
Efficient Kernel Synthesis for
Performance Portable Programming

Li-Wen Chang∗, Izzat El Hajj∗, Christopher Rodrigues†, Juan Gómez-Luna‡ and Wen-mei Hwu∗
∗University of Illinois at Urbana-Champaign

†Huawei America Research Lab
‡Universidad de Córdoba

{lchang20, elhajj2}@illinois.edu, christopher.rodrigues@huawei.com, el1goluj@uco.es, w-hwu@illinois.edu

Abstract—The diversity of microarchitecture designs in hetero-
geneous computing systems allows programs to achieve high per-
formance and energy efficiency, but results in substantial software
re-development cost for each type or generation of hardware. To
mitigate this cost, a performance portable programming system
is required.

One fundamental difference between architectures that makes
performance portability challenging is the hierarchical organi-
zation of their computing elements. To address this challenge,
we introduce TANGRAM, a kernel synthesis framework that
composes architecture-neutral computations and composition
rules into high-performance kernels customized for different
architectural hierarchies.

TANGRAM is based on an extensible architectural model that
can be used to specify a variety of architectures. This model is
coupled with a generic design space exploration and composition
algorithm that can generate multiple composition plans for any
specified architecture. A custom code generator then compiles
these plans for the target architecture while performing various
optimizations such as data placement and tuning.

We show that code synthesized by TANGRAM for different
types and generations of devices achieves no less than 70% of the
performance of highly optimized vendor libraries such as Intel
MKL and NVIDIA CUBLAS/CUSPARSE.

I. INTRODUCTION

Heterogeneity is becoming ubiquitous in modern computing
systems, ranging from low-power mobile devices to high-
performance supercomputers. Ideally, applications for hetero-
geneous systems should exhibit performance portability. That
is, they should achieve high performance on different device
architectures and on existing and future generations without
software re-development.

Various techniques have been developed in portability-
focused tools to automatically apply architecture-specific op-
timizations to architecture-neutral code. OpenCL compilers
apply varying levels of coarsening [1], [2], [3], [4], [5] and
locality-centric scheduling [5] to achieve good performance for
data-parallel workloads on CPU architectures. Data placement
tools [6], [7] automatically assign data structures to the most
suitable type of memory depending on the characteristics
of the memory subsystem. Autotuning [8], [9], [10], [11]
finds optimal parameter settings to adapt programs to resource
constraints that vary across architectures such as cache sizes
and occupancy.

These portability techniques can be very effective, but they
are often limited by the fact that their source languages
assume some particular architectural hierarchy. For example,
OpenCL dictates a fixed hierarchical arrangement (work-items
and work-groups). Using more (or fewer) levels with OpenCL
is laborious for the programmer and hard for the compiler. For
this reason, we propose an architecture-neutral programming
model that is oblivious to the hierarchy of target architec-
tures. In this model, programmers write computations and
composition rules which are then synthesized by our generic
composition framework into architecture-specific composition
plans based on a device specification.

While programming based on composition rules has been
proposed by other languages [12], [13], [14], it has often
been focused on algorithmic choice, adaptation to varying
input characteristics, or even adaptation to architectural hi-
erarchies. Existing methodologies mainly relied on the high-
quality implementation of base rules, like calling existing
high-performance libraries internally. Unlike those existing
methodologies, we take advantage of this programming model
to explore the design space of architectural optimizations for
code synthesis, by assigning computations to different levels
of the architectural hierarchy based on the computational
capabilities at each level.

In this paper, we present the design, implementation, and
evaluation of TANGRAM, a kernel synthesis framework that
generates highly optimized architecture-specific kernels from
generic and reusable code fragments. At the core of TAN-
GRAM’s approach is an extensible architectural model that
can be used to specify a variety of architectures. The TAN-
GRAM language allows users to express architecture-neutral
computations and composition rules in terms of composable,
interchangeable, and tunable building blocks called codelets.
Then, for any specified architecture, TANGRAM’s generic
composition algorithm explores the design space to generate
multiple composition plans while pruning the search. Each
composition plan can then be compiled to the target archi-
tecture by an architecture-specific code generator that applies
various optimizations such as data placement and parameter
tuning.

Figure 1 shows the flow of TANGRAM framework and
also the organization of this paper. We make the following
contributions:978-1-5090-3508-3/16/$31.00 c© 2016 IEEE

TANGRAM	Lang.	
Codelets	

Program	
Composi,on	

Rules	

Rule	Extrac,on	

Architectural	
Hierarchy	Model		

Specialized	
Composi,on	

Rules	

Rule	
Specializa,on	

Composi,on	
Plans	

Composi,on	

Kernel	
Versions	

Device-specific	
Codegen	

Section II

Section III Section IV Section V

Fig. 1. Organization of the TANGRAM Framework

• We present a programming language (Section II) that sup-
ports specification of architecture-neutral computations
and composition rules.

• We define a simple architectural hierarchy model that can
be used to specify different architectures with different
hierarchical organizations, and show how this model
is useful in generating architecture-specific composition
rules from our architecture-neutral language (Section III).

• We design a generic composition algorithm (Section IV)
that can be used to compose architecture-specific kernels
based on our abstractions.

• We implement a holistic kernel synthesis framework that
leverages our generic composition algorithm, and couples
it with other portability techniques during code generation
and optimization (Section V) such as data placement and
tuning, to synthesize highly optimized processor-specific
kernels.

• We demonstrate that kernels synthesized from the same
description achieve 70% performance (in the worst ob-
served case) to multiple times performance compared to
vendor hand-tuned data-parallel libraries (Section VI).

II. TANGRAM LANGUAGE

A. Language Design

The TANGRAM language is designed with the following
objectives:

1) Express equivalent computations interchangeably to ex-
pose algorithmic choice

2) Express compositions and computations interchangeably
to enable variable levels of composition that best fit the
device level specifications of the architectural hierarchy
model

3) Express data parallelism
4) Ease the analysis of data flow and memory access

patterns and the transformation of memory accessing
logic

5) Provide tuning knobs
The programming model is built around spectrums and

codelets. A spectrum represents a unique computation with
a defined set of inputs, outputs, and side effects. A codelet
represents a specific implementation of a spectrum. A spec-
trum can have many codelets that implement it. These codelets
all have the same name and function signature, but can be
implemented using different algorithms or the same algorithm
with different optimization techniques. The interchangeability
of the codelets in a spectrum serves Objective 1.

Codelets are classified into compound and atomic codelets.
Compound codelets compose work by invoking primitives
and other spectrums (including their own). Atomic codelets
are self-contained: they compute without further decompos-
ing work or invoking other spectrums. The interchangeabil-
ity of compound and atomic codelets serves Objective 2.
Atomic codelets are classified into autonomous and coop-
erative codelets. Computations in autonomous codelets are
oblivious to other lanes in the same data parallel computation,
whereas computations in cooperative codelets can explicitly
exchange data with other lanes.

The TANGRAM language is an extension of C++ summa-
rized in Table I. The __codelet qualifier is used to designate
function declarations as spectrums and function definitions as
codelets. The __coop qualifier labels cooperative codelets
and the __shared qualifier labels data structures that are
shared by all lanes of a cooperative codelet.1 The __tag
qualifier is optional and used to distinguish different codelets
with the same function signature in debugging. The __env
qualifier enables the user to write device-specific codelets. It
is not intended as the main usage model but is included for
completeness. The results we report do not use this feature,
but we provide users with the option of using it if they wish
(particularly if they want to write device-specific intrinsics or
assembly).

The language comes with several built-in primitives. A map
primitive is used to express data parallelism by applying a
codelet to all elements of a data container, serving Objective
3. The partition primitive is used to express the pattern
used for data partitioning. The three sequence primitives
are used as arguments to partition to express different
patterns. These primitives along with the Array container and
the __mutable qualifier are used to facilitate memory access
and data flow analysis serving Objective 4. The __tunable
qualifier labels parameters that the compiler can tune serving
Objective 5.

B. Codelet Examples

Figure 2 shows an example of four codelets implement-
ing a spectrum for computing a summation. All codelets
have the same function signature and are marked with the
__codelet qualifier. Figure 2(a) shows an atomic au-
tonomous codelet where each lane performs the summation
sequentially. Figure 2(b) shows an atomic cooperative codelet
with the __coop qualifier that performs a tree-based summa-
tion among lanes of parallel execution. The codelet contains
multiple variables and arrays that are shared across the lanes
and are marked with the __shared qualifier. Special func-
tions coopIdx() and coopDim() are used to obtain the
lane ID and the width of the cooperative codelet respectively.

Figures 2(c) and 2(d) show compound codelets using dif-
ferent tiling strategies. They both contain a tunable variable p
that controls the number of partitions in the recursive call. In

1The __shared qualifier is different from the shared memory in CUDA.
The data structure can be placed in global memory, shared memory in CUDA,
or registers with shuffle instructions in SSE/AVX/CUDA.

Q
ua

lifi
er

s

codelet Designates that a function declaration is a spectrum, or a function definition is a codelet
coop Designates that a codelet is a cooperative codelet
tag Designates the codelet’s tag (optional, useful for debugging)
env If a codelet is specific to a particular device(s), designates which device(s)
mutable Designates that a variable or container is mutable (everything is immutable by default)
tunable Designates that a variable can be tuned
shared Designates that a variable is shared across lanes of a cooperative codelet (for cooperative codelets only)

Pr
im

iti
ve

s map(f, c) Returns a container where each element results from applying spectrum f to each element in container c
partition(c, n, start, inc, end) Returns n sub-containers ci of c where ci goes from start[i] to end[i] with increment inc[i]
sequence(a) Returns an integer sequence of the value of a (argument to partition)
sequence(start, inc, end) Returns a sequence of integers from start to end with increment inc (argument to partition)
sequence(c, start, inc, end) Returns a sequence of integers from values of c at indexes start to end with increment inc (arg. to partition)
Array<n, type> A n-dimensional container of values of type type

TABLE I
QUALIFIERS, PRIMITIVES, AND CONTAINERS OF THE TANGRAM LANGUAGE

__codelet		
int	sum(const	Array<1,int>	in)	{	
		unsigned	len	=	in.size();	
		int	accum	=	0;	
		for(unsigned	i=0;	i	<	len;	++i)	{	
				accum	+=	in[i];	
		}	
		return	accum;	
}	 (a) Atomic autonomous codelet

__codelet		__tag(asso_tiled)		
int	sum(const	Array<1,int>	in)	{	
		__tunable	unsigned	p;	
		unsigned	len	=	in.size();	
		unsigned	tile	=	(len+p-1)/p;	
		return	sum(map(sum,	partition(in,	
						p,sequence(0,tile,len),sequence(1),sequence(tile,tile,len+1))));	
}	

__codelet	__coop	__tag(kog)	
int	sum(const	Array<1,int>	in)	{	
		__shared	int	tmp[coopDim()];									
		unsigned	len	=	in.size();	
		unsigned	id	=	coopIdx();	
		tmp[id]	=	(id	<	len)?	in[id]	:	0;	
		for(unsigned	s=1;	s<coopDim();	s	*=	2)	{	
				if(id	>=	s)	
						tmp[id]	+=	tmp[id	-	s];	
		}	
		return	tmp[coopDim()-1];	
}	

(b) Atomic cooperative codelet

(c) Compound codelet using adjacent tiling

(d) Compound codelet using strided tiling

__codelet	__tag(stride_tiled)		
int	sum(const	Array<1,int>	in)	{	
		__tunable	unsigned	p;	
		unsigned	len	=	in.size();	
		unsigned	tile	=	(len+p-1)/p;	
		return	sum(map(sum,	partition(in,		
						p,sequence(0,1,p),sequence(p),sequence((p-1)*tile,1,len+1))));	
}	

Fig. 2. Codelet examples for sum spectrum

Figure 2(c), the array is partitioned into adjacent contiguous
tiles that start tile elements apart and have an internal stride
of one. Such a partitioning is suitable for distributing data to
workers with different caches such as different CPU threads or
GPU thread blocks. In Figure 2(d), the array is partitioned into
interleaved tiles that are staggered to start one element apart
and have an internal stride of p. Such a partitioning is suitable
for distributing data to workers that execute together and in
the same cache such as CPU vector lanes or GPU threads.

Each codelet is intended to represent a fundamentally
different algorithm or composition. Thus, it is unlikely that
there will be more than a handful of atomic codelets in each
spectrum. We do not expect the number of codelets to increase
significantly over the lifetime of the code base.

III. FROM ARCHITECTURAL HIERARCHY MODEL TO
COMPOSITION RULES

This section defines our architectural hierarchy model and
abstract composition rules (Section III-A), and shows how
these abstractions are used to extract program composition
rules from codelets (Section III-B). It then describes how
architectures are specified using our model and how the

composition rules are specialized for different architectures
(Section III-C).

A. Architectural Hierarchy Model and Abstract Rules

TANGRAM’s approach builds on the observation that a
key differentiating factor between devices is their architectural
hierarchy. Different devices come with different architectural
levels. For example, CPUs may be modeled as two-level
devices (process, thread)2 while GPUs may be modeled as
three-level devices (grid, block, thread).

Each architectural level may have the ability to execute
scalar or vector code. Such a computational capability is
represented by C in Figure 3. Furthermore, each level of
the hierarchy having a level beneath it has the capability to
synchronize across the elements of that level. For example,
a process can undergo barrier synchronization among all its
threads. The subordinate level and synchronization capability
are denoted by (`, S).

2The CPU SIMD unit is omitted for brevity and clarity, but discussed later
in Section III-C3.

Architectural	Hierarchy	Model:	
L 	:= 	CL	,	(ℓL	,	SL) 	 	 	L 	 	 	: 	level	

	 	 	 	 	 	 	 	C 	 	 	: 	computa-onal	capability	(possible	values:	SE	–	scalar	execu-on,	VE	–	vector	execu-on)	
	 	 	 	 	 	 	 		(ℓ	,	S) 	: 	(subordinate	level	,	capability	to	synchronize	subordinate	level)	

	

Abstract	Composi7on	Rules:	
Select: 	 	compose(s	,	L) 	 	 	 	 	→ 	 	compose(c	,	L) 	 	 	 	 	 	 	 	//	s	:	spectrum,	c	:	codelet	of	spectrum	s	
Compute: 	compose(c,	L) 	 	 	 	 	→ 	 	compute(c	,	CL) 	 	 	 	 	 	 	 	//	c	:	atomic	codelet	
Devolve: 	 	compose(s,	L) 	 	 	 	 	→ 	 	SL	,	devolve(ℓL)	,	compose(s,	ℓL) 	 	 	//	s	:	spectrum	
Cascade: 	 	compose(f(g(…),	L) 	 	 	 	→ 	 	compose(g(…),	L)	,	compose(f(…),	L)	 	//	f,	g	:	primi-ves	or	spectrum	invoca-ons	
Regroup:	 	compose(par>>on(…,	p),	L) 	→ 	 	SL	,	regroup(p,	L) 	 	 	 	 	 	 	//	p	:	a	par--oning	scheme	
Distribute: 	compose(map(s,	…),	L)	 	 	→ 	 	distribute(ℓL)	,	compose(s,	ℓL) 	 	 	//	s	:	spectrum	

Fig. 3. Architectural Hierarchy Model and Abstract Composition Rules

Program	Composi,on	Rules:	(for	the	sum	example)	
Rule	1:	 	compose(sum	,	L)		 	→ 	 	SL	,	devolve(ℓL)	,	compose(sum,	ℓL)	 	 	 	 	 	 	 	 	 	 	 	 	//	Derived	from	Devolve	
Rule	2:	 	compose(sum	,	L)		 	→ 	 	compute(ca	,	SEL) 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	//	Derived	from	codelet	a	(ca)	
Rule	3:	 	compose(sum	,	L)		 	→ 	 	compute	(cb	,	VEL) 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	//	Derived	from	codelet	b	(cb)	
Rule	4:	 	compose(sum	,	L)		 	→ 	 	SL	,	regroup(pc	,	L)	,	distribute(ℓL)	,	compose(sum,	ℓL)	,	compose(sum,	L)	 	 	//	Derived	from	codelet	c	(cc)	
Rule	5:	 	compose(sum	,	L)		 	→ 	 	SL	,	regroup(pd	,	L)	,	distribute(ℓL)	,	compose(sum,	ℓL)	,	compose(sum,	L)	 	 	//	Derived	from	codelet	d	(cd)	
	

Example	for	Deriving	Composi,on	Rules	from	Compound	Codelets:	(using	codelet	c	as	an	example)	
compose(sum	,	L)		 	→ 	 	compose(cc	,	L) 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	//	Rule:	Select	

	 	 	 	 	 	→ 	 	compose(sum(map(sum,	par::on(…,	pc))),	L) 	 	 	 	 	 	 	 	 	 	 	 	//	Expand	cc	
	 	 	 	 	 	→ 	 	compose(map(sum,	par::on(…,	pc))	,	L)	,	compose(sum,	L)	 	 	 	 	 	 	 	 	//	Rule:	Cascade	
	 	 	 	 	 	→ 	 	compose(par::on(…,	pc)	,	L)	,	compose(map(sum,	…)	,	L)	,	compose(sum	,	L)	 	 	 	//	Rule:	Cascade	
	 	 	 	 	 	→ 	 	SL	,	regroup(pc	,	L)	,	distribute(ℓL)	,	compose(sum,	ℓL)	,	compose(sum,	L) 	 	 	 	 	//	Rules:	Regroup,	Distribute	

Fig. 4. Extracted Spectrum Composition Rules

Based on this architectural hierarchy model, we define six
abstract composition rules that are used to extract program
composition rules from the codelets:

1) Select: A spectrum is composed at a level by selecting a
codelet of that spectrum and composing it at that level.

2) Compute: An atomic codelet is composed at a level by
assigning that atomic codelet to that level’s computa-
tional capability (if possible).

3) Devolve: A spectrum is composed at a level by synchro-
nizing then delegating the spectrum to a single worker
of that level’s subordinate level. For example, a master
thread may perform a task on behalf of all threads in a
process. Commas ‘,’ on the right-hand side of a rule
represent a concatenation of two code fragments. To
keep the examples concise, we do not represent the flow
of data between code fragments in the notation.

4) Cascade: Cascaded primitive or spectrum invocations are
composed at a level by composing them sequentially at
that level.

5) Regroup: A partition primitive is composed at a
level by synchronizing to ensure the data is ready,
then regrouping the data at that level according to the
partitioning scheme.

6) Distribute: A map primitive is composed at a level by
spawning multiple workers of the subordinate level and

distributing the spectrum to those workers.

In practice, the map primitive is transformed with two
additional rules: Serialize and Split. Serialize creates a loop
at the current level (if it has a computational capability) to
serialize the map operation at that level. Split breaks the map
into a composition of two maps to extend the reach of the
map to a lower subordinate level. Due to space constraints,
we omit these two rules from the examples in this section.

B. Program Composition Rule Extraction

The first step in TANGRAM’s flow is to extract the compo-
sition rules of a program by applying the abstract rules to the
codelets until none can be applied deterministically anymore.
One composition rule is extracted per codelet. Figure 4 shows
the rules extracted from the codelets in Figure 2. Rule 1 is
basically the Devolve rule. Rules 2 and 3 show how atomic
codelets generate rules that assign those codelets to com-
putational capabilities (autonomous to scalar, cooperative to
vector). Rules 4 and 5 show how compound codelets generate
more complex rules corresponding to their functionality. Rule
1 is extracted from the devolve abstract rule which requires
no codelets.

An example of how rules are extracted from a compound
codelet is also shown in Figure 4 for codelet c. In the resulting
rule, the data is first regrouped according to the scheme

Device	Specifica+on:	
P 	:= 	CP	=	none,	(ℓP	,	SP)	=	(T	,	barrier/join) 	 	 	//	P	:	process	
T 	:= 	CT	=	SET		,	 	(ℓT	,	ST)	=	none 	 	 	 	 	 	//	T	:	thread	
	

Specialized	Composi+on	Rules:	
P	rules: 	P1:	 	compose(sum	,	P)	 	→ 	 	SP	,	devolve(T)	,	compose(sum,	T)	

	 	 	P4:	 	compose(sum	,	P)	 	→ 	 	SP	,	regroup(pc	,	P)	,	distribute(T)	,	compose(sum,	T)	,	compose(sum,	P)	
	 	 	P5:	 	compose(sum	,	P)	 	→ 	 	SP	,	regroup(pd	,	P)	,	distribute(T)	,	compose(sum,	T)	,	compose(sum,	P)	

T	rules: 	T2:	 	compose(sum	,	T)	 	→ 	 	compute(ca	,	SET)	
	

Composi+on	Example:	
compose(sum	,	P)	 	→ 	 	SP	,	regroup(pc	,	P)	,	distribute(T)	,	compose(sum,	T)	,	compose(sum,	P)	 	 	 	 	 		//	P4	

	 	 	 	 	 	→ 	 	SP	,	regroup(pc	,	P)	,	distribute(T)	,	compute(ca	,	SET)	,	SP	,	devolve(T)	,	compose(sum,	T) 		//	T2	,	P1	
	 	 	 	 	 	→ 	 	SP	,	regroup(pc	,	P)	,	distribute(T)	,	compute(ca	,	SET)	,	SP	,	devolve(T)	,	compute(ca	,	SET)			//	T2	

	
	

barrier	

ca	

pc	

ca	 ca	 ca	

Fig. 5. Rule Specialization and Composition (CPU Example). For the composition plan diagram on the right side, a triangle represents distribution of work
according to the partition pattern from the indicated codelet and a circle represents scalar compute according to the indicated codelet.

specified in codelet c (pc). The inner sum (parameter to the
map primitive) is then distributed to multiple workers of the
subordinate level. Finally, the outer sum is performed at the
original level.

We note that up until this point, the composition rules have
been generated from the codelets without any consideration
for the target device. This indicates the architecture-neutrality
of the programming model.

C. Composition Rule Specialization

In this subsection, we show how architectures are specified
and how the program composition rules are specialized for
those architectures. We use a CPU and a GPU example to
assist with the explanation.

1) CPU Example: Figure 5 shows an example of how a
basic CPU can be specified and how the composition rules can
be specialized for the specified architecture. In this example,
the CPU is treated as a two-level device (without SIMD units):
the first level being the process (P) and the second being
the thread (T). The process does not have a computational
capability, but has subordinate threads and the ability to
synchronize those threads via a barrier/join operation. The
thread has scalar execution capability and has no subordinate
levels.

Based on this architecture specification, the extracted rules
1 through 5 in Figure 4 can be specialized for the CPU
architecture. For the process level, only rules 1, 4, and 5
can be specialized. Rules 2 and 3 cannot because the process
does not have a compute capability; it can only distribute
work to its subordinate (thread) level. For the thread level,
only rule 2 can be specialized. Rules 1, 4, and 5 cannot
because the thread does not have a subordinate level in the
specification, and rule 3 cannot because the thread does not
have SIMD units (vector computational capability) needed to
execute cooperative codelets. The resulting specialized rules
are P1, P4, and P5 for the process level and T2 for the thread
level in Figure 5.

To assist the reader with understanding the application of
these rules, Figure 5 also shows an example of one possible
composition plan that they can be used to derive. This plan
takes three steps to create. First, P4 is applied to distribute the
sum to the different threads and then to sum up the partial
sums at the process level. Next, T2 is used to perform the
sum in each thread. Also, because the process cannot perform
computations, P1 is used to delegate one of its threads to
perform the final sum of partial sums. Finally, T2 is used
to perform that delegated sum using a single thread. The
created composition plan is illustrated with the diagram on
the right side of Figure 5. The final code generated from
this composition plan is shown in Figure 10 which will be
discussed later in Section V. The actual composition algorithm
to generate this and other composition plans is discussed in
Section IV.

2) GPU Example: Figure 6 shows an example of how a
basic GPU can be specified and how the composition rules
can be specialized. In this example, the GPU is treated as a
three-level device. The grid (G) level has no computational ca-
pability, but has a subordinate block level (B) and can perform
a barrier synchronization across blocks via kernel termination
and launch of a new kernel. The block level has a vector
execution capability, a thread (T) subordinate level, and can
synchronize subordinate threads using __syncthreads().
Finally, the thread level has scalar execution capability and no
subordinate level.

Similar to the CPU example, rules 1, 4, and 5 can only be
assigned to levels with subordinate levels, rule 2 to levels with
scalar execution capability, and rule 3 to levels with vector
execution capability. Accordingly, we can specialize rules 1,
4, and 5 for the grid level, rules 1, 3, 4, and 5 for the block
level, and rule 2 for the thread level.

Figure 6 shows an example of one possible composition
plan that these specialized rules can be used to create. We
omit the detailed explanation of this composition for brevity
since the process is similar to that shown in the CPU example.
The final code generated from this composition is shown in

Device	Specifica+on:	
G 	:=	CG	=	none	, 	(ℓG	,	SG)	=	(B	,	terminate/launch)	 	 	//	G	:	grid	
B 	:=	CB	=	VEB			,	 	(ℓB	,	SB)	=	(T	,	__syncthreads()) 	 	 	//	B	:	block	
T 	:=	CT	=	SET		 	,	 	(ℓT	,	ST)	=	none 	 	 	 	 	 	 	 	 	 	//	T	:	thread	
	

Specialized	Composi+on	Rules:	
G	rules: 	G1: 	compose(sum	,	G) 	→	 	SG	,	devolve(B)	,	compose(sum,	B)	
	 	 	 	G4: 	compose(sum	,	G)	 	→	 	SG	,	regroup(pc	,	G)	,	distribute(B)	,	compose(sum,	B)	,	compose(sum,	G)	
	 	 	 	G5: 	compose(sum	,	G)	 	→	 	SG	,	regroup(pd	,	G)	,	distribute(B)	,	compose(sum,	B)	,	compose(sum,	G)	

B	rules: 	B1: 	compose(sum	,	B)	 	→	 	SB	,	devolve(T)	,	compose(sum,	T)	
	 	 	 	B3: 	compose(sum	,	B)	 	→	 	compute	(cb	,	VEB)	
	 	 	 	B4: 	compose(sum	,	B)	 	→	 	SB	,	regroup(pc	,	B)	,	distribute(T)	,	compose(sum,	T)	,	compose(sum,	B)	
	 	 	 	B5: 	compose(sum	,	B)	 	→	 	SB	,	regroup(pd	,	B)	,	distribute(T)	,	compose(sum,	T)	,	compose(sum,	B)	

T	rules:	T2: 	compose(sum	,	T)	 	 	→	 	compute(ca	,	SET)	
	

Composi+on	Example:	
compose(sum	,	G)	
→	SG	,	regroup(pc	,	G)	,	distribute(B)	,	compose(sum,	B)	,	compose(sum,	G)		 	 																																																																																									//	G4	
→	SG	,	regroup(pc	,	G)	,	distribute(B)	,	SB	,	regroup(pd	,	B)	,	distribute(T)	,	compose(sum,	T)	,	compose(sum,	B)	,	SG	,	devolve(B)	,								//	B5	,	G1	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	compose(sum,	B)	 	 		

→	SG	,	regroup(pc	,	G)	,	distribute(B)	,	SB	,	regroup(pd	,	B)	,	distribute(T)	,	compute(ca	,	SET)	,	compute	(cb	,	VEB)	,	SG	,	devolve(B)	,						//	T2	,	B3,	B5	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	SB	,	regroup(pd	,	B)	,	distribute(T)	,	compose(sum,	T)	,	compose(sum,	B)		

→	SG	,	regroup(pc	,	G)	,	distribute(B)	,	SB	,	regroup(pd	,	B)	,	distribute(T)	,	compute(ca	,	SET)	,	compute	(cb	,	VEB)	,	SG	,	devolve(B)	,						//	T2	,	B3	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	SB	,	regroup(pd	,	B)	,	distribute(T)	,	compute(ca	,	SET)	,	compute	(cb	,	VEB)	

pd	

terminate/launch	

cb	

pc	

ca	 ca	 ca	

cb	

pc	

ca	 ca	 ca	

cb	

pc	

ca	 ca	 ca	

cb	

pc	

ca	 ca	 ca	

Fig. 6. Rule Specialization and Composition (GPU Example). In addition to the triangles and circles introduced in the previous diagram, a cross represents
vector compute according to the indicated codelet.

Figure 11 which will be discussed later in Section V.
3) Model Extensibility: To keep the previous examples

simple, we have modeled CPUs as two-level devices and GPUs
as three-level devices. However, the architectural model is
extensible as we show in the following examples.

CPU SIMD Unit. The SIMD (vector) unit of a CPU can be
added by giving the thread level vector execution capability
as well as a subordinate level consisting of a vector lane with
scalar execution capability.

GPU Warp. Warp-centric mapping [15] on GPUs can be
achieved by treating warps as a separate level between blocks
and threads and giving the warp level a vector execution
capability. Doing so enables more optimal code generation
for cooperative codelets featuring warp-centric mapping opti-
mization techniques. Such techniques include avoiding the use
of __syncthreads() as well as using shuffle instructions
and registers instead of scratchpad memory to store shared
data.

Instruction-level Parallelism (ILP). On both CPUs and
GPUs, ILP can be achieved via a subordinate level to the
thread level that executes a serialized map loop that is un-
rolled. In this case, the subordinate level to the thread is the
iteration of an unrolled loop and the synchronization happens
by closing the loop.

GPU Dynamic Parallelism. Dynamic parallelism on GPUs
can be achieved by assigning the grid level as a subordinate
level to the thread level. This enables threads to decompose

work and delegate to subordinate grids through new kernel
launches which creates a cycle in the architecture hierarchy.
Optimizations [16] involving dynamic parallelism can be con-
sidered alternative choice of composition.

In our experiments, we model CPUs as four-level devices
(process, thread with SIMD unit, SIMD lane, and ILP) and
GPUs as five-level devices (grid, block, warp, thread, and ILP).
We leave support for dynamic parallelism as future work.

D. Discussion

The proposed architectural model mainly focuses at the
difference in the architectural hierarchies, and guides the
synthesis of the algorithmic structure for a particular com-
putation. In this sense, the proposed model might be too
“coarse-grained” and be deficient in finer architectural details,
such as resource sizes, including core numbers, SIMD width,
cache sizes, etc. However, as brightly mentioned in Section I,
the architectural hierarchies mainly determine the algorithmic
structure, while the resource sizes mainly impact the fine-
grained optimizations, such as data placement and parameter
tuning. These fine-grained optimizations will be discussed in
Section V. Most of these techniques exist in the literature and
are not the major contribution of this paper.

IV. CREATING COMPOSITION PLANS

This section describes how the specialized rules are used
by our generic composition algorithm to create composition
plan candidates specific to the target architecture. This phase

s0	 	 	is	the	spectrum	subject	to	kernel	synthesis	
L 	 	is	the	top	level	in	the	device	being	targeted	
N 	 	is	the	number	of	itera8ons	to	search	
candidates(i) 	 	is	the	set	of	composi8on	candidates	at	itera8on	i	
rules(s,	ℓ)	 	 	is	the	set	specialized	rules	for	spectrum	s	at	level	ℓ	
prune(rules,	i) 	 	sorts	and	prunes	rules	for	itera8on	i	
prune(candidates,	i)	 	sorts	and	prunes	candidates	for	itera8on	i	
	
candidates(0)	:=	{	compose(s0	,	L)	}	
for	itera8on	i	from	1	to	N	do	
				forall	c	∈	candidates(i-1)	do	
								if	no	calls	compose(s,	ℓ)	in	c	then	
												candidates(i)	←	c								//	propagate	complete	candidates	
								else	
												forall	compose(s,	ℓ)	in	c	do	
																forall	r	in	prune(rules(s,	ℓ),	i)	do	
																				mark	r	as	a	candidate	rule	for	compose(s,	ℓ)	in	c	
												B	:=	all	combina8ons	of	candidate	rules	for	c	
												forall	b	in	B	do	
																candidates(i)	←	c	with	all	rules	in	b	applied	
				candidates(i)	:=	prune(candidates(i),	i)	

Fig. 7. Composition Algorithm

determines the overall structure of the kernel including its hi-
erarchical organization, work decomposition, and algorithmic
choice. After this phase, the composition candidates are passed
onto the code-generator which is described in Section V.

A. Composition Algorithm

The algorithm for creating composition plans for a spectrum
targeting a specific architecture is shown in Figure 7. It begins
by composing the spectrum at the top level in the architectural
hierarchy then proceeds to explore the design space via a
breadth-first search. At each point in the search space, if the
candidate has no more compose invocations to expand, it is
considered complete and is passed to the next iteration as is.
Otherwise, the algorithm selects the set of rules to expand
each invocation of compose and generates a new candidate
for every combination of rules.

The search iterates for N iterations where N must be at least
the number of architectural levels in order for the composition
plans to reach the lowest level. Typically, N is a bit larger to
enable a wider search.

B. Pruning

To avoid explosion of the search space, pruning takes
place throughout the process when specialized rules are being
selected as well as in between iterations. The prune function in
Figure 7 sorts rules or candidates according to their expected
benefit, and then drops the lowest ones. The strictness of
pruning can be set by the user and determines how many
candidates to keep or drop.

The pruning policy currently used is parallelism first
whereby rules extracting more parallelism are prioritized. The
criteria for comparing two rules according to their benefit is
shown in Figure 8. Note that the compared rules (r1 and r2)
are already specialized for the level (`) before entering the
composition process, so they are all applicable in this level. If

compare(r1	,	r2	,	ℓ,	i):	
	#	Comparing	rules	r1	and	r2	(of	level	ℓ)	for	composing	at	itera7on	i	
	if	i	is	not	the	last	itera7on	then	
	 	prefer(distributes)	
	 	if	r1	distributes	and	r2	distributes	then	
	 	 	prefer(par77oning	matches	ℓ)	
	 	else 	 	#	neither	distributes	
	 	 	prefer(vectorizes)	
	else		 	 	#	i	is	the	last	itera7on	(distribute	is	undesirable)	
	 	prefer(computes)	
	 	if	r1	computes	and	r2	computes	then	
	 	 	prefer(vectorizes)	
	prefer(came	from	tunable	codelet)	
	return	both	are	the	same	

	
prefer(cond): 	if	one	rule	sa7sfies	cond	and	the	other	doesn’t,	return	the	

	 	 	rule	that	does,	otherwise	con7nue	with	the	execu7on	

Fig. 8. Comparing Composition Rules for Pruning

compose(sum	,	B)	

?	

SB,	regroup(pc	,	B)	,		
distribute(T)	,		

compose(sum,	T)	,		
compose(sum,	B)	

SB,	regroup(pd	,	B)	,	
distribute(T)	,	

compose(sum,	T)	,	
compose(sum,	B)	

SB,	devolve(T)	,	
compose(sum,	T)	

?	

compute	(cb	,	VEB)	

cb	

?	

pc	

?	 ?	 ?	

?	

pd	

?	 ?	 ?	

SB,	devolve(T)	,	
compute(ca	,	SET)	

ca	

cb	

pc	

ca	 ca	 ca	

__syncthreads()	

pc	

ca	 ca	 ca	

?	

__syncthreads()	

pc	

ca	 ca	 ca	

ca	

B1	

B3	

B4	

B5	

T2	

…	…	

…	

(T2,	B3)	

(T2,	B1)	 T2	

…	

…	

…	

SB,	regroup(pc	,	B)	,		
distribute(T)	,		

compute(ca	,	SET),	
compute	(cb	,	VEB)	

SB,	regroup(pc	,	B)	,		
distribute(T)	,		

compute(ca	,	SET),	
SB,	devolve(T)	,	
compose(sum,	T)	

(T2,	B4)	 (T2,	B5)	
SB,	regroup(pc	,	B)	,		
distribute(T)	,		

compute(ca	,	SET),	
SB,	devolve(T)	,	
compute(ca	,	SET)	

Fig. 9. Composition Plan Creation Example (Showing Four Possible Com-
position Plans for the Block and Thread Levels)

we are not in the last iteration, rules that generate a distribute
are preferred because they extract more parallelism. Among
rules that distribute, the partitioning schemes are analyzed and
used to determine which rule has more favorable locality for
the level in question. The preference of the level is determined
by the architecture specification via an additional entry for
each level that specifies whether it prefers adjacent or strided
tiling. If neither rule distributes, then rules generating vector
execution are preferred over those generating scalar execution.
In the last iteration, rules that compute are preferred over
those that distribute because there will be no more iterations to
expand the distributed compose invocations. Among compute
rules, those that generate vector execution are preferred. When
all is equal, rules that come from codelets having tuning knobs
are preferred because they give the compiler more optimization
opportunities. Candidates’ plans are compared via pairwise
comparison of the rules applied to each.

SP	,	regroup(pc	,	P)	,	distribute(T)	,	compute(ca	,	SET)	,	
SP	,	devolve(T)	,	compute(ca	,	SET)	

	

SP 	:		//	No	sync	needed	at	the	beginning	
regroup(pc	,	P)	 	:		unsigned	p_c	=	omp_get_num_threads();	
regroup(pc	,	P)	 	:		unsigned	len_c	=	in_size;	
regroup(pc	,	P)	 	:		unsigned	tile_c	=	(len_c+p-1)/p_c;	
distribute(T) 	:		#pragma	omp	parallel	
distribute(T) 	:		{		
distribute(T) 	:				unsigned	j	=	omp_get_thread_num();	
compute(ca	,	SET) :				unsigned	len_a1	=	tile;	
compute(ca	,	SET) 	:				int	accum_a1	=	0;	
compute(ca	,	SET) 	:				for(int	i	=	0;	i	<	len_a1;	++i)	{	
compute(ca	,	SET) 	:						accum_a1	+=	in[j*tile_c	+	i];	
compute(ca	,	SET) :				}	
compute(ca	,	SET) 	:				ret_a1[j]	=	accum_a1;	
SP 	:		}	//	Join	omp	threads	
devolve(T)	 	:		//	No	spawn	(only	master	executes)	
compute(ca	,	SET) :		unsigned	len_a2	=	p;	
compute(ca	,	SET) 	:		int	accum_a2	=	0;	
compute(ca	,	SET) 	:		for(int	i	=	0;	i	<	len_a2;	++i)	
compute(ca	,	SET) 	:				accum_a2	+=	ret_a1[i];	
compute(ca	,	SET) 	:		ret_a2	=	accum_a2;	

Fig. 10. Codegen for CPU Example in Figure 5

C. GPU Composition Plan Example

An example of the composition process for the sum spec-
trum on a single block in a GPU is shown in Figure 9. This
example demonstrates how our algorithm generates different
possibilities from the same codelets. By applying B3, the sum
is performed by the cooperative codelet. By applying B1 then
T2, the entire sum is performed by a single thread in the
block. By applying B4 then T2 and B3, the sum is distributed
to the individual threads by the partition in codelet c, each
thread then calculates partial sums, and then the partial sums
are aggregated with the cooperative codelet. If instead of T2
and B3, we apply T2 and B1 then T2, the partial sums are
aggregated by a single thread in the thread block.

V. CODE GENERATION

After the composition plan candidates have been created,
code is generated for the target architecture as shown in
the examples in Figures 10 and 11. During code generation,
TANGRAM built-in optimizations also take place such as data
placement and parameter tuning. Most of these techniques
exist in the literature and are not the main focus or contribution
of this paper. We briefly explain how they are integrated into
our system.

Data Placement. A data placement decision must be made
for each data container in the composition candidate. A
heuristic-based GPU data placement algorithm, similar to [7],
is currently applied, but our framework can also support
model-based data placement tools [6]. For CPUs, we have
copying and caching data placement. While copying loads
data into another local array in the beginning, caching directly
accesses the data in the original data structure. Additionally,
transposition can be further applied when copying data to a
local array for a CPU and a scratchpad memory for a GPU,
if necessary.

SG	,	regroup(pc	,	G),	distribute(B),	SB	,	regroup(pd	,	B),	distribute(T),		
compute(ca	,	SET),	compute(cb	,	VEB)	SG	,	devolve(B),	SB	,	regroup(pd	,	B),	

distribute(T),	compute(ca	,	SET),	compute(cb	,	VEB)	
	

First	kernel	
SG 	:		//	No	sync	needed	at	beginning	
regroup(pc	,	G) 	:		unsigned	p_c	=	gridDim.x;	
regroup(pc	,	G) 	:		unsigned	len_c	=	in_size;	
regroup(pc	,	G) 	:		unsigned	tile_c	=	(len_c+p_c-1)/p_c;	
distribute(B) 	:		unsigned	k	=	blockIdx.x;	
SB 	:		//	No	sync	needed	at	beginning	
regroup(pd	,	B) 	:		unsigned	p_d	=	blockDim.x;	
regroup(pd	,	B) 	:		unsigned	len_d	=	tile_c;	
regroup(pd	,	B) 	:		unsigned	tile_d	=	(len_d+p_d-1)/p_d;	
distribute(T) 	:		unsigned	j	=	threadIdx.x;	
compute(ca	,	SET) 	:		unsigned	len_a	=	tile_d;	
compute(ca	,	SET) 	:		int	accum_a	=	0;	
compute(ca	,	SET) 	:		for(unsigned	i=0;	i	<	len_a;	++i)	{	
compute(ca	,	SET) 	:				accum_a	+=	in[k*tile_c	+	j	+	p_d*i];	
compute(ca	,	SET) 	:		}	
compute(ca	,	SET) 	:		ret_a	=	accum_a;	
compute(cb	,	VEB)	:		__shared__	int	tmp[blockDim.x];	
compute(cb	,	VEB)	:		unsigned	len_b	=	p_d;	
compute(cb	,	VEB)	:		unsigned	id	=	threadIdx.x;	
compute(cb	,	VEB)	:		tmp[id]	=	ret_a;	
compute(cb	,	VEB)	:		__syncthreads();	
compute(cb	,	VEB)	:		for(unsigned	s=1;	s<blockDim.x;	s	*=	2)	{	
compute(cb	,	VEB)	:				if(id	>=	s)	
compute(cb	,	VEB) :						tmp[id]	+=	tmp[id	-	s];	
compute(cb	,	VEB)	:				__syncthreads();	
compute(cb	,	VEB)	:		}	
compute(cb	,	VEB)	:		ret_b[k]	=	tmp[blockDim.x-1];	
SG	 	:		return;	//	Terminate	kernel	
	

Second	kernel	
devolve(B) 	:		if(blockIdx.x	==	0)	
SB	un<l	end 	:						...	//	Similar	to	first	kernel	

Fig. 11. Codegen for GPU Example in Figure 6

Parameter Tuning. The tuning process determines the
value for each variable marked with the __tunable qualifier.
Tunable variables are usually SIMD unit widths or partition
sizes. SIMD widths are determined from the architecture
specification. Partition sizes after code generation become
tile sizes, work-group sizes, and coarsening factors whose
values depend on properties of each architectural level such as
cache/scratchpad sizes and occupancy [17]. These properties
can also be determined from the architecture specification. The
tuning process can also produce multiple candidate kernels
from each original candidate composition plan and use profil-
ing methods to identify the best ones, as discussed below.

Candidate Selection. After candidate kernels are generated,
they need to be profiled so that the best one is selected for
execution. Selection can be done via offline profiling [8], [11],
[14] or online profiling [18]. Pruning reduces the final number
of candidates for the selection process into a reasonable
amount. In the evaluation, we rely on offline profiling for
benchmarks with regular memory accesses (because datasets
can be automatically generated) and online profiling for bench-
marks with irregular accesses.

Benchmark Reference Dataset Number of Codelets (Input Code)
Scan Thrust A 16M integer array 4, with 2 exclusive scan and 4 reduction
SGEMV-TS MKL & CUBLAS A 512K-by-128 (Tall-and-Skinny) matrix 1, with 1 dot-product, and 2 reduction
SGEMV-SF MKL & CUBLAS A 128-by-512K (Short-and-fat) matrix 1, with 1 dot-product, and 2 reduction
DGEMM MKL & CUBLAS A non-transposed 4K-by-4K matrix & a transposed 4K-by-4K

matrix
1, with 2 dot-product and 1 reduction

SpMV MKL & CUSPARSE bcsstk18 [19] (CSR format) 1, with 1 sparse scalar-multiply, 1 sparse dot-product, and 4
reduction

KMeans Rodinia kdd_cup (default in Rodinia) 1, with 1 difference, 4 reduction, 1 minima selection, and 1
gemm-like operation

BFS Rodinia graph1MW_6 (default in Rodinia) 1, with 1 edge visiting, and 1 vertex visiting

TABLE II
BENCHMARKS

VI. EVALUATION

A. Setup

The TANGRAM language is implemented as an extension
of C++. We modify Clang [20] 3.6 to support parsing TAN-
GRAM’s qualifiers. Containers and primitives are parsed as
C++ template classes. Code generation is implemented as a
Clang traversal of the AST which generates C, OpenMP, and
CUDA kernel code. The generated kernels are then compiled
using the Intel C compiler (icc) version 16.0.0, OpenMP
version 4.0, and the NVIDIA CUDA compiler (nvcc) version
7.0 respectively. The compiled programs are evaluated on an
i7-3820 Sandy Bridge CPU, a C2050 Fermi GPU, and a K20c
Kepler GPU.

B. Benchmarks

Table II summaries the applications implemented in TAN-
GRAM: Scan, SGEMV (with 2 datasets, called TS and SF),
DGEMM, SpMV, KMeans, and BFS, and the corresponding
datasets and numbers of codelets. We compare each of our
generated kernels to a reference, or the best performing imple-
mentation available to us: Thrust [21] version 1.9, MKL [22]
version 12.0, CUBLAS/CUSPARSE [23], [24] version 7.0,
and and Rodinia [25] 3.0. In selecting the reference for each
benchmark, we chose CUBLAS/CUSPARSE and Thrust for
GPUs and MKL for CPUs where possible. Particularly, MKL,
CUBLAS, and CUSPARSE come with their own offline tuning
and then heuristic version selections for parameterization of
different architectures. When using Rodinia, we chose the best
known hand-optimized version from the benchmark suite. For
example, for the Rodinia CPU references, we pick the best
result among the OpenMP version (with icc -O3) and the
OpenCL version on top of the Intel and AMD OpenCL CPU
stacks.

For the benchmarks with regular memory access patterns
and no data-dependent control flow, such as Scan, SGEMV,
and DGEMM, we use offline profiling. For iterative applications,
such as SpMV and KMeans, we apply online profiling using
techniques similar to [18] and only profile the first iteration.
For irregular but non-iterative applications, such as BFS, we
use offline profiling on synthetic random graphs.

C. Performance Results

Figure 12 shows the performance of the six benchmarks on
the three evaluation architectures, comparing the TANGRAM

implementation to the reference implementation for each. In
presenting the results, performance is normalized to the best
performing implementation for each benchmark (highest bar),
thereby showing the relative performance of the implementa-
tions being compared.

Scan. TANGRAM’s Scan consistently outperforms
Thrust’s for all devices. TANGRAM’s Scan is expressed
with codelets of different simple scan algorithms, including
sequential scan, tree-structure scan, and recursive scan.
Particularly, each scan call in a recursive scan codelet can
be mapped to different scan codelets to fit the architectural
hierarchy and to further enable high performance portability.
Given a target architecture, offline profiling can be used to
select the best version from a range of competitive ones.

Besides selecting appropriate compositions, coarsening fac-
tors, and tiling factors, TANGRAM also benefits from fusing
maps. Scan is commonly written as either a scan-scan-add or
a reduce-scan-scan algorithm [26]. In either case, the middle
scan lacks parallelism and blocks fusion. However, the three
stages can be fused by implementing the middle scan in a
streaming or sliding fashion using atomic operations [27],
[28]. In TANGRAM, this sliding scan is implemented as a
codelet in the scan spectrum using map, enabling TANGRAM
to automatically generate a composition that fuses the three
stages.

Figure 13 compares TANGRAM’s scan to the reference
with and without the sliding codelet (which enables fusion).
Even without the extra codelet, TANGRAM still outperforms
Thrust, due to better choice of partition parameters, which
are labeled as tunable in TANGRAM. The addition of the
sliding codelet has more impact on GPUs than CPUs because
GPU cachelines have shorter lifetimes than CPU ones so
applying fusion is more critical in order to avoid reloading
intermediate data. Note that Thrust’s CPU results3 is 47.9-
49.4x slower than TANGRAM’s due to an inefficient CPU
implementation in Thrust version 1.9.

SGEMV. Parallelism of SGEMV highly depends on the
height of input matrix. Therefore, a tall-and-skinny (TS)
matrix is used as a test case with high parallelism and a short-
and-fat (SF) matrix as a test case with low parallelism.

In the TS matrix, TANGRAM’s SGEMV surprisingly out-
performs MKL’s on the CPU by a factor of 2.18x while

3Note that Thrust CPU Scan is confirmed as multi-threaded.

0	

0.2	

0.4	

0.6	

0.8	

1	

Scan	 SGEMV-TS	 SGEMV-SF	 DGEMM	 SpMV	 KMeans	 BFS	

N
or
m
al
iz
ed

	P
er
fo
rm

an
ce
		

(h
ig
he
r	i
s	b

e*
er
)	

Kepler	(reference)	 Kepler	(TANGRAM)	 Fermi	(reference)	 Fermi	(TANGRAM)	 CPU	(reference)	 CPU	(TANGRAM)	

Fig. 12. TANGRAM Performance Results

47.9x 49.4x

0	

0.5	

1	

1.5	

2	

2.5	

3	

Fermi	 Kepler	 CPU	

N
or
m
al
iz
ed

		
Pe

rf
or
m
an

ce
	

(h
ig
he
r	i
s	b

e*
er
)		

Reference	
(Thrust)	

TANGRAM	(no	
sliding	codelet)	

TANGRAM	(with	
sliding	codelet)	

Fig. 13. Scan Results with or without the Sliding Codelet (Normalized to
the Corresponding Thrust Results)

0	
0.5	
1	

1.5	
2	

2.5	
3	

3.5	
4	

4.5	

Fermi	 Kepler	

N
or
m
al
iz
ed

		
Pe

rf
or
m
an

ce
	

(h
ig
he
r	i
s	b

e*
er
)	

	

CUBLAS	
(NOP)	

TANGRAM	
(NOP)	

TANGRAM	
(SOP)	

Fig. 14. SOP and NOP SGEMV-SF Results on GPUs (Normalized to the
Corresponding CUBLAS Results)

delivering comparable performance to CUBLAS’ on Kepler
and outperforms CUBLAS’ on Fermi by a factor of 2.69x.
In this particular evaluation, since MKL’s SGEMV delivers
only less than half of the memory bandwidth, we believe it
is mistuned. A similar conclusion is also applied to Fermi’s
SGEMV. This demonstrates that the current industry practice
falls short in keeping performance critical libraries well tuned
for each generation of hardware.

In the SF matrix, we discover4 CUBLAS does not im-
plement the “standard” SGEMV (denoted as SOP, sequential-
order-preserving), which preserves the sequential order of the
dot-product. A “non-standard” SGEMV (denoted as NOP, non-
order-preserving) generates different rounding error from the
SOP one, and might impact some applications. The SOP
SGEMV only allows the dot-product following the sequential
order, so NOP reduction codelets (like Figure 2 (b), (c), and (d)
but using float) must be excluded. Two reduction codelets used
in the SOP SGEMV are sequential reduction codelet (similar to

4by examining the output rounding errors of specially designed matrices

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Fermi	 Kepler	 CPU	

N
or
m
al
iz
ed

		
Pe

rf
or
m
an

ce
	

(h
ig
he
r	i
s	b

e*
er
)	 Reference	

TANGRAM	(no	
transposiBon	opt)	

TANGRAM	(with	
transposiBon	opt)	

Fig. 15. SpMV Results with and without Transposition Optimization (Nor-
malized to the Corresponding References)

Figure 2 (a)) and a sliding fashion [28] sequential reduction
codelet. Therefore, the only difference between SOP and NOP
is the reduction codelets used in the dot-product. This also
shows the productivity of TANGRAM framework without
kernel redevelopment.

Figure 14 compares the SOP and NOP SGEMV with the
SF matrix on the GPUs. For NOP SGEMV, TANGRAM’s
code outperforms CUBLAS’ on Kepler and Fermi by a factor
of 1.97x and 4.09x respectively. It is worth mentioning that
TANGRAM’s SOP SGEMV has comparable performance of
CUBLAS’ NOP SGEMV on Fermi.

DGEMM. TANGRAM’s DGEMM performs within 30%
difference of all reference implementations. The presented
TANGRAM CPU result is based on generic codelets, though,
as mentioned in Section II, the TANGRAM framework allows
easy integration of intrinsics through env. The version using
AVX intrinsics can gain another 7% performance improve-
ment.

One difficulty in achieving good performance in DGEMM
is that it is bounded by instruction throughput. The current
implementation of TANGRAM relies on the backend C (icc)
or CUDA compiler (nvcc) to generate good quality code.
Therefore, our TANGRAM Kepler result (717 GFLOPS)
achieves 70% performance of CUBLAS (1,027 GFLOPS). In
the future, we will likely employ more optimization passes in
our compiler and provide a code generation path to PTX or
assembly code to better control these low-level factors. For
example, one of such factors is register bank conflicts [29],
which is hard to address at the source-code level.

SpMV. TANGRAM’s SpMV delivers comparable perfor-
mance (within 10%) to all reference implementations, doing

slightly worse than CUSPARSE on the GPUs, and slightly
better than MKL on the CPU. In SpMV, two candidate kernels
are generated for each architecture. Online profiling [18] is
applied to the first iteration to select the best version, and the
overhead of online profiling is less than 0.8%.

Traditional implementations [30], [31] only consider the
warp-centric dot-product and the scalar dot-product. The
former tends to have a better memory access pattern but
less parallelism than the latter. Compared to the traditional
implementations, TANGRAM explores more combination of
compositions with built-in optimizations, such as transposition
on GPU scratchpad memory.

Figure 15 shows how built-in optimizations impact the
final performance. In this evaluation, the result with TAN-
GRAM’s optimizations is a version very similar to the scalar
dot-product. As mentioned in Section IV, the TANGRAM’s
composition process prefer higher parallelism by preferring
the rules that generate a distribute. Although the scalar dot-
product might have a worse memory access pattern, the
TANGRAM’s optimizers can still improve its performance by
applying proper optimizations, such as transposition on GPU
scratchpad, or selecting a proper tile size for CPU caches.
Particularly, TANGRAM’s GPU implementation is similar
to [32]. In the end, the results show the built-in optimizations
significantly improve performance of SpMV in TANGRAM by
up to 4.08x on GPUs. Note the CPU results are not sensitive
to TANGRAM’s optimizers, because CPUs tend to have larger
caches to tolerate different tiling sizes.

KMeans. TANGRAM’s KMeans consistently outperforms
Rodinia’s for all devices (the best performing CPU version
among Rodinia implementations was OpenMP).

For KMeans, TANGRAM generates seven candidates (with
different coarsening factors and data placements) for GPUs
and four candidates for CPUs. The online profiling is applied
to the first iteration, and the total overhead is less than 2%.

As mentioned in Section IV, TANGRAM applies the rules
that have favorable locality among those generating a dis-
tribute, and consequently outperforms Rodinia’s, all of which
access the loops (the feature loop and the cluster loop) in a
suboptimal order.

BFS. TANGRAM’s BFS performs within 10% difference
of all reference implementations, doing slightly better than
Rodinia’s on the GPU, and slightly worse on the CPU (the
best performing CPU version of Rodinia BFS is the OpenCL
version on top of Intel’s stack). The evaluated BFS only
includes the same vertex-based algorithm that Rodinia uses
for fair comparison.

The vertex status checking (for g_graph_mask) and
edge index fetching (for g_graph_nodes) of BFS are
parallelizable. While Rodina’s parallelizes the former one but
serialize the latter one, TANGRAM’s parallelizes both, since
TANGRAM tends to apply a rule with higher parallelism.

D. Discussion

TANGRAM language enables expression for interchange-
able codelets, allowing recursive calls to adapt different ar-

chitectural hierarchies and tunable qualifiers for parameteriza-
tion tuning to adapt resource sizes. Therefore, TANGRAM
compiler potentially can choose alternative algorithms or
optimizations for a particular computation to achieve better
performance.

Algorithms. In our evaluation, TANGRAM’s DGEMM,
KMeans, and BFS use the same algorithms as the references.
TANGRAM’s SGEMV uses the same algorithm as the standard
BLAS and MKL, while CUBLAS uses a different algorithm
for the SF matrix. For Scan and SpMV, we cannot confirm
whether the algorithms are the same, since the references are
close-sourced. However, particularly for Scan, we believe
TANGRAM synthesized a different combination of scan al-
gorithms compared to Thrust.

Synthesized Kernels. Most differences among the synthe-
sized kernels for different types of architectures (for example,
CPUs and GPUs) are either algorithmic or loop structure
due to different hierarchies. For the same type of architec-
tures (for example, Fermi and Kepler GPUs), the differences
mainly come from different parameters or data placement. The
only exception happens in Scan: its algorithmic combination
changes from Fermi to Kepler, due to the high efficiency of
Kepler’s shuffle instructions.

Reasons for High Performance. We summarize the major
reasons why TANGRAM can achieve better or comparable
performance to the references. TANGRAM potentially can
deliver better algorithmic combination to match the archi-
tectural hierarchy (Scan), more parallelism (SGEMV, SpMV
and BFS), better locality (Kmeans), better parameters (Scan)
or better data placement (Kmeans and SpMV). For DGEMM,
TANGRAM did not outperform MKL or CUBLAS, since the
references are written in assembly.

VII. RELATED WORK

Performance portability from a single source has been an
area of great interest. High-level languages [33], [34] have
been proposed for targeting CPUs and GPUs. Surge [33] pro-
vides collective primitives for the users, but does not support
hierarchical composition of codelets like TANGRAM does.
Steuwer et al. [34] proposed a language using built-in rewrite
rules of map and reduce to generate high-performance BLAS
routines, while TANGRAM enables user-defined composition
rules through codelets.

Libraries of algorithms and data structures for heteroge-
neous computing such as Thrust [21] and PEPPHER [35], [36]
have also been used to target CPUs and GPUs from a single
API. However, libraries are limited to the library developer’s
ability to anticipate architectures and tune to them, and do
not have TANGRAM’s ability to automatically synthesize new
kernels given new device specification.

Policy-based tuning on GPU [10] provides tunable coars-
ening and hierarchy mapping for different generations, but
only works for the same fixed algorithms of kernels, while
TANGRAM allows different algorithms for a given computa-
tion and can work on different numbers of hierarchies using
recursive decomposition.

0	
0.2	
0.4	
0.6	
0.8	
1	

MKL TANGRAM Petabricks
(with MKL)

Petabricks
(no MKL)

N
or
m
al
iz
ed

	
Pe

rf
or
m
an

ce
	

(h
ig
he
r	i
s	b

e)
er
)	

Fig. 16. Comparison between TANGRAM and Petabricks using DGEMM on
CPU

Kim et al. [5] and Lee et al. [37] studied hierarchy mapping
of nested parallel patterns for CPUs and GPUs respectively.
Both can be considered as specialized cases of the composition
process in TANGRAM. Neither of them considers different
algorithms, or different hierarchies of architectures.

CHiLL [38] provides the capability of hierarchy mapping
for loop transformations mainly on CPUs. TANGRAM en-
compasses a wider array of optimization techniques, including
different algorithms.

Multiple domain libraries or languages [9], [11], [39], [40]
employ similar composition processes. Delite [41] supports
performance portability from a single source by providing a
metaprogramming framework for creating domain-specific
languages. TANGRAM is a general purpose language, and
TANGRAM’s device specification and static pruning process
potentially can be also applied to them.

LMS [42] provides a metaprogramming framework to en-
able users to define custom rewriting rules. TANGRAM po-
tentially can be implemented through LMS, and the concept
of device specification and static pruning in TANGRAM can
be also extended to the languages or libraries using LMS.

Languages [12], [13], [14] with composition rules can
potentially provide functionality of adaptation to architectural
hierarchy similar to what TANGRAM does. In contrast to their
heavy reliance on the high quality implementation of base
rules, TANGRAM can directly generate high-performance
code.

A. Comparison to Petabricks

Petabricks [14] is the most similar work to TANGRAM,
allowing the user to define codelet-like functions (called
transforms and rules), supporting composition and parameter
tuning, and trying to achieve performance portability on CPUs
and GPUs [43].

The major difference between TANGRAM and Petabricks
is architectural optimization. TANGRAM introduces archi-
tectural hierarchy models and corresponding rules to guide
composition and optimization processes, and focuses on archi-
tectural optimizations themselves. Compared to TANGRAM,
Petabricks directly relied on autotuning (using evolutionary
algorithms, particularly) for design space search, and fo-
cused on task scheduling, and selection of proper algorithms
or libraries for particular input data. Lack of architectural
hierarchy models could obstruct possible composition and
potential architectural optimization for the target architecture,
then prevent exploration of certain versions, and possibly lead

to a suboptimal result. Meanwhile, lack of general architectural
optimizations could cause catastrophic performance degrada-
tion for generated code.

To demonstrate this difference, a common benchmark,
DGEMM, is evaluated. Figure 16 shows Petabricks can achieve
79% and 11% of MKL performance, with and without calling
MKL DGEMM internally5 respectively, while TANGRAM can
achieve 70% of MKL performance (without calling MKL
DGEMM internally). These results imply that Petabricks highly
relied on high-performance base rules (atomic codelets in
TANGRAM). We also observe that the released package of
Petabricks did not optimize function inlining, thread spawning,
and branch divergences of version selection, so it achieved
only 79% of MKL performance even with internal MKL
DGEMM calls. This evaluation demonstrates architectural op-
timizations are crucial to achieve high performance.

Other important differences include TANGRAM’s support
for cooperative codelets, which is crucial for better utilization
of SIMD execution on modern architectures. TANGRAM also
introduces static pruning in composition to select competitive
candidates before profiling and potentially can enable dynamic
profiling in runtime for certain applications.

VIII. CONCLUSION

In this paper, we present TANGRAM, a kernel synthesis
framework that supports performance portability through com-
position of user-defined architecture-neutral code into high-
performance kernels customized for different architectural
hierarchies. We provide comprehensive description from the
architectural hierarchy model, the composition mechanism, to
the code generation. Our results show that TANGRAM can
achieve a performance of at least 70%, and in some cases
multiple times, of various well-known reference implementa-
tions on various architectures.

ACKNOWLEDGMENT

This material is based upon work supported by the De-
partment of Energy, National Nuclear Security Administra-
tion, under Award Number DE-NA0002374. This work is
also supported by the Starnet Center for Future Architec-
ture Research (C-FAR), the DoE Vancouver Project (DE-
SC0005515): Designing a Next Generation Software Infras-
tructure for Heterogeneous Exascale Computing, the Huawei
Project (YB2015120003): High Performance Algorithm Com-
pilation for Heterogeneous Systems, and the NVIDIA GPU
Center of Excellence at UIUC.

REFERENCES

[1] N. Rotem, “Intel OpenCL implicit vectorization module,” 2011.
[2] J. Gummaraju, L. Morichetti, M. Houston, B. Sander, B. R. Gaster,

and B. Zheng, “Twin peaks: A software platform for heterogeneous
computing on general-purpose and graphics processors,” in Proceedings
of the 19th International Conference on Parallel Architectures and
Compilation Techniques, pp. 205–216, 2010.

5The DGEMM in Petabricks calls MKL by default and disables all other
rules. For fair comparison, we re-enable all of the rules and optionally enable
MKL DGEMM.

[3] R. Karrenberg and S. Hack, “Improving Performance of OpenCL on
CPUs,” in Proceedings of the 21st International Conference on Compiler
Construction, pp. 1–20, 2012.

[4] P. Jääskeläinen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala,
and H. Berg, “pocl: A performance-portable opencl implementation,”
International Journal of Parallel Programming, vol. 43, no. 5, pp. 752–
785, 2015.

[5] H.-S. Kim, I. El Hajj, J. Stratton, S. Lumetta, and W.-M. Hwu, “Locality-
centric thread scheduling for bulk-synchronous programming models on
CPU architectures,” in Proceedings of the 13th Annual IEEE/ACM In-
ternational Symposium on Code Generation and Optimization, pp. 257–
268, 2015.

[6] G. Chen, B. Wu, D. Li, and X. Shen, “PORPLE: An extensible optimizer
for portable data placement on GPU,” in Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 88–100,
2014.

[7] B. Jang, D. Schaa, P. Mistry, and D. Kaeli, “Exploiting memory access
patterns to improve memory performance in data-parallel architectures,”
IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 1, pp. 105–118, 2011.

[8] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimizations of software and the atlas project,” Parallel Computing,
vol. 27, no. 1, pp. 3–35, 2001.

[9] M. Püschel, J. M. Moura, B. Singer, J. Xiong, J. Johnson, D. Padua,
M. Veloso, and R. W. Johnson, “Spiral: A generator for platform-adapted
libraries of signal processing alogorithms,” International Journal of High
Performance Computing Applications, vol. 18, no. 1, pp. 21–45, 2004.

[10] D. Merrill, M. Garland, and A. Grimshaw, “Policy-based tuning for per-
formance portability and library co-optimization,” in Innovative Parallel
Computing, pp. 1–10, 2012.

[11] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
ACM SIGPLAN Notices, vol. 48, no. 6, pp. 519–530, 2013.

[12] G. E. Blelloch, “NESL: A nested data-parallel language.(version 3.1),”
tech. rep., DTIC Document, 1995.

[13] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y.
Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan,
“Sequoia: Programming the memory hierarchy,” in Proceedings of the
2006 ACM/IEEE conference on Supercomputing, ACM, 2006.

[14] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and
S. Amarasinghe, “Petabricks: A language and compiler for algorithmic
choice,” in Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 38–49, 2009.

[15] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating CUDA
graph algorithms at maximum warp,” in ACM SIGPLAN Notices, vol. 46,
pp. 267–276, 2011.

[16] I. El Hajj, J. Gómez-Luna, C. Li, L.-W. Chang, D. Milojicic, and W. mei
Hwu, “KLAP: Kernel launch aggregation and promotion for optimizing
dynamic parallelism,” in Proceedings of the 49th Annual IEEE/ACM
International Symposium on Microarchitecture, 2016 (in press).

[17] NVIDIA, “CUDA C best practices guide v. 7.0,” 2015.
[18] L.-W. Chang, H.-S. Kim, and W.-m. Hwu, “DySel: Lightweight dynamic

selection for kernelbased data-parallel programming model,” in Pro-
ceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 667–
680, ACM, 2016.

[19] “The Matrix Market.” http://math.nist.gov/MatrixMarket/.
[20] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong

program analysis & transformation,” in Code Generation and Optimiza-
tion, International Symposium on, pp. 75–86, 2004.

[21] N. Bell and J. Hoberock, “Thrust: A productivity-oriented library for
CUDA,” GPU Computing Gems Jade Edition, p. 359, 2011.

[22] “Intel Math Kernel Library.” http://software.intel.com/en-
us/articles/intel-mkl/.

[23] NVIDIA, CUBLAS Library User Guide. NVIDIA, v7.0 ed., Oct. 2015.
[24] NVIDIA, CUDA CUSPARSE Library, Aug. 2015.
[25] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and

K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Workload Characterization, 2009, IEEE International Symposium on,
pp. 44–54, 2009.

[26] Y. Dotsenko, N. K. Govindaraju, P.-P. Sloan, C. Boyd, and J. Manfer-
delli, “Fast scan algorithms on graphics processors,” in Proceedings of
the 22Nd Annual International Conference on Supercomputing, pp. 205–
213, 2008.

[27] S. Yan, G. Long, and Y. Zhang, “StreamScan: Fast scan algorithms for
GPUs without global barrier synchronization,” in Proceedings of the
18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 229–238, 2013.

[28] J. Gómez-Luna, L.-W. Chang, I.-J. Sung, W.-M. Hwu, and N. Guil, “In-
place data sliding algorithms for many-core architectures,” in Parallel
Processing, 2015 44th International Conference on, pp. 210–219, IEEE,
2015.

[29] J. Lai and A. Seznec, “Performance upper bound analysis and optimiza-
tion of sgemm on Fermi and Kepler GPUs,” in Code Generation and
Optimization, 2013 IEEE/ACM International Symposium on, pp. 1–10,
2013.

[30] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on CUDA,” NVIDIA Technical Report NVR-2008-004, NVIDIA Cor-
poration, 2008.

[31] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-
ford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous comput-
ing (SHOC) benchmark suite,” in Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units, pp. 63–
74, 2010.

[32] J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector multipli-
cation on GPUs using the CSR storage format,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 769–780, IEEE, 2014.

[33] S. Muralidharan, M. Garland, B. Catanzaro, A. Sidelnik, and M. Hall, “A
collection-oriented programming model for performance portability,” in
Proceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 263–264, 2015.

[34] M. Steuwer, C. Fensch, S. Lindley, and C. Dubach, “Generating per-
formance portable code using rewrite rules: from high-level functional
expressions to high-performance OpenCL code,” in Proceedings of the
20th ACM SIGPLAN International Conference on Functional Program-
ming, pp. 205–217, 2015.

[35] S. Benkner, S. Pllana, J. L. Träf, P. Tsigas, U. Dolinsky, C. Augonnet,
B. Bachmayer, C. Kessler, D. Moloney, and V. Osipov, “PEPPHER:
Efficient and productive usage of hybrid computing systems,” IEEE
Micro, vol. 31, no. 5, pp. 28–41, 2011.

[36] U. Dastgeer, L. Li, and C. Kessler, “The PEPPHER composition tool:
Performance-aware dynamic composition of applications for GPU-based
systems,” in High Performance Computing, Networking, Storage and
Analysis, 2012 SC Companion:, pp. 711–720, 2012.

[37] H. Lee, K. J. Brown, A. K. Sujeeth, T. Rompf, and K. Olukotun,
“Locality-aware mapping of nested parallel patterns on GPUs,” in
Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 63–74, IEEE Computer Society, 2014.

[38] C. Chen, J. Chame, and M. Hall, “CHiLL: A framework for composing
high-level loop transformations,” tech. rep., 2008.

[39] K. Goto and R. A. v. d. Geijn, “Anatomy of high-performance matrix
multiplication,” ACM Transactions on Mathematical Software, vol. 34,
pp. 12:1–12:25, May 2008.

[40] D. Merrill, “CUB:kernel-level software reuse and library design,” in
GPU Technology Conference Presentation, 2013.

[41] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun, “Delite: A compiler architecture for performance-oriented
embedded domain-specific languages,” ACM Trans. Embed. Comput.
Syst., vol. 13, no. 4s, pp. 134:1–134:25, 2014.

[42] T. Rompf and M. Odersky, “Lightweight modular staging: A pragmatic
approach to runtime code generation and compiled DSLs,” in Proceed-
ings of the Ninth International Conference on Generative Programming
and Component Engineering, pp. 127–136, 2010.

[43] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley, and S. Amarasinghe,
“Portable performance on heterogeneous architectures,” in Proceedings
of the Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, vol. 48, pp. 431–444,
ACM, 2013.

