
Transitioning HPC Software to Exascale
Heterogeneous Computing

Wen-Mei Hwu, Li-Wen Chang, Hee-Seok Kim, Abdul Dakkak, and Izzat El Hajj

Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, IL 61801, USA
w-hwu@illinois.edu

Abstract— An increasing portion of the top supercomputers
in the world, including Blue Waters, have heterogeneous CPU-
GPU computational units. As we move towards exascale, we
can expect even more pervasive deployment of heterogeneous
computational units. While a handful of science teams can al-
ready use heterogeneous computational units in their production
applications, there is still significant room for the growing use.
This paper presents the current state and projected path for tran-
sitioning software into this new paradigm. We first summarize
the currently practical languages such as OpenCL, OpenACC,
and C++AMP, in increasing levels of productivity, highlighting
their recent advancements in supporting performance portability
and maintainability. We will then give a brief overview of some
emerging programming systems such as TANGRAM and Troilet
that are designed to further enhance developer productivity for
heterogeneous computing.

I. INTRODUCTION

It has been almost five years since the top supercomputers in
the world started to employ GPU computing. In Blue Waters,
deployed in March 2013 at 12.4 GFLOPS, there are two types
of computing nodes. The first type (XE6) consists of two AMD
Interlogos CPUs with a total of 16-core modules, 0.313 double
precision teraflops, 64 GB of DRAM, and 102 GB/s DRAM
bandwidth. The second node type (XK7) consists of one AMD
Interlogos CPU and one NVIDIA Kepler GPU with a total of
1.56 double precision teraflops, 38 GB of DRAM, 241 GB/s
DRAM bandwidth. Even though the second node type has 5X
peak compute rate and 2.4X DRAM bandwidth, the power
consumption ratings of the two node types are comparable.

In 2013, a team of Illinois researchers, NVIDIA engineers,
and scientific developers made a collaborative effort to use
GPU computing in Blue Waters for three important science ap-
plications that received significant portion of the Blue Waters
time allocation: NAMD, Chroma, and QMCPACK. For each
application, the execution time is measured from application
launch to exit, including all I/O times. The execution time of
each application is measured when running on all XE6 nodes
and then measured when running on all XK7 nodes.

For NAMD, a test run is performed for a 100-million-atom
benchmark with Langevin dynamics and particle mesh Ewald
(PME) once every four time steps, using 768 nodes. The total
execution time using XE6 nodes (2 CPUs) is 1.8 times longer
than using XK7 nodes (1 CPU + 1 GPU). The main part
executed by the GPUs is the remote force calculation. While
the computing-performance and power-efficiency benefit of
using GPUs is very clear for this application, it is actually

limited by the PME global communication. We can expect
that the benefit of GPU computing will be even better as
the NAMD team develop more efficient global communication
schemes.

For Chroma, a test is performed with lattice quantum
chromo dynamics (QCD) grid size of 483×512 running at the
physical values of the quark masses using 768 nodes. The total
execution time using XE6 nodes is 2.4 times longer than that of
using XK7 nodes. The GPU execution is enabled by calling the
GPU-enabled USQCD library, which is a production library
used in multiple QCD applications including Chroma.

For QMCPACK, the experiment is done with full run of
Graphite 4×4×1 (256 electrons), with the QMC step followed
by the VMC step, using 700 nodes. The total execution time
using XE6 nodes is 2.7 longer than that of using XK7 nodes.
The benefit of using GPUs is even better than Chroma.

An important aspect of the experiment is that the GPU
execution is done in the production code. This ensures that
the science teams can see the same benefit from the GPUs in
their production runs. All three applications remain as the top
users of the GPU XK7 nodes in Blue Waters to date.

These results show that heterogeneous computing systems
can indeed offer superior power efficiency for future com-
puting systems. Indeed, heterogeneity is becoming ubiquitous
in modern computing systems, ranging from low-power mo-
bile devices to high-performance supercomputers. The biggest
challenge, or “elephant in the room,” is software cost. Much of
the software cost comes with the difficulty in developing and
maintaining the customised versions of application code that
can deliver the performance-power benefit of heterogeneous
computing systems.

Ideally, applications running in heterogeneous systems
should exhibit performance portability. That is, they should
be able to achieve high performance on different existing
and future devices without significant software redevelop-
ment. Performance portability is challenging because portabil-
ity requires architecture-neutral program representation while
performance requires architecture-specific customization and
tuning. Balancing these two conflicting goals is the dilemma
of heterogeneous programming systems. As a result, current
programming solutions for the heterogeneous computing sys-
tems require customized code redevelopment for each type of
hardware being targeted.

4978-1-4673-7197-1/15/$31.00 ©2015 IEEE

Fig. 1. Comparison of TANGRAM-synthesized code with vendor libraries and hand-optimized code (reference).

II. NEAR-TERM SOLUTIONS

In the near future, the industry will have three levels of
solutions to the programming challenges of heterogeneous
computing systems. OpenCL is geared towards library de-
velopers who would like to have detailed program control
of hardware execution resources. The OpenCL programming
interface is supported for a wide range of CPU, GPU, and
FPGA devices. Previously, functions written in OpenCL tend
to perform poorly on CPUs due to scheduling approaches that
result in poor cache performance. The recent work by the
MxPA team [1] has significantly improved the CPU cache and
total performance for many OpenCL functions.

A major deficiency of the OpenCL programming interface is
that it requires tedious changes to array indexing and explicit
code for data transfers. This deficiency is addressed by the
OpenACC programming interfaces, where developers annotate
each loop to be executed by GPU as OpenACC parallel loop.
This way, the developers do not need to rewrite their loops for
GPU execution. The compiler translates original indices into
the GPU indices and generates the detailed data transfers.

One common deficiency of both OpenCL and OpenACC is
that they are not compatible with the modern object-oriented
programming style. Furthermore, the annotation approach in
OpenACC is hard to debug since the annotation is not part of
the C language. This deficiency is corrected in the Kalmar
C++AMP programming interface, where the C++ lambda
mechanism used to automatically extract a parallel loop from
a C++ class method body. All data transfers are also automat-
ically handled by compiler code generation. This will further
reduce the software development and maintenance code of
heterogeneous computing.

III. LONG-TERM OUTLOOK

All the solutions so far have a common deficiency: the
algorithm and data arrangement schemes are baked into the
code. This intrinsically limits the performance portability of
many types of computation. A new library development system
called TANGRAM [2] is designed to address this problem.
In TANGRAM, a codelet is a small piece of code that
implements a particular computation. A spectrum is a compu-
tation associated with a collection of functionally equivalent
codelets. Codelets in the same spectrum have the same name
and function signature, but have different implementations.
They are implemented either by using different algorithms

or by using the same algorithm with different optimization
techniques.

There are different types of codelets. Codelets can be atomic
or compound. Atomic codelets are self-contained while com-
pound codelets invoke other spectrums. Compound codeletes
can be recursive if they invoke their own spectrum. Alternative
compound codelets implement different data tiling strategies
and recursively call the compound or atomic codelets. Codelets
can be scalar or vector. Both scalar and vector codelets operate
on scalar values and both are vectorizable. The difference is
that scalar codelets are oblivious to other elements of the same
vector, whereas vector codelets can communicate with the
other elements. In other words, vector codelets may perform
actions unique to vector execution and are not meant to be
scalarized.

The TANGRAM compiler heuristically searches a space of
all possible combinations and recursions of the codelets to
identify the code designs that are the best match for each
given hardware type. In some cases, there may be multiple
designs that can potentially have good match with a hardware
type, sometimes the best choice may depend on the shape of
an input data. The TANGRAM runtime makes the final test
and choice during the actual execution. Figure 1 shows the
total execution time of TANGRAM-synthesized library code
against vendor library code or hand-optimizied code on GPUs
and CPUs. In most cases, TANGRAM code either exceeds
or comes close to the speed of the hand-optimized code. For
any new hardware type or future generations of hardware, the
TANGRAM code will likely significantly outperform existing
hand-optimized code.

IV. CONCLUSION

Advances in programming systems will continue to re-
duce the cost of software development and maintenance for
heterogeneous computing. In the short term, products like
MxPAOpenCL and Kalmar C++ will improve the development
climate. In the long term, code synthesis approaches like
TANGRAM will prevail in practice.

REFERENCES

[1] H.-S. Kim, I. El Hajj, J. A. Stratton, S. S. Lumetta, and W.-M. Hwu,
“Locality-centric thread scheduling for bulk-synchronous programming
models on CPU architectures,” IEEE/ACM Int. Symp. on Code Genera-
tion and Optimizaion (CGO), San Francisco, CA, 2015.

[2] L.-W. Chang, A. Dakkak, C. I. Rodrigues, and W.-M. Hwu, “Tangram:
a high-level language for performance portable code synthesis,” hiPEAC
MULTIPROG Workshop, Amsterdam, The Netherlands, 2015.

5

