
Vol. 30 no. 10 2014, pages 1354–1362
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btu030

Genome analysis Advance Access publication January 21, 2014

BLESS: Bloom filter-based error correction solution for

high-throughput sequencing reads
Yun Heo1, Xiao-Long Wu1, Deming Chen1,*, Jian Ma2,3 and Wen-Mei Hwu1

1Department of Electrical and Computer Engineering, 2Department of Bioengineering and 3Institute for Genomic Biology,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Associate Editor: Michael Brudno

ABSTRACT

Motivation: Rapid advances in next-generation sequencing (NGS)

technology have led to exponential increase in the amount of genomic

information. However, NGS reads contain far more errors than data

from traditional sequencing methods, and downstream genomic ana-

lysis results can be improved by correcting the errors. Unfortunately,

all the previous error correction methods required a large amount of

memory, making it unsuitable to process reads from large genomes

with commodity computers.

Results: We present a novel algorithm that produces accurate correc-

tion results with much less memory compared with previous solutions.

The algorithm, named BLoom-filter-based Error correction Solution for

high-throughput Sequencing reads (BLESS), uses a single minimum-

sized Bloom filter, and is also able to tolerate a higher false-positive

rate, thus allowing us to correct errors with a 40�memory usage reduc-

tion on average compared with previous methods. Meanwhile, BLESS

can extend reads like DNA assemblers to correct errors at the end of

reads. Evaluations using real and simulated reads showed that BLESS

could generate more accurate results than existing solutions. After errors

were corrected using BLESS, 69% of initially unaligned reads could be

aligned correctly. Additionally, de novo assembly results became 50%

longer with 66% fewer assembly errors.

Availability and implementation: Freely available at http://source

forge.net/p/bless-ec

Contact: dchen@illinois.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on October 29, 2013; revised on December 16, 2013;

accepted on January 14, 2014

1 INTRODUCTION

Recent advances in next-generation sequencing (NGS) technol-
ogies have made it possible to rapidly generate high-throughput

data at a much lower cost than traditional Sanger sequencing

technology (Metzker, 2009). NGS technologies enable cost-effi-

cient genomic applications, including de novo assembly of many

non-model organisms (Haussler et al., 2009), identifying func-
tional elements in genomes (Frazer, 2012), and finding variations

within a population (Beerenwinkel and Zagordi, 2011; Durbin

et al., 2010; Prosperi et al., 2013; Schirmer et al., 2012). In add-

ition to short read length, a main challenge in analyzing NGS

data is its higher error rate than traditional sequencing

technology (Loman et al., 2012; Wang et al., 2012), and it has

been demonstrated that error correction can improve the quality

of genome assembly (Salzberg et al., 2012) and population gen-
omics analysis (Jiang et al., 2009; Schirmer et al., 2012).
Previous error correction methods can be divided into four

major categories (Yang et al., 2012): (i) k-mer spectrum-based

(Chaisson et al., 2009; Dohm et al., 2008; Kelley et al., 2010; Li
et al., 2010; Liu et al., 2013; Medvedev et al., 2011; Pevzner et al.,

2001; Qu et al., 2009; Shah et al., 2012; Wijaya et al., 2009; Yang
et al., 2011, 2010), (ii) suffix tree-/array-based (Ilie et al., 2011;

Salmela, 2010; Schröder et al., 2009; Zhao et al., 2011a, b), (iii)

multiple sequence alignment (MSA)-based (Kao et al., 2011;
Salmela and Schröder, 2011) and (iv) hidden Markov model

(HMM)-based (Le et al., 2013; Yin et al., 2013). However, none
of these previous methods has successfully corrected errors in

NGS reads from large genomes without consuming a large

amount of memory that is not accessible to most researchers
(see detailed discussions in the Supplementary Methods).

Previous evaluations showed that some error correction tools re-
quire4128 gigabyte (GB) of memory to correct errors in genomes

with 120Mb, and the others need tens of GB of memory (Yang

et al., 2012). For a human genome, previous approaches would
need hundreds of GB of memory. Even if a computer with hun-

dreds of GB of memory is available, running such memory-
hungry tools degrades the efficiency of the computer. While the

error correction tool runs, we cannot do any other job using the

computer if most of the memory is occupied by the error correc-
tion tool. This can be a critical problem for data centers, where a

large amount of data should be processed in parallel.
In several works, Bloom filters (Bloom, 1970) or counting

Bloom filters (Fan et al., 2000) were used to save a k-mer spec-
trum, which includes all the strings of length k (i.e. k-mers) that

exist more than a certain number of times in reads (Liu et al.,

2011; Shi et al., 2009; Shi et al., 2010a, b). Although Bloom filter
is a memory-efficient data structure, the memory reduction by

previous Bloom filter-based methods did not reach their max-
imum potential because of the following four reasons: (i) The size

of a Bloom filter should be proportional to the number of dis-

tinct k-mers in reads, and the number of distinct k-mers was
conservatively estimated, thus could be much higher than the

actual number. (ii) They could not remove the effect of false
positives from Bloom filters. To make the false-positive rate of

the Bloom filters small, the size of Bloom filters were made large.

(iii) Because they could not distinguish error-free k-mers from
erroneous ones before a Bloom filter was constructed, both of

the k-mers needed to be saved in Bloom filters. (iv) Multiple*To whom correspondence should be addressed.

1354 � The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

 at B
iology L

ibrary on June 9, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://sourceforge.net/p/bless-ec
http://sourceforge.net/p/bless-ec
mailto:dchen@illinois.edu
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
1
2
; Zhao
,
etal.
, 2011
3
,
4
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
over
p
; Shi
, etal.
, 2010
s
1
2
In order to
3
4
http://bioinformatics.oxfordjournals.org/

Bloom filters (or counting Bloom filters) were needed to count
the multiplicity of each k-mer.
Besides the large memory consumption of the existing methods,

another problem encountered during the error correction process

is that there exist many identical or very similar subsequences in a
genome (i.e. repeats). Because of these repeats, an erroneous sub-

sequence can sometimes be converted to multiple error-free sub-
sequences, making it difficult to determine the right choice.
In this article, we present a new Bloom filter-based error cor-

rection algorithm, called BLESS. BLESS belongs to the k-mer

spectrum-based method, but it is designed to remove the afore-
mentioned limitations that previous k-mer spectrum-based solu-

tions had. Our new approach has three important new features:

(1) BLESS is designed to target high memory efficiency for

error correction to be run on a commodity computer. The
k-mers that exist more than a certain number of times in

reads are sorted out and programmed into a Bloom filter.

(2) BLESS can handle repeats in genomes better than previous
k-mer spectrum-based methods, which leads to higher ac-

curacy. This is because BLESS is able to use longer k-mers
compared with previous methods. Longer k-mers resolve

repeats better.

(3) BLESS can extend reads to correct errors at the end of
reads as accurately as other parts of the reads. Sometimes

an erroneous k-mer may be identified as an error-free one

because of an irregularly large multiplicity of the k-mer.
False positives from the Bloom filter can also cause the

same problem. BLESS extends the reads to find multiple
k-mers that cover the erroneous bases at the end of the

reads to improve error correction at the end of the reads.

To identify erroneous k-mers in reads, we need to count the

multiplicity of each k-mer. Counting k-mers without extensive
memory is challenging (Deorowicz et al., 2013; Marçais and

Kingsford, 2011; Melsted and Pritchard, 2011; Rizk et al.,
2013; Roy et al., 2013). BLESS uses the disk-based k-mer count-

ing algorithm like Disk Streaming of k-mers (DSK) (Rizk et al.,
2013) and k-mer Counter (KMC) (Deorowicz et al., 2013).

However, BLESS needs to save only half of the k-mers that
DSK does in hash tables, because it does not distinguish a k-

mer and its reverse complement.
To evaluate the performance of BLESS, this study used real

NGS reads generated with the Illumina technology as well as
simulated reads. These reads were corrected using BLESS as

well as six previously published methods. Our results show that
the accuracy of BLESS is the best while it only consumes 2.5% of

the memory usage of all the compared methods on average. Our

results further show that correcting errors using BLESS allowed
us to align 69% of previously unaligned reads to the reference

genome accurately. BLESS also increased NG50 of scaffolds by
50% and decreased assembly errors by 66% based on the results

from Velvet (Zerbino and Birney, 2008).

2 METHODS

2.1 Overview of the BLESS algorithm

BLESS belongs to the k-mer spectrum-based error correction category

(Pevzner et al., 2001). A k-mer is called solid if it exists more than M, the

k-mers multiplicity threshold, times in the entire reads, and weak other-

wise. If a k-mer extracted from a read is a weak k-mer, it can be con-

sidered as having sequencing errors.

Figure 1 depicts the high-level diagram of BLESS. To convert weak

k-mers to solid k-mers, we need to save the list of the solid k-mers and to

query a k-mer to the list efficiently. In Step 1, k-mers in reads are dis-

tributed into multiple files, and the multiplicity of k-mers in each file is

counted. In Step 2, only solid k-mers are programmed into a Bloom filter,

and errors in reads are corrected using the Bloom filter. Finally, in Step 3,

BLESS restores the false corrections made by the false positives from the

Bloom filter.

2.2 Step 1: Counting the multiplicity of k-mers

The first step in BLESS is to count the multiplicity of each k-mer, fol-

lowed by finding the solid k-mers, and programming those solid k-mers

into a Bloom filter. By counting the multiplicity of k-mers, we can sort

out the solid k-mers that are needed for further analysis. We can also

create a k-mer multiplicity histogram to be used to determine the multi-

plicity threshold M, if M is not predetermined by the user. The total

number of solid k-mers is used to determine the size of the Bloom filter.

Supplementary Figure S1 in the Supplementary Document shows how

to count the multiplicity of each k-mer. First, all the k-mers in the reads

are distributed into N (default 100) files to reduce the required memory

for this process. In BLESS, a k-mer and its reverse complement are

treated as the same k-mer, which is called a canonical k-mer. If the

middle base of a k-mer is A or C (k is always an odd number), the

k-mer can be used as a canonical k-mer of itself. If the middle base is

G or T, the reverse complement of the k-mer becomes the canonical

k-mer of the original k-mer. A hash value is calculated for each canonical

k-mer, and the file that the k-mer will be written into is determined by

using the hash value. Next, the k-mer is written to the file. After this

process, all the identical k-mers and their reverse complements are written

into the same file.

The next step is to open each file that contains k-mers and count the

number of k-mers using a hash table. After all the k-mers in the file are

updated in the hash table, we check the multiplicity of each k-mer in the

hash table. If the multiplicity of a particular k-mer is larger thanM, it is a

solid k-mer and is subsequently written to the solid k-mer list file Fs.

If M is not given by the user, the k-mer multiplicity histogram is

generated, and M is determined using the histogram. The process of

determining M using the k-mer multiplicity histogram is explained later

(see Section 2.5). After completing this process for all the N files, we can

create the solid k-mer list file Fs and determine the number of distinct

solid k-mers Ns. The time complexity of counting the multiplicity of

k-mers is O(RL), where R is the number of reads and L is the read length.

2.3 Step 2: Correcting errors using a Bloom filter

To convert weak k-mers into solid k-mers, we must know the solid k-mer

list. If this list was stored in file Fs, it would be impossible to rapidly check

whether a k-mer is in the list or not. BLESS solves this problem by

recording all the solid k-mers in a Bloom filter, which supports fast mem-

bership test while using little memory. An open source Cþþ Bloom filter

library (http://www.partow.net/downloads/OpenBloomFilter.zip) is used

in BLESS. When implemented, the size of the bit vector and the number

of hash functions in the Bloom filter are determined usingNs and a target

false positive probability. After constructing the Bloom filter, all the solid

k-mers in Fs are programmed into the Bloom filter. The weak k-mers are

then converted into solid ones using this Bloom filter.

Let read r be a sequence of symbols {A, C, G, T} with length L. The

i-th base of read r is denoted by r[i], where 0 � i � L� 1. The form r[i, j]

is a substring from the i-th base to the j-th base of r. The pseudo code of

the correction process for a read r is shown in Supplementary Figure S2.

This process is initiated from finding all the solid k-mer islands in r. A

1355

BLESS

 at B
iology L

ibrary on June 9, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 paper
in order
,
to
In order to
s
Then in
The final
step
of
is to
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
in order
,
Determining parameters
In order to
http://www.partow.net/downloads/OpenBloomFilter.zip
<inlinemediaobject><imageobject><imagedata fileref=
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
http://bioinformatics.oxfordjournals.org/

solid k-mer island consists of consecutive solid k-mers, which is in neigh-

borhoods with weak k-mers or the end of the read. To find them, all the

k-mers from r[0, k� 1] to r[L� k, L� 1] are converted to their canonical

forms and the canonical forms are queried to the Bloom filter. If the

Bloom filter output for a k-mer is true, then the k-mer is solid. If a

solid k-mer island has a solid k-mer with quality scores510, the k-mer

is removed from the solid k-mer island.

The relation between solid k-mer islands and weak k-mers is shown in

Supplementary Figure S3A. Weak k-mers have errors, but the errors

cannot be in the bases that overlap solid k-mers. This is because the

errors that are in the overlapped bases would make the solid k-mers

erroneous, while we assume that solid k-mers do not have errors.

Therefore, a weak k-mer can be converted to a solid one by modifying

bases that do not overlap with solid k-mers.

The weak k-mers that exist between two consecutive solid k-mer is-

lands SIi and SIiþ1 can be corrected by using the rightmost k-mer of SIi
and the leftmost k-mer of SIiþ1. This makes all the corrected bases be-

tween SIi and SIiþ1 covered by k consecutive solid k-mers. If an erroneous

base exists in the first or last k� 1 bases of a read, it is not possible to get

consecutive k-mers covering the erroneous base. BLESS solves this prob-

lem by extending a read on both ends.

When there is no solid k-mer island in a read, BLESS tries to change

the first k-mer to a solid one by substituting low quality bases with dif-

ferent bases. If the first k-mer is successfully converted to solid k-mer(s),

the solid k-mer(s) are traced to the right.

The detailed explanation and examples of the BLESS error correction

algorithm can be found in the Supplementary Document.

2.4 Step 3: Restoring corrections caused by false positives

Although it would be rare, it is still possible that BLESS could change an

erroneous base to a wrong one because of the false positives from the

Bloom filter. Therefore, BLESS has a step to remove all the corrections

caused by the false positives from the Bloom filter. To achieve this,

BLESS first extracts candidate k-mers that contain modified bases and

counts their multiplicity to check whether their multiplicity values are

higher than the thresholdM. After all the candidate k-mers are extracted,

they are split into N files using the same hash function that was used for

splitting k-mers in the original reads into N files. We have already saved

the hash tables containing the multiplicity of k-mers in a hard disk; the

hash tables are reloaded into memory, and the multiplicity of each can-

didate k-mer is checked. If the multiplicity of a candidate k-mer is smaller

than M, we may conclude that the modification for the k-mer is made

based on false positives, and the correction is reversed. The time com-

plexity of this step is proportional to the number of corrected bases, and it

can be expressed as O(RL).

2.5 Determining parameters

Output quality of BLESS is affected by the choice of the k-mer multipli-

city threshold, M. The distribution of k-mer multiplicity in the original

reads is the mixture of error-free k-mers and erroneous k-mers. The multi-

plicity of error-free k-mers is known to follow the Poisson distribution

and the multiplicity of erroneous k-mers can be fit to the gamma distri-

bution (Kelley et al., 2010; Yang, 2011). The histogram of the multiplicity

of k-mers usually has the curve like the red line in Supplementary Figure

S4 if k is in a reasonable range. Such a histogram can be decomposed into

the histogram of error-free k-mers (blue line) and erroneous k-mers (gray

line). If M is too small, many erroneous k-mers may be recognized as

solid k-mers (i.e. larger false positives and smaller false negatives). On the

other hand, if M is too large, many error-free k-mers become weak

k-mers (i.e. larger false negatives and smaller false positives).

We define the optimal value of M, Moptimal, as the M value that min-

imizes the sum of false positives and false negatives. In BLESS, the histo-

gram like the red line in Supplementary Figure S4 can be easily generated

because BLESS already calculated the multiplicity of each k-mer. In the

histogram, the sum of false positives and false negatives becomes

the minimum when M is the valley point of the U-shape curve with the

following two assumptions: (i) as M increases from the value point, the

corresponding value of the gray line becomes smaller and the correspond-

ing value of the blue line becomes larger and (ii) asM decreases from the

valley point, the corresponding value of the gray line becomes larger and

the corresponding value of the blue line becomes smaller. This is a rea-

sonable assumption if error-free k-mers and erroneous k-mers can be fit

into the Poisson and gamma distribution, respectively, and two distribu-

tions are away from each other.

If we assume that the currentM value is the valley point andM moves

to the right, the sum of false positives and false negatives increases even

though the number of false positive decreases. Similarly, if M moves to

the left, the sum of false positives and false negatives also increases even

though the number of false negatives decreases. Therefore, the sum of

false positives and false negatives becomes its minimum when M is the

valley point of the histogram of the multiplicity of k-mers.

Choosing the appropriate k is also needed to get more accurate results

from BLESS. If k is too long, the average multiplicity of solid k-mers

becomes smaller. On the other hand, if k is too short, there may be too

many unnecessary paths in the error correction process (see the

Supplementary Document). This will increase not only the probability

that wrong corrections are made but also BLESS’s runtime.

Unfortunately, BLESS currently cannot automatically determine the op-

timal k value. However, our empirical analysis shows that the k value that

satisfies the following two conditions usually generates the results close to

the best one: (i) Ns/4
k
� 0.0001 where Ns represents the number of unique

solid k-mers (BLESS reports Ns) and (ii) number of corrected bases be-

comes the maximum at the chosen k value.

Fig. 1. The high level block diagram of BLESS. The cylinders and the rectangle with extra lines depict data written to disk and memory, respectively

1356

Y.Heo et al.

 at B
iology L

ibrary on June 9, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

,
below
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
due to
in order
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
Free
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
1
As
.
2
As
Free
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
1
2
Number
http://bioinformatics.oxfordjournals.org/

3 RESULTS

To assess the performance of BLESS, we corrected errors in five

different read sets from various genomes using BLESS and six

other error correction methods. All the evaluations were done on

a server with two Intel Xeon X5650 2.67GHz processors, 24GB

of memory and Scientific Linux. The version and parameters of

all tools used in the experiments can be found in the

Supplementary Document.

3.1 Datasets used in the evaluation

We used three datasets generated by the Illumina sequencing

technology and two simulated read sets. The characteristics of

each read set are summarized in Table 1. The first read set,

labeled D1, is the fragment library of Staphylococcus aureus

used in the Genome Assembly Gold-standard Evaluations

(GAGE) competition (Salzberg et al., 2012). The second

genome (D2) is high coverage (160�) low error rate (0.5%)

Escherichia coli reads. The third read set is the fragment library

of human chromosome 14 (D3) reads that were also used in the

GAGE competition. To check the scalability of BLESS, we also

used simulated reads generated from GRCh37 human chromo-

some 1 (D4). The reads were generated using simLibrary and

simNGS (http://www.ebi.ac.uk/goldman-srv/simNGS), after all

Ns in the reference sequence were removed. The head of each

read indicates the index of the reference sequence where the read

is from. Using the information, we also generated an error-free

version of D4 (D4Error-Free hereafter). The last dataset D5 was

generated to evaluate the improvement of de novo assembly re-

sults after error correction. Four read sets with 10–40� of read

coverage and their error-free versions were generated from the

first 10Mb of the reference sequence for D4 using simNGS.

Because D5 can be treated as a subset of D4, we only report

de novo assembly results for D5 here, and all the other evaluation

results for D5 are in the Supplementary Document.

To provide a controlled assessment of the accuracy of correc-

tions made by BLESS, errors in the input read sets are identified

using the error correction evaluation toolkit (ECET) (Yang

et al., 2012). ECET first aligns reads to the reference sequence

using BWA (Li and Durbin, 2009) and identifies a set of differ-

ences between the reads and the reference. ECET evaluates cor-

rected reads by counting how many differences in the set are

removed. In our evaluations, insertions and deletions were not

included in the set because insertions and deletions can be cor-

rected by substitutions and ECET regards these substitutions as

wrong modifications. For example, if a genome sequence con-

tains ACGT and a read from the genome has one insertion be-

tween C and G (i.e. ACAG), the insertion error can be corrected

by substituting the third (fourth) base A (G) with G (T). ECET

counts the third and fourth bases as wrong modifications.

3.2 Error correction accuracy

We compared BLESS with the following existing error correction

tools: Quake (Kelley et al., 2010), Reptile (Yang et al., 2010),

HiTEC (Ilie et al., 2011), ECHO (Kao et al., 2011) and Musket

(Liu et al., 2013). We chose these tools to compare mainly be-

cause they cover the three major categories of error correction

methods see the review by Yang et al. (2012), i.e. k-mer spec-

trum-based, suffix tree-based and MSA-based methods. To the

best of our knowledge, PREMIER (Yin et al., 2013) is the only

HMM-based error correction tool for DNA reads, and it was

not included in our comparison because its source code is not

available. In addition, we also considered Bloom filter-based

methods that were previously published. We selected DecGPU

(Liu et al., 2011) to compare with BLESS because it is the only

Bloom filter-based method that can run without a GPU.
The comparison results of BLESS and the other six error cor-

rection tools are summarized in Table 2. The outputs of the error

correction tools were converted to target error format (TEF) files

using the software in ECET to measure the accuracy of the

Table 1. Details of the NGS read sets used to evaluate BLESS

Genome Accession number Genome

length (bp)

Read length (bp) Number

of reads

Coverage (X) Per-base error

rate (%)

Reference Read

D1: S.aureus NC010079 SRR022868 2903 080 101 1 096 140 38.1 2.1

NC010063.1

NC012417.1

D2: E.coli NC_000913 SRR001665 4639 675 36 20 693 240 160.6 0.5

D3: Human Chr14 NC000014.8 N/A 88289 540 101 36 172 396 41.4 1.4

D4: Human Chr1. NC000001.10 N/A 225280 621 101 89 220 048 40.0 0.6

D5 (10�): Human Chr1 10Mbp 10� NC000001.10 N/A 10000 000 101 990 100 10.0 0.6

D5 (20�): Human Chr1 10Mbp 20� NC000001.10 N/A 10000 000 101 1 980 198 20.0 0.6

D5 (30�): Human Chr1 10Mbp 30� NC000001.10 N/A 10000 000 101 2 970 298 30.0 0.6

D5 (40�): Human Chr1 10Mbp 40� NC000001.10 N/A 10000 000 101 3 960 396 40.0 0.6

Note: [Genome Length] Length of genomes without Ns, [Number of Reads] Number of reads after all paired reads that contain Ns are removed. To use the software in ECET,

all the reads containing Ns were removed using the program in ECET. The software removes reads without considering the paired-end information, but this may cause

problems in our evaluation process because several evaluations use the paired-end information. To keep the paired-end information intact, both reads in a pair were removed if

either of them contained Ns; [Coverage] Number of Reads�Read Length/Genome Length; [Per-base Error Rate] Mismatches/[(Total Number of Reads - Unaligned

Reads)�Read Length].

1357

BLESS

 at B
iology L

ibrary on June 9, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
.
A
X
,
.
C
 (D3)
http://www.ebi.ac.uk/goldman-srv/simNGS
f
F
E
f
-
X
p
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
 hereafter
,
(
,
,
in order
http://bioinformatics.oxfordjournals.org/

corrected reads. In each dataset, we counted the following: erro-

neous bases successfully corrected (true positive, TP), correct or

erroneous bases erroneously changed (false positives, FP), erro-

neous bases untouched (false negatives, FN) and the remaining

bases (true negative, TN). Then, sensitivity, gain and specificity

were calculated using these four values. Sensitivity, defined as

TP/(TPþFN), shows how many errors in the input reads are

corrected. Gain, defined as (TP�FP)/(TPþFN), represents the

ratio of the reduction of errors to the total number of errors in

the original reads. Gain can be negative if the number of newly

generated (FP) errors is greater than the number of corrected

errors. Specificity, defined as TN/(TNþFP), shows the fraction

of error-free bases left unmodified. DecGPU and Quake cut

bases that they cannot correct, and these trimmed bases are con-

sidered as FPs in ECET. In our evaluation, trimmed bases were

excluded from FPs and thus not used to calculate sensitivity, gain

and specificity because considering trimmed bases as FPs made

gain of DecGPU and Quake worse than what they really were.

While some error correction tools such as HiTEC are able to

independently choose appropriate parameters, the error correc-

tion quality of other tools depends on parameters that have to be

set by the users. We generated the corrected read sets that pro-

vided the best gain using each error correction tool to compare

the best results from the methods. To generate such read sets, the

values of all the key parameters of each tool were scanned in a

continuous fashion within their respective ranges until the gain of

each tool reached the maximum. The parameters that were used

to generate outputs can be found in the Supplemental

Document. BLESS, Musket, Quake, Reptile and DecGPU

were able to generate results for all the four datasets. ECHO

did not complete the error correction for D2 even after 60 h of

running, so we could not produce ECHO results for D2 and

larger datasets (i.e. D3 and D4). HiTEC also failed to correct

errors in D3 and D4 because it ran out of memory.
As shown in Table 2, BLESS consistently outperforms the

other correction tools for all the input datasets. For D1–D4,

the sensitivity of BLESS is higher than that of the other methods,

whereas the difference between sensitivity and gain of BLESS is

smaller than those of the other methods. This suggests that

BLESS can correct more errors in the reads and that the results

from BLESS always have fewer errors than those from other

tools. The results for D5 are summarized in Supplementary

Table S1 in the Supplementary Document.
The higher accuracy of BLESS comes from its ability to use

longer k-mers. If k is too short, an erroneous k-mer may be

recognized as solid, because it is more probable that a short

erroneous k-mer exists in other parts of the genome. Even

though an erroneous k-mer is recognized as a weak k-mer, it

may be possible to convert it to multiple solid k-mers if k is

too short. Supplementary Figure S5 shows how the number of

Table 2. Accuracy, memory usage and runtime comparison on error correction algorithms

Data Software Accuracy Memory (MB) Wall-clock

time (min)

Number

of threads

Sensitivity Gain Specificity

D1 BLESS 0.895 0.894 1.000 11 6 1

DecGPU 0.076 0.002 0.998 1556 2 12

ECHO 0.710 0.707 1.000 6063 96 12

HiTEC 0.859 0.838 0.999 2127 12 1

Musket 0.709 0.703 1.000 362 2 12

Quake 0.145 0.144 1.000 644 8 12

Reptile 0.564 0.518 0.999 1232 7 1

D2 BLESS 0.968 0.967 1.000 14 23 1

DecGPU 0.333 �0.028 0.998 2171 5 12

HiTEC 0.920 0.880 1.000 14096 83 1

Musket 0.934 0.926 1.000 347 3 12

Quake 0.838 0.837 1.000 8339 74 12

Reptile 0.957 0.951 1.000 1008 52 1

D3 BLESS 0.674 0.644 1.000 150 180 1

DecGPU 0.096 �0.058 0.998 2223 28 12

Musket 0.575 0.537 1.000 3763 31 12

Quake 0.128 0.126 1.000 2126 62 12

Reptile 0.577 0.529 0.999 11783 453 1

D4 BLESS 0.892 0.870 1.000 372 459 1

DecGPU 0.358 �0.017 0.998 2473 82 12

Musket 0.888 0.866 1.000 7815 56 12

Quake 0.583 0.539 1.000 8863 188 12

Reptile 0.807 0.704 0.999 19007 1775 1

Note: Sensitivity, gain and specificity are defined as TP/(TPþFN), (TP�FP)/(TPþFN) and TN/(TNþFP), respectively. The best value for each data is shown in bold. For

each tool, many different combinations of parameters were applied, and the output that showed the best gain was chosen.

1358

Y.Heo et al.

 at B
iology L

ibrary on June 9, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

,
,
-
,
in order
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
,
ours
-
ile
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
http://bioinformatics.oxfordjournals.org/

distinct k-mers changes and approaches Nideal in the reference

sequence of D2 and D4 as k increases. Nideal represents the

number of distinct k-mers in the reference sequence when all

the k-mers in it are distinct.More repeats can be differentiated

by using longer k, which is helpful in removing ambiguities in the

error correction process. The number of distinct k-mers for E.coli

becomes 96% ofNideal, when k is 15. However, the same ratio for

human chromosome 1 is only 50% for the same k value. When k

becomes 31, this ratio for human chromosome 1 surpasses 90%.

Note that a longer k value does not always guarantee better error

correction results, as the average multiplicity of k-mers decreases

as k increases. However, if k is too short, it would be more dif-

ficult to differentiate solid k-mers from weak ones and k should

be increased until a sufficient average k-mer multiplicity is

guaranteed.
In the NGS reads that were generated using the Illumina tech-

nology, errors are usually clustered at the 30 end of the reads.

Therefore, correcting errors in that region is an important feature

of error correction methods, although correcting such errors is

more difficult than correcting errors in the middle of the reads.

BLESS can correct errors at the end of the reads as accurately as

in other parts through a reads extension. To assess the number of

corrected errors in each position of the reads, we calculated the

number of TPs and sensitivity at each position. Figure 2A shows

the number of TPs in each corrected read set for D1. In this

graph, Reference refers to the number of errors in each position

of the original reads, which rapidly increases at the 30-end of the

reads. Figure 2B shows the ratio of TPs to the number of errors

(i.e. sensitivity) in each position of the reads in D1. We observed

that BLESS maintains high sensitivity even in the regions where

most of the errors are clustered, as indicated by the overall flat

contour of the line shown in the figure. The figures for the other

inputs can be found in Supplementary Figure S6.

3.3 Memory usage

The peak memory usage and runtime of each method is also

displayed in Table 2. The average memory usage of BLESS is

only 2.5% of the other methods. On average, BLESS consumes

5.6% of the memory that DecGPU does, which is another

Bloom filter-based method. DecGPU programs k-mers into a

counting Bloom filter, which helps the multiplicity of k-mers to

be saved with small memory with a certain false-positive

probability.

BLESS requires less memory than previous Bloom filter-based

methods for the following reasons. First, BLESS can count the

multiplicity of k-mers and find out the list of solid k-mers with-

out constructing Bloom filters. Therefore, we eliminate the need

to estimate the number of distinct k-mers. We also do not need to

program weak k-mers into the Bloom filter. Second, BLESS uses

a Bloom filter instead of a counting Bloom filter. Previous meth-

ods use counting Bloom filters to count the multiplicity of

k-mers, and this information is then used to identify solid

k-mers. In BLESS, however, we already know the list of

solid k-mers. Therefore, it is not necessary to know the multipli-

city of k-mers to identify solid k-mers anymore, and solid k-mers

can be programmed into a Bloom filter instead of a counting

Bloom filter. Finally, BLESS is able to remove false corrections

that are generated by false positives from the Bloom filter.

Therefore, the target false-positive probability of the Bloom

filter used in BLESS does not need to be very small, which

helps to reduce the size of the Bloom filter. Table 2 also com-

pares the runtime of BLESS with the other methods. This is

discussed in more detail in the Supplemental Document.

3.4 Alignment

To evaluate the impact of error correction on read mapping, we

compared the number of reads that could be aligned to the ref-

erence sequence with Bowtie (Langmead et al., 2009) before and

after error correction. In Table 3, each column denotes the per-

centage of exactly aligned reads out of all the reads. We used the

paired-end alignment capability of Bowtie, and the reads that

could not be aligned uniquely in the reference sequences were

counted. The detailed Bowtie parameters used can be found in

the Supplemental Document.
All error correction methods reduced the number of unaligned

reads, but BLESS outperformed the others for all the four

inputs. After errors were corrected using BLESS; 81% of the

entire reads and 69% of the initially unaligned reads could be

Table 3. Ratio of the number of exactly aligned reads to the number of

entire reads in percentage

Software D1 D2 D3 D4

Uncorrected 19.5 73.5 42.8 36.4

Error-Free N/A N/A N/A 80.3

BLESS 75.1 96.5 74.1 77.2

DecGPU 36.6 90.7 55.7 63.8

ECHO 53.6 N/A N/A N/A

HiTEC 70.1 95 N/A N/A

Musket 66.9 95.3 69.6 74.3

Quake 58.1 94.3 72 65.9

Reptile 48.5 96.1 66.4 67.5

Note: Alignment was performed using the paired-end alignment of Bowtie. The best

value for each column is shown in bold. [Error-Free] Result for D4Error-Free. When

we ran Bowtie, the maximum and minimum values of insert length were set, and this

prevented 19.7% of Error-Free reads from being aligned to the reference sequence.

Fig. 2. The number of TPs and per-base sensitivity calculated in each

position of the D1 reads. (A) The number of TPs calculated separately in

each position of D1. ‘Reference’ shows the entire number of mismatch

errors of the uncorrected reads. The other lines show the number of

corrected errors made by each error correction tool. (B) The ratio of

TP to Reference (i.e. number of errors in uncorrected reads) in each

position of the D1 reads

1359

BLESS

 at B
iology L

ibrary on June 9, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 Indeed, m
C
'
'
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
BLESS'
of all
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
,
http://bioinformatics.oxfordjournals.org/

aligned to the reference on average without any mismatches. This
ratio was higher than the ratio of the other methods.
D4 is a simulated read set, and we know where each read

should be aligned. For each aligned read in the BLESS output,
we compared the aligned position and the position where it ori-

ginated. In all, 99.94% of the aligned reads were aligned to the

correct positions. Even though this evaluation could not be done
for D1–D3, the percentage of D1–D3 will not be very different

from the D4 result because the same strict Bowtie options were
used for all the datasets. The alignment results for D5 can be

found in Supplementary Table S2.

3.5 De novo assembly

Error correction can improve not only read alignment but also

de novo assembly results. To compare the effect of error correc-
tion methods on de novo assembly, scaffolds were generated

using two de Bruijn graph (DBG)-based assemblers Velvet
(Zerbino and Birney, 2008) and SOAPdenovo (Li et al., 2010)

with four D5 read sets (10, 20, 30 and 40� read coverage). A
string graph-based assembler SGA (Simpson and Durbin, 2012)

was also used to show the effect on non-DBG-based assemblers.
Scaffolds were also made using the output reads of each error

correction tool, and all the scaffold sets were compared with one
another.

The output quality of Velvet and SOAPdenovo is sensitive to
the choice of k. Therefore, all the odd numbers between 35 and

89 were applied to Velvet and SOAPdenovo as k for each input
read set. The k value that gave the longest corrected scaffold

NG50 was selected. NG50 is the length of the longest scaffold,
S, and that the sum of the lengths of scaffolds whose lengths are

greater than or equal to S is greater than or equal to half the
length of the genome length (Earl et al., 2011). For SGA, since

the most important parameter is the minimum overlap, all the
numbers from 50 to 90 were tested for each dataset to find the

value that generated the longest corrected scaffold NG50. The

parameters used for each dataset are described in Supplementary
Tables S3–S5. Each scaffold set was evaluated using the GAGE

assembly evaluation toolkit (Salzberg et al., 2012).
Table 4 shows the Velvet assembly results for D5 (40�).

Corrected NG50 is equal to NG50 except that corrected NG50

is calculated after the scaffolds are broken at places where as-
sembly errors occur (Salzberg et al., 2012). The GAGE software

generates contigs by splitting scaffolds whenever a run of Ns are
found. Errors in contigs include single mismatches, indels, inver-

sions and relocations. Errors in scaffolds are the summation of
indels, inversions and relocations. Genome coverage shows how

many bases in the reference sequence are covered by the scaf-
folds. Error-Free row shows the assembly results for D5Error-Free
(40�).
The assembly results of BLESS were better than the others in

terms of assembly length and accuracy. Corrected NG50 was
improved from 670 to 1004kb after errors were corrected by

BLESS. BLESS also reduced the number of errors in the contigs
from 1321 to 449, and improved genome coverage from 99.5 to

99.8%. The complete de novo assembly results of Velvet,
SOAPdenovo and SGA can be found in Supplementary Tables

S3–S5.

3.6 Removing false positives caused by the Bloom filter

Bloom filter may return incorrect querying results that cause

false positives (Bloom, 1970). In BLESS, we designed two pro-
cesses to remove such false positives. The first process is done

simultaneously with the error correction. It is possible that a
weak k-mer can be converted to another weak k-mer that is

recognized as a solid k-mer because of a false positive from the
Bloom filter. To prevent this, BLESS modifies a base only when

all the k k-mers that overlap the modified base are solid k-mers.
As the second process, we check the multiplicity of k-mers that

include modified bases. The multiplicity of the k-mers is checked
using the hash tables that were built to find solid k-mers in reads.

If the multiplicity of a k-mer is smaller thanM, the modified base
in the k-mers is restored.

The second column of Supplementary Table S6 shows the
number of corrections made by BLESS. Detected false positives

in the third column are the number of FPs that were made by the
false positives from the Bloom filter and detected in the final

checking process. The ratio of the third column to the second
was at most 0.0001%, whereas the target false positive probabil-

ity of the Bloom filter in BLESS was set to its default value (i.e.
0.1%) for all the input sets. This number comes from the fact

that BLESS makes a correction only if the querying results of k
(or 5 at the end of reads) consecutive k-mers that cover the

corrected base are true. These results demonstrate that our pre-
filtering method successfully prevents most of FPs made by the

false positives of the Bloom filter.

3.7 Choosing parameters automatically

In BLESS, M affects the output quality, and BLESS can auto-

matically choose this value. Supplementary Table S7 shows how
close the values chosen by BLESS are to the best M that makes

the gain of BLESS’s output the highest. The second column
represents the best M; the third column is the corresponding

gain when M is the value in the second column. The fourth

Table 4. Summary of Velvet assembly results for D5 (40�)

Software Scaffold

corrected

NG50 (kbp)

Number of

errors in

contigs

Number of

errors in

scaffolds

Genome

coverage (%)

Uncorrected 671.0 1,321 0 99.5

Error-free 1239.1 543 7 99.8

BLESS 1004.1 447 2 99.8

DecGPU 751.6 566 2 99.8

ECHO 665.4 827 8 99.8

HiTEC 805.2 813 0 99.7

Musket 1004.1 476 3 99.8

Quake 850.4 553 2 99.8

Reptile 1004.0 466 4 99.8

Note: The best value for each column is shown in bold. [Error-Free] Assembly

results for D5Error-Free (40�). An inversion error means that part of a contig or

scaffold comes from a different strand with respect to the true genome. A relocation

means that part of a contig or scaffold is matched with a different part within a

chromosome. [Number of errors in contigs] Single mismatchesþ Indelsþ

InversionþRelocation in contigs. [Number of errors in scaffolds] Inversionsþ

Relocationþ Indels in scaffolds.

1360

Y.Heo et al.

 at B
iology L

ibrary on June 9, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

-
-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
X
X
X
,
X
in order
/where
in order
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
X
,
,
E
X
kbp
,
k
p
,
%
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
in order
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
ile
is
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
'
.
http://bioinformatics.oxfordjournals.org/

and fifth columns represent M chosen by BLESS and the corres-

ponding gain. For D1 and D3, the values that BLESS chose were

the same as the best M in the second column. For D2 and D4,

there are small differences between M chosen by BLESS and the

best M. However, the difference between the third and fifth

column was 0.001 and 0, respectively. Therefore, BLESS’s auto

M selection capability achieves the best gain or the nearly best

gain in all the four input sets.

4 DISCUSSION

Current NGS technologies produce errors in reads, which can

influence the quality of downstream analysis. Many methods

have been developed to correct such sequencing errors.

However, most previous methods cannot correct errors in large

genomes. Even if a few methods succeeded in correcting large

genomes, their outputs still contain many uncorrected errors. In

addition, the memory requirement for the existing tools has been

still too large for most researchers, who might only have access

to computers with a moderate amount of memory.

In this work, we present a novel error correction algorithm for

NGS reads, called BLESS, which has two novel features: (i)

BLESS consumes much less memory than previous methods.

BLESS can sort out minimum k-mers needed to correct errors,

and program the k-mers in a minimum-sized Bloom filter. This

makes BLESS consume much less memory than any other error

correction method including previous Bloom filter-based ones.

(ii) BLESS also generates more accurate results for reads from

genomes with many short repeats. This is mainly because

BLESS is not limited by the choices of the length of the k-mer

(see Software options in the Supplementary Document for de-

tails). While the maximum k is usually 20–30 in other methods,

BLESS is able to remove ambiguities in the error correction

process by choosing large numbers for k without increasing

memory usage. Furthermore, BLESS is efficient at correcting

errors close to the ends of the reads. BLESS corrects errors at

the ends of the reads by extending the ends.
BLESS was compared with previous top performers using real

and simulated reads. The experimental results showed that

BLESS generated more accurate results than previous algorithms

while consuming only 2.5% of the memory usage of the com-

pared methods on average. Moreover, running BLESS improved

the length and accuracy of de novo assembly results for all the

three widely used assemblers, Velvet, SOAPdenovo and SGA.

BLESS also made 69% of unaligned reads exactly aligned to

reference sequences.
As pointed out before, BLESS can choose large values for k.

The only drawback to large k values is that the average multi-

plicity of such k-mers drops. If the average multiplicity of k-mers

is too low, we cannot precisely distinguish erroneous k-mers

using their multiplicity. Nevertheless, it is important to note

thatbecause the DNA sequencing cost keeps dropping and the

throughput keeps increasing, we expect to solve this problem by

increasing the depth of reads. The memory usage of BLESS is

proportional only to the number of solid k-mers. Because the

solid k-mers eventually represent the k-mers that exist in the

genome sequence, the number of solid k-mers remains constant

even as the number of input reads escalates. Therefore, memory

consumption of BLESS will not increase even when read depth

increases as shown in Supplementary Table S1.
There are two future avenues to pursue. First, although the

runtime of BLESS is already competitive as shown in Table 2,

supporting multiple threads will improve BLESS’s runtime fur-

ther. BLESS’s wall-clock time decomposition for D4 is depicted

in Supplementary Figure S7. Most of the time is spent counting

the number of distinct solid k-mers and correcting errors. The

runtime of both processes can be improved through paralleliza-

tion. In the counting step, k-mers are distributed intoN files, and

each file is processed in succession. This step can be parallelized

without degrading memory usage. The error correction process

of a read is independent of other reads, and therefore the error

correction part can be easily parallelized.
Second, developing a method to automatically choose k may

be added. Recent work (Chikhi and Medvedev, 2014) showed

that a k-mer multiplicity histogram can be made in a short time

by sampling reads and an optimal k value can be found using the

histograms. This sampling-based approach will also work for

BLESS. It will be helpful to reduce the runtime because it can

prevent users from running BLESS multiple times with different

k values.

ACKNOWLEDGEMENTS

The authors thank the National Center for Supercomputing

Applications at the University of Illinois for providing compu-

tational resources.

Funding: Samsung Academic Education Program (Y.H.) and In3

Award from the University of Illinois (D.C., W.M.H., and J.M.)

(in part).

Conflict of Interest: none declared.

REFERENCES

Beerenwinkel,N. and Zagordi,O. (2011) Ultra-deep sequencing for the analysis of

viral populations. Curr. Opin. Virol., 1, 413–418.

Bloom,B. (1970) Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13, 422–426.

Chaisson,M. et al. (2009) De novo fragment assembly with short mate-paired reads:

does the read length matter? Genome Res., 19, 336–346.

Chikhi,R. andMedvedev,P. (2014) Informed and automated k-mer size selection for

genome assembly. Bioinformatics, 30, 31–37.

Deorowicz,S. et al. (2013) Disk-based k-mer counting on a PC. BMC

Bioinformatics, 14, 160.

Dohm,J. et al. (2008) Substantial biases in ultra-short read data sets from high-

throughput DNA sequencing. Nucleic Acids Res., 36, e105.

Durbin,R. et al. (2010) A map of human genome variation from population-scale

sequencing. Nature, 467, 1061–1073.

Earl,D. et al. (2011) Assemblathon 1: a competitive assessment of de novo short

read assembly methods. Genome Res., 21, 2224–2241.

Fan,L. et al. (2000) Summary cache: a scalable wide-area web cache sharing proto-

col. IEEE/ACM Trans. Netw., 8, 281–293.

Frazer,K. (2012) Decoding the human genome. Genome Res., 22, 1599–1601.

Haussler,D. et al. (2009) Genome 10K: a proposal to obtain whole-genome

sequence for 10 000 vertebrate species. J. Hered., 100, 659–674.

Ilie,L. et al. (2011) HiTEC: accurate error correction in high-throughput sequencing

data. Bioinformatics, 27, 295–302.

Jiang,R. et al. (2009) Population genetic inference from resequencing data. Genetics,

181, 187–197.

Kao,W.-C. et al. (2011) ECHO: a reference-free short-read error correction algo-

rithm. Genome Res., 21, 1181–1192.

1361

BLESS

 at B
iology L

ibrary on June 9, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

.
'
1
,
2
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
-
,
since
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
'
'
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu030/-/DC1
http://bioinformatics.oxfordjournals.org/

Kelley,D. et al. (2010) Quake: quality-aware detection and correction of sequencing

errors. Genome Biol., 11, R116.

Langmead,B. et al. (2009) Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome. Genome Biol., 10, R25–R10.

Le,H.-S. et al. (2013) Probabilistic error correction for RNA sequencing. Nucleic

Acids Res., 41, e109.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows–

Wheeler transform. Bioinformatics, 25, 1754–1760.

Li,R. et al. (2010) De novo assembly of human genomes with massively parallel

short read sequencing. Genome Res., 20, 265–272.

Liu,Y. et al. (2011) DecGPU: distributed error correction on massively parallel

graphics processing units using CUDA and MPI. BMC Bioinformatics, 12, 85.

Liu,Y. et al. (2013) Musket: a multistage k-mer spectrum-based error corrector for

Illumina sequence data. Bioinformatics, 29, 308–315.

Loman,N. et al. (2012) Performance comparison of benchtop high-throughput

sequencing platforms. Nat. Biotechnol., 30, 434–439.

Marçais,G. and Kingsford,C. (2011) A fast, lock-free approach for efficient parallel

counting of occurrences of k-mers. Bioinformatics, 27, 764–770.

Medvedev,P. et al. (2011) Error correction of high-throughput sequencing datasets

with non-uniform coverage. Bioinformatics, 27, i137–i141.

Melsted,P. and Pritchard,J. (2011) Efficient counting of k-mers in DNA sequences

using a bloom filter. BMC Bioinformatics, 12, 333.

Metzker,M. (2009) Sequencing technologies—the next generation. Nat. Rev. Genet.,

11, 31–46.

Pevzner,P. et al. (2001) An Eulerian path approach to DNA fragment assembly.

Proc. Natl Acad. Sci. USA, 98, 9748–9753.

Prosperi,M. et al. (2013) Empirical validation of viral quasispecies assembly algo-

rithms: state-of-the-art and challenges. Sci. Rep., 3, http://www.nature.com/s-

rep/2013/131003/srep02837/full/srep02837.html. (8 February 2014, date last

accessed).

Qu,W. et al. (2009) Efficient frequency-based de novo short-read clustering for error

trimming in next-generation sequencing. Genome Res., 19, 1309–1315.

Rizk,G. et al. (2013) DSK: k-mer counting with very low memory usage.

Bioinformatics, 29, 652–653.

Roy,R. et al. (2013) Turtle: identifying frequent k-mers with cache-efficient algo-

rithms, [arXiv:1305.1861v1, 2013].

Salmela,L. (2010) Correction of sequencing errors in a mixed set of reads.

Bioinformatics, 26, 1284–1290.

Salmela,L. and Schröder,J. (2011) Correcting errors in short reads by multiple

alignments. Bioinformatics, 27, 1455–1461.

Salzberg,S. et al. (2012) GAGE: a critical evaluation of genome assemblies and

assembly algorithms. Genome Res., 22, 557–567.

Schirmer,M. et al. (2012) Benchmarking of viral haplotype reconstruction pro-

grammes: an overview of the capacities and limitations of currently available

programmes. Brief. Bioinform [Epub ahead of print, Dec 19, 2013].

Schröder,J. et al. (2009) SHREC: a short-read error correction method.

Bioinformatics, 25, 2157–2163.

Shah,A.R. et al. (2012) A parallel algorithm for spectrum-based short read error

correction. In: Parallel & Distributed Processing Symposium (IPDPS), 2012

IEEE 26th International. pp. 60–70.

Shi,H. et al. (2009) Accelerating error correction in high-throughput short-read

DNA sequencing data with CUDA. In: Parallel & Distributed Processing,

2009. IPDPS 2009. IEEE International Symposium on. IEEE, pp. 1–8.

Shi,H. et al. (2010a) A parallel algorithm for error correction in high-throughput short-

read data on CUDA-enabled graphics hardware. J. Comput. Biol., 17, 603–615.

Shi,H. et al. (2010b) Quality-score guided error correction for short-read sequencing

data using CUDA. Procedia Comput. Sci., 1, 1129–1138.

Simpson,J. and Durbin,R. (2012) Efficient de novo assembly of large genomes using

compressed data structures. Genome Res., 22, 549–556.

Wang,X. et al. (2012) Estimation of sequencing error rates in short reads. BMC

Bioinformatics, 13, 185.

Wijaya,E. et al. (2009) Recount: expectation maximization based error correction

tool for next generation sequencing data. Genome Inform., 23, 189–201.

Yang,X. (2011) Error correction and clustering algorithms for next generation

sequencing. In: Parallel and Distributed Processing Workshops and Phd Forum

(IPDPSW), 2011 IEEE International Symposium on. pp. 2101–2104.

Yang,X. et al. (2011) Repeat-aware modeling and correction of short read errors.

BMC Bioinformatics, 12, 1–10.

Yang,X. et al. (2012) A survey of error-correction methods for next-generation

sequencing. Brief. Bioinform [Epub ahead of print].

Yang,X. et al. (2010) Reptile: representative tiling for short read error correction.

Bioinformatics, 26, 2526–2533.

Yin,X. et al. (2013) PREMIER - PRobabilistic Error-correction using Markov

Inference in Errored Reads. arXiv, 2013, 1302.0212.

Zerbino,D. and Birney,E. (2008) Velvet: algorithms for de novo short read assembly

using de Bruijn graphs. Genome Res., 18, 821–829.

Zhao,Z. et al. (2011a) An efficient hybrid approach to correcting errors in short

reads. In: Torra,V. et al. (ed.) Modeling Decision for Artificial Intelligence.

Springer, Berlin Heidelberg, pp. 198–210.

Zhao,Z. et al. (2011b) PSAEC: An Improved Algorithm for Short Read Error

Correction Using Partial Suffix Arrays. In: Proceedings of the 5th Joint

International Frontiers in Algorithmics, and 7th International Conference on

Algorithmic Aspects in Information and Management. Springer-Verlag, Jinhua,

China, pp. 220–232.

1362

Y.Heo et al.

 at B
iology L

ibrary on June 9, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://www.nature.com/srep/2013/131003/srep02837/full/srep02837.html
http://www.nature.com/srep/2013/131003/srep02837/full/srep02837.html
http://bioinformatics.oxfordjournals.org/

