
45

SAVI Objects: Sharing and Virtuality Incorporated

IZZAT EL HAJJ, University of Illinois at Urbana-Champaign, USA and Hewlett Packard Labs, USA
THOMAS B. JABLIN, University of Illinois at Urbana-Champaign, USA and MulticoreWare Inc, USA
DEJAN MILOJICIC, Hewlett Packard Labs, USA
WEN-MEI HWU, University of Illinois at Urbana-Champaign, USA

Direct sharing and storing of memory objects allows high-performance and low-overhead collaboration
between parallel processes or application workflows with loosely coupled programs. However, sharing
of objects is hindered by the inability to use subtype polymorphism which is common in object-oriented
programming languages. That is because implementations of subtype polymorphism in modern compilers
rely on using virtual tables stored at process-specific locations, which makes objects unusable in processes
other than the creating process.

In this paper, we present SAVI Objects, objects with Sharing and Virtuality Incorporated. SAVI Objects
support subtype polymorphism but can still be shared across processes and stored in persistent data structures.
We propose two different techniques to implement SAVI Objects and evaluate the tradeoffs between them. The
first technique is virtual table duplication which adheres to the virtual-table-based implementation of subtype
polymorphism, but duplicates virtual tables for shared objects to fixed memory addresses associated with
each shared memory region. The second technique is hashing-based dynamic dispatch which re-implements
subtype polymorphism using hashing-based look-ups to a global virtual table.

Our results show that SAVI Objects enable direct sharing and storing of memory objects that use subtype
polymorphism by adding modest overhead costs to object construction and dynamic dispatch time. SAVI
Objects thus enable faster inter-process communication, improving the overall performance of production
applications that share polymorphic objects.

CCS Concepts: • Software and its engineering→Object oriented languages; Polymorphism; Concur-
rent programming structures; Memory management;

Additional Key Words and Phrases: Managed data structures, Shared memory regions, Inter-process commu-
nication, Dynamic dispatch, Devirtualization

ACM Reference Format:
Izzat El Hajj, Thomas B. Jablin, Dejan Milojicic, and Wen-mei Hwu. 2017. SAVI Objects: Sharing and Virtuality
Incorporated. Proc. ACM Program. Lang. 1, OOPSLA, Article 45 (October 2017), 24 pages. https://doi.org/10.
1145/3133869

1 INTRODUCTION
Sharing memory objects across processes or storing them to be used by future programs is important
in modern parallel and collaborative workloads. A common technique for sharing (and storing)

Authors’ addresses: Izzat El Hajj, University of Illinois at Urbana-Champaign, 1308 W Main St, Urbana, IL, 61801, USA ,
Hewlett Packard Labs, USA, elhajj2@illinois.edu; Thomas B. Jablin, University of Illinois at Urbana-Champaign, 1308 W
Main St, Urbana, IL, 61801, USA , MulticoreWare Inc, USA, jablin@illinois.edu; Dejan Milojicic, Hewlett Packard Labs, 3000
Hanover St, Palo Alto, CA, 94304, USA, dejan.milojicic@hpe.com;Wen-mei Hwu, University of Illinois at Urbana-Champaign,
1308 W Main St, Urbana, IL, 61801, USA, w-hwu@illinois.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
2475-1421/2017/10-ART45
https://doi.org/10.1145/3133869

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

https://doi.org/10.1145/3133869
https://doi.org/10.1145/3133869
https://doi.org/10.1145/3133869

45:2 Izzat El Hajj, Thomas B. Jablin, Dejan Milojicic, and Wen-mei Hwu

objects is serializing them to special intermediate formats such as XML, JSON, YAML, or Protocol
Buffers [Varda 2008]. Such formats provide an architecture- and language-neutral representation of
data achieving the most portability, however, their performance overhead makes them unnecessarily
burdensome in situations where architecture- and language-neutrality are not of concern. In such
situations, direct sharing of objects via managed memory techniques effectively enables faster
inter-process communication. Such memory management techniques have also received recent
attention from non-volatile memory programming models centered around persistent in-memory
data-structures [Bhandari et al. 2016; Chakrabarti et al. 2014; Coburn et al. 2011; Volos et al. 2011].
This renewed interest is in part due to the fact that load-store domains will become very large,
sharing will be much more common, and long latencies will be exposed [Asanovic 2014; Bresniker
et al. 2015; Narayanan and Hodson 2012], therefore efficient object sharing will be critical for
application performance.
A primary challenge with direct sharing of objects is ensuring the validity of pointers across

virtual address spaces. Existing managed memory techniques deal with explicit data pointers by
fixing the mapping of managed memory segments or using offset pointers that are independent of
virtual address mapping. However, these techniques can only handle plain old data (POD) types;
they do not deal with implicit pointers introduced by subtype polymorphism which is common in
object oriented programming languages.
Subtype polymorphism enables the creation of class hierarchies where super classes establish

APIs with varying implementations in each subclass. Subtype polymorphism makes it easier to deal
with heterogeneous collections of objects efficiently. Although most language specifications do not
specify an implementation for subtype polymorphism [Lippman 1996], most compilers including
GCC, LLVM, and MSVC++ use virtual tables.

In a virtual-table-based implementation of subtype polymorphism, each polymorphic type has a
unique virtual table containing pointers to all polymorphic functions, also called virtual functions
in C++ terminology. Every object of a type that supports subtype polymorphism will contain
a pointer to that type’s virtual table. Within a process, two objects of the same type will have
the same virtual table pointer, but this is not true for objects in different processes. In different
processes, virtual tables of the same type are likely stored at different locations because different
programs have different collections of types, and therefore different placements for their virtual
tables. Even two processes executing the same program may store a type’s virtual table at different
addresses due to address space layout randomization. Consequently, when a process creates an
object, the virtual table pointer it stores in that object is not usable by other processes which store
their virtual tables elsewhere, which makes these objects not shareable across processes. For this
reason, state-of-the-art libraries for managed shared memory such as Boost [Boost C++ Libraries
2015a] forbid the use of subtype polymorphism inside shared data structures [Boost C++ Libraries
2015b].
To surmount this limitation, we propose SAVI1 Objects, objects with Sharing and Virtuality

Incorporated. SAVI Objects are designed to support subtype polymorphism for shared in-memory
data-structures while mitigating the impact on the costs of polymorphic object construction and
polymorphic function dispatch. Our initial implementations target the C++ programming language,
but similar subtype polymorphic languages can also be supported using the same techniques. In
this paper, we present and evaluate two low-level implementations of SAVI Objects: virtual table
duplication and hashing-based dynamic dispatch.

In virtual table duplication, an object of a specific type constructed in a shared memory region is
initialized with a virtual table pointer that points to a duplicate virtual table of that type located at

1Pronounced like savvy

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

SAVI Objects: Sharing and Virtuality Incorporated 45:3

a fixed virtual address associated with that region. Any process mapping that region, duplicates its
virtual table for that type to the same fixed location. All processes can then use traditional dynamic
dispatch through the duplicate virtual table.
In hashing-based dynamic dispatch, virtual table pointers are replaced with hash values of the

object’s type that are universally unique with high probability. Dynamic dispatch is then performed
by using the hash value of the type and that of the function being called to look up a function
pointer in a global virtual table that is unique to the process.

We make the following contributions:

(1) We propose two novel techniques for inter-process subtype polymorphism: virtual table
duplication and hashing-based dynamic dispatch.

(2) We implement these two techniques in a real system and analyze the tradeoffs between them.
(3) We conduct a detailed performance evaluation of the two techniques using microbenchmarks

that help isolate their cost in different scenarios.
(4) We apply these techniques to a production object serialization application that uses poly-

morphic objects, thereby avoiding traditional inter-process communication overhead and
improving performance significantly.

The rest of this paper is organized as follows. Section 2 motivates the problem while providing
background information on subtype polymorphism and object sharing. Section 3 describes the
design and implementation of virtual table duplication and Section 4 describes that of hashing-based
dynamic dispatch. Section 5 evaluates the two techniques using microbenchmarks as well as a
production object serialization application. Section 6 reviews related work and Section 7 concludes.

2 BACKGROUND
2.1 Subtype Polymorphism
Subtype polymorphism is a feature in many object-oriented languages that permits super classes (or
base classes) in a class hierarchy to define high-level APIs that are implemented by different subclass
(or derived classes). Subtype polymorphism enables programs to provide different implementations
for the same API, and also enables clean manipulation of heterogeneous collections of objects.
In each case, subtype polymorphism helps to simplify software structure, reduce code size, and
enhance code readability.

Many modern compilers implement subtype polymorphism using virtual tables. A virtual table
(VT) is a table of virtual functions associated with a particular type. A virtual function is a poly-
morphic member function of a class that often has different implementations for different derived
classes, and invocations of that function should call the version of the function corresponding to
the dynamic type of the invoking object. In some languages such as Java, all functions are virtual
by default, whereas in other languages such as C++, virtual functions must be specified explicitly
using the virtual qualifier.

Fig. 1 shows a C++ example of a type A that uses subtype polymorphism by explicitly declaring
functions bar and baz as virtual. In this example, a VT is created for the type A that stores a function
pointer to each virtual function declared in A, namely bar and baz; function foo is not included
because it is not declared virtual. Every object constructed of type A contains, in addition to the
explicitly declared fields x and y, a hidden field that stores a pointer to A’s VT. For the type B which
inherits from A, the object layout is appended with the additional fields declared in B, namely z,
and the VT layout of B is appended with the additional virtual functions declared in B, namely
qux. Implementations are actually more complicated in the case of multiple inheritance, but this
simplification is sufficient for the purpose of this paper.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

45:4 Izzat El Hajj, Thomas B. Jablin, Dejan Milojicic, and Wen-mei Hwu

class A {

int x;

float y;

void foo();

virtual void bar();

virtual void baz();

};

&VTA

x

y

&bar

&baz

instance of A VTA

class B : public A {

int z;

virtual void baz();

virtual void qux();

};

&VTB

x

y

z

&bar

&baz

&qux

instance of B VTB

A::foo

...

A::bar

...

A::baz

...

B::baz

...

B::qux

...

Code

Fig. 1. Layout of objects in a virtual table (VT) based implementation of subtype polymorphism

When a virtual function is called on an object, the VT pointer is loaded from the object, the
function pointer is obtained from the VT at its fixed offset, and then the function is invoked. This
process is called dynamic dispatch. In the example in Fig. 1, if an object pointed to by a pointer
of type A* invokes the function baz, then the VT pointer is loaded from that object, the second
function pointer &baz is loaded from the VT, and then the function is invoked via that pointer.
Thus, regardless of whether the dynamic type of the object was A or B, the correct &baz pointer
will be loaded and invoked.

2.2 Incompatibility with Sharing of Objects
VTs are typically stored as statically initialized data in a binary. Because different programs, or
different versions of the same program, use different sets of types, the ordering and placement of
the VTs for those types in different binaries will vary. Even the same program, if compiled with
different optimizations, could result in a different overall layout, thereby different offsets for the VTs
in the binary. Moreover, even if processes execute the same program using the same dynamically
linked binaries, they could end up having different locations for their VTs due to address space
layout randomization (ASLR).
As a result, one must assume that VTs of the same type can be placed at different locations in

different processes and that polymorphic objects containing pointers to those VTs are unusable
outside the process that creates them. This makes using polymorphic objects inside shared data
structures infeasible. An example of this situation is shown in Fig. 2. In this example, process Pc
creates an object of type A inside a shared region, and initializes the object’s VT pointer to 0xbead
which is the location of A’s VT in process Pc . When the object is later shared with a different
process Pu which places A’s VT at a different address 0xbeef, the VT pointer to 0xbead in process
Pu becomes a dangling pointer and causes Pu to execute junk code or to crash when a dynamic
dispatch takes place.
For the aforementioned reasons, shared data structures have not been able to use subtype

polymorphism in main-stream programming systems. For example, Boost, the state-of-the art C++
library for handling shared memory and memory-mapped files, says in its documentation regarding
this issue: “This problem is very difficult to solve, since each process needs a different virtual table
pointer and the object that contains that pointer is shared across many processes. Even if we map the
mapped region in the same address in every process, the virtual table can be in a different address in
every process. To enable virtual functions for objects shared between processes, deep compiler changes
are needed and virtual functions would suffer a performance hit” [Boost C++ Libraries 2015b]. The

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

SAVI Objects: Sharing and Virtuality Incorporated 45:5

0xbead

VTA(Pc)
0xbead

creating process (Pc)

0xbead

VTA(Pu)

0xbead

user process (Pu)

0xbeef

gl
o

b
al

s
sh

ar
e

d
 r

e
gi

o
n

gl
o

b
al

s
sh

ar
e

d
 r

e
gi

o
n

invalid!

Fig. 2. Sharing of objects with subtype polymorphism: VT pointers are unusable by other than the creating
process

objective of this paper is to investigate alternative designs for enabling virtual functions in objects
shared between processes, to explore the depth of compiler changes needed, and to evaluate the
resulting performance implications.
It is noteworthy that this problem is one instance of a more general problem which is sharing

objects containing pointers to global data such as function pointers and string constants. In these
other cases, the pointers to global data are stored in the objects explicitly by the programmer
in the source code. Therefore, it is possible for programmers to workaround these issues at the
source code level. However, VT pointers are different in that they are not created explicitly, but
rather they are created implicitly by the compiler as a byproduct of its implementation of subtype
polymorphism. For this reason, a compiler solution is necessary to handle VT pointers which is
why we focus on them in this paper.

2.3 Data Structure Sharing Mechanism
For the rest of this paper, we assume that data structures are shared across processes through
mapping of memory regions (or segments) containing those data structures in and out of virtual
address spaces. Regions can bemapped concurrently bymultiple processes. Thus sharing throughout
the paper refers to both sharing between multiple simultaneously executing processes via shared
memory segments, or storing objects to be used by later executing processes via memory-mapped
files.

3 VIRTUAL TABLE DUPLICATION
3.1 Overview
The first proposed solution for enabling sharing of objects with subtype polymorphism is virtual
table duplication. In this solution, when a polymorphic object is allocated in a shared region, the VT
of the object’s type is duplicated to a fixed virtual address specific to that region. This duplicate is
known as the Duplicate Virtual Table (DVT). The VT pointer of the allocated object is set to be the
location of the DVT instead of the original VT. All processes using the shared region also duplicate

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

45:6 Izzat El Hajj, Thomas B. Jablin, Dejan Milojicic, and Wen-mei Hwu

0xdeed

VTA(Pc)
0xbead

creating process (Pc)

gl
o

b
al

s
sh

ar
e

d
 r

e
gi

o
n

0xdeed

VTA(Pu)

0xbead

user process (Pu)

0xbeef

DVTA(Pc)
0xdeed

`
D

V
Ts

DVTA(Pu)
0xdeed

gl
o

b
al

s
sh

ar
e

d
 r

e
gi

o
n

D
V

Ts

Fig. 3. Overview of virtual table duplication

their VTs to the same fixed virtual address location. This makes the objects usable in all processes.
The duplication of VTs happens lazily for reasons that are explained later in this section.

Fig. 3 shows how this technique impacts the example in Fig. 2. In this example, the creating
process Pc , upon constructing the object of type A in the shared region, allocates a DVT for type A
at the address 0xdeed and uses 0xdeed instead of 0xbead to initialize the object. In the user process
Pu , the DVT for the type A is also allocated at address 0xdeed, thereby making the object also
usable in Pu . Note that the DVTs of Pc and Pu are not themselves shared; each process duplicates
its own local VT to ensure that the VT contains the correct state for that process.

3.2 Implementation Details
To accomplish the actions just described, multiple supporting look-up data structures are needed.
We begin by describing these data structures then go into the steps taken at each relevant event to
realize this technique.
Examples of the look-up data structures used throughout this technique is shown in Fig. 4. We

define these data structures as follows and explain how and why they are initialized and used later
as we describe the various steps.

• Range Table (RT): The RT is a data structure that is local to a process that takes a virtual
memory address and returns the region within which that address is located in that process.

• VT Look-up Table (VLT): The VLT is a data structure that is local to a process that takes a
string with the mangled name of a type and returns the address of that type’s VT in that
process.

• DVT Look-up Table (DLT): The DLT is a data structure that is stored inside a shared region
with support for concurrent access. It contains, for each polymorphic type having objects
stored in that region, a mapping between the mangled names of those types and the fixed
virtual addresses of those types’ DVTs. That is, given a string with a mangled type name,
it returns the address of that type’s DVT, or given the address of a DVT, it returns a string
with a mangled type name.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

SAVI Objects: Sharing and Virtuality Incorporated 45:7

0xdeaf

VTA

0xaced

DVTA
0xdeaf

0xface

0xfade

0xfade

VTB

DVTA

DVTB

0xbade

0xbead

0xbeef

0xcafe

0xdead

0xdeed

0xface

0xfeed

Range Table (RT):

VT Look-up Table (VLT):

R1’s DVT Look-up Table (DLT):

R2’s DVT Look-up Table (DLT):

DLT Cache:

[0xbead,0xbeef] R1

[0xcafe,0xdead] R2

[0xdeaf,0xdeed] R1

[0xface,0xfeed] R2

mangled(A) 0xaced

mangled(B) 0xbade

mangled(A) 0xdeaf

mangled(A) 0xface

mangled(B) 0xfade

typeidx(A),R1 0xdeaf

typeidx(A),R2 0xface

typeidx(B),R2 0xfade

gl
o

b
al

s
R

1
R

1
D

V
Ts

R
2

R
2

D
V

Ts

Fig. 4. Look-up data structures used in virtual table duplication

• DLT Cache: The DLT Cache is a data structure local to a process that takes a region and a
type index (not a string) and returns the address of the DVT of that type for that region.

On process entry, the RT and VLT are initialized. The RT is initialized to be empty of ranges,
meaning that the entire virtual address range does not point to any shared region. The VLT is
initialized by inspecting the symbols of the program’s static binary and dynamically linked binaries
and extracting those symbols corresponding to VTs.
Another step performed at process entry is the creation of a dispatch fault handler. A dispatch

fault handler is a segmentation fault handler that is used to perform lazy duplication of a type’s VT
on the first dynamic dispatch on an object of that type in a specific region. The details of how it is
triggered and what it does will be explained later in this section.
On region mapping, the region being mapped is registered in the RT. Moreover, the region’s

DLT is scanned to identify where in virtual memory all the region’s DVTs must be mapped. Those
mappings are then reserved and registered in the RT as well.

In the example in Fig. 4, we show the contents of the RT after mapping the two regions R1 and R2
into the process. The RT records that R1 has two virtual address ranges associated with it: 0xbead
through 0xbeef (for the region itself) and 0xdeaf through 0xdeed (for the region’s DVTs). It also
contains similar entries for R2. The figure also shows the DLTs of the two regions.
Although memory is reserved for the DVTs, the duplication does not happen yet. Instead, the

reserved pages are protected such that the first access to a DVT triggers a dispatch fault handler to
duplicate that table. There are several reasons why the duplication is done lazily and not when
the region is mapped. One reason is that not all types in the region may exist in the program, or
they may exist but not be used in a specific run. Thus, we do not want to attempt to duplicate a VT
that is non-existent or unused. Another reason is that new types may be introduced in a region by
another concurrent process after the region is mapped. The VTs for these new types will be missed
if duplication happens on region mapping.

On region unmapping, the region is removed from the RT and the memory pages reserved for
that region’s DVTs are released.

On object construction, the location where the object has been allocated is used to look up the
corresponding region of allocation in the RT. If the object is not allocated in a shared region, the

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

45:8 Izzat El Hajj, Thomas B. Jablin, Dejan Milojicic, and Wen-mei Hwu

object’s original VT pointer is kept and nothing further needs to be done. If the object is allocated in
a shared region, the region’s DLT is used to look up the address of the region’s DVT corresponding
to the type of the object being constructed. The obtained DVT address is then used to initialize the
object’s VT pointer. There can be multiple pointers to initialize in the case of multiple inheritance
which is supported.

If an address is not found, this indicates that it is the first time an object of this type is allocated
in this region. Therefore, new memory is allocated to store the DVT for that type and the DLT is
updated accordingly. The memory for the DVT is just reserved and protected, while the actual
duplication happens lazily when the first dynamic dispatch takes place. We over-allocate memory
for the DVT to allow it to grow if more polymorphic functions are added to future versions of the
class. DVTs must be allocated at page granularity so that they can be independently protected for
lazy duplication.
Because the DLT stores mangled type names, DLT look-ups must perform string comparisons

which can be very expensive if done whenever an object is constructed. A faster way to perform
these look-ups is by using the type indexes provided by the C++ runtime. However, these type
indexes are only meaningful within the same process and cannot be used across processes. That is
why the DLT Cache is used. The first time an object of a specific polymorphic type is constructed
in a specific region, a string-based look-up is used on the DLT. The result is then entered into the
DLT Cache to be used by all subsequent look-ups.

The reason the RT is needed by the constructor is that the constructor is agnostic to the region of
allocation. Maintaining this agnosticism is needed for preserving separation of concerns between
allocation and initialization of objects, which is important for applications that wish to do their
own memory management. Without the RT, pervasive code changes would be needed to pass the
region information to the constructor and all code that uses the class would need to be recompiled.
On dynamic dispatch, since the layout of the object and representation of the VT has not

changed, nothing special needs to be done for recurrent dynamic dispatches. Only the first dynamic
dispatch per type per region (i.e., the first access to a DVT) will trigger the dispatch fault handler
to perform lazy duplication to initialize that DVT. The handler does the following. First, it looks up
the faulting virtual address in the RT to identify the region it corresponds to. Next, it looks up the
faulting address in the region’s DLT to identify the type name. Finally, it looks up the address of the
type’s original VT in the VLT, and copies the original VT to the faulting address while removing
the protection so that future dispatches can proceed normally.

3.3 Compiler Transformation
Minimal compiler changes are needed to implement virtual table duplication. The actions performed
on process entry are performed when the SAVI runtime library is loaded without needing any
compiler transformations. Registering/unregistering of regions requires modifying the region man-
agement library (we use Boost) to invoke the proper routines when the region is mapped/unmapped.
The only compiler transformation we perform to make an object a SAVI Object is inserting code
into the constructor which calls a runtime function to obtain the DVT pointer and then sets the
object’s VT pointer accordingly. As a result, the only code that needs to be recompiled is the code
that defines constructors of polymorphic types that use SAVI Objects. If the region management
library is header-only, then code that maps/unmaps regions also needs to be recompiled.
These transformations are transparent to programmers and there are no changes to the pro-

gramming model. Programmers simply need to annotate which classes they would like to use
SAVI Objects with (i.e., those involved in sharing) so that the compiler does not transform all
polymorphic types unnecessarily.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

SAVI Objects: Sharing and Virtuality Incorporated 45:9

3.4 Limitations
The limitation of this technique is when the fixed virtual address of the DVTs desired by a region
conflicts with another memory mapping. Randomization of the virtual address assigned to the DVTs
could minimize the chance of this situation occurring, but cannot eliminate it completely. In the
case of a conflict, the region cannot be mapped into the virtual address space until the conflicting
mapping is unmapped. Recent OS techniques have also been proposed that could also be useful in
addressing this issue by providing processes with the ability to sustain multiple mappings [El Hajj
et al. 2016; Litton et al. 2016]. Otherwise, the data structure will need to be (de)serialized using
traditional approaches.
While it is true that we have simply replaced the problem of fixed VT mapping with that of

fixed DVT mapping, the implications of latter are much less severe. VT collision means that the
program binary itself cannot be mapped into the virtual address space for the process to execute,
and avoiding such collision would require all compilers to coordinate to agree where the VT for
every possible type should be placed. On the other hand, DVT collision means that only a specific
memory region cannot be mapped into the virtual address space, however the process itself can
still execute and can recover from such collision using the techniques mentioned earlier.
Note that this technique does not require the regions themselves to be mapped to fixed virtual

address locations, just their DVTs. Whether or not the regions need to be mapped to fixed virtual
addresses depends on whether the programmer uses absolute or relative data pointers, which is
independent of whether or not the objects are polymorphic and therefore not relevant to SAVI
Objects. The reason we do not use offset pointers for the VTs themselves is that, in this technique,
we try not to deviate from the traditional way objects are laid out and the way dynamic dispatch is
implemented to minimize compiler changes and the scope of code that needs to be recompiled.

4 HASHING-BASED DYNAMIC DISPATCH
4.1 Overview
The second proposed solution for enabling sharing of objects with subtype polymorphism is
hashing-based dynamic dispatch. In this solution, we change the way polymorphic objects are laid
out and the way dynamic dispatch is implemented. An object no longer stores a pointer to its type’s
VT. Instead, it stores a 64-bit hash value of the type’s name that is universally unique with high
probability. That is, there is very low probability (see Section 4.4) that two class names hash to
the same 64-bit value. To perform dynamic dispatch, the hash value of the type is combined with
a hash value of the function being dispatched, and together used to look up an entry in a global
virtual table (GVT) which contains pointers to all the polymorphic functions in the process.
Fig. 5 illustrates how this technique impacts the example in Fig. 2. Instead of storing a pointer

in the constructed object, the creating process Pc stores a hash value of the type A designated as
hash(A). When the polymorphic function bar is invoked in any process, the hash value of bar for
that process, designated as hash(bar), is used along with hash(A) to look up the location of A::bar
in that process’ GVT.

4.2 Implementation Details
To accomplish the actions just described, the following steps are taken at each relevant event to
realize this technique.
On process entry, the GVT is constructed by inspecting the symbols of the program’s static

binary and dynamically linked binaries. The GVT takes as input the hash value of a type and that
of a function and returns the pointer to that function for that type.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

45:10 Izzat El Hajj, Thomas B. Jablin, Dejan Milojicic, and Wen-mei Hwu

hash(A)

GVT(Pc)

creating process (Pc)

hash(A)

GVT(Pu)

user process (Pu)

hash(bar) hash(bar)

#

#

gl
o

b
al

s
sh

ar
e

d
 r

e
gi

o
n

gl
o

b
al

s
sh

ar
e

d
 r

e
gi

o
n

Fig. 5. Overview of hashing-based dynamic dispatch

On object construction, the hash value of the type is stored in the polymorphic object instead
of the VT pointer. The type’s hash value is known statically so there is no hash value computation
overhead.

On dynamic dispatch, the hash value of the type is loaded from the object and combined with
the hash value of the function to look up the location of the desired function in the GVT. The
function obtained is then invoked.

4.3 Compiler Transformation
Although the steps for this technique may seem simpler than those of virtual table duplication,
the compiler transformations needed to achieve these steps are more involved. However, because
the transformed code does not use virtual tables and makes no assumptions about the object’s
implicit layout, the transformations can be performed at the source-to-source level without the
need for deep compiler changes. The source-to-source transformation is described in the rest of
this subsection, and an example of the transformation is shown in Fig. 6.

All virtual function declarations and definitions are stripped from their virtual qualifiers which
effectively removes the implicit VT pointer from the class. Instead, a field is inserted in the topmost
class in the hierarchy which uses virtual functions (see _h variable in class A in Fig. 6(b)), and
this field is initialized with the hash value of the type by the constructors. There can be multiple
fields to initialize in the case of multiple inheritance which is supported.

The topmost declaration or definition of a virtual function in the class hierarchy has its definition
replaced with a member function that performs a GVT look-up and an invocation of the obtained
function (see functions A::foo and B::bar). The definitions of the function in the lower classes of
the hierarchy are all removed. As a result, any original dynamic dispatch of the function in source
code that uses the class will become a static dispatch of this look-up function without the need for
that source code to be transformed (the code will still need to be recompiled).

All definitions of virtual functions throughout the class hierarchy are replaced with declarations
of global friend functions. This is shown in the definitions of B::foo, B::bar, C::foo, and C::bar.
However, notice that A::foo does not have a corresponding friend function because it is a pure

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

SAVI Objects: Sharing and Virtuality Incorporated 45:11

class A {
public:
A() { ... }
virtual void foo()=0;

};

class B : public A {
public:
B() { ... }
virtual void foo() {
// B::foo work

}
virtual int bar() {
// B::bar work

}
};

class C : public B {
public:
C() { ... }
virtual void foo() {
// C::foo work

}
virtual int bar() {
// C::bar work

}
};

class A {
protected:

unsigned long long _h;
public:
A() : _h(hash(A)) { ... }
void foo() {

void(*_f)(A*)=gvt(_h,hash(foo));
_f(this);

}
};

class B : public A {
public:
B() : _h(hash(B)) { ... }
int bar() {

int(*_f)(B*)=gvt(_h,hash(bar));
return _f(this);

}
friend void _B_foo(A*);
friend int _B_bar(B*);

};
void _B_foo(A* _thisA) {

B* _this = (B*) _thisA;
// B::foo work *

}
int _B_bar(B* _thisB) {

B* _this = (B*) _thisB;
// B::bar work *

}

class C : public B {
public:
C() : _h(hash(C)) { ... }
friend void _C_foo(A*);
friend int _C_bar(B*);

};
void _C_foo(A* _thisA) {

C* _this = (C*) _thisA;
// C::foo work *

}
int _C_bar(B* _thisB) {

C* _this = (C*) _thisB;
// C::bar work *

}

* In all friend functions, explicit
and implicit uses of this are
replaced with _this ►

(a) Original Code

(b) Transformed Code(c) Global Virtual Table

hash(B),hash(foo) &_B_foo

hash(B),hash(bar) &_B_bar

hash(C),hash(foo) &_C_foo

hash(C),hash(bar) &_C_bar

Fig. 6. Example code transformation of hashing-based dynamic dispatch

virtual function declaration without a body. The friend functions take an additional parameter for
the this object. The type of that parameter must be a pointer to the topmost class which declares
the virtual function in the original code and is responsible for the look-up. The bodies of the friend
functions cast that parameter to the correct type and store it in the _this variable, then execute
the original code of the function replacing explicit and implicit uses of this with _this.

As a result of these compiler transformations, the code that needs to be recompiled is code which
defines constructors and virtual functions of polymorphic classes that use SAVI Objects as well as
code which uses these classes.
The initialization of the GVT is performed on process entry when the SAVI runtime library is

loaded without needing any compiler transformation. Fig. 6(c) shows an example of the contents of
the GVT for the example program. One optimization we perform is to use special names for the

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

45:12 Izzat El Hajj, Thomas B. Jablin, Dejan Milojicic, and Wen-mei Hwu

Table 1. Comparing the two solutions

Item Virtual Table Duplication Hashing-based Dynamic Dispatch
Object construction Look up the region in the range table, look

up the type’s DVT address in the region’s
DLT, and initialize the object’s VT pointer(s)
accordingly.

Store a type hash value instead of a VT
pointer in the object.

Dynamic dispatch No change. Only the first dispatch triggers
the dispatch fault handler to perform lazy
duplication.

Compute an additional hash value and look
up the function pointer in a GVT instead of
a VT.

Compiler transfor-
mation and code
changes

Transform constructors. Modify region man-
agement library functions for mapping and
unmapping regions.

Add field for class hash value. Transform con-
structors and virtual function declarations
and definitions.

Recompilation Need to recompile code the defines construc-
tors of client polymorphic types.

Need to recompile code the defines construc-
tors and virtual functions of client polymor-
phic types, and code that uses these types.

Limitations Need to resolvemapping conflicts or fall back
on traditional (de)serialization when regions
require conflicting addresses for their DVTs.

Need to resolve name conflicts when two
types in a single program have conflicting
hash values.

Overall comparison Incurs less overhead on dynamic dispatch. Incurs less overhead on object construction.
of advantages Less code to be recompiled. Conflicts detectable at link time.

friend functions that indicate that they were originally virtual so that they can be identified when
the GVT is constructed. Otherwise, all functions would conservatively need to be included in the
GVT which would result in it being unnecessarily large and degrade performance.
As with virtual table duplication, these transformations are transparent to programmers and

there are no changes to the programming model. Programmers simply need to annotate which
classes they would like to use SAVI Objects with (i.e., those involved in sharing) so that the compiler
does not transform all polymorphic types unnecessarily.

4.4 Limitations
The limitation of this technique is when two types in the program hash to the same hash value.
Through proper choice of the universal hash function, it can be shown that 5 billion polymorphic
types would be needed to generate such a collision for a 64-bit hash value, and that a program
with 6 thousand polymorphic types would have a probability of collision of 10−12 [Wikipedia 2017].
In the rare case that a collision should happen, the collision can be detected at link time and the
programmer can recover by renaming one of the colliding types. Name collisions at link time are
an existing issue that programmers already deal with. This technique has only extended the scope
of collisions from the type name to the type hash value.

4.5 Summary and Comparison of the Two Solutions
Table 1 shows a summary of the two techniques with a qualitative comparison of important issues.
The advantages of virtual table duplication are that it adds less overhead to dynamic dispatch
and that it performs fewer compiler changes, requiring less code to be recompiled. On the other
hand, the advantages of hashing-based dynamic dispatch are that it adds less overhead to object
construction and that conflicts are detectable at link-time.
Keep in mind that the overhead to object construction and dynamic dispatch only applies to

polymorphic types so non-polymorphic types are not affected. Furthermore, the two techniques
are coexistent with each other and with regular polymorphic type implementations, so it is not
required for all polymorphic types in a program to use the same technique, as long as a derived
class uses the same technique as its base class. Thus polymorphic types that do not participate

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

SAVI Objects: Sharing and Virtuality Incorporated 45:13

in any sharing can use regular polymorphic type implementations instead of SAVI Objects and
are also not affected. For polymorphic types involved in sharing, the programmer can choose
which technique to use, so virtual table duplication can be used on polymorphic types that are
dispatch heavy, while hashing-based dynamic dispatch can be used on polymorphic types that
are construction heavy. If an object subscribes to a polymorphic type involved in sharing but is
itself not shared, then the overhead from virtual table duplication will become negligible, while the
overhead from hashing-based dynamic dispatch will remain as though it were shared.

5 EVALUATION
The evaluation is divided into two parts. In the first part (Section 5.1), we use synthetic mi-
crobenchmarks that isolate the performance of the two main features impacted by our technique:
construction of polymorphic objects and dynamic dispatch of polymorphic functions. In the second
part (Section 5.2), we use Apache Xalan-C++ [The Apache XML Project 2004b], a production XML
serialization framework, to show how SAVI Objects enable programs to share subtype polymorphic
objects to achieve better performance.

We use Clang [Lattner and Adve 2004] version 3.8.0 as a compiler framework and Boost [Boost
C++ Libraries 2015a] as the region management library. We evaluate our results on a machine with
an Intel Core i7 950 CPU (3.07GHz) and 24GB of memory.

Throughout this section, in the figures and text, we refer to virtual table duplication as duplication
and to hashing-based dynamic dispatch as hashing for brevity.

5.1 Microbenchmarks
In this section, we use synthetic microbenchmarks to evaluate the impact of our techniques on
construction time of polymorphic objects and dynamic dispatch time of polymorphic functions
with respect to four properties of the program: the data set size, the number of regions used by the
program, the number of polymorphic types, and the number of polymorphic functions per type.
The synthetic microbenchmarks are designed as follows. A microbenchmark is configured with n
objects, r regions, t polymorphic types, and f polymorphic functions per type. It starts by creating
and mapping r shared regions into the process address space. In each region, it constructs n/(r ∗ t)
objects for each of the t types, resulting in a total of n objects constructed across all regions. Then,
for each of the n objects, it calls each of the f polymorphic function once resulting in n ∗ f total
dispatches. The constructors are all empty and the virtual functions perform an integer comparison
and an addition.

5.1.1 Construction Time Scalability. Fig. 7 shows the scalability of construction time for regular
polymorphic objects, SAVI Objects that use duplication, and SAVI Objects that use hashing. It is
evident from all graphs that only duplication suffers a penalty at object construction time, whereas
hashing performs on par with regular objects. That is because at construction time, hashing
replaces the VT pointer store with a type hash value store but does not do anything extra, whereas
duplication performs two additional look-ups to the range table and DLT to locate the DVT.

The absolute overhead of duplication varies between 24ns and 120nsmore than the baseline which
is around 8ns for regular objects and for hashing. Although this may seem like a large relative
overhead, recall that the constructors are empty to isolate the absolute value of the overhead.
However, in practice, constructors perform varying amounts of work which amortizes the overhead
as will be shown in Section 5.2
Fig. 7(a) shows that the construction time per object does not change for either technique as

the number of objects allocated increases. This result indicates that the overhead will remain the

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

45:14 Izzat El Hajj, Thomas B. Jablin, Dejan Milojicic, and Wen-mei Hwu

1

4

16

64

256

1048576 2097152 4194304 8388608 16777216 33554432

C
o

n
st

ru
ct

io
n

 T
im

e
p

e
r

O
b

je
ct

 (
n

s)

objects
(# regions = 4, # types = 4, # functions = 4)

duplication hashing regular

1

4

16

64

256

1048576 2097152 4194304 8388608 16777216 33554432

C
o

n
st

ru
ct

io
n

 T
im

e
p

e
r

O
b

je
ct

 (
n

s)

objects
(# regions = 4, # types = 4, # functions = 4)

1

4

16

64

256

1 2 4 8 16 32

C
o

n
st

ru
ct

io
n

 T
im

e
p

e
r

O
b

je
ct

 (
n

s)

regions
(# objects = 4M, # types = 4, # functions = 4)

1

4

16

64

256

1 2 4 8 16 32

C
o

n
st

ru
ct

io
n

 T
im

e
p

e
r

O
b

je
ct

 (
n

s)

polymorphic functions per type
(# objects = 4M, # regions = 4, # types = 4)

1

4

16

64

256

1 2 4 8 16 32

C
o

n
st

ru
ct

io
n

 T
im

e
p

e
r

O
b

je
ct

 (
n

s)

polymorphic types
(# objetcs = 4M, # regions = 4, # functions = 4)

(a) Scalability w.r.t. the number of objects constructed (b) Scalability w.r.t. the number of regions used

(c) Scalability w.r.t. the number of polymorphic types (d) Scalability w.r.t. the number of polymorphic functions

Fig. 7. Construction time scalability results

same as the dataset size increases such that the program will not suffer from any degradation in
efficiency that will make the construction overhead dominate performance at scale.

Fig. 7(b) shows that the construction time per object increases for duplication as the number of
shared regions used by the program increases. This increase comes from the range table look-up
that is needed to identify the region within which an object is allocated because the range table
look-up is logarithmic with respect to the number of regions simultaneously used by the program.
In practice, we do not expect the same program to use a lot of regions simultaneously so this
increase should not be a major issue.

Fig. 7(c) shows that the construction time per object increases for duplication as the number of
polymorphic types increases. This increase comes from the DLT cache look-up because accessing
the DLT cache is logarithmic with respect to the number of types it contains. However, while the
total number of types in a program may be large, the DLT cache only contains polymorphic types
which have had objects of the type constructed in a shared region by the current process which is
expected to be much smaller in practice. Moreover, we currently do not perform any cache eviction,
but doing so may help further limit the DLT cache access latency. This optimization is left as future
work.

Fig. 7(d) shows that the construction time per object does not change for duplication as the
number of polymorphic functions per type increases. The number of polymorphic functions only
makes the size of the VTs and DVTs larger but does not impact any of the additional look-ups that
need to be performed at construction time.

5.1.2 Dynamic Dispatch Time Scalability. Fig. 8 shows the scalability of dynamic dispatch time
for regular polymorphic objects, SAVI Objects that use duplication, and SAVI Objects that use
hashing. It is evident from all graphs that only hashing suffers a penalty at dynamic dispatch time,
whereas duplication performs on par with regular objects. That is because duplication performs
dynamic dispatch in the same way that regular objects do, whereas hashing requires a GVT look-up
which incurs additional overhead. The exception for duplication is the first dispatch per type per

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

SAVI Objects: Sharing and Virtuality Incorporated 45:15

1

4

16

64

256

1048576 2097152 4194304 8388608 16777216 33554432

C
o

n
st

ru
ct

io
n

 T
im

e
p

e
r

O
b

je
ct

 (
n

s)

objects
(# regions = 4, # types = 4, # functions = 4)

duplication hashing regular

1

4

16

64

1048576 2097152 4194304 8388608 16777216 33554432

D
is

p
at

ch
 T

im
e

p
e

r
D

is
p

at
ch

 (
n

s)

objects
(# regions = 4, # types = 4, # functions = 4)

1

4

16

64

1 2 4 8 16 32

D
is

p
at

ch
 T

im
e

p
e

r
D

is
p

at
ch

 (
n

s)

regions
(# objects = 4M, # types = 4, # functions = 4)

1

4

16

64

1 2 4 8 16 32

D
is

p
at

ch
 T

im
e

p
e

r
D

is
p

at
ch

 (
n

s)

polymorphic functions per type
(# objects = 4M, # regions = 4, # types = 4)

1

4

16

64

1 2 4 8 16 32

D
is

p
at

ch
 T

im
e

p
e

r
D

is
p

at
ch

 (
n

s)

polymorphic types
(# objects = 4M, # regions = 4, # functions = 4)

(a) Scalability w.r.t. the number of objects constructed (b) Scalability w.r.t. the number of regions used

(c) Scalability w.r.t. the number of polymorphic types (d) Scalability w.r.t. the number of polymorphic functions

Fig. 8. Dynamic dispatch time scalability results

region which triggers the dispatch fault handler which takes around 2.2µs, however this overhead
gets amortized.

The absolute overhead of hashing varies between 8ns and 30ns more than the baseline which is
around 3ns for regular objects and for duplication. Although this may seem like a large relative
overhead, recall that the polymorphic functions are nearly empty to isolate the absolute value of
the overhead. However, in practice, functions may perform a lot more work which amortizes the
overhead as will be shown in Section 5.2.

Fig. 8(a) shows that the dynamic dispatch time per dispatch does not change for either technique
as the number of objects allocated increases. As in the previous section, this result demonstrates
that efficiency does not degrade and that dynamic dispatch overhead will not dominate performance
at scale. Fig. 8(b) shows that the dynamic dispatch time per dispatch does not change as the number
of regions in the program changes.

Fig. 8(c) and Fig. 8(d) show that the dynamic dispatch time per dispatch for the hashing technique
increases with both the number of polymorphic types and the number of polymorphic functions per
type. That is because with hashing, a GVT look-up is performed on every dynamic dispatch. The
GVT is currently implemented as a map of the hash values which makes the look-up logarithmic in
the total number of functions in the GVT, thus making it logarithmic in the number of polymorphic
types and number of polymorphic functions per type in the program. To further optimize the
look-up, a hash table can be used instead of a map and a custom hash function can be computed on
program entry that minimizes collisions. This will make the dynamic dispatch time shorter and
with constant complexity at the expense of adding additional computation at program entry to
compute a hash function. This optimization is left as future work.
Comparing the two techniques, we observe that with duplication, construction time increases

while dynamic dispatch is free, whereas with hashing, dynamic dispatch time increases while
construction is free. This observation reflects an important difference in the techniques’ strengths
and weaknesses. For applications that build a data structure once and use it many times, it is

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

45:16 Izzat El Hajj, Thomas B. Jablin, Dejan Milojicic, and Wen-mei Hwu

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

 O
ri

gi
n

al

 D
u

p
lic

at
io

n

 H
as

h
in

g

 O
ri

gi
n

al

 D
u

p
lic

at
io

n

 H
as

h
in

g

 O
ri

gi
n

al

 D
u

p
lic

at
io

n

 H
as

h
in

g

 O
ri

gi
n

al

 D
u

p
lic

at
io

n

 H
as

h
in

g

 O
ri

gi
n

al

 D
u

p
lic

at
io

n

 H
as

h
in

g

 373K 1.9M 5.9M 15M 30M

Ex
ec

u
ti

o
n

 T
im

e
(n

o
rm

al
iz

ed
)

 Transformation Stylesheet Parsing

Fig. 9. Xalan-C++ execution time breakdown

expected that duplication is better. On the other hand, for applications that frequently create new
objects, it is expected that hashing is better.

5.2 Application Case Study: Apache Xalan-C++
Apache Xalan-C++ [The Apache XML Project 2004b] is an open source framework that parses
XML documents and transforms them into other formats, such as HTML or text, based on a XSLT
stylesheet. The program is divided into three major steps: parsing the XML file, compiling the XSLT
stylesheet, and applying the transformation.

Because the parsing step tends to dominate performance, the Xalan-C++ usage patterns advise
users to parse the XML source once and reuse the parsed data structure when the same source is
being transformed multiple times [The Apache XML Project 2004a]. The code cleanly separates the
parsing step from the transformation in order to facilitate this kind of reuse. However, this reuse is
confined to a single process because the data structure which stores the parsed XML file is rich
with polymorphic objects which makes it not amenable to sharing with other processes or storing
as-is for future processes to use.

To address this issue, we modify Xalan-C++ to store the parsed data structure in a shared memory
region, and we transform the types that are polymorphic using SAVI Objects to make the sharing
of the objects feasible. Modifying Xalan-C++ did not require pervasive changes to the source code
because the application is designed to allow users to define their own custommemory allocators. We
thus defined our own memory allocator which used Boost managed memory regions for allocation.
Since the objects in Xalan-C++ use explicit data pointers, we used Boost regions with fixed-address
mapping to handle those data pointers. However, SAVI Objects themselves do not require fixed
mapping of regions to work, just DVTs, as explained in Section 3.4. In the resulting Xalan-C++
implementation, the first process that parses an XML file stores the parsed data structure using
SAVI Objects in a memory region, and later processes that need to use the file can skip the parsing
step entirely by reusing the SAVI Objects in the region. It is noteworthy that this application uses
some polymorphic types that are defined inside dynamically linked libraries and that are involved
in lineages with multiple inheritance, indicating our techniques already support dynamic linking
and multiple inheritance. The dynamically linked libraries are part of the application source code
so they are recompiled with the application to support SAVI Objects.
Fig. 9 shows the breakdown of the execution time of Xalan-C++ for the original version, and

the two SAVI Objects versions using duplication and hashing. The breakdown is shown across
increasing XML file sizes ranging from 373kB to 30MB for the same stylesheet. As shown in the
graph, the parsing step dominates the performance, and consumes an increasingly large fraction

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

SAVI Objects: Sharing and Virtuality Incorporated 45:17

0%

10%

20%

30%

40%

50%

60%

373K 1.9M 5.9M 15M 30M

O
ve
rh
e
ad

Duplication Hashing

Fig. 10. Xalan-C++ parsing overhead for the first run

of the execution time as the size of the input XML file increases (up to 80% for the 30MB input).
The compilation of the stylesheet takes up a negligible portion of the time, and the remaining time
is spent performing the transformation. The total execution time of these runs ranges from tens
of microseconds to a few seconds which can be significant in latency-sensitive services, and the
fraction consumed by parsing is only expected to grow for even larger runs.
The results demonstrate that using SAVI Objects has enabled us to successfully eliminate the

long time spent in parsing, replacing it with a simple mapping of the region containing the shared
data structure. The speedup goes up to 5× for the largest input size for duplication which is the
better technique in this application.

Comparing duplication and hashing, we find that duplication consistently outperforms hashing
in the transformation step. That is because the transformation mainly operates on the existing
objects thereby performing a lot of dynamic dispatch and little object construction. Thus, it makes
sense that duplication outperforms hashing because duplication adds less overhead to dynamic
dispatch than hashing does.

However, the weakness of duplication is that it adds more overhead to object construction than
hashing does. Fig. 10 shows the overhead added to the parsing step of the first run when the SAVI
Objects are being constructed in the shared region for the first time. Duplication incurs significantly
more overhead than hashing does because the parsing step frequently performs object construction
but seldom dispatches polymorphic function. This again demonstrates the tradeoff between the
two techniques: duplication incurs a higher penalty at construction time than hashing in return for
a lower penalty at dynamic dispatch time. However, in both cases, the overhead gets amortized as
the size of the data structure increases.

Finally, we note that the overheads incurred from both techniques are quite reasonable as the size
of the input increases. For the transformation step in Fig. 9 which is heavy on dynamic dispatch,
the overhead of duplication is almost negligible for the large dataset and the overhead of hashing
is around 50% which is reasonable compared to the savings we get from object sharing. For the
parsing step in Fig. 10 which is heavy on object construction, the overhead of duplication drops
to 11% for the large dataset and the overhead of hashing is just 6%. This observation verifies the
points mentioned in Section 5.1 about the overheads getting amortized in practice.

6 RELATEDWORK
6.1 Implementations of Dynamic Dispatch
A survey of techniques for implementing dynamic dispatch under subtype polymorphism has
been done by Driesen et al. [Driesen et al. 1995]. These techniques aim at optimizing performance,
whereas the techniques we propose also target enabling object sharing. Virtual tables are discussed,
which our virtual table duplication technique augments to enable sharing. Techniques similar to

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

45:18 Izzat El Hajj, Thomas B. Jablin, Dejan Milojicic, and Wen-mei Hwu

our hashing-based dynamic dispatch are also discussed, but they are not favored because they
do not achieve the best performance or space efficiency in their evaluation context where object
sharing is not considered.
Driesen & Hölzle [Driesen and Hölzle 1996] evaluate the overhead of dynamic dispatch in

C++. Many works propose compiler techniques to mitigate dynamic dispatch overhead. Some
techniques [Aigner and Hölzle 1996; Bacon 1997; Bacon and Sweeney 1996; Calder and Grunwald
1994; Dean et al. 1995; Detlefs and Agesen 1999; Fernandez 1995; Grove et al. 1995; Holzle and
Ungar 1994; Ishizaki et al. 2000; Pande and Ryder 1996; Porat et al. 1996; Sundaresan et al. 2000;
Wanderman-Milne and Li 2014] perform devirtualization which includes a set of analyses and
transformations to statically resolve dynamic dispatches or replace them with checked static
dispatches, thereby improving performance by exposing more inlining opportunities and more
predictable branches. SAVI Objects can benefit from such transformations as well. While these
techniques reduce the reliance on virtual tables, they do not eliminate them entirely so SAVI
Objects are still needed for sharing. Others [Porat et al. 1996; Zendra et al. 1997] do eliminate virtual
tables entirely, however they require whole program visibility which prevents separate compilation
and is not always feasible in practice. A number of recent works aim at making whole-program
optimization and link-time optimization more effective [Doeraene and Schlatter 2016; Johnson
et al. 2017a; Sathyanathan et al. 2017] or at improving call graph analyses [Johnson et al. 2017b;
Petrashko et al. 2016; Tan et al. 2017; Tip and Palsberg 2000] which can increase the scope and
precision of devirtualization optimizations.

Hardware techniques have also been proposed to accelerate dynamic dispatch. Roth et al. [Roth
et al. 1999] improve virtual function call target prediction by identifying instruction sequences
that perform dynamic dispatch and using a small hardware engine to prefetch the target. Kim et
al. [Kim et al. 2007] propose hardware support to perform devirtualization dynamically. The virtual
function cache [Pentecost and Stratton 2015] makes dynamic dispatch faster by caching virtual
table entries. Such hardware optimizations are also applicable for accelerating dynamic dispatch
using SAVI Objects.
Other architecture optimizations have recently been proposed specifically targeting polymor-

phism in dynamic scripting languages. Typed Architectures [Kim et al. 2017] perform dynamic
type checking implicitly in hardware and introduce polymorphic instructions. ShortCut [Choi et al.
2017] employs optimizations to bypass the dispatcher that performs type comparisons under most
conditions. Dot et al. [Dot et al. 2017] remove type checks by performing hardware profiling of
object types.
A lot of work has been done on security implications of how dynamic dispatch is imple-

mented [Borchert and Spinczyk 2016; Bounov et al. 2016; Dewey and Giffin 2012; Elsabagh et al.
2017; Gawlik and Holz 2014; Haller et al. 2015; Jang et al. 2014; Miller et al. 2014; Prakash et al. 2015;
Sarbinowski et al. 2016; Tice et al. 2014; Zhang et al. 2015, 2016; Zixiang et al. 2016]. Our work is
concerned with object sharing, but security implications would be interesting to study.

6.2 Shared and Managed Data Structures
Boost [Boost C++ Libraries 2015a] is a state-of-the-art C++ library which supports sharing data
structures between processes using shared memory segments or memory-mapped files. Interfaces
are provided for creating managed memory objects that can be mapped into the address space
of multiple processes concurrently or separated in time. However, subtype polymorphism is not
currently handled [Boost C++ Libraries 2015b]. We demonstrate that SAVI Objects can be used to
fill the gap.
A number of recent programming models for byte-addressed non-volatile memory such as

Mnemosyne [Volos et al. 2011], NV-Heaps [Coburn et al. 2011], and others [Bhandari et al. 2016;

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

SAVI Objects: Sharing and Virtuality Incorporated 45:19

Chakrabarti et al. 2014] are based on managed persistent regions which are very similar to those
used in Boost for volatile memory. The main focus of these works is guaranteeing failure atomicity
of shared persistent data structures. Failure-atomicity and subtype polymorphism are orthogonal
issues. SAVI Objects are expected to be enablers for emerging persistent memory programming
models to support subtype polymorphism as they are for existing transient ones.

Representation of pointers in shared data structures has been dealt with in different ways. Offset
pointers store offsets relative to the base address of a shared region instead of native pointers, but
they are cumbersome for programmers to use. Fixed-address mapping of regions enables the use
of native pointers, but creates the need to resolve mapping conflicts. OS techniques [El Hajj et al.
2016; Litton et al. 2016] have been proposed to address mapping conflicts by allowing processes to
sustain multiple sets of mappings. Offset pointers and fixed-address mapping are both concerned
with explicit data pointers and do not solve the problem of implicit virtual table pointers. Both
treatments of data pointers can be used alongside SAVI Objects as discussed in Section 3.4.
There are a number of object serialization formats and frameworks that enable sharing of

complex data structures across processes such as JSON [Crockford 2006], YAML [Ben-Kiki et al.
2005], XML [Bray et al. 1998], Protocol Buffers [Varda 2008], and Apache Avro [Apache Avro 2012].
Shared regions avoid the overheads of serialization and de-serialization when architecture- and
language-neutrality are not needed, and SAVI Objects further widen the applicability of shared
regions by enabling the use of subtype polymorphism in shared objects.

6.3 Sharing of Subtype Polymorphic Objects
The problem of sharing subtype polymorphic objects has been studied before. Hon [Hon 1994]
presents a scheme for adding concurrency control to C++ objects in shared memory regions,
and suggests that the original virtual tables be mapped to fixed addresses. We have discussed in
Section 2.2 that this is not a practical solution because layouts of code binaries vary as programs
evolve or across different programs, and because of ASLR. Vitillo [Vitillo 2013] suggests fixed
mapping of dynamically linked binaries containing virtual tables. This approach still does not work
if the layouts of the binaries vary, raises security concerns for bypassing ASLR, and exposes the
DLL Hell [Pietrek 2000] problem. SAVI Objects do not require fixed mapping of code binaries in
either technique, and virtual table duplication only requires fixed mapping of some data regions in
processes that use them (different regions using the same type have different DVTs for that type
that can go in different locations) which is more practical to resolve than DLL Hell. O++ [Biliris et al.
1993] is a database programming language on top of C++ that implements persistent polymorphic
objects by reinitializing VT pointers when objects are loaded before they are used. This approach
requires knowing the dynamic types of loaded objects beforehand which is not always practical,
and does not support sharing of objects simultaneously by concurrent processes. E [Richardson
and Carey 1989] and Burshteyn [Burshteyn 2014] suggest storing a unique field in the object
which is similar to our hashing-based dynamic dispatch technique. E [Richardson and Carey 1989]
uses this field to look up the VT for the type then looks up the virtual function in the VT, while
Burshteyn [Burshteyn 2014] uses this field to look up a dummy object in the heap that acts as a
proxy for performing the dynamic dispatch though the dummy object’s VT pointer. Our technique
looks up the dispatched function in a global virtual table directly. None of these works evaluate the
performance implications of their suggested techniques.
Sharing subtype polymorphic objects between processor and accelerator address spaces in

heterogeneous systems faces the same problems as sharing between the virtual address spaces of
different processes. Ishizaki et al. [Ishizaki et al. 2015] perform devirtualization on GPUs when
possible, but do not focus on sharing. Rootbeer [Pratt-Szeliga et al. 2012] handles dynamic dispatch
on GPUs using a switch statement and a derived type id. This approach is similar to those discussed

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

45:20 Izzat El Hajj, Thomas B. Jablin, Dejan Milojicic, and Wen-mei Hwu

earlier [Porat et al. 1996; Zendra et al. 1997] and has the same limitation; it requires whole program
visibility which prevents separate compilation and is not always practical. Concord [Barik et al.
2014] supports sharing of subtype polymorphic objects between CPU and GPU virtual address
spaces by duplicating virtual tables into shared virtual memory and including metadata to translated
function pointers of the creator address space to those of the user address space. Our virtual table
duplication does not share DVTs across virtual address spaces. It places DVTs at the same location
in each address space, but DVTs in different address spaces contain different function pointers that
are correct in those address space, therefore not requiring special checks during dynamic dispatch
or visibility of derived types during compilation. Other suggested approaches [Yan et al. 2015;
Zhou et al. 2015] have included using the CPU VT pointer to determine the GPU VT pointer, or
placing the VT in a shared non-coherent region at the same address but having different contents
on each device. The latter approach is similar to out virtual table duplication approach. Supporting
sharing between processor and accelerator address spaces is expected to become increasingly
important as the introduction of shared virtual memory enables closer collaboration between CPUs
and accelerators [Chang et al. 2017; Gómez-Luna et al. 2017; Sun et al. 2016].

7 CONCLUSION
In this paper, we present SAVI Objects, an implementation of subtype polymorphism that sup-
ports sharing of objects across processes. We present and evaluate two alternative techniques
for implementing SAVI Objects in C++. The first technique, virtual table duplication, duplicates
virtual tables to a fixed virtual address associated with a shared region across all processes using
that region. The second technique, hashing-based dynamic dispatch, performs dynamic dispatch
using hashing-based look-ups to a global virtual table replacing the use of traditional virtual table
pointers.
Our evaluation of the two techniques shows that in return for modest overhead costs added

to object construction time and dynamic dispatch time, SAVI Objects enable programs to share
objects that could not have been shared otherwise due to the presence of subtype polymorphism,
thereby avoiding traditional inter-process communication in production applications and improving
performance significantly. We also analyze the tradeoffs between the two techniques, showing
that virtual table duplication is most suitable for programs heavy on dynamic dispatch, whereas
hashing-based dynamic dispatch is most suitable for programs heavy on object construction.

ACKNOWLEDGMENTS
This work is supported by Hewlett Packard Labs and the Blue Waters PAID Use of Accelerators
project (NSF OCI 07-25070 490595).

REFERENCES
Gerald Aigner and Urs Hölzle. 1996. Eliminating virtual function calls in C++ programs. In European conference on

object-oriented programming. Springer, 142–166.
Apache Avro. 2012. Apache Avro. (2012). https://avro.apache.org
Krste Asanovic. 2014. FireBox: A Hardware Building Block for 2020 Warehouse-Scale Computers. In Proceedings of the

12th USENIX Conference on File and Storage Technologies (FASTâĂŹ14). USENIX Association, Santa Clara, CA, USA.
https://www.usenix.org/conference/fast14/technical-sessions/presentation/keynote

David Francis Bacon. 1997. Fast and effective optimization of statically typed object-oriented languages. University of
California, Berkeley.

David F. Bacon and Peter F. Sweeney. 1996. Fast Static Analysis of C++ Virtual Function Calls. In Proceedings of the 11th
ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA ’96). ACM,
New York, NY, USA, 324–341. DOI:http://dx.doi.org/10.1145/236337.236371

Rajkishore Barik, Rashid Kaleem, Deepak Majeti, Brian T. Lewis, Tatiana Shpeisman, Chunling Hu, Yang Ni, and Ali-Reza
Adl-Tabatabai. 2014. Efficient Mapping of Irregular C++ Applications to Integrated GPUs. In Proceedings of Annual

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

https://avro.apache.org
https://www.usenix.org/conference/fast14/technical-sessions/presentation/keynote
http://dx.doi.org/10.1145/236337.236371

SAVI Objects: Sharing and Virtuality Incorporated 45:21

IEEE/ACM International Symposium on Code Generation and Optimization (CGO ’14). ACM, New York, NY, USA, Article
33, 11 pages. DOI:http://dx.doi.org/10.1145/2544137.2544165

Oren Ben-Kiki, Clark Evans, and Brian Ingerson. 2005. YAML Ain’t Markup Language (YAMLâĎć) Version 1.1. yaml. org,
Tech. Rep (2005).

Kumud Bhandari, Dhruva R Chakrabarti, and Hans-J Boehm. 2016. Makalu: Fast recoverable allocation of non-volatile
memory. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications. ACM, 677–694.

Alexandros Biliris, Shaul Dar, and Narain H. Gehani. 1993. Making C++ objects persistent: The hidden pointers. Software:
Practice and Experience 23, 12 (1993), 1285–1303.

Boost C++ Libraries. 2015a. Managed Memory Segments. (2015). http://www.boost.org/doc/libs/1_61_0/doc/html/
interprocess/managed_memory_segments.html

Boost C++ Libraries. 2015b. Sharing memory between processes – Virtuality Forbidden. (2015). http://www.boost.org/doc/
libs/1_47_0/doc/html/interprocess/sharedmemorybetweenprocesses.html

Christoph Borchert and Olaf Spinczyk. 2016. Hardening an L4 microkernel against soft errors by aspect-oriented program-
ming and whole-program analysis. ACM SIGOPS Operating Systems Review 49, 2 (2016), 37–43.

Dimitar Bounov, Rami Gökhan Kici, and Sorin Lerner. 2016. Protecting C++ Dynamic Dispatch Through VTable Interleaving..
In Network and Distributed System Security Symposium (NDSS).

Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and François Yergeau. 1998. Extensible markup language
(XML). World Wide Web Consortium Recommendation REC-xml-19980210. http://www. w3. org/TR/1998/REC-xml-19980210
16 (1998), 16.

K. M. Bresniker, S. Singhal, and R. S. Williams. 2015. Adapting to Thrive in a New Economy of Memory Abundance.
Computer 48, 12 (Dec 2015), 44–53. DOI:http://dx.doi.org/10.1109/MC.2015.368

B. Burshteyn. 2014. Method and system for accessing c++ objects in shared memory. (Feb. 6 2014). https://www.google.
com/patents/US20140040566 US Patent App. 13/956,595.

Brad Calder and Dirk Grunwald. 1994. Reducing indirect function call overhead in C++ programs. In Proceedings of the 21st
ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM, 397–408.

Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014. Atlas: Leveraging Locks for Non-volatile Memory
Consistency. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages
& Applications (OOPSLA ’14). ACM, New York, NY, USA, 433–452. DOI:http://dx.doi.org/10.1145/2660193.2660224

Li-Wen Chang, Juan Gómez-Luna, Izzat El Hajj, Sitao Huang, Deming Chen, and Wen-mei Hwu. 2017. Collaborative
Computing for Heterogeneous Integrated Systems. In Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering. ACM, 385–388.

Jiho Choi, Thomas Shull, Maria J Garzaran, and Josep Torrellas. 2017. ShortCut: Architectural Support for Fast Object
Access in Scripting Languages. In Proceedings of the 44th Annual International Symposium on Computer Architecture.
ACM, 494–506.

Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011.
NV-Heaps: Making Persistent Objects Fast and Safe with Next-generation, Non-volatile Memories. In Proceedings of the
Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS
XVI). ACM, New York, NY, USA, 105–118. DOI:http://dx.doi.org/10.1145/1950365.1950380

Douglas Crockford. 2006. The application/json media type for javascript object notation (json). (2006).
Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of object-oriented programs using static class hierarchy

analysis. In European Conference on Object-Oriented Programming. Springer, 77–101.
David Detlefs and Ole Agesen. 1999. Inlining of Virtual Methods. In Proceedings of the 13th European Conference on

Object-Oriented Programming. Springer-Verlag, 258–278.
David Dewey and Jonathon T Giffin. 2012. Static detection of C++ vtable escape vulnerabilities in binary code.. In Network

and Distributed System Security Symposium (NDSS).
Sébastien Doeraene and Tobias Schlatter. 2016. Parallel incremental whole-program optimizations for Scala. js. In Proceedings

of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications.
ACM, 59–73.

Gem Dot, Alejandro Martínez, and Antonio González. 2017. Removing checks in dynamically typed languages through
efficient profiling. In Code Generation and Optimization (CGO), 2017 IEEE/ACM International Symposium on. IEEE, 257–268.

Karel Driesen and Urs Hölzle. 1996. The Direct Cost of Virtual Function Calls in C++. In Proceedings of the 11th ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA ’96). ACM, New
York, NY, USA, 306–323. DOI:http://dx.doi.org/10.1145/236337.236369

Karel Driesen, Urs Hölzle, and Jan Vitek. 1995. Message dispatch on pipelined processors. In European Conference on
Object-Oriented Programming. Springer, 253–282.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

http://dx.doi.org/10.1145/2544137.2544165
http://www.boost.org/doc/libs/1_61_0/doc/html/interprocess/managed_memory_segments.html
http://www.boost.org/doc/libs/1_61_0/doc/html/interprocess/managed_memory_segments.html
http://www.boost.org/doc/libs/1_47_0/doc/html/interprocess/sharedmemorybetweenprocesses.html
http://www.boost.org/doc/libs/1_47_0/doc/html/interprocess/sharedmemorybetweenprocesses.html
http://dx.doi.org/10.1109/MC.2015.368
https://www.google.com/patents/US20140040566
https://www.google.com/patents/US20140040566
http://dx.doi.org/10.1145/2660193.2660224
http://dx.doi.org/10.1145/1950365.1950380
http://dx.doi.org/10.1145/236337.236369

45:22 Izzat El Hajj, Thomas B. Jablin, Dejan Milojicic, and Wen-mei Hwu

Izzat El Hajj, AlexanderMerritt, Gerd Zellweger, DejanMilojicic, Reto Achermann, Paolo Faraboschi,Wen-mei Hwu, Timothy
Roscoe, and Karsten Schwan. 2016. SpaceJMP: Programming with Multiple Virtual Address Spaces. In Proceedings of the
Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems. ACM,
353–368.

Mohamed Elsabagh, Dan Fleck, and Angelos Stavrou. 2017. Strict Virtual Call Integrity Checking for C++ Binaries. In
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. ACM, 140–154.

Mary F Fernandez. 1995. Simple and effective link-time optimization of Modula-3 programs. Vol. 30. ACM.
Robert Gawlik and Thorsten Holz. 2014. Towards automated integrity protection of C++ virtual function tables in binary

programs. In Proceedings of the 30th Annual Computer Security Applications Conference. ACM, 396–405.
Juan Gómez-Luna, Izzat El Hajj, Li-Wen Chang, Víctor Garcia-Flores, S de Gonzalo, T Jablin, Antonio J Pena, and WM Hwu.

2017. Chai: collaborative heterogeneous applications for integrated-architectures. In 2017 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), IEEE.

David Grove, Jeffrey Dean, Charles Garrett, and Craig Chambers. 1995. Profile-guided Receiver Class Prediction. In
Proceedings of the Tenth Annual Conference on Object-oriented Programming Systems, Languages, and Applications (OOPSLA
’95). ACM, New York, NY, USA, 108–123. DOI:http://dx.doi.org/10.1145/217838.217848

Istvan Haller, Enes Göktaş, Elias Athanasopoulos, Georgios Portokalidis, and Herbert Bos. 2015. Shrinkwrap: Vtable
protection without loose ends. In Proceedings of the 31st Annual Computer Security Applications Conference. ACM,
341–350.

Urs Holzle and David M Ungar. 1994. Adaptive optimization for SELF: reconciling high performance with exploratory
programming. Number 1520. Department of Computer Science, Stanford University.

Lenny Hon. 1994. Using objects in shared memory for C++ application. In Proceedings of the 1994 conference of the Centre for
Advanced Studies on Collaborative research. IBM Press, 29.

Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, and Vivek Sarkar. 2015. Compiling and optimizing java 8 programs for
gpu execution. In Parallel Architecture and Compilation (PACT), 2015 International Conference on. IEEE, 419–431.

Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Komatsu, and Toshio Nakatani. 2000. A study of devirtualiza-
tion techniques for a Java Just-In-Time compiler. In ACM SIGPLAN Notices, Vol. 35. ACM, 294–310.

Dongseok Jang, Zachary Tatlock, and Sorin Lerner. 2014. SafeDispatch: Securing C++ Virtual Calls fromMemory Corruption
Attacks.. In NDSS.

Nick P. Johnson, Jordan Fix, Stephen R. Beard, Taewook Oh, Thomas B. Jablin, and David I. August. 2017b. A Collaborative
Dependence Analysis Framework. In Proceedings of the 2017 International Symposium on Code Generation and Optimization
(CGO ’17). IEEE Press, Piscataway, NJ, USA, 148–159. http://dl.acm.org/citation.cfm?id=3049832.3049849

Teresa Johnson, Mehdi Amini, and Xinliang David Li. 2017a. ThinLTO: scalable and incremental LTO. In Proceedings of the
2017 International Symposium on Code Generation and Optimization. IEEE Press, 111–121.

Channoh Kim, Jaehyeok Kim, Sungmin Kim, Dooyoung Kim, Namho Kim, Gitae Na, Young H Oh, Hyeon Gyu Cho, and JaeW
Lee. 2017. Typed Architectures: Architectural Support for Lightweight Scripting. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 77–90.

Hyesoon Kim, José A Joao, Onur Mutlu, Chang Joo Lee, Yale N Patt, and Robert Cohn. 2007. VPC prediction: reducing the
cost of indirect branches via hardware-based dynamic devirtualization. In ACM SIGARCH Computer Architecture News,
Vol. 35. ACM, 424–435.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation. In
Code Generation and Optimization, 2004. CGO 2004. International Symposium on. IEEE, 75–86.

Stanley B Lippman. 1996. Inside the C++ object model. Vol. 242. Addison-Wesley Reading.
James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby Bhattacharjee, and Peter Druschel. 2016.

Light-weight contexts: an OS abstraction for safety and performance. In Proceedings of OSDIâĂŹ16: 12th USENIX
Symposium on Operating Systems Design and Implementation. 49.

Matthew R Miller, Kenneth D Johnson, and Timothy William Burrell. 2014. Using virtual table protections to prevent the
exploitation of object corruption vulnerabilities. (March 25 2014). US Patent 8,683,583.

Dushyanth Narayanan and Orion Hodson. 2012. Whole-system Persistence. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS XVII). ACM, New York,
NY, USA, 401–410. DOI:http://dx.doi.org/10.1145/2150976.2151018

Hemant D Pande and Barbara G Ryder. 1996. Data-flow-based virtual function resolution. In International Static Analysis
Symposium. Springer, 238–254.

Lillian Pentecost and John Stratton. 2015. Accelerating dynamically typed languages with a virtual function cache. In
Proceedings of the 2nd International Workshop on Hardware-Software Co-Design for High Performance Computing. ACM, 3.

Dmitry Petrashko, Vlad Ureche, Ondřej Lhoták, and Martin Odersky. 2016. Call graphs for languages with parametric
polymorphism. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. ACM, 394–409.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

http://dx.doi.org/10.1145/217838.217848
http://dl.acm.org/citation.cfm?id=3049832.3049849
http://dx.doi.org/10.1145/2150976.2151018

SAVI Objects: Sharing and Virtuality Incorporated 45:23

Matt Pietrek. 2000. Metadata in. NET-Avoiding DLLHell: Introducing ApplicationMetadata in theMicrosoft. NET Framework.
MSDN Magazine (2000), 42–55.

Sara Porat, , David Bernstein, , Yaroslav Fedorov, , Joseph Rodrigue, , and Eran Yahav. 1996. Compiler Optimization of C++
Virtual Function Calls. In Proceedings of the 2nd Conference on Object-Oriented Technologies and Systems.

Aravind Prakash, Xunchao Hu, and Heng Yin. 2015. vfGuard: Strict Protection for Virtual Function Calls in COTS C++
Binaries.. In NDSS.

Philip C Pratt-Szeliga, James W Fawcett, and Roy D Welch. 2012. Rootbeer: Seamlessly using gpus from java. In High
Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems
(HPCC-ICESS), 2012 IEEE 14th International Conference on. IEEE, 375–380.

Joel E Richardson and Michael J Carey. 1989. Persistence in the E language: Issues and implementation. Softw., Pract. Exper.
19, 12 (1989), 1115–1150.

Amir Roth, Andreas Moshovos, and Gurindar S Sohi. 1999. Improving virtual function call target prediction via dependence-
based pre-computation. In Proceedings of the 13th international conference on Supercomputing. ACM, 356–364.

Pawel Sarbinowski, Vasileios P. Kemerlis, Cristiano Giuffrida, and Elias Athanasopoulos. 2016. VTPin: Practical VTable
Hijacking Protection for Binaries. In Proceedings of the 32Nd Annual Conference on Computer Security Applications (ACSAC
’16). ACM, New York, NY, USA, 448–459. DOI:http://dx.doi.org/10.1145/2991079.2991121

Patrick W Sathyanathan, Wenlei He, and Ten H Tzen. 2017. Incremental whole program optimization and compilation. In
Proceedings of the 2017 International Symposium on Code Generation and Optimization. IEEE Press, 221–232.

Yifan Sun, Xiang Gong, Amir Kavyan Ziabari, Leiming Yu, Xiangyu Li, Saoni Mukherjee, Carter McCardwell, Alejandro
Villegas, and David Kaeli. 2016. Hetero-mark, a benchmark suite for CPU-GPU collaborative computing. InWorkload
Characterization (IISWC), 2016 IEEE International Symposium on. IEEE, 1–10.

Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai, Patrick Lam, Etienne Gagnon, and Charles
Godin. 2000. Practical Virtual Method Call Resolution for Java. In Proceedings of the 15th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications (OOPSLA ’00). ACM, New York, NY, USA, 264–280.
DOI:http://dx.doi.org/10.1145/353171.353189

Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and precise points-to analysis: modeling the heap by merging equivalent
automata. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM, 278–291.

The Apache XML Project. 2004a. Xalan-C++ Basic usage patterns. (2004). https://xalan.apache.org/old/xalan-c/usagepatterns.
html

The Apache XML Project. 2004b. Xalan-C++ version 1.10. (2004). http://xml.apache.org/xalan-c/
Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar Erlingsson, Luis Lozano, and Geoff Pike. 2014.

Enforcing forward-edge control-flow integrity in GCC & LLVM. In 23rd USENIX Security Symposium (USENIX Security
14). 941–955.

Frank Tip and Jens Palsberg. 2000. Scalable Propagation-based Call Graph Construction Algorithms. In Proceedings of the
15th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA ’00).
ACM, New York, NY, USA, 281–293. DOI:http://dx.doi.org/10.1145/353171.353190

Kenton Varda. 2008. Protocol buffers: Google’s data interchange format. (2008). https://opensource.googleblog.com/2008/
07/protocol-buffers-googles-data.html

Roberto Agostino Vitillo. 2013. Sharing C++ objects in Linux. (2013). http://www.slideshare.net/RobertoAgostinoVitil/
sharing-objects2011

Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Lightweight Persistent Memory. In Proceedings
of the Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS XVI). ACM, New York, NY, USA, 91–104. DOI:http://dx.doi.org/10.1145/1950365.1950379

Skye Wanderman-Milne and Nong Li. 2014. Runtime Code Generation in Cloudera Impala. IEEE Data Eng. Bull. 37, 1 (2014),
31–37.

Wikipedia. 2017. Birthday attack. (2017). https://en.wikipedia.org/wiki/Birthday_attack
Shoumeng Yan, Sai Luo, Xiaocheng Zhou, Ying Gao, Hu Chen, and Bratin Saha. 2015. Sharing virtual functions in a shared

virtual memory between heterogeneous processors of a computing platform. (March 31 2015). US Patent 8,997,113.
Olivier Zendra, Dominique Colnet, and Suzanne Collin. 1997. Efficient Dynamic Dispatch Without Virtual Function Tables:

The SmallEiffel Compiler. In Proceedings of the 12th ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA ’97). ACM, New York, NY, USA, 125–141. DOI:http://dx.doi.org/10.1145/263698.
263728

Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng Chen, and Dawn Song. 2015. VTint: Defending virtual function
tablesâĂŹ integrity. In Symposium on Network and Distributed System Security (NDSS). 8–11.

Chao Zhang, Dawn Song, Scott A Carr, Mathias Payer, Tongxin Li, Yu Ding, and Chengyu Song. 2016. VTrust: Regaining
Trust on Virtual Calls.. In Network and Distributed System Security Symposium (NDSS).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

http://dx.doi.org/10.1145/2991079.2991121
http://dx.doi.org/10.1145/353171.353189
https://xalan.apache.org/old/xalan-c/usagepatterns.html
https://xalan.apache.org/old/xalan-c/usagepatterns.html
http://xml.apache.org/xalan-c/
http://dx.doi.org/10.1145/353171.353190
https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html
https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html
http://www.slideshare.net/RobertoAgostinoVitil/sharing-objects2011
http://www.slideshare.net/RobertoAgostinoVitil/sharing-objects2011
http://dx.doi.org/10.1145/1950365.1950379
https://en.wikipedia.org/wiki/Birthday_attack
http://dx.doi.org/10.1145/263698.263728
http://dx.doi.org/10.1145/263698.263728

45:24 Izzat El Hajj, Thomas B. Jablin, Dejan Milojicic, and Wen-mei Hwu

Xiaocheng Zhou, Shoumeng Yan, Ying Gao, Hu Chen, Peinan Zhang, Mohan Rajagopalan, Avi Mendelson, and Bratin Saha.
2015. Language level support for shared virtual memory. (March 31 2015). US Patent 8,997,114.

Wang Zixiang, Shan Chun, Xue Jingfeng, and Sun Shiyouhu Changzhen. 2016. Research on the Defense Method of Vtable
Hijacking. International Journal of Security and Its Applications 10, 11 (2016), 267–280.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 45. Publication date: October 2017.

	Abstract
	1 Introduction
	2 Background
	2.1 Subtype Polymorphism
	2.2 Incompatibility with Sharing of Objects
	2.3 Data Structure Sharing Mechanism

	3 Virtual Table Duplication
	3.1 Overview
	3.2 Implementation Details
	3.3 Compiler Transformation
	3.4 Limitations

	4 Hashing-based Dynamic Dispatch
	4.1 Overview
	4.2 Implementation Details
	4.3 Compiler Transformation
	4.4 Limitations
	4.5 Summary and Comparison of the Two Solutions

	5 Evaluation
	5.1 Microbenchmarks
	5.2 Application Case Study: Apache Xalan-C++

	6 Related Work
	6.1 Implementations of Dynamic Dispatch
	6.2 Shared and Managed Data Structures
	6.3 Sharing of Subtype Polymorphic Objects

	7 Conclusion
	Acknowledgments
	References

