
Abstract
Reduction is a common component of many applica-

tions, but can often be the limiting factor for paralleliza-
tion. Previous reduction work has focused on detecting re-
duction idioms and parallelizing the reduction operation
by minimizing data communications or exploiting more
data locality. While these techniques can be useful, they
are mostly limited to simple code structures. In this paper,
we propose a method for exploiting more parallelism by
isolating the reduction from users of the intermediate re-
sults. The other main contribution of our work is enabling
the parallelization of more complex reduction codes, in-
cluding those that involve the use of intermediate reduc-
tion results. The proposed transformations are often im-
plemented by programmers in an ad-hoc manner, but to
the best of our knowledge no previous work has been pro-
posed to automate these transformations for many-core
architectures. We show that the automatic transformations
can result in significant speedup compared to the original
code using two benchmark applications.

1. Introduction

In recent years, scientific applications like image pro-
cessing and computational geometric algorithms have en-
joyed a tremendous performance improvement on data
parallel, many-core architectures such as NVIDIA and
AMD GPUs. These applications often use reduction opera-
tions for data summation, finding min/max values, true el-
ement counting, etc., and though reduction may not domi-
nate the overall application performance, it can prevent
large code segments from being parallelized. Previous
works focused mostly on minimizing the data communica-

tion caused by reductions [5,6,10,12,13,15], by inserting
directives in the original code to reduce data dependencies
among workers and to minimize data communication.
These techniques complicate the code and generate a lot of
branches, which makes them less suitable for automatic
code transformation for wide SIMD architectures such as
GPUs. Our focus, in contrast, is on exploiting more paral-
lelism from the original code by isolating the dependencies
introduced by the reductions. Our main contributions are
as follows:

 The proposed transformation can help exploit more‧
parallelism from scalar and aggregate reductions by
isolating loop-carried dependencies.

 It provides an innovative code transformation which‧
is practical for reductions inside complex program
structures and those with dependencies in between.

 The proposed transformations can better map to‧
GPUs than previous automatic approaches.

The remainder of this article is organized as follows.
Section 2 lists the definition and taxonomy of reductions.
Section 3 reviews previous work. Section 4 specifies the
conditions used to detect reduction. Section 5 describes
our transformation methodology in detail. Section 6 lists
the experimental results and Section 7 concludes.

2. Definition and Taxonomy of Reductions

In this work, we define Reduction as a repetitive opera-
tion performed on a set of values, known as reduction fac-
tors, to produce one or multiple final results.

The most basic reduction form produces a single reduc-
tion result. This reduction form is called scalar reduction
[2] or single address reduction [13]. Such a reduction is il-
lustrated by Figure 1. S is the reduction variable that
stores the reduction result. A is the reduction factor which
can be a constant, a variable, a value-generating function,
or an array. U is the consumer of intermediate results. The
reduction operator can be an intrinsic C operator, or an
overloaded operator in C++.

1

Exploiting More Parallelism from Applications Having
Generalized Reductions on GPU Architectures

Xiao-Long Wu Nady Obeid Wen-Mei Hwu

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
{xiaolong, obeid1, w-hwu} @illinois.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.

The reduction variable can also be a vector of multiple
reduction results, as shown in Figure 2. We call such a re-
duction form an aggregate reduction. A1 and A2, which
may or may not be the same, are called the first and sec-
ond reduction factors, respectively.

In this work, we classify min/max reductions [2], which
find the minimum or maximum value in an array, as com-
plex reductions. We define them as such because they con-
tain conditional statements as shown in Figure 3. We also
define reductions with user-defined/overloaded operators
as complex reductions because the compiler may not un-
derstand their behavior the same way it can understand in-
trinsic operators, such as addition and multiplication.

3. Related Work

The recognition of scalar, aggregate, and min/max re-
ductions has been well studied since the 1990’s [1,2,9,10,
13,14,15]. A reduction statement can be detected by the
pattern-matching of dependence graphs, as shown by the
arcs in Figures 3, 4, and 5. However, none of the previous
techniques consider the use of partial reduction results in-
side the loop, and only discuss reductions with intrinsic
operators. In our work, we relax these two restrictions.

The previous work on reduction parallelization has
mostly focused on either minimizing the data communica-
tion over reduction variables and factors, or exploiting the
data locality on reduction factors at compile-time [5,8,10,
13,15] or run-time [6,7,12]. In [10,13], the transformation
focused on parallel execution through Message Passing In-
terface (MPI) or compiler-supported directives. The reduc-
tion variable is privatized for each processor to reduce data
communication. Figure 6 shows an example where proces-
sors 0, 1, and 2 create a private version of the reduction
variable and compute a partial result into it. Afterward, the
partial results from each processor are combined. Plata et
al.[12] study histogramming on a shared-memory multi-

processor platform. First, the histogram reduction state-
ment is recognized using the techniques in [13, 14], then
optimized for data locality of reduction factors at run-time.
The problem is modeled as a vertex coloring problem to
maximize the inter-iteration write locality. Afterward, loop
iterations with the same colors are executed in parallel.
Han et al. [7] introduce the Local-Write technique to paral-
lelize aggregate reductions by partitioning the loop itera-
tions at run-time to keep the data accesses local and avoid
replicating the whole reduction vector, at the cost of in-
creasing data communication between processors.

All the previous techniques have targeted traditional
multiprocessor architectures. For such architectures, with
relatively few scalar cores, coarse-grained parallelism is
sufficient. As Figure 6 shows, every core can reduce a sub-
set of all the reduction factors into a partial result before
adding its result to those of all the other cores. Small
amounts of load imbalance are tolerable in multi-core ar-
chitectures. Furthermore, in most cases, replicating the re-
duction variable to minimize communication does not in-
cur a large memory overhead.

However, the same transformations cannot be directly
applied to many-core architectures like GPUs. GPUs
achieve the best performance by executing thousands of
light-weight threads simultaneously, therefore fine grained
work distribution is preferred over coarse-grained parti-
tioning. Moreover, load imbalance among threads is much
less tolerable on many-core architectures, which are more
similar to vector machines. Finally, the memory footprint

2

for (i = 0; i < N; i++) {
 S = S + A(i);
 U(S);
}

Figure 1. A scalar reduction

for (i = 0; i < N; i++) {
 S[A1(i)] = S[A1(i)] + A2(i);
}

Figure 2. An aggregate reduction

for (i = 0; i < N; i++) {

 if (S < A(i))

 S = A(i);
}

Figure 3. A max reduction

for (i = 0; i < N; i++) {

 S = S + A(i);
}

Figure 4. Code pattern for a scalar reduction

for (i = 0; i < N; i++) {

 S[A1(i)] = S[A1(i)] + A2(i);
}

Figure 5. Code pattern for an aggregate reduction

δ

δo
δ-1

δo

δ-1 δ

δ

δo
δ-1

Figure 6. Graphical representation of privatized
reduction variables

scales with the exploited parallelism and the size of the fi-
nal result, due to variable replication. This is particularly
bad for GPUs and aggregate reductions. For all these rea-
sons, we propose a different transformation which is more
suitable for many-core architectures.

4. Detecting Reductions for Transformation

In order to recognize candidates for our transformation,
we define several conditions that can be verified at com-
pile-time. The first and most essential is that the reduction
operator must be associative and commutative, in other
words, the order in which the operations are performed
should not affect the correctness of the result. Further-
more, as shown by the arcs in Figure 4, self flow depen-
dence, output dependence, and anti-dependence on the re-
duction variable must exist in order to use the reduction
recognition techniques presented in [1,13,14]. The two
conditions above are necessary for detecting parallelizable
reductions. The next four are more specific to determining
a candidate for our transformation. First, the loop bound of
the loop containing the reduction statement must be a loop
invariant, since the loop bound will determine the number
of GPU threads. This also means that the loop cannot ter-
minate early using a break, goto, exit, or return
statement. Second, the reduction factor(s) cannot have di-
rect or indirect dependence on the reduction variable.
However, any outer loops that contain the reduction loop
and that do not contain loop-carried dependencies can be
parallelized. The Mandelbrot benchmark in Section 6 is an
example of this. Third, loop bodies containing multiple
paths should have a reduction statement to the same vari-
able defined along every path; otherwise, an identity value
should exist for the reduction operator (e.g, 0 for addition,
1 for multiplication). This condition allows the transforma-
tion of codes like the one shown in Figure 7, because ev-
ery thread is still generating exactly one reduction factor.
Finally, for aggregate reductions, the indices of the source
and destination variables must be the same, otherwise the
code no longer corresponds to any of the reduction types
described in Section 2.

5. Transformation

In this section, we will describe the proposed transfor-
mations of scalar and aggregate reductions. The transfor-
mations are first described for simple scalar and aggregate
program structures. We then address more complex struc-
tures.

5.1 Transformation of Simple Reductions

The code on the left hand side of Figure 9 is an exam-
ple of a reduction that is recognized as a candidate for
transformation based on the conditions described in Sec-
tion 4. The code on the right-hand side is the code generat-
ed after the transformation. The steps involved in the
transformation are the following:

Step 1 is to generate the reduction factors. In this step,
all the reduction factors are calculated and stored in a tem-
porary array of size N, where N is the original loop bound.
The parallelized step 1 typically contributes the majority
of the performance improvement from the transformation.
Step 2, a prefix sum is performed on the factor array using
the same operator used in the original reduction. The result
of the prefix sum operation is a partial reduction result for
every array element i of all the elements from 0 to i [3].
The result at index N is the final reduction result, which is
assigned to the final reduction variable. Step 3 is to pass
all the intermediate results to the intermediate result con-
sumer, if any exist. This third step may or may not be au-
tomatically parallelizable, based on the dependence pattern
of the consumer, but this is beyond the scope of this paper.
Note that if there is no intermediate results consumer, it
suffices to perform a scalar reduction rather than a prefix
sum. Figure 8, summarizes the transformation described in
this section.

For aggregate reductions, similar transformations oc-
cur. First, both factors are calculated into arrays, as shown
in Figure 10. Secondly, a call to a library implementation
is made since prefix sum cannot be applied to aggregate
reductions. The library function takes as arguments the re-
duction variable vector, the first and second factor arrays,
and the loop bound N. Note that generating intermediate
results for consumers of aggregate reduction variables is
very difficult to do. Fortunately, it is not common practice
to use the intermediate results of an aggregate reduction
and we were not able to find any real application example
that do. For that reason, we do not address this issue in this
paper.

3

Figure 8. Graphical representation of the transformation

for (i = 0; i < N; i++) {
 if (…) { S = S + A1(i); }
 else { S = S + A2(i); }
}

Figure 7. Code pattern for reduction with a scalar
reduction result

5.2 Reduction of Complex Program Structures

In real applications, multiple nested reductions may be
present as shown on the left-hand side of Figure 11. If the
nested reductions depend on each other, then a simple and
systematic extension of the transformation explained in
Section 5.1 can be applied. In essence, given two nested
reduction variable S1 and S2, where S2 is in the inner-
most loop which depends on S1, then the transformation
can be performed for S1 as explained in Section 5.1, treat-
ing the code for S2 as the consumer of the intermediate
values of S1. Then in a second iteration, we repeat the
transformation process for S2. This iterative approach can
be applied to any number of nested reductions until there
are no more transformations left to perform. However, if
there are no dependencies between the variables, as is the
case in the code in Figure 11, this approach is inefficient
as it breaks the code into too many small loops. Instead,
our transformation method can transform the code in a
much more efficient way, as shown in Figure 11. Step 1
now populates all three factor arrays, in a similar code
structure to that of the original code. Then in step 2, three
independent reductions are performed for each iteration
variable. Except for the most complex cases, step 1 can
typically be parallelized as a single kernel.

5.3 Automating the Transformation

All of the transformations described in this section can
be automated. Our compiler can currently detect scalar,
aggregate and complex reductions. Furthermore, the con-
ditions described in Section 4 are simple to detect in a
compiler, in order to generate the new source code as

shown in sections 5.1 and 5.2. The automatic transforma-
tion of 'Step 1', 'Step 2', and 'Step 3' codes into their paral-
lel kernel equivalents is still under development.

Though the work presented in this paper does not en-
compass all the transformation stages from a running serial
code to a running parallel code, it contributes a significant
step. The first contribution is that of making the code more
regular for further automatic transformations. This regular-
ity also makes it easier for the programmer to hand-tune
the code. The second contribution is exposing some paral-
lelism even when the original loop is not entirely paral-
lelizable. For example, even if the generation of the reduc-
tion factors is not parallelizable, by transforming the prefix
sum and the use of intermediate results into parallel ker-
nels, we can still benefit from some parallelism. Finally, as
with all compiler optimizations, the automatically generat-
ed code is less error-prone for complex program struc-
tures, and minimizes the programmer's effort to manually
perform these transformations.

Our framework currently applies the same general
transformations to all reductions, and does not optimize for
every application individually. Because of that, it may
sometimes fail to parallelize a piece of code that a pro-
grammer can. One example is when the loop bound or
product of nested loop bounds causes the temporary array
to be larger than the size of the device memory. This situa-
tion fails in the automatic framework since we currently
favor maximum expansion of the data and minimum work
per thread. On the other hand, the programmer can better
evaluate the trade-off between data expansion and thread
workload to achieve the best transformation that does not
exceed available resources. Integrating this trade-off anal-
ysis into the compiler will be part of future work.

6. Experimental Results

In this section we demonstrate the speedup achieved by
our transformation compared to the sequential code of two
benchmarks. Since the stages following our transformation
are not yet automated, we manually port the transformed

4

//Original code
for(i=0; i<N; i++)
{
 S = S + A(i);
 U(S);
}

//Step 1: Reduction factor
for (i=0; i<N; i++){
 t[i] = A(i);
}

//Step 2: Inter. reduction results
Pt = prefixsum(N, t);
S = Pt[N-1];

//Step 3: User of inter. results
for (i=0; i<N; i++){
 U(Pt[i]);
}

Figure 9. A graphical view of the transformation
of scalar reductions

// Original code
for (i = 0; i < N; i++)
{
 fa1 = A1(i);
 S[fa1]=S[fa1] + A2(i);
}

// Step 1: Reduction factors
for (i=0; i<N; i++) {
 t1[i] = A1(i);
 t2[i] = A2(i);
}

// Step 2: Aggregate reduction
aggr_redct(S,t1,t2,N);
}

Figure 10. A graphical view of the transformation
of aggregate reductions

for (i=0; i<Ni; i++){
 // Reduction 1
 S1 = S1 + A1(i);

 for (j=0; j<Nj; j++){
 if (cond_S2) {
 // Reduction 2
 S2 = S2 + A2(j);
 }
 // Reduction 3
 S3 = S3 + A3(j);
} }

//Step 1: Reduct. factor
for (i=0; i<Ni; i++){
 t1[i] = A1(i);
 for (j=0; j<Nj; j++){
 if (cond_S2) {
 t2[i*Nj+j]=A2(j);
 }
 t3[i*Nj+j] = A3(j);
} }

//Step 2: Reduct. kernel
S1 = reduce(Ni, t1);
S2 = reduce(Ni*Nj, t2);
S3 = reduce(Ni*Nj; t3);

Figure 11. Multiple reductions without
dependencies

code to the GPU without any hand optimizations. In other
words, we simply replace the for loop construct with its
kernel equivalent, replacing every iteration with a thread.
Therefore, the performance we present is for the worst-
case scenario where no optimizations other than our trans-
formation are performed.

The first benchmark we use is TPACF from the Parboil
suite [11]. TPACF is an equation used as a way to measure
the probability of finding an astronomical body at a given
angular distance from another astronomical body. TPACF
is mostly an application of histogramming, which is a sim-
ple case of aggregate reduction. Using our approach, we
transformed the original code, as described in Section 5.1,
and replaced the histogram statement with a call to a paral-
lel histogramming library. The execution run-time can be
seen in Table 1 for the CPU code, the GPU code generated
by our approach, and the user optimized hand-coded GPU
code. The automatically transformed code achieves a
3.49x speedup over the sequential code. Note that the
hand-coded parallel code achieves 65x in comparison. The
reason for this large difference is that, in addition to being
parallel, the hand-coded version uses a different data tile
size than the sequential code, one that better fits the GPU.
Specifically, the hand-coded version processes all the data
in one tile as opposed to the sequential code that break the
input data into 100 tiles. On the other hand, the automatic
version simply parallelizes the reduction without any re-
tiling, therefore causing the GPU execution to be broken
down into 100 kernel calls. Because each of the 100 ker-
nels is too small to saturate the GPU, kernel run-time suf-
fers. In addition, the data transfer time increases due to
many transfers between the GPU and CPU, versus a single
round-trip in the hand-coded version. However, despite a
slightly unfair comparison between the sequential and
hand-coded parallel version, these numbers illustrate an
important point. Due to compiler limitations, our transfor-
mations are only capable of porting the code to the GPU
without any kernel-specific optimizations. However, most

manual transformations are not done that way. A program-
mer, being far more capable at parallelizing code than a
compiler, is able to perform optimizations more specific to
the given kernel, and in some cases is able to make algo-
rithmic changes to the code, to better fit it to GPU execu-
tion. Despite that, it is worth noting that in the case of
TPACF, the user is able to achieve 3.49x speedup without
any effort on their end. In fact, even a user who is not fa-
miliar with GPU programming can achieve some signifi-
cant, though not optimal, speedups with the help of our
compiler transformations.

The second benchmark is the Mandelbrot Set code in
the OpenMP Source Code Repository (OmpSCR) [4].
Mandelbrot set is defined as a sequence of complex qua-
dratic polynomials in the mathematical form of “zn+1 = zn

2

+ c”, where c is a given complex value. The equation can
be used to determine whether a complex value c is bound-
ed or not. In OmpSCR, the set is calculated by Monte Car-
lo sampling to estimate the set area. The code in Figure 12
determines if every complex value in the array points is
converging or not. If not, variable “outside” is increment-
ed and the loop breaks.

The inner for-loop for Mandelbrot is not parallelizable
because it contains loop-carried dependencies, highlighted
in Figure 12, as well as a break statement which could ter-
minate the loop early. However, if the reduction statement
in the inner-most loop is removed, the outer loop can be
parallelized since its loop bound is constant. As shown in

5

for (i = 0; i < NPOINTS; i++) {
 z.re = points[i].re;
 z.im = points[i].im;
 for (j = 0; j < MAXITER; j++) {
 ztemp = (z.re * z.re) – (z.im * z.im)
 + points[i].re;
 z.im = z.re * z.im * 2 + points[i].im;
 z.re = ztemp;
 if (z.re*z.re + z.im*z.im > THRESHOLD){
 outside++;
 break;
} } }

Figure 12. Code segment of Mandelbrot set area

// Step 1: Reduction factor
for (i = 0; i < NPOINTS; i++) {
 z.re = points[i].re;
 z.im = points[i].im;
 for (j = 0; j < MAXITER; j++) {
 ztemp = (z.re * z.re) – (z.im * z.im) +
 points[i].re;
 z.im = z.re * z.im * 2 + points[i].im;
 z.re = ztemp;
 if (z.re*z.re + z.im*z.im > THRESHOLD){
 t[i] += 1;
 break;
} } }
// Step 2: Reduction operation
outside = reduction(NPOINTS,t);

Figure 13. Transformed code segment of
Mandelbrot Set by our transformation

Table 1. Experimental results for TPACF

GPU Kernel 0.0000 1.0717 14.4051 0.07x -
Data Transfer 0.0000 0.0851 7.4724 0.01x -

76.4048 0.0107 0.0022 4.89x -
Total 76.40 1.17 21.88 0.05x 3.49x

Seq.
(ms)

Hand
Coded (ms)

Automatic
(ms)

Speedup
(H./A.)

Speedup
(S./A.)

CPU Runtime

Table 2. Experimental results for Mandelbrot Set

NPOINTS

100 92.09 246.10 322.64 0.76 0.29
500 499.04 246.04 322.57 0.76 1.55

5,000 2,042.68 246.19 323.25 0.76 6.32
10,000 3,878.59 491.15 649.58 0.76 5.97
50,000 19,498.98 1,228.32 1,615.79 0.76 12.07

Seq.
(ms)

Hand-coded
(ms)

Automatic
(ms)

Speedup
(H./A.)

Speedup
(S./A.)

Figure 13, the result of the transformation is a new loop
where every iteration executes the entire inner for-loop,
computes a partial sum for the variable “outside” and
stores it in a temporary array of size NPOINTS. In the end,
this temporary array is reduced by a parallel reduction
code template. For Mandelbrot, the difference between our
automated transformation and the hand-coded transforma-
tion is simply a set of optimizations such as shared memo-
ry usage, and loop unrolling, resulting in the hand-tuned
code being 34% faster than the automatic one, as shown in
Table 2. Nevertheless, we achieve a significant 12.07x
speedup over the sequential code for NPOINTS=50,000,
and this without any effort required from the programmer.

7. Conclusions and Future Work

In this paper we presented an innovative transformation
that combines both scalar expansion and loop distribution
compilation techniques to parallelize a complex reduction
code segment. This transformation provides three advan-
tages. One is the isolation of the dependencies inside the
reduction code segment to exploit more parallelism from
the the rest of the code. The second is improved capability
to transform more complex reductions such as histograms.
The third is better portability to many-core architecture
with SPMD support. The preliminary experimental results
show competitive performance compared to the sequential
code.

Future work still needs to be done in completing the
implementation, and researching the later stages of the
compiler in order to achieve a full-pipeline that automates
the transformation from working sequential code to work
GPU parallel code. Further more, the threshold for which a
reduction is more efficient on the GPU versus the CPU is
currently unknown, and to the best of our knowledge, has
never been studied. Determining the correct heuristic to
choose whether to port a certain reduction to the GPU or
not will further increase the usability of our compiler
framework.

Acknowledgments

The authors acknowledge the high-performance com-
puting resources provided by Institute for Advanced Com-
puting Applications and Technologies (IACAT). This
work was conducted on the infrastructure built using NSF
grant 0551665.

References

[1] R. Allen and K. Kennedy “Optimizing Compilers for Modern
Architectures,” Morgan Kaufmann Publisher, October 2001.

[2] M. Arenaz, J. Touriño, and R. Doallo, “XARK: An
EXtensible Framework for Automatic Recognition of
Computational Kernels,” ACM Transactions on Programming

Languages and Systems (TOPLAS), vol. 30, issue 6, 2008.

[3] Mark Harris, Shubhabrata Sengupta, and John D. Owens.
“Parallel Prefix Sum (Scan) with CUDA”. GPU Gems 3, chapter
39, pages 851–876. Addison Wesley, August 2007.

[4] A. J. Dorta, C. Rodriguez, F. de Sande, “The OpenMP Source
Code Repository,” In Proceedings of the 13th Euromicro
Conference on Parallel, Distributed and Network-Based
Processing, pp. 244-250, February 2005.

[5] M. Gupta, S. Midkiff, E. Schonberg, P. Sweeney, K. Y.
Wang, and M. Burke, “PTRAN II - A Compiler for High
Performance Fortran,” 4th International Workshop on Compilers
for Parallel Computers, 1993.

[6] E. Gutiérrez, O. Plata, and E. L. Zapata, “Improving Parallel
Irregular Reductions Using Partial Array Expansion,” In
Proceedings of the 2001 ACM/IEEE Conference on
Supercomputing, 2001.

[7] H. Han and C.-W. Tseng, “Improving Compiler and Run-
Time Support for Irregular Reductions Using Local Writes,” In
Proceedings of the 11th international Workshop on Languages
and Compilers For Parallel Computing, August 1998.

[8] S. Hiranandani, K. Kennedy, and C.-W. Tseng, “Compiling
Fortran D for MIMD Distributed-Memory Machines,”
Communications of the ACM, vol. 35, no. 8, pp. 66-80, August
1992.

[9] S.-w. Liao, “Parallelizing User-Defined and Implicit
Reductions Globally on Multiprocessors,” Lecture Notes in
Computer Science, Springer-Verlag. Also in Proceedings of
Annual Asia-Pacific Computer Architecture Conference
(ACSAC06), Shanghai, PRC, September 2006.

[10] B. Lu and J. Mellor-Crummey, “Compiler Optimization of
Implicit Reductions for Distributed Memory Multiprocessors,” In
Proceedings of the 12th International Parallel Processing
Symposium, 1998.

[11] Parboil Benchmark Suite,
http://impact.crhc.illinois.edu/parboil.php

[12] O. Plata, R. Asenjo, E. Gutiérrez, F. Corbera, Angeles
Navarro, and Emilio L. Zapata, “On the Parallelization of
Irregular and Dynamic Programs,” Parallel Computing, vol. 31,
issue 6, pp. 544-562, June 2005.

[13] B. Pottenger and R. Eigenmann, “Parallelization in the
Presence of Generalized Induction and Reduction Variables,”
Technical Report 1396, Univ. of Illinois at Urbana-Champaign,
Cntr. for Supercomputing Res. & Dev., January 1995.

[14] B. Pottenger and R. Eigenmann, “Idiom Recognition In The
Polaris Parallelizing Compiler,” In Proceedings of the 9th
International Conference on Supercomputing, 1995.

[15] T. Suganuma, H. Komatsu, and T. Nakatani, “Detection and
Global Optimization of Reduction Operations for Distributed
Parallel Machines,” in Proceedings of the 1996 ACM
International Conference on Supercomputing, Philadelphia, PA,
May 1996.

6

	1. Introduction
	2. Definition and Taxonomy of Reductions
	3. Related Work
	4. Detecting Reductions for Transformation
	5. Transformation
	5.1 Transformation of Simple Reductions
	5.2 Reduction of Complex Program Structures
	5.3 Automating the Transformation

	6. Experimental Results
	7. Conclusions and Future Work
	Acknowledgments
	References

