
Abstract
Reduction is a common component of  many applica-

tions, but can often be the limiting factor for paralleliza-
tion. Previous reduction work has focused on detecting re-
duction idioms and parallelizing the reduction operation  
by  minimizing  data  communications  or  exploiting  more  
data locality. While these techniques can be useful, they  
are mostly limited to simple code structures. In this paper,  
we propose a method for exploiting more parallelism by  
isolating the reduction from users of the intermediate re-
sults. The other main contribution of our work is enabling  
the parallelization of more complex reduction codes,  in-
cluding those that involve the use of intermediate reduc-
tion results.  The proposed transformations are often im-
plemented by programmers in an ad-hoc manner, but to  
the best of our knowledge no previous work has been pro-
posed  to  automate  these  transformations  for  many-core  
architectures. We show that the automatic transformations  
can result in significant speedup compared to the original  
code using two benchmark applications.

1. Introduction

In recent years, scientific applications like image pro-
cessing and computational geometric algorithms have en-
joyed  a  tremendous  performance  improvement  on  data 
parallel,  many-core  architectures  such  as  NVIDIA  and 
AMD GPUs. These applications often use reduction opera-
tions for data summation, finding min/max values, true el-
ement counting, etc., and though reduction may not domi-
nate  the  overall  application  performance,  it  can  prevent 
large  code  segments  from  being  parallelized.  Previous 
works focused mostly on minimizing the data communica-

tion caused by reductions [5,6,10,12,13,15],  by inserting 
directives in the original code to reduce data dependencies 
among  workers  and  to  minimize  data  communication. 
These techniques complicate the code and generate a lot of 
branches,  which makes  them less  suitable  for  automatic 
code transformation for wide SIMD architectures such as 
GPUs. Our focus, in contrast, is on exploiting more paral-
lelism from the original code by isolating the dependencies 
introduced by the reductions. Our main contributions are 
as follows:

 The proposed transformation can help exploit more‧  
parallelism  from  scalar  and  aggregate  reductions  by 
isolating loop-carried dependencies.

 It provides an innovative code transformation which‧  
is  practical  for  reductions  inside  complex  program 
structures and those with dependencies in between.

 The  proposed  transformations  can  better  map  to‧  
GPUs than previous automatic approaches.

The remainder of this article  is organized as follows. 
Section 2 lists the definition and taxonomy of reductions. 
Section 3 reviews previous work. Section 4 specifies the 
conditions used  to  detect  reduction.  Section 5  describes 
our transformation methodology in detail. Section 6 lists 
the experimental results and Section 7 concludes.

2. Definition and Taxonomy of Reductions

In this work, we define Reduction as a repetitive opera-
tion performed on a set of values, known as reduction fac-
tors, to produce one or multiple final results.

The most basic reduction form produces a single reduc-
tion result. This reduction form is called  scalar reduction 
[2] or single address reduction [13]. Such a reduction is il-
lustrated  by  Figure  1.  S is  the  reduction  variable that 
stores the reduction result. A is the reduction factor which 
can be a constant, a variable, a value-generating function, 
or an array. U is the consumer of intermediate results. The 
reduction operator can be an intrinsic  C operator,  or an 
overloaded operator in C++.
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The reduction variable can also be a vector of multiple 
reduction results, as shown in Figure 2. We call such a re-
duction form an  aggregate reduction.  A1 and  A2,  which 
may or may not be the same, are called the first  and sec-
ond reduction factors, respectively.

In this work, we classify min/max reductions [2], which 
find the minimum or maximum value in an array, as com-
plex reductions. We define them as such because they con-
tain conditional statements as shown in Figure 3. We also 
define  reductions  with user-defined/overloaded  operators 
as complex reductions because the compiler may not un-
derstand their behavior the same way it can understand in-
trinsic operators, such as addition and multiplication.

3. Related Work

The recognition of scalar, aggregate, and min/max re-
ductions has been well studied since the 1990’s [1,2,9,10, 
13,14,15].  A reduction statement can be detected by the 
pattern-matching of dependence graphs, as shown by the 
arcs in Figures 3, 4, and 5. However, none of the previous 
techniques consider the use of partial reduction results in-
side the loop, and only discuss reductions with intrinsic 
operators. In our work, we relax these two restrictions.

The  previous  work  on  reduction  parallelization  has 
mostly focused on either minimizing the data communica-
tion over reduction variables and factors, or exploiting the 
data locality on reduction factors at compile-time [5,8,10, 
13,15] or run-time [6,7,12]. In [10,13], the transformation 
focused on parallel execution through Message Passing In-
terface (MPI) or compiler-supported directives. The reduc-
tion variable is privatized for each processor to reduce data 
communication. Figure 6 shows an example where proces-
sors 0, 1, and 2 create a private version of the reduction 
variable and compute a partial result into it. Afterward, the 
partial results from each processor are combined. Plata et 
al.[12]  study histogramming on a shared-memory multi-

processor  platform.  First,  the  histogram reduction  state-
ment is recognized using the techniques in [13, 14], then 
optimized for data locality of reduction factors at run-time. 
The problem is modeled as a vertex coloring problem to 
maximize the inter-iteration write locality. Afterward, loop 
iterations with the same colors  are  executed  in  parallel. 
Han et al. [7] introduce the Local-Write technique to paral-
lelize aggregate reductions by partitioning the loop itera-
tions at run-time to keep the data accesses local and avoid 
replicating the whole reduction vector,  at the cost of in-
creasing data communication between processors.

All  the  previous  techniques  have  targeted  traditional 
multiprocessor architectures.  For such architectures,  with 
relatively  few scalar  cores,  coarse-grained  parallelism is 
sufficient. As Figure 6 shows, every core can reduce a sub-
set of all the reduction factors into a partial result before 
adding  its  result  to  those  of  all  the  other  cores.  Small 
amounts of load imbalance are tolerable in multi-core ar-
chitectures. Furthermore, in most cases, replicating the re-
duction variable to minimize communication does not in-
cur a large memory overhead.

However, the same transformations cannot be directly 
applied  to  many-core  architectures  like  GPUs.  GPUs 
achieve  the best  performance by executing thousands of 
light-weight threads simultaneously, therefore fine grained 
work  distribution  is  preferred  over  coarse-grained  parti-
tioning. Moreover, load imbalance among threads is much 
less tolerable on many-core architectures, which are more 
similar to vector machines. Finally, the memory footprint 
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for (i = 0; i < N; i++) {
    S = S + A(i);
    U(S);
}

Figure 1. A scalar reduction

for (i = 0; i < N; i++) {
    S[A1(i)] = S[A1(i)] + A2(i);
}

Figure 2. An aggregate reduction

for (i = 0; i < N; i++) {

    if (S  < A(i))

        S  = A(i);
}

Figure 3. A max reduction

for (i = 0; i < N; i++) {
    
    S = S + A(i);
}

Figure 4. Code pattern for a scalar reduction

for (i = 0; i < N; i++) {

    S[A1(i)] = S[A1(i)] + A2(i);
}

Figure 5. Code pattern for an aggregate reduction
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Figure 6. Graphical representation of privatized 
reduction variables



scales with the exploited parallelism and the size of the fi-
nal result, due to variable replication. This is particularly 
bad for GPUs and aggregate reductions. For all these rea-
sons, we propose a different transformation which is more 
suitable for many-core architectures.

4. Detecting Reductions for Transformation

In order to recognize candidates for our transformation, 
we define several conditions that can be verified at com-
pile-time. The first and most essential is that the reduction 
operator  must  be  associative  and  commutative,  in  other 
words,  the order  in  which the  operations  are  performed 
should  not  affect  the  correctness  of  the  result.  Further-
more, as shown by the arcs in Figure 4, self flow depen-
dence, output dependence, and anti-dependence on the re-
duction variable must exist in order to use the reduction 
recognition  techniques  presented  in  [1,13,14].  The  two 
conditions above are necessary for detecting parallelizable 
reductions. The next four are more specific to determining 
a candidate for our transformation. First, the loop bound of 
the loop containing the reduction statement must be a loop 
invariant, since the loop bound will determine the number 
of GPU threads. This also means that the loop cannot ter-
minate early using a  break, goto,  exit,  or  return 
statement. Second, the reduction factor(s) cannot have di-
rect  or  indirect  dependence  on  the  reduction  variable. 
However, any outer loops that contain the reduction loop 
and that do not contain loop-carried dependencies can be 
parallelized. The Mandelbrot benchmark in Section 6 is an 
example  of  this.  Third,  loop  bodies  containing  multiple 
paths should have a reduction statement to the same vari-
able defined along every path; otherwise, an identity value 
should exist for the reduction operator (e.g, 0 for addition, 
1 for multiplication). This condition allows the transforma-
tion of codes like the one shown in Figure 7, because ev-
ery thread is still generating exactly one reduction factor. 
Finally, for aggregate reductions, the indices of the source 
and destination variables must be the same, otherwise the 
code no longer corresponds to any of the reduction types 
described in Section 2.

5. Transformation

In this section, we will describe the proposed transfor-
mations of scalar and aggregate reductions. The transfor-
mations are first described for simple scalar and aggregate 
program structures. We then address more complex struc-
tures.

5.1 Transformation of Simple Reductions

The code on the left hand side of Figure 9 is an exam-
ple of  a  reduction that  is  recognized  as  a  candidate  for 
transformation based on the conditions described in Sec-
tion 4. The code on the right-hand side is the code generat-
ed  after  the  transformation.  The  steps  involved  in  the 
transformation are the following:

Step 1 is to generate the reduction factors. In this step, 
all the reduction factors are calculated and stored in a tem-
porary array of size N, where N is the original loop bound. 
The parallelized step 1 typically contributes the majority 
of the performance improvement from the transformation. 
Step 2, a prefix sum is performed on the factor array using 
the same operator used in the original reduction. The result 
of the prefix sum operation is a partial reduction result for 
every array element  i of all the elements from 0 to  i [3]. 
The result at index N is the final reduction result, which is 
assigned to the final reduction variable. Step 3 is to pass 
all the intermediate results to the intermediate result con-
sumer, if any exist. This third step may or may not be au-
tomatically parallelizable, based on the dependence pattern 
of the consumer, but this is beyond the scope of this paper. 
Note that if there is no intermediate results consumer, it 
suffices to perform a scalar reduction rather than a prefix 
sum. Figure 8, summarizes the transformation described in 
this section.

For  aggregate  reductions,  similar  transformations  oc-
cur. First, both factors are calculated into arrays, as shown 
in Figure 10. Secondly, a call to a library implementation 
is made since prefix sum cannot be applied to aggregate 
reductions. The library function takes as arguments the re-
duction variable vector, the first and second factor arrays, 
and the loop bound  N. Note that generating intermediate 
results for consumers of aggregate reduction variables is 
very difficult to do. Fortunately, it is not common practice 
to use the intermediate results of an aggregate reduction 
and we were not able to find any real application example 
that do. For that reason, we do not address this issue in this 
paper.
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Figure 8. Graphical representation of the transformation

for (i = 0; i < N; i++) {
  if (…) { S = S + A1(i); }
  else { S = S + A2(i); }
}

Figure 7. Code pattern for reduction with a scalar 
reduction result



5.2 Reduction of Complex Program Structures

In real applications, multiple nested reductions may be 
present as shown on the left-hand side of Figure 11. If the 
nested reductions depend on each other, then a simple and 
systematic  extension  of  the  transformation  explained  in 
Section 5.1 can be applied. In essence, given two nested 
reduction variable S1 and S2, where S2 is in the inner-
most loop which depends on S1, then the transformation 
can be performed for S1 as explained in Section 5.1, treat-
ing the code for S2 as the consumer of the intermediate 
values  of  S1.  Then in a  second iteration,  we repeat  the 
transformation process for S2. This iterative approach can 
be applied to any number of nested reductions until there 
are no more transformations left to perform. However, if 
there are no dependencies between the variables, as is the 
case in the code in Figure 11, this approach is inefficient 
as it breaks the code into too many small loops. Instead, 
our  transformation  method  can  transform the  code  in  a 
much more efficient way, as shown in Figure 11. Step 1 
now populates  all  three  factor  arrays,  in  a  similar  code 
structure to that of the original code. Then in step 2, three 
independent  reductions  are  performed  for  each  iteration 
variable.  Except  for the most complex cases,  step 1 can 
typically be parallelized as a single kernel.

5.3 Automating the Transformation

All of the transformations described in this section can 
be  automated.  Our  compiler  can  currently  detect  scalar, 
aggregate and complex reductions. Furthermore, the con-
ditions described  in  Section 4 are  simple to  detect  in  a 
compiler,  in  order  to  generate  the  new  source  code  as 

shown in sections 5.1 and 5.2. The automatic transforma-
tion of 'Step 1', 'Step 2', and 'Step 3' codes into their paral-
lel kernel equivalents is still under development.

Though the work presented in this paper does not en-
compass all the transformation stages from a running serial 
code to a running parallel code, it contributes a significant 
step. The first contribution is that of making the code more 
regular for further automatic transformations. This regular-
ity also makes it easier for the programmer to hand-tune 
the code. The second contribution is exposing some paral-
lelism even when the original loop is not entirely paral-
lelizable. For example, even if the generation of the reduc-
tion factors is not parallelizable, by transforming the prefix 
sum and the use of intermediate results into parallel ker-
nels, we can still benefit from some parallelism. Finally, as 
with all compiler optimizations, the automatically generat-
ed  code  is  less  error-prone  for  complex  program struc-
tures, and minimizes the programmer's effort to manually 
perform these transformations.

Our  framework  currently  applies  the  same  general 
transformations to all reductions, and does not optimize for 
every  application  individually.  Because  of  that,  it  may 
sometimes fail  to parallelize a piece of code that a pro-
grammer  can.  One example  is  when the  loop  bound or 
product of nested loop bounds causes the temporary array 
to be larger than the size of the device memory. This situa-
tion fails in the automatic framework since we currently 
favor maximum expansion of the data and minimum work 
per thread.  On the other hand, the programmer can better 
evaluate the trade-off between data expansion and thread 
workload to achieve the best transformation that does not 
exceed available resources. Integrating this trade-off anal-
ysis into the compiler will be part of future work.

6. Experimental Results

In this section we demonstrate the speedup achieved by 
our transformation compared to the sequential code of two 
benchmarks. Since the stages following our transformation 
are not yet automated, we manually port the transformed 
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//Original code
for(i=0; i<N; i++)
{
   S = S + A(i);
    U(S);
}

//Step 1: Reduction factor
for (i=0; i<N; i++){
    t[i] = A(i);
}

//Step 2: Inter. reduction results
Pt = prefixsum(N, t);
S = Pt[N-1];

//Step 3: User of inter. results
for (i=0; i<N; i++){
    U(Pt[i]);
}

Figure 9. A graphical view of the transformation 
of scalar reductions

// Original code
for (i = 0; i < N; i++)
{
  fa1 = A1(i);
  S[fa1]=S[fa1] + A2(i);
}

// Step 1: Reduction factors
for (i=0; i<N; i++) {
    t1[i] = A1(i);
    t2[i] = A2(i);
}

// Step 2: Aggregate reduction
aggr_redct(S,t1,t2,N);
}

Figure 10. A graphical view of the transformation 
of aggregate reductions

for (i=0; i<Ni; i++){
  // Reduction 1
  S1 = S1 + A1(i);

  for (j=0; j<Nj; j++){
    if (cond_S2) {
      // Reduction 2
      S2 = S2 + A2(j);
    }
    // Reduction 3
    S3 = S3 + A3(j);
} }

//Step 1: Reduct. factor
for (i=0; i<Ni; i++){
  t1[i] = A1(i);
  for (j=0; j<Nj; j++){
    if (cond_S2) {
      t2[i*Nj+j]=A2(j);
    }
    t3[i*Nj+j] = A3(j);
} }

//Step 2: Reduct. kernel 
S1 = reduce(Ni, t1);
S2 = reduce(Ni*Nj, t2);
S3 = reduce(Ni*Nj; t3);

Figure 11. Multiple reductions without 
dependencies



code to the GPU without any hand optimizations. In other 
words, we simply replace the  for loop construct with its 
kernel equivalent, replacing every iteration with a thread. 
Therefore,  the performance we present  is  for  the worst-
case scenario where no optimizations other than our trans-
formation are performed.

The first benchmark we use is TPACF from the Parboil 
suite [11]. TPACF is an equation used as a way to measure 
the probability of finding an astronomical body at a given 
angular distance from another astronomical body. TPACF 
is mostly an application of histogramming, which is a sim-
ple case of aggregate reduction. Using our approach, we 
transformed the original code, as described in Section 5.1, 
and replaced the histogram statement with a call to a paral-
lel histogramming library. The execution run-time can be 
seen in Table 1 for the CPU code, the GPU code generated 
by our approach, and the user optimized hand-coded GPU 
code.  The  automatically  transformed  code  achieves  a 
3.49x  speedup  over  the  sequential  code.  Note  that  the 
hand-coded parallel code achieves 65x in comparison. The 
reason for this large difference is that, in addition to being 
parallel, the hand-coded version uses a different data tile 
size than the sequential code, one that better fits the GPU. 
Specifically, the hand-coded version processes all the data 
in one tile as opposed to the sequential code that break the 
input data into 100 tiles. On the other hand, the automatic 
version simply parallelizes the reduction without any re-
tiling, therefore causing the GPU execution to be broken 
down into 100 kernel calls. Because each of the 100 ker-
nels is too small to saturate the GPU, kernel run-time suf-
fers.  In  addition,  the data  transfer  time increases  due to 
many transfers between the GPU and CPU, versus a single 
round-trip in the hand-coded version. However, despite a 
slightly  unfair  comparison  between  the  sequential  and 
hand-coded  parallel  version,  these  numbers  illustrate  an 
important point. Due to compiler limitations, our transfor-
mations are only capable of porting the code to the GPU 
without any kernel-specific optimizations. However, most 

manual transformations are not done that way. A program-
mer, being far more capable at parallelizing code than a 
compiler, is able to perform optimizations more specific to 
the given kernel, and in some cases is able to make algo-
rithmic changes to the code, to better fit it to GPU execu-
tion. Despite  that,  it  is  worth noting that  in the case  of 
TPACF, the user is able to achieve 3.49x speedup without 
any effort on their end. In fact, even a user who is not fa-
miliar with GPU programming can achieve some signifi-
cant,  though not optimal,  speedups with the help of our 
compiler transformations.

The second benchmark is the Mandelbrot Set code in 
the  OpenMP Source  Code  Repository  (OmpSCR)  [4]. 
Mandelbrot set is defined as a sequence of complex qua-
dratic polynomials in the mathematical form of “zn+1 = zn

2 

+ c”, where c is a given complex value. The equation can 
be used to determine whether a complex value c is bound-
ed or not. In OmpSCR, the set is calculated by Monte Car-
lo sampling to estimate the set area. The code in Figure 12 
determines if every complex value in the array  points is 
converging or not. If not, variable “outside” is increment-
ed and the loop breaks.

The inner for-loop for Mandelbrot is not parallelizable 
because it contains loop-carried dependencies, highlighted 
in Figure 12, as well as a break statement which could ter-
minate the loop early. However, if the reduction statement 
in the inner-most loop is removed, the outer loop can be 
parallelized since its loop bound is constant. As shown in 
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for (i = 0; i < NPOINTS; i++) {
  z.re = points[i].re;
  z.im = points[i].im;
  for (j = 0; j < MAXITER; j++) {
    ztemp = (z.re * z.re) – (z.im * z.im) 
      + points[i].re;
    z.im = z.re * z.im * 2 + points[i].im;
    z.re = ztemp;
    if (z.re*z.re + z.im*z.im > THRESHOLD){
      outside++;
      break;
} } }

Figure 12. Code segment of Mandelbrot set area

// Step 1: Reduction factor
for (i = 0; i < NPOINTS; i++) {
  z.re = points[i].re;
  z.im = points[i].im;
  for (j = 0; j < MAXITER; j++) {
    ztemp = (z.re * z.re) – (z.im * z.im) +
             points[i].re;
    z.im = z.re * z.im * 2 + points[i].im;
    z.re = ztemp;
    if (z.re*z.re + z.im*z.im > THRESHOLD){
      t[i] += 1;
      break;
} } }
// Step 2: Reduction operation
outside = reduction(NPOINTS,t);

Figure 13. Transformed code segment of 
Mandelbrot Set by our transformation

Table 1. Experimental results for TPACF

GPU Kernel 0.0000 1.0717 14.4051 0.07x -
Data Transfer 0.0000 0.0851 7.4724 0.01x -

76.4048 0.0107 0.0022 4.89x -
Total 76.40 1.17 21.88 0.05x 3.49x

Seq.
(ms)

Hand
Coded (ms)

Automatic
(ms)

Speedup
(H./A.)

Speedup
(S./A.)

CPU Runtime

Table 2. Experimental results for Mandelbrot Set

NPOINTS

100 92.09 246.10 322.64 0.76 0.29
500 499.04 246.04 322.57 0.76 1.55

5,000 2,042.68 246.19 323.25 0.76 6.32
10,000 3,878.59 491.15 649.58 0.76 5.97
50,000 19,498.98 1,228.32 1,615.79 0.76 12.07

Seq.
(ms)

Hand-coded
(ms)

Automatic
(ms)

Speedup
(H./A.)

Speedup
(S./A.)



Figure 13, the result of the transformation is a new loop 
where  every  iteration  executes  the  entire  inner  for-loop, 
computes  a  partial  sum  for  the  variable  “outside”  and 
stores it in a temporary array of size NPOINTS. In the end, 
this  temporary  array  is  reduced  by  a  parallel  reduction 
code template. For Mandelbrot, the difference between our 
automated transformation and the hand-coded transforma-
tion is simply a set of optimizations such as shared memo-
ry usage, and loop unrolling, resulting in the hand-tuned 
code being 34% faster than the automatic one, as shown in 
Table  2.  Nevertheless,  we  achieve  a  significant  12.07x 
speedup over the sequential  code for NPOINTS=50,000, 
and this without any effort required from the programmer.

7. Conclusions and Future Work

In this paper we presented an innovative transformation 
that combines both scalar expansion and loop distribution 
compilation techniques to parallelize a complex reduction 
code segment. This transformation provides three advan-
tages. One is the isolation of the dependencies inside the 
reduction code segment to exploit more parallelism from 
the the rest of the code. The second is improved capability 
to transform more complex reductions such as histograms. 
The  third is  better  portability  to  many-core  architecture 
with SPMD support. The preliminary experimental results 
show competitive performance compared to the sequential 
code.

Future work still  needs to be done in completing the 
implementation,  and  researching  the  later  stages  of  the 
compiler in order to achieve a full-pipeline that automates 
the transformation from working sequential code to work 
GPU parallel code. Further more, the threshold for which a 
reduction is more efficient on the GPU versus the CPU is 
currently unknown, and to the best of our knowledge, has 
never  been  studied.  Determining  the  correct  heuristic  to 
choose whether to port a certain reduction to the GPU or 
not  will  further  increase  the  usability  of  our  compiler 
framework.
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