
Hardware Acceleration of the Pair-HMM Algorithm for DNA
Variant Calling

Sitao Huang†, Gowthami Jayashri Manikandan†, Anand Ramachandran†,
Kyle Rupnow‡, Wen-mei W. Hwu†, Deming Chen†

†University of Illinois at Urbana-Champaign, USA
{shuang91, mankndn2, aramach4, w-hwu, dchen}@illinois.edu

‡Advanced Digital Sciences Center, Singapore
k.rupnow@adsc.com.sg

ABSTRACT
With the advent of several accurate and sophisticated statis-
tical algorithms and pipelines for DNA sequence analysis, it
is becoming increasingly possible to translate raw sequenc-
ing data into biologically meaningful information for further
clinical analysis and processing. However, given the large
volume of the data involved, even modestly complex algo-
rithms would require a prohibitively long time to complete.
Hence it is the need of the hour to explore non-conventional
implementation platforms to accelerate genomics research.
In this work, we present an FPGA-accelerated implementa-
tion of the Pair HMM forward algorithm, the performance
bottleneck in the HaplotypeCaller, a critical function in the
popular GATK variant calling tool. We introduce the PE
ring structure which, thanks to the fine-grained parallelism
allowed by the FPGA, can be built into various configu-
rations striking a trade-off between instruction-level paral-
lelism (ILP) and data parallelism. We investigate the re-
source utilization and performance of different configura-
tions. Our solution can achieve a speed-up of up to 487×
compared to the C++ baseline implementation on CPU and
1.56× compared to the best published hardware implemen-
tation.

Keywords
Hardware Acceleration; FPGA; forward algorithm; Pair-
HMM; Computational Genomics; PE ring

1. INTRODUCTION
Bioinformatics is a fast-growing field, with increasing de-

mand for high computational capabilities for several ap-
plications. Next Generation Sequencing (NGS) technolo-
gies and the increasing availability of genome data through
public databases, have enabled us to develop comprehen-
sive pipelines to sequence and process complex genomes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FPGA ’17, February 22-24, 2017, Monterey, CA, USA
c⃝ 2017 ACM. ISBN 978-1-4503-4354-1/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3020078.3021749

Figure 1: The major steps in HaplotypeCaller [13].

Translation and interpretation of the raw sequencing data
to biologically meaningful information for further clinical
analysis like disease prediction, drug performance evalua-
tion etc., are of utmost importance now. Several algorithms
have been developed to address problems like DNA sequence
alignment [1, 2, 3, 4], error correction [5, 6, 7] and variant
calling [8]. Many bioinformatics workflows suffer from very
high computational times brought forth by the explosion in
data available from low-cost, high-throughput sequencing.
In response to this, several bioinformatics algorithms have
been implemented on alternative computing platforms like
FPGAs and GPUs to reduce their execution times. Such
recent developments point to workflows being executed on
heterogeneous computing platforms where instructions for
the critical and computation intensive parts of an algorithm
will be off-loaded for execution on an FPGA or a GPU to
achieve significant speed-ups compared to a CPU-only im-
plementation. Parallelization and acceleration of complex
bioinformatics algorithms has become an area that is being
widely explored [9, 10, 11, 12].

Our work deals with a specific bioinformatic analysis called
variant calling. Variant calling identifies differences between
a given subject’s DNA and a standard reference DNA. The
input data to the analysis are the standard reference DNA
and the sequencing data of the individual in the form of
alignment files. Alignment files are a specific type of rep-
resentation of the sequencing data showing the sequenced
reads and the most likely areas they are sequenced from with

275

http://dx.doi.org/10.1145/3020078.3021749

respect to the reference sequence. These associations are
determined by minimizing the edit-distance between a read
sequence and regions in the reference sequence.[1, 2] Edit-
distance minimizations may be considered valid because the
error rates involved in the sequencing technologies of inter-
est are small and localized, and we are primarily interested
in small variations from the reference.

GATK’s HaplotypeCaller [14, 13] is one of the most pop-
ular variant calling tools available today. The tool does the
analysis in two steps. In the first step, it identifies locations
in the genome where the chances are high that a variation
is present based on simple computations. These locations,
called active sites, are processed further to confirm the initial
assessment.

To determine if an active site in the sample is a variant
or not, the tool assembles what it thinks are the probable
haplotypes in the region surrounding the active site. The
probable haplotypes in a location are the tool’s initial guess
regarding the different sequences of DNA present in that
particular location. More than one sequence may be found
at a given location in the genome because, for instance, the
human genomic material is made up of pairs of chromo-
somes, and two chromosomes in a pair can be different lo-
cally, while being very similar globally. Once the probable
haplotypes are constructed, the tool assesses which of the
candidate haplotypes are most likely present in the individ-
ual’s genome by calculating the likelihood of alignment of
each haplotype to the read sequences in that region in the
input alignment file. If the established haplotypes are dif-
ferent from the reference sequence, the tool determines that
there is a variation at that location. The general flow of the
HaplotypeCaller is summarized in Figure 1.

GATK’s HaplotypeCaller assumes that haplotypes and
read sequences follow a pair hidden Markov model (Pair-
HMM). Pair-HMM [15] is a popular statistical model to
study pairwise alignment probabilities of two sequences. We
can infer several aspects of the alignment using various in-
ference algorithms of the Pair-HMM model such as, opti-
mal sequence alignment (Viterbi algorithm) and the overall
alignment probability (forward algorithm). The forward al-
gorithm of the Pair-HMM gives the statistical measure of the
similarity between two sequences. It computes the overall
alignment probability by summing the likelihood of all pos-
sible alignments between the two sequences. The forward
algorithm for the Pair-HMM model are used in several ap-
plications like gene prediction, functional similarity analysis
between two protein sequences and variant calling [16, 17,
18]. Specifically, it is used by GATK’s HaplotypeCaller to
measure similarity between reads and probable haplotypes.

Table 1 shows the runtime results of each stage of the
HaplotypeCaller for Chromosome 20 from sample NA12878
(Whole Genome Sequence data) as published by Mauricio
et al. of Broad Institute [19]. This shows that the major
bottle-neck is the forward algorithm computations of the
Pair-HMM. In the Pair-HMM stage, every candidate hap-
lotype is compared to each input read to compute the like-
lihood score using the forward algorithm. The number of
computations involved is of the order N×M×R×H, where
N is the number of input reads, M is the number of candi-
date haplotypes, R is the length of the input reads and H
refers to the length of the candidate haplotype.

In this work, our objective is to achieve a speed-up of the
Pair-HMM’s forward algorithm on an FPGA-based comput-

Table 1: Profiling results for HaplotypeCaller run
on Chromosome 20 of NA12878 Whole Genome Se-
quence (WGS) sample [19].

Stage Time Runtime
Assembly 2,598s 13%
Pair-HMM (forward algorithm) 14,225s 70%
Traversal + Genotyping 3,379s 17%

ing platform to minimize the bottleneck of computing flows
similar to GATK’s HaplotypeCaller that utilize such a Pair-
HMM model to compute the overall alignment probability.

Pair-HMM is a type of more complicated dynamic pro-
gramming algorithm, compared to many other programming
algorithm. The propagation operator in Pair-HMM is com-
plicated combination of floating-point additions and multi-
plications, rather than simple min or max operators as in
many other dynamic programming algorithms. And, there
are three matrices that each has data dependencies on the
other two. Besides, Pair-HMM requires all the values to be
at least single-precision floating-point numbers. Normaliz-
ing to fix point domain will lead to either overflow or un-
derflow problem. Performing floating-point operations effi-
ciently usually a hard problem for FPGAs.

Traditionally, in FPGA-accelerated solutions to the Pair-
HMM, systolic arrays have been commonly used. However,
the systolic array structure lacks the flexibility of handling
variable input lengths and hence lacks design scalability and
configurability. In this work, we propose a Processing Ele-
ment (PE) ring structure to compute the forward algorithm.
To the best of our knowledge, this is the first PE ring struc-
ture based implementation of the Pair-HMM forward algo-
rithm. The PE ring structure can be configured for inputs
of varied lengths without any changes to the hardware. In
the following sections, we will demonstrate how our PE ring
structure exhibits significant advantage in terms of perfor-
mance and flexibility.

The contributions in this work may be summarized as
follows:

• We propose a ring-based hardware implementation of
the Pair-HMM’s forward algorithm, which can support
flexible lengths for input read sequences. Our imple-
mentation can achieve significant speed-ups of up to
487× compared to the C++ baseline implementation
on CPU, and 1.56× compared to the published best
hardware implementation.

• Several optimization techniques for improving PE ring’s
performance are proposed and discussed, the PE ring
structure and the optimization may be readily extended
to accelerate other applications that are based on sim-
ilar dynamic programming algorithms.

• Based on both the above implementation and opti-
mization techniques, we present experimental results
to illustrate the trade-offs and other design considera-
tions in using the PE ring structure to accelerate dy-
namic programming algorithms.

• Our work provides an example of how to effectively ac-
celerate complicated floating-point dynamic program-
ming calculation with FPGA.

276

The rest of the paper is organized as follows: Section 2
provides an overview of the prior implementations of bioin-
formatics algorithms that are similar to the Pair-HMM; Sec-
tion 3 introduces the fundamentals of the forward algorithm
of the Pair-HMM; Section 4 presents the details of our ring-
based implementation of the forward algorithm; Section 5
illustrates the experimental results and presents a compari-
son of the performance of the ring-based implementation to
other implementations of the Pair-HMM algorithm; Section
6 concludes the paper.

2. RELATED WORK
There are many illustrative examples of the speed opti-

mizations offered by FPGA accelerators for bioinformatics
algorithms. FPGA acceleration of Error Correction in NGS
reads has been achieved in [12]. The work gets a significant
35× speed-up compared to the software implementation of
its base error correction algorithm presented in [5].

Dynamic Programming algorithms have been explored and
implemented on varies types of hardware platforms, such as
GPU, FPGA and ASICs; For the FPGA platform, most of
the work use systolic arrays structures, e.g. the work in [20].
An FPGA accelerated version of the Smith-Waterman algo-
rithm that identifies the best local alignment between two
DNA sequences is presented by Isaac TS Li et al. [11]. The
work achieved a 160× acceleration compared to the baseline
software version. In [21], ring-based structure is proposed
to accelerate the dynamic time warping algorithm, which is
a type of dynamic programming algorithm whose propaga-
tion operator is min operator. In that problem, the data
could be processed in the fixed point number domain. Ring-
based structure is also adopted to accelerate dynamic pro-
gramming algorithm in this work. However, the dynamic
programming algorithm this work accelerate, Pair-HMM,
is more complicated. Pair-HMM’s propagation operator is
a complicated combination of floating-point additions and
multiplications, and there are three matrices involved at the
same time. This is the reason why Pair-HMM is hard to ac-
celerate using FPGA. There are some other work accelerates
dynamic programming algorithm with novel circuit design.
In [22], the accumulated score/penalty in dynamic program-
ming problem is represented by the latency of a path in
combinational circuit, which corresponding to the dynamic
programming search path. This novel design achieve signifi-
cant speedup compared to the computation based methods.
However, this latency based design could only be applied to
the those dynamic programming problems whose propaga-
tion operator is max or min operator.

An FPGA implementation of the Pair-HMM stage of Hap-
lotypeCaller on Convey computers is reported in [19]. It
achieves 13× speedup compared to the Java implementation
of the Pair-HMM algorithm on CPU. The Convey machine
contains four high-end FPGAs. In our work, we target a sin-
gle FPGA chip. However, we leverage most of the optimiza-
tion techniques feasible through the ring-based RTL-design
modifications and achieve higher performance and flexibility
of the Pair-HMM’s forward algorithm. We achieve a faster
and efficient implementation of the Pair-HMM’s forward al-
gorithm that can be used in similar flows that utilize it for
other applications.

A recent work from Altera [23] accelerates the Pair-HMM
algorithm with Altera OpenCL SDK and FPGAs. Their
work achieves significant speedup compared to software. The

hardware structure in this work is the systolic array. Pro-
cessing elements are placed in a grid structure. Grid struc-
tures are very common in FPGA acceleration designs. How-
ever, using the grid structure to process dynamic program-
ming matrices introduces additional overhead of having to
store intermediate results back to memory in every step of
computation. Our PE ring implementation eliminates this
overhead. In the PE ring, the output of one PE is deliv-
ered to the neighbor PE and consumed immediately. The
whole PE ring produces at most one intermediate result
that needs to be stored every cycle. Besides, the PE ring
is very amenable to trade offs through restructuring which
can reduce the number of idle PEs when boundary condi-
tions (starting or ending of processing a single sequence pair)
happen. This can be thought of as a trade-off between In-
struction Level Parallelism (ILP) and data-parallelism. In
the case of using a single PE ring, the execution goes over one
set of dynamic-programming matrices with identical dimen-
sions, while when using multiple smaller rings, we concen-
trate in parallel on many, possibly differently sized, sets of
dynamic programming matrices which may not be amenable
to simultaneous processing by a single PE ring. We will dis-
cuss more about such techniques later.4.3.

3. FORWARD ALGORITHM
When used as a generative model, the Pair-HMM maybe

thought of as emitting a pair of aligned sequences X and
Y. To model an alignment based on edit-distance, as op-
posed to Hamming distance, the model has match, insert
and delete states. The Pair-HMM allows us to draw in-
ferences about the alignment quality of a pair of sequences
under the assumption that the sequence pair was emitted by
itself [Figure 2]. In the HaplotypeCaller, the overall align-
ment quality between a candidate haplotype and an input
read is computed using the Pair-HMM.

Match

M

Delete

D

Insert

I

iia
ima

mma

mia

mda

dma

dda

Figure 2: Insert, delete, and match states of Pair-
HMM.

Table 2: An example of hidden-state sequence gen-
eration using Pair-HMM.[16]

Seq X: A G G T A -
Seq Y: - - G T A A

Hidden state Sequence: I I M M M D

Figure 2 shows the state transitions in a Pair-HMMmodel.
The hidden states are represented as M, D and I. When in
state M, the pair-HMM emits symbols from both sequences,
implying that the symbols may align to each other. When
in state I, it emits one symbol from sequence X, and a blank
symbol - meaning no symbol from sequence Y, indicating

277

an insertion in sequence X. Similarly D state represents a
deletion in sequence X (or an insertion in sequence Y). The
edge-weights between the states represent transition proba-
bilities. Table 2 illustrates how a particular alignment be-
tween two sequences may be represented using a Pair-HMM
state sequence. The probability of the particular alignment
is the product of the corresponding state transition proba-
bilities. To find the overall alignment probability, we need
to find the sum of the probabilities of all such alignments
between the two sequences. However, if we follow a brute-
force approach to evaluate each possible sequence alignment,
it can be computationally expensive as there can be a large
number of possible alignments between two sequences. In-
stead, the forward algorithm is used to efficiently compute
the overall alignment probability.

The forward algorithm is essentially a dynamic program-
ming approach, which uses three matrices: fM , fI and fD.
i and j correspond to the position indices in the sequences
X and Y. fk(i, j) is the forward variable that represents the
combined probability of all alignments up to positions (i, j)
that end in state k. The forward algorithm may be summa-
rized as:

Initialization:⎧⎪⎪⎨⎪⎪⎩
fM (0, 0) = 1
fX(0, 0) = fD(0, 0) = 0
fM (i, 0) = fI(i, 0) = 0
fM (0, j) = fD(0, j) = 0

(1)

Recursion:⎧⎪⎪⎨⎪⎪⎩
fM (i, j) = Prior · (ammfM (i− 1, j − 1)

+ aimfI(i− 1, j − 1) + admfD(i− 1, j − 1))
fI(i, j) = amif

M (i− 1, j) + aiif
I(i− 1, j)

fD(i, j) = amdf
M (i, j − 1) + addf

D(i, j − 1)

(2)

Termination:

Result = fM (Nh, Nr) + fI(Nh, Nr) + fD(Nh, Nr) (3)

where Nh and Nr are the lengths of the haplotype (seq.
X) and input read (seq. Y) respectively.

Many quantities in the forward algorithm recursion need
elaboration. These quantities are evaluated from additional
information available in the input dataset pertaining to the
quality of a read sequence and various characteristics related
to its alignment at each position in the sequence. Specifi-
cally, four different quality score values are used in GATK’s
formulation of the Pair-HMM, which we base our imple-
mentation on. Three of them assign penalties to gaps in the
alignment, namely the insertion gap open penalty (or base
insertion quality Qi), the deletion gap open penalty (or base
deletion quality Qd) and the gap continuation penalty (Qg).
In addition, there is also data that indicates the level of
confidence in the correctness of each symbol in each read
sequence, which we represent as Qbase. In the forward algo-
rithm recursion presented here, aij represents a transition
probability from state i to state j. For example amm repre-
sents a transition from the match state to the match state.
The Prior value represents the probability of emitting an
aligned pair of symbols. The emission and transition proba-
bilities are computed in the Pair-HMM implementation for
the HaplotypeCaller as follows [24]:

Prior =

{
1−Qbase; if the bases match
Qbase; if the bases don’t match

(4)

amm = 1− (Qi +Qd) − match continuation
aim = 1−Qg − insertion to match
adm = 1−Qg − deletion to match
ami = Qi − match to insertion
aii = Qg − insertion continuation
amd = Qd − match to deletion
add = Qg − deletion continuation

(5)

This set of prior probabilities and transition probabilities
need to be computed for each input read, as they differ for
each position in the read.

4. DESIGN AND IMPLEMENTATION
The flow for Pair-HMM computations in GATK’s Haplo-

typeCaller is as follows: The Pair-HMM input datasets are
parsed to get the read and haplotype bases, read base qual-
ities and other gap penalty scores. The prior and transition
probability matrices for each read-haplotype pair are com-
puted using these quality scores. The input matrices are fed
to the ring-based forward algorithm computation block on
the FPGA to get the overall alignment likelihood. To parse
and pre-process the read-sequences and the haplotypes, and
obtain the various quality scores in the right form, we use the
reference software implementation of the Pair-HMM stage of
the HaplotypeCaller[19]. The original order of computations
of the forward algorithm’s Dynamic Programming(DP) ma-
trix is row-wise (or column-wise). These computations can-
not be parallelized as they are due to the data dependencies
between the successive computations according to equation
2. Modifying the array access patterns will help us lever-
age the parallel nature of the computations and design a
Processing Element (PE) ring structure to maximize perfor-
mance. Figure 3 shows the data dependencies within the
forward algorithm matrix and the computing order in our
implementation. PEs are placed along the diagonal and all
diagonal values are computed in parallel and stored in inter-
nal registers. These register values are used to calculate the
values of the next diagonal of the matrix. The forward al-
gorithm involves computations for 3 such DP matrices fM ,
fD and fI .

Haplotype

 T C G A G G T C T A C

In
p
u

t R
ead

 B
ases

T
 G

 A
 C

Untouched elements Elements being computed Completed elements

…

…

Independent elements Dependency example

Figure 3: Diagonal matrix access pattern: computa-
tions along the diagonal can be parallelized as there
are no dependencies among them

The forward algorithm essentially requires a series of arith-
metic operations on probability values. Software implemen-
tations can comfortably work with floating-point numbers

278

v

v'

v''

……

PE0 PE
1
 PE

2
 PE

n-1

v v v

v'

v'

v'

v'' v'' v''

Figure 4: The internal shift registers and their data
dependencies among PEs

to represent data and execute computations. For FPGA-
based acceleration, it is common practice to normalize all the
floating-point numbers to be within a range of fixed point
numbers, and use the FPGA to process those fixed point
numbers. However, based on our experiments, the values
that turn up in the forward algorithm’s computations cover
a large range of values, tens of orders of magnitude larger
than what fixed point numbers can represent. Working with
the fixed point domain will lead to overflow or underflow
issues for this algorithm, or a very large loss of precision.
Thus, our design needs to use floating-point numbers and
computations to obtain the requisite accuracy and correct-
ness of computation.

Generally, the hardware design for a dynamic program-
ming algorithm consists of a series of PEs, similar to what
was described in Figure 3. In our design, a fixed number of
processing elements are arranged in a ring-based structure.
Ring-based organization has been proposed and used to ac-
celerate other dynamic programming algorithms[21]. How-
ever, given that the forward algorithm requires two different
types of critical operations (both addition and multiplica-
tion) and given the fact that we need to use floating point op-
erations for accurate execution of the algorithm, the forward
algorithm poses a new set of challenges to tackle. According
to equations 2, there are 7 multiply operations and 4 add
operations for Pair-HMM calculation in each PE. The criti-
cal path consists of 2 adders and 2 multipliers. All the op-
erations are implemented using Altera’s floating-point IPs,
and are fully pipelined. However this adds many cycles of
latency; floating-point multiplication requires 5 cycles while
floating-point addition requires 7 cycles (at an operating fre-
quency of 200MHz). Thus, the overall latency of the critical
path is 24 cycles (on Stratix V). Without careful optimiza-
tions, the initiation interval of each PE will be too large to
provide useful acceleration. We will discuss the techniques
we use to improve the performance of these arithmetic op-
erations in section 4.3.

4.1 PE Array
Figure 6 shows a simplified organization of the PE array,

the core component of the PE ring structure. The figure also
illustrates how various PEs in the design process the DP ma-
trix elements. Our design consists of n basic PEs, where n is
the optimal number of read bases to be processed. As shown
in Figure 6, during any step of processing, the processing el-
ements (PEs) are “placed” (processing) along a diagonal of
the matrix. One may notice that there are no dependen-
cies along such a diagonal (Figure 3), and all the PEs can

+

×

+

×

×

I

jif 1,1 

D

jif 1,1 

dma mma
M

jif 1,1 

prior

M

jif ,

×

+
I

jif ,

×

M

jif ,1

I

jif ,1mia iia

×

+
D

jif ,

×

M

jif 1, 

D

jif 1, mda dda

Figure 5: Arithmetic operations inside PEs

compute at the same time, given the results of computa-
tion of the previous diagonal. After each computation, the
ring moves along the horizontal direction of the matrix to
place itself on the next diagonal parallel to the current one.
Though there are no dependencies among the PEs within
a diagonal, there are dependencies among the neighboring
PEs across consecutive diagonals. There are several data
buses between the neighboring PEs to share intermediate
results to satisfy these dependencies.

Haplotype Bases

R
ead

 B
ases

Untouched elements Elements being computed Completed elements

PE0

PE1

PE2

…

PEn-2

PEn-1

Figure 6: PE array processing the corresponding
matrix elements

Let v(PEi) be the temporary calculation result produced
by the i-th PE in the current clock cycle, and v′(PEi) be
the result produced by the i-th PE at the last clock cycle,
and v′′(PEi) be the result produced by the i-th PE at the
clock cycle before the last clock cycle. Then, based on the
data dependency relationships among the matrix elements
of the forward algorithm, we get the following formula.

v(PEi) = f(v′(PEi), v
′(PEi−1), v

′′(PEi−1)) (6)

where f is a function that summarizes the forward algorithm
recursion (equation (2)). In our design, v(PEi), v′(PEi),
and v′′(PEi) are stored in three sets of registers. The value
of v′(PEi) and v′′(PEi) can be stored for computations
through shift registers. Figure 4 shows the internal registers
in the PEs and the data dependencies among those PEs.

279

Moreover, equation (6) is a general equation that can be
used to describe many dependency patterns. Thus, a similar
hardware structure can be used to accelerate other dynamic
programming algorithms with dependencies that look like
equation 6.

4.2 PE Ring
The PE array structure can be extended to a PE ring-

based organization by connecting the first PE and the last
PE with an internal buffer. The ring-based structure pro-
vides extra flexibility and scalability for the design. Figure 7
demonstrates how we use the PE ring structure to calculate
the values of the forward algorithm matrix.

With the PE ring structure, the first n rows of the forward-
algorithm matrix are calculated first, where n is the number
of instantiated PEs (different from the input read length
and the haplotype length). After the first PE reaches the
last element in the first row, it can continue to process the
(n + 1)th row in the matrix. In the PE ring structure, the
first PE, PE0, and the last PE, PEn−1, are connected to
an internal data buffer. This internal buffer is used to store
the temporary results produced by the last PE, PEn−1, so
that the first PE can use this data when it processes the
new row in the matrix. This way, the design can handle
computations for different sizes of the dynamic programming
matrix irrespective of the number of PEs instantiated in the
design.

In our PE ring implementation, only one of the PEs, the
PE that computes the first element of the first row of the
forward algorithm matrix, (labeled the ”first PE”) takes in
the haplotype bases and quality scores, and the inputs to
all the other PEs come from their neighboring PEs. This
saves a lot of data transfer among a large number of PEs,
and data storage.

PE ring has several advantages over the other organiza-
tions, e.g. the systolic array and the PE array. First of all,
with a ring-based structure, we are able to process matrices
with more rows than the number of instantiated PEs. This
cannot be done with a PE array. The second advantage of
PE ring is that there are at most two intermediate results
produced per PE which are consumed within two cycles by
itself or by neighboring PEs (equation 6). This reduces a
lot of data transfer and data storage overhead in some other
organizations, e.g. systolic arrays. In the case that a m× n
2-dimensional systolic array is used to compute the dynamic
programming algorithm, after each step of calculation, n or
m of intermediate data items are produced and need to be
stored in the local on-chip buffer or external off-chip memory
until the entire matrix computation is complete.

4.3 Optimizations
We adopt several techniques to further improve the hard-

ware described in Sections 4.1 and 4.2.

4.3.1 Shorten critical paths in arithmetic operations
Figure 5 shows the arithmetic operations inside each PE.

The naive implementation of Figure 5 has 24 cycles of la-
tency (based on Altera’s Stratix V floating-point IPs), which
is a big drawback from the point of view of overall latency.
If we analyze the critical path in Figure 5 carefully, we will
find that the operands of the first adder and first 2 multi-
pliers in the critical path (fI

i−1,j−1, f
D
i−1,j−1, and fM

i−1,j−1)
have been ready 2 rounds earlier than the current round.

Haplotype Bases
R

ead
 B

ases

Internal Buffer

(Connects with PE1)

(Connects with PE2)

PE2

…

PEn-2

PEn-1

PE0

PE1

Untouched elements Elements being computed Completed elements

Figure 7: PE ring processing the corresponding ma-
trix elements.

This means that we would be able to start the computation
of the critical path earlier and re-distribute the operations
among PEs. Based on this idea, we move the first adder and
the first two multipliers to the previous PE, and start com-
putation as soon as the operands are ready. After adopting
this scheme, the arithmetic operations within each PE are
shown in Figure 8. Intermediate computation results tai,j
and tbi,j are sent to the next PE in the PE ring. Note that,
compared to Figure 5, the operands’ indices of first adder
and first two multipliers (fM , fI , and fD) have changed,
because they are used to compute ta and tb in advance.

+

×

+

× ×

I

jif 1, 
D

jif 1, 

dma mma M

jif 1,  prior

M

jif ,

×

+
I

jif ,

×

M

jif ,1

I

jif ,1mia iia

×

+
D

jif ,

×

M

jif 1, 

D

jif 1, mda dda

a

jit ,
b

jit ,

a

jit ,1

b

jit ,1

Figure 8: Optimized arithmetic operations inside
PEs

With this optimization, the critical path of arithmetic op-
erations is shortened to have only one adder and one mul-
tiplier with 12 cycles of latency (on Stratix V), while the
overall number of adders and multipliers remains the same.

4.3.2 Pipelining and resource sharing
Note that all the adders and multipliers in the PEs are

fully pipelined and the critical path has the latency of 12
cycles (on Stratix V). During this 12-cycle period, we could
initiate the computation of other matrices corresponding to
another read-haplotype pair. Since the computations of DP
matrices are independent from each other, the PEs could
compute 12 matrices at the same time.

Figure 9 shows an example of computing multiple matri-
ces at the same time with full pipelining. In the different

280

Matrix10[i][j].add.cycle3 Matrix11[i][j].add.cycle3

Matrix9[i][j].add.cycle4

Matrix8[i][j].add.cycle5

Matrix10[i][j].add.cycle4

Matrix9[i][j].add.cycle5

Matrix5[i][j].multiply.cycle1

Matrix4[i][j].multiply.cycle2

Matrix3[i][j].multiply.cycle3

Matrix7[i][j].add.cycle6

Matrix6[i][j].add.cycle7

Matrix6[i][j].multiply.cycle1

Matrix5[i][j].multiply.cycle2

Matrix4[i][j].multiply.cycle3

Matrix8[i][j].add.cycle6

Matrix7[i][j].add.cycle7
+

×

prior

M
jif ,

a
jit ,1−

b
jit ,1−

Add and multiply with
12 cycle latency

Clock cycle k Clock cycle k+1

Matrix2[i][j].multiply.cycle4

Matrix1[i][j].multiply.cycle5

Matrix3[i][j].multiply.cycle4

Matrix2[i][j].multiply.cycle5

Matrix12[i][j].add.cycle1

Matrix11[i][j].add.cycle2

Matrix13[i][j].add.cycle1

Matrix12[i][j].add.cycle2

Figure 9: Example of pipelining inside ith PE

pipeline stages of the arithmetic operators, operands from
different matrices are used to do the computation.

4.3.3 Tuning PE ring size and number of PE rings
Another property that can be used to tune the design is

the size of the PE rings, i.e., the number of PEs in a single
PE ring. If the number of PEs in the PE ring is small, we
can place a larger number of PE rings inside the FPGA chip.

Having smaller, but many PE rings could have some po-
tential benefits. First of all, with multiple PE rings, multiple
matrices can be processed at the same time. It is to be noted
that this parallelism is different from that described in sec-
tion 4.3.2. The parallelism utilized with multiple PE rings
is more coarse-grained. Second, a smaller PE ring will po-
tentially have lesser number of idle PEs during the first and
the last few cycles of processing a matrix.

Working PEs Idle PEs

(a)

(b) Internal Buffer

Internal Buffer

Figure 10: Idle PEs at the beginning of processing
and depth of internal buffer when using (a) long PE
ring; (b) shorter PE ring

Note that there are idle PEs for a small number of cycles
at the beginning of matrix computations or at the last few
rounds (when the number of remaining rows is smaller than
the number of PEs in the ring). This also means that there
are no idle PEs when processing the middle rows of the DP
matrix since the PEs that finish the computation of a row
will move to uncomputed rows below.

Figure 10 illustrates the idle PEs when the PE ring is
processing the DP matrix during the first few cycles. The
parallel diagonal lines represent the positions of PE ring at
consecutive cycles. The PE ring starts from the top right
corner, and moves to the left. Comparing (a) and (b) in Fig-
ure 10, we can see that if the PE ring is shorter, there will
be less idle PEs during processing. Considering the fact that
while using shorter PE rings, we can place more PE rings
on the FPGA; we can also compare the idle #PE ×#cycle
product for the whole FPGA design. Figure 11 shows one
intuitive way to do the comparison. In the figure, the area
of triangles represents the idle #PE ×#cycle product. As-
suming that the maximum total number of PEs that can be
placed into an FPGA chip is a constant, i.e. if #PE×#ring
is a constant, then we can see that the idle #PE ×#cycle
product of a single longer PE ring is a single big triangle,
while the sum of idle #PE ×#cycle product of the shorter
PE rings are several smaller triangles. Comparing the areas
of two set of triangles, we could see that the configuration
of shorter PE rings has less idle PEs in general.

We could also count the number of idle PEs directly. Let
M be the total number of PEs that can be placed in the
FPGA, i.e. the length of a PE ring when we try to deploy a
single large PE ring on thee FPGA. Let M = kN , where N
is the length of smaller PE rings, and there are k PE rings.
Then, for the single PE ring case, the number of idle PEs
are

M−1∑
i=1

i =
1

2
M(M − 1). (7)

For the smaller PE ring case, the number of idle PEs are

k

N−1∑
i=1

i =
k

2
N(N − 1) =

1

2
M(N − 1). (8)

Thus a design with multiple smaller PE rings only has
N−1
M−1

of the idle PEs of the design with a single long PE
ring.

(a) (b)

PE0

PE1

PE2

Figure 11: Comparing #idle PEs × #idle cycles
when using (a) one single longer PE ring; (b) mul-
tiple shorter PE rings

Then, consider idle PEs while processing the last few rows
of the DP matrix. Figure 12 illustrates this case. This case

281

of idle PEs happens when the number of matrix’s rows could
not be divided exactly by the number of PEs. This is com-
mon because the number of matrix’s rows, which is the read
sequence’s length could be an arbitrary positive integer. If
we assume the distribution of read sequence’s length is uni-
form, then any number of idle PEs could happen with the
same probability, giving a mean value of half of the PE ring
length. This means the number of idle PEs is proportional
to the length of PE rings. If the total number of PEs is
a constant, then the total numbers of idle PEs for differ-
ent configurations are similar. Based on this analysis, using
shorter PE rings would not reduce the number of idle PEs
during the computation of the final rows of the DP matrix.
Figure 12(b) shows only the processing steps of one of the n
short PE rings.

Working PEs Idle PEs

(a)

(b)

 n

Figure 12: Idle PEs at the last stage of processing
when using (a) one single long PE ring; (b) n short
PE rings (showing only one of n PE rings in the
figure)

Even though using shorter PE rings could reduce the num-
ber of idle PEs at the beginning of processing, using shorter
PE rings could also have some disadvantages. While using a
shorter PE ring, the internal buffer needs to be larger. This
is because there will be more intermediate results produced
before the next iteration on columns starts. That will sig-
nificantly increases memory block utilization. This point is
also illustrated in Figure 10. Besides, too many small PE
rings will lead to potential memory port contention, because
each PE ring will need to fetch data in every clock cycle.

4.3.4 Floating-point operator implementation
All the floating-point addition and multiplication opera-

tors are built with Altera’s floating-point IPs. Those arith-
metic IPs could be instantiated and mapped to either DSP
blocks or logic elements in FPGA. Both two mappings give

operators with the exact same functionality. However, the
amount of available logic resource and DSP resource could
be different on a target FPGA, thus the ratio of IPs mapped
to logic elements and that mapped to the DSPs should be
carefully tuned to achieve maximum resource utilization in
the FPGA chip. In our implementation, we calculate the
maximum number of operators that can be implemented
using logic elements and with DSPs. Based on this calcula-
tion, we figure out the best ratio of number of IPs mapped
to logic and of those mapped to DSP. In our final design
for Stratix V FPGA, we utilize 83% of the logic elements
and 75% of DSP blocks. Generally, when considering the
mapping of IPs, given a fixed target frequency, the latency
in terms of cycles could be less important than resource uti-
lization. This is because when all the operators are fully
pipelined, we may be able to almost completely hide the
effects of latency by feeding in new data to occupy the dif-
ferent pipeline stages of the operators, as shown in Figure
9.

This type of tuning of the IP implementation becomes
even more important if there are multiple mapping choices,
multiple latency options and multiple frequency choices. In
our case, there aren’t many options, thus manual tuning
works good enough. If the number of options grows, this
could become an interesting design space exploration prob-
lem.

5. EXPERIMENTAL RESULTS

5.1 Test Data and Target FPGAs
The test data comes from a Whole Genome Sequence

(WGS) dataset available at [24] that represents Pair-HMM
inputs generated by HaplotypeCaller from GATK version
2.7. The benchmark consists of individual datasets each hav-
ing different haplotype sizes and input read lengths. Each
dataset contains testcases consisting of read and haplotype
pairs of lengths varying from 10 to 302 bases.

To fully analyze the performance and resource utilization
of our implementation, we synthesize our design targeting
two FPGAs, Altera’s Stratix V FPGA (5SGXEA7N2F45C2),
which is the FPGA on Terasic’s DE5-Net experiment board,
and the new Arria 10 FPGA (10AX115H1F34E1SG). Al-
tera’s Stratix V is built with 28nm process technology, and
it is one of Altera’s high-end FPGAs. Altera’s new Arria 10
FPGA uses 20nm process technology, and it has more logic
and DSP resources. Besides, the Arria 10 FPGA has hard
floating-point elements, which makes floating-point compu-
tations more efficient. We collect the performance data of
our design by running simulations of our design.

5.2 Performance

5.2.1 Compared with Other Implementations
We compare our performance data with that of other

representative implementations [19], including CPU, GPU,
multi-cores, and FPGAs. The comparison shows that our
implementation is faster than other reported implementa-
tions.

Table 3 compares the performance of our implementation
versus a few others. The performance data for CPU and
GPU platforms are reported in [19]. The dataset used is
the “10s” dataset available along with the original Java im-
plementation in GATK. We present our results with this

282

Table 3: Performance comparison across various im-
plementations

Platform Runtime(ms) Speedup
Java on CPU 10800 1×
C++ Baseline 1267 9×

Intel Xeon AVX Single Core 138 78×
NVidia K40 GPU 70 154×
Intel Xeon 24 Cores 15 720×

Altera OpenCL (Stratix V) 8.3 1301×
PE Ring (Stratix V) 5.3 2038×

Altera OpenCL (Arria 10) 2.8 3857×
PE Ring (Arria 10) 2.6 4154×

dataset because this allows us to compare to other imple-
mentations. We also run the experiments using larger datasets,
and significant speedup is also achieved for larger datasets.
The execution time on other datasets is listed in Figure 13.

Our performance data in the table is based on 8 PEs/ring
× 8 rings configuration on the Stratix V FPGA, and 8
PEs/ring × 16 rings configuration on the Arria 10 FPGA.
Our performance numbers are based on the overall FPGA
frequency of 200MHz. Our FPGA synthesis targets have the
same number of logic elements and DSP blocks as that of
Altera’s OpenCL implementation [23].

Prior to our work, the state-of-the-art implementation has
been Altera’s OpenCL implementation of the Pair-HMM
on FPGA. These performance results come from Altera’s
whitepaper [23]. As shown in the table, on Stratix V, our PE
ring design could achieve 1.56× further speedup compared
with Altera’s implementation. On Arria 10, our design is
7.7% faster than Altera’s implementation. The speedup
from our Arria 10 implementation is smaller because our
implementation contains 128 PEs while Altera’s implemen-
tation has 208 PEs. In comparison to other platforms, our
proposed PE ring design for Arria 10 could achieve 5.77×
speedup over Intel Xeon 24 core AVX implementation, 26.92×
speedup over K40 GPU implementation, and more than
4000× speedup over the original Java implementation.

5.2.2 Impact of PE Ring size
Based on our synthesis results, Altera Stratix V FPGA

can accommodate a single PE ring consisting of 64 PEs or
multiple rings of shorter lengths. For example, 8 PE rings
each consisting of 8 PEs can be put into the Stratix V FPGA.
We synthesize designs with various lengths and numbers of
PE rings, and run simulations to get performance data.

Figure 13 shows the normalized execution time on three
datasets when the PE ring sizes are varied keeping the total
number of PEs constant. The figure legend “m× n” stands
for the configuration of m PEs/ring × n rings. As discussed
in section 4.3.3, using multiple smaller PE rings could reduce
the total number of idle PEs during the processing. Figure
13 supports this observation.

Note that we do not further reduce the size of the PE
rings below 8 PEs/ring. There are two reasons. First of
all, too many small PE rings will lead to potential memory
port contention, because each PE ring needs to read input
data every clock cycle. Second, multiple smaller PE rings
require more and larger internal buffers, which significantly
increases memory block utilization.

0.06ms

5.26ms 35.79ms

0.07ms

5.75ms 39.16ms
0.14ms

6.93ms 47.51ms

0.28ms 9.99ms 69.42ms

0

0.2

0.4

0.6

0.8

1

1.2

tiny 10s 1m

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

8x8

16x4

32x2

64x1

Matrix Size: 10~41 10~30210~263
#Pair-HMM Runs: 332 293073550

Dataset:

Figure 13: Normalized execution time on three
datasets when using different sizes of PE rings
(Stratix V). “m × n” stands for the configuration of
m PEs/ring × n rings.

5.2.3 Implementation on Stratix V and Arria 10
To explore performance trends with more PEs and hard

floating-point IP blocks, we synthesize our design targeting
Altera’s Arria 10 FPGA as well. Arria 10 FPGA has hard
floating-point elements that shorten the latency of floating
operations. On Arria 10, the latencies of single precision
floating-point addition and multiplication are both only 3
cycles when using hard floating-point elements. Besides, the
amount of logic resources available on the Arria 10 FPGA is
more than what is available on Stratix V. The Arria 10 syn-
thesis target has 427,200 Adaptive Logic Modules (ALM),
while the Stratix V target has 234,720 ALMs. Also, Arria 10
has 1,518 DSP blocks, while Stratix V has 256 DSP blocks.
Arria 10 FPGA is able to accommodate 128 PEs, and the
total latency of arithmetic operations in each PE is only 6
cycles, while the Stratix V FPGA can accommodate 64 PEs,
and the total latency of arithmetic operations in each PE is
12 cycles.

Table 4: Synthesis Results for both target FPGAs
FPGA #PEs Fmax Logic DSP

Stratix V 64 200.16 MHz 83% 75%
Arria 10 128 230.73 MHz 4% 93%

Table 4 shows the maximum number of PEs, maximum
frequency, and resource utilization for the two implemen-
tations. We observed that our design on Arria 10 is able
to achieve a higher frequency. However, the implementa-
tion on Arria 10 utilizes almost all the DSP resources while
utilizing a very small percentage of logic elements. This is
because the synthesis tool (Altera Quartus Prime) maps all
the floating-point IPs for Arria 10 to DSP blocks. If those
floating-point operators could be mapped to the logic ele-
ments, the Arria 10 FPGA will be able to fit in much more
PEs, and thus gain further speedup. In the Stratix V case,
the resource utilization is more balanced, as a fraction of the
operations are also mapped to the logic elements.

6. CONCLUSION
Pair-HMM forward algorithm computation is a major bot-

tleneck in several DNA sequence analysis flows. Essentially,
the Pair-HMM’s forward algorithm is a complicated floating-

283

point number based dynamic programming algorithm with
a high computational complexity. The forward algorithm
involves the computation of three matrices while respect-
ing data dependencies among the matrix elements, and it
involves a series of floating-point add and multiply oper-
ations. In this work, we propose an efficient and flexible
ring-based hardware implementation of the Pair-HMM for-
ward algorithm, as well as several optimization techniques
to further boost the performance of the PE ring structure.
Our ring-based design achieves a significant speed-up of up
to 487× compared to the C++ baseline implementation on
CPU, and up to 1.56× further speedup compared to the
published best hardware implementation. In our design, the
ring structure exhibits its unique advantages of flexibility
allowing trade-offs between coarse and fine-grained paral-
lelism, and reduced data transfers between the hardware
kernel and memory components. We also analyze at depth,
the details of how dynamic programming calculations im-
plemented on hardware could benefit from varying PE ring
size. The proposed design could be configured as multiple
shorter PE rings, which has less idle PEs during computa-
tion. This configuration could be adjusted accordingly based
on the resources available on the specific FPGA.

Acknowledgment
This work is partially supported by IBM Faculty Award and
C-FAR, one of the six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and
DARPA.

7. REFERENCES
[1] Temple F Smith and Michael S Waterman.

Identification of common molecular subsequences.
Journal of molecular biology, 147(1):195–197, 1981.

[2] Saul B Needleman and Christian D Wunsch. A general
method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of
molecular biology, 48(3):443–453, 1970.

[3] Stephen F Altschul, Warren Gish, Webb Miller,
Eugene W Myers, and David J Lipman. Basic local
alignment search tool. Journal of molecular biology,
215(3):403–410, 1990.

[4] Heng Li, Jue Ruan, and Richard Durbin. Mapping
short dna sequencing reads and calling variants using
mapping quality scores. Genome research,
18(11):1851–1858, 2008.

[5] Yun Heo, Xiao-Long Wu, Deming Chen, Jian Ma, and
Wen-Mei Hwu. Bless: bloom filter-based error
correction solution for high-throughput sequencing
reads. Bioinformatics, page btu030, 2014.

[6] Wei-Chun Kao, Andrew H Chan, and Yun S Song.
Echo: a reference-free short-read error correction
algorithm. Genome research, 21(7):1181–1192, 2011.

[7] Lucian Ilie, Farideh Fazayeli, and Silvana Ilie. Hitec:
accurate error correction in high-throughput
sequencing data. Bioinformatics, 27(3):295–302, 2011.

[8] Qingguo Wang, Peilin Jia, Fei Li, Haiquan Chen,
Hongbin Ji, Donald Hucks, Kimberly Brown Dahlman,
William Pao, and Zhongming Zhao. Detecting somatic
point mutations in cancer genome sequencing data: a
comparison of mutation callers. Genome medicine,
5(10):1, 2013.

[9] Michael C Schatz, Cole Trapnell, Arthur L Delcher,
and Amitabh Varshney. High-throughput sequence
alignment using graphics processing units. BMC
bioinformatics, 8(1):474, 2007.

[10] Chi-Man Liu, Thomas Wong, Edward Wu, Ruibang
Luo, Siu-Ming Yiu, Yingrui Li, Bingqiang Wang,
Chang Yu, Xiaowen Chu, Kaiyong Zhao, et al. Soap3:
ultra-fast gpu-based parallel alignment tool for short
reads. Bioinformatics, 28(6):878–879, 2012.

[11] Isaac TS Li, Warren Shum, and Kevin Truong.
160-fold acceleration of the smith-waterman algorithm
using a field programmable gate array (fpga). BMC
bioinformatics, 8(1):1, 2007.

[12] Anand Ramachandran, Yun Heo, Wen-mei Hwu, Jian
Ma, and Deming Chen. Fpga accelerated dna error
correction. In Proceedings of the 2015 Design,
Automation & Test in Europe Conference &
Exhibition, pages 1371–1376. EDA Consortium, 2015.

[13] Broad Institute. Haplotypecaller overview. https://
www.broadinstitute.org/gatk/guide/article?id=4148.

[14] Aaron McKenna, Matthew Hanna, Eric Banks,
Andrey Sivachenko, Kristian Cibulskis, Andrew
Kernytsky, Kiran Garimella, David Altshuler, Stacey
Gabriel, Mark Daly, et al. The genome analysis
toolkit: a mapreduce framework for analyzing
next-generation dna sequencing data. Genome
research, 20(9):1297–1303, 2010.

[15] Richard Durbin, Sean R Eddy, Anders Krogh, and
Graeme Mitchison. Biological sequence analysis:
probabilistic models of proteins and nucleic acids.
Cambridge university press, 1998.

[16] Byung-Jun Yoon. Hidden markov models and their
applications in biological sequence analysis. Current
genomics, 10(6):402–415, 2009.

[17] Chuong B Do, Mahathi SP Mahabhashyam, Michael
Brudno, and Serafim Batzoglou. Probcons:
Probabilistic consistency-based multiple sequence
alignment. Genome research, 15(2):330–340, 2005.

[18] William H Majoros, Mihaela Pertea, and Steven L
Salzberg. Efficient implementation of a generalized
pair hidden markov model for comparative gene
finding. Bioinformatics, 21(9):1782–1788, 2005.

[19] Broad Institute. Accelerating variant calling, 2013.

[20] Sean O Settle. High-performance dynamic
programming on fpgas with opencl. In Proc. IEEE
High Perform. Extreme Comput. Conf.(HPEC), pages
1–6, 2013.

[21] Zilong Wang, Sitao Huang, Lanjun Wang, Hao Li,
Yu Wang, and Huazhong Yang. Accelerating
subsequence similarity search based on dynamic time
warping distance with fpga. In Proceedings of the
ACM/SIGDA international symposium on Field
programmable gate arrays, pages 53–62. ACM, 2013.

[22] Advait Madhavan, Timothy Sherwood, and Dmitri
Strukov. Race logic: A hardware acceleration for
dynamic programming algorithms. In ACM/IEEE
41st International Symposium on Computer
Architecture (ISCA), pages 517–528. IEEE, 2014.

[23] Altera. Accelerating genomics research with opencl
and fpgas, 2016.

[24] Pair-hmm test data. https://github.com/
MauricioCarneiro/PairHMM/tree/master/test data.

284

https://www.broadinstitute.org/gatk/guide/article?id=4148
https://www.broadinstitute.org/gatk/guide/article?id=4148
https://github.com/MauricioCarneiro/PairHMM/tree/master/test_data
https://github.com/MauricioCarneiro/PairHMM/tree/master/test_data

	Introduction
	Related Work
	Forward Algorithm
	Design and Implementation
	PE Array
	PE Ring
	Optimizations
	Shorten critical paths in arithmetic operations
	Pipelining and resource sharing
	Tuning PE ring size and number of PE rings
	Floating-point operator implementation

	Experimental Results
	Test Data and Target FPGAs
	Performance
	Compared with Other Implementations
	Impact of PE Ring size
	Implementation on Stratix V and Arria 10

	Conclusion
	References

