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Abstract—The deceleration of transistor feature size scaling
has motivated growing adoption of specialized accelerators im-
plemented as GPUs, FPGAs, ASICs, and more recently new
types of computing such as neuromorphic, bio-inspired, ultra low
energy, reversible, stochastic, optical, quantum, combinations,
and others unforeseen. There is a tension between specialization
and generalization, with the current state trending to master slave
models where accelerators (slaves) are instructed by a general
purpose system (master) running an Operating System (OS).
Traditionally, an OS is a layer between hardware and applications
and its primary function is to manage hardware resources and
provide a common abstraction to applications. Does this function,
however, apply to new types of computing paradigms?

This paper revisits OS functionality for memristor-based
accelerators. We explore one accelerator implementation, the
Dot Product Engine (DPE), for a select pattern of applications
in machine learning, imaging, and scientific computing and a
small set of use cases. We explore typical OS functionality,
such as reconfiguration, partitioning, security, virtualization, and
programming. We also explore new types of functionality, such as
precision and trustworthiness of reconfiguration. We claim that
making an accelerator, such as the DPE, more general will result
in broader adoption and better utilization.

I. INTRODUCTION

Advances in computing are often represented by fixed,
application specific hardware. For example, one of the first
general purpose computers, The Electronic Numerical Integra-
tor and Computer (ENIAC), required re-wiring of a plug board
to program it for each application [16]. Likewise, Systolic,
Wavefront [24], and Dataflow [21] architectures each needed
to be reconfigured for a specific computation, such as matrix
multiplication or convolution. Even Field Programmable Gate
Arrays, though reconfigurable, need sophisticated operating
system (OS) support to act as anything more than a fixed
system during operation [35]. Throughout the evolution of
these computing solutions, OS support has been very scarce,
relegating these devices to act as early accelerators and not as
general purpose computers. Even sophisticated co-processing
devices, such as Graphics Processing Units (GPU), have highly
specialized instruction sets that render their use as general
purpose computing resources difficult.

Conversely, OS designers have not easily adapted to the
changes in processing paradigms and increasing importance

of power, largely building systems that rely on a task-based
workload model. Although there have been many notable
attempts at building OSes for accelerators, none of these have
been completely successful [25].

In this paper we explore the OS functionality applied
to generalizing a memristor-based accelerator, using a Dot
Product Engine (DPE) as an example that represents an analog
form of computer with digital components embedded into the
architecture. We explore generalizing this accelerator by mak-
ing it more reconfigurable and partitionable, as well as more
secure. We also identify some of the unique characteristics of
this kind of system, such as different precision settings of DPE
and trustworthiness of the deployed configuration into DPE.

The rest of the paper is organized in the following manner.
Section II provides background on OS support for generalizing
accelerators and on memristor-based DPEs. Section III lists
a few applications that could benefit from DPE, motivating
the need to generalize it. Section IV describes the DPE
architecture and implications on OS. Section V describes how
we envision DPE programming and code generation will be
done. Section VI explores the OS support needed for gener-
alizing DPE. Sections VII and VIII delve into virtualization
and autotuning respectively. Finally, Section IX provides a
summary and outlines future work.

II. BACKGROUND

OS Support for Generalizing Accelerators. Recent at-
tempts at building OS support for in-situ reconfigurable FPGA
systems and GPUs provide some clues to practical OS support
that would allow for a high level of computing hardware
diversity. For example, for a soft-reconfigurable FPGA system,
a set of fundamental services that should be provided by an
OS has been prescribed. These OS services include: resource
allocation, resource partitioning, application placement, and
routing [37]. More recently, a set of new OS abstractions were
proposed [32] to support GPUs and other accelerator devices
to be used for general purpose computing in diverse operating
environments. These new abstractions are based on a dataflow
computing model. That is, the application programming in-
terface (API) library consists of graph functions: create/open



graph, create/open a port, write/read to/from a channel/port,
and run a graph. Laplante and Milojicic [28] studied the
problem of OS support for diverse applications on hetero-
geneous architectures and prescribed a set of characteristics
for an appropriate solution. In particular, they noted that in
a new, fully abstract OS archetype, hardware and workload
abstraction mechanisms are easy to extend.

Memristor-based Dot Product Engines. Many special-
purpose accelerators have been proposed for neural network
acceleration [10], [11], [33], for which dot-products are a fun-
damental operation. Memristor-based DPEs have been shown
to be particularly promising [33] for computation patterns
(such as inference) where one of the operands is constant
and frequently reused. The DPE accelerates this operation by
programming the constant operand into a memristor crossbar
and performing the computation in-situ with a streaming input.
Details of memristor-based DPE architectures and implications
on OS functionality are discussed in Section IV, but we first
motivate that the computation pattern of concern is prevalent.

III. APPLICATIONS AND USE CASES

Dot-product operations with frequently reused constant
operands are common in a wide range of applications in ma-
chine learning, imaging, and scientific computing. We discuss
some of these applications and their use cases in this section
to further motivate the need for generalizing DPE.

Machine Learning. The benefit of using DPEs to accelerate
machine learning workloads such as convolutional neural
network (CNN) inference has already been demonstrated [33].
In this setup, each memristor crossbar represents a set of
neurons in the same layer with the neuron weights being stored
in the memristors as the constant operand of the dot product.
Results have shown that using DPEs to accelerate CNN
inference can lead to 14.8×, 5.5×, and 7.5× better throughput,
energy, and computational density respectively compared to
DaDianNao [10], a state-of-the-art digital architecture.

Imaging. Another class that would benefit from DPEs
comprises imaging applications such as nonlinear diffraction-
tomography based on multi-level fast multipole formula-
tions [12]. These algorithms reduce the complexity of method
of moments computations by approximating interactions with
distant clusters via one representative point for each cluster.
The resulting pattern is multiple levels of aggregation followed
by multiple levels of disaggregation, each essentially consist-
ing of matrix-vector multiplications by constant interaction
matrices. Since the same matrices are reused for different clus-
ters within a single aggregation or disaggregation level, this
computation is well-suited for DPE whereby each memristor
crossbar processes a different level.

Scientific Computing. Computational fluid dynamics
(CFD) is widely used in simulations of weather and plasma
combustion. The fundamental stencil operation consists of
multiplying values from neighboring grid elements by constant
weights and accumulating them to compute a value of a grid
element for the next time-step. The same weights are used
across grid-points and across time-steps. Such operations are

good matches for the DPE, whereby each memristor crossbar
processes a set of grid-points and the halo elements between
crossbars are exchanged at each time-step.

Some scientific applications may not be well-suited for the
DPE because the weight of the dot-product changes throughout
the computation. These include N-body problems modeling
interactions between atoms, planets, etc. Here, weights depend
on distances between simulated bodies which vary spatially
and temporally. Such patterns require support for fast rewrite
operations, and may be better suited to future accelerators.

Some challenges presented by scientific computations in-
clude the desire for higher precision and demand for sparse
computations which may necessitate support for light pro-
grammable control flow on the DPE. These requirements have
implications on OS support, which is discussed in Section VI.

Use Cases. Using the DPE as a machine learning accelerator
has numerous use cases with different OS implications. For
example, in smart vehicle applications, DPEs can be deployed
into microprocessors and microcontrollers embedded in the
vehicles, and at points in the smart highway system. This
system is real-time and safety-critical, requiring extremely low
error rates which can benefit from OS support. As another
example, in airport safety assurance, video recognition can be
dynamically adapted when a potential threat is identified and
requires higher precision or higher resolution.

Using DPE as an imaging accelerator has even more use
cases. It can be deployed in hospital imaging equipment
running in embedded microprocessors and microcontrollers.
Depending on the procedure required, the OS is able to
assign computational load, share data (securely and privately)
between designated systems, and route (on the fly) between
applications of differing precision. Alternatively, it can be de-
ployed as a high performance co-processor running in remote
supercomputers as a service and used by hospitals for multiple
applications. The OS must manage the sharing by different
clients guaranteeing fair access while preserving security and
privacy requirements. Similar deployment strategies apply to
scientific applications (Section III).

IV. DOT PRODUCT ENGINE

The Dot Product Engine (DPE) [18] is a hardware acceler-
ator for matrix-vector multiplication using crossbar arrays to
perform highly parallel multiplications and additions through
analog operations. The concept is not new [36], [26], with
actual implementations utilizing various technologies such
as Flash, phase change memories (PCM), and oxide-based
memristors. Circuit demonstrations have been shown in stand
alone platforms [29], as well as part of larger programmable
analog computing systems [15].

A full architecture was recently proposed [33] that integrates
analog DPE components in a scalable, pipelined flow with dig-
ital routing, buffers, and other components to flexibly support
inference computations for a broad range of Convolutional
Neural Networks (CNN). Figure 1 shows the basic layout of
this architecture, called ISAAC (In-Situ Analog Arithmetic in
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Fig. 1: DPE-based accelerator for convolutional neural net-
works [33]. The DPE can be partitioned by clustering tiles,
and control units can be deployed at different levels.

Crossbars). The performance of this architecture was shown to
exceed GPUs and digital ASICs by many orders of magnitude.

At a high level (Figure 1), an ISAAC chip is composed of a
number of tiles (labeled T), each of which is further composed
of eDRAM buffers to store input values, a number of in-
situ multiply-accumulate (IMA) units, and output registers to
aggregate results. Everything is connected with a shared bus.
Each tile also includes shift-and-add, sigmoid, and max-pool
units. Each IMA contains several crossbar arrays as well as
shared ADCs.

Hybrid analog/digital accelerators, such as ISAAC, offer a
potential route for continued growth in focused but important
applications while the performance of general purpose CMOS
hardware is flattening. Using the DPE accelerator as a core
example, we highlight some of these challenges here, and
Section VI describes the OS support layers that can flexibly
address them more broadly.

A key performance aspect of the ISAAC architecture is the
use of in-memory processing, whereby memristor arrays not
only store neural network weights, but are also the location for
computation. This reduction in data-fetching is a requirement
to realize performance improvements, but it also imposes a
strict data flow that also needs to be pipelined for performance.
In ISAAC, a finite state machine (expressed as control units in
Figure 1.) is envisioned to control this data flow needs to be
configured by the compiler and OS. Additionally, portions of
the chip can be physically assigned to different CNNs under
computation, possibly at differing priority levels.

In addition to the tile partitioning for a specific task, an-
other performance-determining parameter is the bit-precision
needed in the matrix-vector multiplication operations. Neural
networks are highly tolerant of low precision [13], [31], [39],
and this reduces the burden on the ADCs, which dominate
power consumption and require more time to capture analog
signals with higher resolution. Hence, the precision needed to
implement each neural network layer becomes an important
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Fig. 2: Programming Framework Compilation Flow.

parameter to trade-off performance (high throughput, low
power) versus classification accuracy. Choosing the optimal
operating point requires careful management.

Mapping neural network layers of various sizes to the appro-
priate physical memristor crossbar arrays is another complex
management task. As described above, computations that span
multiple physical arrays require additional peripheral compu-
tations to reassemble the aggregate results. However, simply
placing the neural network layer into the largest possible array
can lead to larger errors (analog signals deteriorate with size
and increased non-linear effects) and slower operating speeds.

The next sections outline how some of the unique trade-offs
that are present in non-traditional, non-digital accelerators and
must be managed by OS support layers.

V. PROGRAMMING FRAMEWORK

A programming framework for DPEs should enable pro-
grammers to write computation kernels with dot-products
as the basic building block. We envision a domain-specific
language (DSL) and compiler that provide a dot-product
primitive, as well as a library of frequently used dot-product-
based operations (such as matrix-vector and matrix-matrix
multiplications). The DSL must also include types to specify
data arrays that are constant throughout the computation in
order to enforce that one dot-product operand is always
constant as well as distinguish data that needs to be loaded
to the memristor cells from data that needs to be streamed
through the dot-product engine.

The programming framework we envision is outlined in
Figure 2. The code written by the programmer is symbolically
executed to build a task graph centered around dot-product
operations. This approach has become increasingly popular in
recent years [1], especially for machine learning workloads.
The graph is then compiled to the DPE architecture as follows.

All the nodes in the graph performing dot-product opera-
tions with the same constant vector or matrix are identified
and mapped to the same crossbar. If a crossbar receives too
many dot-product operations, one potential optimization is
to duplicate that crossbar and spread the operations to the
duplicates to avoid that crossbar becoming a bottleneck in the
system. Duplication has to keep in mind that there are a limited
number of physical crossbars in total on the DPE and must
therefore stay within the resource budget.

Once dot-product operations have been mapped to cross-
bars, the non-dot-product operations need to be mapped to the
same tiles containing those crossbars. The objective of this
mapping is to maximize data affinity, to avoid communication,
and to minimize redundant computation. The basic algorithm
for mapping non-dot-product operations is as follows. If all
the sources of an operation are mapped to a tile, then that



operation is mapped to the same tile. Likewise, if all the
destinations of an operation are mapped to a tile, that operation
is mapped to the same tile. In the situation where an operation
has all its sources in one tile and all its destinations in another
tile, it can be mapped to either tile. Here, various heuristics
must be applied to choose where to map that operation
or a tuning framework (see Section VIII) can be used to
find the best option in the design space. In the situation
where an operation has its sources in multiple tiles and its
destinations in multiple tiles, mapping the operation to a single
tile will incur too much communication overhead. Instead, the
operation can be replicated across destination tiles where it is
redundantly computed but the communication is reduced. In
general, control flow can introduce uncertainty in source and
destination relations. Prediction techniques that convert control
flow into data flow can be used to address such uncertainty.

Once all operations have been mapped to tiles, a sub-graph
for each tile has essentially been constructed. So far in the
process, virtual tiles are used which are not yet been bound
to physical tiles on the DPE. The edges across sub-graphs
can be used to derive the amount of communication between
virtual tiles. This information can then be used to assign
virtual tiles to physical tiles in such a way that minimizes
the communication distance. Again, multiple mappings may
be possible so a tuning framework could be useful to evaluate
and pick the best mapping.

With operations grouped into sub-graphs and sub-graphs
bound to physical tiles, the code can now be generated to
configure and run the DPE. For the device, the sub-graph of
each physical tile is traversed to generate the control logic
for each tile. One challenge in doing so is recovering loop
information to minimize code bloat due to loop unrolling. For
the host, code is generated to configure physical tiles with the
corresponding crossbar weights, to load the control logic for
each physical tile onto that tile, and to push parameters onto
the DPE to launch a kernel.

VI. OPERATING SYSTEM SUPPORT

The DPE is “programmed” for a specific application by
configuring the crossbar switch, loading weights into the
memristor cells, setting arithmetic signs, and managing the
pipeline. For CNNs, APIs can be provided to allow a software
program to affect such a configuration to one or more DPEs
(see Figure 4, left side).

An immediate problem in the above scenario is that the
application is tightly coupled with the specific hardware, in this
case, the DPEs. We wish for the OS to support any number of
applications such as those described in Section III. A richer set
of APIs needs to be provided that communicates with the OS
providing not only diverse functional capability, but also tra-
ditional OS guarantees for security, multi-tasking, and tuning.
Through the OS APIs, accelerator-specific drivers provide for
the full set of DPE hardware configurations (Figure 4, right).

Reconfiguration and Run-time Partitioning The DPE as
an accelerator can be used in various configurations either
as a slave to a master (general purpose processor) or as a
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standalone accelerator unit. In both arrangements, the DPE
architecture requires some form of control and data flow
protocols for proper functionality of the system. Therefore,
at the data level, the operations of moving data in and out
of the DPE array would use traditional block-level transfers
with memory mapped I/O for master/slave configuration or
offload engines (e.g., TCP, UDP OE) to directly interact with
data from external devices through network protocols. In both
reported I/O cases, the reconfiguration phase through the CPU
or DPE array controller will setup memory buffer locations for
data to go in and out of the DPE array.

For the execution/control phase, the OS leverages input from
the DPE compiler that is aware of different memristor array
granularity on the chip (e.g., array size and precision capabil-
ity) to load the input program to a data flow graph of macro
tasks (CNNs) to sub tasks that are executed at the specific
tiles. A macro task and sub task represent the set of operations
performed at Tile and IMA topology level such as setup of
network for data movement across multiple memristor array
units, notifying task completion to subsequent data receiving
blocks that new data is available for the sink memristor array
to compute, directing the data from IMA’s to required special
purpose cores (e.g., MP, OR, etc., see Figure 1), and setting
up the precision of an array. Precision is affected by the ADC
and DAC configurations at the sub task level through the IMA
controllers. The DPE array configuration of data flow graphs,
macro, and sub tasks is achieved through programming the
controllers at each topological stage respectively shown in
Figure 1.

Some of the trade-offs in reconfiguring the accelerator entail
accuracy, power, and performance (throughput and latency).
The relationships can be complex and open to empirical
and theoretical evaluation. The OS helps in making run-time
changes to optimize between the various factors. For example
if power is limited, performance or precision can be traded
off. Similarly, performance can be traded off for precision.

The DPE can be used for a single stream of data or in a more
comprehensive way such as partitioning for multiple flows
within the same or different hardware chips (See Figure 4).
Partitions differ in various ways, including:

• Precision. At an airport, in real-time terrorist identifica-
tion, video recognition can increase precision. Similarly,
a critical medical procedure may require higher precision



Fig. 4: Partitioning and Run-time Scheduling. Left graph has
higher weights and precision than middle. Right graph is
deeper. DPE OS routes requests by means of controllers.

compared to a routine one, but intelligent vehicles may
trade off precision in favor of response time.

• Security. Videos with credentialed officers may be routed
to a higher security partition. This would require a pre-
stage recognition of tags that officers may carry which is
omitted from picture.

• Function. Multiple functions can be programmed into
the accelerator and dynamically selected or connected
at run-time. For example, if a dangerous situation is
identified in an autonomous vehicle, different paths could
be immediately taken within real-time constraints.

Run-time partitioning enables higher degrees of freedom
of run-time composing flows with different characteristics. In
many ways, this resembles Software Defined Networks and/or
Network Function Virtualization and indeed many principles
could be applied to memristor-based accelerators.

Security Architecture. As systems become more complex,
connected, and interdependent, accelerators are getting intense
scrutiny because they may contain unknown exploits and bugs.
However, to effectively implement security across a system,
control points must exist where a supervisory entity can
interpose and validate any security-critical control operations
and data flows.

Traditional general purpose systems have the luxury of hav-
ing the OS kernel implement security-critical control points.
Accelerator-centric systems, such as the DPE, typically do not
have such a luxury. Moreover, in DPE systems, interposition
comes at a latency cost; and unlike conventional CPUs with
hardware support for multiple privilege levels, the architecture
and implementation of accelerators do not naturally support
the provision of security control points directly as part of the
computational functions/units.

A key function of a general purpose (multi-tasking) OS run-
ning on a conventional CPU is to provide fine-grain temporal
and spatial resource-use separation between competing users.
In the accelerator model, the requirements around temporal
and spatial separation are much more coarse, and most of
the time the OS can be uninvolved. This latter point gives
us a degree of flexibility in terms of how the required security
control points can be achieved for an accelerator-based system
compared to a general purpose CPU system. As previously

noted, it seems beneficial to model the system, from a security
perspective, as a network of interconnected elements and use
control and validation of the setup of routing between elements
(and flows within elements) as the underlying foundation for
the provision of the required security control points rather
than dynamic security controls within the elements themselves.
This model is somewhat analogous to the problem of securing
SDN-based network systems [22].

To support the routing-controlled based security model just
described, we require two broad capabilities. Alongside the
foundational security requirement of being able to control (and
validate) the setup and removal of routing and flows between
and within elements, we also need to be able to reliably
identify individual computation elements so that we can be
confident that we are routing data through and to the intended
elements. For individual accelerator functions we need the
following basic set of security primitives:

• Assurance over the function implemented (e.g., robust
cryptographic identity built-in).

• Trustowrthiness of the function to be deployed.
• Protection (integrity) of the function deployed.
For the advanced use cases described earlier, additional

security primitives are required:
• Support for safe data partitioning within the engine.

Access only within partition should be enabled.
• Support for safe concurrent use. No cross-effects be-

tween partitions should be possible.
Precise requirements will vary based on the particular use
cases being addressed. Our general security goal is establishing
confidence in the results of the analytical outputs of the DPE
system from a data provenance and lineage perspective.

VII. VIRTUALIZATION

One of the barriers to adoption of accelerators in enterprise
environments, especially cloud computing, is their lack of (or
limited) support for virtualization [9]. Virtualization loosely
refers to the ability to securely and transparently share under-
lying hardware resources among different users e.g. processes,
virtual machines, CPUs, etc. with each user independently
marshalling and running its own code and commands [34].
The aim of virtualization is increased hardware utilization and
consequently lower power consumption. Almost every major
component in a typical enterprise environment including I/O
devices is designed to support virtualization. Accelerators that
support virtualization will gain more traction in the enterprise
environment.

In the context of the DPE, the aim of virtualization is to
support multiple virtual DPE stream layers on an underlying
physical DPE. This is achieved by effectively multiplexing or
time-slicing different streams on the same hardware, as shown
in Figure 5, while allowing a resource manager to assign
priority to streams.

From a high level, virtualization is achieved by replicat-
ing the external interfaces of the DPE to provide multiple
virtual interfaces. Virtual interfaces are essentially separate
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compartments for user and configuration data. Each virtual
interface is associated with a stream layer (see Figure 5).
For example, the virtual interfaces for the CTRL unit (see
Figure 1) are the CTRL’s configuration registers replicated for
each of the stream layers supported by a DPE. This is similar
to Simultaneous Multithreading (SMT) (or Hyperthreading) in
processors where as little hardware as possible is replicated to
support multiple hardware threads (e.g., only 5% extra chip
area to support SMT in Intel Xeons [27]).

A hardware scheduler dynamically selects on each time-
slice the layer to run via the appropriate virtual interfaces.
The hardware scheduler supports a number of scheduling
algorithms such as round robin and weighted round robin. The
DPE provides a separate administration interface to enable
a resource manager (e.g., an OS) to dynamically select the
scheduling algorithm. A resource manager can use the ad-
ministration interface to manage the type of actions a user is
allowed to perform. For example, a stream layer can be pre-
vented from reconfiguring the DPE. The hardware scheduler
also provides mechanisms which enable a resource manager to
dynamically remove layers from consideration for scheduling.
This can be employed, for example, to temporarily dedicate
the physical DPE to a particular stream layer. Time slicing can
also be disabled completely. The hardware transparently loads
and drains stream layers on the physical tiles ensuring strong
isolation between stream layers.

The basic hardware virtualization mechanism described
above is leveraged to build a virtual platform capable of
managing multiple DPEs and operating at the rack-scale.
Instead of managing physical DPE separately, we pool them
together and create a resource pool under the active man-
agement of a DPE Grid Manager (see Figure 6). The Grid
Manager is external software that manages multiple DPEs and
provides OS-like services to DPE users. DPEs are dynamically
requested, allocated and deallocated by a tenant via the Grid
Manager. For public cloud computing environments, Grid
Manager facilitates usage tracking and billing.

Our approach to virtualization has a number of advantages:
• Virtual layer approach retains the streaming design of

the DPE. Further, it does not change the in-situ nature of
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Fig. 6: RackScale DPE Approach

processing as the weights are still on-chip.
• It allows a resource manager to prioritize the processing

of particular layers without the need to drain queues.
• Virtualization is transparent to users sharing the DPE.

Each user gets the same interfaces/features as the physical
DPE, no program modifications are required.

Cryptographical Isolation. For sensitive workloads, the
DPE can be extended to support the use of encrypted user
and configuration data using user supplied encryption key on
a layer by layer basis. This may be quite useful in a cloud
computing environment where a user does not control physical
access to the DPE and may not want to trust the administrator.
Instead of each stream layer user supplying data to the DPE
in plaintext, data are now encrypted with user supplied key
using a symmetric encryption algorithm such as AES [30].
The DPE automatically and transparently decrypts the input
data just before processing on a tile. It also re-encrypts the
output data before it leaves the tile. So at any point in time
data at rest inside a system is encrypted making it difficult for
an administrator to snoop at sensitive user information. We
assume that an adversary cannot non-destructively physically
snoop on data inside the DPE.

A user can securely provide an encryption key to the
DPE using asymmetric (public key) cryptography. A unique
private key is securely embedded inside each DPE by the
manufacturer and the corresponding public key is generated.
The manufacturer also securely provisions a digital certificate
chain, backed by a certification authority, that can be used to
verify the authenticity of the keys and consequently that of
the DPE. The user and the DPE now use an appropriate key-
exchange protocol such as SIGMA [23] to securely derive
a symmetric key for encrypting data and communication
between them.

VIII. HARDWARE AND SOFTWARE AUTOTUNING

The configuration of the hardware and software described
in this paper defines a large and complex design space and
presents an optimization challenge. We propose to apply au-
totuning techniques and search heuristics to aid DPE hardware
design and software configuration and optimization.



General purpose autotuning frameworks, such as OpenTuner
[3], combine different search heuristics to optimize a user-
specified metric. This approach yields good results in different
hardware and software configuration domains. PetaBricks [2]
and Tangram [7] are languages, compilers, and autotuners
that introduce abstractions that enable programmers to define
multiple algorithms for the same problem. The ParamILS
framework [20] applies stochastic local search methods for
algorithm configuration and parameter tuning. Bosboom et al.
and Eliahu used OpenTuner to implement a domain specific
language for data-flow programming [4] and a framework for
recursive parallel algorithm optimization [14]. Xu et al. [38]
use distributed OpenTuner instances to optimize the FPGA
compilation flow, and Huang et al. [19] study the effect of
compiler optimizations in High-Level Synthesis for FPGAs,
showing the complexity of the search space and the difficulty
of its exhaustive exploration.

Changes in hardware and software parameters used to
configure the DPE generate trade-offs and complex parameter
relationships. These parameters can be explored empirically
and theoretically, as discussed in Sections V and VI.

Table I shows hardware and software parameters that define
a design and reconfiguration space for the DPE. The impact
of these parameters on several metrics can be measured using
analytical models and simulations. Table II shows metrics and
measurement strategies that can be optimized for the DPE.

Tunable Parameters
Hardware Software

Routing tables, eDRAM buffer size;
bit size in IMA, layer; bus width;
crossbar & IMA number in tiles

Memristor arrays, layers & routing
tables mapping

ADC hardware configuration and
heterogeneous tile designs

ADC and tile usage

TABLE I: Tunable software and hardware DPE parameters

Tuning Metrics and Measurements
Metrics Measurements

Bandwidth, latency, execution time,
router area, throughput

Modelled area and power overhead
for components

Computation, power, crossbar effi-
ciency

Cycle accurate simulation for: tile
communication; eDRAM access

Usability, flexibility Empirical, qualitative

TABLE II: Tuning metrics & measurement strategies for DPE

For the software configuration, Figure 7 shows the results
[5] we obtained using autotuning to optimize the selection
of CUDA compiler flags for Rodinia [8] and matrix mul-
tiplication applications. The applications shown in Figure 7
are matrix multiplication with uncoalesced access to global
(MMU) and shared memory (MSU), coalesced access to global
(MMG) and shared memory (MMS), gaussian elimination
(GAU), heart wall medical imaging benchmark (HWL) and the
Needleman-Wunsh dynamic programming algorithm (NDL).
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Fig. 7: Speedup vs. -O2 after autotuning NVCC compiler
parameters for heterogeneous applications [5].
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Fig. 8: Relative decrease in Quartus-reported FPGA metrics
for CHStone [17] High-Level Synthesis (HLS) benchmark.

For the hardware configuration, Figure 8 shows the results
we obtained using autotuning to optimize the configuration
of a High-Level Synthesis (HLS) tool [6] subject to a series
of FPGA hardware parameters. The results in Figure 8 were
obtained in the Stratix V DE5-Net FPGA, after tuning HLS
parameters. The intensity of blue squares indicate how much
was improved for each metric and application pair. The auto-
tuning objective was the Normalized Sum of Metrics (NSM),
shown in the first row of the same figure.

Domain-agnostic autotuning frameworks can aid the explo-
ration and optimization of the DPE hardware and software
configurations and design space. We intend to use this au-
totuning approach to optimize the DPE parameters listed in
Table I, subject to the metrics listed in Table II.

IX. SUMMARY AND FUTURE WORK

We have presented a case for a more general approach to
accelerators by introducing OS support. We have described
how reconfiguring, partitioning, securing, and programming
memristors-based accelerators can support applications and
use cases described in Section III. Some aspects, such as preci-
sion and trustworthiness of configurations deployed are atyp-
ical for general purpose systems and require new solutions.
This resulted in broadening their use without compromising
all the benefits of special purpose design, such as performance
and power. In the future, we plan to re-implement DPEs with
more knobs for run-time reconfiguration. We will also expand



the system software layers to support DPEs and make them
more reconfigurable. In addition, we are identifying other
potential applications that can broaden their deployment.
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