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Abstract

Functional algorithmic skeletons promise a high-level pro-

gramming interface for distributed-memory clusters that free

developers from concerns of task decomposition, schedul-

ing, and communication. Unfortunately, prior distributed

functional skeleton frameworks do not deliver performance

comparable to that achievable in a low-level distributed pro-

gramming model such as C with MPI and OpenMP, even

when used in concert with high-performance array libraries.

There are several causes: they do not take advantage of

shared memory on each cluster node; they impose a fixed

partitioning strategy on input data; and they have limited

ability to fuse loops involving skeletons that produce a vari-

able number of outputs per input.

We address these shortcomings in the Triolet program-

ming language through a modular library design that sep-

arates concerns of parallelism, loop nesting, and data par-

titioning. We show how Triolet substantially improves the

parallel performance of algorithms involving array traver-

sals and nested, variable-size loops over what is achievable

in Eden, a distributed variant of Haskell. We further demon-

strate how Triolet can substantially simplify parallel pro-

gramming relative to C with MPI and OpenMP while achiev-

ing 23–100% of its performance on a 128-core cluster.

Categories and Subject Descriptors D.3.2 [Programming

Languages]: Language Classifications—Applicative (func-

tional) languages, Concurrent, distributed and parallel lan-

guages; D.3.4 [Programming Languages]: Processors—

Optimization

Keywords Algorithmic skeletons; Loop fusion; Parallel

programming
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1. Introduction

Clusters of multicore computers are an inexpensive way to

furnish parallel computing capacity. Data-parallel algorith-

mic skeletons—higher-order functions capturing common

patterns of parallel computation—have been proposed as a

simple, high-level interface for multicore [6, 12, 16, 19] and

distributed [11, 15, 22] parallel programming. Skeletons de-

compose work into parallel tasks and distribute that work

across a parallel machine, allowing a programmer to focus

on what parallelization strategy to use from a skeleton li-

brary, rather than how it is implemented. Additionally, dis-

tributed functional skeletons send data and collect results

from tasks, allowing programmers to focus on what data

to use rather than how to move it between cluster nodes.

Separating out the low-level details of parallelism allows

developers to write parallel code that resembles sequential

code, wherein the choice of parallel skeletons determines

the details of parallel execution. However, while prior dis-

tributed functional skeleton frameworks have demonstrated

their ease of use, they do not approach lower-level parallel

programming models in absolute performance [14, 21].

For example, the molecular modeling application cutcp

has a computationally demanding loop nest computing a

floating-point histogram. It loops over a collection of atoms,

visits all grid points near the atom, and updates the grid

point with the electric potential induced by the atom. In

idiomatic sequential Haskell, this could be written using

a list comprehension as shown below, assuming suitable

definitions of floatHist, f, and gridPts.

floatHist [f a r | a <- atoms, r <- gridPts a]

In the list comprehension, the generator a <- atoms loops

over a list of atoms, the generator r <- gridPts a com-

putes and loops over the grid points near each atom, and the

call f a r computes the electrostatic potential induced by

an atom at a grid point. The list of results is collected into

a histogram by floatHist. A naı̈ve attempt at paralleliza-

tion might replace floatHist and the traversal of atoms by

a distributed implementation written in Eden, a distributed

extension of Haskell [15]. One could write a distributed

floatHist function that partitions an input list across tasks



and performs histogramming within each task and use it as

shown below.

floatHistD (\x -> [f r x | r <- gridPts x]) atoms

This code demonstrates the attractive simplicity of algorith-

mic skeletons, but its per-thread performance is an order of

magnitude lower than sequential C chiefly due to the over-

head of list manipulation, indicating that there is substantial

room for improvement.

A performance-oriented high-level programmer could

optimize the parallelized code by writing custom skeletons

that minimize network communication and implementing

each task with imperative code manipulating unboxed ar-

rays. Since the combination of Eden and high-performance

array libraries has not been studied before, we evaluate this

high-performance style as a reference point. These opti-

mizations can indeed yield sequential performance within a

small multiplicative factor of C. However, this kind of man-

ual transformation is exactly what skeletons should make

unnecessary. Moreover, scalability remains limited because

Eden does not exploit sharing on each cluster node.

We identify and address three problems that cause dis-

tributed functional skeletons to fail to achieve high perfor-

mance. First, irregular loops, where each element of an in-

put data structure yields a dynamically determined number

of outputs, cannot be fused and parallelized using prior loop

representations. As in the example above, it is common to

write a parallel loop as a multi-stage process of generating,

then consuming a collection of temporary values. We use

a novel representation of fusible, nested loops to isolate ir-

regularity within inner loops, allowing irregular generation

phases to be fused with consumers into a single parallel loop.

Unlike prior methods, our representation balances support

for random access to collections, needed to efficiently par-

allelize loops and implement index-based operations such as

zip, with support for cheap opportunistic partitioning of col-

lections, needed to fuse and parallelize irregular loops.

Second, we treat data distribution strategies separately

from work distribution strategies, enabling a parallel skele-

tons to use a data distribution mechanism appropriate for

their inputs. Prior data-parallel distributed skeleton frame-

works performed both data and work distribution by parti-

tioning a list or array of inputs across processors. For some

algorithms, this may be inefficient due to the overhead of

processing linked lists, because tasks can be implemented

more efficiently on chunks of data than on individual el-

ements, and/or because some input data are unnecessarily

replicated for use in multiple loop iterations. Separating

data distribution reduces the programmer effort and run-time

overhead of reorganizing data before a parallel loop.

Third, skeletons need to be able to employ different algo-

rithm implementations at the sequential, shared-memory,

and distributed scales, taking advantage of in-place data

structure updates at the sequential level and avoiding copy-

ing at the shared-memory level. Eden’s scalability, in partic-

ular, is limited by its inability to take advantage of shared

memory to reduce communication cost. We utilize a two-

level parallel architecture, with message passing across

nodes and work-stealing thread parallelism in each node.

Our parallel skeletons follow this two-level architecture, ex-

ploiting shared memory and in-place updates.

We have implemented these solutions in the library, com-

piler, and runtime of the Triolet programming language. We

evaluate the performance and scalability of four programs

written in Triolet, Eden, and C+MPI+OpenMP on a 128-

core (8 nodes
�

16 cores per node) cluster. Each of these

benchmarks presents challenges that the Eden code must

work around, whereas Triolet’s library and runtime allow

a cleaner expression of parallelism to achieve high perfor-

mance. The C+MPI+OpenMP implementations, with their

highly efficient low-level communication and synchroniza-

tion, provide a reference point for estimating the overhead in

Triolet’s algorithms and runtime system. Triolet consistently

yields higher parallel performance than Eden, achieves 23–

100% of the performance of C+MPI+OpenMP versions, and

yields a speedup up to 9.6–99
�

relative to simple loops in

sequential C.

2. Overview

In typical data-parallel algorithmic skeleton libraries, each

skeleton is a higher-order function containing a carefully im-

plemented pattern of parallel communication and work dis-

tribution. Invoking a skeleton effectively instantiates and in-

serts code into a parallel loop. To conform their algorithm

to an available skeleton, users of a library often have to reg-

ularize their algorithms and reorganize their data structures.

These adaptations add complexity and overhead to parallel

programs.

Triolet’s skeleton library has a more modular design that

builds parallel loops from loosely coupled components man-

aging data movement, work distribution, result collection,

and the composition of loops. Support for composition of

nested loops accommodates irregular and nested parallel

loops. The data movement component accommodates differ-

ent looping patterns. The work distribution component sup-

ports block-based decomposition of multidimensional arrays

for memory locality. By implementing library functions in

terms of these components rather than parallel loops, the li-

brary permits simple source code to execute efficiently.

From an application developer’s perspective, Triolet

presents an extensible set of data-parallel higher-order func-

tions that help manipulate aggregate data structures. A Trio-

let parallel loop resembles sequential Python code that uses

list comprehensions and higher-order functions to manip-

ulate lists. For example, a function for computing the dot

product of two vectors could be defined as follows.

def dot(xs, ys):

return sum(x*y for (x, y) in par(zip(xs, ys)))



This statement defines dot as a function of xs and ys. The

body of dot calls the library functions zip, par, map, and

sum to sum the elementwise product of xs and ys. The

call of map arises from desugaring the list comprehension

(. . .for. . .in. . . ) [27], used here to mutiply the input lists

elementwise after zipping them together. Loops execute se-

quentially by default. The call to par designates the loop as

parallel, directing the library to use all available parallelism

when computing the dot product.

Though not computationally intensive enough to benefit

from cluster parallelism, dot exhibits scaling and efficiency

challenges that also limit the performance of realistic work-

loads. Multiple library calls commonly express what should

be a single parallel loop. In this case, Triolet fuses the calls of

zip, map, par, and sum into a single loop to minimize com-

munication and memory traffic. Input data should be iden-

tified and, if appropriate, partitioned across cluster nodes.

Triolet partitions the arrays xs and ys into subarrays and

distributes them to cluster nodes. Results from each thread

should be aggregated locally within each node to minimize

the cost of communicating results. Each thread computes its

own private sum, and these are summed on each node, pro-

duce a single value per node that is sent back to the main

thread. While dot has a relatively simple looping pattern,

some algorithms loop over irregular or multidimensional it-

eration spaces, which adds complexity to loop fusion, work

distribution, and result collection.

Triolet uses a library-driven approach to generating ef-

ficient parallel loops. Optimized, modular components are

assembled into loops by library code, effectively decou-

pling loop optimizations from the design of the compiler.

Compile-time optimization on user code often yields stat-

ically generated loops. Library-driven loop optimizations

have been introduced previously [5, 7, 12], and Triolet

adopts some of these techniques. Triolet’s compiler incor-

porates a suite of general-purpose optimizations on a typed,

functional intermediate language [17, 26]. The library uses

this optimization infrastructure like a metaprogramming

framework: library functions examine their arguments and

assemble functions embodying the code to execute, and as

long as this assembly process depends only on statically

known information, that code will be built and simplified

during compile-time optimizations. In the simplified pro-

gram, the optimizer is often able to replace costly dynamic

features such as anonymous functions and heap allocation by

cheaper control flow and register-allocatable local variables.

Some library functions return lazily evaluated arrays,

called iterators, to enable loop fusion. An iterator repre-

sents a collection of tasks, each of which computes some

result values. Typical parallel iterator representations bear a

close connection to parallel loops: the collection of tasks is

encoded as a function of the loop counter (the loop body)

together with a range of loop counter values (the iteration

space) [1, 12]. This is an indexed iterator representation,

since elements are retrieved by index. In the parallel dot

function, zip, par, and map return iterators. The call to

zip represents a parallel loop whose body is the function

λi � �
xs � i � , ys � i ��� that, when called with a value for pa-

rameter i, retrieves the ith elements of both input arrays

and tuples them together. (We use Haskell syntax for ex-

amples of code within the optimizer, and use brackets for

array subscripting.) This iterator is passed to par, which

leaves the loop body unchanged. The call to map constructs

a new iterator whose body performs the work of zip (with

the function call below), unpacks the result (with the case

expression), and multiplies values:

λk � case � λi � �
xs � i � , ys � i ���
	 k

of
�
x, y ��� x � y

Compile-time optimizations eliminate the function call and

temporary tuple, producing λk � xs � k �
� ys � k � , which per-

forms zip’s array lookups followed immediately by map’s

multiplication. Thus, a carefully chosen iterator representa-

tion allows compile-time optimizations to fuse loops.

Indexed representations are not suited to parallelizing ir-

regular loops, where the set of loop iterations to execute is

determined dynamically. A common use of irregular paral-

lelism is to generate many inputs, then conditionally skip

inputs or expand them into multiple inputs for subsequent

processing. This can be parallelized by partitioning the ini-

tial set of inputs evenly across parallel processes. To support

this work distribution, a loop body should not implement the

operation “get the nth intermediate result,” which requires

a communication phase to count intermediate results, but

rather “get each intermediate result generated from the nth

input.” Each parallel process loops over a subset of inputs

and, in an inner loop, generates and processes intermediate

results from each input.

To provide the convenience of a shared memory pro-

gramming interface on a cluster, iterator-based paralleliza-

tion needs a way to automatically send data over the net-

work. Prior iterator-based parallelization either assumes a

shared memory for all parallel tasks [1, 12], sends each dis-

tributed task a copy of all objects that are referenced by its

input [15, 22], or statically analyzes memory references to

find the subarrays used by distributed tasks [11]. While the

last approach has the potential to maximize performance by

eagerly sending each task only the subset of data it needs,

it is challenging to provide a static array reference analy-

sis that yields precise results in the presence of higher-order

functions and pointer data structures.

Triolet’s library takes advantage of the access patterns im-

plicit in higher-order function calls to partition arrays across

parallel tasks without the need for strong compile-time anal-

ysis. Many algorithms employ regular array traversals that

can be cleanly expressed as compositions of library calls. To

track traversal patterns, each iterator contains a representa-

tion of both a set of parallel tasks and a set of input data.



Iterators include methods for extracting a subset, or slice, of

the input. When a subset of tasks is sent to a cluster node, the

corresponding slice of the input data is extracted and sent as

well. This feature enables a parallel 2D block decomposition

of dense matrix multiplication to be written in two lines of

code. The matrix productAB is computed (after transposing

B for faster memory access) by evaluating dot products of

rows of A with rows of BT :

zipped_AB = outerproduct(rows(A), rows(BT))

AB = [dot(u, v) for (u, v) in par(zipped_AB)]

Here, dot is taken to be defined as sequential code so that the

computation of a single output block is sequential. The calls

to the library function rows reinterpret the two-dimensional

arrays A and BT as one-dimensional iterators over array

rows, where each array row is a one-dimensional iterator

over elements. The zip-like library function outerproduct

creates a 2D iterator paring rows of A with rows of BT .

Together, the functions on the first line determine a block

distribution of input data. Iterators returned by rows asso-

ciate each task with the corresponding array row. From these

iterators, outerproduct associates each 2D matrix block

with the rows of A and B corresponding, respectively, to the

block’s vertical and horizontal extent. When parallel tasks

are launched by the comprehension on the second line of

code, each task will be sent only the array rows that it needs

to compute its output.

The library uses several techniques to efficiently exe-

cute parallel loops for multidimensional, nested, and irreg-

ular problems. Operations that compute a new value or ar-

ray, such as dot’s summation or matrix multiplication’s con-

struction of the output array, loop over and execute an itera-

tor’s tasks and collect results. Nested and irregular iteration

spaces are treated as a loop nest, and the library chooses a

sequential or parallel implementation for each nesting level

individually.

Due to the differences in communication costs over

shared memory and over a network, many algorithms ben-

efit from different inter-node and intra-node parallelization

strategies. Unfortunately, the majority of existing program-

ming languages and libraries either present a “flat” view of

parallelism where all cores are equally remote from one an-

other, as in Eden, or require developers to explicitly manage

the distribution of work across levels, as in C with MPI and

OpenMP. Triolet uses a two-level work distribution policy

that first distributes large units of work to cluster nodes, then

subdivides this work among cores within a node. Because

library code cannot examine user code to decide whether a

loop is worth paralellizing, it relies on user hints. The library

functions par and localpar set a flag in an iterator to indi-

cate that it should be parallelized across the entire system or

across a single node, respectively. Single-node paralleliza-

tion leverages shared memory to obtain speedup on loops

that do very little work per byte of data, such as matrix

transposition. A skeleton in the library consists of code that,

depending on the input iterator’s parallelism hint, invokes

low-level skeletons for distributing work across nodes, cores

within a node, and/or sequential loop iterations in a task.

3. Implementation

This section describes how Triolet’s library, compiler, and

runtime execute algorithmic skeletons efficiently. Section 3.1

explains prior approaches to loop fusion. Section 3.2 ex-

plains how Triolet’s iterators build on prior loop fusion tech-

niques. Section 3.3 generalizes iterators for programming

with multidimensional arrays. Section 3.4 describes how

Triolet manages parallel tasks and communication.

3.1 Loop Fusion Background

Triolet builds on several existing loop fusion strategies in

order to avoid the shortcomings of each. This section intro-

duces these fusion strategies.

At the most basic level, a library may operate only on

data structures whose contents are stored in memory, such

as arrays. Each skeleton is a loop that reads its entire in-

put and writes its entire output. Compilers may fuse loops

by rewriting known patterns of function calls [2, 6, 20].

For example, any pair of calls to filter matching the pat-

tern filter g � filter f a � can be fused by rewriting it to

filter � λx � f x && g x � a. The rewritten code does the

work of both filter calls in one pass over a. Because this ap-

proach involves designing ad-hoc fusion rules for each pat-

tern, its effectiveness is limited by a library implementor’s

ability to anticipate and make rules for all combinations of

function calls. A more systematic approach is necessary to

fuse a larger inventory of loops, especially as nested loops

multiply the space of possible looping patterns.

In an imperative setting, loop fusion interleaves the exe-

cution of loops on an iteration-by-iteration basis [13]. How-

ever, loops with variable numbers of outputs, such as filter,

have dependence patterns that can’t be expressed purely in

terms of loop iterations. In the example above, the first iter-

ation of the second call to filter may depend on any iteration

of the first call to filter. Consequently, iteration-based loop

fusion techniques cannot fuse this example.

Triolet uses a relatively simple and robust approach to

loop fusion that depends only on general-purpose compile-

time optimizations. This approach uses what we call virtual

data structures in place of some of a program’s arrays. Sev-

eral virtual data structure encodings, listed as the rows of

Figure 1, have been developed to enable loop fusion. What

they have in common is that they all contain a function that

is called to compute the data structure’s contents. Use of

a function effectively defers computation until results are

needed. General-purpose compile-time optimizations inline

the function at the site where it is used, typically in a loop

body, fusing loops.

The rest of this section presents the virtual data structures

in Figure 1 and explains why each encoding has limited



Parallel Zip Filter
Nested

traversal
Mutation

Indexer yes yes no no no

Stepper no yes yes slow no

Fold no no yes yes no

Collector no no yes yes yes

Figure 1. Features of fusible virtual data structure encod-

ings. A “no” means the feature cannot be used or its output

is not fusible. A “slow” means the feature may be much less

efficient than a handwritten loop.

applicability. We then introduce a new encoding used by

Triolet that builds on these encodings to work around their

limitations. We use as an example a list holding consecutive

integers � 0, 1, 2 � . When used as the input to a skeleton, this

list is analogous to a counted loop with three iterations.

Indexers An indexer encoding consists of a size and a

lookup function. The ith element of a data structure is re-

trieved by calling the lookup function with argument i. The

example list would be encoded as the pair � 3, λi � i � : the

list’s size is 3, and its ith element is i. Mapping a function f

over this data structure builds a new virtual list whose lookup

function calls the original lookup function, then calls f on

the result: � 3, λj � f ��� λi � i � j ��� , which the compiler

simplifies to � 3, f � . Summing the elements of this data struc-

ture proceeds by looping over all indices less than 3, calling

the lookup function on each, and summing the results. The

map function and many other indexer-based skeletons con-

sist of straight-line code that builds an indexer. Loop fusion

becomes a function inlining task, which is typically easier

for compilers to accomplish than traditional loop transfor-

mations.

Since indexers allow any element to be retrieved indepen-

dently of the others, indexers can be used in parallel loops.

In C++, readable random access iterators fill the role of in-

dexers. Thrust [1] and Repa [12] use indexers internally to

generate fused parallel loops. Parallel loop bodies in func-

tional languages [8, 23] resemble indexers, though they are

special syntactic forms rather than ordinary functions.

While the random-access nature of indexers affords par-

allelism, it also makes indexers unsuitable for irregular loops

or loops that write mutable data structures. The user of an in-

dexer is free to choose how to execute the indexer’s lookup

function, making it difficult to predict side effects when an

indexer is created. Triolet prevents such unpredictability by

disallowing parallel access to mutable data structures. Func-

tions that produce a variable number of outputs per input

cannot be fused by encoding them with indexers. This in-

cludes the skeletons concatMap for nested traversal and

filter for conditionally skipping elements. To retrieve a value

at one index, one must compute some information about all

lower indices, which wastes work. For instance, to look up

the output at index 10, it’s necessary to find the producers of

all output elements up to index 10. The usual solution is to

precompute the necessary index information using a parallel

scan, but because parallel scan is a multipass algorithm, fu-

sion is impossible; all temporary values have to be saved to

memory at some point.

Steppers A stepper encoding is a coroutine that returns

one data structure element each time it is run, until all el-

ements have been extracted. Steppers are not parallelizable

since it is only possible to retrieve the “next” element at any

given time. In C++ and other imperative languages, read-

able forward traversal iterators play the role of steppers. The

Haskell vector library, which provides high-performance se-

quential loops over arrays, uses the fusible stepper encoding

presented by Coutts et al. [7]. In this encoding, a stepper

is a data structure containing a suspended loop state and a

function for stepping to the next loop iteration. The stepper

function returns a result value holding the loop’s result and

the starting state of the next iteration, or else indicating that

the last iteration has completed. Similarly to indexers, loop

fusion extends a stepper with code that does further process-

ing on the stepper’s result and state.

Steppers are a fairly versatile sequential encoding. Their

main drawback is that, although nested traversals are fusible,

they are not reliably optimized to nested loops [7]. In our two

Eden applications that use nested loops, using steppers was

roughly a factor of two to five slower than imperative loop

nests.

Folds A data structure can be encoded as a function that

folds over its elements in some predetermined order. The

function calls a given worker function on each data structure

element to update an accumulator. The list � 0, 1, 2 � has the

following fold encoding.

λw z � let loop i x � if i ��� 3

then x

else loop � i � 1 ��� w i x �
in loop 0 z

Its meaning is clearer after unrolling the loop to get λw z �
w 2 � w 1 � w 0 z ��� , which calls w to update an accumulator

with the values 0, 1, and 2 in turn. Nested traversals do not

pose the same optimization trouble for folds that they do for

steppers. In a nested traversal, the worker function passed

into w calls another fold function that contains its own loop.

Inlining moves the value of w to its callsite in the body of

loop, bringing the inner fold function along to produce a

nested loop.

Unlike indexers and steppers, the fold encoding offers

no flexibility in execution order. A fold processes each data

structure element in sequence without interruption. This in-

flexibility rules out fusion of zip skeletons, which pair up el-

ements at corresponding indices in multiple data structures.

A fused zip skeleton would read from each of several data

structures in an interleaved fashion. It is a common pattern

to store data in a structure-of-arrays format, then zip the ar-



rays together in preparation for a loop that uses all the fields.

Folds do not support this pattern.

Collectors A collector is an imperative variant of a fold.

Instead of updating an accumulator, the worker function

uses side effecting operations to update its output value.

Collectors are used by Scala’s collection library [20] and

SkeTo [25]. Triolet uses collectors in sequential code for

histogramming and for packing variable-length output skele-

tons’ results into an array.

Conversions The rows of Figure 1 are ordered by how

much the user of a virtual data structure can control its

execution order. Indexers offer the greatest control, step-

pers offer less, and folds and collectors offer no control.

A higher-control encoding can be converted to a lower-

control one. Although no encoding supports zips and mu-

tation, for instance, one could fuse histogram(n, map(f,

zip(a, b))) by zipping and mapping over indexers, con-

verting the result to a collector, and computing a histogram

of the result. A collector that is created from indexer � n, f �
loops over all indices up to n, calls f on each index, and

passes the generated values to the worker function:

idxToColl � n, f � �
λw s ! let loop i s2 � if i ��� n

then s2
else loop " i # 1 $�" w " f i $ s2 $

in loop 0 s

However, this conversion removes the potential for paral-

lelization, since a collector’s use of side effects is not com-

patible with parallel execution.

Triolet’s iterator library is layered on top of a library

of fusible operations for manipulating each of these virtual

data structures. We use conventional names for these library

functions along with a subscript to indicate what encoding

they are implemented for, e.g., mapIdx, mapStep, mapFold,

andmapColl are map functions over indexers, steppers, folds,

and collectors. We use conversion functions named by their

input and output encoding, such as idxToColl.

3.2 Hybrid Iterators

There is at least one fusible encoding supporting every de-

sirable feature in Figure 1, and this suggests that a hy-

brid encoding could overcome the limitations in the pre-

vious section. Triolet’s iterator encoding represents a loop

nest with either an indexer or stepper encoding at each

nesting level. To illustrate, consider the computation of

sum(filter(lambda x: x > 0), xs), which selects the

positive numbers in array xs and sums them. Suppose xs

has the value % 1, & 2, & 4, 1, 3, 4 ' . The call to filter returns

% 1, 1, 3, 4 ' . For the implementation of sum, indexers are the

only parallelizable, fusible form at our disposal so far. Using

indexers, each thread is assigned a specific number of ele-

ments to process. For instance, one thread may sum the first

two values while the other sums the last two. Unfortunately,

computing which index each output of filter resides at

requires a complete pass through the data, making a fusible

indexer encoding impossible.

A better fusion strategy is to partition the input array xs

across threads and have each thread sequentially filter and

sum one partition. The key to fusion is that our implementa-

tion of filter does not reassign indices, but rather produces

either zero or one output at each index so that it is compat-

ible with indexer-based parallelization and fusion. Concep-

tually, the call to filter transforms % 1, & 2, & 4, 1, 3, 4 ' into

the nested list %�% 1 ' , %(' , %(' , % 1 ' , % 3 ' , % 4 ')' , then the call to sum

partitions this nested list into %*% 1 ' , %(' , %('*' and %�% 1 ' , % 3 ' , % 4 '�'
and sums the two parts in parallel. By encoding the nested

list as an indexer of steppers, we ensure that the filter com-

putation is fused with the summation.

In general, a loop may have arbitrarily nested filter op-

erations and/or traversals. Each level of nesting may pro-

duce a predetermined number of values using an indexer, or

a variable number of values using a stepper. Thus an iterator

can consist of an indexer containing values, a stepper con-

taining values, an indexer containing iterators, or a stepper

containing iterators. We name these cases IdxFlat, StepFlat,

IdxNest, and StepNest and make them the constructors of

the Iter data type:

data Iter α where

IdxFlat :: Idx α ! Iter α

StepFlat :: Step α ! Iter α

IdxNest :: Idx " Iter α $+! Iter α

StepNest :: Step " Iter α $,! Iter α

Nested iterators can be understood as loop nests where all

loops work together to produce a sequence of values.
Triolet’s iterators are flexible enough to fuse all the dif-

ficult patterns in Figure 1, while also keeping indexer-based
loops available so that they can be distributed across par-
allel tasks. Figure 2 shows Iter-based implementations of
some common skeleton functions. The functions zip, filter,
concatMap, and collect implement four of the five features
from Figure 1. Section 3.4 addresses the remaining feature,
parallelism. Reductions are illustrated by sum. Each func-
tion examines its input iterator’s constructor (i.e., what loop
structure was passed in), and executes code suitable for han-
dling that loop structure. Thus, most functions in Figure 1
are defined by four equations, one for handling each con-
structor. A function’s output loop structure is always deter-
mined solely by its input loop structure, ensuring that any
composition of known function calls can be simplified stati-
cally. In the sum-of-filter example, iterating over the input
array produces an IdxFlat term. The compiler inlines the
implementation of filter for this form of iterator, which
yields an IdxNest term as the argument to sum. The compiler
inlines sum for this form of iterator, exposing a recursive call



zip - IdxFlat xs ./- IdxFlat ys .10 IdxFlat - zipIdx xs ys .
zip xs ys 0 StepFlat - zipStep - toStep xs .+- toStep ys .�.

where

toStep - IdxFlat xs .10 idxToStep xs

toStep - StepFlat xs .20 xs

toStep - IdxNest xss .10
concatMapStep toStep - idxToStep xss .

toStep - StepNest xss .20 concatMapStep toStep xss

filter f - IdxFlat xs .10
IdxNest - mapIdx - StepFlat 3 filterStep f 3 unitStep . xs .

filter f - StepFlat xs .10 StepFlat - filterStep f xs .
filter f - IdxNest xss .10 IdxNest - mapIdx - filter f . xss .
filter f - StepNest xss .10 StepNest - mapStep - filter f . xss .
concatMap f - IdxFlat xs .10 IdxNest - mapIdx f xs .
concatMap f - StepFlat xs .10 StepNest - mapStep f xs .
concatMap f - IdxNest xss .10

IdxNest - mapIdx - concatMap f . xss .
concatMap f - StepNest xss .10

StepNest - mapStep - concatMap f . xss .
collect - IdxFlat xs .10 idxToColl xs

collect - StepFlat xs .10 stepToColl xs

collect - IdxNest xss .10
λw s1 4 idxToColl xss - λxs s2 4 collect xs w s2 . s1

collect - StepNest xss .10
λw s1 4 stepToColl xss - λxs s2 4 collect xs w s2 . s1

sum - IdxFlat xs .10 sumIdx xs

sum - StepFlat xs .10 sumStep xs

sum - IdxNest xss .20 sumIdx - mapIdx sum xss .
sum - StepNest xss .10 sumStep - mapStep sum xss .

Figure 2. Triolet iterator functions.

to sum that is also inlined:

sum - filter f - IdxFlat ys .�.
0 sum - IdxNest - mapIdx - StepFlat 3 filterStep f 3 unitStep . ys .�.
0 sumIdx - mapIdx - sum 3 StepFlat 3 filterStep f 3 unitStep . ys .
0 sumIdx - mapIdx - sumStep 3 filterStep f 3 unitStep . ys .
Iterators are completely eliminated, leaving behind indexer

and stepper code that further simplifies to a simple loop nest.

Zipping together two loops involves pairing up corre-

sponding iterations. Since indexers allow elements to be re-

trieved by iteration number, flat indexers can be zipped into

a new indexer. This preserves the potential parallelism in

regular loops, such as when zipping arrays together. Other

forms of iterator involve variable-length outputs and require

scanning through outputs to find corresponding elements.

These are zipped together sequentially using steppers. The

variable-output functions filter and concatMap work simi-

larly to each other. They add a level of loop nesting in or-

der to preserve potential outer-loop parallelism and avoid

the overhead of stepper-based nested traversals. Functions

that consume iterators, like collect and sum, transform each

level of nesting into a loop.

The functions in Figure 2 need to be inlined to enable

subsequent optimizations. Compilers are normally reluctant

to inline recursive functions, as doing so can blow up code

size and/or execution time. We implement constructor-aware

inlining control to inline recursive functions only when it

would benefit subsequent optimization. We manually anno-

tate library functions that should be inlined only when the

compiler knows their Iter argument’s constructor, which en-

sures that inlining only occurs when it would expose fur-

ther optimization opportunities. Inlining eventually termi-

nates because each level of recursion consumes one level of

statically known loop nesting.

3.3 Multidimensional Iterators

So far, the Iter data type is good for variable-length and

nested looping patterns, but is awkward for looping over

multidimensional arrays. On the other hand, indexer-based

libraries like Repa and loop-based functional languages like

Single Assignment C are well-suited to loops over multidi-

mensional arrays, but they do not support fusion of irregu-

lar loops. This section generalizes Iter for multidimensional

loops and arrays.

Matrix transposition is an example of an algorithm that is

awkward to write using one-dimensional arrays. The trans-

pose of a matrix A can be defined by giving a loop that

retrieves input matrix element A[x,y] for a given output

position (y, x). For a given matrix A whose dimensions

are w and h, this would be written [A[x,y] for (y, x)

in arrayRange((0,0), (h, w))]. The functions map

(implicitly called by the comprehension) and arrayRange

are overloaded for multidimensional iteration spaces.

Simulating a multidimensional loop using one-dimensional

iterators would introduce overhead. Expressing transposi-

tion in flattened form, using a 1D loop over a 1D array,

would require expensive division and modulus operations to

reconstruct the 2D indices x and y from a 1D loop index.

Alternatively, using an array of arrays adds an additional

pointer indirection to subsequent lookups.

We introduce a type class called Domain to characterize

index spaces. Each index space is a type that is a member

of Domain. One-dimensional organizations of data, as we

have been discussing up until now, have type Seq. A value of

type Seq holds an array length. Two-dimensional arrays have

a width and a height, so a two-dimensional domain Dim2

holds a pair of integers.

data Seq 5 Seq Int

data Dim2 5 Dim2 Int Int

Each domain type d has an associated type Index d whose

values identify individual indices within a domain. An

Index Seq is an Int and an Index Dim2 is an 6 Int, Int 7 .
Functions that deal with the indices represented by a

domain, for instance by looping over a domain’s indices,



are overloaded for different domain types. The definition of

class Domain, below, lists overloaded types and functions

that are used in this paper.

class Domain d where

type Index d

idxToFold :: 8 α 9 β 9 β :+9 β 9 Idx d α 9 β

idxToColl :: 8 α 9 State 9 State :+9 Idx d α 9
State 9 State

zipWith :: 8 α 9 β 9 γ :+9 Iter d α 9 Iter d β 9
Iter d γ

The functions idxToFold and idxToColl convert an indexer

to a fold or collector that loops over all points in the domain.

The function zipWith visits all points in the intersection of

two domains.

We also generalize Idx to arbitrary domains d:

type Idx d α ;=< d, Index d 9 α >
Finally, we generalize Iter over arbitrary domains. Every

Idx α is converted to a Idx d α, producing the following

generalized algebraic data type.

data Iter d α where

IdxFlat :: Idx d α 9 Iter d α

StepFlat :: Step α 9 Iter Seq α

IdxNest :: Domain d ? Idx d 8 Iter Seq α :+9 Iter Seq α

StepNest :: Step 8 Iter Seq α :/9 Iter Seq α

Only the IdxFlat constructor can create iterators of arbi-

trary domain types. It simply allows an Idx d α to be used

through the Iter interface. The other three constructors con-

tain variable-length traversals, which do not preserve array

dimensionality—removing arbitrary elements of a 2D array

does not in general yield a 2D array, for instance—so it does

not make sense for them to build multidimensional iterators.

3.4 Parallelism

Triolet’s runtime uses Threading Building Blocks for thread

parallelism and MPI for distributed parallelism. We im-

plement wrapper functions that expose these interfaces as

generic parallel skeletons. On top of these wrappers, we

layer high-level skeletons that allow users to select what

degree of parallelism to use.

We add a field to Iter holding a flag to indicate what de-

gree of parallelism to use. Users designate an iterator as par-

allel by calling localpar (for thread parallelism) or par

(for distributed and thread parallelism) on it, thereby set-

ting the flag. Parallel skeletons inspect the flag and invoke

the appropriate distributed, threaded, and sequential func-

tions. For instance, a distributed-parallel histogram performs

a distributed reduction, which performs one threaded reduc-

tion per node, which sequentially builds one histogram per

thread.

Triolet includes runtime facilities for serializing and dese-

rializing objects to byte arrays. The compiler automatically

generates serialization code from the definitions of alge-

braic data types. Functions are represented by heap-allocated

closures and are also serialized. Serializing an object tran-

sitively serializes all objects that it references. Pointers to

global data are serialized as a segment identifier and off-

set. Since the majority of serialized data typically resides in

pointer-free arrays, such arrays are serialized using a block

copy to minimize serialization time.

3.5 Array partitioning

In parallel array traversals, the library identifies what array

subset a task will use and extracts the subset to send over the

network. Consider the loop sum(par(xs)). If parallelized

on two nodes, each node should receive half of the array

xs. Iterating over xs produces an indexer function λi 9
xs @ i A that reads an element of xs , and loop fusion merges

this with additional code from sum. Using the compiler-

generated serialization, when the function is serialized and

sent to cluster nodes, the function’s reference to xs would

drag the entire array along with it.

We enhance the functionality of indexers so that the li-

brary can partition arrays that are traversed in parallel. First,

we reorganize indexers’ lookup functions into a (potentially

large) data source and a value-extracting function. In the ex-

ample, the functionλi 9 xs @ i A is reorganized into the source

array xs and an extractor that takes the source as an addi-

tional parameter, λxs i 9 xs @ i A . This function is cheap to

serialize since it does not directly reference the array.

Then, we extend the indexer type with a method for ex-

tracting a data subset or slice. An indexer’s slice method

builds a new indexer whose data source holds only the data

used by the extracted slice. When a distributed parallel loop

partitions work across nodes, it extracts and sends the slice

needed for each node’s chunk of work. The slice extraction

process extracts subarrays, which are serialized and sent by

the runtime. This approach is flexible enough to efficiently

handle common cases of regular array traversal. No copying

overhead is introduced in inner loops since data sources are

used in-place and an indexer’s functions are typically inlined

into their use sites. Data sources may involve multiple ar-

rays, such as in the result of a call to zip or outerproduct,

without requiring a step of data copying and reorganization.

4. Evaluation

To show how a solid skeleton framework can deliver high

performance without burdening programmers, we have con-

verted four Parboil benchmarks [24] into Triolet, Eden and

C+MPI+OpenMP. For each benchmark, we normalize per-

formance as speedup against sequential C to provide a mea-

sure of absolute performance. As a highly efficient imple-

mentation layer, the C+MPI+OpenMP serves as a useful ref-

erence point against which to evaluate the scalability and
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Figure 3. Sequential execution time of benchmarks.

parallel overhead of the high-level languages. We measure

sequential execution time (Figure 3) to compare the effi-

ciency of the code without communication overhead. We use

similar parallelization strategies across languages in order to

reveal the overhead imposed by each language.

C code is compiled with GCC 4.7.3 -O3. Eden code is

compiled with GHC-Eden 7.6.1 -O2 with LLVM 3.2 as the

backend. All three versions use OpenMPI as a distributed

communication layer. Tests are run on a group of 8 Amazon

EC2 cluster compute nodes with two 8-core Xeon E5-2670

processors per node (a total of 16 cores per node). Hyper-

threading is disabled. Parboil includes a range of input prob-

lem sizes for each benchmark. We select data sets with a se-

quential C running time between 20 and 200 seconds. This

is large enough for the C+MPI+OpenMP code to scale up to

the full test system. Parallel times are the average of 5 runs.

4.1 Eden Overview

Eden is a distributed parallel extension of the Glasgow

Haskell Compiler (GHC) [15]. Eden uses either MPI or

PVM to create and communicate among parallel execution

contexts. Processes do not share memory.

We write parallel loops using map and reduce skeletons

with sequential tasks that manipulate unboxed arrays. In

array manipulation code, we follow a high-level Haskell

programming style using the vector and Repa libraries where

possible. Where this is inefficient, we rewrite tasks to use

imperative loops and mutable arrays: for nested loops that

build histograms in tpacf and cutcp, and for performing

random-access array writes when building a 2D array from

subarrays in sgemm.

We implement parallel skeletons that use a two-level

work distribution similar to Triolet and C+MPI+OpenMP.

The main process distributes work to one process in each

node, which further distributes work to other processes in the

same node. This avoids the communication bottleneck with

the main process in Eden’s skeleton library, where the main

process directly communicates with all other processes.
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Figure 4. Scalability and performance of mri-q imple-

mented in different languages.

4.2 MRI-Q

The main loop of mri-q computes a non-uniform3D inverse

Fourier transform to create a 3D image. This computation is

straightforward to parallelize. In Triolet, it can be distilled

down to the following two lines of code.

[sum(ftcoeff(k, r) for k in ks)

for r in par(zip3(x, y, z))]

This consists of a parallel map over image pixels, summing

contributions from all frequency-domain samples. Although

this code contains only a call to par to control paralleliza-

tion, it yields parallel performance nearly on par with man-

ually written MPI and OpenMP (Figure 4).

In Eden, we build arrays in chunked form, as lists of

1k-element vectors, so that the runtime can distribute sub-

arrays to processors while still benefiting from efficient ar-

ray traversal. Unfortunately, Eden loses performance across

the entire range. Eden’s backend misses a floating-point op-

timization on sinf and cosf calls, resulting in about 50%

longer run time on a single thread (Figure 3). While Eden

scales fairly well, tasks occasionally run significantly slower

than normal. With more nodes, it is more likely that a task

will be delayed, reducing the observed scalability.

C+MPI+OpenMP is the most verbose, dedicating more

code to partitioning data across MPI ranks than to the actual

numerical computation. While mri-q’s communication pat-

tern fits MPI’s scatter, gather, and broadcast primitives, these

were not as efficient as the Triolet code; the fastest version

used nonblocking, point-to-point messaging.

4.3 SGEMM

The scaled product αAB of two 4k by 4k-element matrices

is computed in sgemm. We parallelize the multiplication after

transposing matrices so that the innermost loop accesses

contiguous matrix elements.
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Figure 5. Scalability and performance of sgemm imple-

mented in different languages.

All three versions use a 2D block-based parallel decom-

position that sends each worker only the input matrix rows

that it needs to compute its output block. As discussed

in Section 2, this data decomposition can be written us-

ing Triolet’s rows and outerproduct library functions.

Similar decompositions are written as part of the parallel

C+MPI+OpenMP and Eden code. This took over 120 lines

of code in each language, adding development complexity

and detracting from the code’s readability.

Transposition is a sequential bottleneck in Eden since it

does too little work to parallelize profitably on distributed

memory. We parallelize it over shared memory on a single

node in Triolet and C+MPI+OpenMP. At 128 cores, trans-

position takes 35% of Eden’s execution time.

All versions of the code exhibit limited scalability due

to transposition time and communication time (Figure 5).

C+MPI+OpenMP and Triolet spend similar amounts of time

in communication and in parallel computation, resulting in

similar performance. Triolet’s performance stops rising to-

ward 8 nodes as it spends more time constructing mes-

sages. At 8 nodes, 40% of Triolet’s overhead relative to

C+MPI+OpenMP is attributable to the garbage collector [3],

which is slow when allocating objects comprising tens of

megabytes. The garbage collection overheadwas determined

by comparing to the run time when libc malloc was sub-

stituted for garbage-collected memory allocation. The Eden

code fails at 2 nodes because the array data is too large for

Eden’s message-passing runtime to buffer.

4.4 TPACF

The tpacf application analyzes the angular distribution of

observed astronomical objects. It uses histogramming and

nested traversals, presenting a challenge for conventional

fusion frameworks. Three histograms are computed using

different inputs. One loop compares an observed data set

with itself; one compares it with several random data sets;

1 def correlation(size, pairs):

2 values = (score(size, u, v)

3 for (u, v) in pairs))

4 return histogram(size, values)

5

6 def randomSetsCorrelation(size, corr1, rands):

7 empty = [0 for i in range(size)]

8 def add(h1, h2):

9 return [x + y for (x, y) in zip(h1, h2)]

10 return reduce(add, empty,

11 par(corr1(r) for r in rands))

12

13 def selfCorrelations(size, obs, rands):

14 def corr1(rand):

15 indexed_rand = zip(indices(domain(rand)), rand)

16 pairs = localpar((u, v)

17 for (i, u) in indexed_rand

18 for v in rand[i+1:])

19 return correlation(size, pairs)

20 return randomSetsCorrelation(size, corr1, rands)

Figure 6. Triolet code of tpacf’s self-correlation loop

and one compares each random data set with itself. We

parallelize across data sets and across elements of a data set.

Triolet allows the common code of the three loops to be

factored out and written once. The function on lines 1–4 of

Figure 6) contains the common part of all three histogram

computations, dealing with correlating pairs of values taken

from a pair of data sets. This code maps score over all given

pairs of objects to compute a similarity between members of

each pair and collects the results into a new histogram. On

lines 6–11, randomSetsCorrelation computes a parallel

histogram over a collection of random data sets. Parameter

corr1 computes a histogram from one random data set, and

rands is an array of random data sets. The function body

consists of a parallel reduction that computes histograms of

individual data sets and adds them together.

The selfCorrelations of random data sets are com-

puted in lines 13–20. The function corr1 computes the

self-correlation of one data set rand (lines 14–18). Self-

correlation examines all unique pairs of values (rand[i],

rand[j]) where j > i. Lines 15–18 define a triangular

loop building all unique pairs of elements (u, v) from

rand. Line 19 computes a correlation histogram from these

pairs. Line 20 runs corr1 in parallel over the random

data sets and sums the generated histograms. The other

two parallel histogramming loops are defined similarly to

selfCorrelation.

Triolet abstracts away the number of threads in the sys-

tem, while the Eden and C+MPI+OpenMP contain addi-

tional code to adapt to the number of threads. The Eden code

subdivides data in order to produce enough work to occupy

all threads. The C+MPI+OpenMP code examines the num-

ber of threads in order to privatize histograms. For a pro-
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Figure 7. Scalability and performance of tpacf imple-

mented in different languages.

grammer, identifying and inserting this code entails one or

more iterations of performance optimization.

Triolet and C+MPI+OpenMP scale similarly (Figure 7).

Triolet is slightly faster due to a more even distribution of

computation time across nodes. Eden has somewhat worse

sequential performance and a higher communication over-

head.

4.5 CUTCP

The cutcp benchmark is taken from a molecular model-

ing application. It computes the electrostatic potential in-

duced by a collection of charged atoms at all points on a

grid. An atom’s charge affects the potential at grid points

within a distance c. The body of the computation is essen-

tially a floating-point histogram: it loops over atoms, loops

over nearby grid points, skips points that are not within dis-

tance c, and updates the grid at the remaining points. This

computation is done by nested loops and conditionals in the

C code or nested traversals in Triolet. Subsets of atoms are

processed in parallel.

Performance of Triolet and C+MPI+OpenMP saturates

quickly (Figure 8), as the overhead of summing the large

output arrays dominates execution time. As in sgemm, Triolet

has significant garbage collection overhead. Approximately

60% of Triolet’s execution time at 8 nodes arises from allo-

cation overhead.

5. Related Work

The use of higher-order functions as a parallel programming

interface has a long history. Vector parallel languages extract

fine-grained parallel loops from programs, then fuse them

into larger tasks [2, 6]. The vector execution model maxi-

mizes load balancing and parallelism in irregular workloads,

sometimes at the cost of high communication and mem-

ory overheads. Later work reduces these overheads in some
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Figure 8. Scalability and performance of cutcp imple-

mented in different languages.

cases [4, 9]. Another line of development follows a loop ex-

ecution model [8, 12, 23], related to or based on indexers.

Loop fusion has been achieved through iteration-based

loop transformations [8, 23], compile-time deforestation [28],

expression rewriting [2, 9, 18, 20], and virtual data struc-

tures [7, 12]. Delite [20] performs compiler-driven fusion

and parallelization of nested traversals.

Algorithmic skeletons abstract out the communication

and coordination aspects of parallel programs.Gonzalez [10]

surveys recent work on algorithmic skeletons. Triolet’s pro-

gramming model is most similar to the data-parallel, dis-

tributed, functional algorithmic skeleton frameworksHDC [11],

PMLS [22], and Eden [15]. These frameworks incorpo-

rate compile-time generation or library implementations of

skeleton code for higher-order functions. Eden also provides

low-level primitives for implementing new skeletons. These

frameworks do not address irregular loops, do not combine

shared memory with message passing, and (in PMLS and

Eden) do not provide skeletons for array computation.

6. Conclusion

Functional algorithmic skeletons are a simple, high-level in-

terface to parallel programming, but their overhead relative

to lower-level programming models has limited their useful-

ness. Triolet demonstrates that the most severe performance

limitations can be eliminated, yielding superior performance

without increased programming complexity. On code that

is not communication-bound, performance rivals that of C

with MPI and OpenMP. The necessary changes to runtime

behavior are familiar to low-level programmers: storing data

in arrays, fusing loops, partitioning arrays across distributed

tasks, and utilizing shared memory and in-place array up-

dates. Triolet allows skeletons to make those changes under

the hood through library enhancements, coupled with com-

piler and runtime support for data serialization and shared

memory parallelism.
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