitions: each read node has one
input (the address) and one output (the data) while each
write node has two inputs (the address and the data) and no
outputs. The inputs to each node may be known or unk-
nown and an unknown input may become known at any
time. Each read node can therefore be in one of two states:
address known (AK) and address unknown (AU). Similarly,
each write node can be in any one of four states: address
known - data known (AKDK), address known - data unk-
nown (AKDU), address unknown - data known (AUDK) and
address unknown - data unknown (AUDU). We will call
nodes in the AK and AKDK states “ready” meaning that
they are ready to be executed baring dependencies on other
nodes. So, the question becomes: under what circumstances
can a ready node become executable?

An executable node is one which can be “executed”, or
sent to the memory system to be performed. In the case of
reads, this simply means that a request is sent to the
memory system. In the case of writes, execution means that
the write buffer is updated, but the operation is not actually
sent to the memory system until the instruction retires. The
simplest and lowest performing approach would be to exc-
cute the nodes in the order that they were merged. On the
other extreme would be a method which detects every
dependency in everv oossible circumstance and executes
nodes as soon as possible. We will now present the optimal
conditions under which a node can be executed (i.e. the least
constraining dependency resolution possible). As we will see
later, however, it may be desirable to make more restrictive
conditions in order to make the implementation more practi-
cal.

It only makes sense to discuss the conditions for execut-
ing ready nodes since other nodes couldn’t possibly be exe-
cuted and it is also the case that only the read nodes need to
be considered, since a write node can be “executed” as soon
as it becomes ready. So, we are left with the question of
when a ready read is executable and the answer can be
expressed algorithmically as follows:

And the youngest active write node that is older than the
read node:

if it’s an AKDU or AKDK with a different address,
flnd the next oldest mlte node and repeat this

St+P
if it’s an AKDK with the same address,

stop - the node IS executable and this AKDK
has the data

if it’s an AKDU with the same address,
stop -- the node IS NOT executable, but It ls only
waiting for the AKDU to become an AKDK

if it’s an AUDK or AUDU,
stop -- the node IS NOT executable

if there are no (more) active writes,
the node IS executable.

113

Now we will discuss two impIement.ations of the
memory data Path. The 5rst one is a fairly straightforward
approach that is easy to implement but isn’t fully optimal

(i.e. it may hold back a node in certain circumstances that
could actually be executed). The seco:nd method achieves
full optimality but is more expensive to implement. These
are only two initial approaches to the memory unit imple-
mentation, and should serve to illustrate some of the issues.

The first scheme is a basic extension of the register
dependency resolution algorithm used in the merger. If the
memory is considered to be a very large register set, the
extension is clear. The memory alias table (or MAT) is
analogous to the register alias table. It must be associative
on the memory address, since there can’t be an entry for
every memory location, but its function is the same. The
only complication is that the MAT will only contain the
proper information for a particular read node if there are no
AUDK’s or AUDU’s that are older. This is handled by the
memory node table. It holds nodes until they can be
released to update the MAT in the case of writes, or access
the MAT in the case of reads.

The second scheme is a more complicated one but
achieves fully optimal dependency resolution. It is too com-
plicated to go into in tub detail here, but the basic idea is to
incorporate both the MAT and the memory write buffer into
a single structure. A dependency matrix is created that
relates each operation to every other operation. Each read
node starts out with a mask register, representing a row in
the dependency matrix. As addresses become known, bits
are cleared in the mask until either all bits have been cleared
or a single one remains and that one corresponds to a known
address and a known data value. At this point the read can
be executed. There would be a high level of intercommuni-
cation necessary between different parts of the memory unit
with such a scheme, but this may be practical to implement,
depending on the size of the node table, etc.

6.2. The Partial Dependency Problem
The above discussion about resolving the dependencies

between memory nodes has assumed that there are no par-
tial dependencies, but in most architectures, they can occur.
A partial dependency is defined as a dependency between
two nodes when there is not a total overlap between the
pieces of memory that each node refers to. This can occur
for two reasons: memory nodes are allowed to refer to
different sized pieces of memory, and memory accesses are
not aligned to the size of the memory piece. In many archi-
tectures, both of these are allowed to happen, and most
architectures allow at least one, so this is a problem that is
likely to be important. There are two aspects to this prob-
lem: how t,o resolve the dependencies and determine which
nodes are executable, and how to actually execute the nodes
(since a node could potentially need to get its value from
more than one place). These two aspects are interrelated,
and in general the solution to how the nodes are executed
will have a large in5uence on how the dependencies are
resolved.

One approach might be to have the decoder remove all
partial dependencies by aligning all memory operations and
forcing them to be all be the same size. This has the disad-
vantage that the decoder must know what the addresses of
every memory operation are before the nodes are created.

Although this would make the memory unit a lot less com-
plicated, it would probably slow down the machine
significantlv.

Given that the problem is not solved by the decoder,
one issue is where in the machine partial dependencies are
pieced together. If the memory unit is sufficiently compli-
cated, it could forward data on a piecewise basis. Note that
a node could potentially need parts of its value from several
other nodes and from the memory system. The means that
the memory unit would have to issue the memory operations
to retrieve the needed parts and when they arrive it would
have to assemble the data and distribute it. This type of
scheme would necessitate a very complicated dependency
resolution mechanism.

Another possibility would be to have the memory sys-
tem deal with the assembly of these nodes. This would only
work if all the nodes that another node is partially depen-
dent on have been issued to the memory system (i.e. the
associated instruction has been retired). This scheme would
allow the dependency resolution mechanism to be a little bit
simpler, since it would only be necessary to detect a conftict,
not to determine the extent to which it overlaps. A disad-
vantage of this scheme is that it doesn’t result in optimal
node execution. A node could be held up even if its data is
ready because a node that it depends on hasn’t been retired.
The penalty for such sub-optimality must be weighed
against the frequency of occurrence and the cost of imple-
menting a more optimal scheme. And, these factors are very
dependent on the architecture being implemented and even
the application of the architecture. In general, the partial
dependency problem is quite complicated and its solution
involves many tradeofls. These have only been touched on
here, but it should be clear that there are many possibilities
that have yet to be fully explored.

5.3. I/O Issuea

The handling. of I/O operations brings up some interest-
ing issues. We have been assuming above that there are no
problems with executing memory reads out of order. We
have a model of what memory reads and writes do, and we
have used this model to improve the speed of the machine.
In the case of l/O operations, this model needs to be re-
examined. It is probably the case that l/O reads (as well as
writes) must be executed in the same order that they would
be if the instruction stream were executed sequentially. This
means that the same methods that are applied to memory
nodes cannot be applied to l/O nodes.

If l/O operations have their own opcodes, then the
problem can be handled relatively easily. The decoder would
simply generate l/O nodes that would be recognized by the
memory and l/O unit as such. These nodes would be held
until the instruction retires in the same way that memory
write nodes have to be held. A slight problem arises if an
instruction reads from I/O and sends the result to memory.
Deadlock could result if the l/O read is waiting for the
memory write to execute. The solution is to execute l/O
nodes under the condition that all main data path nodes
have executed and to execute memory writes under the con-
dition that all other nodes have executed (this will be
covered in more detail in section 6).

The problem becomes much harder if the l/O is
memory mapped. If l/O addresses are easily recognizable,
then the memory and l/O unit could determine the type of

114

node when the address is determined and treat each type

separately. However, if the addresses are not easily djstin-

guishable, this won’t work. This case arises in virtual

memory machines even if the physical addresses can be
easily recognized. However, at some point an access must be
resolved into memory or I/O, so we could have the system
that first determines this report back to the memory and
I/O unit if the access is to an I/O device. The memory and
I/O unit could then handle it as appropriate. This requires
the memory and I/O systems to be more complicated, but in
the absence of an architecturally constrained definition of an
I/O operation, it is about the only solution (other than exe-
cuting all memory and I/O nodes sequentially).

5.4. Other Memory and I/O Issues

Another issue for the Memory and I/O unit that was
alluded to earlier is the question of how to handle instruc-
tions that operate on large blocks of memory. Some archi-
tectures don’t have these instructions, but they are worth
investigating for those that do. The simplest example of
such an instruction is one that moves a block of memory
from one location to another. At some level, an instruction
like this must be broken down into a series of reads and
writes. This could occur at the decoding level (the decoder
generates the sequence of nodes), at the merging level (the
decoder generates a loop, which is turned into a sequence of
nodes before merging), at the memory unit level (the
memory unit gets a single node which is turned into a
sequence of reads and/or writes to the memory system) or at
the memory system level (the memory unit issues a single
command to the memory system which then performs the
function on its own. There are tradeoffs for placing it at
each level, but one thing to consider is that if the instruction
involves more than just a block move (for example a pattern
search) then placing it closer to the memory system gets

more complicated.

6. General Issues

6.1. Repair

Repair is the backing up of the machine to a previous
point and it is done when nodes have been merged that
shouldn’t be executed. This previous point can be before
any instruction that has not been retired. The amount of
hardware that is devoted to repair (and thus the speed that
it can take place) will be dictated by the frequency that it is
necessary, and this is very dependent on the architecture.
Repair is necessary for three reasons: a branch prediction
miss, an exception, and an interrupt. It will probably be the
case that branch prediction misses are much more common
than either of the other two causes, so we may be able to
take advantage of this. Branches don’t occur every instruc-
tion, so while we must be able to back up between any two
instructions in the active window, it only may need to be
fast to back up to the instruction before a branch.

Consider what has to be done to complete a repair
operation. First of all, the node tables have to be backed
up. This involves invalidating all nodes merged after the
violation point. Since the nodes are stored in the order that
they were merged, this can be accomplished fairly simply.
However, it does mean that we need to keep node table

indexes for each instruction. The register write buffer and
memory write buffer also need to be backed up. This could
be handled analogous to the node tables since they are
ordered by instruction.

The RAT and MAT must also be restored, and this is a
bit more complicated. In order to restore the alias tables
quickly at any instruction boundary in the instruction win-
dow, a lot of back up copies may be required. An alterna-
tive would be to only store alias table copies for the pending
branch predictions. Then, we could just let the node tables
drain for exceptions and interrupts and wait for the alias
tables to clear. A disadvantage of this scheme is that it may
limit us as to how many branch predictions may be pending
at a time.

8.2. Retirement

Another general issues is that of how retirement is han-
dled. The first question is how you know that an instruction
is done and can be retired. Since nodes are stored in merge
order, we really just need to know the oldest unexecuted
node for each node table. This information, along with
information about each instruction will tell us if the oldest
instruction in the window is ready for retirement. It’s not
clear how this information should be collected and sent to
the appropriate place, however. There probably needs to be
a retirement control unit, that coordinates all the informa-
tion.

Several things must get done when an instruction
retires, and exactly how to handle these is also an important
question. The register write buffer and the memory write
buffer hold information that must be processed when an
instruction retires. Th e processing of the memory write
buffer consists of sending the writes to the memory system.
An interesting question is how to handle the case that these
writes are not completable. If a write causes some sort of

exception, then we can’t have destroyed anything that we
need to repair. It even becomes more involved if we include
I/O operations. As we discussed above, it may be necessary
to execute I/O reads before memory writes, but after every
other node has executed. Therefore, an I/O operation caus-
ing an exception also must be considered. It would seem
that the machine needs a state after all CPU nodes have
executed, but before I/O operations have executed and
another state after I/O operations have executed but before
memory writes have executed. Only after memory writes
have executed is the instruction really “retired”. (This last
state might be able to be eliminated if we can guarantee that
writes can be completed before they are issued.)

7. Conclusion

We have investigated some of the major issues that
arise in designing an HPS implementation for a particular
architecture. There are still many open questions about how
to handle certain problems, which should not be unexpected
since HPS is still in the early stages. But this paper should
give the reader an indication of where the major questions lie
and how they could be approached.

8. Acknowledgement

The authors wish to acknowledge first the Digital
Equipment Corporation for their very generous support of

115

ou:r research in a number of ways: Bill Kania, formerly with
Digital’s Laboratory Data Products Group, for providing
major capital equipment graats that have greatly supported
our ability to do research; Digital’s External Research
Grants Program, also for providing major capital equipment

to enhance our ability to do research; and Fernando Colon
Oaorio, head of Advanced Development with Digital’s High
Performance Systems/Clusters Group, for providing funding
of part of this ,work and first-rate technical interaction with
his group on the tough problems. P.art of this work was
sponsored by Defense Advanced Rese:arch Projects Agency
(DOD) , Arpa Order No. 4871, :and monitored by Naval Elec-
tronic System Command under Contract No. N0003%84-C-
0089. We also acknowledge the other members of the HPS
group, Chien Chen and Jia-juin Wei, for their contributions
to the HPS model as well as to this paper. Finally, we wish
to acknowledge our colleagues in the Aquarius Research

Group at Berkeley, Al Despain, presiding, for the stimulating
interaction which characterizes our daily activity at Berke-
ley.

REFERENCES

11) Patt, Yale N., Hwu, Wen-mei, and Shebanow, Michael C.,
“HPS, a New Microarchitecture: Rationale and Introduction,” The
18th lnlernotionol Microprogramming Workshop, Asilomsr, CA,
December 1883.

121 Tomasulo, R. M., “An Efficient Algorithm for Exploiting Multi-
ple Arithmetic Units,” IBM Journal of Rceearch and Developmenf,
vol. 11, 1967, pp, 25-33.

116

