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Abstract—Heterogeneous parallel computing applications often process large data sets that require multiple GPUs to jointly meet their

needs for physical memory capacity and compute throughput. However, the lack of high-level abstractions in previous heterogeneous

parallel programming models force programmers to resort to multiple code versions, complex data copy steps and synchronization

schemes when exchanging data between multiple GPU devices, which results in high software development cost, poor maintainability,

and even poor performance. This paper describes the HPE runtime system, and the associated architecture support, which enables a

simple, efficient programming interface for exchanging data between multiple GPUs through either interconnects or cross-node

network interfaces. The runtime and architecture support presented in this paper can also be used to support other types of

accelerators. We show that the simplified programming interface reduces programming complexity. The research presented in this

paper started in 2009. It has been implemented and tested extensively in several generations of HPE runtime systems as well as

adopted into the NVIDIA GPU hardware and drivers for CUDA 4.0 and beyond since 2011. The availability of real hardware that support

key HPE features gives rise to a rare opportunity for studying the effectiveness of the hardware support by running important

benchmarks on real runtime and hardware. Experimental results show that in a exemplar heterogeneous system, peer DMA and

double-buffering, pinned buffers, and software techniques can improve the inter-accelerator data communication bandwidth by 2�.

They can also improve the execution speed by 1.6� for a 3D finite difference, 2.5� for 1D FFT, and 1.6� for merge sort, all measured

on real hardware. The proposed architecture support enables the HPE runtime to transparently deploy these optimizations under

simple portable user code, allowing system designers to freely employ devices of different capabilities. We further argue that simple

interfaces such as HPE are needed for most applications to benefit from advanced hardware features in practice.

Index Terms—Distributed architectures, hardware/software interfaces, heterogeneous (hybrid) systems, data communications

Ç

1 INTRODUCTION

MODERN heterogeneous computing systems use CPU
cores for low-latency execution of sequential, control-

intensive application phases and employ accelerators for
high-throughput processing of the phases that are rich in
data parallelism [1]. Many supercomputers in the Top500
[2] and Green500 [3] lists (e.g., Titan, Tianhe-1A, Nebulae,
and Tsubame 2.0) use accelerators (GPUs in this case) to
achieve higher performance and better energy efficiency.
Several recent examples feature multiple GPUs per node for
improved energy efficiency, reflected in their excellent rank-
ings in the Green500 list.

Fig. 1 presents the heterogeneous system model targeted
in this paper. One or many CPU cores (1) are attached to the

host memory and to one or several devices. A device can be
an I/O device (e.g., disk, network interface) or a compute
accelerator. Some accelerators are directly connected to the
host memory (2), such as the on-chip GPU in AMD Fusion
APU [4]. Other accelerators, such as discrete NVIDIA GPUs
[5], and I/O devices contain dedicated device memories (3).
Some devices can access the memories of other devices,
such as NVIDIA Fermi/Kepler GPUs connected to the same
PCIe bus. Moreover, some devices can directly access host
memory (4), such as NVIDIA and AMD GPUs. To the best
of our knowledge, all existing heterogeneous systems can
be mapped to this model. In this paper we assume GPUs as
accelerators, but all presented techniques can be applied to
other classes of accelerators.

To effectively utilize a multi-device computing system,
application developers need to distribute large data sets
into device memories. Within a heterogeneous computing
cluster, application-level data exchange between devices
involves interactions between node-level APIs such as
CUDA [5], OpenCL [6], or GMAC [7], and inter-node APIs
such as MPI. While MPI hides the complexity of the system
interconnect topology and inter-node routing, there is cur-
rently no similar node-level interface. Therefore, developers
are left with the challenging task of code versioning needed
to effectively use a wide variety of hardware and drivers
with very different capabilities.

In this paper we present the Heterogeneous Parallel Exe-
cution (HPE) programming interface and its runtime sys-
tem. HPE enables multi-device applications to efficiently
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exchange data while preserving developer productivity and
application maintainability. HPE is available to CUDA and
OpenCL developers as a user-level library. It allows appli-
cations to allocate memory objects that can be accessed by
any device or CPU in the system. The HPE runtime trans-
parently handles data copies needed for discrete device
systems (i.e., independent memory systems) or address
remapping for some integrated device systems (i.e., mem-
ory system shared by CPUs and accelerators).

Both CUDA and OpenCL allow applications to interact
with all devices in the system. However, the physical bus
topology of the system dictates the level of interaction and
data exchanges allowed between devices. As a result, pro-
grammers write application code to discover the physical
system topology and implement different code paths for
each type of system configuration. This represents a signifi-
cant effort resulting in large, hard-to-maintain application
code base.

HPE builds a simple, consistent programming interface
based on three major features. First, all device address
spaces are combined with the host address space to form
a Unified Virtual Address Space, or UVAS. Starting with
the Fermi generation, all NVIDIA GPUs support UVAS
[8] based on virtual memory. In this paper, we propose a
simple segmentation-based UVAS design for devices
with no virtual memory support, where all device mem-
ory locations also have a corresponding host address that
is formed by adding a higher-order bit pattern to the
device address.

Second, the UVAS allows the HPE runtime to easily track
the up-to-date version of the object, transfer data between a
host and a device before kernel calls, and after kernel
returns, to build an Asymmetric Distributed Shared Mem-
ory (ADSM) [7] system. It also allows the HPE runtime to
intercept the pointers passed to function calls and reliably
locate the up-to-date versions of objects being passed. The
simple relation between a device address and its corre-
sponding host address allows lock-free implementation of
HPE runtime.

Third, every CPU thread can request a data exchange
between any two devices, and devices can access the data in
any other device’s memory. The HPE runtime manages
thread-to-device connection and performs intermediate
data copies when necessary to realize this abstraction. Host
code can use simple memory copy calls to control data
exchange between devices. Such a simple interface allows
HPE to automatically optimize data exchanges between

devices; eliminating the need for application code to handle
different system topologies.

In this paper, we analyze the effect of the device hard-
ware capabilities on the complexity and performance of
HPE implementation. We show that with appropriate
device architecture support, the HPE runtime can take full
advantage of the physical bus bandwidth while maintaining
developer productivity and application maintainability and
portability. The main contributions of this paper are: (1) A
simple software memory segmentation scheme that allows
all device memory space locations in a system to have
unique system-wide virtual addresses (UVAS). This scheme
allows the runtime to efficiently and reliably identify the
hosting device of any data by inspecting the upper bits of its
virtual address. (2) An efficient runtime for multi-device
data sharing and exchange in HPE. The proposed UVAS
scheme enables the runtime to easily determine the location
of data and perform remote accesses transparently. Further-
more, when a CPU thread performs a data exchange
between two devices, the HPE runtime supports a virtual-
ized peer DMA and transparently chooses between hard-
ware device-to-device transfers, if available, or a double-
buffered software-managed transfer that uses intermediate
copies in the host memory. (3) An evaluation of the perfor-
mance of HPE. The implementation of HPE features in the
NVIDIA Fermi and Kepler GPUs provided an opportunity
to evaluate the benefit of HPE on real hardware. Experimen-
tal results show that HPE delivers 1.3� communication
bandwidth improvement without hardware support, and
2� more bandwidth when hardware supports peer-DMA.
On real hardware, HPE delivers speedups of up to 1.6� for
3D finite differences, 2.5� for 1D FFT and 1.6� for Merge-
sort compared to the base implementation.

This paper is organized as follows. Section 2 presents the
necessary background, analyzes existing inter-device data
communication techniques and presents the motivation of
this paper. The HPE model and an analysis of how it
improves programmability of heterogeneous parallel sys-
tem are presented in Section 3. A discussion of the design
and implementation alternatives for the HPE model is in
Section 4. An experimental evaluation of implementation
techniques is presented in Section 5. This paper is compared
to other works in Section 6. Section 7 concludes this paper.

2 BACKGROUND AND MOTIVATION

2.1 NVIDIA CUDA

Here we highlight only the key CUDA concepts referenced
in the rest of the paper. Comprehensive discussions of the
CUDA are available elsewhere [5]. OpenCL [6] is a pro-
gramming model similar to CUDA. However, OpenCL ker-
nels can only use pointers passed as arguments. Therefore,
OpenCL does not support using data structures that use
pointers. OpenCL supports many device types (e.g., AMD,
NVIDA and Intel GPUs, multi-core x86 and IBM Power7
processors, and the IBM Cell BE), which involves handling
a wide range of underlying system topologies in the appli-
cation; making HPE even more beneficial.

A CUDA context is the GPU analog of an OS process.
Each context has its own page-table that defines the GPU
virtual address space, and its state (i.e., registers and

Fig. 1. Generic heterogeneous system hardware model.
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scratch-pad memory). Up to CUDA version 3.X, the runtime
API binds each context to a CPU thread for its lifetime. As
we will explain later, HPE enables inter-CPU-thread sharing
of contexts, which has also been recently adopted by the
programming interface and runtime implementation of
CUDA 4 and beyond. In this paper we use CUDA contexts,
but all of the concepts discussed are equally applicable to
OpenCL contexts.

2.2 Multi-Device Domain Decomposition

Multi-device applications partition input and output data
and computation among the devices present in the system
(i.e., domain decomposition). There are often inter-domain
data dependencies between the different phases of compu-
tation, making inter-device communication necessary. This
pattern is found in many HPC applications such as fluid
dynamics simulation, n-body problems, spectral analysis,
and financial and weather simulation. We use finite differ-
ence computation as a driving example [9].

A finite difference method is an iterative process on volu-
metric data that represents a physical space for simulating a
phenomenon described by differential equations, often
involving large data sets that can benefit from GPU acceler-
ation. Domain decomposition assigns a portion of the input
and output data (i.e., domain) to each GPU in the system, as
illustrated in Fig. 2b. With enough GPUs, the entire data set
can reside collectively in the GPU physical memories.

The main loop of finite difference iterates over the steps
of a simulation. For each step, the value of each point in the
output volume is calculated by a stencil computation, illus-
trated in Fig. 2a, that takes as input the value at the point
and its neighbors. The output volume of the current step
becomes the input for the next step. The stencil computation
for the points at the boundaries of a partition (i.e., boundary
data) requires input values from neighboring partitions
(i.e., halo data). GPUs exchange data between simulation
steps, so exchange efficiency is critical to the scalability of
such applications.

Listing 1 shows the CUDA host code for one simulation
step of the finite difference example assuming the CUDA 3
programming model. Fig. 3 shows a diagram with the steps
required to perform the boundary exchange and the synchro-
nization scheme used by the CPU threads in each MPI pro-
cess. The id variable identifies the CPU thread within the
MPI process, while global_id is the identifier of the CPU
thread across all the MPI processes of the application. Before
themain loop, the application allocates four semaphore arrays
(l_bound_sem[], r_bound_sem[], l_halo_sem[],

r_halo_sem[]), two arrays of host memory buffers
(l_bound_host[], and r_bound_host[]), and two extra
buffers for the data received from MPI calls (l_halo_host
and r_halo_host). The size of the semaphore and host
memory buffer arrays is equal to the numberGPUs.

Listing 1: Host code of Stencil Computation using the
CUDA 3 programming interface.

2.3 Multi-Device Data Communication

Each loop iteration in Listing 1 starts by calling the GPU
stencil code to compute the output volume (line 2). Then,
all CPU threads exchange the boundary and halo data
with their left (i.e., id�1) and right (i.e., id+1) neighbors.
However, the outermost left CPU thread in a process (i.e.,
id = 0) needs to exchange its left boundary and halo cells
with a MPI process running on a different node. Analo-
gously, the outermost right thread in a process (i.e., id =

num_gpus�1) will communicate with another MPI pro-
cess to exchange its right boundary and halo points. The
outermost left and right threads in the whole simulation
(i.e., global_id = 0 and global_id = last_id) do not
have left and right neighbors and, therefore, do not per-
form such communications.

Fig. 2. Data dependencies in a 27-point 3D stencil computation, for each
point and volume.
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CUDA 3.X permanently binds one GPU to each CPU
thread, with no direct access other GPUs. This limitation
forces data exchange in Listing 1 to be implemented using a
two-stage proxy pattern. In the first stage, the CPU thread
copies the boundaries from the device to host memory buf-
fers (l_bound_host[id] in line 5 and r_bound_host

[id] in line 8). These copies are shown as arcs (1a) and (1b)
in Fig. 3. Once the left boundary data has been copied to a
host memory buffer, the CPU thread signals its left neighbor
that new data is available by posting the r_halo_sem

[id�1] semaphore (line 12 and arc 2a). An analogous syn-
chronization mechanism (l_halo_sem[id+1] semaphore)
is required for the right boundary data (line 14 and arc 2b).
Outermost threads perform a data exchange using MPI_-

SendRecv (lines 18 and 28) and update their halos in using
the received data (lines 23 and 33).

The CPU thread starts the second stage by waiting for its
neighbor to finish copying boundary data to the host mem-
ory buffers (r_bound_host[id�1] and l_bound_host

[id+1]). This is done by waiting on the semaphores for
these host memory buffers: r_halo_sem[id] and l_halo

_sem[id] respectively (lines 38 and 45, arcs 3a and 3b). This
synchronization is not needed by the outermost boundary
data because it is explicitly requested through MPI. Then,
the CPU thread copies the boundary data from each host
memory buffer to the halo cells on the device (lines 39 and
46, arcs 4a and 4b), signals its neighbors that the data from
the host buffer has been consumed (lines 42 and 49, arcs 5a
and 5b) and waits, before the next iteration, for the signals
from the neighbors (lines 52 and 54, arcs 6a and 6b) using
semaphores (l_bound_sem[id] and r_bound_sem

[id]). Finally, in and out pointers are swapped so the out-
put becomes the input in the next step.

2.4 Performance Considerations

The code in Listing 1 performs poorly due to serialization of
data exchange and computation. A stencil implementation

that overlaps data communication and GPU computation,
omitted due to space constraints, first computes the left and
right boundary data in the GPU. Then, the stencil computa-
tion for the bulk volume is performed while the boundary
data is exchanged. However, this implementation still per-
forms poorly for large boundary data. For instance, a typical
seismic simulation requiring a four-point boundary data
with a cross section of 2;048� 2;048 single-precision points
(64 MB) would take 16ms if the peak 8 GBps PCIe 2.0 � 32
bandwidth is achieved in both directions. Furthermore, this
implementation requires one 64 MB host pinned memory
buffer per boundary to be exchanged. Pinned memory tends
to be a scarce resource, so such large host pinned memory
requirements can easily harm the system performance.

Double-buffering is typically used to reduce the data
transfer time. In our previous example, the application
allocates two 2 MB host pinned memory buffers per
boundary. One of the buffers is used to transfer a block of
the source boundary data to the host while the second
buffer is used to transfer the previous block to the destina-
tion device. This implementation mostly hides the cost of
data transfers in one of the directions, effectively doubling
the data transfer memory bandwidth. In our seismic simu-
lation example, double-buffering reduces the total transfer
time down to 8ms.

The performance benefits of double-buffering come at
the cost of code complexity. Besides the semaphores in
Listing 1, two more semaphores are required per host
pinned memory buffer. These semaphores protect the con-
tents of the host pinned memory buffer used by ongoing
data transfers to the destination GPU, and avoid starting
transfers to the destination GPU before the data has been
completely transferred to the host memory. It also requires
the programmer to insert a new level of loops to iterate
over the original exchange code in 2 MB transfer steps. The
additional synchronization calls, the management of sev-
eral host memory buffers, and the usage of asynchronous
memory transfers greatly increase code complexity.

The complexity of the application code increases further
to support the different heterogeneous topologies illustrated
in Fig. 1. Different data exchange code paths are required to
avoid memory copies in systems where CPU and GPU
share the same physical memory. As a consequence, devel-
opment and maintenance costs of multi-GPU codes easily
become unaffordable.

As we will show in the next section, with the HPE archi-
tecture support, an HPE runtime allows the developers to
make simple memcpy API calls and transparently performs
all optimizations appropriate for the underlying hardware
topology and device capability.

3 HETEROGENEOUS PARALLEL EXECUTION

In this section we present the Heterogeneous Parallel Execu-
tion model, built around three novel mechanisms to
improve the performance and programmability of heteroge-
neous multi-device systems: multi-threaded device-sharing,
unified virtual address space, and multi-device and/multi-
threaded Asymmetric Distributed Shared Memory. Each
mechanism is illustrated with CUDA code using the stencil
example discussed above. All of the concepts discussed

Fig. 3. Exchange steps and synchronization in a stencil computation
using the CUDA 3 programming interface. Legend: solid arrows repre-
sent semaphore updates and dashed arrows represent data copies.
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here can be applied to other programming models, hetero-
geneous devices, and applications.

3.1 Multi-Threaded Device Sharing

A major limitation of CUDA prior to version 4.0 is the per-
manent and exclusive binding of only one GPU context to
each CPU thread. This limitation forces programmers to
implement communication between accelerators with inter-
mediate data copies to host memory buffers (i.e., proxy pat-
tern described in Section 2). That is, the host memory serves
as an intermediate switch for routing data from one device
memory to another device memory. Such implementations
negatively impact application performance: a CPU thread
requiring data from a GPU bound to another CPU thread
must wait until this data is copied to host memory by the
other thread. Another undesirable side effect is that both
CPU threads might copy their halo data from host memory
to device memory at almost the same time resulting in PCIe
bus contention, giving each CPU thread less than half of the
peak PCIe bandwidth.

Listing 2: Host code of Stencil Computation when GPUs are
shared across CPU threads.

HPE enables several CPU threads to concurrently
access the same GPU context. Listing 2 shows the stencil
code when CPU threads are allowed to access any device

in the system. Fig. 4 reflects the updated synchronization
scheme used by the CPU threads. The first noticeable mod-
ification is that device buffers (in and out) are now global
variables accessible by all CPU threads. Now, only the out-
ermost left and right CPU threads must copy the data to be
exchanged to host memory (lines 11 and 23, not shown in
Fig. 4 for brevity) since CPU threads within the same node
can access the GPU context of its neighbors. Then, they
then send this data and receive the updated halo points
using MPI (lines 13 and 25).

The local communication code (lines 36 and 43) becomes
a device-to-device memory copy because all CPU threads
can access both the source and destination GPU memories.
This is enabled by the multi-threaded device sharing sup-
port in HPE. In this case, each CPU thread waits on the
l_halo_sem[id] and r_halo_sem[id] (lines 35 and
42) for the data produced by other threads to be ready
before triggering the data transfer. Once the data exchange
is done, each CPU thread notifies the completion of its data
copy activity by posting the l_bound_sem[id-1] and
r_bound_sem[id+1] semaphores (lines 39 and 46).
Finally, the input and output pointers are exchanged.
Notice that this exchange must wait (lines 49 and 51) until
after the other threads consume the data because the device
pointer data structures are shared by several CPU threads.

The first programmability benefit shown in the code in
Listing 2 is that synchronization points (i.e., calls to sema-
phores) are conceptually easier to understand. The thread
that needs the data performs the wait operation just before
performing the data exchange, and the post operation
afterward. This is in contrast to the code in Listing 1, where
these two semaphore calls are made by separate CPU
threads: the proxy thread performs the wait call, while the
post operation is done by the consumer CPU thread.

The second benefit is the simplified abstraction of dif-
ferent system architectures. The application code calls a
device-to-device memory copy. The runtime system pro-
vides several hardware-dependent implementations. In a
system where compute accelerators share the same physi-
cal memory, it is implemented as a single memory copy.
However, if both accelerators do not share the same

Fig. 4. Exchange steps and synchronization in an stencil computation
when GPUs are shared across CPU threads.
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memory and peer-to-peer memory transfers are not sup-
ported, the runtime system provides a double-buffered
implementation using intermediate host pinned memory
buffers. This hardware-independence greatly reduces the
amount of code required to achieve high performance in
different system architectures. However, programmers
still have to explicitly identify source and destination devi-
ces in the memory copy function.

3.2 UVAS and Remote Memory Access

A common characteristic of the codes in Listings 1 and 2 is
that the same virtual memory address might refer to multi-
ple host and device memory locations on different computa-
tional units (i.e., CPU or accelerator). The most important
consequence of virtual memory aliasing is the inability to
perform remote memory accesses between devices. Neither
the host nor the devices can determine at runtime the physi-
cal memory that a given pointer variable is referring to.
Therefore, memory copy operations require a source and
destination device/host (e.g., cudaMemcpyHostToDevice
in Listing 1, and device[id]/host in Listing 2.

HPE defines a Unified Virtual Address Space (UVAS),
where a virtual memory address unequivocally identifies a
single location in a device/host physical memory. This fea-
ture allows the host or any device to easily determine the
source and destination memories of the memory transfer
operations. Coupling the UVAS with hardware support for
remote memory transfers (e.g., GPU Direct [10]), GPUs can
transparently access remote memory locations through reg-
ular pointers. Listing 3 illustrates the programmability ben-
efits provided by the UVAS in our stencil example. Fig. 5
also shows that the synchronization scheme is much sim-
pler. First, the device-to-device memory copies that imple-
ment the domain boundary exchange between accelerators
in the same node are removed, since the kernel code directly
accesses the boundary data of the neighboring domains.
The kernel launch now receives an additional parameter id
that identifies the current domain and is used by the kernel
code to determine the index of the pointers that belong to
the neighboring domains. After a kernel execution, the CPU
thread signals that the boundary data (i.e., halo data for
other CPU threads) is available for the next kernel call using
the write_sem semaphore of the left and right neighbors

(lines 5 and 7, arcs 1a and 1b). Then, the outermost CPU
threads must still copy the boundary data to an intermedi-
ate host memory buffer (lines 11 and 21) before exchanging
halo data with neighbour MPI processes for the next itera-
tion (lines 12 and 22). Another host to device copy is needed
to update the halo data in the corresponding device memo-
ries (lines 17 and 27). Finally, each CPU thread waits for the
neighbor CPU threads to finish (lines 30 and 32) before
exchanging the input and output pointers.

Listing 3: Host code of Stencil Computation when UVAS is
available.

Another benefit of the UVAS is that fewer parameters are
required by memory copy calls (lines 6, 12, 16 and 22). The
UVAS enables the runtime system to determine both the
source and destination device/host of a memory copy by
inspecting the source and destination addresses, eliminat-
ing the need for programmers to specify it.

3.3 Multi-Threaded ADSM

Despite the benefits provided by the UVAS, the code in
Listing 3 still presents a major programmability drawback.
As discussed in Section 2, overlapping MPI transfers with
device$host transfers to reduce the communication time
is key to achieving high performance. This optimization
requires different source code paths for systems with sepa-
rate device and host memories, and systems where a single
memory is shared among the accelerators and the host.

HPE supports an extension of the Asymmetric Distrib-
uted Shared Memory model [7] to multi-threaded and
multi-accelerator systems. We define a consistency model
for concurrent accesses from CPU threads, that relies on the
common inter-thread synchronization mechanisms. More-
over, on systems where accelerators and CPU have separate
memories, the runtime system captures MPI calls (e.g.,
using library interposition) and based on the virtual address
passed as source and destination buffers determines the
accelerator hosting the data, and double buffers the MPI

Fig. 5. Exchange steps and synchronization in an stencil computation
when UVAS is available.
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transfer. This is performed by splitting the MPI transfer into
several smaller MPI transfers to overlap them with the
device$host transfers. On system architectures where the
CPU and compute accelerators share the same physical
memory the runtime performs a simple MPI transfer.

Listing 4 shows an example stencil code when the ADSM
model is incorporated. The explicit memcpy API calls before
and after MPI transfers have been removed (lines 6 and 13).

Listing 4: Host code of Stencil Computation when ADSM is
available.

The ADSM included in HPE raises the level of abstrac-
tion; by providing a high-level abstract machine model, the
runtime can efficiently map data exchange and I/O opera-
tions to all potential heterogeneous system architectures.
The simplified MPI calls in Listing 4 is an example of the
benefits of this higher level of abstraction.

4 HPE DESIGN AND IMPLEMENTATION

In this section we present the design and implementation of
the three virtualization mechanisms used in HPE: device-
sharing, unified virtual address space, and multi-device
and/ multi-threaded ADSM. Although we illustrate each
mechanism using NVIDIA CUDA and GPUs, all concepts
presented here can be applied to other programming mod-
els (e.g., OpenCL) and heterogeneous devices (e.g., Intel
Xeon Phi).

We implement a fully functional version of the HPE
model on top of Global Memory for Accelerators (GMAC
[7], [11]), a publicly available user-level library. GMAC runs
on GNU/Linux, MacOS X and Windows systems, supports
both CUDA and OpenCL, and has been tested on a wide
range of systems. Many of the implementation techniques
discussed in this section have been adopted in the imple-
mentation of the CUDA 4/5 runtime library. As a result,
these techniques have been validated extensively with pro-
duction use.

4.1 Device Sharing Using Floating Contexts

The CPU submits commands (i.e., kernel calls, memory
copy requests, and memory allocations) to the accelerator,

typically involving several writes to control registers. These
registers are exposed as part of a CUDA context. Hence, if
several CPU threads concurrently access the same CUDA
context, a race condition might occur. HPE provides a safe
way for several threads to interact with the same CUDA
context.

In a simple implementation, when a CPU thread calls
functions that interact with an accelerator, the HPE runtime
locks the context before issuing the command. Once the
command has been completely pushed to the hardware,
the HPE runtime unlocks the context before returning to the
application code. However, this implementation might
incur large overheads if several CPU threads contend for
the same GPU context. To minimize contention, the HPE
runtime extensively uses asynchronous operations and poll-
ing loops. On each API call, the runtime first locks the asso-
ciated GPU context, then queues the call to be performed
asynchronously, and immediately releases the GPU context.
These queues are implemented on top of CUDA streams
and are transparently managed by the runtime. To provide
synchronous semantics, after this first stage, the runtime
implements a polling loop; during each polling iteration,
the GPU context is locked, the polling operation executed,
and the GPU context unlocked. If the poll indicates that the
previous operation has not finished, the CPU thread waits
until the next iteration. The amount of time to wait is deter-
mined by the overhead of the CUDA API calls to access the
GPU hardware state. In current generation systems, using
20 m seconds waits allows up to 16 CPU threads to effi-
ciently share the same GPU context.

4.2 Remote Accelerator Memory Accesses

Enabling a device to access another device’s memory allows
application code to pass an object in another device’s mem-
ory as a kernel argument, as shown in Listing 4. It also ena-
bles direct memory transfers between accelerators’ memory
and I/O devices, bypassing the host memory. While this
can be implemented in software by relying on page-faults
during accelerator execution, similarly to the host side of
current ADSM implementations, the cost of triggering page
faults in accelerator code might void their performance
benefits.

Peer-DMA builds a unified physical address space using
the physical memory ranges of the devices and the device
identifiers. It allows devices to directly communicate through
DMA requests. In every memory operation, the accelerator
checks the source/destination accelerator of the access. It
then performs a local access or creates a remoteDMArequest,
accordingly. Since GPU memory subsystems typically are
non-coherent, memory accesses served by remote accelera-
tors can be safely cached to avoid future remote requests dur-
ing kernel execution. Moreover, they do not introduce
memory coherence traffic. However, cached data need to be
invalidated at major barrier synchronization points or mem-
ory fences to ensurememory consistency across GPUs.

4.3 Unified Virtual Address Space

The goal of UVAS is to allow every object in the system, no
matter which physical memory it resides in, to have a
unique virtual address for use by application pointers. A

CABEZAS ET AL.: RUNTIME AND ARCHITECTURE SUPPORT FOR EFFICIENT DATA EXCHANGE IN MULTI-ACCELERATOR APPLICATIONS 1411



UVAS can be implemented by mapping each accelerator
and host physical memory location into unique virtual
memory addresses. In general, this requires all devices to
have address translation capability and all address transla-
tion data structures of all devices to be inspected when the
runtime needs to allocate, free, or determine the physical
location of an object.

We propose a software-based UVAS implementation
based onmemory segmentation (Fig. 6) for devices with little
or no support of virtual memory. A virtual memory sub-
space is assigned to the host and each accelerator present in
the system. The maximum size of each memory subspace is
given by the number of bits in accelerator physical addresses
(e.g., 40 bits forNVIDIAGPUs, 1 TB). Thesememory subspa-
ces only contain mappings for data hosted in one processor
physical memory. We use the upper bits of the virtual
address to identify the accelerator where the data is hosted.
The HPE runtime assigns a bit pattern to each device in ini-
tialization time. On API calls taking pointers as input param-
eters (e.g., memory copy operations), HPE determines the
virtual address subspaces involved in the operation. In the
accelerator code, those bits that identify the virtual address
subspace must be discarded in each memory access. Some
processors already ignore the upper bits of the address, oth-
erwise this transformation can be transparently inserted by
the compiler. For example, a pointer to virtual address
0x000200 00001000will be truncated to 0x00 00001000,
which is a valid accelerator physical address, and 2 will be
used to identify the accelerator that holds the data.

However, using the software segmentation technique has
some limitations. For example, since each virtual address
space is mapped to the whole continuous physical address
space of an accelerator, it is not possible to transparently dis-
tribute data structures by mapping different virtual address
ranges across accelerators. Therefore, data structures must
be split into chunks and use different pointers to access the
appropriate chunks. On the other hand, devices with virtual
memory support can have a continuous representation of a
distributed data structure in the UVAS and, therefore, only
need a single pointer for the whole data structure.

4.4 Multi-Threaded ADSM

Fully coherent heterogeneous systems, where both host and
accelerators can coherently access any physical memory in
the system would provide a straightforward support for
devices to access each other’s physical memory in HPE. For
example, with full coherence support, an I/O device would

be able to access the data in an accelerator physical memory
through a pointer parameter of an I/O library call. How-
ever, such implementations are likely to highly penalize the
accelerator execution due to extra memory coherency traffic
required on any memory access, sent through a system
interconnect that typically has much lower bandwidth than
that is expected from a DRAM system. Even systems where
host and accelerators are integrated in the same chip, such
as AMD Fusion APUs [4], show a noticeable memory band-
width degradation from 21 to 7 GBps when the accelerator
uses a coherent bus to access to memory.

Our HPE implementation uses the ADSM mechanisms
provided by the GMAC user-level library [7]. GMAC pro-
vides a simple API that allows to allocate memory objects in
the accelerator memories that can also be accessed by host
code. This is implemented by keeping data structures dupli-
cated in both host and accelerator memory. Memory coher-
ence actions that update data in GPU memory are
implemented as a two-step process. First, data from the host
memory is DMA copied to the accelerator memory, and
then the host memory containing the CPU copy of the data
is protected as read-only to detect further modifications.
Analogously, updates to the copy in host memory are imple-
mented in GMAC as a three step process. First, the protec-
tion bits for the host memory containing the data are set to
read-write, then a DMA transfer updates the contents of
host memory, and finally, the protection bits for that region
of host memory are set to read-only to allow detection of
modifications by the CPU. However, this implementation is
unsuitable for multi-threaded environments due to potential
race conditions during DMA transfers. For instance, con-
sider the case where a CPU thread accesses the host memory
being updated by a concurrent DMA transfer. Such memory
accesses are not detected, nor prevented because the protec-
tion bits for that memory are set to read-write for the DMA
transfer. A similar race condition appears when updating
the contents of the accelerator memory.

We extended GMAC with user-level memory shadowing
to avoid race conditions during memory coherence actions.
For each object, GMAC creates an internal shadow mapping
(with R/W access permission) of the host copy. During
memory coherence actions, GMAC uses the internal map-
ping of the data structure as source or destination for DMA
transfers, while the user-accessible mapping remains pro-
tected. Hence, any attempt to access a data structure while
it is being modified triggers a page fault exception that
GMAC manages by locking the accessing thread until the
DMA transfer is done. A drawback of this mechanism is
that the amount of virtual memory address space for objects
accessed both from CPU and devices is effectively doubled.
On the other hand, this scheme does not impose any perfor-
mance penalty. This shadowing technique allows GMAC to
support multi-threaded ADSM while remaining portable
across operating systems. Thanks to this extension, host
code such as MPI calls may take objects in GPU memory as
arguments, as we showed in Listing 4.

4.5 HPE Support in CUDA and NVIDIA GPUs

CUDA versions prior to 4.0 avoid race conditions by bind-
ing each CUDA context to a single CPU thread. Starting in

Fig. 6. Unified Virtual Address Space implementation using the upper
bits of the virtual address space to identify the accelerator where data is
hosted.
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version 4.0, CUDA adopts the floating context mechanism
thus allowing CPU threads to access the memory of all the
GPUs in the system. Thanks to the UVAS, the runtime auto-
matically determines the contexts involved in each opera-
tion and binds it to the calling thread. Moreover, Kepler
GPUs implement 32 independent hardware queues, which
enable the concurrent execution of commands in the GPU
coming from separate CUDA contexts. Each CUDA context
owns its own page table, so the GPU operating system
driver needs to be modified to allow separate CUDA con-
texts to share the same GPU virtual address space [12].

NVIDIA Fermi/Kepler devices have support for UVAS
and remote memory access. Current hardware support for
remote memory access relies on the peer-DMA mechanism
(i.e., GPU Direct [10]). However, it is limited to GPUs in the
same PCIe bus. Since Fermi/Kepler devices have a shared
last-level cache, the location of data needs only to be deter-
mined when they miss in this cache. A request to the local
memory is created if the access is local. A peer-DMA
request is created, otherwise.

The Maxwell family of GPUs is also expected to offer an
efficient DSM model similar to ADSM, thus removing the
need for manual memory coherence.

5 EXPERIMENTAL EVALUATION

All experiments were run on a system containing a dual
Intel Intel(R) Xeon(TM) E5620 at 2.40 GHz with 24 GB of
DDR3 RAM memory, and 4 NVIDIA C2070 6 GB GDDR5
GPU cards. Mellanox Technologies MT26428 QDR 11
40 Gbps Infiniband network adapters are used in those tests
that require network communication. The CPU sockets are
connected to different PCIe 2.0 32x buses, each connected to
two GPUs. Peer-DMA is enabled for GPUs on same bus. All
machines run a GNU/Linux system, with Linux kernel
3.8.0 and NVIDIA driver 304.88. Benchmarks were com-
piled using GCC 4.7.3 for CPU code and NVIDIA CUDA
compiler 5.5 for GPU code. Execution times were measured
using gettimeofday, which offers a msecond granularity,
for the host code and CUDA events for GPU code and mem-
ory transfers. All results show the average of 30 runs; sam-
ples higher than the arithmetic average plus/minus the
variance were considered outliers and discarded.

We evaluate the performance impact of the HPE features
using the CUDA runtime and GMAC. GMAC provides fea-
tures presented in this paper that have not been included in
CUDA yet, like multi-threaded ADSM.

5.1 Benchmarks

Two synthetic benchmarks were used to characterize inter-
device data copies. The first benchmark is a one-way data
copy from a source device to a destination device. This com-
munication pattern is found in n-body simulations, where
the particles moving out from one domain are sent to the
neighbouring domain. This benchmark produces no conten-
tion on the PCIe bus, which provides an environment where
software locking costs can be measured. The second bench-
mark is a two-way data copy between devices. This inter-
device communication pattern is found in most multi-
device computations. Applications present a wide range of
data exchange sizes; for instance, waveguide simulation

typically requires exchanging hundreds of kilobytes, fluid
dynamics simulations tens of megabytes, and FFTs hun-
dreds of megabytes. To account for these scenarios, experi-
ments were run using data exchange sizes ranging from
256 KB to 256 MB. These benchmarks also evaluated the
locking overhead required for multi-threaded device shar-
ing. Experiments are run for different communication
schemes (naive, pinned, double-buffered) implemented on
CUDA with no HPE features (CUDA-base), and GMAC
(HPE) with and without peer-DMA support.

The performance of HPE was also measured using real-
world applications. Current benchmark suites for GPUs like
Parboil [13] and Rodinia [14] target single-GPU systems and
do not stress data communication. Therefore, we have devel-
oped CUDA (using the previously mentioned communica-
tion schemes) and HPE versions of the following well-kown
computations. We use a CPU thread for each GPU in the
node. Each of these threads launches kernels on their assigned
GPU but also access other GPUs to perform device$device
memory transfers when needed. 3D finite differences (stencil)
is the driving example used in Section 2. 1D FFT application
(fft) implements a Fast Fourier Transformon a 1D input vector
using the Radix-2 Cooley-Tukey algorithm. This algorithm
performs n steps in which different elements are combined.
The combination pattern changes at each step and, therefore,
in the multi-GPU implementation, data must be exchanged
between different pairs of GPUs at each step. We use the
multi-GPU implementation of mergesort found in [15]. The
input vector is divided into chunks that are individually
sorted by each GPU. Then, a swap phase merges the subvec-
tors into a sorted vector whose contents are logically distrib-
uted among thememories of the GPUs.

We have also developed two synthetic benchmarks to
convey the benefits of the techniques implemented in our
HPE runtime to optimize the communication with I/O
devices. The first benchmark measures the time needed to
transfer a file from disk to the GPU memory using four dif-
ferent implementations: user uses a regular user-level alloca-
tion to store the contents of the file and then transfer it to the
GPU memory; pinned uses pinned memory instead of a
user-level allocation; double-buffering uses two small pinned
buffers to minimize the usage of pinned memory and to
overlap the disk and GPU memory transfers. The second
benchmark measures the time needed to send data across
GPUs in different nodes through MPI. The following config-
urations are compared: user uses a regular user-level alloca-
tion to store the contents of the transfer before calling to
send/receive data from the network; pinned uses pinned
memory instead (it exploits the GPUDirect technology that
enables Infiniband interfaces to use the pinned memory
allocated through CUDA); HPE uses two small pinned buf-
fers to overlap network and CPU$GPU transfers.

5.2 Inter-Device Data Transfers

Fig. 7 (left) shows the one-way inter-device communication
throughput delivered by each implementation for different
communication sizes. Peer-DMA always delivers the high-
est throughput because there are no associated software
communication overheads. Peer-DMA also delivers the
highest throughput for two-way data exchange, as shown
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in Fig. 7 (right). For a one-way communication, HPE with no
peer-DMA support delivers 70 percent compared to hard-
ware peer-DMA HPE for large data communication sizes
due to the costs of performing intermediate copies to the
host memory. However, Fig. 7 (right) shows that the
throughput delivered by hardware peer-DMA is almost 2 �
faster than the software emulated peer-DMA for a two-way
data exchange. This additional performance penalty is due
to contention for exclusive access to the source and destina-
tion GPU contexts, which are being used concurrently by all
CPU threads.

Fig. 7 (left and right) also shows that the double-buffer-
ing strategy is always the optimal software implementa-
tion. The benefit of double-buffering becomes noticeable
for data communications larger than 1 MB, when double-
buffering starts overlapping of host-to-device and device-
to-host data transfers. The pinned implementation transfers
all the data to a pinned buffer in host memory and, there-
fore, does not overlap data transfers. Still, the throughput
delivered by this scheme is a 40 percent higher than the
base implementation.

Fig. 8 shows the total wait time for HPE and CUDA-
base Double-buffering. Locking time in HPE is shorter
than in CUDA-base Double-buffering, except for two-way
communication of small halo sizes. HPE only requires
exclusive access to the GPU context for the duration of
the API call that enqueues an asynchronous data transfer
between the host and the device; after the DMA com-
mand has been requested to the hardware, the PCIe con-
figuration registers can be used to request new DMA
transactions. This is in contrast with the double-buffering
implementation in CUDA-base, which requires exclusive
access to the intermediate host buffer for the duration of
each data transfer. For small size data transfers, the total

time CUDA-base requires exclusive access to the interme-
diate buffer is short (few data is transferred) and, it
shows a better behaviour than HPE.

As the data communication size increases, CUDA-base
requires locking the intermediate buffers for longer times, so
the time each CPU thread waits to initiate the next data
transfer increases. Inter-device data communication in HPE
does not require waiting for any other CPU thread to bring
the data to the intermediate host buffers. Hence, the lock time
due to exclusive access to the GPU context only grows on the
number of API calls required for the communication, which
grows linearlywith the data communication size. The smaller
locking time for medium and large inter-device communica-
tion accounts for the extra throughput provided byHPE.

5.3 Application Benchmarks

Fig. 9a shows the speedup of different implementations of
stencil over the base CUDA-base version. In this applica-
tion, boundaries are exchanged in every iteration with the
left and right neighbors. Due to the limited support of
remote accesses in current NVIDIA GPUs (only works for
GPUs in the same PCIe bus), we use explicit data transfers
in all the implementations. The points to be exchanged are
computed first and are transferred concurrently with the
rest of the computation, in order to hide the data transfer
costs. The size of the data being transferred goes from 1 MB
to 9 MB for the tested input data sets. Results show speed-
ups that range from 1:04� to 1:23� for 2 GPUs and from
1:15� to 1:63� for 4 GPUs in the HPE version when peer-
DMA is available. The largest improvements are obtained
for small to medium input data sets, where the data
transfer/computation ratio is high, as shown in Fig. 10a. In
these cases, the data transfer cannot be completely masked.

Fig. 8. CPU thread wait time for different inter-device data communica-
tion sizes.

Fig. 7. Measured throughput for different data communication sizes.

Fig. 9. Speedup over single GPU execution different input data set sizes.
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The improvement is greater in the four-GPU configuration
because, in the general case, each domain exchanges twice
as data as the two-GPU case and, therefore, the improve-
ments in the memory transfers are more pronounced.

The 1D FFT application is communication bound and,
therefore, greatly benefits from the HPE model. As shown
in Fig. 10b, all configurations except HPE with peer-DMA
support spend at least 86 percent of the application time
in data exchange routines, when using two GPUs and 87
percent for four GPUs. On hardware with peer-DMA,
HPE exchange time is reduced to 80 percent for two GPUs
and is at least 5 percent lower than the base implementa-
tion for four GPUs. This reduction results in speedups
(see Fig. 9b) that range from 1:58� to 2:6� for two GPUs
over the naive CUDA 3 implementation and 1:17� to
1:61� for four GPUs. HPE with no peer-DMA support
delivers speedups of 1:15� to 1:42� performance improve-
ments over the base version for two GPUs and 1:01� to
1:6� for four GPUs (except for the smallest input data set,
since a single buffer is transferred). The performance of
the double buffering implementation and HPE for four
GPUs is closer because peer-DMA transfers across differ-
ent PCIe buses are not currently supported, so intermedi-
ate copies are performed on the host memory. Moreover,
the effect of the peer-DMA transfers is limited when using
four GPUs because our FFT algorithm performs memory
swaps between pairs of GPUs and these may be serialized
if they involve the same GPU.

Mergesort shows notable speedups when using HPE
with peer-DMA transfers. This application swaps chunks
of data between GPUs in order to merge the sorted subar-
rays into the final sorted array. When four GPUs are used,
a first swap step is performed between GPUs 0 and 1 and
GPUs 2 and 3 (to produce two sorted subarrays) and a
final swap step is performed to merge them into the final
array. Fig. 9c reports speedups that range from 1:25� to
1:50� for two GPUs and 1:45� to 1:66� for four GPUs.
This benchmark also benefits from remote accelerator
memory access, but current hardware restricts the utiliza-
tion of this mechanism to GPUs connected to the same
PCIe bus. Remote memory accesses are used during the
pivot search to determine which data needs to be
exchanged between pairs of GPUs. Using remote memory
accesses delivers much better performance than copying
the necessary data across GPUs (required by HPE when
GPUs connected to different PCIe buses, and by CUDA 3).
The percentage of time devoted to communication
decreases as the data set increases for two GPUs. The

additional communication steps required in the four GPU
implementation make the communication/computation
ratio increase with the input data set size.

5.4 Communication with I/O Devices

The use of pinned memory is key for achieving fast
transfers between I/O devices and the host memory.
Pinned memory becomes even more important for trans-
fers between devices (e.g., disk and GPU). Since these
devices usually have their own private address spaces,
they rely on intermediate copies to host memory for
communication. If user-level memory allocations are
used, the OS has to perform a number copies to/from
these allocations to (system-managed) pinned buffers
before starting a DMA transfer. Fig. 11 shows that
pinned memory is 2:2� to 2:7� faster than the base ver-
sion. Overlapping some of the disk and GPU transfers
provides even better performance (2:5� to 3:4�). HPE
runtime matches the hand-tuned implementation (2:4�
to 2:9�) while hiding the complexity of this technique.

5.5 Inter-Node Communication (MPI)

Communicating GPUs across nodes requires moving data
between the GPUs’ memories and the buffers in the net-
work interfaces. While future systems will be able to per-
form P2P transfers between them, currently data has to be
stored in host memory. Moreover, pinned memory must be
used to avoid extra copies in the network interface driver.
Fig. 12 shows that using pinned memory provides up to 2�
better performance in GPU!GPU and GPU!host memory
transfers, and up to 2:6� in host!GPU, than regular pagea-
ble allocations. Furthermore, the double-buffering imple-
mented in HPE runtime for some MPI calls further improve
the performance, providing speedups greater than 4�.

Fig. 10. Percentage of time devoted to memory transfers over the total execution time.

Fig. 11. Disk$GPU transfer speedups of HPE compared to the base
synchronous version.
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6 RELATED WORK

Most research on system support for heterogeneous systems
focuses on policies to manage the different properties (e.g.,
memory access latency) of heterogeneous processors and
resource sharing (e.g., shared caches in many-core process-
ors). The MIT Exokernel [16] supports heterogeneity by
exposing the hardware diversity to user-level applications.
The HPE model, like other high-level abstractions, can be
implemented as a user-level library on top of the MIT exo-
kernel. The Infokernel [17] supports hardware diversity by
providing abstractions that expose the internal OS kernel
state to user-level.

Rossbach et al. [18] propose a new abstraction called
PTask for processes that run on the accelerator and the addi-
tion of ports and channels to represent the communication
graph among regular processes and PTasks. Using this
scheme, unnecessary memory transfers among CPU and
GPU memories can be avoided since the placement of mem-
ory objects is known to the system runtime. Moreover, more
advanced scheduling policies can be implemented by taking
advantage of the features provided by the accelerators in the
system (e.g., concurrent GPU execution and memory trans-
fers). However, this solution requires programmers to use
new abstractions in their programs to support accelerators
while HPE aims to simplify current abstractions to provide
a model in which accelerators are used transparently.

Language-based programming models have been pro-
posed to deal with multiple accelerators, usually built on
top of CUDA and-or OpenCL. Universal Parallel C (UPC)
has been extended in [19] to transparently access data allo-
cated in GPUs. UPC uses a Hybrid Partitioned Global
Address Space in which each CPU thread is bound to one
shared segment, that can be either in host memory or in
GPU memory, but not both. Each thread is bound to the
same memory segment during its lifetime. HPE allows a
single CPU thread to manage several devices and devices to
be shared among threads.

Task-based runtimes allow transparent benefits from the
parallelism of the system by dynamically scheduling tasks
on all available processors/accelerators. Ayguad�e et. al. pre-
sented GPUSs in [20]. GPUSs relies on annotations to host
functions and CUDA kernels, used by a source-to-source
compiler to create a data dependency graph, that is used to
schedule kernel execution, allocate memory and perform
data copies among memories when necessary. Augonnet
et al. presented StarPU in [21], a library and runtime system
for heterogeneous architectures. It provides data structures
and functions to abstract the computational kernels as

codelets and define dependencies among them. Input and
output data handlers for codelets must be defined to auto-
mate data management. The runtime schedules codelets
and performs the necessary memory copies. Programming
models hide accelerator memories and expose a single
address space to the programmer. Task-based runtimes can
benefit from HPE’s ability of providing the best transfer
scheme in different system organizations.

7 CONCLUSIONS

HPE greatly simplifies the task of programming multi-accel-
erator applications for heterogeneous parallel systems, by
removing the need for applications to explicitly perform
intermediate copies and complex synchronization patterns.
We have implemented the HPE model and its associated
techniques into GMAC, a user-level library that is publicly
available at [11]. The techniques presented here, unified vir-
tual address space based on segmentation, shadowed coher-
ence buffers in asymmetric distributed shared memory,
remote peer memory access, and peer DMA, as well as the
CUDA devices that support some HPE features provided
an opportunity for us to quantify the benefit of these fea-
tures on real hardware. Experiments show that the HPE
runtime transparently exploits devices that comes with
hardware support for HPE features and significantly
improves performance when such hardware is present in
the system. We show that simple, portable application code
based on HPE often achieves performance comparable to
complex custom-written code even in systems that do not
have good hardware support for HPE techniques. We have
outlined the GPU hardware support required to efficiently
implement the proposed UVAS. We further argue that with-
out simple interfaces like HPE, the advanced GPU hard-
ware support will unlikely be used by most software
applications in practice.

Experimental results show that the HPEmodel eases pro-
gramming of multi-accelerator applications while providing
performance improvements of 2� compared to the best data
transfer scheme implemented on top of CUDA 3. We have
also analyzed the impact of HPE on three real benchmarks.
Results show improvements that range from 5 percent in
compute-bound benchmarks and up to 2.6� in communica-
tion-bound benchmarks. Finally, experiments show that
HPE transparently implements sophisticated communica-
tion schemes that can deliver up to a 2.9� speedup in I/O
device transfers.
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