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In-Place Matrix Transposition on GPUs
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Abstract—Matrix transposition is an important algorithmic building block for many numeric algorithms such as FFT. With more and
more algebra libraries offloading to GPUs, a high performance in-place transposition becomes necessary. Intuitively, in-place
transposition should be a good fit for GPU architectures due to limited available on-board memory capacity and high throughput.
However, direct application of CPU in-place transposition algorithms lacks the amount of parallelism and locality required by GPU to
achieve good performance. In this paper we present our in-place matrix transposition approach for GPUs that is performed using
elementary tile-wise transpositions. We propose low-level optimizations for the elementary transpositions, and find the best performing
configurations for them. Then, we compare all sequences of transpositions that achieve full transposition, and detect which is the most
favorable for each matrix. We present an heuristic to guide the selection of tile sizes, and compare them to brute-force search. We
diagnose the drawback of our approach, and propose a solution using minimal padding. With fast padding and unpadding kernels, the
overall throughput is significantly increased. Finally, we compare our method to another recent implementation.

Index Terms—GPU, transposition, in-place

1 INTRODUCTION

MATRIX transposition converts an M-rows-by-N-
columns array (M x N for brevity) to an N-rows-by-
M-columns array. It is an important algorithmic building
block with a wide range of applications from converting the
storage layout of arrays to numeric algorithms, such as FFT
and K-Means clustering.

FFT implementations typically carry out matrix trans-
positions before transforming each dimension [1]. This
allows the transforms to access contiguous data, avoiding
time-consuming strided memory accesses. K-Means
clustering is also benefited by transposition when parti-
tioning thousands or even millions of descriptors in
image classification applications [2], in which typical
descriptors are multidimensional vectors with up to 256
components.

BLAS libraries use matrix transposition as well. For
instance, Intel MKL [3] includes out-of-place and in-place
transposition routines since release 10.1.

As matrix transposition merely reorders the elements of
a matrix, performance of matrix transposition is essentially
determined by the sustained memory bandwidth of the sys-
tem. This makes GPUs attractive platforms to execute the
transposition because of their high memory bandwidth (to
their global memory) compared to CPUs.
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Implementing out-of-place matrix transposition on
GPUs, which achieves high fraction of peak memory band-
width, is well understood as demonstrated in [4]. However,
the memory capacity on GPUs is usually a much more con-
strained resource than their CPU counterparts. If an out-of-
place transposition is employed, only up to 50 percent of the
total available GPU memory could be used to hold one or
several matrices, which need to be transposed, since the out-
of-place transposition has at least 100 percent spatial over-
head. This leads to the need for a general in-place transposi-
tion library for the accelerator programming models.

In-place transposition means the resulting A” occupies
the same physical storage locations as A. The spatial over-
head is either none (i.e., methods that do not require bit
flags but with extra computations) [5] or at most a small
fraction of the input size (one bit per element) [6].

Mathematically, in-place transposition is a permuta-
tion, which can be factored into a product of disjoint
cycles [7]. These cycles are “chains” of shifting, where
each data element is moved to a destination that is the
original location of another data element. In the special
case of square matrices, the shifting consists of simply
swapping symmetric elements along the diagonal, while
the diagonal elements remain in the same location.
There are as many cycles as elements over (or under) the
diagonal, and their length is two. Thus, the GPU imple-
mentation is straightforward, as we show in the supple-
mental material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2015.2412549, available online. The
throughput of that simple implementation is in the order
of magnitude of highly-optimized libraries [8] [9]. How-
ever, in the general case of rectangular matrices the num-
ber of cycles can be much lower, and their length is not
uniform. These facts make parallelization a challenge.

A fast parallelization of matrix transposition can be
achieved by the use of tiling, in order to take advantage of
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the spatial locality in on-chip memories. We presented in
[10] a four-stage approach, based on a method for multicore
CPUs [11], and a three-stage approach that improved spatial
locality. Both approaches used elementary tile-wise transpo-
sitions for each stage. In this paper, we explore all possible
sequences of elementary tile-wise transpositions that imple-
ment a full transposition. Moreover, we develop heuristics
for the selection of tile sizes. We found the drawback of our
approach, and solved it by adding a negligible number of
extra rows and/or columns.
The contributions of this paper are as follows:

e We derive all possible sequences of elementary tile-
wise transpositions that implement full in-place
matrix transposition. We compare them, and detect
which of them can be advantageously used for par-
ticular matrix characteristics.

e We optimize the elementary transpositions, which
were employed by our original three-stage tile-
wise transposition [10], and adapt them to work
with 32-bit and 64-bit elements. We also perform
exhaustive tests to identify the best execution con-
figuration for each tile size. Thus, we can obtain an
optimal tuning of the elementary transpositions.

e We develop an heuristic that allows the code to
choose near-optimal tile sizes in runtime, and com-
pare it to a brute-force search.

e We detect a drawback of our approach, and solve it
by adding very few extra rows and/or columns.
This negligible padding ensures proper tile sizes for
GPU architectures, so that the throughput is signifi-
cantly boosted.

e We compare our scheme to another recent imple-
mentation [12] and show our algorithm performs
better in most situations.

Our in-place transposition achieves a median through-
put of 22.54 GB/s for double precision matrices on NVI-
DIA K20, 29.31 GB/s on NVIDIA GTX 980, and 37.40
GB/s on AMD Hawaii. In the special case of skinny
matrices, or Ao0S-SoA and SoA-AoS conversion, the
median throughput increases to more than 50 GB/s on
GTX 980, more than 35 GB/s on K20, and more than
68 GB/s on Hawaii. OpenCL codes of our approach are
publicly available.'

The rest of the paper is organized as follows. Section 2
presents the related works in the field of matrix transpo-
sition on CPU and GPU. In Section 3, the matrix transpo-
sition is defined, and a basic GPU implementation is
presented. Section 4 describes how the full transposition
of rectangular matrices can be carried out as a sequence
of elementary transpositions. In Section 5 we tune the
elementary transpositions to achieve the highest through-
put, propose an heuristic to choose the most profitable
tile sizes, and compare sequences of elementary transpo-
sitions. In Section 6 we estimate the throughput of
our approach, and detect its main drawback. Then, we
propose a solution for overcoming that drawback.
Section 7 presents the experimental results. Finally, the
conclusions are stated.

1. https:/ /bitbucket.org/ijsung/libmarshal
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2 RELATED WORK

2.1 In-Place Transposition

As indicated above, most of sequential in-place transposi-
tion algorithms can be classified as cycle-following.
Berman [6] proposed a bit-table for tagging cycles that
have been shifted, and it requires O(MN) bits of work-
space. Windley [5] presented the notation of cycle-leaders
as the lowest numbered element. Cate and Twigg [13]
proved a theorem to compute the number of cycles in a
transposition.

Achieving fast implementations of in-place transposition
has attracted several research efforts. Recent works took a
four-stage approach [11], [14], [15], in order to improve
cache locality. Moreover, Gustavson et al. [14] proposed
parallelization for multicores up to eight-cores. They
noticed load imbalance issues, even for the relatively small
number of threads available on multicores compared to
modern GPUs. To address this problem, they proposed
greedy assignment of cycles to threads and, for long cycles,
splitting the shifting a priori.

2.2 In-Place and Out-of-Place Transposition

for GPUs

For many-core processors, previous work [4] studied
optimizations for out-of-place transposition. There are
also highly-optimized libraries [8], [9] that include rou-
tines for in-place and out-of-place transposition of square
matrices. For this special case, they use a straightforward
algorithm, which is not generalizable for arbitrary matri-
ces. Sung et al. [16] proposed the use of atomically-
updated bit flags to solve the load-imbalance problem
for GPUs and introduced elementary transposition
routines that can be used to compose a multi-stage trans-
position. However, they do not specify how one would
compose these elementary transpositions to obtain a full
transposition.

Previous works on fast Fourier transform for the GPU
such as [17] includes transposition to improve locality for
global memory accesses; the authors did not specify
whether the transposition is in-place or not, but we believe
it is an out-of-place one. We also believe that their work can
be enhanced by employing an in-place transposition algo-
rithm like ours to increase the maximum size of data set
allowed for GPU offloading.

Recently, a decomposition for in-place transposition
has been presented by Catanzaro et al. [12]. It allows the
rows and columns to be operated on independently,
reducing work complexity and auxiliary space. Catanzaro
et al. compare their implementation to our original three-
stage approach [10], which is improved in the present
work.

3 DEFINITION OF MATRIX TRANSPOSITION

Assume that A is a M x N matrix, where A(4,j) is the ele-
ment in row ¢ and column j. The transpose of Aisa N x M
matrix A7, so that the columns of A are the rows of AT, or
formally A(i, j) = AT (j,1).

In a linearized row-major layout, A(z, j) is in offset loca-
tion k=i x N + j. When transposing, A(7,j) at offset k is
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for (int k=wi_id; k<MsN-1; k+=wg_size){
// Transpose in a temporary array
int k1 = (k » M) $ (M « N - 1);
temp[kl] = matrix([k];

// Synchronization

barrier();

// Copy to global memory

for (int i=wi_id; i<MsN-1; i+=wg_size){
matrix[i] = temp[i];

}

Fig. 1. Code segment of in-place matrix transposition with barrier syn-
chronization (BS). Input matrix matrix is located in global memory. The
temporal array in local memory is temp. Each work-item wi_id belongs
to a work-group size wg_size.

moved to AT(j,i) at ¥ = j x M + i in the transposed array

AT The formula for mapping from k to ¥ is:
; JExMmodL, if0<k<L
k_{[,, ifk=1L, W

where £L =M x N —1[14].

The expression in Equation (1) allows us to calculate the
destination a matrix element is moved to. Since we are mov-
ing elements in-place, each element has to be saved and fur-
ther shifted (according to the involved permutation) to the
next location. This generates cycles or chains of shifting.

The former transformation can be implemented on GPU
by assigning matrix elements to work-items (i.e., a thread in
OpenCL terminology), as the code in Fig. 1 shows. In this
kernel, called barrier synchronization (BS), each work-
group transposes a sub-matrix that fits the on-chip memory
(registers or local memory). Although this implementation
does not directly apply to arrays larger than tens of
kilobytes in size, it can be used as a building block when
transposing larger matrices. Section 4 explains a general
transposition scheme for rectangular matrices. Moreover,
the particular case of square matrices is reviewed in the sup-
plemental material, available online.

4 IN-PLACE TRANSPOSITION OF RECTANGULAR
MATRICES

In the general implementation of in-place transposition
of rectangular matrices, the cycles are generated using
Equation (1). For instance, we can use a row-majored 5 x 3
matrix transposition example, ie., M =5 N =3,L =M x
N —1=14. We start with element 1, or the location of
A(0,1). The content of element 1 should be moved to the
location of element 5, or the location of A(1,0). The original
content at the location of element 5, or the location of A(1, 2),
is saved before being overwritten and moved to the location
of element 11, or the location of A"(2, 1); The original content
at the location of element 11 to the location of element 13,
and so on. Eventually, we will return to the original offset 1.
This gives a cycleof (151113 9 3 1). For brevity, we will
omit the second occurrence of 1 and show the cycle as (1 5
11 13 9 3). The reader should verify that there are five
such cycles in transposing a 5 x 3 row-majored matrix: (0)
(15111393)(7)(21081246) (14).

Prior works [14] targeting multicores parallelize by
assigning each cycle to a thread. As cycles by definition
never overlap, it is an obvious source of parallelism that

TABLE 1
Storage Formats of an M x N Matrix
with Dimensions Factorized as
M =M xmand N = N x n[14]

Format Block order

RM M xmx N xn
RRRB M x N' xmxn
RCRB M x N' xnxm
CRRB N xM xmxn
CCRB N x M xnxm
CM N xnx M xm

could be exploited by parallel architectures. In [16] this
implementation is called P-IPT. However, for massively par-
allel systems that require thousands of concurrently active
threads to attain maximum parallelism, this form of parallel-
ism alone is neither sufficient nor regular. In fact, for the
vast majority of other cases the amount of parallelism from
the sheer number of cycles is both much lower and varying
except when M = N or square arrays. Even for larger M and
N, the parallelism coming from cycles can be low. Also, as
proven by Cate and Twigg [13], the length of the longest
cycle is always multiple times the lengths of other cycles.
This creates a load imbalance problem. Sung et al. [16] have
proposed an atomic-operation-based approach to coordinate
the shifting to reduce load imbalance. This approach is
reviewed and optimized in this paper (see Section 5.1 and
supplemental material, available online).

4.1 Full Transposition As a Sequence of Elementary
Tiled Transpositions

Good locality is crucial for modern memory hierarchies. For
instance, on an NVIDIA Tesla K20 GPU a single-stage in-
place transposition only runs at 1.5 GB/s due to poor local-
ity. Therefore staged transpositions that trade locality with
extra data movements can be favorable. Such an approach
was explored in [11], [14], [15] for multi-core processors,
where a full four-stage in-place transposition of a matrix,
that can be achieved by a series of elementary tiled transpo-
sitions, significantly increases the throughput, thanks to a
proper exploitation of the spatial locality.

In [14] the dimensions of an M x N matrix are factorized
as M’ x m x N’ x n or a 4D array, where M = M’ x m and
N = N’ x n. This factorization defines a blocked format on
the matrix composed by two independent formats: intra-
block format and inter-block format. Intra-block format
expresses the order of the elements within a block (row- or
column-major) and, similarly, inter-block format defines the
order of the blocks (also row- or column-major). Thus, there
are only six possible storage formats combining intra-block
and inter-block orders, as shown in Table 1.

Then, storage format conversions can be performed as
sequences of elementary transpositions. These are designed
in such a way that they only swap adjacent dimensions
among the four dimensions. Thus, the problem of full in-
place matrix transposition becomes finding a sequence of
elementary transpositions to reach CM from RM. Table 2
employs the factorial numbering system [18] to name each
elementary transposition. This table lists possible permuta-
tions that refer to the swapping of adjacent dimensions.
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TABLE 2
Permutations in Factorial Numbering System

#Dimensions From To Factorial = Sung’s terminology
Num. [16]
3D (A,B,O) (A, C,B) 010, Ao0S-ASTA
transpose
(A, B,O) B, A, O 100 SoA-ASTA
transpose
4D (A,B,C,D) (B,ACD) 1000, -
(A,B,C,D) (A,CB,D) 0100, A instances of
SoA-ASTA
(A,B,C,D) (A,B,D,O 0010 A xB instances of
Ao0S-ASTA

The equivalence between the factorial numbering system and Sung’s terminol-
ogy is described.

Each digit of the factorial number for a particular permutation
represents each of three or four dimensions. The digit equal to
1 indicates that the corresponding dimension and the one on
its right-hand side are swapped. For instance, if there are four
dimensions (A, B, C, D), the factorial number 0100, stands for
a permutation from (A, B,C, D) to (A, C, B, D).

The elementary transpositions were used by Sung et al.
[16] to transform data layouts from array-of-structures
(AoS) or structure-of-arrays (SoA) to an intermediate layout
called array-of-structures-of-tiled-arrays (ASTA). Thus,
Sung’s implementation of transposition 010, considers AoS
asa M’ x m x N 3-D array, and each of these m x N tiles is
assigned one work-group, that is in charge of transposing
the corresponding tile. Consequently, their AoS-to-ASTA
marshaling is essentially a local transposition that converts
M xm x N (AoS) to M' x N x m (ASTA). Similarly, their
SoA-to-ASTA transformation (i.e., transposition 100;) essen-
tially is from N x M’ x m (SoA) to M’ x N x m (ASTA), in
which every m-element tile is treated as a super-element
that is then shifted in order to obtain ASTA.

Gustavson et al. [14] found two possible four-stage
sequences of elementary transpositions to carry out the full
in-place matrix transposition. For instance, in one of them,
the first stage applies transposition 0100, that is, M’ instan-
ces of transpositions of m x N’ matrices that are formed by
super-elements of size n: from M’ xm x N' xn to M’ x
N’ x m x n. The second stage employs 0010, to transpose
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M’ x N’ instances of n x m matrices: from M’ x N’ x m X n
to M’ x N’ x n x m. The third stage, that applies the facto-
rial 1000, can be considered as one instance of transposition
of an N’ x M’ array of super-element sized n x m: from
M x N'xnxm to N x M xnxm. The fourth stage is
similar to the first one but with a different dimensionality.

In [10] we showed that the four-stage approach presents
some issues that limit its throughput on GPUs. For instance,
the transposition 1000, in the four-stage approach moves
super-elements of m x n elements, so that its best perfor-
mance is obtained when these super-elements fit on-chip
memory. Thus, values for m and n resulting in a high
throughput for that transposition in stage 3, can perform
poorly for transposition 0100; in stages 1 and 4, where the
size of the super-elements is only n and m, respectively.

In the present work, we explore all possible sequences of
elementary transpositions between RM and CM formats.
We detect nine sequences of 1, 2, 3, or 4 stages, which are
shown in Fig. 2. Gustavson’s original sequences are 4.1 and
4.2. One tenth sequence (4.3) results from the fusion of
stages 2 and 3 in 4.1 or 4.2.

To illustrate these sequences, we explain sequence 3.1
in Fig. 3. Compared to Gustavson’s sequences 4.1 and
4.2, in this sequence a much larger value of m and n
can be used in the first and the third stage respectively
for transposition 0100, without overflowing the on-chip
memory. On the other hand, two-stage sequences can be
faster when the tile sizes m x N or M xn fit in local
memory (assuming N < M or M < N, respectively),
since they entail one read access and one write access
less than the three-stage scheme.

5 TOWARDS A SUITABLE APPROACH
FOR GPU ARCHITECTURES

The aim of this section is to settle on the most appropriate
configurations of elementary transpositions and sequen-
ces of them, in order to shape an approach to in-place
matrix transposition suitable for GPUs. Thus, we initially
evaluate briefly the performance of the elementary trans-
positions after some low-level optimizations that are
explained in detail in the supplemental material, available
online. Then, we analyze their throughput in a wide range

4.1|M'xme'xn %lM'xN'xmxn }ﬂ>lM'xN'xnxm 1000 N'xM'xnxm %lN'xan'xm‘

4.2[M'xme'xn }M>lM'xN'xmxn }ﬂ>lN'xM'xmxn 0010 N'xM'xnxm }M>|N'xan'xm‘

NXMxn=
N'xM'xmxn

3,1| MxN'xn }&'

}M'| N'xM'xnxm 0100 N'xan'xm|

3.2 | M'xmxN'xn }ﬂ,| M'xN'xmxn }M'

"XNXnXxm= 100
M x N xm }—>| NxM'xm |

X 010 MxXNxm=
3'3| M'xmxN }—.| M'xN'xnxm

}M>| N'xM'xnxm }Mﬂ N'xnxM'xm |

3_4|M'xme'xn 0100 M'xN'xmxn 1000 NIXNM;;AT(T‘"=}ﬂ>| N'xnxM |

2.1| M'xmxN }ﬂ>l M'xNxm }ﬂ’l NxM'xm

2,2[ MxN'xn }ﬂﬂ N'x M x n }ﬂ>l N'xnxM

1 [ mxn }iﬂ NxM |

Fig. 2. Nine possible sequences of transformations between M x N and N x M. An additional sequence of transformations (4.3) can be obtained if

stages 2 and 3 are fused in 4.1 or 4.2, as explained in [14].
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MxN=MxN'xn

8|8 301
582 B R
2888

Stage2: Transpose 0010 is
equal to N' x M' instances

of transpose 010 N'xMxnxm

N'xMxn=N'xMxmxn

Stage 1: Transpose 100

Stage 3: Transpose 0100
is equal to N' instances of

transpose 100 N'xnxMxm

BIBNBR
5888
BB

BIR®

Fig. 3. Sequence 3.1 that implements full in-place transposition. In every figure, memory addresses increase from left to right and from top to bottom.
Yellow halos indicate the part of the matrix that is brought into focus in the subsequent stage. Black halos represent super-elements, which are
shifted as a whole. Stage 1 treats matrix M x N as a three-dimensional array of M x N’ x n. It applies transposition 100, moving super-elements of
size n. Stage 2 treats the matrix as a four-dimensional array of N’ x M’ x m x n. It is a transposition 0010;, where tiles (sub-matrices) of size m x n
are transposed. Stage 3 applies transposition 0100, to N’ x M’ x n x m with m-sized super-elements.

of super-element and tile sizes, in order to tune properly
the execution configuration (i.e., the size of the set of
work-items that assigns a tile or a super-element). After-
wards, we present heuristics to choose sizes for m and n.
Finally, we evaluate the sequences of elementary transpo-
sitions that were presented in Section 4.1.

5.1 Performance of the Elementary Transpositions
Sung et al. [16] suggests parallelization strategies that are
useful for the elementary transpositions introduced in the
previous section. Transposition 010, (AoS-ASTA) can be
efficiently implemented with the BS kernel presented in
Fig. 1, when the tile size m x n fits in GPU on-chip memory.
For larger tiles they propose a method, called PTTWAC, in
which multiple threads participate in the shifting of ele-
ments in one cycle, and use atomic operations to coordinate
the shifting. This method is also applied to transposition
100, (S0A-ASTA). Several optimizations can be applied to
these elementary transpositions.

Regarding the PTTWAC-based transposition 010, atomic
contention in local memory burdens its performance. In [10]
we presented two techniques (spreading and padding) to
optimize this elementary transposition. They are detailed in
the supplemental material, available online. The use of these
techniques allows us to obtain an average speedup of 1.79
on a K20 over a baseline implementation without these two
techniques. An alternative technique (remapping of the flag
bits) can also be useful for tile sizes where the spreading
and padding cannot be applied (see suplemental material
for more details). This alternative technique yields up to
60 percent speedup on a K20 over the same baseline.
Despite the considerable improvement obtained by the
mentioned optimization techniques, the throughput of the
PTTWAC-based transposition 010, remains under 25 GB/s.

Thus, the BS-based transposition 010, will be preferably
used in the full transposition approach.

BS-based transposition 010, and PTTWAC-based trans-
position 100, have in common the fact that both load chunks
of matrix elements (m x n-sized tiles or m-sized super-ele-
ments, respectively) into on-chip memory. In order to avoid
a reduction of the available thread level parallelism (TLP), it
is necessary to adapt the number of work-items that assigns
one chunk to the size of the chunk. An explanation of this is
included in the supplemental material, available online.
With such an adaptation, the BS-based transposition 010
results always in a very high throughput (typically, more
than 100 GB/s on a K20 GPU), thanks to the use of the fast
on-chip local memory. The throughput of transposition 100
is shown in Fig. 4, which is analyzed in the next section. It
can yield more than 60 GB/s on a K20, if local memory tiling
is used, and more than 80 GB/s, if register tiling is used.

5.2 Tuning the Execution Configuration
One key aspect to attaining a high throughput is a proper
tuning of the execution configuration, that is, the number of
work-items that are assigned to one tile or one super-ele-
ment. If the size of a tile (or a super-element) is too small,
the number of active work-items and, consequently, the
available TLP will be limited, and the throughput will be
degraded. We propose to match the granularity of tiles or
super-elements to the size of the sets of work-items (work-
group, SIMD unit, or virtual SIMD unit) that assigns them.
Fig. 4 shows the throughput for transposition 100, on an
NVIDIA Tesla K20 for a wide range of super-element sizes
from 1 to 2,560 (see supplemental material, available online,
for the same tests on an AMD Hawaii). Local memory tiling
is used in these experiments. In each sub-figure the legend
indicates the number of work-items in a set that assigns a
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Fig. 4. Throughput (GB/s) of transpose 100, for m under 2,560 on a K20 (32-bit elements). The experiment converts from N x M’ x m to
M' x N x m. On the left (a), the throughput for different virtual SIMD unit sizes is shown. On the right (b), the throughput for different work-group

sizes is presented.

super-element. Fig. 4a compares the effect of different vir-
tual SIMD unit sizes. Virtual size 8 achieves the highest
throughput under m = 24. From this point, the occupancy
falls because of the local memory requirements. Similarly,
the throughput for virtual sizes 16 and 32 is abruptly
reduced in m equal to 48 and 96, respectively. Choosing the
proper virtual SIMD unit size ensures a throughput average
(minimum/maximum) speedup of 18 percent (3%/61%)
with respect to using the actual SIMD unit size (for example,
32 work-items in NVIDIA GPUs).

Fig. 4b explores the throughput for different work-group
sizes. The darker shape corresponds to the implementation
that assigns super-elements to SIMD units (32 work-items),
which is presented in [10]. The other four series in the graph
use one entire work-group of 128, 256, 512, or 1,024 work-
items per super-element. As it can be seen, each series
presents some abrupt changes that are due to occupancy
reductions, when the local memory requirements exceed a
certain limit. This determines the ranges of m where each
work-group size is more profitable.

It is remarkable in Fig. 4 that the throughput can be
maintained over 40 GB/s for a wide range of super-element
sizes from 24 to 2,560, if the size of the set of work-items is
properly chosen. However, the throughput unavoidably
degrades for smaller super-elements, despite the use of
virtual SIMD units ensures some improvement, as seen
above. The fact that Equation (1) determines the location
where a super-element is moved to makes adjacent virtual
SIMD units (which belong to the same actual SIMD unit)
access distant global memory areas. Thus, the number of
global memory transactions increases. This fact will entail
the main performance bottleneck in our approaches to
matrix transposition.

Additionally, once determined the proper size of the set
of work-items for each range of super-element sizes, register
tiling can be applied instead of local memory tiling, obtain-
ing further improvement.

A similar analysis can be done for BS-based transposition
010,. The highest throughput can be achieved in each range
of the tile size, if the size of the set of work-items is properly
selected. Similarly, the bounds for each set size are given by
the local memory requirements and the occupancy. Unlike
transposition 100;, the throughput is not dramatically
reduced for very small tiles. The tiles are assigned to virtual
SIMD units that will write the tiles in the same locations

they were read, as the transposition takes place within a tile.
Thus, the number of global memory transactions is limited,
because the tiles accessed by virtual SIMD units belonging
to the same actual SIMD unit are in adjacent locations.

5.3 Heuristics for a Near-Optimal Throughput

In [12] Catanzaro et al. compared their implementation to
our work presented in [10]. As they pointed out, our imple-
mentation [10] needed a heuristic to choose tile sizes auto-
matically. In order to carry out the comparison, they used
the heuristic in Algorithm 1. Their aim was to choose m and
n that are not too small nor to large for the hardware. This
way, they set a maximum of 72, so that the maximum tile
size 72 x 72 fits in the local memory of a K20.

Algorithm 1. Heuristic used by Catanzaro et al. [12]. Fy,
and Fy are arrays that contain the factors of M and N,
respectively, after sorting them in ascending order. #Fy,
and # Fy are the number of factors of each dimension.

Calculate factors of M and N
Sort factors of M and N
fori = 0 to #F) do
if FM[’L] S 72 then
k=1
end if
end for
m = FM[k‘]
M =M/m
fori = 0to #Fy do
if Fiy[i] < 72 then
k=1
end if
end for
n = FN[]C]
N =N/n

Although that heuristic allowed them to obtain an
impressive maximum throughput for some cases, it does
not select the best tile sizes for many matrices. As we
have shown in Section 5.2, the main bottleneck of our
tiled approach is in transposition 100, when the super-
element size (m or n) is very small. Thus, we propose a
more elaborate heuristic in Algorithm 2. It tries to select
m and n in a range between Min and Max. Then, it
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Fig. 5. Comparison of a brute-force search to the proposed heuristics for 500 random matrices on an NVIDIA Tesla K20 GPU.

evaluates all possible combinations of m and n in that
range that fit local memory. Finally, it selects the tile size
m x n that obtains the largest exploitation of the local
memory size. This criterion is based on the intuition that
the BS-based transposition 010, will obtain the highest
throughputs when the local memory is more intensively
used. The PTTWAC-based transposition 010; will only be
used when no possible combinations of m and n fit in
local memory (not detailed in Algorithm 2).

Algorithm 2. Our heuristic. Min and Maz stand for the
minimum and maximum super-element size for transpo-
sition 100y, respectively. Eligible_F); and Eligible_Fy are
auxiliary arrays where potentially eligible factors are
stored. LM _size is the number of local memory words.
#WG is the number of work-groups that are executed
simultaneously according to the local memory require-
ments per work-group.

Calculate factors of M and N
Sort factors of M and N
k=0
fori = 0 to #F)y do
Eligible_FA[ [k’] = FA[ m
k=k+1
end if
end for
=0
fori = 0to #Fy do
if Fy[i] > Min & Fy[i] < Max then
Eligible_Fy[l] = Fyli]
I=1+1
end if
end for
fori =0to kdo
forj=0toldo
if Eligible_Fy[i] x Eligible_Fy|j] < LM _size then
Calculate number of work-groups #WG

if #WG x Eligible_F[i] x Eligible_Fx[j] > m X n x #

WG Max then
m = Eligible_Fy[i]
n = Eligible_Fx|j]
#WGMax = #WG

end if

end if
end for
end for

5.3.1 Brute-Force Search versus Heuristics

We evaluate the accuracy of these heuristics with respect to
a brute-force search, which is not practical in real-world
applications. Tests have been conducted on a K20 for 500
random matrices with dimensions in the interval [1,000,
20,000).

As it can be seen in Fig. 5, our heuristic is very close to
the maximum possible throughput. The median relative
error of the throughput achieved by the heuristic with
respect to that obtained by brute-force is only 2 percent.
Moreover, the cost of the complete execution of the heuristic
is very small, representing less than 1 percent of the total
execution time.

5.4 Comparison of Sequences of Elementary
Transpositions

We compare the sequences of transpositions with 2, 3, and 4
stages enumerated in Section 4.1, in order to figure out
which sequences are more appropriate for GPU architec-
tures. Tests have been carried out on a K20 for 1,000 random
matrices with dimensions M and N in the interval [1,000,
20,000). For each of these matrices, it has been necessary to
select m and n among the factors of A/ and N. This selection
has been carried out with the same criteria explained in
Section 5.3.

As shown in Fig. 6, sequences 3.1 and 3.2 achieve the
highest throughput in a majority of cases. Sequence 3.1 is
the fastest for 418 matrices, and sequence 3.2 for 374.
One key observation is that sequence 3.1 is faster than 3.2
when n > m, while 3.2 outperforms 3.1 when m > n. The
reason for this lies on the fact that n is the super-element
size of transposition 100, in sequence 3.1, and m in
sequence 3.2. The larger this super-element, the higher
the throughput, since super-elements are shifted over
larger distances in transposition 100; than in transposition
0100,.

The transposition of the rest of matrices is faster with
sequence 2.1 (98 matrices) or 2.2 (91 matrices). The common
characteristic of these matrices is that they are very skinny.
If N <« M, sequence 2.1 is the fastest, because m x N fits in
on-chip memory. Sequence 2.2 performs likewise when
M < N.

In summary, once m and n have been chosen using the
heuristic of Algorithm 2, our approach to in-place matrix
transposition will carry out one sequence of elementary
transpositions (3.1, 3.2, 2.1, or 2.2) depending on the charac-
teristics of the matrix (See Algorithm 3).
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Fig. 6. Comparison of nine sequences of transformations (M x N to N x M) for 1,000 random matrices on an NVIDIA Tesla K20 GPU.

Algorithm 3. Sequence selection according to matrix
characteristics.

Execute Algorithm 2

if m x N < LM _size then
Sequence 2.1

else if M x n < LM _size then
Sequence 2.2

else if m < n then
Sequence 3.1

else
Sequence 3.2

end if

6 AN OUTSTANDING THROUGHPUT BOOST
AT A NEGLIGIBLE OVERHEAD

In this section, we analyze the impact on the effective
throughput of the major bottleneck (i.e., very small super-
element size m or n) that we have detected in the previous
section. Then, we propose a simple correction based on min-
imal padding to boost the throughput of the affected
matrices.

6.1 Throughput Estimation and Discussion

The effective throughput T, f..iive Of a three-stage sequence
of elementary transpositions can be estimated with
Equation (2), where Tiop, and T, are respectively the
throughput of transpositions 100; and 010;. The outcome is
the inverse of the total execution time per byte. According
to this equation, the maximum theoretical throughput on a
K20 GPU with a global memory bandwidth of 208 GB/s
would be 69.33 GB/s. However, a more realistic theoretical
maximum has to take into account the highest throughputs
that can be obtained for transpositions 100, and 010,. Using
the figures presented in Section 5.1, the realistic maximum
throughput would reach the top around 30 GB/s for 32-bit
elements,

1
Te/feclive = 1, 1 1 (B/S) (2)
Tioo,  Toro, ~ Thoo,

An analogous analysis can be done for the lower bound.
A very small super-element size m or n makes transposition
100, barely achieve 10 GB/s or less, according to Fig. 4a.
This would place the peak of the effective throughput
around 8 GB/s. Even worse would be the case of both
m and n very small: less than 5 GB/s. For illustrative

purposes, in order to figure out how many matrices would
be transposed at such low rates, we have generated 5,000
random matrices with dimensions M and N in the interval
[1,000, 20,000). Then, we have counted the number of them
that will be factorized with very small m or n using
Algorithm 2. If we arbitrarily choose m or n less or equal to
6, the resulting number of matrices is 2,235, that is, more
than 44 percent of those matrices.

6.2 Padding to Obtain Better Factorizations

For those matrices where m and/or n will be very small, we
can easily obtain a better factorization with a minimal over-
head. As a running example, let us consider a matrix of size
6,203 x 6,607. Both dimensions are prime numbers. Thus,
Algorithm 2 will choose m = 1 and n = 1. With such super-
element sizes, the throughput that our approach to in-place
matrix transposition can achieve for this matrix is 2.38 GB/s
on an NVIDIA Tesla K20.

By simply padding one row and one column, the number
of factors of the new dimensions 6,204 and 6,608 is 23 and
19, respectively. Among these, we can choose m = 94 and
n = 59, which will ensure a much higher throughput. The
effective throughput for a 6,204 x 6,608 matrix on K20 is
24.18 GB/s.

6.2.1 Fast Padding and Unpadding Kernels

Padding extra rows is trivial: allocating more space at the
end of the array. However, padding columns is trickier,
as it can be seen in Fig. 7. Rows should be moved
sequentially, as they are shifted a few positions forward,
where rows with higher index are placed. For instance,
row 4 is allowed to be shifted when row 5 has been
shifted, or more precisely when row 5 has been saved in
temporary on-chip memory. Algorithm 4 depicts our fast
padding kernel. Each work-group has an associated flag
that will enable work-groups assigned to row elements
with lower index to move them. A work-group 4 loads
consecutive array elements into on-chip memory (scratch-
pad memory and registers) and waits for the flag i — 1 to
be set true. As soon as this is true, work-group i sets its

a) Before padding
%o g

Rowl " Row2? Bl Row3 M Row4 WM RowS5

b) After padding

Fig. 7. Padding in-place a row-major matrix composed by five rows.
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// Synchronization
barrier (CLK_LOCAL_MEM_FENCE) ;
if (wi_id == 0){
// Wait
while (atom_or (&flags[wg_id], 0) ==
// Set flag
atom_or (&flags[wg_id + 17,
}
// Synchronization
barrier (CLK_GLOBAL_MEM_FENCE) ;

0){}

1);

Fig. 8. Code segment of adjacent work-group synchronization. Work-
item with wi_id = 0 executes the loop until the flag of the previous
work-group is set. Then, it sets its associated flag. The first barrier ()
ensures all work-items in the work-group reach that point at the same
time. The second one guarantees correct ordering of global memory
operations.

flag, and stores the array elements into global memory.
The code of this synchronization mechanism is in Fig. 8.
Flags should be read and written atomically. The first
barrier () ensures all work-items of the work-group
have loaded array elements into on-chip memory. The
second barrier () entails a global memory fence, which
ensures correct ordering of global memory operations.
Similar synchronization procedures between adjacent
work-groups are explained in [19], [20].

Algorithm 4. Padding kernel. A work-item wi_id loads
into registers matrix elements from locations pos(wg-id,
wi_id), that are a function of the work-group ID wg_id
and wi_id. Then, they are stored in locations pos_pad
(wg_id, wi_id).

Dynamic work-group ID allocation

fori = 0to #REGS do
Register; = Matriz[pos(wg-id, wi_id))
pos(wg-id, wi_id)+ = wg_size

end for

Adjacent work-group synchronization

fori = 0to #REGS do
Matriz[pos_pad(wg-id, wi_id)] = Register;
pos_pad(wg_id, wi_id)+ = wg_size

end for

In order to avoid potential deadlocks due to the non-
deterministic scheduling of work-groups, we deploy a
dynamic work-group ID allocation [19]. The code is
explained in Fig. 9.

A similar design can be used for the unpadding kernel,
which is needed after transposition, if extra rows were
added.

As it is shown in Fig. 10, these padding and unpadding
kernels achieve a large fraction of peak bandwidth on
current GPUs. Thus, the effective throughput for the
6,203 x 6,607 matrix is 15.36 GB/s, including padding and

__local int wg_id_;
if (wi_id == 0) wg_id_ =
// Synchronization
barrier (CLK_LOCAL_MEM_FENCE) ;

atom_add (&S, 1);

Fig. 9. Code segment of dynamic work-group ID allocation. As soon as a
work-group is scheduled, the first work-itemwi_id = 0 gets the dynamic
work-group ID by incrementing a location S in global memory, which was
initialized to 0. The dynamic work-group ID is stored in local memory, so
that it is visible to every work-item in the work-group after the
synchronization.
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Fig. 10. Throughput of padding or unpadding one column on an NVIDIA
GeForce GTX 980 GPU and an AMD Hawaii GPU. Abscissas represent
the number of rows of the matrix. The number of columns is the same
after padding/before unpadding.

unpadding. The throughput is boosted 6.5x with a negligi-
ble memory overhead of 0.03 percent.

6.2.2 A New Simpler Heuristic

Algorithm 5 defines a simple heuristic to select the super-
element sizes m and n. Essentially, if it is not possible to
find a super-element size in the desired range, one row or
column is padded. The lower bound Min (typically, 24)
ensures a considerable throughput for transpositions 100
and 0100.. The upper bound is the square root of the local
memory size, so that BS-based transposition 010, can be
employed. In the worst case, M will be a multiple of Min
before Min iterations. As this algorithm decides padding
needs, it is executed prior to memory allocation, so that the
extra space is allocated contiguous to the matrix.

Algorithm 5. Simple heuristic to choose m. n is chosen
independently with the same heuristic. Min stands for
the minimum super-element size for transposition 100
(or 0100y). LM _size is the number of local memory
words.

done,, = false
while done,,, = false do
Calculate factors of M
Sort factors of M
fori=0to #Fu do
if Fy M > Min & F]\[[i] < VLM _size then
m = Fyli]
done,, = true
Break loop
end if
end for
if done,, = false then
M=M+1
end if
end while
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Fig. 11. Comparison to Catanzaro et al. Each point corresponds to one matrix, and gives the throughput of Catanzaro’s implementation on the hori-
zontal axis, and the throughput of our implementation on the vertical axis. On the left, 5,000 random matrices are used. On the middle, 2,926 matrices
for which our heuristic chooses m greater than 4 and n greater than 6 (for sequence 3.1, and vice versa for sequence 3.2), and m x n fits in local

memory. On the right, the remaining 2,074 matrices.

7 EXPERIMENTAL RESULTS

In this section we evaluate our approach and compare it
to another recent in-place transposition. First, we use the
heuristic in Algorithm 2, and confirm where the draw-
back of our approach is. Then, we utilize padding to
obtain a significant improvement. Experiments in this
section have been performed on NVIDIA Tesla K20 and
GeForce GTX 980 GPUs, and AMD Hawaii. K20 has
Kepler architecture with a peak memory bandwidth of
208 GB/s. GTX 980 is Maxwell and its memory band-
width is 224 GB/s. Hawaii’s peak memory bandwidth is
320 GB/s. Tests on NVIDIA devices have been carried
out with CUDA SDK 6.5, and on AMD device with
AMD SDK 2.9.1.

7.1 Evaluation of the three-Stage/two-Stage
Approach

Catanzaro et al. [12] compared their implementation to
our previous work [10] for 2,500 random matrices with M
and N in the interval [1,000, 20,000). They reported a
median throughput of 14.23 GB/s for their implementa-
tion and 5.33 GB/s for our previous one (using the heuris-
tic in Algorithm 1), when transposing matrices of 32-bit
elements. In the present work, we have described some
new optimizations, such as the use of virtual SIMD units,
and have tuned our elementary transpositions. Moreover,
we have devised an heuristic that is more accurate. In this
section, we compare our three-stage/two-stage approach
using Algorithm 22 to Catanzaro’s using 5,000 random
matrices of 32-bit elements with M and N in the interval
[1,000, 20,000).

As it can be seen in Fig. 12a, we measure a median
throughput of 14.25 GB/s for Catanzaro’s implementa-
tion, and 13.69 GB/s for our implementation on K20. It
is noticeable that our implementation presents cases with
throughput below 5 GB/s. As we detected in Section 6,
these are due to very small super-elements m and n.
Thus, Fig. 12b shows the throughput for matrices where
Algorithm 2 is able to select m >4 and n > 6.

2. In the experiments of this section, our approach does not use the
padding technique presented in Section 6.
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Fig. 12. Throughput histograms for general transposition of random
matrices (32-bit elements) on NVIDIA Tesla K20 GPU. On the top (a), Cat-
anzaro’s and our results for 5,000 random matrices. On the middle (b),
results for 2,926 matrices that are transposed by our approach with
m >4 andn > 6 (or vice versa for sequence 3.2), and BS-based transpo-
sition 010,. On the bottom (c), results for the remaining 2,074 matrices.
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Fig. 13. Throughput histograms for general transposition on an NVIDIA
Tesla K20 GPU. On the top, results for 5,000 matrices of 64-bit elements.
On the bottom, results for 5,000 matrices of 32-bit elements.

Catanzaro’s results for the same matrices are also shown.
The median throughput of our implementation for
these cases (2,926 matrices) is significantly higher than
Catanzaro’s.

Figs. 11a, 11b, and 11c present the results using a disper-
sion map. Each point represents the throughput for one of
the 5,000 random matrices. The projection on the horizontal
axis gives the throughput of Catanzaro’s implementation,
and the projection on the vertical axis indicates the through-
put of our implementation.

Similar trends happen for matrices of 64-bit elements,
and for the particular case of skinny matrices (i.e., AoS to
SoA and SoA to AoS conversions). Our three-stage/two-
stage approach with Algorithm 2 results in a significantly
higher median throughput than Catanzaro’s implementa-
tion for almost 60 percent of the matrices, but bad factoriza-
tion cases burden the overall throughput.

7.2 Throughput Boost with Padding

As explained in Section 6, a negligible memory overhead
(due to padding very few columns or rows) can increase the
throughput of our approach for every matrix. In this section,
all our throughput figures include padding and/or unpad-
ding times, if padding columns and/or rows is applied.’
Fig. 13 compares Catanzaro’s results to our approach using
padding and Algorithm 5 on K20. Fig. 14 is the same for
GTX 980. The two graphs on the bottom correspond to 5,000
matrices of 32-bit elements with dimensions in the interval
[1,000, 20,000). The two graphs on the top are for 5,000

3. In some applications padding can be done at storage time, so run-
time padding cost will not be added.
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Fig. 14. Throughput histograms for general transposition on an NVIDIA
GeForce GTX 980 GPU. On the top, results for 5,000 matrices of 64-bit
elements. On the bottom, results for 5,000 matrices of 32-bit elements.

matrices of 64-bit elements with dimensions in [1,000,
15,000).*

The graphs show a dashed black line that stands for the
median throughput. This is considerably higher for our
approach. The three bumps in our histograms roughly
correspond to matrices where two dimensions, one
dimension or none were padded, respectively. It is
remarkable that the maximum number of extra rows and/
or columns in all these cases is 8. For single precision
matrices the maximum memory overhead is 0.43 percent,
and the median memory overhead is 0.01 percent. For
double precision matrices, the maximum is 0.47 percent
and the median is 0.03 percent.

We have also tested data layout transformations, as a
particular application of matrix transposition. 5,000
skinny matrices with the long dimension in the interval
[10%, 107), and the short dimension in [2, 32) have been
used in each experiment. Fig. 15 compares the through-
put of our approach to Catanzaro’s for SoA-AoS and
A0S-S0A conversion on GTX 980. The graphs on the top
(a) correspond to matrices of 64-bit elements, and on the
bottom to matrices of 32-bit elements. In these cases, our
approach only pads the long dimension, and two-stage
sequences are used. The lower bump in our histograms
corresponds to the cases where padding is needed.
The maximum memory overhead in all these cases is
0.02 percent.

Finally, we have also tested our approach on an AMD
Hawaii GPU. We cannot compare to Catanzaro et al,

4. Due to OpenCL constraints on maximum allocatable memory
space, it is not possible to test larger matrices.
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Fig. 15. Throughput histograms for SoA-AoS conversion on an NVIDIA
GeForce GTX 980 GPU.

because that is a CUDA implementation. To the best of our
knowledge, ours is the only in-place matrix transposition
approach for AMD devices. Fig. 16 presents the throughput
histograms for 5,000 matrices of 32-bit elements (bottom)
and 64-bit elements (top).

8 CONCLUSION

This paper deals with in-place matrix transposition on
GPUs. We have designed a general approach for rectan-
gular matrices using elementary transformations. We
have enhanced the performance of these building blocks
proposed by earlier works. Moreover, we have explored
all possible sequences of elementary transformations that
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Fig. 16. Throughput histograms for general transposition of 5,000 ran-
dom matrices on an AMD Hawaii GPU. On the top, the results for double
precision matrices. On the bottom, the results for single precision
matrices.

implement full transposition. Thus, we are able to choose
the most favorable sequence according to matrix character-
istics. We have observed that the tile size greatly affects
performance of in-place transposition. Since the search
space for tile sizes can be big, we have proposed an heuris-
tic to choose good tile sizes. We have detected the draw-
back of our approach (i.e., very small super-elements in
transpositions 100; and 0100;), and we have proposed pad-
ding very few rows and/or columns to solve it. With fast
padding and unpadding kernels, the throughput of our
approach can be greatly improved. We have finally com-
pared our approach to another recent implementation.
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