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Abstract—In-place data manipulation is very desirable in
many-core architectures with limited on-board memory. This
paper deals with the in-place implementation of a class of prim-
itives that perform data movements in one direction. We call
these primitives Data Sliding (DS) algorithms. Notable among
them are relational algebra primitives (such as select and
unique), padding to insert empty elements in a data structure,
and stream compaction to reduce memory requirements. Their
in-place implementation in a bulk synchronous parallel model,
such as GPUs, is specially challenging due to the difficulties
in synchronizing threads executing on different compute units.
Using a novel adjacent work-group synchronization technique,
we propose two algorithmic schemes for regular and irregular
DS algorithms. With a set of 5 benchmarks, we validate our
approaches and compare them to the state-of-the-art imple-
mentations of these benchmarks. Our regular DS algorithms
demonstrate up to 9.11× and 73.25× on NVIDIA and AMD
GPUs, respectively, the throughput of their competitors. Our
irregular DS algorithms outperform NVIDIA Thrust library by
up to 3.24× on the three most recent generations of NVIDIA
GPUs.
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I. INTRODUCTION

We identify and introduce Data Sliding (DS) algorithms
as a class of data manipulation primitives which perform

unidirectional data shifting within a memory area. Essen-

tially, they move all input array elements or some of them

(e.g., valid elements are those that satisfy a certain condition)

in only one direction. Additionally, they are often required

to ensure stability, meaning that the relative order of input

elements is maintained. Depending on how the shifting

offset is calculated, they can be classified as regular or

irregular. In regular DS algorithms, groups of consecutive

input array elements are shifted by a constant amount of

memory positions, which might be different for each group.

For instance, while padding a matrix (i.e., adding extra

columns), all elements of one row are moved forward the

same number of positions. Irregular DS algorithms apply a

varying shifting offset to input elements, which is typically

data dependent. For instance, in stream compaction the offset

depends on the number of unwanted data instances that will

be removed.

A major reason for applying DS algorithms is to reshape

data structures in order to gain performance benefits in

later computation. On the one hand, when the unidirectional

movement expands the input array elements, DS algorithms

(e.g., padding) can potentially provide better memory sys-

tem data movement and cache efficiency due to memory

alignment. On the other hand, the movement can shrink the

input array, thus reducing memory or storage consumption

(e.g., stream compaction).

DS algorithms can be found from an important set of

applications. First among them, as mentioned above, padding

extra columns in a matrix is a regular DS algorithm to

guarantee memory alignment for higher memory perfor-

mance [1][2]. Matrix transposition can also benefit from

padding. Due to a simplified algorithm for swapping sym-

metric elements along the diagonal in square matrices, rect-

angular matrices (specially near-square ones) can be trans-

posed by padding with extra rows or columns to make the

matrices square. Second, rational algebra operators [3][4],

such as select and unique, can be considered as irregular

DS algorithms as they shift elements that satisfy a certain

predicate in one direction. For instance, unique maintains

in the output array those elements that are different from

the previous element. Third, also aforementioned, stream

compaction removes unwanted elements in sparse data,

thus irregular DS algorithms are often deployed in many

applications, such as tree traversal [5], ray tracing [6], image

processing [7], and sparse matrix-vector multiplication [8].

An important implementation decision is if the output

array of a DS algorithm occupies the same physical space

as the input array. In-place algorithms are desirable because

they are less constrained by memory capacity. This is espe-

cially true for many-core architectures, such as GPUs, where

memory capacity is much more limited than CPUs. How-

ever, working in-place is more challenging than working

out-of-place, because of inherent memory space conflicts.

A careful coordination is needed to avoid overwriting data.

The need for in-place data transformations has led recent

research efforts such as those about in-place transposition

of rectangular matrices [9][10].

A challenge in implementing parallel in-place DS algo-
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rithms for GPUs is dependency between copying out existing

elements and filling in new elements at the same location.

Previous works [11] exploit parallelism from dependency-

free movable elements based on input and output mem-

ory locations. As dependency changes as it executes an

algorithm, multiple shift operations take place. However, it

uses expensive global synchronization between each kernel

invocations despite that the scope of dependency is much

narrower than the entire memory. Moreover, the parallelism

drains quickly as the execution continues, thus degrading

memory performance significantly.

We simplify the synchronization for avoiding space con-

flicts by introducing proper scheduling of work-groups.

Furthermore, by using an efficient adjacent work-group

synchronization mechanism, the approaches we present in

this work enable tiling and parallel work-group execution

to exploit Memory-Level Parallelism (MLP). MLP critically

dominates performance, as DS algorithms are inherently

memory-bound. Moreover, auxiliary on-chip memory space

is used in a way where each work-item loads a certain

number of input array elements, that is, the coarsening

factor. Properly tuned coarsening maximizes both MLP and

Instruction-Level Parallelism (ILP) and meanwhile mini-

mizes the need for adjacent work-group synchronization.

This paper makes the following contributions:

• We identify a class of parallel primitives that all move

array elements in one direction. We call them DS

algorithms.

• We identify the limitations of traditional in-place ap-

proaches to DS algorithms.

• We propose a generic algorithm that guarantees in-place

and stable implementations of these primitives.

• We demonstrate that our approach outperforms the

state-of-the-art implementations (such as NVIDIA

Thrust library [12]), and evaluate the performance

portability across GPU and CPU architectures 1.

The rest of this paper is organized as follows. Section II

identifies the limitations of the bulk synchronous parallel

model to perform global synchronization. It also describes

a motivating example, which is padding extra columns in

a matrix. In Section III we present our algorithms for in-

place Data Sliding algorithms. In Section IV we apply our

algorithms to several primitives and compare them to state-

of-the-art implementations. Section V presents related work.

Finally, Section VI concludes the paper.

II. BACKGROUND

A. Motivating Example: Padding Matrix Columns

Padding a matrix in row-major order with extra columns

is an operation that fits our definition of DS algorithm.

Every row of the matrix (except row 0) is moved forward

1Our codes are publicly available at https://bitbucket.org/gomezlun/in-
place-ds-algorithms/

in memory. The relative order of the row elements and the

relative order of rows should remain invariant, which we

refer to as stability.

A sequential implementation is straightforward, regardless

whether it was out-of-place or in-place. In Figure 1(a), in-

place padding involves slightly shifting each row: row i will

be shifted by C × i where C is the number of columns to

be padded to each row. The simplest way [13] to implement

this in-place padding scheme is to move each row starting

from the last one, i.e., move row 4 in Figure 1(a), then

row 3, and so on. In the case of in-place padding, the extra

memory space needs to be previously allocated adjacent to

the matrix.

Row 0 Row 1 Row 2 Row 3 Row 4 Space

Row 0 Row 1 Row 2 Row 3 Row 4

1234

Before padding

After padding

(a)

Row 0 Row 1 Row 2 Row 3 Row 4 Space

Row 0 Row 1 Row 2 Row 3 Row 4

1123

Before padding

After padding

(b)

Figure 1. In the in-place padding of a row-major matrix composed of 5
rows. In general, it is a sequential operation (a). If there is enough room
(b), multiple rows can be moved in parallel. In this example, Row 3 and
Row 4 can be moved in parallel in iteration 1, but Row 2 has to be moved
in iteration 2 as it overlaps with the space taken by Row 3 and Row 4.
The number on each data movement arrow labels the iteration in which the
movement can performed.

In the worse case, each row will be moved sequentially,

due to space conflicts. However, depending on the extra

memory space available, it might be possible to move

multiple rows in parallel [11]. The number of rows that

can be moved parallel can be determined using the original

number of rows, the number of rows that have been moved

to the destination, the number of columns to be padded and

the number of elements in a row before padding.

Figure 1(b) shows such parallel in-place padding. Row

3 and Row 4 will be moved in parallel. However, as the

execution continues, the number of movable rows in parallel

decreases as the extra space decreases. Thus, at some point,

the rest of rows will be still moved sequentially. In this

example, Row 2 and Row 1 will be moved sequentially.

Figure 2 plots the performance of such padding scheme.

The program is written in OpenCL and executed on an

NVIDIA Tesla K20 GPU for a 5K × 4.9K matrix. Note

that in this particular case, after 181 iterations, there are still

99 total rows to be moved, but the space is insufficient to

move even more than one row in parallel. After this point,

we have to move the rest of the rows sequentially. Here

one work-group loads the content of an entire row to the
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barrier(local memory fence);
if (wi_id == 0){

// Wait
while (atom_or(&flags[wg_id_ - 1], 0) == 0){;}
// Set flag
int flag = flags[wg_id_ - 1];
atom_add(&flags[wg_id_], flag + count);
count = flag;

}
barrier(global memory fence);

Figure 7. Code segment of adjacent work-group synchronization. The
work-item with wi_id == 0 executes the loop until the flag of the
previous work-group is set. Then, it sets its associated flag by adding the
previous flag and a counter in shared memory, which contains the result
of the reduction operation. The previous flag is then stored in count,
because it will be needed in subsequent calculations. The final barrier forces
other work-items in the work-group wait until they are enabled to continue
execution, and ensures correct ordering of global memory operations.

works [14][16], a reduction operation could replace the scan

operation to quickly compute the sliding offset of the last el-

ement to reduce the critical path of adjacent synchronization.

In this case, the binary prefix sum operation is performed

after adjacent synchronization. Finally, in the storing stage,

data can be written in the corresponding sliding offset.

Both reduction and binary prefix sum operations within a

work-group are well studied. A reduction operation can be

performed using the CUDA SDK reduction code [17]. In the

more advanced GPUs, such as NVIDIA Kepler architecture

or later, this code can further use shuffle instructions and

perform more efficiently. In this paper, the reduction is by

default performed in CUDA SDK reduction code re-written

in OpenCL without extra notation. If extra optimizations are

applied, a notation is further given.

An intra-work-group binary prefix sum operation can be

performed as a balanced tree algorithm [18]. In NVIDIA

Fermi architecture or later, as the values to be scanned

are either 0 or 1, the operation can be implemented using

the voting instruction __ballot and the bit manipulation

instruction __popc [19]. In NVIDIA Kepler architecture or

later, it can also use shuffle instructions as explained in [20].

In the paper, by default, the binary prefix sum is performed

using the balanced tree algorithm without extra notation. A

notation is given for further optimizations.

Figure 7 shows the modified adjacent synchronization for

irregular DS algorithms. Different from ones for regular

cases, the modified one not only avoids memory space

conflicts but also passes computed memory address offset

to adjacent work-groups. In this sense, the modified one

is very close to [14][15]. Since only unsigned integers

are used to represent memory address offsets, our adjacent

synchronization does not need to support other data types

or structures.

IV. APPLICATION AND EVALUATION

In this section, we apply our generic algorithms to sev-

eral primitives that are widely-used in numerous applica-

tions. CUDA versions of these kernels are evaluated on

Algorithm 2 Irregular Data Sliding algorithm. A work-

item wi id loads into a number #coarsen factor array

elements into on-chip memory from locations pos in. A

local counter increases if elements satisfy a certain pred-

icate. After Adjacent wg synchronization, these elements

are stored in locations, pos out, that are later calculated,

using binary prefix sum.

wg id = Dynamic work id allocation (Figure 4)
pos in = wg id × coarsen factor × wg size+ wi id
for i = 0 to coarsen factor do

if pos in < total size then
OnChipMemi = Array[pos in]
if Predicate(OnChipMemi) then

local count++
end if

end if
pos in+ = wg size

end for
Reduction(local count)
Adjacent wg synchronization(wg id ) (Figure 7)
for i = 0 to coarsen factor do

if Predicate(OnChipMemi) then
Calculate pos out using binary prefix sum within the
work-group
Array[pos out] = OnChipMemi

end if
end for

NVIDIA GPUs belonging to the three most recent archi-

tectures: Fermi (GeForce GTX 580), Kepler (Tesla K20),

and Maxwell (GeForce GTX 980). OpenCL versions are

evaluated on the same NVIDIA GPUs and AMD Hawaii and

Kaveri GPUs. Tests on NVIDIA devices have been carried

out with CUDA SDK 6.5, and on AMD devices with AMD

SDK 2.9.1. OpenCL versions are also run on an Intel Core

i7-3820 CPU (using only 4 out of 8 memory modules) with

Intel OpenCL stack (driver version 1.2.0.8, Intel C Compiler

version 14.0.1) and MxPA [21] compiler, in order to evaluate

the performance portability across heterogenous devices.

We compare our DS implementations with Sung’s [11] and

NVIDIA Thrust library (version 1.8.0) [12].

A. Padding and Unpadding

Introduced in Section II-A, padding extra columns in

parallel can be difficult. In the implementation explained

in [11], the amount of rows that can be moved concurrently

depends on the amount of padding. A related primitive

undoes the padding, that is, it removes the extra columns.

The unpadding operation is even trickier, because there is

no empty space in the beginning, as in the case of padding.

The baseline implementation of unpadding we test below is

using only one work-group.

Our DS Padding and DS Unpadding primitives follow

Algorithm 1, because the number of positions that every

element in a row of the matrix is shifted is the same.

Experimental Evaluation. Figure 8 compares our

215214214214214214



216215215215215215



217216216216216216



218217217217217217



219218218218218218



Table I
SUMMARY OF IN-PLACE, SINGLE-PRECISION EXPERIMENTAL RESULTS:

12000×11999 MATRIX SIZES AND 1 PADDED COLUMNS ON OpenCL
PADDING AND UNPADDING AND 16M ARRAY SIZES AND 50%

FRACTION OF ELEMENTS ON CUDA SELECT, UNIQUE, AND PARTITION,
WITH SHUFFLE-OPTIMIZED REDUCTION AND BINARY PREFIX SUM.

Primitive Device DS(GB/s) Thrust(GB/s) Sung’s(GB/s) [11] Speedups
Padding Maxwell 131.53 – 16.23 8.10

Hawaii 168.58 – 2.66 63.31
Unpadding Maxwell 137.13 – 15.05 9.11

Hawaii 146.79 – 2.00 73.25
Select Maxwell 87.34-89.21 42.15-29.27 – 2.07-3.05

Kepler 47.66-52.26 18.76-18.69 – 2.54-2.80
Fermi 42.68-42.69 23.99-24.31 – 1.76-1.78

Unique Maxwell 78.10 24.04 – 3.24
Kepler 38.88 14.26 – 2.73
Fermi 29.93 18.01 – 1.66

Partition Maxwell 58.34 20.56 – 2.84
Kepler 37.41 13.01 – 2.88
Fermi 27.21 16.57 – 1.64

implementations for padding and unpadding outperform the

existing work in both NVIDIA and AMD GPUs by a factor

of up to 9.11× and 73.25×, respectively. Our CUDA imple-

mentations of remove, copy, unique, and partition
using the irregular DS algorithm outperform the state-of-

the-art NVIDIA Thrust library on multiple NVIDIA GPUs

by a factor of up to 3.24×. Most interesting throughput

results on GPUs are summarized in Table I. We also show

our algorithm can perform well even in multicore CPU

environments using the state-of-the-art OpenCL stacks.
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