The 22nd International Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 22-24, 1995 1

A Comparison of Full and Partial Predicated Execution Support
for ILP Processors

Scott A. Mahlke* Richard E. Hank

James E. McCormick

David I. August Wen-mei W. Hwu

Center for Reliable and High-Performance Computing
University of Illinois
Urbana-Champaign, IL 61801

Abstract

One can effectively utilize predicated execution to improve
branch handling in instruction-level parallel processors. Al-
though the potential benefits of predicated execution are
high, the tradeoffs involved in the design of an instruction set
to support predicated execution can be difficult. On one end
of the design spectrum, architectural support for full pred-
icated execution requires increasing the number of source
operands for all instructions. Full predicate support pro-
vides for the most flexibility and the largest potential perfor-
mance improvements. On the other end, partial predicated
execution support, such as conditional moves, requires very
little change to existing architectures. This paper presents
a preliminary study to qualitatively and quantitatively ad-
dress the benefit of full and partial predicated execution sup-
port. With our current compiler technology, we show that
the compiler can use both partial and full predication to
achieve speedup in large control-intensive programs. Some
details of the code generation techniques are shown to pro-
vide insight into the benefit of going from partial to full
predication. Preliminary experimental results are very en-
couraging: partial predication provides an average of 33%
performance improvement for an 8-issue processor with no
predicate support while full predication provides an addi-
tional 30% improvement.

1 Introduction

Branch instructions are recognized as a major impediment to
exploiting instruction-level parallelism (ILP). ILP is limited
by branches in two principle ways. First, branches impose
control dependences which restrict the number of indepen-
dent instructions available each cycle. Branch prediction

* Scott Mahlke is now with Hewlett Packard Laboratories,
Palo Alto, CA.

in conjunction with speculative execution is typically uti-
lized by the compiler and/or hardware to remove control
dependences and expose ILP in superscalar and VLIW pro-
cessors [1] [2] [3]. However, misprediction of these branches
can result in severe performance penalties. Recent studies
have reported a performance reduction of two to more than
ten when realistic instead of perfect branch prediction is uti-
lized [4] [5] [6]. The second limitation is that processor re-
sources to handle branches are often restricted. As a result,
for control intensive applications, an artificial upper bound
on performance will be imposed by the branch resource con-
straints. For example, in an instruction stream consisting of
40% branches, a four issue processor capable of processing
only one branch per cycle is bounded to a maximum of 2.5
sustained instructions per cycle.

Predicated execution support provides an effective means
to eliminate branches from an instruction stream. Pred-
icated or guarded execution refers to the conditional exe-
cution of an instruction based on the value of a boolean
source operand, referred to as the predicate [7] [8]. This
architectural support allows the compiler to employ an if-
conversiton algorithm to convert conditional branches into
predicate defining instructions, and instructions along al-
ternative paths of each branch into predicated instruc-
tions [9] [10] [11]. Predicated instructions are fetched regard-
less of their predicate value. Instructions whose predicate is
true are executed normally. Conversely, instructions whose
predicate is false are nullified, and thus are prevented from
modifying the processor state.

Predicated execution provides the opportunity to signifi-
cantly improve branch handling in ILP processors. The most
obvious benefit is that decreasing the number of branches re-
duces the need to sustain multiple branches per cycle. There-
fore, the artificial performance bounds imposed by limited
branch resources can be alleviated. Eliminating frequently
mispredicted branches also leads to a substantial reduction
in branch prediction misses [12]. As a result, the perfor-
mance penalties associated with mispredictions of the elim-
inated branches are removed. Finally, predicated execution
provides an efficient interface for the compiler to expose mul-
tiple execution paths to the hardware. Without compiler
support, the cost of maintaining multiple execution paths in
hardware grows exponentially.

Predicated execution may be supported by a range of ar-
chitectural extensions. The most complete approach is full

The 22nd International Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 22-24, 1995 2

predicate support. With this technique, all instructions are
provided with an additional source operand to hold a pred-
icate specifier. In this manner, every instruction may be a
predicated. Additionally, a set of predicate defining opcodes
are added to efficiently manipulate predicate values. This
approach was most notably utilized in the Cydra 5 min-
isupercomputer [8] [13]. Full predicate execution support
provides the most flexibility and the largest potential per-
formance improvements. The other approach is to provide
partial predicate support. With partial predicate support, a
small number of instructions are provided which condition-
ally execute, such as a conditional move. As a result, partial
predicate support minimizes the required changes to existing
instruction set architectures (ISA’s) and data paths. This
approach is most attractive for designers extending current
ISA’s in an upward compatible manner.

In this paper, the tradeoffs involved in supporting full
and partial predicated execution are investigated. Using
the compilation techniques proposed in this paper, partial
predicate support enables the compiler to perform full if-
conversion to eliminate branches and expose ILP. Therefore,
the compiler may remove as many branches with partial
predicate support as with full predicate support. By remov-
ing a large portion of the branches, branch handling is sig-
nificantly improved for ILP processors with partial predicate
support. The relatively few changes needed to add partial
predicate support into an architecture make this approach
extremely attractive for designers.

However, there are several fundamental performance lim-
itations of partial predicate support that are overcome with
full predicate support. These difficulties include represent-
ing unsupported predicated instructions, manipulating pred-
icate values, and relying extensively on speculative execu-
tion. In the first case, for an architecture with only partial
predicate support, predicated operations must be performed
using an equivalent sequence of instructions. Generation of
these sequences results in an increase in the number of in-
structions executed and requires a larger number of registers
to hold intermediate values for the partial predicate architec-
ture. In the second case, the computation of predicate values
is highly efficient and parallel with full predicate support.
However, this same computation with partial predicate sup-
port requires a chain of sequentially dependent instructions,
that can frequently increase the critical path length. Finally,
the performance of partial predicate support is extensively
dependent on the use of speculative execution. Conditional
computations are typically represented by first performing
the computation unconditionally (speculative) and storing
the result(s) in some temporary locations. Then, if the con-
dition is true, the processor state is updated, using one or
more conditional moves for example. With full predicate
support, speculation is not required since all instructions
may have a predicate specifier. Thus, speculation may be
selectively employed where it improves performance rather
than always being utilized.

The issues discussed in the paper are intended for both
designers of new ISA’s, as well as those extending existing
ISA’s. With a new instruction set, the issue of supporting
full or partial predicate support is clearly a choice that is
available. Varying levels of partial predicate support provide

options for extending an existing ISA. For example, intro-
ducing guard instructions which hold the predicate specifiers
of subsequent instructions may be utilized [14].

2 ISA Extensions

In this section, a set of extensions to the instruction set
architecture for both full and partial predicate support are
presented. The baseline architecture assumed is generic ILP
processor (either VLIW or superscalar) with in-order issue
and register interlocking. A generic load/store ISA is further
assumed as the baseline ISA.

2.1 Extensions for Full Predication

The essence of predicated execution is the ability to suppress
the modification of the processor state based upon some con-
dition. There must be a way to express this condition and a
way to express when the condition should affect execution.
Full predication cleanly supports this through a combination
of instruction set and micro-architecture extensions. These
extensions can be classified as support for suppression of ex-
ecution and expression of condition.

Suppression of Execution. The result of the condition
which determines if an instruction should modify state is
stored in a set of 1-bit registers. These registers are collec-
tively referred to as the predicate register file. The setting of
these registers is discussed later in this section. The values in
the predicate register file are associated with each instruction
in the extended instruction set through the use of an addi-
tional source operand. This operand specifies which pred-
icate register will determine whether the operation should
modify processor state. If the value in the specified predicate
register is 1, or true, the instruction is executed normally; if
the value is 0, or false, the instruction is suppressed.

One way to perform the suppression of an instruction in
hardware is to allow the instruction to execute and to dis-
allow any change of processor state in the write-back stage
of the pipeline. This method is useful since it reduces the
latency between an instruction that modifies the value of
the predicate register and a subsequent instruction which is
conditioned based on that predicate register. This reduced
latency enables more compact schedules to be generated for
predicated code. A drawback to this method is that regard-
less of whether an instruction is suppressed, it still ties up an
execution unit. This method may also increase the complex-
ity of the register bypass logic and force exception signalling
to be delayed until the last pipeline stage.

An instruction can also be suppressed during the de-
code/issue stage. Thus, an instruction whose corresponding
predicate register is false is simply not issued. This has the
advantage of allowing the execution unit to be allocated to
other operations. Since the value of the predicate register
referenced must be available during decode/issue, the predi-
cate register must at least be set in the previous cycle. This
dependence distance may also be larger for deeper pipelines
or if bypass is not available for predicate registers. Increas-
ing the dependence distance between definitions and uses of
predicates may adversely affect execution time by lengthen-
ing the schedule for predicated code. An example of this

The 22nd International Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 22-24, 1995

Pout
P;n Comparison | U U OR OR AND AND
0 0 0 0 - - - -
0 1 0 0 - - - -
1 0 0 1 - 1 0 -
1 1 1 0 1 - - 0

Table 1: Predicate definition truth table.

suppression model is the predicate support provided by the
Cydra 5 [8]. Suppression at the decode/issue stage is also
assumed in our simulation model.

Expression of Condition. A set of new instructions is
needed to set the predicate registers based upon conditional
expressions. These instructions can be classified as those
that define, clear, set, load, or store predicate registers.

Predicate register values may be set using predicate define
instructions. The predicate define semantics used are those
of the HPL Playdoh architecture [15]. There is a predicate
define instruction for each comparison opcode in the origi-
nal instruction set. The major difference with conventional
comparison instructions is that these predicate defines have
up to two destination registers and that their destination
registers are predicate registers. The instruction format of a
predicate define is shown below.

pred-<cmp> Poutlciypes, Pout2<iypes, srel, sre2 (Pyy)

This instruction assigns values to Pout! and Pout2 accord-
ing to a comparison of src! and src2 specified by <cmp>.
The comparison <cmp> can be: equal (eq), not equal (ne),
greater than (gt), etc. A predicate <type> is specified for
each destination predicate. Predicate defining instructions
are also predicated, as specified by Piy,.

The predicate <type> determines the value written to the
destination predicate register based upon the result of the
comparison and of the input predicate, P;,. For each com-
bination of comparison result and P;,, one of three actions
may be performed on the destination predicate. It can write
1, write 0, or leave it unchanged. A total of 3* = 81 possible
types exist.

There are six predicate types which are particularly useful,
the unconditional (U), OR, and AND type predicates and
their complements. Table 1 contains the truth table for these
predicate types.

Unconditional destination predicate registers are always
defined, regardless of the value of P;, and the result of the
comparison. If the value of P;, is 1, the result of the com-
parison is placed in the predicate register (or its compliment
for U). Otherwise, a 0 is written to the predicate register.
Unconditional predicates are utilized for blocks which are
executed based on a single condition, i.e., they have a single
control dependence.

The OR type predicates are useful when execution of a
block can be enabled by multiple conditions, such as logical
AND (&&) and OR (]|) constructs in C. OR type destination
predicate registers are set if P;, is 1 and the result of the
comparison is 1 (0 for ﬁ), otherwise the destination pred-
icate register is unchanged. Note that OR type predicates
must be explicitly initialized to 0 before they are defined and
used. However, after they are initialized multiple OR type
predicate defines may be issued simultaneously and in any

if (a&&b) beq a,0,L1 pred_clear
J=i+1 beq b,0,L1 pred-eq plORJ)ZE:a',O
else add j,j,1 pred_eq plor,p3z,b,0 (p2)
if (¢) jump L3 add B>l (p3)
k=k+1; L1: pred-ne pdy ,p5z,c,0 (p1)
else bne ¢,0,L2 add k,k,1 (p4)
E=k—1; add kk,1 sub kk,1 (p5)
i=it1; jump L3 add i1
L2:
sub kk,1
L3:
add 1,1

(a) (b) ()

Figure 1: Example of predication, (a) source code, (b) as-
sembly code, (c) assembly code after if-conversion.

order on the same predicate register. This is true since the
OR type predicate either writes a 1 or leaves the register un-
changed which allows implementation as a wired logical OR
condition. This property can be utilized to compute an exe-
cution condition with zero dependence height using multiple
predicate define instructions.

AND type predicates, are analogous to the OR type pred-
icate. AND type destination predicate registers are cleared
if P;, is 1 and the result of the comparison is 0 (1 for AND),
otherwise the destination predicate register is unchanged.
The AND type predicate is particularly useful for transfor-
mations such as control height reduction [16].

Although it is possible to individually set each predicate
register to zero or one through the use of the aforemen-
tioned predicate define instructions, in some cases individ-
ually setting each predicate can be costly. Therefore, two
instructions, pred_clear and pred_set, are defined to provide
a method of setting the entire predicate register file to 0 or
1 in one cycle.

Code Example. Figure 1 contains a simple example il-
lustrating the concept of predicated execution. The source
code in Figure 1(a) is compiled into the code shown in Fig-
ure 1(b). Using if-conversion [10], the code is then trans-
formed into the code shown in Figure 1(c). The use of
predicate registers is initiated by a pred_clear in order to
insure that all predicate registers are cleared. The first two
conditional branches in (b) are translated into two pred_eq
instructions. Predicate register p! is OR type since either
condition can be true for p! to be true. If p2 in the first
pred_eq is false the second pred_eq is not executed. This is
consistent with short circuit boolean evaluation. p3 is true
only if the entire expression is true. The “then” part of the
outer if statement is predicated on p3 for this reason. The
pred_ne simply decides whether the addition or subtraction
instruction is performed. Notice that both p4 and p5 remain
at zero if the pred_ne is not executed. This is consistent with
the “else” part of the outer if statement. Finally, the incre-
ment of 7 is performed unconditionally.

2.2 Extensions for Partial Predication

Enhancing an existing ISA to support only partial predica-
tion in the form of conditional move or select instructions

The 22nd International Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 22-24, 1995 4

trades off the flexibility and efficiency provided by full pred-
ication in order to minimize the impact to the ISA. Several
existing architectures provide instruction set features that
reflect this point of view.

Conditional Move. The conditional move instruction
provides a natural way to add partial support for predicated
execution to an existing ISA. A conditional move instruction
has two source operands and one destination operand, which
fits well into current 3 operand ISA’s. The semantics of a
conditional move instruction, shown below, are similar to
that of a predicated move instruction.

cmov dest,src,cond
if (cond) dest = src

As with a predicated move, the contents of the source
register are copied to the destination register if the condi-
tion is true. Also, the conditional modification of the target
register in a conditional move instruction allows simultane-
ous issue of conditional move instructions having the same
target register and opposite conditions on an in-order pro-
cessor. The principal difference between a conditional move
instruction and a predicated move instruction is that a reg-
ister from the integer or floating-point register file is used to
hold the condition, rather than a special predicate register
file. When conditional moves are available, we also assume
conditional move complement instructions (cmov_com) are
present. These are analogous in operation to conditional
moves, except they perform the move when cond is false, as
opposed to when cond is true.

The Sparc V9 instruction set specification and the DEC
Alpha provide conditional move instructions for both inte-
ger and floating point registers. The HP Precision Architec-
ture [17] provides all branch, arithmetic, and logic instruc-
tions the capability to conditionally nullify the subsequent
instruction. Currently the generation of conditional move
instructions is very limited in most compilers. One excep-
tion is the DEC GEM compiler that can efficiently generate
conditional moves for simple control constructs [18].

Select. The select instruction provides more flexibil-
ity than the conditional move instruction at the expense
of pipeline implementation. The added flexibility and in-
creased difficulty of implementation is caused by the addi-
tion of a third source operand. The semantics of the select
instruction are shown below.

select dest,srcl,src2,cond

dest = ((cond) ? srcl : src2)

Unlike the conditional move instruction, the destination
register is always modified with a select. If the condition
is true, the contents of srcl are copied to the destination,
otherwise the contents of src2 are copied to the destination
register. The ability to choose one of two values to place
in the destination register allows the compiler to effectively
choose between computations from “then” and “else” paths
of conditionals based upon the result of the appropriate com-
parison. As a result, select instructions enable more efficient
transformations by the compiler. This will be discussed in
more detail in the next section. The Multiflow Trace 300
series machines supported partial predicated execution with
select instructions [19].

3 Compiler Support

The compiler eliminates branch instructions by introducing
conditional instructions. The basic transformation is known
as if-conversion [9] [10]. In our approach, full predicate sup-
port is assumed in the intermediate representation (IR) re-
gardless of the the actual architectural support in the tar-
get processor. A set of compilation techniques based on
the hyperblock structure are employed to effectively exploit
predicate support in the IR [11]. For target processors that
only have partial predicate support, unsupported predicated
instructions are broken down into sequences of equivalent in-
structions that are representable. Since the transformation
may introduce inefficiencies, a comprehensive set of peephole
optimizations is applied to code both before and after con-
version. This approach of compiling for processors with par-
tial predicate support differs from conventional code genera-
tion techniques. Conventional compilers typically transform
simple control flow structures or identify special patterns
that can utilize conditional moves or selects. Conversely,
the approach utilized in this paper enables full if-conversion
to be applied with partial predicate support to eliminate
control flow.

In this section, the hyperblock compilation techniques for
full predicate support are first summarized. Then, the trans-
formation techniques to generate partial predicate code from
a full predicate IR are described. Finally, two examples from
the benchmark programs studied are presented to compare
and contrast the effectiveness of full and partial predicate
support using the these compilation techniques.

3.1 Compiler Support for Full Predication

The compilation techniques utilized in this paper to exploit
predicated execution are based on a structure called a hy-
perblock [11]. A hyperblock is a collection of connected basic
blocks in which control may only enter at the first block, des-
ignated as the entry block. Control flow may leave from one
or more blocks in the hyperblock. All control flow between
basic blocks in a hyperblock is eliminated via if-conversion.
The goal of hyperblocks is to intelligently group basic blocks
from many different control flow paths into a single block for
compiler optimization and scheduling.

Basic blocks are systematically included in a hyperblock
based on two, possibly conflicting, high level goals. First,
performance is maximized when the hyperblock captures a
large fraction of the likely control flow paths. Thus, any
blocks to which control is likely to flow are desirable to add
to the hyperblock. Second, resource (fetch bandwidth and
function units) are limited; therefore, including too many
blocks may over saturate the processor causing an overall
performance loss. Also, including a block which has a com-
paratively large dependence height or contains a hazardous
instruction (e.g., a subroutine call) is likely to result in per-
formance loss. The final hyperblock consists of a linear se-
quence of predicated instructions. Additionally, there are ex-
plicit exit branch instructions (possibly predicated) to any
blocks not selected for inclusion in the hyperblock. These
branch instructions represent the control flow that was iden-
tified as unprofitable to eliminate with predicated execution
support.

The 22nd International Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 22-24, 1995 5

fully partially
predicated code predicated code
load templ,addrx,offx (Pin) load temp3,addrx,offx
mul temp2,templ,2 (Pin) cmov templ,temp3,Pin
add y,temp2,3 (Pin) mul temp4,templ,2
before cmov temp2,temp4,Pin
promotion add temp5,temp2,3

cmov y,temp5,Pin

load templ,addrx,offx load templ,addr,offx
after mul temp2,templ,2 mul temp2,templ,2
promotion add ytemp,2,3(Pin) add temp3temp2,3

cmov y,temp3,Pin

operation: load x
y =2x+3

Note: non-excepting instructions
assumed.

Figure 2: Example of predicate promotion.

3.2 Compiler Support for Partial Predication

Generating partially predicated code from fully predicated
code involves removing predicates from all instructions
which are not allowed to have a predicate specifier. The
only instruction set remnants of predication in the partially
predicated code are conditional move or select instructions.
Transforming fully predicated code to partially predicated
code is essentially accomplished by converting predicated in-
structions into speculative instructions which write to some
temporary location. Then, conditional move or select in-
structions are inserted to conditionally update the processor
state based on the value of the predicate. Since all predi-
cated instructions are converted to speculative instructions,
the efficiency of the partially predicated code is heavily de-
pendent on the underlying support for speculation provided
by the processor. In this section, the code generation pro-
cedure chosen to implement the full to partial predication
transformation is described. The procedure is divided into 3
steps, predicate promotion, basic conversion, and peephole
optimization.

Predicate Promotion. The conversion of predicated
instructions into an equivalent set of instructions that only
utilize conditional moves or selects introduces a significant
amount of code expansion. This code expansion is obviously
reduced if there are fewer predicated instructions that must
be converted. Predicate promotion refers to removing the
predicate from a predicated instruction [11]. As a result,
the instruction is unconditionally executed. By performing
predicate promotion, fewer predicated instructions remain
in the IR that must be converted.

An example to illustrate the effectiveness of predicate pro-
motion is presented in Figure 2. The code sequence in the
upper left box is the original fully predicated IR. Straight-
forward conversion to conditional move code, as will be dis-
cussed in the next subsection, yields the code in the upper
right box. Each predicated instruction is expanded into two
instructions for the partial predicate architecture. All the
conditional moves in this sequence, except for the last, are
unnecessary if the original destination registers of the predi-
cated instructions are temporary registers. In this case, the
predicate of the first two instructions can be promoted, as
shown in the lower left box of Figure 2. The add instruc-

tion is the only remaining predicated instruction. Finally,
conversion to conditional move code after promotion yields
the code sequence in the bottom right box of Figure 2. In
all, the number of instructions is reduced from 6 to 4 in this
example with predicate promotion.

It should be noted that predicate promotion is also effec-
tive for architectures with full predicate support. Predicate
promotion enables speculative execution by allowing predi-
cated instructions to execute before their predicate is calcu-
lated. In this manner, the dependence between the predicate
definition and the predicated instruction is eliminated. The
hyperblock optimizer and scheduler utilize predicate promo-
tion when the predicate calculation occurs along a critical
dependence chain to reduce this dependence length.

Basic Conversions. In the second step of the trans-
formation from fully predicated code to partially predicated
code, a set of simple transformations, referred to as basic
conversions, are applied to each remaining predicated in-
struction independently. The purpose of the basic conver-
sions is to replace each predicated instruction by a sequence
of instructions with equivalent functionality. The sequence
is limited to contain conditional moves as the only condi-
tional instructions. As a result, most instructions in the
sequence must be executed without a predicate. These in-
structions thus become speculative. When generating specu-
lative instructions, the compiler must ensure they only mod-
ify temporary registers or memory locations. Furthermore,
the compiler must ensure the speculative instructions will
not cause any program terminating exceptions when the con-
dition turns out to be false. Program terminating exceptions
include illegal memory address, divide-by-zero, overflow, or
underflow.

The basic conversions that may be applied are greatly sim-
plified if the underlying processor has support full support
for speculative execution. In particular, non-excepting or
silent, instructions allow for the most efficient transforma-
tions. For such an architecture, the basic conversions for
the main classes of instructions are summarized in Figure 3.
The simplest conversion is used for predicated arithmetic
and logic instructions and also for memory loads. The con-
version, as can be seen in Figure 3, is to rename the desti-
nation of the predicated instruction, remove the predicate,
and then conditionally move the result into the original des-
tination based on the result of the predicate.

The basic conversions for memory store instructions are
similar. Since the destination of a store instruction is a mem-
ory location instead of a register, a different technique must
be used to insure that the an invalid value is not written to
the original destination of the store. Figure 3 shows that
the address of the store is calculated separately. Then a
conditional move is used to replace the address of the store
with $safe_addr when the predicate of the store is false. The
macro $safe_addr refers to a reserved location on the stack.

The conversions for predicate definition instructions are
the most complicated because predicate definitions have
rather complicated logic capabilities. = The conversions
for two representative predicate definition instructions are
shown in Figure 3. The predicate definition instructions
are identical except for the type on the destination predi-
cate register. The transformation for the OR type predicate

The 22nd International Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 22-24, 1995 6

Basic Conversions, Non—

Fully Predicated Code h '
excepting Instructions

predicate definition instructions

pred_lIt PoubR,srcl,srcz (Pin) It temp,srcl,src2
and temp,Pin,temp
or Pout,Pout,temp

pred_lIt_f PoutU,srcl,srcz (Pin) It_f temp,srcl,src2
and Pout,Pin,temp

arithmetic & logic instructions

add dest,srcl,src2 (Pin) add temp,srcl,src2
cmov dest,temp,Pin

div_f dest,srcl,src2 (Pin) div_f temp_dest,srcl,src2
cmov dest,temp_dest,Pin

memory instructions

store addr,off,src (Pin) | add temp_addr,addr,off
cmov_com temp_addr,$safe_addr,Pjn
store temp_addr,0,src

load dest,addr,off (Pin) load

temp_dest,addr,off

cmov dest,temp_dest,Pin
branch instructions

jump label (Pin) bne Pin,0,label
blt srcl,src2,label (Pin) ge temp,srcl,src2

blt temp,Pin,label
jsr label (Pin) beq Pin,0,NEXT

jsr label

NEXT:

Figure 3: Basic conversions assuming non-excepting instruc-
tions available in the architecture.

produces three instructions. The first instruction performs
the [t comparison of src! and src2, placing the result in a
temporary register. Each predicate definition transforma-
tion generates such a comparison instruction. The second
instruction performs a logical AND which clears the tem-
porary register if the predicate Pin is false. This clearing
instruction is generated only if the predicate definition in-
struction is predicated. The third instruction performs a
logical OR of the value in the temporary register with the
previous value of the OR type predicate Pout and deposits
the result t in Pout. For an AND type predicate, the result
would be stored with a logical AND. For an unconditional
predicate, a separate depositing instruction is not necessary.

The basic conversions for branches are relatively straight
forward and are left to the reader. Predicated subroutine
calls are handled by branching around them when the pred-
icate is false since conditional calls were not assumed in the
architecture.

Conversions are also possible if no speculation support is
provided. However, in addition to insuring that registers
or memory locations are not illegally modified, the basic
conversions must also prevent exceptions when the original
predicate is false. Figure 4 shows three typical conversions.
The non-excepting versions of these appeared in Figure 3.
Note that the excepting versions produce more instructions
than the corresponding conversions for non-excepting in-
structions. For predicate definition, arithmetic, and logic
instructions, the only difference in the conversions is that
a value that is known to prevent an exception is condition-
ally moved into one of the source operands of the previously
predicated instruction. These values, which depend on the
type of instruction, are referred to as $safe_val in the fig-

Basic Conversions,

Fully Predicated Code | gy conting Instructions

predicate definition instructions

pred_lIt_f PoutU,srcl,srcz (Pin) mov temp_src,src2

cmov_com temp_src,$safe_val,Pi
It f temp_dest,src1,temp_src
and Pout,temp_dest,Pin

arithmetic & logic instructions

div_f dest,srcl,src2 (Pin) | mov temp_src,src2
cmov_com temp_src,$safe_val,Pin
div_f temp_dest,src1,temp_src
cmov dest,temp_dest,Pin

memory instructions

load dest,addr,off (Pin) |add temp_addr,addr,off
cmov_com temp_addr,$safe_addr,Pin
load temp_dest,temp_addr,0
cmov dest,temp_dest,Pin

Figure 4: Basic conversions without non-excepting instruc-
tions available in the architecture.

ure. The conversions for floating point conditional branch
instructions are similar. Conversion for load instructions is
also similar, only an address known not to cause an illegal
memory access is moved into the address source of the load.

Peephole Optimizations. The basic transformations of
the previous section introduce some inefficiencies since each
instruction is considered independently. Many of these in-
efficiencies can be removed by applying a set of peephole
optimizations after the basic transformation. The goal of
these optimizations is to reduce the instruction count and
dependence height of the partial predicate code. The opti-
mizations find opportunities for improving code efficiency by
investigating the interactions of the various transformations,
exploiting special cases, and utilizing the additional func-
tionality of the select instruction over the conditional move.
Some of the optimizations in this section rely on the exis-
tence of complementary AND and OR instructions (and-not
and or_not). These instructions are simply logical instruc-
tions in which the second source operand is complemented.
The existence of these instructions is assumed in the base
instruction set.

Basic conversions of predicate defines introduce redundant
comparison and logic instructions. For predicates which only
differ in predicate type (U, OR, AND), the comparisons
are obviously redundant. Applying common subexpression
elimination, copy propagation, and dead code removal after
conversion effectively eliminates these redundancies. In some
cases, the transformations of similar predicate definitions re-
sult in opposite comparisons. If one of these comparisons can
be inverted, then one of the comparisons may be eliminated.
A comparison can be inverted when each use of the result
of this comparison can be inverted without the addition of
an instruction. The result of a comparison in a predicate
definition instruction used only by and, and_not, or, or_not,
cmov, cmov_com, select, or a conditional branch may be
inverted. The only two non-invertible sources which might
contain the result of a predicate definition conversion are
the non-inverted inputs of and_not and or_not. Therefore,
in most cases, one of two complementary comparisons re-

The 22nd International Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 22-24, 1995 7

sulting from similar predicate definitions can be eliminated.

The use of OR type predicates is extremely efficient for
architectures with full predicate support. Sequences of OR
type predicate definitions which all write to the same desti-
nation predicate may be simultaneously executed. However,
with partial support, these sequences of OR type predicate
definitions result in a sequential chain of dependent instruc-
tions. These strict sequential dependences may be overcome
using associativity rules to reduce the height of the depen-
dence chain. The dependence height of the resulting code is
loga(n), where n is the number of OR type predicate defini-
tions. An example of OR-Tree optimization is presented in
Section 3.3.

Some additional optimizations are possible if a select in-
struction is available. The functionality of the select in-
struction is described in Section 2.2. Through the use of a
select instruction, one instruction from the sequences used
for excepting arithmetic and memory instructions shown in
Figure 4 can be eliminated. The detailed use of selects is
not discussed in this paper due to space considerations.

3.3 Benchmark Examples

In order to more clearly understand the effectiveness of pred-
icated execution support and the performance tradeoffs of
full versus partial support, two examples from the set of
benchmarks are presented. The first example is from wc
and the second is from grep. These benchmarks were chosen
because they are relatively small, yet they are very control-
intensive so they clearly illustrate the effectiveness of full
and partial predicate support.

Example Loop from Wec. Figure 5(a) shows the con-
trol flow graph for the most important loop segment from
the benchmark we. The control flow graph is augmented
with the execution frequencies of each control transfer for
the measured run of the program. This loop is characterized
by small basic blocks and a large percentage of branches.
The loop segment contains 13 basic blocks with a total of 34
instructions, 14 of which are branches. The performance of
an 8-issue ILP processor without predicated execution sup-
port is limited by this high frequency of branches. Overall,
a speedup of 2.3 is achieved for an 8-issue processor over a
1-issue processor (see Figure 8).

The assembly code after hyperblock formation for the loop
segment with full and partial predicate support is shown in
Figures 5(b) and (c), respectively. The issue cycle is given
to the right of each assembly code instruction. Note that
the assembly code is not reordered based on the issue cycle
for ease of understanding. The schedule assumes a 4-issue
processor which can issue 4 instructions of any type except
branches, which are limited to 1 per cycle. With both full
and partial predicate support, all of the branches except
three are eliminated using hyperblock formation. The three
remaining branches, conditional branch to block C, condi-
tional branch to EXIT, and the loop backedge, are highly
predictable. Therefore, virtually all the mispredictions are
eliminated with both full and partial predicate support in
this loop. The resulting performance is increased by 17%
with partial predicate support and an additional 88% with
full predicate support (see Figure 8).

The performance difference between full and partial pred-
icate support comes from the extra instructions required to
represent predicate defines and predicated instructions. As
a result, the issue resources of the processor are over sat-
urated with partial predicate support. In the example in
Figure 5, the number of instructions is increased from 18
with full predicate support to 31 with partial predicate sup-
port. This results in an increase in execution time from 8
to 10 cycles. For the entire benchmark execution, a similar
trend is observed. The number of instructions is increased
from 1526K with full predicate support to 2999K with par-
tial predicate support, resulting in a speedup increase of 2.7
with partial support to 5.1 with full support (see Figure 8
and Table 2).

Example Loop from Grep. Figure 6 shows the as-
sembly code for the most important loop segment from the
benchmark grep. The base processor model, which does
not support any predicated execution, employs speculative
execution in conjunction with superblock ILP compilation
techniques to achieve the schedule shown in Figure 6(a) [20].
Each of the conditional branches in the figure are very infre-
quently taken, thus the sequence of instructions iterates very
frequently. Overall, grep is dominated by an extremely high
frequency of branches. This high frequency of branches is
the performance bottleneck of this loop since only 1 branch
resource is available. However, the branches are highly pre-
dictable. Thus, hyperblock compilation techniques focus on
reducing this branch bottleneck for processors with limited
branch resources.

With full predicate support, the compiler is able to com-
bine the branches into a single exit branch using OR type
predicate definitions. Since OR type predicate definitions
can be issued simultaneously, an extremely tight schedule
can be achieved. The execution time is dramatically re-
duced from 14 to 6 cycles with full predicate support. With
partial predicate support, the same transformations are ap-
plied. Therefore, the same number of branches are elimi-
nated. However, the representation of OR type predicates
is less efficient with partial predicate support. In particular,
the logical OR instructions cannot be simultaneously issued.
The or-tree optimization discussed previously in Section 3.2
is applied to reduce the dependence height of the sequence
and improve performance. In the example, partial predicate
support improves performance from 14 to 10 cycles. Over-
all for the final benchmark performance, partial predicate
support improves performance by 46% over the base code
and full predicate support further improves performance by
31%.

4 Experimental Evaluation

4.1 Methodology

The predication techniques presented in this paper are evalu-
ated through emulation-driven simulation. The benchmarks
studied consist of 008.espresso, 022.1i, 023.eqntott, 026.com-
press, 052.alvinn, 056.ear, and 072.sc from SPEC-92, and
the Unix utilities ccep, emp, eqn, grep, lex, gsort, we, and
yacc. The benchmark programs are initially compiled to
produce intermediate code, which is essentially the instruc-

The 22nd International Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 22-24, 1995

blockA: blt r1,0,blockC 0 blockA: blt r1,0,blockC | O

_ Id_uc r2,r3,-1 1

lduc r2r3-1 0 beq r2-LEXIT |3

beq r2,-1,EXIT 2 It r12,32,r2 3

ge r33,r2,127 |3

pred_ge Rig PG 3212 2 and_not r13,r12,r33 | 4

pred_ge R B 2,127 (p23B and r31,r33,r12 | 4

- or_not r11,r31,r12 | 5

pred_eq p4y ,0,r4 (p3) 4 —_— eq 134.0 14 1

pred_eq R R§ 2,10 (pl) 4 and r14,r34,r13 | 5

pred_eq pY{ ,r2,10 (p1) 4 eq r36.,r2,10 3

- e and_not r16,r11,r36 | 6

pred_eq RS R§ 2,32 (p6) 5 and rl7,r36,r11 | 6

add 15,151 (p4) 5 eq rs7,r232 | 4

e and_not r18,r16,r37 | 7

add r4,r4,1 (p4) 5 and r55,r37,r16 | 7

add r25,r5,1 1

add r6.,r6,1 (p7) 5 cmov r5,r25,r14 | 6

pred_eq R 2,9 (p8) 6 add r24,r4,1 1

cmov r4,r24,r14 6

mov r4,0 (p5) 7 add 661 |1

add r7,r7,1 2 cmov 16,r26,r17 7

eq r35,r2,9 4

add_u r3r31 2 and 16513518 | 5

add ri,rl,-1 3 or r45,r17,r65 | 7

ium or r15,r65,r45 | 8

Jump blockA 7 cmov r4,0,r15 9

add r7,07,1 2

8 cycles \ add_u r3,r3,1 2

issue cycle add rirl,-1 2

jump blockA 9

Note: 4-issue, 1-branch machine assumed for scheduling 10 cycles \
issue cycle

(a) basic block control flow block

(b) fully predicated hyperblock code

(c) partially predicated code

Figure 5: Example loop segment from wec.

tion set of an architecture with varying levels of support for
predicated execution. Register allocation and code schedul-
ing are performed in order to produce code that could be
executed by a target architecture with such support. To al-
low emulation of the code on the host HP PA-RISC proces-
sor, the code must be modified to remove predication, while
providing accurate emulation of predicated instructions.

Emulation ensures that the optimized code generated for
each configuration executes correctly. Execution of the
benchmark with emulation also generates an instruction
trace containing memory address information, predicate reg-
ister contents, and branch directions. This trace is fed to a
simulator for performance analysis of the particular archi-
tectural model being studied. We refer to this technique as
emulation-driven simulation. The simulator models, in de-
tail, the architecture’s prefetch and issue unit, instruction
and data caches, branch target buffer, and hardware inter-
locks, providing an accurate measure of performance.

Predicate Emulation. Emulation is achieved by per-
forming a second phase of register allocation and generat-
ing PA-RISC assembly code. The emulation of the varying
levels of predicate support, as well as speculation of load in-
structions is done using the bit manipulation and conditional
nullification capabilities of the PA-RISC instruction set [17].
Predicates are emulated by reserving n of the callee-saved
registers and accessing them as 32 x n 1-bit registers.

The instruction sequence required to emulate a predicate
define instruction is dependent upon the predicate types of
the destination predicate registers. As an example, consider
the predicated predicate define instruction (1) in Figure 7.
In this example, predicate registers pI, p2, and p8 have been
assigned bits 1,2, and 3 of general register %r3, respectively.
Instruction (1) is defining predicate register p! as OR type

and p8 as unconditional complement. The first instruction
in the five instruction assembly code sequence, places a 0 in
bit 3 of register %r8, unconditionally setting p3 to 0. The
second instruction will branch around the remaining instruc-
tions if the predicate p2 is 0. If p2 is 1 the third instruction
then performs the comparison, and using the conditional nul-
lification capabilities of that instruction, determines which
of the next two instructions will be executed. If the contents
of %r24 is 0, then only the fifth instruction will be executed,
writing a 1 to bit 1 of %73, setting pI to 1. Otherwise, only
the fourth instruction will be executed, writing a 1 to bit 3
of %r3, setting p3 to 1.

Predicated instructions are emulated by extracting the bit
from one of the reserved registers that corresponds to the
predicate for that instruction. The value of that bit is used
to conditionally execute the predicated instruction. For ex-
ample, instruction (2) in Figure 7 is predicated on p8. Thus,
bit 3 is extracted from %78 and is used to conditionally nul-
lify the increment of %r25.

Conditional Move Emulation. The emulation of con-
ditional move and select instructions is done in a similar
fashion. Instruction (3) in Figure 7 is a conditional move
of 76 into r5 if the contents of 78 is non-zero. Emulation
requires two instructions. The first performs the comparison
and nullifies the subsequent copy of 6 into 5 if r8 is zero.
Instruction (4) in Figure 7 is a select instruction. As with
the conditional move instruction, the first instruction per-
forms a comparison to determine the contents of r8. If r8 is
zero, r7 will be copied into r5, otherwise r6 is copied into
r5 as described in Section 2.2.

Processor Models. Three processor models are evalu-
ated this paper. The baseline processor is a k-issue proces-
sor, with no limitation placed on the combination of instruc-

The 22nd International Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 22-24, 1995

bge r1,r2,cb158| 0 pred_clear p1 0 ge r6,r1,r2 0
_ ld_c r3,r1,-3 0
ldc r3rl,-3 0 pred_ge pdg Lr2 |1 iter 1 eq r7,r3,10 2
) beq r3,10,cb159 2 d ¢ 3.r1.-3 0 eq r8,0,r3 2
terl| peq or3cbi60| 3 - e ge r9rdss 1
bge rarscbiel| 4 ferl | pred.eq pdg 1310 |2 16,1,12 1

9 e pred_eq pdg 03 |2 I%e rl 'r1{2
st ¢ r4,-2,r3 4 . _c rl3,rl, 0
— T pred_ge pdg .r4r5 (1 iter2 eq r17,r13,10 2
eq r18,0,r13 2
bge r1,r12,cb162| 5 ge r19,r4,r15 1
d c ri13,r1,-2 0 pred_ge pdg .rirl2|1 -

N _ ge r26,r1,r2
iter2 |beq r1310,cb169 6 ierp | 19¢ ri8rm2 10 , idc r23ri-1 |0
beq 0r13,cbl64 | 7 pred_eq pdg ,r13.10) 2 ter3 | ea 272310 |3
bge 14.r15,cb165| 8 pred_eq pdr 013 |2 eq r28,0,r23 3

¢} 1o, pred_ge pag w4015 3 ge r29,r4,r25
st.c r4,-1,r13 8| —— = - R — or r100,6,r7 3
or r101,r7,r8 4
bge rl,r22,cb166 9 pred_ge pdg .r1r22|1 or r102,r9,r16 |4
ldc 231 | 0© 0 or rl03ri7rig |4
— L 10 iter3 Id_c r23,r1,-1 or-tree or r104,r19,r26 |4
iterz | bed r23,10,cbh167 pred_eq pdg .r23,10|3 or r%gg,r%,rzgo 5
11 or r200,r29,r100 | 5
beq 0,r23,cb168 " pred_eq pdg 023 |3 or r201.r101.r102 5
bge r4,r25,cb269 pred_eq pdg r4.25 |3 or r202,r103,r104 5
stc 4,023 12 or r300,r105,r200 6
- o] or r301,r201,r202 6
12 jump cb293 (p1) |4 or r400,r300,r301 7

add r1,r1,3 st ¢ r4,-2,r3 4
12 st_c r4,-1,r13 4 bne r400,0,cb293 |8
.add r4,r4,3 " st ¢ r4,0,r23 4 stc r4,-2:3 8
jump ch6 add r1,r1,3 5 st.c r4,-1,r13 8
addb rzkl),r4,3 5 st_c r4,0,r23 8
jum ch6 5 add r4,r4,3 9
14 cycles issue cycle add r1,r1,3 9
6 cycles) jump ché 9
issue cycle
Note: 4-issue,1-branch assumed for scheduling 10 cycles issue cycle

(a) superblock code

(b) fully predicated hyperblock code

Figure 6: Example loop segment from grep.

tions which may be issued each cycle, except for branches.
The memory system is specified as either perfect or consists
of a 64K directed mapped instruction cache and a 64K di-
rect mapped, blocking data cache; both with 64 byte blocks.
The data cache is write-through with no write allocate and
has a miss penalty of 12 cycles. The dynamic branch predic-
tion strategy employed is a 1K entry BTB with 2 bit counter
with a 2 cycle misprediction penalty. The instruction laten-
cies assumed are those of the HP PA-RISC 7100. Lastly, the
baseline processor is assumed to have an infinite number of
registers. The baseline processor does not support any form
of predicated execution. However, it includes non-excepting
or silent versions of all instructions to fully support specula-
tive execution. Superblock ILP compilation techniques are
utilized to support the baseline processor [20]. The base-
line processor is referred to as Superblock in all graphs and
tables.

For partial predicate support, the baseline processor is ex-
tended to support conditional move instructions. Note that
since non-excepting versions of all instructions are available,
the more efficient conversions are applied by the compiler
for partial predication (Section 3.2). The partial predicate
support processor is referred to as Conditional Move. The
final model is the baseline processor extended to support
full predication as described in Section 2.1. This model is
referred to as Full Predication. For this model, hyperblock
compilation techniques are applied. Performance of the 3
models is compared by reporting the speedup of the par-
ticular processor model versus the baseline processor. In

(c) partially predicated code

(1) pred_eq plogr, pBE,r24,0 (p2) DEPI 0,3,1,%r3
BB,>=,N %r3,2,8$pred-0
COMCLR,= %r0,%r24,%r0
DEPI, TR 1,3,1,%r3
DEPI 1,1,1,%r3

$pred-0

(2) add r25,r25,1 (p3) EXTRU,EV %r3,3,1,%r0
ADDI 1,%r25,%r25

(3) cmov r5,r6,r8 COMCLR,= %r8,%r0,%r0
COPY %r6,%r5

(4) select r5,r6,r7,r8 COMCLR,= %r8,%r0,%r0
OR,TR %r6,%r5
COPY %r7,%r5

Figure 7: HP PA-RISC emulation of predicate support.

particular, speedup is calculated by dividing the cycle count
for a 1-issue baseline processor by the cycle count of a k-issue

processor of the specified model.

4.2 Results

Figure 8 shows the relative performance achieved by su-
perblock, conditional move, and full predication for an issue-
8, 1-branch processor. Full predication performed the best
in every benchmark with an average speedup of 63% over
superblock.! Speedup with conditional move code fell be-
tween superblock and full predication for all benchmarks
except 072.sc which performed slightly below superblock

L Averages reported refer to the arithmetic mean.

The 22nd International Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 22-24, 1995 10

8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00

022.li
072.sc

—
008.espress(mmmm— |

—

—

==

—

]

—

026.compressmmm——
052, alvinn e —
056.car T ————

023.eqntot{ —

M superblock M conditional Move || Full Predication

Figure 8: Effectiveness of full and partial predicate support
for an 8-issue, 1-branch processor with perfect caches.

8.00
7.00

6.00

5.00

4.00

3.00

2.00 I I I
c
£
=
<
o
0
o

1.00 =
o
[

n x
g 2 8 g
o

yacc mm—

g
= Q o

<]
153
<
pre}
3

022 p—

023.eqntott ——
072.sc

026.compres ———

008.espress

| Superblock M conditional Move | Full Predication

Figure 9: Effectiveness of full and partial predicate support
for an 8-issue, 2-branch processor with perfect caches.

code’s performance. The unusual behavior of 072.sc was pri-
marily due to increased dependence chain lengths caused by
the conditional move transformations. On average, though,
conditional move code had a speedup of 33% over su-
perblock. The speedup for conditional move code is very
substantial. Most researchers and product developers have
reported small gains except for certain special cases with
conditional moves. However, utilizing the hyperblock tech-
niques in conjunction with the conditional move transforma-
tions yields consistent performance improvements.

Full predication also achieved performance gain on top of
the conditional move model. This illustrates that there is
significant performance gain possible provided by the ISA
changes to support full predication. In particular, the effi-
ciency of representing predicated instructions, the reduced
dependence heights to represent predicated instructions, and
the ability to simultaneously execute OR type predicate de-
fines provided full predicate support with the additional per-
formance improvement. On average, a gain of 30% over the
conditional move model was observed.

Increasing the branch issue rate from 1 to 2 branches per
cycle provides interesting insight into the effectiveness of
predicated execution. Figure 9 shows the performance result
of an 8-issue processor that can execute 2 branches per cycle.
The performance improvement of conditional move code and
full predicate against superblock code is reduced. This is at-
tributal to improving the performance of superblock. The

4.00

3.00

1.00 o = E a £ [2 a ol c o | x = o Q
2 o £ o £ b H 9 £ T © @ S s s}
¢ o £ 5 = P o Q 5 51 > @ 5}
55 § g =z g & ¢ =
2 d S [(=]
1 © g @
© S > ©
3 S

N

°© S}

M superblock M conditional Move [Full Predication

Figure 10: Effectiveness of full and partial predicate support
for an 4-issue, 1-branch processor with perfect caches.

8.00
7.00 .
6.00
5.00
4.00 M
3.00 ﬂ
o [i Wil
[il el |
L R B e B B A R
= S L5} H -
g § £ ¢ £ @ & § £ § g e g = g
s q 5 g 3 © ~ o © o = >
@ 2 5 & 8 ©°
3] %) 8 0 ©
© o - o
S = 3
© =]

M superblock H conditional Move Full Predication

Figure 11: Effectiveness of full and partial predicate support
for an 8-issue, 1-branch processor with 64K instruction and

data caches.

conditional move and full predication code has had many of
the branches removed with hyperblock formation. There-
fore, increasing the number of branches does not noticeably
improve the performance of conditional move and full pred-
ication code. On average, conditional move performed only
3% faster than superblock while full predication performed
35% faster than superblock.

Figure 10 shows performance of the benchmarks on a 4
issue processor that can issue 1 branch per cycle. The most
noticeable trend across these benchmarks is that while full
predication consistently beats superblock code, conditional
move code performs worse than superblock in the majority
of benchmarks. Since support for predication in the con-
dition move code is limited, the compiler must compensate
by creating many more instructions than it would with full
predicate support. These extra instructions are absorbed by
the 8 issue machine, but saturate the 4 issue machine creat-
ing poor results. These results indicate a more conservative
hyperblock formation algorithm needs to be employed for
the conditional move model with a 4-issue processor. For
full predication, substantial performance gain is still possi-
ble for the 4-issue processor, with an average of 33% speedup
over superblock.

To evaluate the cache effects associated with predicated
execution, Figure 11 is presented. As expected all three
methods were affected by a realistic cache model. However,

The 22nd International Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 22-24, 1995 11

Benchmark Superblk Cond. Move Full Pred.
008.espresso 489M 812M (1.66) 626M (1.28)
022.1i 31M 38M (1.23) 32M (1.04)
023.eqntott 1030M 1230M (1.19) 885M (0.86)
026.compress 90M 128M (1.41) 108M (1.20)
052.alvinn 3574M 4003M (1.12) 3603M (1.01)
056.ear 11225M | 13838M (1.23) | 11073M (0.99)
072.sc 91M 85M (0.93) 75M (0.83)
ccep 3701K 5077K (1.37) 3855K (1.04)
cmp 932K 1422K (1.53) 922K (0.99)
eqn 44M 49M (1.11) 44M (0.99)
grep 1282K 2467K (1.92) 1647K (1.28)
lex 36M 75M (2.10) 46M (1.29)
gsort 44M 70M (1.61) 49M (1.11)
wC 1493K 2999K (2.01) 1526K (1.02)
yacc 43M 66M (1.53) 50M (1.16)

Table 2: Dynamic instruction count comparison.

two benchmarks stand out. The real cache significantly re-
duced the performance of 026.compress in all three models.
Conditional move and full predication code increased data
memory traffic more by performing speculative execution
using predicate promotion. Since these promoted instruc-
tions often caused cache misses, the performance of condi-
tional move and full predication code dropped significantly.
Egn also exhibited an interesting result. Conditional move
performed poorly while full predication and superblock re-
mained proportionally the same. This is a side effect of
the increased instruction cache miss rate due to conditional
move’s larger instruction count. This is evidenced by the dy-
namic instruction count of egn in Table 2. On average pred-
icated code still yielded good results over superblock with
full predication performing 54% faster than superblock and
conditional moves performing 24% faster than superblock.
The dynamic instruction count of all benchmarks with
respect to a processor model is shown in Table 2. Full predi-
cation code can increase dynamic instruction count over su-
perblock as is executes both paths of an if-then-else con-
struct. Superblock code can increase dynamic instruction
count over full predication by unnecessary speculated in-
structions into frequently executed paths. Therefore the
overall relation in instruction count between full predication
and superblock can vary as the results indicate. Conditional
move code’s dynamic instruction count is hit hardest; how-
ever, since it suffers from executing code normally hidden by
branches combined with the inefficiencies associated with not
having full predicate support. Conditional move code had an
average of 46% more dynamic instructions than superblock,
while full predication had only 7% dynamic instruction.
Finally, as shown in Table 3, the number of branches in
partially and fully predicated code is substantially less than
in the superblock code. Much of the speedup of full and par-
tial predication comes from the elimination of branches. Mis-
predicted branches incur a significant performance penalty.
With fewer branches in the code, there are fewer mispre-
dictions. Also, in many architectures, because of the high
cost of branch prediction, the issue rate for branches is less
than the issue rate for other instructions. Therefore, fewer
branches in the code can greatly increase the available ILP.
Partially and fully predicated code have very close to the
same number of branches, with fully predicated code often

having just a few less. The small difference in the number
of branches is a result of adding branches around predicated
subroutine calls in partially predicated code. The differences
in the misprediction ratios for partially and fully predicated
code is also a result of predicated subroutine calls.

An odd behavior is observed for grep in Table 3. The
number of mispredictions for the conditional move and full
predication models are larger than that of the superblock
model. This is caused by a branch combining transformation
employed for hyperblocks by the compiler which is heavily
applied for grep. With this transformation, unlikely taken
branches are combined to a single branch. The goal of the
transformation is to reduce the number of dynamic branches.
However, the combined branch typically causes more mispre-
dictions than the sum of the mispredictions caused by the
original branches. As a result, the total number of mispre-
dictions may be increased with this technique.

5 Concluding Remarks

The code generation strategy presented in this paper illus-
trates the qualitative benefit of both partial and full pred-
ication. In general, both allow the compiler to remove a
substantial number of branches from the instruction stream.
However, full predication allows more efficient predicate
evaluation, less reliance on speculative execution, and fewer
instructions executed. As shown in our quantitative results,
these benefits enable full predication to provide more robust
performance gain in a variety of processor configurations.

For an eight issue processor that executes up to one branch
per cycle, we show that conditional move allows about 30%
performance gain over an aggressive base ILP processor with
no predication support. This speedup is very encouraging
and shows that a relatively small architectural extension
can provided significant performance gain. Full predication
offers another 30% gain over conditional move. The perfor-
mance gains of full and partial predication support illustrate
the importance of improving branch handling in ILP proces-
sors using predicated execution.

Results based on a four issue processor illustrate the ad-
vantage of full predication support. Full predication support
remains substantially superior even in the presence of a low
issue rate. This is due to its efficient predicate evaluation
and low instruction overhead. This contrasts with condi-
tional move support where the extra dynamic instructions
over utilize the processor issue resources and result in a siz-
able performance degradation for the majority of the bench-
marks. Nevertheless, the substantial performance gain for
two of the benchmarks suggests that conditional move could
be a valuable feature even in a low issue rate processor. How-
ever, this does indicate that a compiler must be extremely
intelligent when exploiting conditional move on low issue
rate processors.

All of the results presented in this paper are based on a
2-cycle branch prediction miss penalty. This was chosen to
show conservative performance gains for predicated execu-
tion. For machines with larger branch prediction miss penal-
ties, we expect the benefits of both full and partial prediction
to be much more pronounced. Furthermore, when more ad-
vanced compiler optimization techniques become available,

The 22nd International Symposium on Computer Architecture, Santa Margherita Ligure, Italy, June 22-24, 1995

Benchmark Superblock Conditional Move Full Predication

BR MP MPR BR MP MPR BR MP MPR
008.espresso 75M 3402K 4.55% 38M 2066K 5.38% 33M 1039K 3.15%
022.1i 7457TK 774K 10.38% | 6169K 694K 11.25% | 6110K 702K 11.5%
023.eqntott 315M 42M 13.47% 53M 6732K 12.66% 51M 6931K 13.57%
026.compress 12M 1344K 10.9% | 9269K 864K 9.32% | 9240K 867K 9.38%
052.alvinn 463M 1091K 0.24% 74M 896K 1.23% 7AM 1032K 1.38%
056.ear 1539M 66 M 4.3% 443M 16M 3.52% 442M 15M 3.4%
072.sc 22M 1232K 5.49% 11IM 1044K 9.19% 11M 934K 8.26%
ccep 921K 66K 7.19% 537K 656K 12.17% 534K 65K 12.15%
cmp 530K 4395 0.83% 26K 31 0.12% 26K 31 0.12%
eqn 7T470K 1612K 8.2% | 4506K 514K 11.4% | 4495K 511K 11.37%
grep 663K 9660 1.46% 171K 20K 11.7% 171K 20K 11.73%
lex 14M 232K 1.65% | 3070K 201K 6.55% | 3030K 196K 6.46%
gsort 8847K 1332K 15.06% | 6092K 597K 9.79% | 6066K 610K 10.06%
wC 478K 33K 6.85% 224K 57 .025% 224K 57 .025%
yacc 12M 517K 4.31% | 5944K 445K 7.48% | 5900K 431K 7.31%

12

Table 3: Comparison of branch statistics: number of branches (BR), mispredictions (MP), and miss prediction rate (MPR).

we expect the performance gain of both partial and full pred-
ication to increase. We also feel it would be interesting to
explore the range of predication support between conditional
move and full predication support.

Acknowledgements

The authors would like to thank Roger Bringmann and Dan
Lavery for their effort in helping put this paper together. We
also wish to extend thanks to Mike Schlansker and Vinod
Kathail at HP Labs for their insightful discussions of the
Playdoh model of predicated execution. Finally, we would
like to thank Robert Cohn and Geoff Lowney at DEC, and
John Ruttenberg at SGI for their discussions on the use
of conditional moves and selects. This research has been
supported by the National Science Foundation (NSF) under
grant MIP-9308013, Intel Corporation, Advanced Micro De-
vces, Hewlett-Packard, SUN Microsystems and AT&T GIS.

References

[1] J. E. Smith, “A study of branch prediction strategies,” in
Proceedings of the 8th International Symposium on Com-
puter Architecture, pp. 135-148, May 1981.

[2] J. Lee and A. J. Smith, “Branch prediction strategies and
branch target buffer design,” IEEE Computer, pp. 6-22, Jan-
uary 1984.

[3] T.Y. Yeh and Y. N. Patt, “A comparison of dynamic branch
predictors that use two levels of branch history,” in Proceed-
ings of the 20th Annual International Symposium on Com-
puter Architecture, pp. 257-266, May 1993.

[4] M. D. Smith, M. Johnson, and M. A. Horowitz, “Limits on
multiple instruction issue,” in Proceedings of the 3rd Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 290-302, April 1989.

[5] D. W. Wall, “Limits of instruction-level parallelism,” in Pro-
ceedings of the 4th International Conference on Architectural
Support for Programming Languages and Operating Systems,
pp. 176-188, April 1991.

[6] M. Butler, T. Yeh, Y. Patt, M. Alsup, H. Scales, and M. She-
banow, “Single instruction stream parallelism is greater than
two,” in Proceedings of the 18th International Symposium on
Computer Architecture, pp. 276—286, May 1991.

[7] P.Y. Hsu and E. S. Davidson, “Highly concurrent scalar pro-
cessing,” in Proceedings of the 13th International Symposium
on Computer Architecture, pp. 386—395, June 1986.

(8] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, “The
Cydra 5 departmental supercomputer,” IEEE Computer,
vol. 22, pp. 12-35, January 1989.

[9] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Con-
version of control dependence to data dependence,” in Pro-
ceedings of the 10th ACM Symposium on Principles of Pro-
gramming Languages, pp. 177-189, January 1983.

[10] J. C. Park and M. S. Schlansker, “On predicated execution,”
Tech. Rep. HPL-91-58, Hewlett Packard Laboratories, Palo
Alto, CA, May 1991.

[11] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and
R. A. Bringmann, “Effective compiler support for predicated
execution using the hyperblock,” in Proceedings of the 25th
International Symposium on Microarchitecture, pp. 45-54,
December 1992.

[12] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyl-
lenhaal, D. M. Gallagher, and W. W. Hwu, “Characterizing
the impact of predicated execution on branch prediction,”
in Proceedings of the 27th International Symposium on Mi-
croarchitecture, pp. 217-227, December 1994.

[13] G. R. Beck, D. W. Yen, and T. L. Anderson, “The Cydra
5 minisupercomputer: Architecture and implementation,”
The Journal of Supercomputing, vol. 7, pp. 143-180, Jan-
uary 1993.

[14] D. N. Pnevmatikatos and G. S. Sohi, “Guarded execution
and branch prediction in dynamic ILP processors,” in Pro-
ceedings of the 21st International Symposium on Computer
Architecture, pp. 120-129, April 1994.

[15] V. Kathail, M. S. Schlansker, and B. R. Rau, “HPL play-
doh architecture specification: Version 1.0,” Tech. Rep. HPL-
93-80, Hewlett-Packard Laboratories, Palo Alto, CA 94303,
February 1994.

[16] M. Schlansker, V. Kathail, and S. Anik, “Height reduction of
control recurrences for ILP processors,” in Proceedings of the
27th International Symposium on Microarchitecture, pp. 40—
51, December 1994.

[17] Hewlett-Packard Company, Cupertino, CA, PA-RISC 1.1
Architecture and Instruction Set Reference Manual, 1990.

[18] D. S. Blickstein et al., “The GEM optimizing compiler sys-
tem,” Digital Technical Journal, vol. 4, pp. 121-136, 1992.

[19] P. G. Lowney et al., “The Multiflow trace scheduling com-
piler,” The Journal of Supercomputing, vol. 7, pp. 51-142,
January 1993.

[20] W. W. Hwu et al., “The Superblock: An effective technique
for VLIW and superscalar compilation,” The Journal of Su-
percomputing, vol. 7, pp. 229-248, January 1993.

