
An Effective GPU Implementation of Breadth-First Search∗

Lijuan Luo Martin Wong Wen-mei Hwu
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

{lluo3, mdfwong, w-hwu}@illinois.edu

ABSTRACT
Breadth-first search (BFS) has wide applications in elec-
tronic design automation (EDA) as well as in other fields.
Researchers have tried to accelerate BFS on the GPU, but
the two published works are both asymptotically slower than
the fastest CPU implementation. In this paper, we present
a new GPU implementation of BFS that uses a hierarchical
queue management technique and a three-layer kernel ar-
rangement strategy. It guarantees the same computational
complexity as the fastest sequential version and can achieve
up to 10 times speedup.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph al-
gorithms; D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming

General Terms
Algorithms, Performance

Keywords
CUDA, GPU computing, BFS

1. INTRODUCTION
The graphics processing unit (GPU) has become a popu-

lar cost-effective parallel platform in recent years. Although
parallel execution on a GPU can easily achieve speedup of
tens or hundreds of times over straightforward CPU imple-
mentations, to accelerate intelligently designed and well op-
timized CPU algorithms is a very difficult job. Therefore,
when researchers report exciting speedup on GPUs, they

∗This work was partially supported by the National Science
Foundation under grant CCF-0701821. Experiments were
also made possible by NSF CNS grant 05-51665 and the
CUDA Center of Excellence, sponsored by NVIDIA Corpo-
ration.

5000 15000 25000 35000
0

5

10

x 10
5

f(n) = n2/1000
g(n) = nlog

2
(n)

Figure 1: Compare performance difference between
1000x accelerated n2 algorithm and nlogn algorithm

should be very careful about the baseline CPU algorithms.
Fig. 1 illustrates the performance difference between the
1000x accelerated n2 algorithm and the nlogn algorithm.
After n grows to a certain point, the greatly accelerated n2

algorithm becomes slower than the un-accelerated nlogn al-
gorithm. Hence the speedup is only meaningful when it is
over the best CPU implementation. A similar observation
was also made in [1]. Breadth-first search (BFS) is a graph
algorithm that has extensive applications in computer-aided
design as well as in other fields. However, it is well known
that accelerating graph algorithms on GPUs is very chal-
lenging and we are aware of only two published works [2, 3]
on accelerating BFS. Harish and Narayanan pioneered the
acceleration of BFS on the GPU [2]. This work has great
impact in high performance computing and graph algorithm
areas. It has been cited not only by research papers but
also in NVIDIA CUDA Zone and university course mate-
rials. However, for certain types of graphs, such as sparse
graphs with large BFS levels, this work is still slower than
the fastest CPU program. The other work [3] showed 12
to 13 times speedup over a matrix-based BFS implementa-
tion, but it should be noted that such BFS implementation
is slower than the traditional BFS algorithm of [8].

This paper will present a new GPU implementation of
BFS. It uses a hierarchical technique to efficiently implement
a queue structure on the GPU. A hierarchical kernel arrange-
ment is also proposed to reduce synchronization overhead.
Experimental results show that up to 10 times speedup is
achieved over the classical fast CPU implementation [8].

2. PREVIOUS APPROACHES
Given a graph G = (V, E) and a distinguished source ver-

tex s, breadth-first search (BFS) systematically explores the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC'10, June 13-18, 2010, Anaheim, California, USA
Copyright 2010 ACM 978-1-4503-0002-5 /10/06...$10.00

52

4.4

Figure 2: The operation of BFS

edges of G to discover every vertex that is reachable from
s. We use V (E) to represent both the vertex (edge) set and
the number of vertices (edges). BFS produces a breadth-first
tree with root s that contains all reachable vertices. The ver-
tices in each level of the tree compose a frontier. Frontier
propagation checks every neighbor of a frontier vertex to see
whether it is visited already; if not, the neighbor is added
into the new frontier. Fig. 2 shows an example operation
of BFS. The traditional BFS algorithm outlined in [8] uses
a queue structure to store the frontier. Its computational
complexity is O(V +E). For sparse graphs with E = O(V),
the complexity of BFS is O(V).

The researchers from IIIT presented the first work of im-
plementing BFS on the GPU [2]. (Hereafter, we will refer to
this work as IIIT-BFS.) It points out that to maintain the
frontier queue can cause a huge overhead on the GPU. Hence
they eliminate the frontier structure. Instead, for each level,
they exhaustively check every vertex to see whether it be-
longs to the current frontier. Let L be the total number of
levels; then the total time spent to check frontier vertices is
O(V L). The time to explore every edge of the graph is O(E).
Therefore, the time complexity of IIIT-BFS is O(V L + E),
higher than O(V + E) of the CPU algorithm. In the worst
case scenario, we have L = O(V). It means a complexity of
O(V 2 + V) = O(V 2) for sparse graphs, much slower than
the O(V) implementation. Based on our observation in Sec-
tion 1, the accelerated version of a slow algorithm is still
worse than a fast sequential algorithm. This will be further
verified by the experimental results shown in Section 4. Of
course, when the graph is dense with E = O(V 2), or when
L is very small, IIIT-BFS can be faster than the sequential
program.

The second GPU work [3] accelerated a matrix-based BFS
algorithm for sparse graphs. In this BFS procedure, each
frontier propagation can be transformed into a matrix-vector
multiplication; hence there are totally L multiplications,
where L is the number of levels. The running time of each
matrix-vector multiplication is O(E). In addition, it takes
O(V) time to initialize the vector. Therefore the total run-
ning time is O(V + EL), higher than O(V + E). Again in
the worst case, we have L = O(V) and the running time
is O(V + EL) = O(V 2). Hence the same argument about
IIIT-BFS applies here. For large graphs, the accelerated
matrix-based BFS will still be slower than the traditional
sequential BFS.

Lauterbach et al. solved a different BFS problem in [4].
Under the framework of BFS, they do intensive computa-
tion on each node. This work uses a compaction technique
to maintain the queue structure on the GPU. However, the
compaction will add intolerable overhead to our BFS prob-
lem.

There are also parallel BFS algorithms proposed for other
parallel architectures such as [5]-[7]. However, since different
architectures have different efficiencies for synchronization,
atomic operations, memory accesses, etc., the parallelism
ideas applicable to those architectures may not be used on
the GPU. As far as we know, the ideas proposed in this
paper were never used on other architectures.

3. OUR GPU SOLUTION
The BFS process propagates through the graph by levels.

In each level, there are two types of parallelism: one is to
propagate from all the frontier vertices in parallel, and the
other is to search every neighbor of a frontier vertex in par-
allel. Since a lot of EDA problems such as circuit simulation,
static timing analysis and routing are formulated on sparse
graphs, we do not expect many neighbors for each frontier
vertex. Therefore, our implementation of BFS only explores
the first type of parallelism, i.e. each thread is dedicated to
one frontier vertex of the current level.

In the following, we will first introduce the NVIDIA GTX280
GPU architecture and the CUDA programming model. Then
we introduce an efficient queue structure to store the new
frontier generated in each level. Finally we present hier-
archical kernel arrangement to reduce the synchronization
overhead. Note that our solution has the same computa-
tional complexity as the traditional CPU implementation.

3.1 Overview of CUDA on the Nvidia GTX280
The NVIDIA GeForce GTX280 graphics processor is a

collection of 30 multiprocessors, with 8 streaming proces-
sors each. The 30 multiprocessors share one off-chip global
memory. Note that global memory is not cached, so it is
very important to achieve memory coalescing. Memory coa-
lescing happens when consecutive threads access consecutive
memory locations. In this case, several memory transactions
can be coalesced into one transaction. Within each multi-
processor there is a shared memory, which is common to all 8
streaming processors inside the multiprocessor. The shared
memory is on-chip memory. To access a shared memory only
takes 2 clock cycles compared with approximately 300 clock
cycles for global memory.

We use the NVIDIA CUDA computing model to do par-
allel programming on the GPU. A typical CUDA program
consists of several phases that are executed either on the
host CPU or on the GPU. The CPU code does the sequen-
tial part of the program. The phases that exhibit rich par-
allelism are usually implemented in the GPU code, called
kernels. The action of calling a GPU function from the CPU
code is termed kernel launch. When a kernel is launched,
a two-level thread structure is generated. The top level is
called grid, which consists of one or more blocks. Each block
consists of the same number (at most 512) of threads. The
whole block will be assigned to one multiprocessor.

3.2 Hierarchical Queue Management
It is difficult to maintain the new frontier in a queue be-

cause different threads are all writing to the end of the same

53

4.4

queue and end up executing in sequence. To avoid the colli-
sion on the queue, we introduce a hierarchical queue struc-
ture. The idea is that once we have quickly created the
lower-level queues, we will know the exact location of each
element in the higher-level queue, and therefore copy the
elements to the higher-level queue in parallel.

A natural way to build the frontier hierarchy is to follow
the two-level thread hierarchy, i.e. build the grid-level fron-
tier based on block-level frontiers. A block-level frontier can
be stored in the fast shared memory. However, this strategy
still cannot avoid the collision at the block level. Hence we
add another level – warp level – into the hierarchy and com-
pletely eliminate collisions on the warp-level queues. Fig. 3
shows the overall hierarchy.

A W-Frontier is defined as a frontier only accessed by
certain threads from a warp. A warp is the scheduling unit
in GTX280, which is composed of 32 consecutive threads.
Since there are only 8 streaming processors within each mul-
tiprocessor, a warp is further divided into four 8-thread
groups. Fig. 4 illustrates how threads are scheduled along
the timeline. The vertical lines represent the clock bound-
aries. WiTα represents Thread α from Warp i. We do not
know the scheduling order among warps, but once a warp is
scheduled, it always runs T1-T8 first, followed by T9-T16, T17-
T24, and finally T25-T32. In GTX280, threads in the same
row of Fig. 4 never execute simultaneously. If each row of
threads write to one W-Frontier queue, we can guarantee no
collision. This scheme is portable as long as the warp size
assumption is parameterized. Note that writing to a queue
actually includes two steps, i.e. write an element to the end
of the queue and update the end of the queue. To guaran-
tee the correctness in parallel execution, we use an atomic
operation, so that we can get the current end location and
update it in one instruction.

A B-Frontier is defined as the frontier common to a whole
block. It is simply the union of 8 W-Frontiers. To copy the
W-Frontier elements into the B-Frontier in parallel, we need
indices of each element in the B-Frontier. With only 8 W-
Frontiers, we use one thread to calculate the offsets for all
W-Frontiers in the B-Frontier. Then the index of an element
in the B-Frontier is simply its index within its W-Frontier
plus the offset of its W-Frontier. Note that both W-Frontiers
and B-Frontiers are stored in the fast shared memory.

Finally, a G-Frontier is defined as the frontier shared by
all the threads of a grid. In other words, the G-Frontier
stores the complete new frontier. A G-Frontier resides in
global memory and consists of B-Frontiers from all the blocks.
We use atomic operations to obtain the offsets of B-Frontiers
so that parallel copying from B-Frontiers to the G-Frontier
can be performed. Note that in the parallel copy, it is natural
to have consecutive threads writing to consecutive locations
in the G-Frontier; thus, memory coalescing is guaranteed.

3.3 Hierarchical Kernel Arrangement
The correct BFS implementation requires thread synchro-

nization at the end of each level. Unfortunately CUDA
does not provide any global barrier synchronization func-
tion across blocks. A general solution is to launch one ker-
nel for each level and implement a global barrier between
two launched kernels, which inflicts a huge kernel-launch
overhead. This section presents hierarchical kernel arrange-
ment, where only the highest layer uses this expensive syn-
chronization method and the others use more efficient GPU

Global MemG-Frontier

B-Frontier

Shared Mem

W-Frontiers

Figure 3: Hierarchical frontiers

WiT8 WiT16 WiT24 WiT32 WjT8 WjT16 WjT24 WjT32 ………….

WiT7 WiT15 WiT23 WiT31 WjT7 WjT15 WjT23 WjT31 ………….

WiT1 WiT9 WiT17 WiT25 WjT1 WjT9 WjT17 Wj.T25 ………….

Time

W-Frontiers [7]

W-Frontiers [6]

W-Frontiers [0]

Warp i Warp j

Figure 4: Thread Scheduling and W-Frontier design

synchronization.
GPU synchronization is a synchronization technique with-

out kernel termination. It includes intra-block synchroniza-
tion and inter-block synchronization. In the following dis-
cussion, we assume the largest possible number of threads –
512 – in each block.

Intra-block synchronization uses the CUDA barrier func-
tion to synchronize threads within one block. Hence it only
applies to the levels with frontiers of no larger than 512 ver-
tices. Note that once a kernel is launched, the number of
threads in this kernel cannot be changed anymore. There-
fore, when launching such a single-block kernel from the host
CPU, we always launch 512 threads regardless of the size of
the current frontier. This kernel can propagate through mul-
tiple levels with an intra-block synchronization at the end
of each level. Now that there is only one working block,
no G-Frontier is needed and global memory access is also
reduced.

Once the frontier outgrows the capacity of one block, we
use the second GPU synchronization strategy, which can
handle frontiers as large as 15 360 vertices. Inter-block syn-
chronization synchronizes threads across blocks by commu-
nicating through global memory. Xiao and Feng introduced
the implementation details of inter-block synchronization
[10]. To apply this synchronization strategy, the number
of blocks should not be larger than the number of multipro-
cessors. In GTX280, this means at most 512 × 30 = 15 360
threads in the grid. We use G-Frontier at this level.

Only when the frontier has more than 15 360 vertices,
we call the top-layer kernel. This kernel depends on kernel
termination and re-launch for synchronization. With more
than 15 360 vertices, the kernel-launch overhead becomes
acceptable compared to the propagation work performed.

54

4.4

Table 1: BFS results on regular graphs

#Verte IIIT-BFS CPU-BFS UIUC-BFS Sp.

1M 462.8ms 146.7ms 67.8ms 2.2

2M 1129.2ms 311.8ms 121.0ms 2.6

5M 4092.2ms 1402.2ms 266.0ms 5.3

7M 6597.5ms 2831.4ms 509.5ms 5.6

9M 9170.1ms 4388.3ms 449.3ms 9.8

10M 11019.8ms 5023.0ms 488.0ms 10.3

4. EXPERIMENTAL RESULTS
All experiments were conducted on a host machine with

a dual socket, dual core 2.4 GHz Opteron processor and 8
GB of memory. A single NVIDIA GeForce GTX280 GPU
was used to run CUDA applications. We first tested the
programs on degree-6 “regular” graphs. (For simplicity, we
used grid-based graphs. Therefore, only the vertices inside
the grids are of degree 6. The very few vertices on the bound-
aries of the grids have degrees less than 6. And the source
vertices are always at the centers of the grids.) The ex-
perimental results are shown in Table 1. Here UIUC-BFS
represents our GPU implementation of BFS, and CPU-BFS
is the BFS implementation outlined in [8]. The last column
shows the speedup of UIUC-BFS over CPU-BFS. We can
see that IIIT-BFS (The source code was obtained from the
original authors.) is slower than CPU-BFS just as we dis-
cussed in Section 2. On the other hand, UIUC-BFS is faster
than CPU-BFS on all the benchmarks. On the largest one,
up to 10 times speedup was achieved. We also downloaded
the same four graphs as [2] from the DIMACS challenge site
[9]. All these graphs have average vertex degree of 2, and
the maximum degree can go up to 8 or 9. Again IIIT-BFS
is slower than CPU-BFS, and UIUC-BFS achieves speedup
over CPU-BFS (Table 2). Finally, we tested the BFS pro-
grams on scale-free graphs. Each graph was built in the
following way. We made 0.1% of the vertices have degrees
equal to 1000. The remaining vertices have the average de-
gree of 6 and the maximum degree of 7. Table 3 shows the
running times of the three BFS programs. Although UIUC-
BFS is still much faster than IIIT-BFS, its running time is
close to or even longer than the running time of CPU-BFS.
The result shows that the highly imbalanced problems can-
not benefit as much from the parallelism as the relatively
balanced ones

Note that our GPU implementation pre-allocates the share
memory space for W-Frontiers and B-Frontiers based on the
maximum node degree. If the maximum degree is much
larger than the average degree, the memory usage becomes
very inefficient. Thus, when handling very irregular graphs,
we first converted them into near-regular graphs by splitting
the big-degree nodes. A similar idea was used in [11]. This
is a legitimate solution because most of the applications run
BFS on the same graph a great number of times (if only run
once, the BFS process is not really slow), and we only need
to do the conversion once.

5. CONCLUSION
We have presented a BFS implementation on the GPU.

This work is most suitable for accelerating sparse and near-

Table 2: BFS results on real world graphs

#Vertex IIIT-BFS CPU-BFS UIUC-BFS Sp.

New York 264,346 79.9ms 41.6ms 19.4ms 2.1

Florida 1,070,376 372.0ms 120.7ms 61.7ms 2.0

USA-East 3,598,623 1471.1ms 581.4ms 158.5ms 3.7

USA-West 6,262,104 2579.4ms 1323.0ms 236.6ms 5.6

Table 3: BFS results on scale-free graphs

#Vertex IIIT-BFS CPU-BFS UIUC-BFS

1M 161.5ms 52.8ms 100.7ms

5M 1015.4ms 284.0ms 302.0ms

10M 2252.8ms 506.9ms 483.6ms

regular graphs, which are widely seen in the field of EDA.
Both methods proposed in this paper – hierarchical queue
management and hierarchical kernel arrangement – are po-
tentially applicable to the GPU implementations of other
types of algorithms, too.

6. REFERENCES
[1] C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and

W. Hwu, “GPU acceleration of cutoff pair potentials
for molecular modeling applications,” in ACM
International Conference on Computing Frontiers,
2008, pp. 273-282.

[2] P. Harish and P. J. Narayanan, “Accelerating large
graph algorithms on the GPU using CUDA,” in IEEE
High Performance Computing, 2007, pp 197-208.

[3] Y. Deng, B. Wang, and S. Mu, “Taming irregular EDA
applications on GPUs,” in ICCAD, 2009, pp. 539-546.

[4] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke,
and D. Manocha, “Fast BVH construction on GPUs,”
Computer Graphics Forum, vol. 28, no. 2., pp.
375-384, 2009.

[5] A. Yoo, E. Chow, K. Henderson, W. Mcledon, B.

Hendrickson, and Ü Catalyürek, “A scalable
distributed parallel breadth-first search algorithm on
Bluegene/L,” in Proceedings of the ACM/IEEE
Conference on Supercomputing, 2005, pp. 25-32.

[6] D.A. Bader and K. Madduri, “Designing
Multithreaded Algorithms for Breadth-First Search
and st-connectivity on the Cray MTA-2,” in ICPP,
2006, pp. 523-530.

[7] D.P. Scarpazza, O. Villa, and F. Petrini, “Efficient
breadth-first search on the Cell/BE processor,” IEEE
Trans. on Parallel Distributed Systems, vol.19, no. 10,
pp. 1381-1395, 2008.

[8] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,
Introduction to Algorithms, MIT press, 2001.

[9] http://www.dis.uniromal1.it/∼challenge9/

[10] S. Xiao and W. Feng, “Inter-block GPU
communication via fast barrier synchronization,”
Technical Report TR-09-19, Dept. of Computer
Science, Virginia Tech.

[11] U. Meyer, “External memory BFS on undirected
graphs with bounded degree,” in SODA, 2001, pp.
87-88.

55

4.4

