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Abstract—In-place data manipulation is very desirable in
many-core architectures with limited on-board memory. This
paper deals with the in-place implementation of a class of prim-
itives that perform data movements in one direction. We call
these primitives Data Sliding (DS) algorithms. Notable among
them are relational algebra primitives (such as select and
unique), padding to insert empty elements in a data structure,
and stream compaction to reduce memory requirements. Their
in-place implementation in a bulk synchronous parallel model,
such as GPUs, is specially challenging due to the difficulties
in synchronizing threads executing on different compute units.
Using a novel adjacent work-group synchronization technique,
we propose two algorithmic schemes for regular and irregular
DS algorithms. With a set of 5 benchmarks, we validate our
approaches and compare them to the state-of-the-art imple-
mentations of these benchmarks. Our regular DS algorithms
demonstrate up to 9.11x and 73.25x on NVIDIA and AMD
GPUs, respectively, the throughput of their competitors. Our
irregular DS algorithms outperform NVIDIA Thrust library by
up to 3.24x on the three most recent generations of NVIDIA
GPUs.

Keywords-in-place; stream compaction; relational algebra.

I. INTRODUCTION

We identify and introduce Data Sliding (DS) algorithms
as a class of data manipulation primitives which perform
unidirectional data shifting within a memory area. Essen-
tially, they move all input array elements or some of them
(e.g., valid elements are those that satisfy a certain condition)
in only one direction. Additionally, they are often required
to ensure stability, meaning that the relative order of input
elements is maintained. Depending on how the shifting
offset is calculated, they can be classified as regular or
irregular. In regular DS algorithms, groups of consecutive
input array elements are shifted by a constant amount of
memory positions, which might be different for each group.
For instance, while padding a matrix (i.e., adding extra
columns), all elements of one row are moved forward the
same number of positions. Irregular DS algorithms apply a
varying shifting offset to input elements, which is typically
data dependent. For instance, in stream compaction the offset
depends on the number of unwanted data instances that will
be removed.
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A major reason for applying DS algorithms is to reshape
data structures in order to gain performance benefits in
later computation. On the one hand, when the unidirectional
movement expands the input array elements, DS algorithms
(e.g., padding) can potentially provide better memory sys-
tem data movement and cache efficiency due to memory
alignment. On the other hand, the movement can shrink the
input array, thus reducing memory or storage consumption
(e.g., stream compaction).

DS algorithms can be found from an important set of
applications. First among them, as mentioned above, padding
extra columns in a matrix is a regular DS algorithm to
guarantee memory alignment for higher memory perfor-
mance [1][2]. Matrix transposition can also benefit from
padding. Due to a simplified algorithm for swapping sym-
metric elements along the diagonal in square matrices, rect-
angular matrices (specially near-square ones) can be trans-
posed by padding with extra rows or columns to make the
matrices square. Second, rational algebra operators [3][4],
such as select and unique, can be considered as irregular
DS algorithms as they shift elements that satisfy a certain
predicate in one direction. For instance, unique maintains
in the output array those elements that are different from
the previous element. Third, also aforementioned, stream
compaction removes unwanted elements in sparse data,
thus irregular DS algorithms are often deployed in many
applications, such as tree traversal [5], ray tracing [6], image
processing [7], and sparse matrix-vector multiplication [8].

An important implementation decision is if the output
array of a DS algorithm occupies the same physical space
as the input array. In-place algorithms are desirable because
they are less constrained by memory capacity. This is espe-
cially true for many-core architectures, such as GPUs, where
memory capacity is much more limited than CPUs. How-
ever, working in-place is more challenging than working
out-of-place, because of inherent memory space conflicts.
A careful coordination is needed to avoid overwriting data.
The need for in-place data transformations has led recent
research efforts such as those about in-place transposition
of rectangular matrices [9][10].

A challenge in implementing parallel in-place DS algo-
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rithms for GPUs is dependency between copying out existing
elements and filling in new elements at the same location.
Previous works [11] exploit parallelism from dependency-
free movable elements based on input and output mem-
ory locations. As dependency changes as it executes an
algorithm, multiple shift operations take place. However, it
uses expensive global synchronization between each kernel
invocations despite that the scope of dependency is much
narrower than the entire memory. Moreover, the parallelism
drains quickly as the execution continues, thus degrading
memory performance significantly.

We simplify the synchronization for avoiding space con-
flicts by introducing proper scheduling of work-groups.
Furthermore, by using an efficient adjacent work-group
synchronization mechanism, the approaches we present in
this work enable tiling and parallel work-group execution
to exploit Memory-Level Parallelism (MLP). MLP critically
dominates performance, as DS algorithms are inherently
memory-bound. Moreover, auxiliary on-chip memory space
is used in a way where each work-item loads a certain
number of input array elements, that is, the coarsening
factor. Properly tuned coarsening maximizes both MLP and
Instruction-Level Parallelism (ILP) and meanwhile mini-
mizes the need for adjacent work-group synchronization.

This paper makes the following contributions:

o We identify a class of parallel primitives that all move
array elements in one direction. We call them DS
algorithms.

o We identify the limitations of traditional in-place ap-
proaches to DS algorithms.

o We propose a generic algorithm that guarantees in-place
and stable implementations of these primitives.

o« We demonstrate that our approach outperforms the
state-of-the-art implementations (such as NVIDIA
Thrust library [12]), and evaluate the performance
portability across GPU and CPU architectures .

The rest of this paper is organized as follows. Section II
identifies the limitations of the bulk synchronous parallel
model to perform global synchronization. It also describes
a motivating example, which is padding extra columns in
a matrix. In Section III we present our algorithms for in-
place Data Sliding algorithms. In Section IV we apply our
algorithms to several primitives and compare them to state-
of-the-art implementations. Section V presents related work.
Finally, Section VI concludes the paper.

II. BACKGROUND

A. Motivating Example: Padding Matrix Columns

Padding a matrix in row-major order with extra columns
is an operation that fits our definition of DS algorithm.
Every row of the matrix (except row 0) is moved forward

'0ur codes are publicly available at https:/bitbucket.org/gomezlun/in-
place-ds-algorithms/
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in memory. The relative order of the row elements and the
relative order of rows should remain invariant, which we
refer to as stability.

A sequential implementation is straightforward, regardless
whether it was out-of-place or in-place. In Figure 1(a), in-
place padding involves slightly shifting each row: row ¢ will
be shifted by C x i where C' is the number of columns to
be padded to each row. The simplest way [13] to implement
this in-place padding scheme is to move each row starting
from the last one, i.e., move row 4 in Figure 1(a), then
row 3, and so on. In the case of in-place padding, the extra
memory space needs to be previously allocated adjacent to
the matrix.

Before padding

[ Rowo [ Rowt [ Row2 [ Row3 | Row4 [ Space |
T
D N
[ Row 0 [ ] Row 1 [ ] Row 2 [ ] Row 3 [ Row 4 []
After padding
(@)
Before padding
[Rowo [ Row1 [ Row2 [ Row3 [ Row4 | Space
T
¢ 3 2 1 1
[Rowo | [ Row 1 | [ Row2 | [ Row3 | [ Row4 | ]
After padding
(b)
Figure 1. In the in-place padding of a row-major matrix composed of 5

rows. In general, it is a sequential operation (a). If there is enough room
(b), multiple rows can be moved in parallel. In this example, Row 3 and
Row 4 can be moved in parallel in iteration 1, but Row 2 has to be moved
in iteration 2 as it overlaps with the space taken by Row 3 and Row 4.
The number on each data movement arrow labels the iteration in which the
movement can performed.

In the worse case, each row will be moved sequentially,
due to space conflicts. However, depending on the extra
memory space available, it might be possible to move
multiple rows in parallel [11]. The number of rows that
can be moved parallel can be determined using the original
number of rows, the number of rows that have been moved
to the destination, the number of columns to be padded and
the number of elements in a row before padding.

Figure 1(b) shows such parallel in-place padding. Row
3 and Row 4 will be moved in parallel. However, as the
execution continues, the number of movable rows in parallel
decreases as the extra space decreases. Thus, at some point,
the rest of rows will be still moved sequentially. In this
example, Row 2 and Row 1 will be moved sequentially.

Figure 2 plots the performance of such padding scheme.
The program is written in OpenCL and executed on an
NVIDIA Tesla K20 GPU for a 5K x 4.9K matrix. Note
that in this particular case, after 181 iterations, there are still
99 total rows to be moved, but the space is insufficient to
move even more than one row in parallel. After this point,
we have to move the rest of the rows sequentially. Here
one work-group loads the content of an entire row to the
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Figure 2. Throughput of parallel in-place padding a SK x 4.9K matrix
to square on a K20 GPU. The thin columns show the parallelism available
in each iteration, i.e., the number of rows that can be moved in parallel.

temporary storage in the scratchpad memory synchronously,
and then stores the entire row to the destination. As the peak
memory bandwidth of Tesla K20 is roughly 208 GB/s, the
performance of the in-place padding is actually quite good
when there is enough rows to be moved. However, the per-
formance degrades quickly and eventually goes to 10 GB/s
in the latest stage (i.e., sequentially moving row-by-row due
to limited space available). The effective throughput is 38.2
GB/s for this case, which is less than 20% of peak memory
bandwidth. The limited number of concurrently executing
work-groups constricts the available MLP, and consequently
the global memory bandwidth is under exploited.

B. Insights into Limiting Factors

The primary limiting factor of parallelism in the previous
example is that rows have dependency on other rows. For
instance, processing Row 2 has dependency on processing
Row 3 and 4, because output location of Row 2 overlaps with
Row 3 and 4. In order to observe the dependency, previous
implementations exploit parallelism by available extra space
and iteratively execute this process. With this example, three
such iterations take place, moving Row 3 and 4 together,
then Row 2, and finally Row 1.

The iterative application of movement is done via multiple
kernel invocations. Here, global synchronization between
kernel calls is used as a mean of enforcing the dependency.
However, the scope of dependency is much narrower as a
work-group only needs to know which row it is processing
and if processing of dependent rows are done.

In bulk synchronous parallel models, such as CUDA or
OpenCL, there is no provided way to synchronize work-
items belonging to different work-groups, unless the kernel
is terminated. Global synchronization entails an inherent
performance bottleneck. Such costly global synchronization
can be avoided if it were possible to efficiently synchronize
work items belonging to different work-groups.

III. PROPOSED GENERIC ALGORITHM

This section describes our proposed generic algorithm to
carry out in-place stable unidirectional data movements. It
consists of a loading stage and a storing stage, which are
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Algorithm 1 Regular Data Sliding algorithm. A work-
item wi_id loads into a number #coarsen_factor ar-
ray elements into on-chip memory, including registers and
scratchpad memory, from locations pos_in. After Adja-
cent_wg_synchronization, these elements are stored in lo-
cations, pos_out, that are later calculated.
wg_id_ = Dynamic_work_group_id_allocation() (Figure 4)
pos_in = wg_id_ X coarsen_factor X wg_size + wi_id
for i = 0 to coarsen_factor do
if pos_in < total_size then
OnChipMem; = Array[pos_in]
end if
pos_in+ = wg_size
end for
Adjacent_wg_synchronization(wg_id_) (Figure 3)
for i = 0 to coarsen_factor do
Calculate pos_out
Array[pos_out] = OnChipMem;
end for

separated by a synchronization operation. It has two different
versions (regular and irregular) depending on whether the
sliding offset is data dependent.

A. Regular Data Sliding

In Algorithm 1, in the loading stage, work-items of a
work-group ¢ load consecutive array elements into on-chip
memory (registers and local scratchpad memory), which is
used as a high-bandwidth auxiliary space for in-place data
movement”. Synchronization among adjacent work-groups
is performed after the loading stage to guarantee that data is
read before the memory addresses are written by other data.
By avoiding memory space conflicts among work-groups
using adjacent synchronization, in the storing stage, data
can be written in the corresponding memory addresses after
adding or removing padding data.

Each work-group has an associated flag that will be set
during the synchronization operation. When the loading
stage finishes, work-group 7 waits for the flag i — 1 to be
set. As soon as this flag is set, work-group 7 sets its flag,
and the storing stage starts. The code of the synchronization
mechanism is in Figure 3. Flags should be read and writ-
ten atomically. Similar synchronization procedures between
adjacent work-groups are explained in [14][15].

The major difference is that adjacent synchronization in
most previous works is used to resolve computed data com-
munication between two adjacent work-groups, while in our
cases, adjacent synchronization is applied to avoid memory
space conflicts among work-groups (i.e., data overwriting).
Since there is no real data communication, no memory fence
is really required.

2 In OpenCL stacks, especially CPUs, using local memory might not
directly imply high-bandwidth on-chip memory. However, due to their
scheduling policy implementation, local memory operations can induce
cache hits, so they result in high bandwidth.



barrier (local memory fence);
if (wi_id == 0){
// Wait
while (atom_or (&flags[wg_id_ - 11,
// Set flag
atom_or (&flags[wg_1id_1],

0)

= 0){;}
1);

}

barrier (global memory fence);

Figure 3. Code segment of adjacent work-group synchronization. The
work-item with wi_id == 0 executes the loop until the flag of the
previous work-group is set. Then, it sets its associated flag. The initial local
barrier ensures that all work-items of the same work-group have finished
the loading stage. The final barrier forces other work-items in the work-
group to wait until they are enabled to continue execution, and ensures
correct ordering of global memory operations.
__local int wg_id_;
if (wi_id == 0)

wg_id_ atom_add (&S, 1);
barrier (local memory fence);

Figure 4. Code segment of dynamic work-group ID allocation. As soon
as a work-group is scheduled, the first work-item wi_id == 0 gets the
dynamic work-group ID by incrementing a location S in global memory,
which was initialized to 0. The dynamic work-group ID is stored in shared
memory, so that it is visible to every work-item in the work-group after the
synchronization.

The non-deterministic scheduling of work-groups might
potentially cause deadlocks. Work-groups are scheduled
onto compute units when there are free resources, but the
scheduling order is not guaranteed. If work-group ¢ — 1 is
launched after work-group 7, deadlock might happen. This is
avoided by a dynamic work-group ID allocation [14], shown
in Figure 4.

It is notable that in our proposed method, each work-
group synchronizes with only its previous work-group (e.g.,
wg_id_ = 4 synchronizes with wg_id_ = 3), instead of
checking whether space conflicts happens or synchronizing
with all overlapped work-groups. The key insight here is
that by chaining dependencies between neighboring work-
groups, the space conflicts are guaranteed not to happen
because a storing stage will take place once all of its previous
work-groups complete loading stages.

Figure 5 illustrates the runtime difference between our
proposed approach and the previous work [11] in the case
of padding matrix columns (Figure 1(b)). Figure 5 is a
simplified representation, because it shows work-groups
moving entire rows. Actually, our algorithm is oblivious to
number of rows and row boundaries. The work-groups load
all input elements, and then they take care of the boundaries
when calculating the output positions. Our algorithm assigns
a pre-defined order to the work-group scheduling, which is
actually a sequential order (ascendant or descendant). While
adjacent work-groups are in the loading or the storing stage,
they carry out concurrent memory requests intensively. Thus,
they leverage the available MLP to fully exploit the global
memory bandwidth. Between the loading and the storing
stages, the adjacent synchronization mechanism performs as
a lightweight barrier, which guarantees the correct ordering
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Adjacent Synchronization
:I Store Row 4 | Load Row 2 I:
: | Store Row 3 | Load Row 1

Load Row 4
Load Row 3

Store Row 2 |
2{ Store Row 1 |

Time

Load Row 4
Load Row 3

Store Row 4

| Load Row 2 | Store Row 2 || Load Row 1 Store Row 1

Store Row 3

Kernel Termination and Re-launch

Figure 5. Comparison between the proposed approach using adjacent
synchronization and the previous approach using kernel termination and re-
launch in the example of Padding Matrix Columns (Figure 1(b)) with two
concurrent work-groups: AS denotes adjacent synchronization including
both polling and setting the flags.
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Figure 6. Throughput (GB/s) of OpenCL versions of DS Padding for single
precision on NVIDIA GTX 980 (Maxwell). The coarsening factor changes
between 1 and 48. The work-group size is 256. The legend presents matrix
sizes.

of global memory loads and stores.

Additionally, the algorithm employs a tunable coarsening
factor, which is the number of array elements that each
work-item loads into on-chip memory, and work-group size.
By properly adjusting them for each architecture, it can be
possible to maximize the ILP and MLP (memory reads and
writes by one work-item are independent of each other),
and meanwhile minimize the number of adjacent work-group
synchronizations (the higher the coarsening factor, the lower
the number of work-groups).

The effects of coarsening are illustrated for our DS
Padding algorithm by Figure 6 between 1 and 32. However,
the coarsening factor cannot be arbitrarily large. For 40 and
48 the throughput falls down significantly, because the need
for on-chip resources (registers and/or scratchpad memory)
is too large and data must be spilled to off-chip memory.
Our padding algorithm is more extensively evaluated in
Section IV, where all primitives are tuned with the best
coarsening factors.

B. Irregular Data Sliding

Irregular Data Sliding (Algorithm 2) requires additional
steps to determine the exact output location for the storing
stage. The loading stage is similar to the one in regular data
sliding. After the loading stage, for those array elements that
evaluate true a certain predicate, the corresponding work-
items update a local counter. Then, a binary prefix sum
operation within a work-group is required to calculate the
sliding offset. The sliding offset of the last element within
a work-group can be sent to the next work-group when
adjacent synchronization is performed. Similar to previous



barrier (local memory fence);

if (wi_id == 0){
// Wait
while (atom_or(&flags[wg_id_ - 1], 0) == ){;}
// Set flag
int flag = flags([wg_id_ - 1];
atom_add(&flags[wg_1id_], flag + count);
count = flag;

}

barrier (global memory fence);

Figure 7. Code segment of adjacent work-group synchronization. The
work-item with wi_id == 0 executes the loop until the flag of the
previous work-group is set. Then, it sets its associated flag by adding the
previous flag and a counter in shared memory, which contains the result
of the reduction operation. The previous flag is then stored in count,
because it will be needed in subsequent calculations. The final barrier forces
other work-items in the work-group wait until they are enabled to continue
execution, and ensures correct ordering of global memory operations.

works [14][16], a reduction operation could replace the scan
operation to quickly compute the sliding offset of the last el-
ement to reduce the critical path of adjacent synchronization.
In this case, the binary prefix sum operation is performed
after adjacent synchronization. Finally, in the storing stage,
data can be written in the corresponding sliding offset.

Both reduction and binary prefix sum operations within a
work-group are well studied. A reduction operation can be
performed using the CUDA SDK reduction code [17]. In the
more advanced GPUs, such as NVIDIA Kepler architecture
or later, this code can further use shuffle instructions and
perform more efficiently. In this paper, the reduction is by
default performed in CUDA SDK reduction code re-written
in OpenCL without extra notation. If extra optimizations are
applied, a notation is further given.

An intra-work-group binary prefix sum operation can be
performed as a balanced tree algorithm [18]. In NVIDIA
Fermi architecture or later, as the values to be scanned
are either O or 1, the operation can be implemented using
the voting instruction __ballot and the bit manipulation
instruction __popc [19]. In NVIDIA Kepler architecture or
later, it can also use shuffle instructions as explained in [20].
In the paper, by default, the binary prefix sum is performed
using the balanced tree algorithm without extra notation. A
notation is given for further optimizations.

Figure 7 shows the modified adjacent synchronization for
irregular DS algorithms. Different from ones for regular
cases, the modified one not only avoids memory space
conflicts but also passes computed memory address offset
to adjacent work-groups. In this sense, the modified one
is very close to [14][15]. Since only unsigned integers
are used to represent memory address offsets, our adjacent
synchronization does not need to support other data types
or structures.

IV. APPLICATION AND EVALUATION

In this section, we apply our generic algorithms to sev-
eral primitives that are widely-used in numerous applica-
tions. CUDA versions of these kernels are evaluated on
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Algorithm 2 Irregular Data Sliding algorithm. A work-
item wi_id loads into a number #coarsen_factor array
elements into on-chip memory from locations pos_in. A
local counter increases if elements satisfy a certain pred-
icate. After Adjacent_wg_synchronization, these elements
are stored in locations, pos_out, that are later calculated,
using binary prefix sum.
wg_id_ = Dynamic_work_id_allocation (Figure 4)
pos_in = wg_id_ X coarsen_factor X wg_size + wi_id
for i = 0 to coarsen_factor do
if pos_in < total_size then
OnChipMem; = Array[pos_in]
if Predicate(OnChipMem;) then
local_count + +
end if
end if
pos_in+ = wg_size
end for
Reduction(local_count)
Adjacent_wg_synchronization(wg_id_) (Figure 7)
for i = 0 to coarsen_factor do
if Predicate(OnChipMem;) then
Calculate pos_out using binary_prefix_sum within the
work-group
Array[pos_out] = OnChipMem;
end if
end for

NVIDIA GPUs belonging to the three most recent archi-
tectures: Fermi (GeForce GTX 580), Kepler (Tesla K20),
and Maxwell (GeForce GTX 980). OpenCL versions are
evaluated on the same NVIDIA GPUs and AMD Hawaii and
Kaveri GPUs. Tests on NVIDIA devices have been carried
out with CUDA SDK 6.5, and on AMD devices with AMD
SDK 2.9.1. OpenCL versions are also run on an Intel Core
i7-3820 CPU (using only 4 out of 8 memory modules) with
Intel OpenCL stack (driver version 1.2.0.8, Intel C Compiler
version 14.0.1) and MxPA [21] compiler, in order to evaluate
the performance portability across heterogenous devices.
We compare our DS implementations with Sung’s [11] and
NVIDIA Thrust library (version 1.8.0) [12].

A. Padding and Unpadding

Introduced in Section II-A, padding extra columns in
parallel can be difficult. In the implementation explained
in [11], the amount of rows that can be moved concurrently
depends on the amount of padding. A related primitive
undoes the padding, that is, it removes the extra columns.
The unpadding operation is even trickier, because there is
no empty space in the beginning, as in the case of padding.
The baseline implementation of unpadding we test below is
using only one work-group.

Our DS Padding and DS Unpadding primitives follow
Algorithm 1, because the number of positions that every
element in a row of the matrix is shifted is the same.

Experimental Evaluation. Figure 8 compares our
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Figures present the results on Fermi, Kepler, Maxwell, Hawaii, Kaveri, and Intel CPU with MxPA and Intel compilers.
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OpenCL version of DS Padding to the baseline [11] for sin-
gle precision on NVIDIA and AMD GPUs. In Figures 8(a)
and 8(b), the DS Padding is up to 8 faster than the baseline
on Maxwell, and up to 63 x on Hawaii. As in these tests only
one column is padded, the limited amount of extra space
constricts the number of concurrently executing work-groups
in the baseline, causing the poor performance.

On the contrary, our DS Padding is completely inde-
pendent of the extra memory space. This is observed in
Figures 8(c) and 8(d), which compare DS Padding and the
baseline for a variable number of extra columns. Note that
the number of columns after padding is the same as the
number of rows, which is set to 5,000 in Figures 8(c)
and 8(d). Thus the number of columns before padding
determines the amount of extra space added. The lower the
number of extra columns, the lower the throughput of the
baseline, because the number of work-groups that can run
concurrently decreases. Thus, the speedup of DS Padding
is between 1.95x and 7.32x on Maxwell, and between
6.45x and 29.71 x on Hawaii. Similar results are shown in
Figure 9 for the unpadding primitive. Here, the throughput
of the baseline does not depend on the number of removed
columns, because only one work-group is used in all cases.
In Figures 9(a) to 9(d), we observe a speedup up to 9.11x
on Maxwell, and up to 73.25x on Hawaii.

Figure 10 shows the throughput of the OpenCL version of
our DS Padding and DS Unpadding for double precision on
the NVIDIA, AMD GPUs, and Intel CPU. The throughput
on the AMD GPUs is more dependent on the size of
the matrix. MxPA compiler outperforms Intel compiler on
the Intel CPU. Our DS Padding and Unpadding obtain a
very significant fraction of peak bandwidth on all these
architectures. For instance, the peak memory bandwidth of
Maxwell is 224 GB/s, so our primitives achieve up to 75% of
that peak. On Fermi and Kepler, up to 50% is attained. The
peak bandwidth on Hawaii is 320 GB/s, so around 60% of
the peak is achieved. Similar fraction is obtained on Kaveri.

On the Intel CPU, the peak memory bandwidth is 25.60
GB/s. Thus, more than 50% of that peak is obtained when
MxPA compiler is used. Additionally, in order to compare to
a CPU baseline, we run sequential versions of padding and
unpadding on the Intel CPU. With MxPA, our DS Padding
is 2.80x faster, and our DS Unpadding is 2.45x faster.

B. Select

Given a source array, the select primitive filters elements
according to the evaluation of a certain predicate. One
version removes the elements satisfying the predicate, while
another one keeps them. Figure 11 shows a select operation
with a predicate element value is even.

This is an irregular Data Sliding algorithm, because the
number of positions that each element is shifted depends on
the number of elements that satisfy (or do not satisfy) the
predicate before it. Thus, it follows Algorithm 2. A particular
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Select (remove)

rou (B[ = JR + [= [Rw]e]e] ]

Predicate: True if it is even

owa [T [:]1]

Figure 11.  Select operator on an array. This version removes elements
satisfying the predicate element value is even. Thus, the output array
contains only the elements that do not satisfy it.

B thrust:remove_copy_if
thrust::copy_if
DS Copy_if

Al

Fraction of selected items

Bthrust:remove_if

DS Remove_if GTX 980 (Maxwell)

Throughput (GB/s)

Figure 12.  Throughput of select primitives on Maxwell. Our DS Re-
move_if (in-place) and DS Copy_if (out-of-place) primitives are com-
pared to Thrust’s in-place (thrust::remove_if) and out-of-place
(thrust: :remove_copy_if and thrust::copy_1if). The size of
the input array is 16M elements (single precision).

case of select is stream compaction, which eliminates those
elements of the array that are equal to a certain value.

Experimental Evaluation. Two select-like primitives are
tested in Figure 12. One of them removes array elements
that satisfy a certain predicate. This can operate in-place or
out-of-place. The other one copies elements that satisfy a
predicate to another array (out-of-place). The percentage of
elements that satisfy the predicate is between 0 and 100 in
steps of 10. The CUDA versions of our DS select primitives
are compared to NVIDIA Thrust implementations [12] on
Maxwell. Our DS select primitives use shuffle instructions
to improve the performance of reduction and binary prefix
sum, as explained in Section III-B. They outperform Thrust
by factors up to 2.15-3.50x.

Figure 13 shows the performance difference for
the stream compaction operator using multiple exist-
ing optimizations on Maxwell. We compare to Thrust’s
out-of-place (thrust::remove_copy) and in-place
(thrust::remove) implementations. As a reference,
three out-of-place, unstable methods using atomic opera-
tions [22] are also tested. Two of them use aggregated atomic
operations on shared memory or global memory, in order to
reduce atomic contention. These methods are only useful in
applications where stability is not required, that is, it is not
necessary to maintain the relative order of input elements.
Our DS Stream Compaction is more than 3.2x faster than
the corresponding Thrust’s in-place method, and achieves up
to 68% the throughput of the fastest out-of-place, unstable
method.

Figure 14 shows the throughput of the OpenCL version of
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Figure 13. Throughput of stream compaction on Maxwell. Our
DS Stream Compaction (in-place) is compared to Thrust’s in-place
(thrust::remove) and out-of-place (thrust::remove_copy)
methods. Out-of-place, unstable methods using atomic operations are also
presented for reference. The size of the input array is 16M elements
(single precision).
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Figure 14. Throughput (GB/s) of OpenCL versions of DS Stream
Compaction on Fermi, Kepler, Maxwell, Hawaii, Kaveri, and Intel CPU
compiled with MxPA and Intel compilers. The legend presents array sizes
(M elements, single precision). The percentage of compacted elements is
50%.

our DS Stream Compaction on the NVIDIA, AMD GPUs,
and Inte] CPU. By using optimized reduction and binary
prefix sum (see Section III-B), it is possible to achieve a
further 7% to 40% improvement on the GPUs. The intra-
warp shuffle instructions can be emulated through local
memory for devices lacking of them, such as NVIDIA Fermi
and AMD GPUs. We observe Kepler delivers less throughput
than Fermi in OpenCL Stream Compaction, which does not
happen in the corresponding CUDA results (not shown in
the figure, but summarized in Table I in Section VI). A
possible reason is that Kepler, unlike Fermi, does not support
L1 cache for global memory accesses, which is critical
for irregular memory accesses. Another possible reason is
that shuffle instructions are supported in CUDA but not in
OpenCL.

C. Unique

The unique operator works as explained in Figure 15. For
each group of consecutive elements that are equal in the
input array, it removes all but the first of these consecutive
elements.

While a work-item loads an array element, it compares
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Unique
vt [ TS TS < [SToT5]

Output|2|3|0|1|4|0|1|

Figure 15. Unique operator on an array. For each group of consecutive
elements with the same value, only the first of them is kept.
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Figure 16. Throughput of unique primitives on Maxwell. Our DS Unique
(in-place) primitive is compared to Thrust’s in-place (thrust : :unique)
and out-of-place (thrust::unique_copy) methods. The size of the
input array is 16M elements (single precision).
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Figure 17.  Throughput (GB/s) of OpenCL versions of DS Unique on
Fermi, Kepler, Maxwell, Hawaii, Kaveri, and Intel CPU compiled with
MxPA and Intel compilers. The legend presents array sizes (M elements,
single precision). The percentage of unique elements is 50%.

the current element with the previous adjacent one. To
implement this stencil, we apply __shfl_ up instruction
can be used for NVIDIA devices of c.c. 3.0 or higher
(otherwise, it can be emulated through local memory), while
on the boundaries we directly access global memory.

Experimental Evaluation. Figure 16 shows the
experimental results for our CUDA DS Unique
operator on Maxwell. We compare to Thrust’s out-
of-place  (thrust::unique_copy) and in-place
(thrust::unique) implementations. The speedup of
our in-place DS Unique to Thrust’s out-of-place version is
more than 2.70x, and more than 3.47x to Thrust’s in-place
version. Meanwhile, Figure 17 shows the throughput of our
OpenCL DS Unique on the NVIDIA, AMD GPUs, and
Intel CPU. An additional 6% to 28% of the throughput
can be obtained with the optimized reduction and binary
prefix sum (Section III-B). Similarly, Kepler still has less
throughput than Fermi in OpenCL.



D. Partition

The partition operator classifies the elements of a source
array according to the evaluation of a predicate. The ele-
ments that satisfy the predicate are placed in the first part
of the array, preceding the elements that do not satisfy the
predicate. An example is shown in Figure 18.

Partition
s [ [ O[T [ 0

Predicate: True if it is even
i[ss]s]s]

False

Output|2|0|0|4|0|0|2

True

Figure 18. Partition operator on an array. The elements that satisfy the
predicate are placed in the beginning of the array, while the rest of elements
are moved to the tail of the array.

Due to the fact that two classes of elements are handled,
two local counters per thread are used, in order to count the
number of true and false elements. Two output arrays are
needed. Array_true can be the same input array Array.
Array_false should be an auxiliary buffer. For an in-place
partitioning operation, it will be necessary to move the false
elements from the auxiliary buffer to the tail of Array,
once the true elements have been shifted. Although the in-
place partition operation itself does not explicitly satisfy the
condition of unidirectional data movement, considering the
intermediate operations of Array_true and Array_false,
we still recognize it as a benchmark of DS algorithms.

Experimental Evaluation. Figure 19 shows the exper-
imental results for our DS Partition operator. Our DS
Partition has an out-of-place and an in-place version. The
throughput of the in-place version increases with the number
of true elements, since the amount of false elements to move
from the auxiliary buffer is smaller.

We compare to Thrust’s
(thrust::stable_partition_copy)

out-of-place
and

in-place (thrust::stable_partition)
implementations. Thrust also include unsta-
ble versions (thrust::partition and
thrust::partition_copy), that actually give

very similar results to the stable versions. Our out-of-place
version is 3.02x faster than Thrust’s out-of-place codes.
Our in-place version is at least 2.16x faster than Thrust’s
out-of-place, and 3.15x faster than Thrust’s in-place.

Figure 20 shows the throughput of our OpenCL DS
Partition on the NVIDIA, AMD GPUs, and Intel CPU.
As the previous primitives, the throughput can be further
increased by 10% to 45% using shuffle-based reduction and
binary prefix sum. As in previous sections, Kepler has less
throughput than Fermi in OpenCL.

V. RELATED WORK

DS algorithms on many-core architectures have not been
tackled as a whole class of algorithms, but there are several
attempts to deal with some of them. Sung [11] developed an
implementation of padding that can concurrently run several
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Figure 19. Throughput of partition primitives on Maxwell. Our
DS Partition (in-place and out-of-place) primitives are compared

to Thrust’s stable in-place (thrust::stable_partitition)
and out-of-place (thrust::stable_partition_copy), and
unstable  in-place  (thrust::partitition) and out-of-place

(thrust::partition_copy) methods. The size of the input array is
16M elements (single precision). The percentage of true elements is 50%.
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Figure 20. Throughput (GB/s) of OpenCL versions of DS Partition on
NVIDIA GPUs, AMD GPUs and Intel CPU with two compilers (MxPA and
Intel). Figure (a) presents the results on Fermi, Kepler, Maxwell, Hawaii
and Kaveri, and Inte] CPU compiled with MxPA and Intel compilers. The
legend presents array sizes (M elements, single precision).

work-groups in the initial iterations, while there is enough
empty space. Then, it necessarily runs only one work-group
that moves rows sequentially. The opposite approach could
be used for unpadding: sequential operation in the initial
iterations, and some concurrent work-groups when some
space appears after moving lower-indexed rows. We have
shown our DS approaches can clearly outperform these
implementations.

NVIDIA Thrust library [12] includes some of the DS
primitives, such as stream compaction, select, partition, and
unique. Same as other works [4], the implementation of these
primitives requires the use of several kernels. This entails a
high cost due to repeated global memory loads and stores.

Regarding work-group synchronization, there have been
very few attempts to design mechanisms that allow work-
groups to coordinate within a kernel [23]. The adjacent
work-group synchronization we use in this work is similar
to the one presented in [14][15].

VI. CONCLUSIONS

We present a generic parallel in-place DS algorithm for
many-core architectures. We demonstrate our OpenCL DS



Table I
SUMMARY OF IN-PLACE, SINGLE-PRECISION EXPERIMENTAL RESULTS:
12000%x 11999 MATRIX SIZES AND 1 PADDED COLUMNS ON OpenCL
PADDING AND UNPADDING AND 16M ARRAY SIZES AND 50%
FRACTION OF ELEMENTS ON CUDA SELECT, UNIQUE, AND PARTITION,
WITH SHUFFLE-OPTIMIZED REDUCTION AND BINARY PREFIX SUM.

Primitive Device DS(GB/s) Thrust(GB/s) | Sung’s(GB/s) [11] | Speedups
Padding Maxwell 131.53 - 16.23 8.10
Hawaii 168.58 - 2.66 63.31
Unpadding | Maxwell 137.13 - 15.05 9.11
Hawaii 146.79 - 2.00 73.25
Select Maxwell | 87.34-89.21 42.15-29.27 - 2.07-3.05
Kepler 47.66-52.26 18.76-18.69 - 2.54-2.80
Fermi 42.68-42.69 | 23.99-24.31 - 1.76-1.78
Unique Maxwell 78.10 24.04 - 3.24
Kepler 38.88 14.26 - 2.73
Fermi 29.93 18.01 - 1.66
Partition Maxwell 58.34 20.56 - 2.84
Kepler 3741 13.01 - 2.88
Fermi 27.21 16.57 - 1.64

implementations for padding and unpadding outperform the
existing work in both NVIDIA and AMD GPUs by a factor
of up to 9.11x and 73.25x, respectively. Our CUDA imple-
mentations of remove, copy, unique, and partition
using the irregular DS algorithm outperform the state-of-
the-art NVIDIA Thrust library on multiple NVIDIA GPUs
by a factor of up to 3.24x. Most interesting throughput
results on GPUs are summarized in Table I. We also show
our algorithm can perform well even in multicore CPU
environments using the state-of-the-art OpenCL stacks.
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