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ABSTRACT 

HPS is a new model for a high performance 
microarchitecture which is targeted for implement- 
ing very dissimilar ISP architectures. It derives its 
performance from executing the operations within 
a restricted windopr of a program out-of-order, 
asynchronously, and concurrently whenever possi- 
ble. Before the model can be reduced to an 
effective working implementation of a particular 
target architecture, several issues need to be 
resolved. This paper discusses these issues, both 
in general and in the context of architectures with 
specific characteristics. 

1. Introduction 

HPS is a new microarchitecture targeted for implement- 
ing high performance computing engines. Like most other 
proposals for high performance, we too recognize that one 
must exploit concurrency. Our approach for doing this is a 
major variation on the classical fine grain data flow theme. 
Our model allows a control flow architecture to be imple- 
mented by a data flow oriented microarchitecture. We call 
our approach “restricted data flow” because at any one time, 
the only data flow nodes present in onr microengine are 
those corresponding to a restricted subset of the dynamic 
instruction stream. An introduction to this new model of 
execution and the rationale for why we believe it has great 
potential for high performance microengines is contained in 

PI* 
The HPS concept is stated, intentionally, in general 

terms since we expect it to be a viable microarchitecture for 
implementing very dissimilar ISP architectures. The particu- 
lar characteristics of a given target architecture will dictate 
many of the parameters of an HPS design. This paper 
explores many of the tradeoffs that are involved. 

The paper is divided into six sections. Each section 
deals with a particular part of an HPS design. Section 2 
addresses the problems inherent in decoding the instructions 
of the control flow ISP architecture into the data flow nodes, 
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including the issue of whether or not a node cache is neces- 
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sary. Section 3 covers the control flow issues, including the 
importance of branch prediction. Section 4 describes the 
tradeoffs involved in designing the main data path. Section 
5 treats memory and I/O. Finally, Section 6 discusses two 
issues that are very important to a machine that implements 
a sequential instruction stream with a microengine that 
allows out of order execution: retirement and repair. We 
close the paper with a few concluding remarks. 

2. Decoding Issues 

Decoding is the process of converting the instruction 
stream into nodes for the HPS microengine. The decoder 
reads in machine language instructions of the architecture 
being implemented and sends data flow nodes into the main 
data path. It also must do some additional processing on 
the instruction stream that is not directly reflected in the 
data flow nodes in order to handle control flow changes. 
How much processing it needs to do depends on how control 
flow changes are handled, and this will be covered in the 
next section. In this section we will be concerned with the 
process of converting non-control instructions into data flow 
nodes, and related issues. 

2.1. Node Cache 

The 6rst question is: how much implicit sequentiality is 
there in the instruction stream? The more there is, the 
harder it will be to decode quickly. By implicit sequentiality, 
we mean semantics that assume sequentiality, even when it 
is not required by the operation being specified. One exam- 
ple is sequential operand evaluation (i.e. the architecture 
assumes operands will be evaluated in order, thus any 
evaluation with side effects could affect the operands that 
follow). Another example is a highly variable instruction 
format (which makes determining the location of the next 
instruction harder). 

We must then figure out how fast the decoding process 
can be as a function of how much hardware we put into the 
decoder. This speed must be related to how fast we would 
like to merge the nodes into the main data path. We will 
probably conclude, even for fairly easy to decode instruction 
streams, that a node cache is a good idea. This is a cache 
that holds instructions after they have been decoded, thus 
relieving pressure on the decoding process itself. The size of 
the node cache (and therefore the hit ratio) will affect how 
fast the decoder has to be in order that the merging process 
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doesn’t have to wait for 
the decoder and the cost 
against each other. 

node generation. Thus, the cost of 
of the node cache must be balanced 

The structure of the cache itself is also an important 
issue. The main problem is that a machine level instruction 
can potentially map into a variable number of nodes, If the 
architecture being implemented is fairly simple, then the 
variation will probably not be very great, and a simple cache 
scheme with a constant number of node slots per instruction 
wou]d be acceptable. Even if the variation is great, this 
approach could still be used as long as ma’st instructions gen- 
erate a small number of nodes, Then, instructions that gen- 
erate more nodes than there are slots w’ould simply not be 
caehable. Of course, the time to decode a non-cachable 
instruction would have to be weighed againist its frequency 
of occurrence. 

If the variation in nodes per instruction is great, and a 
significant portion of instructions generate many nodes, then 
a two table approach might be more practical. One table 
would contain instruction entries, each of which would con- 
tain the instruction address and a pointer into another table. 
This second table would contain the actual nodes. The first 
table would have the associative sear& mechanism, while 
the second table would be where the actual nodes would be 
stored. This scheme has the disadvantage that replacement 
is more dificult. The second table could become fragmented, 
causing space to be wasted unless some kind of compaction 
mechanism is used. Also, the two table approach incurs an 
extra level of indirection when nodes are retrieved. The 
replacement algorithm is also something to be considered. 
LRU would seem to be the most favorable, but in the case of 
the two table scheme, a variation that reduces fragmentation 
might be better. Also, a cheaper to implement algorithm 
might be almost as effective 

Another important issues is what to cache. This has to 
do with on what the nodes for an instruction depend. If the 
nodes depend only on the instruction itself, then everything 
is cachable and the nodes can be generated easily. If the 
nodes depend on the instruction plus other constants in the 
instruction stream, then everything is still eachable, but the 
node generation process is a little more difficult. This situa- 
tion arises for example in relative addressing modes where 
the current PC is added to an o&et, or for instructions that 
have literals in the instruction stream. A third situation 
arises when the nodes for an instruction depend on the 
instruction stream as well as variables not present in the 
instruction stream. In this case, some of the nodes may not 
be cachable, but it’s not clear that these nodes are definitely 
not cachable. For example, consider a CALL instruction 
that gets a register save mask from the subprogram being 
called. If the destination is static, and if the code is not 
self-modifying, then the same CALL will always save the 
same registers, so it would probably be acceptable to cache 
the nodes that save the registers. There may be cases where 
the nodes can definitely not be cached, such as a CALL 
instruction where the destination is provided through a regis- 
ter, but the cache still might be able to provide useful infor- 
mation; 

Finally, consider the question of caching a process 
identifier along with the nodes. On a multiprogxammed 
uniprocessor, it may be desirable to allow the bode cache to 
retain its contents between process switches, so each 

instruction would have to be associated with a process. 
There could’also be a reserved section for system nodes as 
opposed to user nodes. (Note that if HPS were implemented 
to allow simultaneous execution of multiple instruction 
streams, then process identifiers would not only have to be 
in the node cache, but attached to each node in the 
machine.) 

2.2. Predictive Decoding 

Another decoding issue haa to do with how we deter- 
mine what to fetch from the instruction stream and decode. 
If the decoding process is very fast and no node cache exists, 
then the decoder will closely follow the merger. There would 
not be much of a question of what to decode next. However, 
if decoding is slow and the node cache is large, determining 
how to predecode intelligently .isn’t as simple. One idea 
would be to decode the first few instructions of the side of a 
branch that is not taken. This would be especially helpful if 
the branch predictor could provide a confidence level, indi- 
cating the expected probability of a wrong guess. Then, the 
decoder could decide how much to decode down each side of 
a branch based on this confidence level. If the- frequency of 
control nodes in the program being run is low, then predic- 
tive decoding would probably not make much difference, but 
if the frequency is high, it could be quite significant. 

2.3. Node Generation Optimality 

The next decoding issue we will discuss is the optimal- 
ity of the node generation process. The more optimally we 
generate nodes, the faster the machine will execute au 
instruction, but the slower and more extensive the decoder 
will be. It may be counter-productive to handle a special 
case that reduces the number of nodes by one in every mil- 
lion. It might seem that determining the best way to gen- 
erate nodes for a particnlar instruction is simple, but con- 
sider instructions with complicated operand evaluation. If 
the operands within an instruction are to be interpreted 
sequentially and they successively modify the same register 
(such as for auto-increment), then more than the optimal 
number of nodes could be generated if the operands are 
decoded independently. The mechanism for coordinating 
them could be complicated, however. Another example of 
sub-optimality occurs when the value of an operand affects 
the nodes generated (e.g. when a literal operand would sim- 
plify the nodes generated). This could be important for 
instructions that are highly general, but for. which most 
instances of them don’t use much of the generality (e.g. if 
there are some operands that are literal zeros in the instruc- 
tion stream that significantly simplify the instruction). 

2.4. Special Cases of Instructions 

Another issue is what to do for certain special cases of 
instructions. First we will consider the case of instructions 
that stall. A stall is defined as that time when the decoder 
must wait for the main data path or the memory and I/O 
unit until it can proceed. There are two basic types of stalls: 
stalls for the next instruction address, and stalls for node 
generation. Stalls for the next instruction address are cases 
where the point of next execution cannot be determined (or 
even predicted) until a node is distributed. These types of 
stalls will be discussed more thoroughly in the next section. 
Stalls for node generation are cases where the nodes to com- 
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plete an instruction cannot be generated until a node iv 
distributed (an example is a CALL instruction that needs to 
wait for a register save mask before it can generate the 
nodes that save the registers). Most architectures have at 
least some instructions that cause the first type of stall, but 
the number of instructions that cause the second type of 
stall can vary greatly. More complex architectures, that are 
characterized by control points inside an instruction are 
more likely than simple architectures to have instructions 
that cause node generation stalls. 

One issue that comes up for handling instructions that 
stall is how to handle the cache. If it has been determined 
that the instruction should cache all of its nodes, then the 
problem is only one of putting the two groups of nodes (i.e. 
the nodes generated before the stall, and the nodes generated 
after the stall) under the same instruction entry. If the 
instruction cannot cache its post-stall nodes, then it could 
still cache the pre-stall nodes, but it might be simpler to not 
cache the instruction at all. Another issue is the interaction 
between the decoder and the rest of the machine. As far as 
the decoder is concerned, it must generate a node and wait 
until the result gets distributed before it can continue decod- 
ing. This probably means that the decoder needs to watch 
the distribution bus. But suppose that an instruction 
depends on a register, and that register is ready. Then, the 
decoder would generate a redundant move node and wait 
until it is distributed unless is has access to the registers 
directly. The first option generates spurious nodes and the 
second option makes the mechanism more complicated. 
Another question is should the nodes that the decoder iv 
waiting on be given extra priority, and if so, how does this 
mechanism work (we will discuss this further in the main 
data path section). 

Another special case that some architectures may have 
is instructions that operate on large blocks of memory (for 
example block move, pattern search, etc.). How should the 
nodes be generated for instructions such as these? The 
decoder could simply generate all of the nodes, but in the 
cave of a pattern search, it would have to stall between each 
pair of memory nodes. Also, the cache could be wiped out, 
so it would be more desirable to not cache these instructions. 
A better solution might be to implement the move as a loop, 
visible at the machine instruction level, so the branch predic- 
tion mechanism could help out on each iteration. If this 
were done, then caching the instruction would be a lot 
simpler. Alternative ways of handling these instructions will 
be covered in the memory and I/O section of the paper. 

3. Control Flow Issues 

In this section we will discuss the issues related to han- 
dling the flow of control in the machine. Recall that there 
are no control nodes. The only nodes that are merged into 
the data path are data flow nodes. This means that the 
decoder must handle the changes in flow of control that are 
specified by the machine language. In this section, we will 
use the term “branch” to mean any change in the flow of 
control of the machine. There are two basic issues here: 1. 
what are the conditions of the branch? and 2. can the 
destination(s) be determined statically? If the destination 
address or addresses are known to the decoder, then it can 
make a prediction on the outcome and proceed to decode 
more nodes. (Unless we have a many-way branch, for which 
the outcomes are uniformly distributed, making the payoff 

for predicting overweighed by the cost of backw UP). If, 
however, the destination address iv unknown we can only 

stall and wait until it becomes known, regardless of the con- 
ditions of the branch. (We could, of course, predict a desti- 
nation address, and with a history mechanism of some sort 
this might be worthwhile, but for many cases, any prediction 
at all would just be a stab in the dark.) 

Therefore, we can group branches into two categories: 
those which we can effectively predict, and those which we 
cannot. Exactly what it means to “effectively” predict a 
branch is, of course, somewhat nebulous but it would depend 
on the quality of the branch prediction algorithm, the cost of 
the repair mechanism, av well as the behavior of the program 
being run. Examples of instructions that will generally be 
predictable are simple two-way branches where the destina- 
tion for both sides of the branch are static. Examples of 
instructions generally unpredictable are return instructions 
which have to pop the top of the stack to determine the 
next address, and jump indirect instructions that have to 
read the contents of a register or a memory location to 
determine the next address. The decision of what to predict 
and what to let stall, as well as the characteristics of the 
branch prediction algorithm are fairly critical issues. The 
objectives are to predict as correctly as possible to minimize 
repair and to cover as many cases as possible to minimize 
stalls. A version of HPS has been simulated using an auto- 
correlation branch predictor that detects patterns in the 
behavior of branches, and has been shown to be quite 
effective. 

Given that a branch has been predicted and the 
decoder has gone on to decode more instructions, how does 
the confirmation mechanism work? One alternative is to put 
the mechanism in the decoder. Then, the decoder would 
associate a particular node with the branch condition SO that 
when that node gets distributed, the branch can be verified. 
In the case of branches on condition codes, the node iv vim- 
ply the last node which generated the particular condition 
code. This mea& that the decoder probably needs access to 
the condition code alias table. For more complicated 
branches, where the condition must be computed, the node 
that does the computation will be the one that the branch 
predictor watches for. 

Another scheme would be to have branch nodes that 
are merged into the main data path just as any other node, 
and to have a branch function unit that executes the branch 
nodes. The branch nodes would take their inputs from the 
nodes that the decoder was waiting for in the previous 
scheme. With either method, when a branch prediction error 
is detected, t-he decoder, the predictor, and the main data 
path must be notified. Some sort of mechanism is necessary 
to associate instances of branches to node indexes used by 
the main data path so that the correct repair point is 
referred to. The main data path must back up the node 
tables and the decoder must redirect its decoding (the repair 
mechanism will be discussed more fully in section 8). 

4. Main Data Path Iasue~ 

The main data path is that portion of the machine that 
contains the active nodes and the function units that are 
executing them (except for memory and I/O nodes). The 
node tables hold the active nodes, and the three processes 
associated with the main data path are merging, scheduling 
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and distribution. First we will talk about the structure of 
the node tables and then we will talk about each of the 
above processes. 

4.1. Node table structure 

One of the main ideas of HPS is that more than one 
node can become active on each cycle, and more than one 
node can be executed on each cycle. A logical way to 
achieve this throughput is to partition the node tables. If 
there is only one node table, then the bandwidth required 
would be enormous. If there are several node tables, then a 
single node can be merged into each node table on each 
cycle, and we will still have several nodes merged per cycle. 
The main question that arises is how to divide up the node 
tables with regard to the function units. A straightforward 
way is to divide the node tables by the function being per- 
formed. So, for example, there would be a fixed point node 
table, a floating point node table, a memory node table, etc. 
Then, a particular node could only be merged into one par- 
ticular node table. There are also other possible ways to 
partition the node table. There could be several node tables 
that serve the same type of function unit, or the node tables 
could overlap only partially in functionality. This would 
mean that a particular node could be merged into more than 
one node table, making the merging process more compli- 
cated. This partitioning of the node tables gives rise to what 
we call the “multinodeword”. A multinodeword is a group 
of nodes that are all merged together, each part of it going 
to a different node table. 

Another issue relating to the node tables is whether or 
not the node values are stored in the node table, or in a 
separate structure. Each node in the the node table must by 
necessity bold the tags and the ready bits for the nodes that 
it depends on, but it doesn’t have to contain the actual 
values. A possible organization would be to separate the 
values from the node table in a “value buffer”. Then, nodes 
would get their operands from the value buffer and their 
results would go back into the value buffer. The advantage 
of this scheme is that it makes the node tables smaller, and 
since they must have associative memories, this could be 
important. The main disadvantage is that when a node is 
determined to be ready and it is read from the node table, 
the tags must then index into the value buffer to get the 
values. This gives an extra level of indirection, which could 
slow the machine down. 

4.2. Merging 

Merging is the process of taking nodes from the decoder 
and installing them into the node tables. The amount of 
processing that the merger must do on the nodes depends on 
several things. One is the question of how the nodes are 
grouped into multinodewords. If the cache stores nodes in a 
free format, then the merger must group them into mul- 
tinodewords before they go into the node tables. This has 
the disadvantage of putting a lot of pressure on the merger. 
Alternatively, the nodes could be grouped together between 
the decoder and the cache, or within the decoder itself. Hav- 
ing the decoder generate the uodes already in multinodeword 
format might not be practical for complicated architectures. 
It might be better to have the decoder generate the nodes 
and then have a post-processor put them into multinode- 
words. Another option, if the architecture being imple- 
mented involves direct execution of nodes, is to have the 

nodes grouped together by the complier before they .ever 
reach the decoder. This would relieve the most pressure 

from the hardware. 

Auother merging issue is the handling of the register 
alias table (or RAT). Recall that the RAT is the table that 
stores t,be node tags that are forwarded in order to remove 
false dependencies as in the Tomasulo algoritbm[2]. Since 
there are potentially several read/write accesses per mul- 
tinodeword (each node could read from two entries and cause 
a write to one), the RAT must be a multiported memory. 
The complication could be reduced if restrictions were placed 
on how register reads and writes could be used in multinode- 
words, but this could slow down the machine. This brings 
up the more important issue of the interpretation of two 
nodes within the same multinodeword, and two nodes within 
the same instruction that have register conflicts. If the RAT 
is updated for register writes between each multinodeword, 
then a node that writes into a register and a node that reads 
from the same register could be placed in any order within a 
multinodeword, but not within an instruction. If, alterna- 
tively, the RAT is only updated for register writes in 
between each instruction, then these two nodes could be 
placed in any order within the instruction. This would allow 
more complicated instructions to be implemented simpler 
(e.g. swap could be done with two nodes instead of three). 
The disadvantage of this scheme is that it makes the RAT 
more complicated. 

Another issue is the mechanism for sending literals into 
the data path. A literal present in the instruction stream 
that is needed for computation nodes must somehow be 
entered into the data path. If the operand values are stored 
with the nodes in the node table, then the merger could sim- 
ply insert the literals in the onerand fields of the nodes 
before they are merged. This requires that the literals be 
known before the nodes that use them are merged. Also, a 
literal wouldn’t need to have a tag associated with it, since it 
is never distributed. Another alternative would be to associ- 
ate tags with literals and then distribute them normally and 
let every node that needs them grab them. Note that the 
literal could then be distributed at any point in the instruc- 
tion and the scratch pad alias table would handle things. 
This scheme requires the merger to have source access to the 
distribution bus, which might complicate things significantly. 

4.3. Scheduling 

Abstractly, scheduling is the process of determining 
which nodes are ready, selecting a subset of them to be exe- 
cuted and sending them to the function units. The simplest 
and easiest to understand algorithm is oldest node first. 
Since the nodes must by necessity be merged into the node 
tables in the order that they were decoded, it should be 
fairly simple to select the oldest node and send, it to the 
function unit to be executed. This is not necessarily the 
optimal algorithm, of course, but it probably performs close 
enough, and at a cost far below a more complicated algo- 
rithm, to be a win. Also, there are other factors besides 
optimality that must be considered. For one thing, we don’t 
want old nodes banging around in the machine too long 
because then we can’t retire instructions soon enough. 
Another thing is that the oldest nodes have the lowest pro- 
bability of having to be undone because of a branch predic- 
tion miss or an exception. Actual simulations will probably 
be the only way to really settle the scheduling algorithm 
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question, and of course it could vary significantly from one 
architecture to another. 

An issue that was raised in the decoding section of the 
paper was the question of giving certain nodes high priority. 
It would seem that if the decoding process is waiting for a 
node before it can continue, that node should be given 
higher priority. But should it be given the highest priority? 
And what about nodes that confirm branch predictions, 
should they be given high priority also? It would seem that 
since confirming branches and minimizing stalls are fairly 
important to the overall speed of the machine, some sort of 
priority scheme should be devised, but it is not clear how it 
should work. 

4.4. Distribution 

Distribution is the process of sending the computed 
results back to the node tables as tag-value pairs so that the 
ready bits can be updated and the values can be stored for 
subsequent use. There are many function units and each 
function unit could in general be sending its result to any 
node table. So, the most general distribution scheme is to 
have one bus for each function unit and to have each bus go 
to every node table. The mechanism could get expensive 
since we need to handle the case where every function unit 
wants to update every node table. If there is a value buffer, 
then the problem gets a little bit better because then only 
the tags need to go to every node table. The values would 
go to the value buffer, which can be partitioned to allow 
multiple writes. If some restrictions were placed on the 
nodes, such as where they could take their inputs from, then 
perhaps the distribution could be made easier but this is at 
the cost of requiring more nodes in some cases. We really 
haven’t developed an effective alternative mechanism to total 
distribution, but it is clear that this may be one of the major 

bottlenecks of the machine. 

6. Memory and I/O IBSU~S 

The memory and I/O unit is that portion of the 
machine that holds all the nodes that access memory and 
I/O devices, and interacts with the memory and I/O systems 
of the machine. First we will discuss a couple of fundamen- 
tal problems that this unit must cope with and then some 
overall issues. In this section, we will use the terms 
“memory system” and “I/O system” to refer to those parts 
of the machine concerning memory and I/O operations 
respectively that are not part of the memory and I/O unit 
(e.g. the data cache, the translation mechanism, main 
memory, etc., and the I/O devices, I/O control register, etc. 
respectively). 

5.1. The Unknown Address Problem 

One of the main ideas in HPS is to allow out of order 
execution of nodes but to preserve the sequential semantics 
of the instruction stream. This means that the result of exe- 
cuting memory reads and writes must be the same as if all 
nodes were executed in the order that they were merged. If 
the addresses that the memory operations use are static (i.e. 
they are all known to the decoder) the problem of resolving 
dependencies is quite simple. It would just involve compar- 
ing the addresses and determining which memory operations 
conflict. Memory operations to the same address could be 
resolved in the same way that arithmetic operations to the 

same register are. Furthermore, this would all be known 
when the nodes were merged. However, if the addresses of 
the memory operations are determined dynamically (i.e. they 
cannot be determined by the decoder) then the problem 
becomes more complicated. This would be the case for many 
memory nodes, for example indirect and indexed accesses. 
The dependencies between the memory operations would 
have to be determined as the information becomes available. 

Consider only simple memory read and memory write 
nodes with the following definitions: each read node has one 
input (the address) and one output (the data) while each 
write node has two inputs (the address and the data) and no 
outputs. The inputs to each node may be known or unk- 
nown and an unknown input may become known at any 
time. Each read node can therefore be in one of two states: 
address known (AK) and address unknown (AU). Similarly, 
each write node can be in any one of four states: address 
known - data known (AKDK), address known - data unk- 
nown (AKDU), address unknown - data known (AUDK) and 
address unknown - data unknown (AUDU). We will call 
nodes in the AK and AKDK states “ready” meaning that 
they are ready to be executed baring dependencies on other 
nodes. So, the question becomes: under what circumstances 
can a ready node become executable? 

An executable node is one which can be “executed”, or 
sent to the memory system to be performed. In the case of 
reads, this simply means that a request is sent to the 
memory system. In the case of writes, execution means that 
the write buffer is updated, but the operation is not actually 
sent to the memory system until the instruction retires. The 
simplest and lowest performing approach would be to exc- 
cute the nodes in the order that they were merged. On the 
other extreme would be a method which detects every 
dependency in everv oossible circumstance and executes 
nodes as soon as possible. We will now present the optimal 
conditions under which a node can be executed (i.e. the least 
constraining dependency resolution possible). As we will see 
later, however, it may be desirable to make more restrictive 
conditions in order to make the implementation more practi- 
cal. 

It only makes sense to discuss the conditions for execut- 
ing ready nodes since other nodes couldn’t possibly be exe- 
cuted and it is also the case that only the read nodes need to 
be considered, since a write node can be “executed” as soon 
as it becomes ready. So, we are left with the question of 
when a ready read is executable and the answer can be 
expressed algorithmically as follows: 

And the youngest active write node that is older than the 
read node: 

if it’s an AKDU or AKDK with a different address, 
flnd the next oldest mlte node and repeat this 

St+P 
if it’s an AKDK with the same address, 

stop - the node IS executable and this AKDK 
has the data 

if it’s an AKDU with the same address, 
stop -- the node IS NOT executable, but It ls only 
waiting for the AKDU to become an AKDK 

if it’s an AUDK or AUDU, 
stop -- the node IS NOT executable 

if there are no (more) active writes, 
the node IS executable. 
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Now we will discuss two impIement.ations of the 
memory data Path. The 5rst one is a fairly straightforward 
approach that is easy to implement but isn’t fully optimal 

( i.e. it may hold back a node in certain circumstances that 
could actually be executed). The seco:nd method achieves 
full optimality but is more expensive to implement. These 
are only two initial approaches to the memory unit imple- 
mentation, and should serve to illustrate some of the issues. 

The first scheme is a basic extension of the register 
dependency resolution algorithm used in the merger. If the 
memory is considered to be a very large register set, the 
extension is clear. The memory alias table (or MAT) is 
analogous to the register alias table. It must be associative 
on the memory address, since there can’t be an entry for 
every memory location, but its function is the same. The 
only complication is that the MAT will only contain the 
proper information for a particular read node if there are no 
AUDK’s or AUDU’s that are older. This is handled by the 
memory node table. It holds nodes until they can be 
released to update the MAT in the case of writes, or access 
the MAT in the case of reads. 

The second scheme is a more complicated one but 
achieves fully optimal dependency resolution. It is too com- 
plicated to go into in tub detail here, but the basic idea is to 
incorporate both the MAT and the memory write buffer into 
a single structure. A dependency matrix is created that 
relates each operation to every other operation. Each read 
node starts out with a mask register, representing a row in 
the dependency matrix. As addresses become known, bits 
are cleared in the mask until either all bits have been cleared 
or a single one remains and that one corresponds to a known 
address and a known data value. At this point the read can 
be executed. There would be a high level of intercommuni- 
cation necessary between different parts of the memory unit 
with such a scheme, but this may be practical to implement, 
depending on the size of the node table, etc. 

6.2. The Partial Dependency Problem 
The above discussion about resolving the dependencies 

between memory nodes has assumed that there are no par- 
tial dependencies, but in most architectures, they can occur. 
A partial dependency is defined as a dependency between 
two nodes when there is not a total overlap between the 
pieces of memory that each node refers to. This can occur 
for two reasons: memory nodes are allowed to refer to 
different sized pieces of memory, and memory accesses are 
not aligned to the size of the memory piece. In many archi- 
tectures, both of these are allowed to happen, and most 
architectures allow at least one, so this is a problem that is 
likely to be important. There are two aspects to this prob- 
lem: how t,o resolve the dependencies and determine which 
nodes are executable, and how to actually execute the nodes 
(since a node could potentially need to get its value from 
more than one place). These two aspects are interrelated, 
and in general the solution to how the nodes are executed 
will have a large in5uence on how the dependencies are 
resolved. 

One approach might be to have the decoder remove all 
partial dependencies by aligning all memory operations and 
forcing them to be all be the same size. This has the disad- 
vantage that the decoder must know what the addresses of 
every memory operation are before the nodes are created. 

Although this would make the memory unit a lot less com- 
plicated, it would probably slow down the machine 
significantlv. 

Given that the problem is not solved by the decoder, 
one issue is where in the machine partial dependencies are 
pieced together. If the memory unit is sufficiently compli- 
cated, it could forward data on a piecewise basis. Note that 
a node could potentially need parts of its value from several 
other nodes and from the memory system. The means that 
the memory unit would have to issue the memory operations 
to retrieve the needed parts and when they arrive it would 
have to assemble the data and distribute it. This type of 
scheme would necessitate a very complicated dependency 
resolution mechanism. 

Another possibility would be to have the memory sys- 
tem deal with the assembly of these nodes. This would only 
work if all the nodes that another node is partially depen- 
dent on have been issued to the memory system (i.e. the 
associated instruction has been retired). This scheme would 
allow the dependency resolution mechanism to be a little bit 
simpler, since it would only be necessary to detect a conftict, 
not to determine the extent to which it overlaps. A disad- 
vantage of this scheme is that it doesn’t result in optimal 
node execution. A node could be held up even if its data is 
ready because a node that it depends on hasn’t been retired. 
The penalty for such sub-optimality must be weighed 
against the frequency of occurrence and the cost of imple- 
menting a more optimal scheme. And, these factors are very 
dependent on the architecture being implemented and even 
the application of the architecture. In general, the partial 
dependency problem is quite complicated and its solution 
involves many tradeofls. These have only been touched on 
here, but it should be clear that there are many possibilities 
that have yet to be fully explored. 

5.3. I/O Issuea 

The handling. of I/O operations brings up some interest- 
ing issues. We have been assuming above that there are no 
problems with executing memory reads out of order. We 
have a model of what memory reads and writes do, and we 
have used this model to improve the speed of the machine. 
In the case of l/O operations, this model needs to be re- 
examined. It is probably the case that l/O reads (as well as 
writes) must be executed in the same order that they would 
be if the instruction stream were executed sequentially. This 
means that the same methods that are applied to memory 
nodes cannot be applied to l/O nodes. 

If l/O operations have their own opcodes, then the 
problem can be handled relatively easily. The decoder would 
simply generate l/O nodes that would be recognized by the 
memory and l/O unit as such. These nodes would be held 
until the instruction retires in the same way that memory 
write nodes have to be held. A slight problem arises if an 
instruction reads from I/O and sends the result to memory. 
Deadlock could result if the l/O read is waiting for the 
memory write to execute. The solution is to execute l/O 
nodes under the condition that all main data path nodes 
have executed and to execute memory writes under the con- 
dition that all other nodes have executed (this will be 
covered in more detail in section 6). 

The problem becomes much harder if the l/O is 
memory mapped. If l/O addresses are easily recognizable, 
then the memory and l/O unit could determine the type of 
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node when the address is determined and treat each type 

separately. However, if the addresses are not easily djstin- 

guishable, this won’t work. This case arises in virtual 

memory machines even if the physical addresses can be 
easily recognized. However, at some point an access must be 
resolved into memory or I/O, so we could have the system 
that first determines this report back to the memory and 
I/O unit if the access is to an I/O device. The memory and 
I/O unit could then handle it as appropriate. This requires 
the memory and I/O systems to be more complicated, but in 
the absence of an architecturally constrained definition of an 
I/O operation, it is about the only solution (other than exe- 
cuting all memory and I/O nodes sequentially). 

5.4. Other Memory and I/O Issues 

Another issue for the Memory and I/O unit that was 
alluded to earlier is the question of how to handle instruc- 
tions that operate on large blocks of memory. Some archi- 
tectures don’t have these instructions, but they are worth 
investigating for those that do. The simplest example of 
such an instruction is one that moves a block of memory 
from one location to another. At some level, an instruction 
like this must be broken down into a series of reads and 
writes. This could occur at the decoding level (the decoder 
generates the sequence of nodes), at the merging level (the 
decoder generates a loop, which is turned into a sequence of 
nodes before merging), at the memory unit level (the 
memory unit gets a single node which is turned into a 
sequence of reads and/or writes to the memory system) or at 
the memory system level (the memory unit issues a single 
command to the memory system which then performs the 
function on its own. There are tradeoffs for placing it at 
each level, but one thing to consider is that if the instruction 
involves more than just a block move (for example a pattern 
search) then placing it closer to the memory system gets 

more complicated. 

6. General Issues 

6.1. Repair 

Repair is the backing up of the machine to a previous 
point and it is done when nodes have been merged that 
shouldn’t be executed. This previous point can be before 
any instruction that has not been retired. The amount of 
hardware that is devoted to repair (and thus the speed that 
it can take place) will be dictated by the frequency that it is 
necessary, and this is very dependent on the architecture. 
Repair is necessary for three reasons: a branch prediction 
miss, an exception, and an interrupt. It will probably be the 
case that branch prediction misses are much more common 
than either of the other two causes, so we may be able to 
take advantage of this. Branches don’t occur every instruc- 
tion, so while we must be able to back up between any two 
instructions in the active window, it only may need to be 
fast to back up to the instruction before a branch. 

Consider what has to be done to complete a repair 
operation. First of all, the node tables have to be backed 
up. This involves invalidating all nodes merged after the 
violation point. Since the nodes are stored in the order that 
they were merged, this can be accomplished fairly simply. 
However, it does mean that we need to keep node table 

indexes for each instruction. The register write buffer and 
memory write buffer also need to be backed up. This could 
be handled analogous to the node tables since they are 
ordered by instruction. 

The RAT and MAT must also be restored, and this is a 
bit more complicated. In order to restore the alias tables 
quickly at any instruction boundary in the instruction win- 
dow, a lot of back up copies may be required. An alterna- 
tive would be to only store alias table copies for the pending 
branch predictions. Then, we could just let the node tables 
drain for exceptions and interrupts and wait for the alias 
tables to clear. A disadvantage of this scheme is that it may 
limit us as to how many branch predictions may be pending 
at a time. 

8.2. Retirement 

Another general issues is that of how retirement is han- 
dled. The first question is how you know that an instruction 
is done and can be retired. Since nodes are stored in merge 
order, we really just need to know the oldest unexecuted 
node for each node table. This information, along with 
information about each instruction will tell us if the oldest 
instruction in the window is ready for retirement. It’s not 
clear how this information should be collected and sent to 
the appropriate place, however. There probably needs to be 
a retirement control unit, that coordinates all the informa- 
tion. 

Several things must get done when an instruction 
retires, and exactly how to handle these is also an important 
question. The register write buffer and the memory write 
buffer hold information that must be processed when an 
instruction retires. Th e processing of the memory write 
buffer consists of sending the writes to the memory system. 
An interesting question is how to handle the case that these 
writes are not completable. If a write causes some sort of 

exception, then we can’t have destroyed anything that we 
need to repair. It even becomes more involved if we include 
I/O operations. As we discussed above, it may be necessary 
to execute I/O reads before memory writes, but after every 
other node has executed. Therefore, an I/O operation caus- 
ing an exception also must be considered. It would seem 
that the machine needs a state after all CPU nodes have 
executed, but before I/O operations have executed and 
another state after I/O operations have executed but before 
memory writes have executed. Only after memory writes 
have executed is the instruction really “retired”. (This last 
state might be able to be eliminated if we can guarantee that 
writes can be completed before they are issued.) 

7. Conclusion 

We have investigated some of the major issues that 
arise in designing an HPS implementation for a particular 
architecture. There are still many open questions about how 
to handle certain problems, which should not be unexpected 
since HPS is still in the early stages. But this paper should 
give the reader an indication of where the major questions lie 
and how they could be approached. 
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