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ABSTRACT
Discrete GPUs in modern multi-GPU systems can trans-
parently access each other’s memories through the PCIe in-
terconnect. Future systems will improve this capability by
including better GPU interconnects such as NVLink. How-
ever, remote memory access across GPUs has gone largely
unnoticed among programmers, and multi-GPU systems are
still programmed like distributed systems in which each GPU
only accesses its own memory. This increases the complexity
of the host code as programmers need to explicitly commu-
nicate data across GPU memories.

In this paper we present GPU-SM, a set of guidelines
to program multi-GPU systems like NUMA shared mem-
ory systems with minimal performance overheads. Using
GPU-SM, data structures can be decomposed across several
GPU memories and data that resides on a different GPU
is accessed remotely through the PCI interconnect. The
programmability benefits of the shared-memory model on
GPUs are shown using a finite difference and an image fil-
tering applications. We also present a detailed performance
analysis of the PCIe interconnect and the impact of remote
accesses on kernel performance. While PCIe imposes long
latency and has limited bandwidth compared to the local
GPU memory, we show that the highly-multithreaded GPU
execution model can help reducing its costs. Evaluation of
finite difference and image filtering GPU-SM implementa-
tions shows close to linear speedups on a system with 4
GPUs, with much simpler code than the original implemen-
tations (e.g., a 40% SLOC reduction in the host code of finite
difference).

Categories and Subject Descriptors
B.4.3 [Input/Output and Data Communications]: In-
terconnections (Subsystems); D.1.3 [Programming Tech-
niques]: Parallel Programming
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1. INTRODUCTION
Many HPC systems install several discrete GPUs to accel-

erate computations rich in data parallelism, due to their out-
standing computing performance [2] and energy efficiency [1].
Moreover, as CPU and GPU are integrated into the same
chip (e.g., Intel Ivy Bridge [18], AMD APU [4], NVIDIA
K1 [6]), multi-GPU nodes are expected to be more common
in future systems. Therefore, programs need to be adapted
to exploit all GPUs.

Current GPU programming models, such as CUDA [25]
and OpenCL [19], make multi-GPU programming a tedious
and error-prone task. These models present GPUs as exter-
nal devices with their own private memory, and program-
mers are in charge of replicating shared data and explicitly
communicating GPUs. These memory transfers must be
overlapped with computation to minimize their overhead,
thus increasing the complexity of the code.

Modern NVIDIA GPUs provide the capability of access-
ing the memories of all the GPUs connected to the same
PCI Express root complex [3]. They present a single Uni-
fied Virtual Address Space (i.e., UVAS) that includes all the
GPU memories in the system and the host memory. Thanks
to these features, CUDA kernels can access any memory in
the system through regular load/store instructions. While
these features have been available for some time, their uti-
lization has been mainly restricted to accelerate bulk data
transfers between GPU memories and to enable better inte-
gration with I/O devices. Only a few works exploit remote
memory accesses in multi-GPU computations [28]. How-
ever, we argue that they can be used in many other types of
computations.

In this paper we perform an exhaustive performance anal-
ysis of remote memory accesses over PCIe and their viability
as a mechanism to implement the shared memory model in
multi-GPU systems. Different PCIe revisions (i.e., 2.0 and
3.0) and topologies are studied. We show that the highly-
multithreaded GPU execution model helps to hide the costs
of remote memory accesses. Other features introduced in the



Figure 1: Multi-GPU NUMA system targeted in
this paper.

latest GPU families such as read-only caches can minimize
the amount of accesses to remote GPUs. The importance of
the thread block scheduling and its relation with data de-
composition is also discussed, as they determine how remote
memory accesses are distributed along kernel execution.

We also present GPU-SM, a set of programming guidelines
for CUDA applications that define how to program multi-
GPU systems using the shared memory model. Thanks
to the weak memory model assumed in GPU programming
models, kernel’s computation grid can be safely decomposed
to be run on several GPUs. Thus, thread blocks can access
any data regardless its location, removing the need for repli-
cation of shared data and explicit data transfers between
GPU memories. We port a finite difference and an image
filtering computations to GPU-SM obtaining a performance
similar to the highly-optimized original versions on a real 4-
GPU system, while greatly simplifying the host source code.

The contributions of this paper are: (1) The first extensive
performance analysis of the remote memory access mecha-
nism on different multi-GPU systems. (2) A set of program-
ming guidelines to program multiple GPUs as a shared mem-
ory system. (3) An evaluation of our proposal using high-
performance implementations of the finite difference method
and image filtering computations.

2. MULTI-GPU ARCHITECTURES
In this paper we focus on multi-GPU systems based on

discrete GPUs since there are no systems with multiple inte-
grated GPUs available yet. We use NVIDIA GPUs because
they provide the features required to implement the shared
memory model.

Our base system is composed of several discrete GPUs
connected to the system through a PCI Express (i.e., PCIe)
interconnect (Figure 1). Since the Fermi microarchitectu-
re [17], NVIDIA GPUs can access other memories through
the PCIe interconnect (i.e., GPUDirect[3]) without host code
intervention. At the same time, they implemented a single
Unified Virtual Memory Address Space (i.e., UVAS) for all
the GPUs in the system. The goal of UVAS is to allow every
object in the system, no matter which physical memory it
resides in, to have a unique virtual address for use by appli-
cation pointers. Combining the two features allows regular
load/store instructions to transparently generate local or
remote requests, based on the virtual address of the data
being accessed.

GPUs access their local memory (arc a) with full-band-
width (e.g., ∼ 200 GBps in GDDR5). GPUs can access
other memories in the system through the PCIe intercon-
nect: host memory (arc b) or another GPU memory (arc
c). Remote accesses can traverse any PCIe switch found be-
tween the client and the server GPUs. However, in systems
with multiple CPU sockets, if the target address resides in
a GPU memory connected to a different root complex, the
inter-CPU interconnect (HyperTransport/QPI) must be tra-
versed, too. Unfortunately, current systems do not support
routing remote GPU↔GPU requests over the inter-CPU in-
terconnect, and we restrict our analysis to systems with a
single CPU socket. Both CPU memory and the inter-GPU
interconnects (e.g., PCIe 2.0/3.0) deliver a memory band-
width which is an order of magnitude lower than the local
GPU memory (e.g., ∼ 12 GBps in PCIe 3), thus creating a
Non-Uniform Memory Access (i.e., NUMA) system. Future
interconnects will help reducing the memory bandwidth gap
(NVLink [5] will deliver up to 100 GB/s).

NVIDIA GPUs implement a cache memory hierarchy with
a first level composed of a non-coherent private cache per SM
(i.e., Streaming Multiprocessor), and a shared second level
cache. L1 caches are write-through and, therefore, modifi-
cations from different SMs to the same cache line are consol-
idated in the L2 cache. The Kepler family of GPUs added
a second private cache per SM for read-only data. Remote
accesses cannot be cached in the regular memory hierar-
chy because modifications from different GPUs to the same
cache line could produce coherence problems, but input data
can be safely cached in the read-only (R/O) cache.

2.1 GPU Programming Model
GPUs are typically programmed using a Single Program

Multiple Data (SPMD) programming model, such as NVIDIA
CUDA [25] or OpenCL [19] (We use the CUDA naming con-
ventions). This model allows programmers to spawn a large
number of threads that execute the same program, although
each thread might take a completely different control flow
path. All these threads are organized into a computation
grid of groups of threads (i.e., thread blocks). Each thread
block has an identifier and each thread has an identifier
within the thread block, that can be used to map the com-
putation to the data structures. CUDA provides a weak
consistency model: memory updates performed by a thread
block might not be perceived by other thread blocks, except
for atomic and memory fence (GPU-wide and system-wide)
instructions. This is a key feature in order to implement the
shared memory model: when a kernel is decomposed to be
executed on multiple GPUs, the same consistency model is
provided for thread blocks running on different partitions.

Each thread block is scheduled to run on an SM, and
threads within a thread block are issued in fixed-length groups
(i.e., warps). Each thread has its own set of private registers
and threads within the same thread block can communicate
through a shared user-managed scratchpad, and using syn-
chronization instructions. The number of thread blocks that
can execute concurrently on the same SM depends on the
number of threads and other resources needed by each block
(i.e., scratchpad memory and registers). Hence, the utiliza-
tion of these resources must be carefully managed to achieve
full utilization of the GPU. In the Kepler and Maxwell fam-
ilies of GPUs, up to 64 warps can run concurrently on the
same SM.



The GPU is a passive device that executes asynchronous
commands pushed by the host code: kernel launches and
memory transfers. GPUs provide several command queues
which are abstracted as CUDA streams. Commands pushed
to a stream are executed in order, but commands from dif-
ferent streams can execute in any order and, if there are
enough available resources, concurrently. Therefore, sev-
eral streams must be used to overlap computation and data
transfers. Barrier operations can be also pushed to streams
to guarantee inter-stream command ordering.

In order to run applications on several GPUs, program-
mers typically decompose computation and data so that
each GPU only accesses its local memory. If there are re-
gions of data that are accessed by several GPUs, program-
mers are responsible of replicating and keeping them coher-
ent through explicit memory transfers. Using the UVAS,
programmers could achieve a continuous representation of
a data structure that is distributed across several GPUs
by mapping contiguous pages to alternate GPU memories.
However, CUDA does not provide any means to control how
virtual addresses are mapped to physical memory, and al-
locations are bound to a single GPU. Thus, a distributed
data structure is composed of non-contiguous allocations on
different GPUs.

3. EXPERIMENTAL METHODOLOGY

3.1 Hardware Setup
We use two systems with different PCIe revisions: 2.0 and

3.0.

• System A contains a quad-core Intel i7-930 at 2.8 GHz
with 16 GB of DDR3 memory, and 3 NVIDIA Tesla
K20 GPU cards with 6 GB of GDDR5 each, connected
through PCIe 2.0 in x16 mode. The PCIe topology
is 2+1, with two GPUs connected to the same PCIe
switch, and the third one to a second switch.

• System B contains a quad-core Intel i7-3820 at 3.6 GHz
with 64 GB of DDR3 memory, and 4 NVIDIA Tesla
K40 GPU cards with 12 GB of GDDR5 each, con-
nected through PCIe 3.0 in x16 mode. The PCIe topol-
ogy is 2+2, exactly like in Figure 1.

Both machines run a GNU/Linux system, with Linux ker-
nel 3.16 and NVIDIA driver 340.24. Benchmarks were com-
piled using GCC 4.8.3 and NVIDIA CUDA compiler 6.5
for GPU code. Execution times are measured using the
CUPTI profiling library that provides support for sampling
and nanosecond timing resolution.

3.2 Microbenchmarks
In order to characterize the hardware platform, we devel-

oped a set of microbenchmarks with different computation
and memory access patterns. These microbenchmarks are
implemented using a single parametrized GPU kernel that
reads from memory, performs floating point operations on
the input data and writes the result to memory. Each ker-
nel launch is passed local and remote allocations for both
input and output data. The available parameters are:

• Computational intensity: amount of floating point in-
structions performed on each input datum (FLOPs/
datum). This is implemented using an unrolled loop
of dependent operations.

• Amount of remote accesses: percentage of remote ac-
cesses relative to the total amount of memory accesses.
Threads use their identifiers to determine if they need
to access data locally or remotely.

• Remote access pattern: whether accesses are performed
by a small set of thread blocks that are scheduled for
execution together (batch), or they are spread among
a bigger set of thread blocks that are executed along
with thread blocks that do not perform remote accesses
(spread).

• Topology: whether remote accesses are performed be-
tween GPUs connected to the same or different PCIe
switches, or to host memory.

• Occupancy: percentage of warps that execute concur-
rently on each SM relative to the maximum (i.e., 64).
Theoretically, the bigger the occupancy, the more re-
mote accesses can be overlapped with the execution
of other threads. We control the occupancy by set-
ting artificial scratchpad memory requirements in the
kernel.

• Caching: remote accesses are not cached in the local
cache hierarchy. However, remote accesses to read-
only data structures can be cached in the private L1 R/
O cache in the SM by using the __ldg CUDA intrinsic.

3.3 Applications
We use two applications in order to test the performance

of a GPU-based shared memory implementation: Finite Dif-
ference and Image Filtering. The original and modified im-
plementations are discussed in detail in Section 6.

3.3.1 Finite Difference
A finite difference method is an iterative process on volu-

metric data that represents a physical space for simulating
a phenomenon described by differential equations, often in-
volving large data sets that can benefit from GPU acceler-
ation [15, 10]. Domain decomposition assigns a portion of
the input and output data (i.e., domain) to each GPU in the
system.

Figure 2: Data dependences in a 4-point 3D stencil
computation.

The main loop of finite difference iterates over the steps
of a simulation. For each step, the value of each point in
the output volume is calculated by a stencil computation,
illustrated in Figure 2, that takes as input the value at the
point and its neighbors. The output volume of the current
step becomes the input for the next step. The stencil com-
putation for the points at the boundaries of a partition (i.e.,
boundary data) requires input values from neighboring par-
titions (i.e., halo data).

We run different configurations of the finite difference com-
putation, that are summarized in Table 1. Different volume
size and halo sizes are tested. Increasing the halo size in-
creases the amount of floating point operations (FLOPs)



Table 1: Analyzed finite difference configurations.

Halo FLOPs Occupancy Volume Size Grid size % Remote

2 18 75%
1283 (4, 32) 6.25%
5123 (16, 128) 0.78%
7683 (64, 512) 0.52%

4 36 62.5%
1283 (4, 32) 12.5%
5123 (16, 128) 1.56%
7683 (64, 512) 1.04%

8 72 56.2%
1283 (4, 32) 25%
5123 (16, 128) 3.12%
7683 (64, 512) 2.08%

16 144 31.2%
1283 (4, 32) 50%
5123 (16, 128) 6.25%
7683 (64, 512) 4.17%

Table 2: Analyzed image filtering configurations.

Filter FLOPs Occupancy Image Size Grid size % Remote

3 × 3 18 100%
1282 (4, 32) 81.27%
40962 (128, 1024) 80.91%
245762 (768, 3072) 80.90%

5 × 5 36 75%
1282 (4, 32) 89.58%
40962 (128, 1024) 89.30%
245762 (768, 3072) 89.29%

performed per output point, too. The amount of remote
memory accesses depends on the volume and halo sizes and
range from 0.52% to 50%. Besides, we analyze computation
decompositions on dimensions X, Y and Z.

3.3.2 Image Filtering
Image filtering allows to apply different effects that em-

phasize or remove features from images. It is typically per-
formed in the spatial domain by using a convolution com-
putation, or in the frequency domain by using fast Fourier
transform (i.e., FFT). We use the convolution as it is the
most efficient method on GPUS [16]. The convolution com-
bines a small convolution matrix (e.g., 3× 3 or 5× 5) with
each input pixel and its neighbors, by multiplying the value
of the pixel and its corresponding element of the convolu-
tion matrix (Figure 3). The value of the output pixel is
the sum of all the individual products. Domain decompo-
sition assigns a portion of the image to each GPU. Like in
the stencil, the computation pattern creates a halo of data
that is required to compute the output value for the pix-
els in the boundaries. Moreover, the convolution matrix is
completely accessed by each GPU in the system. The data
sets and filter sizes used in the evaluation are summarized
in Table 2.

4. ANALYSIS OF THE REMOTE ACCESS
MECHANISM

In this section we study the characteristics of remote ac-
cesses and how they impact on the performance of applica-
tions.

Hypothesis 1 Remote accesses in GPUs can achieve full
PCIe bandwidth. Since PCIe is full-duplex, it can sustain the
bandwidth for R/W concurrent remote accesses or accesses
of the same type from two different GPUs.

We use a microbenchmark that only performs remote mem-
ory accesses to obtain the maximum effective bandwidth.

Figure 3: Data needed to compute an output pixel
in a convolution.
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Figure 4: Memory bandwidth achieved by remote
accesses for different PCIe generations. spec is the
theoretical peak.

Two different variables are explored:

1. Number of concurrent transfers: running a kernel that
reads or writes a remote memory we can obtain the
effective peak remote memory bandwidth. If the kernel
performs both read and write accesses we obtain the
aggregated remote memory bandwidth.

2. Topology: crossing PCIe switches to reach the destina-
tion GPU may increase the access latency and impact
on the achieved bandwidth. local label indicates that
no PCIe switches are crossed, while remote indicates
that one PCIe switch is crossed. host indicates that
remote data is stored in host memory.

Results in Figure 4 show the measured bandwidth on our
two test systems. copy bars show the measured bandwidth
using cudaMemcpy instead of remote memory accesses and
spec show the maximum theoretical bandwidth offered by
the interconnect. A single GPU can achieve the same mem-
ory bandwidth as bulk memory transfers by using remote
memory accesses (>6 GBps for PCIe 2.0 and >12 GBps for
PCIe 3.0). Write accesses exhibit 8-10% lower bandwidth
than read accesses. When one GPU performs read and write
remote accesses concurrently or two different GPUs concur-
rently perform the same type of remote accesses (read or
write), the measured aggregated memory bandwidth (over
10 GBps for PCIe 2.0 and over 18 GBps for PCIe 3.0) is
higher than the peak memory bandwidth of a single GPU,
although not twice. Crossing PCIe switches imposes a no-
ticeable overhead, especially for write accesses (>20% for
reads, >30% for writes). The bandwidth of remote accesses
to host memory is similar to that of accesses to a GPU con-
nected to the same PCIe switch. The rest of experiments in
this section are run on System B (PCIe 3.0).

Hypothesis 2 Temporal distribution of remote memory ac-
cesses determine their effect on the kernel’s performance. If
all remote accesses are concentrated in the same phase of the



kernel, it is more difficult to hide their costs as there is no
other work that can be executed.

(a) Rows (b) Columns

Figure 5: 2D kernel computation grids in which 20%
(light blue) of the input and 10% (dark purple) of
the output elements of the matrices are accessed re-
motely. In (a), the first rows are remote. In (b),
the first columns are remote. Labels indicate the
x, y indices of the thread blocks within the computa-
tion grid. Arrows indicate the order in which thread
blocks are executed in our GPUs.

The distribution of remote accesses is determined by the
chosen data decomposition and the thread block scheduling
policy. In current NVIDIA GPUs, thread blocks are sched-
uled for execution linearly following their identifier within
the computation grid, from the lowest-order to the highest-
order dimensions.

We execute a microbenchmark that uses a 2D computa-
tion grid in which each thread reads an element from an in-
put matrix, performs 10 FLOPS on the element and writes
the result to an output matrix. 20% of reads, and 10% of
writes are remote. We use the indices in the two different
dimensions of the element being accessed by a thread to de-
termine which accesses are remote, as shown in Figure 5.
Two different data decompositions are emulated: (1) rows
of the matrix are remote (Figure 5a), (2) columns of the
matrix are remote (Figure 5b).
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Figure 6: Mesured remote read and write access
bandwidth during the execution of the configura-
tions depticted in Figure 5. Lines with circles indi-
cate the average IPC per SM (right axis).

Figure 6 shows the distribution of remote accesses across
the kernel execution time for the two different configura-
tions. When rows are remote (top), we see that all read
and write remote accesses are performed at the beginning
of the kernel. This is because remote accesses are concen-
trated in a set of contiguous thread blocks that are executed
at the same time. The achieved bandwidth is close to the
peak bandwidth of the system measured in the previous ex-
periment. When columns are remote (bottom), we see that
remote accesses are spread through the whole kernel execu-
tion. In this case, thread blocks that perform remote ac-
cesses are executed concurrently with other thread blocks
that do not. Thus, the requested remote bandwidth is lower
than the peak.

Lines with circles show the average IPC (i.e., instructions
per cycle) per SM in the kernel. They show that requesting
a remote memory bandwidth close to the peak (rows) hugely
impacts on the performance of the kernel, while lower band-
width requirements (columns) can be sustained through ker-
nel execution with almost no impact on the performance.

These results confirm our hypothesis and indicate that the
thread block scheduling policy must be taken into account
when choosing the thread blocks to perform remote memory
accesses.

Hypothesis 3 Compute-bound computations suffer from less
performance degradation than memory-bound computations
due to remote memory accesses.

We execute a number of GPU kernels that explore the
following variables: (1) Amount of remote memory accesses
relative to the total of memory accesses, (2) amount of oper-
ations performed per input datum to encompass from com-
pletely compute-bound to memory-bound computation pat-
terns, and (3) remote memory accesses distribution: batch
or spread.

Figure 7 shows the overhead suffered by each of the GPU
kernel configurations due to remote memory accesses. The
overhead increases with the number of remote memory ac-
cesses (up to 7x slowdown), as expected. Compute-bound
computations (large FLOPS/datum values) are less affected
than memory-bound computations. The distribution of re-
mote memory accesses is key in order to hide their overhead.
batch configuration (Figure 7a) shows a degradation of the
performance that grows linearly with the amount of remote
memory accesses. On the other hand, spread configuration
(Figure 7b) shows in the zoomed section that values up to
10% of remote memory accesses result in less than 10% over-
head for all computation intensities (including completely
memory-bound computations). The overhead increases to
45% for the configuration with 20% of remote accesses and,
for greater values, the overhead increases linearly, showing
that the cost of remote accesses cannot be hidden any longer.

We can say that current GPUs and interconnects are able
to hide the costs of 10% of remote accesses almost com-
pletely. Future interconnects such as NVLink will likely in-
crease this number.

Hypothesis 4 The GPU execution model helps to hide the
costs of remote memory accesses by executing work from
other warps.

While Figure 7b already shows that the GPU execution
model can hide the costs of a certain amount of remote mem-
ory accesses, we perform a more detailed analysis. Results
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Figure 7: Performance overhead imposed by remote accesses for different computation intensities. Figure on
the left shows the overhead when all remote accesses are concentrated in time (thread blocks are scheduled
together). Figure on the right shows the overhead when remote accesses are evenly distributed in time.
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Figure 8: Execution time for different remote accesses and SM occupancies. In (a) all remote accesses are
concentrated in time (thread blocks are scheduled together). In (b) remote accesses are evenly distributed
in time.

in that figure assume maximum thread block concurrency
(i.e., occupancy) in the SM. However, the amount of thread
blocks that can be concurrently executed on an SM is lim-
ited by the amount of resources used by each thread block.
Many algorithms ported to GPU cannot reach the maximum
occupancy, although most of them keep it high enough to
be able to hide memory latency [25].

We run the same GPU kernels used in the previous exper-
iments, but we artificially modify the amount of scratchpad
memory used per thread block, thus lowering the occupancy
in the SMs. Results in Figure 8 show the execution time
of the GPU kernel configuration that performs 10 FLOPs/
datum for a different amount of remote memory accesses,
and different SM occupancies and remote memory access
distributions. Figure 8a (using batch distribution) shows
that the execution time of the kernels increases linearly, and
no occupancy is able to hide the costs of remote memory
accesses. Figure 8b (using spread distribution) shows that
occupancies starting at 25% are able to hide the costs of re-
mote accesses and the execution time is lower than the batch
distribution even for 60% of remote memory accesses, thus
confirming our hypothesis.

Hypothesis 5 The overhead of remote accesses to small
read/only data structures can be minimized using caching.
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Figure 9: Execution time for different sizes of the
remotely accessed read-only data structure and dif-
ferent occupancies. Note the different Y scales.

In the previous experiments, each thread reads different
elements from either the remote or local allocations. How-
ever, oftentimes, all threads access the same elements of
input data structures. For example, in the matrix-vector
multiplication, every thread (or warp, depending on the im-
plementation) accesses the whole input vector to compute
the output element. Another example is the 2D convolu-
tion, in which each thread accesses all the elements in the



small convolution matrix and combines them with the input
point and its neighbors to compute the output point.

We run again the microbenchmarks for the configuration
in which 100% of input data accesses are remote and the
code performs 10 FLOPS/datum. But this time we limit the
size of the input data so that there are elements that are read
by several threads. Since the size of the computation grid is
constant across kernel configurations, the smaller the input
data structure, the more threads read each of its elements.
Figure 9 shows the execution time of the benchmarks for
different SM occupancies. Results show that when caching
is not enabled, remote accesses to a small data structure
impose a huge overhead and high occupancy values do not
help hiding the latency. Interestingly, the smaller the data
structure, the higher the overhead.

Caching is effective for really small data structures as per-
formance starts to degrade when the whole structure does
not fit in the cache (the size of the R/O cache is 48 KB). The
64-byte configuration is also slower because it is smaller than
the cache line size (required to achieve full bandwidth).

5. GPU-SM

(a) Distributed

(b) Shared (GPU-SM)

Figure 10: Multi-GPU system models. Solid
lines indicate access through load/store instructions;
dashed lines, bulk DMA transfers.

Given the results obtained in the previous section, we pro-
pose a set of programming practices to program multi-GPU
systems as a shared memory machine.

5.1 Distributed Memory vs Shared Memory
The current approach to multi-GPU programming is to

use GPUs as nodes of a distributed system (Figure 10a).
Thus, programmers decompose computation and data and
distribute them across GPUs. Data shared among different
computation partitions is replicated, and outputs need to be
gathered and, if they overlap, they need to be merged. In
computations with data dependencies across computation
partitions, some data generated in one GPU needs to be ex-
plicitly transferred to other GPU memories before next ker-
nels can proceed. These copies perform bulk DMA transfers
across the interconnect. However, these communications can
introduce a large overhead, and techniques to overlap com-
putation with communication are commonly used to reduce
it, at the cost of increased code complexity.

We propose changing the perspective of how a multi-GPU
system is programmed by looking at the GPUs and their

memories as if they were a shared memory NUMA system
(Figure 10b), which we call GPU-SM. Any GPU can access
all the memories using regular load/store operations, thanks
to the UVAS and remote memory access capabilities intro-
duced in Section 2. Thus, programmers can freely allocate
data in any of the memories. Nevertheless, the overhead
imposed by remote memory accesses can be large, and data
should be placed in such a way that they are minimized.

5.2 Writing Code for GPU-SM
When a GPU kernel is launched, a grid of thread blocks is

instantiated and a hardware scheduler distributes them for
execution among the SMs in the GPU. Since GPUs can now
access all memories in the system, executing a GPU kernel
across all the GPUs in the system could be as simple as
aggregating all their SMs and memories. Thus, the sched-
uler would just need to distribute the thread blocks among
a larger amount of SMs. However, while a GPU can con-
tain several SMs, it is exposed as a single compute unit, and
current schedulers cannot issue thread blocks to a different
GPU. Hence, programmers have to decompose the compu-
tation grid into partitions and launch each partition on a
different GPU.

The computation grid is a multidimensional space of thread
blocks of up to 3 dimensions (gridx × gridy × gridz). Pro-
grammers can decompose the grid on any of their dimensions
(or a combination of them). The dimensions being decom-
posed determine how data structures must be partitioned
and distributed. This is because programmers usually ap-
ply affine transformations to the block and thread indices to
compute the indices that are used to access data structures.
As a result, threads that belong to blocks with contiguous
identifiers in one dimension tend to access elements that are
contiguous in the same or a different dimension of the refer-
enced data structure.

We now discuss important trade-offs when using GPU-
SM.

Computation grid decomposition.
When thread blocks access mostly non-overlapping re-

gions of a data structure, it can be decomposed in such a
way that a data partition is predominantly accessed by a
single partition of the computation grid. If there is overlap
between accessed data regions, the chosen dimensions for
the computation grid decomposition determine the pattern
of the remote memory accesses. This is caused by the thread
block scheduling policy in the GPU. For example, consider
a 2D computation grid in which each thread uses its linear
indices in X and Y dimensions to access a matrix, reading
an input element and the k neighboring elements in the X
and Y dimensions. This computation pattern creates a halo
of elements that are needed by the threads in the edges of
the thread block. Thus, neighboring thread blocks access
the elements in this halo of points and, therefore, the thread
blocks in the boundaries of the computation partitions will
need to access data that is located in a different memory.
Depending on the dimension being decomposed, accesses to
this data arrive with different distributions. When the X di-
mension is decomposed, some columns of the input matrix
are accessed remotely. Therefore, accesses will be performed
by thread blocks that are evenly distributed in the kernel ex-
ecution time. On the other hand, when the Y dimension is
decomposed, some rows of are accessed remotely, which cre-



ates a single big batch of remote access and is more likely
to harm the performance of the kernel. As we have seen in
Section 4, decomposing the X dimension would be better in
this case.

Replication versus caching.
Another common memory access pattern is produced when

every thread traverses a whole input data structure. The
distributed approach would use replication to eliminate the
need for remote accesses, at the cost of increased memory
usage and code complexity. But, as we have seen, small in-
put data structures can be efficiently cached using the __ldg

intrinsic. Therefore, replication can be avoided in kernels in
which input data structures fit in the L1 R/O cache (48 KB
in Kepler GPUs). If other data structures in the kernel also
use __ldg, a lower upper limit should be used.

Output data structures.
Replicating output data structures implies that copies need

to be merged after kernel execution in order to have a con-
sistent version in all GPUs. This step imposes an overhead
that, in most of the cases, is larger than the costs of us-
ing remote updates. Moreover, code complexity greatly in-
creases in order to implement merging efficiently. Further-
more, GPUs perform better with gather memory access pat-
terns [27], which minimize the number of write operations.
Therefore, replication of output data should only be used if
remote writes limit kernel performance.

Memory fences.
GPUs implement several memory fence instructions that

work with different granularities: block-level, GPU-level,
and system-level. In the first case, the calling thread waits
until all its writes to memory are visible to all threads in
the thread block. The other two extend the visibility of
the writes to the threads of all the thread blocks in a GPU
or in the system (all GPUs), respectively. GPU-level and
system-level fences are provided to enable synchronization
across thread blocks in a kernel or across kernels launched on
different GPUs. In the typical distributed system model, a
GPU only accesses data stored in its memory. In the shared
memory model, computations decomposed to be executed
across several GPUs may access data stored remotely. Thus,
if the kernel contained GPU-level memory fences, they need
to be upgraded to system-level memory fences since all the
kernel partitions executed on each GPU work on the same
data.

5.3 Current Limitations
Virtual memory.

CPU-based shared memory systems use VM mechanisms
such as page-fault handling to transparently detect the pro-
cessors that request data. Thus, allocation [11, 12], repli-
cation [14] and migration [24] policies can be transparently
implemented to minimize the amount of remote memory ac-
cesses. Unfortunately, GPUs do not implement such VM
mechanisms yet and programmers perform data placement
manually. However, vendors have announced true VM capa-
bilities such as page-fault for future GPUs, which will allow
for automatic memory placement policies.

The CUDA API does not provide the functionality to al-
low programmers manage the virtual addresses in the UVAS.

(a) Distributed (b) GPU-SM

Figure 11: Inter-domain data dependences for finite
difference.

This feature would enable transparent mapping of contigu-
ous pages to alternate physical memories which, in turn,
would make data distribution completely transparent to the
kernel code. Currently, different allocations must be used
to distribute data across different GPU memories, and the
code must be aware of the different allocations and choose
the appropriate pointer. Nevertheless, we consider that this
limitation will be fixed in the future.

Atomics.
GPUs support atomic operations, which are implemented

in the L2 cache. Since accesses to remote data cannot be
cached in the common case, data resides in the GPU cache
whose memory contains the accessed data, only. This lim-
itation simplifies the support of atomic instructions across
GPUs since they only need to be forwarded to the GPU that
owns the data. PCIe 3.0 does support atomic operations but
current NVIDIA GPUs do not forward atomic operations to
remote GPUs. Thus, we cannot port kernels that use atomic
operations to GPU-SM using current GPUs.

6. IMPLEMENTATION AND EVALUATION
OF GPU-SM APPLICATIONS

We port two applications from its original distributed model
implementation to GPU-SM.

6.1 Finite Difference
Distributed memory implementation.

In this implementation, the halo data that is shared be-
tween domains is replicated in each of the GPU memories
(Figure 11a). This implies that GPUs exchange data be-
tween simulation steps, so exchange efficiency is critical to
the scalability of such applications.

The GPU kernel uses a 2D computation grid that is mapped
on the front XY plane of the volume. Each thread iterates
through all the planes, computing a single output element
for each plane. The implementation used in our tests is
based on [22], which uses register tiling in the Z dimension
of the array, and shared memory to reuse the elements read
by neighboring threads in the X and Y dimensions. Due to
the length of the optimized version of the kernel, we show
a simplified version in Listing 1. The same GPU kernel can
be used in both single- and multi- GPU versions, as each
computation partition accesses data stored in its own GPU
memory.

Listing 2 shows an optimized version of the host code that
decomposes the simulated domain on its X dimension. It
is much more complex than the single-GPU version and it
heavily relies on CUDA abstractions such as streams and
events in order to overlap computation and data transfers.



Halo size

128 x 128 x 128

Halo size

512 x 512 x 512

Halo size

768 x 768 x 768

2 4 8 16 2 4 8 16 2 4 8 16

Volume size (X x Y x Z)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Sp
ee

du
p 

(x
)

Decompositions
X Distributed
X GPU-SM

Y Distributed
Y GPU-SM

Z Distributed
Z GPU-SM

Figure 12: Finite difference: speedups of the multi-
GPU implementations for 4 GPUs compared to the
original implementation on a single GPU.

Each iteration of the simulation is divided in three main
phases.

1. Compute boundaries (lines 16–33): kernels are launched
to compute the points in the boundaries, so that they
can be communicated as soon as possible. Kernels are
queued into different streams so they can be concur-
rently executed on the GPU.

2. Compute center (lines 35–41): a kernel is launched on
a third stream to compute the rest of the points in the
subdomain.

3. Exchange boundaries (lines 43–58): then, memory trans-
fers are queued in the two first streams so that they
start as soon as the kernels that compute the points
finish.

These steps are repeated for each GPU in the system. Each
operation is tracked using an event. Event barriers are also
pushed to streams before each of the listed steps thus pre-
venting operations of the current time step to start before
the operations launched in the previous time step have con-
sumed or produced the required data.

GPU-SM implementation.
Using GPU-SM, halo data does not need to be replicated

in GPU memories and it is accessed through remote accesses
(Figure 11b). Since CUDA currently does not allow us to
transparently distribute the volumes by mapping pages on
alternate GPUs, we use one allocation per GPU and the
kernel is modified to be aware of the different allocations.
Thus, threads that compute the elements in the boundaries
use the pointers to the remote allocations (lines 13 and 16 in
Listing 3). Without this restriction the kernel code would be
the same as in Listing 1. On the other hand, the host code
is much simpler than the distributed version since there are
no data transfers, a single kernel launch computes the whole
domain (lines 27–30 in Listing 4), and only one stream per
GPU is used.

Performance Analysis.
Figure 12 shows the speedup achieved by running the dif-

ferent implementations of the finite difference benchmark on
4 GPUs, compared to the original implementation on a sin-
gle GPU. In the configuration with the smallest volume, the
Z decomposition is the best one for both distributed and
GPU-SM implementations. This is because the computa-
tion grid is very small (32 × 4) and it is further reduced

(32 blocks per GPU) when the computation is decomposed
on the X or Y dimensions, which leads to the underutiliza-
tion of the SMs. When decomposed on the Z dimension,
threads iterate over a smaller number of planes, but the
computation grid it is not decomposed, and more thread
blocks can run on each GPU concurrently. Bigger volume
sizes produce higher speedups for all the configurations due
to a larger number of thread blocks and a lower relative
amount of remote accesses. Z remains as the best decompo-
sition for GPU-SM implementations, and provides > 3.60×
speedups for the 512×512×512 volume and > 3.80× for the
768× 768× 768. Compared to the distributed implementa-
tion, the average overhead due to remote accesses is 12% for
the 512× 512× 512 volume, and 8% for the 768× 768× 768
one.

Figure 13 shows the execution timelines of the benchmark
configuration with 768×768×768 volume size, 16 halo size,
for the X, Y and Z decompositions. The timelines show the
remote memory access throughput and the average IPC per
SM of the kernel for both the distributed and the GPU-SM
versions. Results in Figure 12 indicate that the best decom-
position for this configuration is Z, followed by X and Y.
Note that the X and Z decompositions exhibit higher IPC
than Y even for the distributed implementation, due to bet-
ter spatial locality. The Y decomposition (rows) suffers a
sharp drop in IPC due to the high remote access through-
put (up to 8 GBps) of the thread blocks that execute at the
beginning and the end of the kernel. The rate of remote
accesses is constant across the execution of the X decom-
position, while the Z decomposition shows a jagged pattern.
The IPC of X degrades over time (because thread blocks per-
forming remote accesses accumulate), while in Z all thread
blocks perform remote accesses but only for a small period
of time (the few first/last planes in the domain) that can be
hidden with the execution of other thread blocks.

6.2 Image Filtering
Distributed memory implementation.

The traditional implementation of convolution for multi-
ple GPUs replicates the halos of the partitions of the input
image in each GPU. The convolution matrix is replicated in
all GPU memories. The output image does not require repli-
cation because computation partitions write in non-overlap-
ping regions.

GPU-SM implementation.
Thanks to shared memory, halo data for the input image

partitions can be remotely accessed. With respect to the
convolution matrix, it cannot be decomposed because it is
fully accessed by every thread in each computation parti-
tion. We study two possibilities: (1) replicating it like in
the distributed implementation, or (2) storing it in a single
GPU or in host memory and accessing it remotely. We also
evaluate the impact of caching it, as it is small enough to fit
in the L1 R/O cache.

Performance Analysis.
Figure 14 shows the speedup achieved by running the

GPU-SM implementation of the convolution kernel on 4
GPUs. Like in the finite difference benchmark, the small-
est input data set is too small to benefit from multi-GPU
execution. The bars show the results for the configurations
that use the L1 R/O cache. Not using this cache intro-
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Figure 13: Finite difference: execution timeline for different decompostion configurations. Line with crosses
indicate the achieved remote bandwidth. Lines with circles indicate the average IPC per SM.
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Figure 14: Image filtering: speedups of the GPU-
SM implementation for 4 GPUs compared to the
original implementation on a single GPU (for two
convolution matrix sizes).

duced up to 1000× slowdowns when accessed remotely as
each thread performs reads every element in the matrix (9
or 25 in our benchmarks), and each access triggers a remote
memory access. Further, using the R/O cache is also a 35%
faster than the regular cache hierarchy when the convolu-
tion matrix is replicated. Results for the medium-size image
indicate that there is around a 10% performance loss when
not using replication and resorting to caching to access the
convolution matrix for both the 3× 3 and 5× 5 convolution
matrix sizes (storing it in host memory instead of a GPU
memory improves the results by 2%). This is because all
the thread blocks in all SMs (> 100) are stalled at the be-
ginning of the kernel until each of the SMs brings the matrix
to its L1 R/O cache and, therefore, this cost cannot be hid-
den. Having a L2 shared R/O cache would help minimizing
the performance overhead as only the first SM would need
to bring the matrix and the rest of SMs could access cached
data. For larger matrix sizes these initial costs are negligible
and we achieve linear speedups.

7. RELATED WORK
Schaa et al. [26] analyze the performance and programma-

bility of multi-GPU systems and Wong et al. [29] analyze the
microarchitecture of NVIDIA GPUs through microbench-
marking. However, they use GPUs that do not provide the
remote memory access mechanism that enables the shared
memory programming model. Tanasic et al. [28] exploit re-
mote memory accesses to compute the size of the partitions
to be communicated in multi-GPU sorting.

Shared memory machines have been extensively studied in
the past. They can be Symmetric Multi-Processing (SMP),
such as Sun Enterprise series or Intel Pentium Pro powered
machines [13]. A more scalable approach, and the one dom-

inant in small scale parallel machines today is Non-Uniform
Memory Access (NUMA) machines. Some well known exam-
ples of the cache coherent NUMA (ccNUMA) type machines
are the MIT Alewife [7], Stanford DASH [21], and modern
multi-socket machines built with Intel CPUs [23]. Alter-
natively, The Cray T3E machine is a non-coherent shared
memory multiprocessor [9], more similar to the multi-GPU
systems that we target in this paper. Shared memory ma-
chines implement various latency tolerance mechanisms, such
as data prefetching or multithreading [20], in order to hide
the extra cost of accessing remote memory. For example, the
APRIL processor [8] from the Alewife machine [7] switches
between threads on each remote memory request or failed
synchronization attempt, similarly to GPUs.

8. CONCLUSIONS
In this paper we show that the remote memory access

mechanism enables easier multi-GPU programming. While
PCIe offers limited bandwidth compared to GPU memories,
GPU’s ability to hide long latency accesses allows it to tol-
erate a moderate amount of remote accesses. Other features
like the read-only cache in latest NVIDIA GPUs can also be
used to minimize the amount of remote memory requests.
We also show that shared memory implementations of finite
difference and image filtering computations deliver a per-
formance comparable to their highly-optimized distributed
counterparts, while being simpler and much more concise.
Future interconnects promise higher bandwidths that will
open the GPU-SM model to a broader range of applica-
tions.
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APPENDIX
A. FINITE DIFFERENCE CODE LISTINGS

Listing 1: Distributed implementation (simplified
version of the kernel).

1 template <typename T, unsigned Halo>
2 __global__ void
3 stencil(T* out, const T* in,
4 unsigned cols, unsigned rows, unsigned planes)
5 {
6 int k = threadIdx.x + blockIdx.x * blockDim.x + Halo;
7 int j = threadIdx.y + blockIdx.y * blockDim.y + Halo;
8
9 if ((k < Halo + cols) && j < (Halo + rows))

10 for (int p = Halo; p < planes + Halo; ++p) {
11 T c = IN(k, j, p);
12 for (int s = 1; s <= Halo; ++s) {
13 T left = in[IDX_3D(k-s, j, p)];
14 T right = in[IDX_3D(k+s, j, p)];
15 T top = in[IDX_3D(k, j-s, p)];
16 T bottom = in[IDX_3D(k, j+s, p)];
17 T back = in[IDX_3D(k, j, p-s)];
18 T front = in[IDX_3D(k, j, p+s)];
19 c += 3.f * (left + right) +
20 2.f * (top + bottom) +
21 1.f * (back + front);
22 }
23 out[IDX_3D(k, j, p)] = c;
24 }
25 }

Listing 2: Distributed implementation (host).
1 struct work_descriptor {
2 float *in, *out;
3 cudaStream_t stream[NUM_STREAMS];
4 cudaEvent_t events_A[NUM_EVENTS], cudaEvent_t events_B[NUM_EVENTS];
5 cudaEvent_t *events_prev = events_A;
6 cudaEvent_t *events_cur = events_B;
7 bool has_left_neigh, has_right_neigh;
8 unsigned planes;
9 };

10 void do_stencil(work_descriptor wd[NUM_GPUS])
11 {
12 for (int t = 0; t < TIME_STEPS; ++t) {
13 for (int gpu = 0; gpu < NUM_GPUS; ++gpu) {
14 // 1a. Compute right boundary
15 if (wd[gpu].has_left_neigh)
16 cudaStreamWaitEvent(wd[gpu].stream[EXE_R],
17 wd[gpu-1].events_prev[COMM_R]);
18 cudaStreamWaitEvent(wd[gpu].stream[EXE_R], wd[gpu].events_prev[EXE_M]);
19 launch_stencil(wd[gpu].in, wd[gpu].out,
20 halo + wd[gpu].planes - halo*2, halo*3, // offset, size
21 wd[gpu].stream[EXE_R]);
22 cudaEventRecord(wd[gpu].events_cur[EXE_R], wd[gpu].stream[EXE_R]);
23 // 1b. Compute left boundary
24 if (wd[gpu].has_right_neigh)
25 cudaStreamWaitEvent(wd[gpu].stream[EXE_L],
26 wd[gpu+1].events_prev[COMM_L]);
27 cudaStreamWaitEvent(wd[gpu].stream[EXE_L], wd[gpu].events_prev[EXE_M]);
28 launch_stencil(wd[gpu].in, wd[gpu].out,
29 0, halo * 3, // offset, size
30 wd[gpu].stream[EXE_L]);
31 cudaEventRecord(wd[gpu].events_cur[EXE_L], wd[gpu].stream[EXE_L]);
32
33 // 2. Compute center
34 cudaStreamWaitEvent(wd[gpu].stream[EXE_M], wd[gpu].events_prev[EXE_L]);
35 cudaStreamWaitEvent(wd[gpu].stream[EXE_M], wd[gpu].events_prev[EXE_R]);
36 launch_stencil(wd[gpu].in, wd[gpu].out,
37 halo, wd[gpu].planes, // offset, size
38 wd[gpu].stream[EXE_M]);
39 cudaEventRecord(wd[gpu].events_cur[EXE_M], wd[gpu].stream[EXE_M]);
40
41 // 3a. Exchange right boundary
42 if (wd[gpu].has_right_neigh) {
43 cudaStreamWaitEvent(wd[gpu].stream[COMM_R],
44 wd[gpu].events_cur[EXE_R]);
45 copyAsync(wd[gpu+1].out, wd[gpu].out,
46 halo + wd[gpu].planes - halo, halo, // offset, size
47 wd[gpu].stream[COMM_R]);
48 cudaEventRecord(wd[gpu].events_cur[COMM_R], wd[gpu].stream[COMM_R]);
49 }
50 // 3b. Exchange left boundary
51 if (wd[gpu].has_left_neigh) {
52 cudaStreamWaitEvent(wd[gpu].stream[COMM_L],
53 wd[gpu].events_cur[EXE_L]);
54 copyAsync(wd[gpu-1].out, wd[gpu].out,
55 halo, halo, // offset, size
56 wd[gpu].stream[COMM_L]);
57 cudaEventRecord(wd[gpu].events_cur[COMM_L], wd[gpu].stream[COMM_L]);
58 }
59 }
60 for (int gpu = 0; gpu < NUM_GPUS; ++gpu) {
61 swap(wd[gpu].in, wd[gpu].out);
62 swap(wd[gpu].events_prev, wd[gpu].events_cur);
63 }
64 }
65 }

Listing 3: GPU-SM implementation (simplified ver-
sion of the kernel).

1template <typename T, unsigned Halo>
2__global__ void
3stencil(T* out, const T* in, const T* in_left, const T* in_right,
4unsigned cols, unsigned rows, unsigned planes)
5{
6int k = threadIdx.x + blockIdx.x * blockDim.x + Halo;
7int j = threadIdx.y + blockIdx.y * blockDim.y + Halo;
8
9if (k < cols && j < rows)
10for (int p = Halo; p < planes + Halo; ++p) {
11T c = in[IDX_3D(k, j, p)];
12for (int s = 1; s <= Halo; ++s) {
13T left = (in_left && k-s < 0) ?
14in_left[IDX_3D(cols + (k-s), j, p)] :
15in[IDX_3D(k-s, j, p)];
16T right = (in_right && k+s >= cols) ?
17in_right[IDX_3D((k+s) - cols, j, p)] :
18in[IDX_3D(k+s, j, p)];
19T top = in[IDX_3D(k, j-s, p)];
20T bottom = in[IDX_3D(k, j+s, p)];
21T back = in[IDX_3D(k, j, p-s)];
22T front = in[IDX_3D(k, j, p+s)];
23c += 3.f * (left + right) +
242.f * (top + bottom) +
251.f * (back + front);
26}
27out[IDX_3D(k, j, p)] = c;
28}
29}

Listing 4: GPU-SM implementation (host).
1struct work_descriptor {
2float *in, *out;
3cudaStream_t stream;
4cudaEvent_t event_prev;
5bool has_left_neigh, has_right_neigh;
6unsigned planes;
7};
8
9void do_stencil(work_descriptor wd[NUM_GPUS])
10{
11for (int t = 0; t < TIME_STEPS; ++t) {
12for (int gpu = 0; gpu < NUM_GPUS; ++gpu) {
13float *in_left = nullptr;
14float *in_right = nullptr;
15if (wd[gpu].has_left_neigh) {
16in_left = wd[gpu-1].in;
17cudaStreamWaitEvent(wd[gpu].stream, wd[gpu-1].event_prev);
18}
19if (wd[gpu].has_right_neigh) {
20in_right = wd[gpu+1].in;
21cudaStreamWaitEvent(wd[gpu].stream, wd[gpu+1].event_prev);
22}
23cudaStreamWaitEvent(wd[gpu].stream, wd[gpu].event_prev);
24launch_stencil(wd[gpu].in, in_left, in_right, wd[gpu].out,
25wd[gpu].has_left_neigh ?
260 : halo, // offset
27wd[gpu].planes + (wd[gpu].has_right_neigh ?
280 : halo), // size
29wd[gpu].stream);
30}
31
32for (int gpu = 0; gpu < NUM_GPUS; ++gpu) {
33cudaEventRecord(wd[gpu].event_prev, wd[gpu].stream);
34swap(wd[gpu].in, wd[gpu].out);
35}
36}
37}


