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Abstract
The rising pressure for simultaneously improving perfor-
mance and reducing power is driving more diversity into
all aspects of computing devices. An algorithm that is well-
matched to the target hardware can run multiple times faster
and more energy efficiently than one that is not. The prob-
lem is complicated by the fact that a program’s input also
affects the appropriate choice of algorithm. As a result, soft-
ware developers have been faced with the challenge of deter-
mining the appropriate algorithm for each potential combi-
nation of target device and data. This paper presents DySel,
a novel runtime system for automating such determination
for kernel-based data parallel programming models such as
OpenCL, CUDA, OpenACC, and C++AMP. These program-
ming models cover many applications that demand high per-
formance in mobile, cloud and high-performance comput-
ing. DySel systematically deploys candidate kernels on a
small portion of the actual data to determine which achieves
the best performance for the hardware-data combination.
The test-deployment, referred to as micro-profiling, con-
tributes to the final execution result and incurs less than 8%
of overhead in the worst observed case when compared to
an oracle. We show four major use cases where DySel pro-
vides significantly more consistent performance without te-
dious effort from the developer.

Categories and Subject Descriptors D3.4 [Programming
Languages]: Processors—Code generation, Compilers, Run-
time environments

Keywords Graphics Processing Unit, Dynamic Profiling
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1. Introduction
The demand for computing devices with increased perfor-
mance at reduced power continues to grow. In the mo-
bile community, such devices enable more functionality
and longer battery life. In the high-performance computing
community, such devices make exascale computing more
feasible. As improvements from the semiconductor fabrica-
tion process diminish, architects are compelled to introduce
more diversity into all aspects of computing devices: func-
tion units, interconnect fabrics, and memory hierarchies. The
complicated interactions between these diverse devices and
input data present a major challenge in predicting the effect
of optimizations performed by the programmers or compil-
ers.

Programmers of these devices must understand and ex-
ploit a wider set of architectural entities to achieve high per-
formance, far beyond the traditional instruction set architec-
ture and uniform memory space. CUDA and OpenCL, for
instance, are designed for highly parallel execution based
on lightweight threads, but high performance often requires
carefully crafted work assignment to threads, multi-level
tiling, and scheduling of the threads. While achieving high-
performance on one device is challenging, preparing code
that can achieve high-performance across a diverse set of de-
vices is a daunting and tedious task for even the most skilled
programmers.

It is therefore desirable to support performance portabil-
ity over different device architectures. Popular approaches
commonly involve compiler and/or runtime solutions to ad-
dress this problem. Architecture-specific code transforma-
tions must be done by considering detailed facts about the
target architecture. Achieving high performance for a partic-
ular device and runtime data combination involves finding
a good selection and ordering of optimizations along with
appropriate values for associated parameters.

Figure 1 demonstrates how different choices of optimiza-
tions can result in substantially disparate results of the state-
of-the-art Intel OpenCL stack [21] on an Intel i7-3820 CPU.
It compares the performance of heuristically selected opti-
mization [13] of sgemm and spmv (denoted as spmv-jds) in
Parboil [28] against that of a non-vectorized version and two
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Figure 1. Performance of Intel CPU OpenCL stack with
different vectorization strategies.

alternative vectorized versions. The Intel compiler counter-
intuitively chooses 4-way vector for regular and control di-
vergence free sgemm kernel, while it uses 8-way vector for
spmv kernel which exercises control divergence. Under con-
trol divergence, code generation for work-items using SIMD
instructions typically comes with a large overhead due to
masking, packing and unpacking, which gets larger with
wider SIMD datapath width. In the end, the Intel’s heuristic
has made suboptimal decisions for both cases, falling short
of the best achieved performance by a factor of 2.13x and
1.24x, respectively. One observation is that it clearly demon-
strates the importance of choosing the most optimal code.
Another observation is any single static heuristic for choos-
ing optimizations will likely fall short due to the complexity
of interactions between the device, the computation, and the
data.

There is a wealth of prior work [2, 7, 11, 12, 14, 15,
17, 21–23, 27, 35] on estimating the performance of code
or determining the effect of a certain type of compile time
code transformation. Performance models are widely used
to prune the design space for autotuning [11, 22], or to
guide optimization strategies [7, 15, 17, 22, 35]. For ex-
ample, locality-centric scheduling [17] statically analyzes
memory access patterns with respect to work-items and ker-
nel loops and employs a heuristic cache model to determine
a locality-friendly schedule of OpenCL work-item loops on
CPUs. PORPLE [7] relies on GPU memory or cache mod-
els to analyze work-item access patterns of regular applica-
tions for data placement. However, these approaches address
model-specific aspects of the device architecture of interest,
while other important factors such as vectorization are not
considered or assumed to be decoupled from the aspects be-
ing considered. Such assumptions considerably reduces the
accuracy of the model-based approach. Moreover, they are
limited by ignoring factors that are only known at runtime,
such as the actual data shape. As a result, accurately predict-
ing the effect of optimizations is not likely viable at compile
time. Optimizations based on inaccurate predictions can lead
to disappointing performance outcomes.

Several runtime-based approaches [7, 10, 18, 24, 33] have
been proposed to mitigate the problem with static perfor-

mance prediction approaches. Reactive tiling [24] uses on-
line trained tiling model and chooses likely optimal tiling
parameters for the given working set size and system load.
PORPLE [7] leverages runtime micro simulation on a CPU
to refine the GPU memory or cache models when inputs
are irregular and cannot be statically analyzed. Although
more information is accessible at runtime, model-driven ap-
proaches at runtime can still have limitations and blind spots
of unconsidered factors of models like static model-driven
approaches, resulting in suboptimal decisions.

In this paper, we propose DySel, a runtime framework
that matches the best code arrangement with the actual de-
vice and data combination, thereby improving performance
and efficiency. With DySel, we remove the burden of de-
termining the most optimal code from an optimizing com-
piler and allow it to produce several likely candidate vari-
ants from the input code. Then the runtime performs micro-
profiling, a process of deploying the candidates on a small
portion of the actual data on the actual device and determines
the best version to be used to process the rest of workload.
The advantage of this approach is that it can work with vir-
tually any combination of compiler and device architecture
as modeling is not required at runtime. When dealing with
a large workload, the cost of micro-profiling can be eas-
ily amortized and the overall benefit can be much greater
than unconditionally executing a single code selected by the
compiler. Note DySel is not intended to completely replace
whole decision-making procedures for compiler optimiza-
tions with run-time profiling. Instead, DySel is designed to
relax the conditions for determining the most optimal code
from an optimizing compiler. Therefore, with DySel, the op-
timizing compiler still needs to produce several (typically 2
to 10) likely candidate variants.

We have prototyped our idea on OpenCL and CUDA,
two popular kernel-based parallel programming models to-
day. Experimental results demonstrate that our proposed ap-
proach correctly chooses the optimal code version with less
than 8% overhead in the worst observed case compared to
oracle results for both CPU and GPU architectures.

We make the following contributions in this paper:

1. We propose a combined compiler and runtime approach
towards optimal code selection.

2. We propose a lightweight runtime micro-profiling tech-
nique and discuss the engineering tradeoffs involved in
its implementation.

3. We evaluate the DySel idea by implementing a prototype
system and performing real-hardware measurements for
four important use cases on CPU and GPU.

The rest of this paper is organized as follows. Section 2
introduces the concept of DySel. Section 3 details our im-
plementation. Section 4 and 5 evaluates and discusses the
performance of DySel. Section 6 outlines related work and
Section 7 concludes.
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Figure 2. Distribution of number of work-groups among
kernel launches in Parboil and Rodinia benchmarks

2. DySel Design
This section provides a background of profiling for kernel-
based data-parallel programming, and introduces the idea of
DySel and the three productive profiling techniques used in
DySel.

2.1 Profiling for Kernel-based Data-parallel
Programming

DySel evaluates different code variants at runtime in order to
determine which variant performs best. It measures perfor-
mance of each variant on a small portion of the actual data
and identifies the best performing one, a process which we
call micro-profiling. The chosen version will be used to pro-
cess the rest of workload. The key ingredients of DySel are
efficient profiling and accurate performance projection.

Popular kernel-based data-parallel programming mod-
els, such as OpenCL, CUDA, OpenACC, and C++AMP,
allow over-decomposition of workloads for maximized par-
allelism. Work-groups in OpenCL, for example, are meant
to run independently from each other by design and this
enables efficient parallel execution on a variety of architec-
tures, such as CPUs and GPUs. With these programming
models, workload processing is done via repeatedly execut-
ing the kernel code over a small subset of the workload,
which often takes place in parallel.

The decomposition makes the number of independent
kernel invocations fairly large in practice, which helps to
amortize the cost of allocating a few of them for evaluation
of code variants. The overhead for evaluating code variants
can often be amortized over the large number of invocations.

Figure 2 shows accumulated occurrences of kernel invo-
cation in different numbers of work-groups from all OpenCL
benchmarks in Parboil [28] and Rodinia [6] benchmark
suites. It supports the low-cost profiling hypothesis based
on workload decomposition, as significant number of ker-
nel invocations fall into the range of 128 to 32768 work-
groups. Kernel invocations with less than 128 work-groups
are rarely observed and so dropped from the figure. Kernel
launches with small number of work-groups can be sensitive
to profiling overhead, but a small number of work-groups

also indicates relatively small workloads and performance
variation from the level of optimization might not be crit-
ical. DySel mainly targets kernels with large work-groups
and profiling-based kernel selection is deactivated for small
workload.

An individual kernel invocation is assumed to have simi-
lar performance throughout subsequent invocations. This is
due to the nature of data-parallel computing where the same
code is used to process large data. Thus, observed perfor-
mance from a kernel invocation is likely to be indicative for
others, which helps keep the required sampling frequency
and thus the overhead low. These properties make work-
group an ideal granularity for micro-profiling.

Accurate performance projection means that the variant
that performs best in micro-profiling is the one that performs
best on the whole workload, even in irregular workload or
complex variants. Accuracy of DySel can be evaluated by
measuring performance difference between the variants on
the whole workload, and is further discussed in Section 4.

2.2 Productive Profiling
DySel employs productive micro-profiling, where execution
from profiling also contributes to workload processing. Each
kernel invocation during profiling takes a different part of
the workload data. This is a departure from offline profil-
ing, where performance characteristic is extracted while the
result is simply ignored. This strategy reduces the overhead
of profiling, since workload processed during profiling does
not require reprocessing.

Figure 3 shows the three productive profiling techniques
used in DySel. In this example, we assume that the com-
piler produces two implementations as follows. The ratio of
workload per work-group between Version A and B is 3 to
2. According to safe point analysis [24] (Section 3.4), DySel
launches 2 and 3 work-groups for Version A and B, respec-
tively, in order to make a fair throughput comparison during
profiling.

Fully-productive profiling, shown in Figure 3(a), is the
most efficient profiling in DySel. Each kernel invocation
during profiling takes a different part of the workload data
and computes valid contribution to the final output. In Fig-
ure 3(a), both versions compute and profile different parts
of the workload, and write to the final output. After profil-
ing, Version B is chosen to compute the remaining workload,
as Version B turns out to run faster during profiling. Fully-
productive profiling can take place as long as the individual
invocations do not have overlap in the final output, which is
a dominating pattern in data-parallel programming. It is ac-
curate when parts of the workload are roughly equal, which
is common in regular applications.

Two variants of productive profiling, called partial-productive
profiling, are proposed to overcome the limitations of fully-
productive profiling. Hybrid-based partial-productive profil-
ing, shown in Figure 3(b), is designed for irregular workload
with a non-overlapping final output. By running a set of ker-
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Figure 3. Illustration of proposed productive profiling

nels over the same workload, profiling can be still fair among
different kernel innovations. While only the first kernel (Ver-
sion A in Figure 3(b)) can contribute to the final output,
results from others (Version B in Figure 3(b)) are directed
into a sandbox and thus unused. After profiling, Version B
is chosen to process the remaining workload. Since the final
output contains contributions from both Version A and B,
we call this profiling hybrid-based.

Swap-based partial-productive profiling, shown in Fig-
ure 3(c), is proposed for handling output range variations
among work-groups from different kernels by running a set
of kernels over the same workload but with their own private
output spaces. After profiling, the one selected kernel and
output (Version B and Output B in this Figure 3(c)) will re-
main for the rest of execution while others (Version A and
Output A in this Figure 3(c)) are discarded. Since the fi-
nal output is swapped with Output B, we call this profiling
swap-based. It is worth mentioning that swap-based partial-
productive profiling can be considered as a speculation ap-
proach to version selection.

DySel relies on compilers or programmers to specify
which kind of productive profiling a set of kernels. Interac-
tion between DySel and compilers and programmers is dis-
cussed with more details in Section 3.

2.3 Applicability
The choice of profiling mode is determined based on pro-
gramming patterns and optimizations for kernels. First,
fully-productive profiling is appropriate for kernels with reg-
ular or near-regular workloads. Large workload variations

can significantly impact the fairness of comparison among
kernels. Therefore, fully-productive profiling is only suitable
for applications with regular workload, such as BLAS, or
stencil. It can select between kernels with different levels of
optimizations such as tiling, thread coarsening, data layout
transformation (including padding), input binning [26, 29],
loop-interchange, locality-centric scheduling [17], vector-
ization, software prefetching, data placement [7, 15], and
input format transformation [4]. Some optimizations require
special treatment during profiling. Tiling and thread coars-
ening require normalization of throughput using safe point
analysis [24] (Section 3.4) to ensure fairness. Data layout
transformation, input binning, and input format transforma-
tion may require duplication of inputs to meet the assump-
tion of different kernel implementations.

Second, hybrid-based partial-productive profiling sup-
ports all patterns and optimizations supported by fully-
productive profiling. Additionally, it is applicable to irreg-
ular workload. By profiling the same portion of workload
across different kernels, unfair throughput comparison can
be avoided. The applicable kernels typically have in-kernel
loops with varying bounds across work-groups, such as
sparse BLAS. Uniform workload analysis [14] (Section 3.4)
can be used to detect such in-kernel loops with varying
bounds.

Finally, swap-based partial-productive profiling further
supports output range variation across kernels, and in the-
ory is applicable to any optimizations, such as privatiza-
tion, regularization, compaction, output binning, scatter-to-
gather [26, 29], kernel fusion, kernel fission, optimizations
using atomic operations, and even algorithm change. Al-
though swap-based partial-productive profiling is the most
applicable profiling in DySel, it has less output contribution
efficiency than fully-productive profiling. It also requires
more storage than the hybrid-based profiling due to the need
to maintain private output spaces during micro-profiling.

2.4 Orchestration for Profiling and Execution
The way DySel orchestrates micro-profiling and execution
at runtime can have significant impact on profiling overhead.
We present two orchestration designs in this subsection.

Figure 4(a) shows the overall flow of synchronous DySel.
The compiler deposits several code versions to the kernel
pool in the executable binary file. Upon execution of the
kernel, the runtime dispatches code versions from the pool
and executes them (·) in one of the productive modes de-
scribed in the previous section, with a few work-groups (¶)
assigned using safe point analysis [24] (Section 3.4). The
runtime waits until all versions finish execution and com-
pares their execution time to pick the best one. Then the rest
of the execution runs with the selected kernel. The imple-
mentation is simple. However, it incurs latency penalty if
there is large disparity between the best and the worst ver-
sions since the latency of the profiling phase is determined
by the slowest execution (¸). Furthermore, the total number
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of work-groups used in micro-profiling may not be able to
fully utilize the hardware resources.

Figure 4(b) shows the flow for asynchronous DySel. Un-
like the synchronous design, the rest of the execution can
begin even before profiling is complete, which we denote as
eager execution. When the non-profiling execution begins,
it runs with the best-performing version so far. To support
eager execution, we require that the compiler or program-
mer suggest an initial version (¹). We will discuss more on
the initial selection and its impact on performance later. As
profiling progresses, the selection gets updated once a faster
version is found (º). The asynchronous flow must be able to
switch to the best kernel found so far, therefore the eager ex-
ecution is done via launching a series of chunks (»), instead
of a single batch. While it can better tolerate the latency of
profiling, the implementation gets more complicated for two
reasons. First, it requires careful workload management so
that profiling can be done with a higher priority over the ea-
ger execution. Second, the eager execution is divided into
many chunks, imposing associated kernel launch overhead.

Figure 5 illustrates the execution timing for both syn-
chronous and asynchronous micro-profiling designs. The ex-
ample assumes that there are four concurrent execution units
and two kernels in the kernel pool. The darker gray kernel
runs faster than the lighter one. With synchronous flow, the
runtime waits for all kernels to finish profiling execution. It

Table 1. Summary of proposed productive profiling
Profiling method Productive

output in
profiling

Extra space
requirement

Async support

Fully-productive
profiling

K 0 Yes

Hybrid-based
partial-productive

profiling

1 ≤ K − 1 Yes

Swap-based
partial-productive

profiling

1 ≤ K No

underutilizes the execution units while waiting for the slow
kernel to complete its profiling execution. The asynchronous
flow overcomes this problem by launching useful work on
the vacant execution units with the initial version, which is
shown Figure 5(b) and (c). However, the quality of the ini-
tial selection potentially can impact overall performance, as
suboptimal code occupies execution units longer, as shown
in Figure 5(b). In either case, the asynchronous flow yields
better utilization and throughput compared to synchronous
one.

Table 1 summarizes throughput, extra space requirement,
and support of asynchronous flows for the three proposed
productive micro-profiling modes. Given K kernel variants
in the kernel pool, all K profiled portions of the workload
contribute to the final workload in fully-productive profil-
ing, while only 1 profiled portion does so in the two partial-
productive profiling modes. In terms of extra space require-
ment, fully-productive profiling directly writes results into
the original output space and needs no extra space, while
the two partial-productive profiling methods require at most
K − 1 or K copies of space for either sandboxes or pri-
vate outputs, respectively. It is worth mentioning that ex-
tra space requirement can be further reduced if footprint
of memory accesses during profiling can be predicted so
that a subset of output is allocated for sandboxing. Last,
both fully-productive profiling and hybrid-based partial-
productive profiling support asynchronous flows, since pro-
filing results are directly written into the distinct, final output
space, while swap-based partial-productive profiling cannot
support asynchronous flows, because the final output space
is not determined until profiling is complete.

3. Implementation
In this section, we first introduce the DySel runtime inter-
face, and then detailed implementations for both CPU and
GPU. Lastly, we discuss the analyses to determine the ratios
of workload among kernel variants, and the profiling mode.

3.1 Runtime Interface
Unlike traditional runtimes, DySel allows the compilers or
programmers to deposit multiple implementations of the
same kernel function signature. Figure 6(a) shows the DySel
kernel implementation registration API. A DySel-specific



	  DySelLaunchKernel(	  
	  	  	  	  string	  kernel_sig,	  	  	  	  	  	  //	  kernel	  name	  
	  	  	  	  bool	  profiling=true,	  	  	  	  //	  profiling	  activation	  flag	  
	  	  	  	  enum	  mode=fully_async	  	  	  //	  profiling	  mode	  
	  	  );	  

	  DySelAddKernel(	  
	  	  	  	  string	  kernel_sig,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  kernel	  name	  
	  	  	  	  func_ptr	  implementation,	  	  	  	  	  	  	  	  	  //	  kernel	  implementation	  
	  	  	  	  dim3	  wa_factor,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  work	  assignment	  factor	  	  
	  	  	  	  vector<int>	  sandbox_index=	  []	  	  	  	  //	  argument	  offsets	  for	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  sandboxes/private	  outputs	  	  
	  	  );	  

(a) Kernel Implementation Registration API 

(b) Kernel Launch API 

Figure 6. DySel runtime interface

requirement is to provide work assignment factor, which is
the number of workload units packed into each work-group
for accurate profiling. Figure 6(b) shows the DySel kernel
launch API. It allows the caller to specify whether profiling
is activated or not using a profiling activation flag along with
profiling mode. Compiler analyses required are discussed in
Section 3.4.

Work Assignment Factor. An important class of opti-
mizations is designed to utilize resources such as registers
or scratchpad memory for improved execution efficiency.
Among them, coarsening [19] and tiling change the amount
of work assigned to each thread and thus the work assign-
ment per kernel invocation. The runtime needs to know the
relative work assignment between variant kernels for fair
comparison. Once such workload-changing optimization is
done, the compiler needs to inform the runtime about the
change. For those kernel variants generated by programmers,
DySel requires programmers to specify the relative work as-
signment ratios.

Profiling Activation Flag. A class of applications, such
as stencil operations in partial differential equation (PDE)
solvers or sparse matrix-vector multiplication (spmv) in con-
jugate gradient (CG) iterative solvers, launch a kernel itera-
tively without changing workload or data shape between it-
erations. In this scenario, the kernel can be just profiled in
the first iteration and the selected variant can be reused for
the later iterations. The profiling activation flag allows the
user to turn on profiling only for the first iteration.

Profiling Mode. As mentioned previously, different modes
of profiling have different applicability, throughput, and
cost. Different classes of optimizations require different pro-
ductive profiling modes for efficient, fair profiling. Asyn-
chronous profiling potentially can reduce overheads of pro-
filing. The DySel interface allows the compilers and pro-
grammers to indicate their choices.

3.2 CPU Runtime Implementation
Work distribution and prioritized execution for profiling
are two main requirements for the CPU implementation of
DySel. We use Intel’s TBB [20] that has strong support for
both. TBB’s work stealing feature provides load balancing

over multiple cores while its concurrent task groups allow
assigning higher scheduling priority to profiling execution.
In the profiling task group, kernel invocation is wrapped by
timer calls to measure execution time. Updating the current
best variant is done via atomic operation when the execu-
tion time of a variant is found to be smaller than the cur-
rent minimum. Non-profiling task group invokes the current
best implementation upon launch. When profiling is acti-
vated, it first launches the profiling task group with prior-
ity, which is followed by launching the non-profiling task
group. Synchronous mode puts a barrier to wait for the pro-
filing task group to finish its execution between the two task
group launches, while asynchronous mode schedules both
task groups concurrently. When profiling is not activated, it
launches the non-profiling task group only.

3.3 GPU Runtime Implementation
Measuring execution time with precision for a kernel with
small workload on GPUs requires a high-resolution timer.
It is often inaccurate to use wall clock timer or GPU driver
event according to our experience. Alternatively, we use in-
kernel performance counters to solve this problem. The in-
kernel performance counter is CUDA-specific, thus DySel
first translates OpenCL code to CUDA code when perform-
ing profiling on NVIDIA GPUs. On the other hand, perfor-
mance comparison takes place on the host. Therefore, the
GPU runtime for DySel entails a combined solution where
kernel execution timing information is measured on the GPU
and used by the DySel runtime code running on the host.

Kernel Code Transformations. Each kernel variant is
further replicated into three extended versions: one for pro-
filing, one for non-profiling batch execution, and one for ea-
ger execution in the asynchronous profiling mode. First the
code for profiling is augmented by inserting performance
measurement code, shown in Figure 7(b). It reads the CUDA
clock register, as shown in Figure 7(a), at the beginning and
the end of the code, and the difference is recorded to a dedi-
cated memory location. The code will be executed over mul-
tiple thread blocks because GPU throughput is determined
by both latency and parallelism. Atomic operations are used
to mark the earliest and the latest cycles among the partic-
ipating thread blocks. The profiling code is also augmented
with a block index offset parameter to shift thread block id so
that the kernel will be profiled based on a particular part of
the workload. Second, the code for non-profiling batch ex-
ecution has an additional parameter that indicates the num-
ber of thread blocks executed during profiling and a test that
suppresses the execution of the thread blocks that have been
executed during profiling. This code will also be used when
profiling is not activated by supplying a 0 value for the pa-
rameter. Finally, the code for eager dispatch in asynchronous
profiling mode has the same block id shifting code as the
profiling code but does not have measurement code. This
code is exclusively used in the asynchronous profiling mode.



__device__	unsigned	int	get_cycle()	{	
		unsigned	int	y;	
		asm("{\n\t"	//	use	braces	for	local	scope	
						"	mov.u32	%0,	%clock;\n\t"	
						"}"	
						:	"=r"(y)	);	
		return	y;	
}	

(a) CUDA in-kernel clock register 

	
	
	
	
	
	

	
	

unsigned	int	local_start_stamp;		
if((threadIdx.x)==0)	{							//only	one	thread	in	a		thread	block	
			local_start_stamp	=	get_cycle();	
			unsigned	int	old	=	atomicMin(global_start_stamp	+	kernel_id,	local_start_stamp);	
			local_start_stamp=	old	>	local_start_stamp?	local_start_stamp:	old;	
}	
	
//Here	is	kernel	code,	between	the	two	measurement	codes	
	
__syncthreads();	
if((threadIdx.x)==0)	{			//only	one	thread	in	a		thread	block	
			unsigned	int	old	=	atomicInc(global_count	+	kernel_id,	gridDim.x);	
			if(old	==		gridDim.x-1)	{		//only	last	thread	block	of	profiling	
						unsigned	int	local_diff	=	get_cycle()-local_start_stamp;	
						old	=	atomicMin(global_diff,	local_diff	);	
						if(global_diff	<old	)	
									atomicExch(global_final_selection,kernel_id);	
			}	
}	

(b) GPU profiling code 

Figure 7. Example of GPU profiling code for a kernel using 1D thread block

Host Code Generation. DySel uses CUDA streams to
launch different kernels concurrently on a GPU. By using
multiple concurrent streams, profiling of different kernels
can be done in parallel, reducing the profiling overhead. In
the synchronous mode, cudaDeviceSynchronize is called
to wait for all streams to finish profiling. The host code then
chooses the best one, followed by launching the code for
non-profiling batch execution. In the asynchronous mode,
DySel calls cudaStreamQuery to check the status of each
stream for profiling and schedules eager dispatches. After all
profiling streams complete, DySel launches the remaining
computation in a batch.

3.4 Compiler Analyses
Delivering accurate information on profiling mode and work
assignment factor to DySel is critical for both correctness
and efficiency. The information can be specified by program-
mers. However, such an approach is not desirable because in-
consistent information can be supplied by the programmer,
which may result in unexpected behavior. Compiler-driven
approach can supply safe information automatically, though
it can be conservative. We outline three important analyses
for a compiler to derive such information:

Safe Point Analysis. Relative work assignment among
kernel variants can be normalized to the least common mul-
tiple (LCM) among all related assignments for a fair com-
parison. Therefore, the number of work-groups in each vari-
ant of a kernel can be defined as the LCM divided by each
work assignment factor. For more details, we refer to [24].
In DySel, we further multiply the number returned from safe
point analysis by a constant to make the total workload be-
come a multiple of the number of CPU cores or GPU stream-
ing multiprocessors (SMs) in order to fully utilize the hard-
ware.

Uniform Workload Analysis. A large disparity of loop
iteration counts among profiling execution may lead to un-
fair performance comparison. We employ uniform work-
load analysis to determine whether loop bounds are varying

across work-groups. Uniform workload analysis also detects
an early break of a loop or an early termination of a ker-
nel. For more details, we refer to [14]. The result of uni-
form workload analysis determines which profiling mode
is applied in DySel. It is worth noting that uniform work-
load analysis may be conservative for kernels with data-
dependent loop bounds. For example, in spmv on a CSR
matrix, the given matrix might have an uniform non-zeros
per row, but our analysis will flag it as a non-uniform work-
load since the loop bound is data-dependent. DySel interface
provides programmers with an option to select a specific pro-
filing mode by overriding the compiler’s decision.

Side Effect Analysis. Whether work-groups have over-
lapping and variable output ranges is critical for DySel to
safely conduct productive profiling. We employ side effect
analysis to identify whether output overlapping happens.
Here, we either assume no data race in the original OpenCL
source code [16] or that the original OpenCL programs
are deterministic. Therefore, the current implementation of
side effect analysis only detects global atomic operations.
Upon detection of global atomic operations, the compiler
restricts the micro-profiling to swap-based to ensure cor-
rectness. Similar to uniform workload analysis, side effect
analysis is used to determine profiling mode, and is also
conservative, since atomic operations do not directly imply
that memory contention really happen across work-groups.
Therefore, DySel also allows the programmers to override
the compiler decision.

4. Evaluation
In this section, we evaluate our prototype DySel implemen-
tation on several OpenCL/CUDA benchmarks on both CPU
and GPU architectures.

4.1 Setup
All experiments are done on a system with an Intel Core
i7-3820 CPU with an NVIDIA K20c GPU connected via
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Figure 8. DySel performance results on locality-centric scheduling on CPU for OpenCL

PCI-E interface. For CPU experiments, our DySel starts with
OpenCL code, performs all the code transformations de-
scribed in this paper, produces C source code with calls to
the TBB API, and uses the Intel’s icc compiler version 15.0.2
with vectorization enabled to generate final executable code.
For GPU experiments, DySel starts with OpenCL code, per-
forms the code transformations described in this paper, pro-
duces CUDA source code, and uses nvcc version 7.0.27 with
-O3 and –arch=sm 35 compile flag to generate executable.
The CUDA driver version in use is 346.82. The system runs
on 64-bit Ubuntu Server 14.04 LTS.

The experiments are based on benchmarks from Par-
boil [28], Rodinia [6] and SHOC [9] benchmark suites.
Different experiments subscribe to slightly different sets of
benchmarks according to their own purposes, which are in-
dividually described for each.

The evaluation focuses on the impact of DySel on ker-
nel execution time. To this end, we measure execution time
that includes all profiling time, profiling kernel launch over-
heads, and compute time of the remaining workload for both
CPU and GPU architectures. For GPUs, time spent on data
transfer among architectures before and after kernel execu-
tion is not included since it is the same across variants and
profiling modes, but time spent on data transfer required by
DySel profiling and variant selection is included.

The oracle results in the following is defined as the single
pure versions that delivers the shortest runtime for the cor-
responding benchmarks. Note a mixed version that applies
different pure versions on different partitions of computa-
tion could potentially outperform the “oracle”. In this paper,
we only compare DySel with the best pure version. For the
mixed version, we consider it as the future work.

4.2 Case Study I & II: Single Compile-time
Optimization

Performance modeling at compile time can yield the high-
est accuracy when it is used in isolation from other trans-
formations. We compare DySel’s performance to two high-
quality compile time optimizations for CPU and GPU in
order to compare accuracy and benefit. For CPU, locality-
centric scheduling of OpenCL work-items execution [17] is
used. For GPU, data placement [7, 15] is chosen.

The purpose of this experiment is to test whether DySel
can adaptively and efficiently select the right variant from
candidate kernel implementations. When a single standalone
optimizer works well, DySel can confirm the version with
an ignorable overhead. On the other hand, when the static
optimizer makes a wrong decision, DySel can insure that an
alternative is chosen to avoid performance loss.

Locality-Centric Scheduling on CPU for OpenCL. We
evaluate DySel on the locality-centric scheduling of work-
item executions for CPUs using four benchmarks, sgemm,
spmv (denoted as spmv-jds), stencil and cutcp, from
Parboil [28], one benchmark, kmeans, from Rodinia [6],
and one benchmark, spmv with scalar dot products on a
CSR format matrix without padding (denoted as spmv-csr),
from SHOC [9]. All of the chosen versions in Parboil
are base versions. These benchmarks are selected because
their CPU performance is sensitive to the scheduling pol-
icy used. The inputs for Parboil and Rodinia benchmarks
are all default, while the inputs for spmv-csr include a
16k-by-16k random sparse matrix with 1% probability of
non-zeros (the default input in SHOC, denoted as random)
and a 2M -by-2M diagonal matrix (denoted as diagonal).
In spmv-jds and spmv-csr, DySel applies hybrid-based
partial-productive profiling due to irregular workload, while
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Figure 9. DySel performance results on data placement on
GPU

in the rest, DySel applies fully-productive profiling. Since
kmeans, spmv-jds, spmv-csr and stencil are iterative,
DySel profiles only the first iteration.

We use the OpenCL implementation of Kim et al. [17],
which is denoted as LC, to generate code from possible
combinations in scheduling of work-items execution. LC
employs a heuristic that minimizes overall memory ac-
cess strides in work-items execution in the presence of
loops. Possible numbers of different schedules are 60, 3,
6, 2, 2 and 6 for cutcp, kmeans, sgemm, spmv, spmv-csr
and stencil, respectively, as schedules are permutation of
work-item loops and kernel loops to form loop nesting.

Figure 8 compares performance of DySel and compile-
time heuristic over oracle. DySel achieves close to optimal
results for all benchmarks with negligible overhead. The
results also demonstrate the importance of a data-locality-
friendly schedule as the gap between the oracle and the worst
is significant. A heuristic-based static selection could have
caused a large performance loss with a suboptimal decision.
However, DySel correctly selects the optimal schedule for
all given benchmarks. In the case of spmv-csr with the
diagonal input, the LC static heuristic selected incorrectly
but DySel avoided the mistake. When no or little perfor-
mance variation due to input distribution is expected, DySel
chooses the optimal from profiling, witnessed by cutcp,
kmeans, sgemm, and stencil. In a situation where in-
put distribution has a high impact to data locality, such as
spmv-csr, the static approach works well with a certain in-
put distribution but it cannot cope with all possible cases
with equal efficiency. DySel, on the other hand, adaptively
chooses between two schedules, yielding close to optimal
performance for both cases. Additionally, it also shows that
asynchronous mode hides profiling latency better than syn-
chronous mode. The impact of initial version selection in
asynchronous mode is marginal in all cases. More discus-
sion about the impact of synchronous mode and the initial
version selection in asynchronous mode is shown in Sec-
tion 5.

Data Placement on GPU. We evaluate DySel on the
data placement optimization on GPU using two bench-
marks, spmv-csr from SHOC [9] and particle filter from
Rodinia [6]. For spmv-csr, we choose three data placement

policies listed in the PORPLE paper [7] for the recent three
generations of GPUs, and one data placement policy from
a heuristic-based method [15] as the candidates. For parti-
cle filter, we choose two data placement policies from the
PORPLE paper, one from the heuristic-based method, and
one originally from Rodinia as the candidates. The input
for spmv-csr is the random matrix, which is also used in
micro simulation of PORPLE, and the input size for par-
ticle filter is 32,000. Both benchmarks use hybrid-based
partial-productive profiling due to irregular workload, and
spmv-csr is profiled for only the first iteration.

Figure 9 demonstrates that DySel can efficiently choose
the optimal data placement policies for both benchmarks
on a Kepler K20c GPU. On spmv-csr, DySel success-
fully selects the optimal version with a completely negli-
gible overhead, while both PORPLE and the heuristic-based
method generate suboptimal versions, falling short of the
best achievable performance by a factor of 1.29x and 2.29x,
respectively. Interestingly, the heuristic-based method yields
the worst performance. Also, the optimal data placement
for spmv-csr on Kepler is actually generated by PORPLE
but with the target on Fermi architectures. On particle fil-
ter, DySel successfully selects the optimal version with at
most 4% overhead, while both PORPLE and the heuristic-
based method generate the optimal version. The original
policy from Rodinia delivers the worst performance of a
1.17x slowdown compared to the best performance.

In this evaluation, both benchmarks expose different lev-
els of challenge for static data placement due to irregular
workload. PORPLE tends to perform much better than the
heuristic-based method, because PORPLE uses more com-
plicated memory and cache models. However, due to lack of
runtime information, PORPLE might still make a wrong de-
cision. With DySel, the performance loss from these mistake
can be minimized.

4.3 Case Study III: Mixed Compile-time
Optimizations

We evaluate multiple mixed and complex optimizations us-
ing four Parboil benchmarks: cutcp, sgemm, spmv-jds, and
stencil. We choose all versions listed in these Parboil
benchmarks as the candidates. There are two candidates for
sgemm, three for stencil, four for spmv-jds on GPU, two
for spmv-jds on CPU, and two for cutcp. All inputs are
the default large datasets in Parboil. The profiling modes are
the same as the previous experiment.

The purpose of this experiment is to test DySel’s adap-
tive selection capability when static heuristics cannot eas-
ily foresee the impact of combined optimizations for deci-
sion making. The relevant optimizations for cutcp, sgemm
and stencil are tiling, coarsening, data placement, loop
unrolling and prefetching. Particularly, cutcp has tiling,
coarsening, and data placement using scratchpad; sgemm has
tiling, coarsening, loop unrolling, and data placement us-
ing scratchpad; stencil has tiling, coarsening, and data
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Figure 10. DySel performance results on mixed compile-time optimizations

placement using scratchpad; spmv-jds has tiling, coarsen-
ing, loop unrolling, prefetching, and data placement using
texture memory, which is only for GPUs. Work assignment
factors are 4x and 16x for cutcp and sgemm, respectively,
while stencil comes with three versions and work assign-
ment factors relative to the base version are 64x and 128x.

CPU. Figure 10(a) compares the performance of DySel
when differently optimized kernels are provided. Again, LC
from the OpenCL implementation of Kim et al. [17] is used
to compile the kernels. DySel achieves near optimal results
for all benchmarks, with only 2% overhead on average com-
pared to oracle. While not shown in Figure 10(a), we note
that for all benchmarks, the best variant for CPU execution
are naive base versions from the selected benchmark suites,
as they allow the greatest flexibility for the compiler in plan-
ning how to serialize execution of work-items. GPU-specific
optimizations such as data placement and data prefetching
using scoreboarding make no difference for CPU. Tiling us-
ing scratchpad memory typically leads to negative results on
CPUs because there is no latency gain using them after they
are lowered to CPU’s uniform memory space, resulting in
a 1.23x slowdown on average compared to oracle. This re-
sult again confirms that the help from runtime can mitigate
the stress having to develop complicated models at compile
time.

GPU. Figure 10(b) compares the performance of DySel
when differently optimized kernels are provided for a Kepler
K20c GPU. DySel always selects optimal version among
candidates, except spmv-jds. In spmv-jds, DySel chooses
the second best version (which applies loop unrolling,
prefetching, and texture memory), which has only 0.8%
performance degradation from the best one (texture mem-
ory only). We observe that optimizations of loop unrolling
and prefetching applied in spmv-jds on a Kepler architec-
ture are redundant when texture memory is applied, but they
do improve performance when texture memory is not used.
The similar situation is also observed in stencil, where
scratchpad tiling and coarsening along the x-dimension does
not improve performance on top of coarsening along the z-
dimension on Kepler. These mismatched optimizations may
come from a mistake of the experts who write the bench-
marks or from non-transferable optimizations across differ-

ent generations of GPUs. In both cases, it confirms perfor-
mance prediction for the combined set of optimizations is
challenging, and DySel can help resolve the challenge.

4.4 Case Study IV: Input-dependent Optimization
We evaluate an input-dependent version selection scenario
using spmv-csr from SHOC benchmark suite [9]. We
choose two spmv-csr versions, one using scalar dot product
(denoted as scalar) and the other using vector dot product
(denoted as vector), from SHOC. The optimal version of
spmv on a CSR-format matrix is highly dependent on spar-
sity of a matrix [4], which is typically unknown at compile
time. We test with two matrices, the random sparse matrix
and the diagonal matrix, described in the previous experi-
mental setup. The profiling modes are also the same as the
previous experiment.

The purpose of this experiment is to demonstrate DySel’s
adaptive selection capability when the compiler simply can-
not predict the performance, due to lack of critical informa-
tion, which is sparsity of the actual matrix in this experiment.

CPU. Figure 11(a) shows performance of DySel com-
pared to that of a scalar kernel and a vector kernel for all pos-
sible combinations of work-item scheduling for them. DySel
correctly selects the optimal one for both inputs, yielding
near oracle performance. The selection here is particularly
complicated by the dimensions of schedule, kernel version
and input data distribution. Here, LC chooses to iterate in-
kernel loops first (denoted as DFO) for both scalar and vec-
tor implementations and uses it unconditionally. However, it
does not cope well with unfavorable input distribution from
the diagonal matrix, where work-item-loop-first (denoted as
BFO) schedule is desired. As for version selection among
scalar and vector, scalar performs better when DFO is chosen
mainly because of less overhead having to deal with con-
trol divergence. For CPU execution, the vector version is in-
ferior because it uses local memory which incurs the copy
cost without any benefit in a CPU. This is a reason why the
BFO schedule for the vector kernel performs similar to DFO

in spite of favorable data locality.
GPU. Figure 11(b) demonstrates that DySel can adap-

tively select the optimal implementations for different ma-
trices on a Kepler GPU. On the random matrix, DySel se-
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Figure 11. DySel performance results on input-dependent optimization

lects the vector version with at most 0.4% overhead, while
the scalar version delivers a 4.73x showdown, due to non-
coalescing memory accesses. On the other hand, for the di-
agonal matrix, DySel selects the scalar version with at most
0.8% overhead, while the vector version delivers a signif-
icant 22.73x showdown, due to underutilization of vectors
(warps on NVIDIA GPUs).

5. Discussion
5.1 Performance Impact between Sync and Async

DySel
Long-running profiling execution that lasts to the end of
the profiling phase increases profiling overhead, which is
further amplified by the number of vacant execution units
waiting for workload. For example, sgemm with data locality
scheduling shown in Figure 8 is regarded as a pathological
case due to its huge variation of 117x between the oracle
and the worst. The synchronous profiling overhead is 8%.
Nevertheless, asynchronous mode can scatter the overhead,
suppressing it down to less than 5%.

The asynchronous DySel GPU implementation is based
on CUDA concurrent execution using CUDA streams, in
which different kernel invocations are enqueued by the host
CPU. It requires the host to query the status of the streams.
At the same time, DySel employs micro-profiling, which
typically takes extremely small profiling time. Combining
these two facts, querying the status often takes a longer la-
tency than profiling time. Therefore, it can only have few
or even zero eager dispatches. In the end, synchronous
and asynchronous DySel have only marginal difference for
GPUs.

One possible solution to further improve asynchronous
DySel is to apply CUDA Dynamic Parallelism to avoid the
long latency from host queries. However, current CUDA Dy-
namic Parallelism also suffers from a huge kernel launching
overhead on the device [32, 34], which is even larger than
the original DySel overhead.

5.2 Profiling Overhead
Among all experimental benchmarks, DySel exposes 8%
overhead in the worst case compared to the oracle results.

However, since a few of the experimental benchmarks are
iterative, their overhead is amortized across iterations and
cannot be easily quantized in the above figures.

Here, we further investigate those benchmarks, which are
spmv-jds, stencil, spmv-csr, and kmeans, by enabling
profiling in every iteration. In this experiment, we observe
increased overhead.

For CPU, most of the above benchmarks show less than
6% overhead, except spmv-csr for the random matrix with
observed overhead of 88% to the oracle. Performance pro-
filing using Intel’s vtune reveals that the TBB dispatch loop
incurs substantial overhead from spin and associated cost,
which might have been caused by managing huge number
of extremely tiny tasks. A tradeoff is to implement bigger
task granularity by serializing several kernel invocations at
the expense of load imbalance. Also, profiling accuracy can
be a problem when the unit of workload is small, which is
the case where system noise can affect the evaluation, par-
ticularly for CPUs. In spmv-csr, for example, the dynamic
selection accuracy is 95%. By increasing the number of exe-
cutions per kernel during profiling, this can be resolved at the
expense of additional profiling overhead. The exact tradeoff
and an empirical solution are to be further studied.

Similarly, on GPUs, spmv-csr in Case study II has
14.7% overhead; spmv-jds in Case study III has 46.5%,
while stencil has only 3.7% overhead; spmv-csr in Case
study IV has 9.9% to 30.5% overhead for different input
datasets. We recognize most of the high overhead is from
the spmv benchmarks (spmv-csr and spmv-jds). Unlike
the other benchmarks, each iteration of spmv spends several
to several hundred microseconds in non-profiling execution
on the GPU, while profiling time takes around a few to 10s
of microseconds, which is very close to the GPU kernel
launch overhead. In this sense, profiling overheads are com-
pletely exposed despite the small portions of the workload
DySel profiles. Fortunately, most of these data-parallel ker-
nels with insignificant execution time are either iterative or
not performance critical. Also, this overhead should be much
less for larger sparse matrices in real applications.



5.3 Performance Advantage over Heuristic
Approaches

As mentioned previously, quality and precision of heuristics
dictate performance. In this subsection, we highlight perfor-
mance insurance that DySel provides against decisions made
by state-of-the-art heuristic implementations.

From Case study I & II, DySel can provide 1.15x more
performance in spmv-csr when the diagonal matrix is given
to the CPU (in Figure 8). PORPLE [7] and the heuristic-
based method [15] making suboptimal data placement poli-
cies for GPU, DySel achieves 1.29x and 2.29x improve-
ments over the model-based counterparts (in Figure 9).

In Case study III & IV, it is difficult to judge which
version the compiler should generate since the kernels are
written by experts [9, 28]. Assuming suboptimal decisions
are made, DySel can outperform 1.26x and 2.28x on aver-
age for CPU and GPU, respectively (in Figure 10). In Case
study IV (in Figure 11), the amount of performance improve-
ment is input-dependent. DySel recovers 2.98x and 8.63x
speedups over the worst possible choice for CPU for the ran-
dom and the diagonal input matrices, respectively. Similarly,
it achieves 4.73x and 22.73x speedups on GPU for the same
input matrices.

6. Related Work
Various works have covered performance modeling for over-
all kernel performance or specific optimizations of data-
parallel programming.

Dynamic optimization has been studied extensively for
performance, which exploits information only available at
runtime. Dynamo [3] and Mojo [8] monitor execution traces
to capture a sequence of frequently executed basic blocks
and replace the trace with a highly optimized instruction se-
quence. However, their performance suffers in many cases
due to high overhead of execution monitoring and runtime
compilation. Similarly, modern managed languages typi-
cally are supported by runtime optimization [1] for instruc-
tion throughput. While aforementioned approaches are fo-
cused on finding a better instruction sequence at fine-grained
scope such as basic blocks, our work differs as multiple
differently implemented kernels are used, which brings a
greater impact to performance with low cost profiling over-
head. Reactive tiling [24] alters tiling size on-the-fly for
working set size optimization, which can also be properly
implemented using our approach. ADAPT [31] sharing a
similar idea with our work, however, the optimization rules
are not performance portable to other architectures. Unlike
this work, our approach does not require coupling with a
runtime optimizer, making it easier to deploy.

Performance models for GPUs have been studied to
provide performance feedbacks for optimization benefits [2,
23]. Several compile-time optimizations for data-parallel
programming based on heuristics or modeling have been
done on CPUs [12, 14, 17, 21, 27] and GPUs [7, 11, 15, 22,

35]. DySel relieves the pressure for developing an optimal
and costly version as it allows them to generate multiple
versions.

Adaptive runtime using profiling has been an area of
great interest. Charm++ [30] employs a message-passing-
driven adaptive runtime for matching an execution unit for
a given task at a node level by continuously monitoring the
performance over different types of execution units. Unlike
Charm++, DySel applies runtime profiling for selecting the
optimal versions of kernels on a CPU or GPU. SASSI [25]
provided by NVIDIA can deliver flexible software profiling
for GPU architectures. DySel applies software profiling in-
structions on CPU and GPU architectures for selecting the
optimal versions at runtime.

Model-driven adaptive runtime has been widely studied
for both CPUs and GPUs. Reactive tiling [24] switches be-
tween kernels of different tile sizes at runtime, from a de-
cision made by subscribing online profiling results into a
model-based (through curve-fitting) heuristic. Dollinger et
al. [10] proposed a model-based adaptive runtime selection
for GPUs using offline profiling. Elastic computing [33] dy-
namically selects the optimal version from multiple imple-
mentations of a function based on a cost model built at in-
stall time via profiling them. PEPPHER [5] provides offline
profiling [18] functionality to help select variants of compo-
nents and construct a heterogeneous program. In contrast,
DySel provides a lightweight online productive profiling
for multiple variants selection on data-parallel programming
without specific models involved.

7. Conclusion
We have discussed and showed the drawback of solely re-
lying on heuristics or performance models to drive trans-
formations on diverse and complicated heterogeneous archi-
tectures. We leverage the property of performance similar-
ity across the entire workload processing and introduce mi-
cro profiling technique at runtime for a fraction of workload
to derive performance characteristics for different kernel
implementations. Our proposed approach, DySel, not only
overcomes the drawback of model-based approaches but
also achieves near-oracle performance with profiling over-
head under 8% in the worst observed case from our evalu-
ation of Parboil, Rodinia, and SHOC benchmarks on CPU
and GPU. As precise modeling becomes harder to come by
for modern architectures, our proposed approach can be a
simple yet effective alternative for a wide range of systems
and applications.
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