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Abstract

Developing high performance GPU code is labor intensive. Ideally, developers could recoup high GPU develop-
ment costs by generating high-performance programs for CPUs and other architectures from the same source code.
However, current OpenCL compilers for non-GPUs do not fully exploit optimizations in well-tuned GPU codes.

To address this problem, we develop an OpenCL implementation that efficiently exploits GPU optimizations on
multicore CPUs. Our implementation translates SIMT parallelism into SIMD vectorization and SIMT coalescing into
cache-efficient access patterns. These translations are especially challenging when control divergence is present. Our
system addresses divergence through a multi-tier vectorization approach based on dynamic convergence checking.

The proposed approach outperforms existing industry implementations achieving geometric mean speedups of
2.26× and 1.09× over AMD’s and Intel’s OpenCL implementations respectively.

I. INTRODUCTION

Modern supercomputers are becoming heterogeneous computing systems equipped with CPUs and accelerators
(such as GPUs or Xeon Phis). Each type of device comes with different characteristics that require significant tuning
efforts for applications to run on the device efficiently. One fundamental challenge with targeting heterogeneous
platforms is maintaining multiple source codes optimized for different platforms.

OpenCL [15] provides a unified interface for different device architectures. The abstract computing model of
OpenCL is intended to be architecture neutral enabling functional equivalence across architectures. Due to the
close proximity between OpenCL’s abstract hardware model and the GPU architectures, executing OpenCL code
on GPUs is relatively straightforward. However, compiling OpenCL code for other architectures CPUs in particular
requires more involved compiler support.

To efficiently compile GPU kernels for CPUs, a good understanding of how these kernels are optimized is required.
High performance GPU kernels require efficient use of the memory subsystem and execution units. In order to
improve utilization of the memory subsystem, memory accesses must be coalesced to improve effective memory
bandwidth by exploiting spatial locality. Moreover, convergent control flow maximizes utilization of the SIMD
execution units which exploit the parallelism from the SIMT execution model to improve instruction throughput.
Maximizing effective memory bandwidth and instruction throughput are universal optimization targets, and it would
be ideal if such characteristics could be preserved when retargeting optimized GPU kernels to a CPU.

Previous work [22], [10] has approached this problem by serializing work-items of a work-group within barrier
separated regions using thread-loops or user-level threads. Such approaches capture program correctness but fail
to preserve locality optimizations and SIMD vectorization opportunities. Other approaches [14] have improved on
work-item serialization by doing what is equivalent to strip-mining the thread-loops to benefit from SIMD vector-
ization on the CPU, and using software predication techniques such as masking [13] to handle control divergence.
These approaches, however, incur unnecessary masking overhead when control flow is actually convergent.
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To overcome these obstacles, we present the design, implementation, and evaluation of the key efficiency-
preserving techniques in our OpenCL implementation. To preserve memory access efficiency, loop interchange
and vectorization allow work-items in a work-group to maintain the lock-step wave-front-style execution expected
by GPU programmers. A multi-tier vectorization technique is used to enable situations where work-items in a
work-group encounter divergent if statements or have divergent loop trip counts. The multi-tiered design allows
the generated code to maintain its efficiency in the presence of potentially divergent control flow and gradually
lose efficiency when divergence arises at run-time. For the experiments in this paper, our compiler generates output
code in vectorized C that is well-suited for modern vendor compilers, elevating the final performance noticeably.

In this paper, we make the following contributions:
• We design and implement a compiler that generates efficient vectorized code that emulates the GPU execution

behavior and thus enables the transfer of memory access and SIMD execution optimizations from GPUs to
CPUs.

• We employ a multi-tiered vectorization technique that can efficiently implement the desired execution behavior
even in the presence of potentially divergent conditionals and loops.

• We present real-hardware measurements that demonstrate that the output code outperforms leading vendor
OpenCL compilers and related academic compilers.

• We analyze the important use cases that benefit from the proposed technique as well as situations where kernels
do not benefit, using popular benchmark suites.

The rest of this paper is organized as follows. Section II outlines previous approaches that have been taken to
execute GPU code on CPUs. Section III details the improvements our approach makes on previous approaches and
optimizations we perform. Section IV presents and discusses our experimental results. Section V covers some more
related work and section VI concludes.

II. PREVIOUS APPROACHES

The problem of compiling GPU kernels for CPU architectures has previously been addressed in various research
and industry tools. In this section, we go over a few well-known implementations highlighting their design principles
and discussing some performance implications.

A. MCUDA

MCUDA [22] is a source-to-source translator from CUDA for GPU architectures to multi-threaded C for multicore
CPU architectures. It serializes the work of a thread block within a single CPU thread and parallelizes the work
of the kernel at thread block granularity. The work of a thread block is serialized by wrapping regions of CUDA
statements with a loop (called a thread-loop) that iterates to execute those statements for all threads in the block.
The thread blocks are divided among available CPU threads and executed until completion.

The semantics of barrier synchronization are conserved in MCUDA by forcing thread-loops to not include any
barriers. The kernel is first divided into regions of code whose boundaries are delineated by barrier synchronizations,
and with every control structure containing a barrier synchronization also being a region boundary. The regions
are then transformed separately and each is wrapped in a thread-loop. This forces the work for all threads to be
completed for one region before the next region begins executing. All thread-dependent variables that span multiple
regions must undergo scalar expansion so that their values can be preserved across regions for all threads.

The MCUDA work provides foundation for this work. While MCUDA preserves the functional equivalence and
barrier synchronization semantics of GPU kernels, it does not attempt to preserve other aspects of the execution
model on which some optimizations are founded.

B. Twin Peaks

Twin Peaks [10] is an OpenCL stack for CPUs developed at AMD, which takes a different approach from MCUDA
in mapping blocks and threads (a.k.a. work-groups and work-items in OpenCL) to the CPU. Like MCUDA, it divides
work-groups among CPU threads and executes an entire work-group within a single CPU thread until completion.
However, it differs in that it uses user-level threads within each work-group for the execution of work-items.
Barrier synchronizations are implemented by suspending user-level threads which have reached the barrier until all
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(a) Original OpenCL kernel (b) C kernel with thread-loops (c) C kernel with vectorization 

Fig. 1. Execution pattern of thread-loops compared to static vectorization for convergent code. N denotes the number of work-items. The
notation statement(0:N) means that statement is executed for N work-items starting with work-item 0, and that vector expressions are used
to execute it. This notation will be used throughout.

remaining work-items for the same work-group have reached the barrier. This barrier implementation is much less
performance efficient than MCUDA’s. The advantage of Twin Peaks is that it does not rely on compiler techniques,
but rather it moves the work-item scheduling into the runtime system. Runtime work-item scheduling allows for
incorporating runtime information for more informed scheduling as well as reuse of off-the-shelf compilers and
debugging tools. However, the user-level threading approach makes it more difficult to incorporate the techniques
we present in this paper.

C. Karrenberg et al.

Karrenberg et al. [14], [13] present techniques for running OpenCL code on CPUs using SIMD vectorization.
Their compiler divides the code at barrier synchronizations and vectorizes each region with the size of the hardware
SIMD width (W ). They execute an entire region for W work-items before moving on to the next W . This approach
is similar to the MCUDA approach, except that the thread-loop is strip-mined. They also use software predication
techniques to handle situations where control divergence arises. The main differences between this technique and
ours will be discussed in the related work section after our technique is presented.

D. Intel

Detailed information about the implementation of Intel’s OpenCL stack [12] is not disclosed to the public. Our
experiments indicate that there seems to be some similarity with MCUDA in how it maps work-groups and work-
items to the CPU execution units. However, details about code generation and compilation techniques are not well
known. In this paper, we compare the performance of our implementation against the Intel OpenCL stack as a
black box.

III. PROPOSED APPROACH

As with previous approaches, our proposed OpenCL implementation divides work among CPU threads at work-
group granularity. However, it differs from previous approaches in the treatment of work-items within the same work-
group. Our approach vectorizes kernel statements across the entire work-group when code regions are convergent.
When code is divergent, it uses a multi-tiered approach which tests for convergence at runtime and selects between
different execution paths accordingly. This section highlights the key techniques that our implementation adopts
and provides technical details about our code generation strategies.
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A. Problems with Serialization

Consider the pseudo OpenCL kernel code in Figure 1(a). Executing on a GPU, statement1 is executed simul-
taneously for a number of work-items, followed by statement2, etc. When this code is translated to C using a
thread-loop or user-level threads, the resulting behavior is illustrated in Figure 1(b). While the code in Figure 1(b)
captures the correctness of the program, it does not utilize hardware resources on the CPU in the most efficient
way. First, the SIMD vectorization opportunities are lost because the parallelism in the SIMT execution model are
not exploited. Second, the order of memory accesses that the programmer hopes for changes. For example, the
programmer tends to place the stride-one access pattern across memory accesses from nearby work-items executing
the same statement, in order to maximize locality. When the code in Figure 1(b) executes many statements for a
single work-item before moving on to the next, this locality could be lost resulting in poor cache behavior.

B. Static Vectorization of Convergent Control Flow

Our first transformation technique improves on serialization-based approaches by using vector expressions to
execute a statement for all work-items in a work-group before moving on to the next statement. This can be
done whenever the compiler can determine that all work-items are convergent. The impact of this transformation
is illustrated in Figure 1(c). For statement2 inside the loop, the vectorization has the effect of a complete loop-
interchange because the thread-loop is removed from around the convergent loop and implicitly brought inside
around the statement.

The example in the figure shows the treatment of a one-dimensional work-group for simplicity. In the case
of multi-dimensional work-groups, the vectorization is performed in one dimension only while the remaining
dimensions are serialized with a thread-loop. Our implementation can vectorize in any dimension. Moreover, the
thread-loops of the non-vectorized dimensions are also brought inside the loop in the case of statement2 so the
loop-interchange remains complete.

1) Invariance and Divergence Analysis: One drawback of the vectorization approach is that the number of
variables undergoing scalar expansion increases. With thread-loops, variables having live ranges that are contained
in the thread-loop region do not need to be expanded. In other words, if a variable is only ever defined and used
in statements 1, 2, and 3 in Figure 1(b), multiple versions of it need not be created. However, with vectorization,
these variables must be expanded to allow all the work-items to make progress simultaneously. Like MCUDA [22],
we alleviate this problem via selective replication where only variables that vary across work-items are expanded,
thereby reducing memory usage. We also eliminate redundant work because the non-expanded variable only needs
to be computed once, whereas using thread-loops it would need to be redundantly computed in every loop iteration.

An invariance analysis [14] is used to determine which variables are variant and need to be expanded and which
variables are invariant. The invariance analysis also informs the divergence analysis which classifies conditional
control structures as divergent if their conditions are variant.

2) Stride Analysis and Extrapolation: The objective of stride analysis [14] is to determine whether the values of
an expanded variable are at unit strides from each other. By knowing that the values have unit stride, it is sufficient
to load the value for the first work-item and extrapolate the rest instead of loading all values. Such an optimization
reduces memory accesses and eliminates inefficiency due to indirection in gather and scatter operations.

Consider the code example in Figure 2(a). In this code, idx is a variant unit-stride variable. After scalar expansion
and vectorization, the transformed version of the second line without stride analysis and optimization is shown in
Figure 2(b). However, if the stride analysis can detect that idx has constant stride, the compiler can instead generate
the line of code shown in Figure 2(c). This stride-based extrapolation has two advantages. First, it reduces the
number of memory accesses to the idx array to just one. Second, it removes the gather operation from the access to
elements of arr and replaces it with a simple vector load which can be handled more gracefully. In practice, unit-
stride memory accesses are quite common and this optimization proves to be very useful. Stride-based extrapolation
can also be easily extended to any constant-stride variables as well.

C. Dynamic Vectorization of Divergent Control Flow

The vectorization approach in the previous section works for convergent control flow, when all work-items in
the same work-group can be statically determined to always take the same control flow path. However, a problem
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     idx = get_local_id(0);
     var = arr[idx];

(a)

     idx[0:N] = ...
     var[0:N] = arr[idx[0:N]];

(b)
 
     idx[0:N] = ...
     var[0:N] = arr[idx[0]:N];

(c)

Fig. 2. Stride-based extrapolation optimization example. The notation var[i:N] means that N consecutive values are loaded from the array
var starting with that at index i. (a) Input OpenCL code snippet (b) Loading data is indirect memory access (c) Loading data is vectorized

arises in the presence of divergent control flow. The simplest way to take care of divergence is to simply serialize
the work-items using a thread-loop whenever a divergent control structure is encountered.

It is often the case, however, that although convergence cannot be proven statically, work-items within a work-
group do in fact take the same path frequently. For this reason, we distinguish between static and dynamic divergence.
A conditional control structure is statically convergent if the compiler can prove it is convergent, otherwise it
is statically divergent. A control structure is dynamically convergent if the work-items actually converge while
executing it at runtime, otherwise it is dynamically divergent.

There are many situations where code can be statically divergent but dynamically convergent. Examples include
boundary checks where only the boundary work-items are dynamically divergent, or loops where the number of
iterations vary but all work-items are active for at least the first few iterations. In such cases, it is sub-optimal
not to vectorize execution of the work-items, however it is not feasible to do so at compile time. To handle these
situations, we generate code that checks if work-items dynamically converge, executing a vectorized version of the
code if yes, and a serialized version otherwise. We refer to this technique as dynamic vectorization.

Condition blocks such as that shown in Figure 3(a) are translated as shown in Figure 3(b). First, the condition is
computed and its value is stored in a predicate array (line 1). Next, the predicate array is reduced to get the total
number of active work-items (line 2). If this number is equal to the number of work-items in the work-group or to
zero, this means that the work-group is convergent so the then- or else-statements are allowed to execute respective
vectorized code (lines 3-4 and 12-13). Otherwise, the work-group is divergent and the execution of work-items
must be serialized (lines 6-10 and 15-19). Note that even in the case of serialization, the then-statements of all
work-items are first executed followed by the else-statements, which better captures the would-be execution order
on a GPU in case coalesced memory accesses are present.

Loop blocks such as that in Figure 4(a) would be translated as shown in Figure 4(b) if a thread-loop-based
serialization were used. Loops exaggerate the problem of serialization because a work-item must complete all its
iterations before the next work-item starts. Our dynamic vectorization transformation on loops restores the order
of (work-item, iteration) pairs as shown in Figure 4(c). The execution goes as follows. First, the loop condition
is checked for all work-items to determine the number of work-items executing the loop (lines 1-2). The loop
iterates until all work-items have dropped out (line 3). Inside the loop, the body and next condition evaluation
are vectorized if all work-items are active (lines 4-6) and serialized otherwise (lines 8-13). Finally, the number of
active work-items in the next iteration is recomputed (line 15). Note that even in the case when loop iterations are
serialized, the transformation may still be beneficial because it corrects the order of the (work-item, iteration) pairs.
In other words, even when the divergent loop cannot be vectorized, it is still interchanged with the thread-loop.

D. Multi-tier Dynamic Vectorization

When OpenCL programmers think about avoiding control divergence, they often think about it in the context
of wavefronts (commonly known as warps in CUDA terms) not work-groups. This is because no performance
penalty is incurred if two work-items in the same work-group diverge as long as those work-items are not in the
same wavefront. For this reason, there are some workloads where the work-items in a work-group diverge, but
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if(cond) { 

  thenStmt; 

} else { 

  elseStmt; 

} 

01  pred[0:N] = cond(0:N); 

02  numTrue = reduce(pred[0:N]); 

03  if(numTrue == N) { 

04    thenStmt(0:N);      // vectorized 

05  } else if(numTrue > 0) { 

06    for(x=0; x<N; ++x){ 

07      if(pred[x]) { 

08        thenStmt;       // serialized 

09      } 

10    } 

11  } 

12  if(numTrue == 0) { 

13    elseStmt(0:N);      // vectorized 

14  } else if(numTrue < N) { 

15    for(x=0; x<N; ++x){ 

16      if(!pred[x]) { 

17        elseStmt;       // serialized 

18      } 

19    } 

20  } 

(a) Original OpenCL kernel 

(b) C kernel with dynamic vectorization 

(c) Dynamically vectorized execution 

thenStmt 

elseStmt 

cond 

ND-Range 

vectorized 

work-groups 

serialized 

work-groups 

Fig. 3. Handling divergent conditionals. In this example, cond is variant, and the generated code checks for convergence at runtime and
selects between vectorized and serialized code versions. The notation cond(0:N) means that the expression is evaluated for N work-items
starting at work-item 0, and the result is generated into a vector. This notation will be used throughout.

sub-groups of work-items are convergent. In these situations, it is wasteful to serialize the entire work-group and
forgo potential vectorization opportunities.

To address this issue, our transformation sub-groups work-items and performs the vectorization at sub-group
granularity whenever a work-group is found to be dynamically divergent. The result is a multi-tiered approach that
tries to fully vectorized execution of the work-group until it can no longer do so, then falls back onto vectorized
execution of each sub-group, or serializing it if it can’t. Figure 4(d) illustrates an example of how execution will
flow for a divergent loop when multi-tier dynamic vectorization is employed.

E. Nested Control Structures

If a divergent conditional control structure is nested inside another divergent conditional control structure, the
child inherits the predicate of its parent because all work-items inactive in the parent must remain inactive in the
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while(cond) { 

  body; 

} 

lo
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for(i=0; i<N; ++i){ 

  while(cond) { 

    body; 

  } 

} 
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(a) Original OpenCL kernel (b) C kernel with thread-loops 

(c) C kernel with dynamic vectorization 

work-items 

01  pred[0:N] = cond(0:N); 

02  numTrue = reduce(pred[0:N]); 

03  while(numTrue > 0) { 

04    if(numTrue == N) { 

05      body(0:N); 

06      pred[0:N] = cond(0:N); 

07    } else { 

08      for(i=0; i<N; ++i){ 

09        if(pred[i]) { 

10          body; 

11          pred[i] = cond[i]; 

12        } 

13      } 

14    } 

15    numTrue = reduce(pred[0:N]); 

16  } 

 

LEGEND: 

Shading indicates 

vectorized regions. 

Arrows indicate 

serialized regions. 

Time goes from 

lighter to darker and 

from left to right. 
(d) C kernel with multi-tier dynamic vectorization 
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Fig. 4. Handling divergent loops. In this example, cond is variant, and the divergent loop is interchanged with the thread-loop. The generated
code checks for convergence at runtime and selects between vectorized and serialized code versions. Notations are similar to those in the
previous figure.

child. Next, the work-items that were active in the parent all evaluate the child’s condition, and those which evaluate
the condition to false must turn off their predicate flag. However, the newly deactivated work-items must know to
become active again when the child is finished. For this reason, the parent’s predicate must not be forgotten and
needs to be pushed on a stack then popped when the child has terminated.

          if(cond0) {
            if(cond1) {
              thenStmt;
            } else {
              elseStmt;
            }
          }

(a)

1               p0[0:N] = cond0(0:N)
2               p1[0:N] = p0[0:N]
3  <p0>         p1[0:N] = cond1(0:N)
4  <p1>         thenStmt(0:N)
5  <p0 & !p1>   elseStmt(0:N)

(b)

Fig. 5. Nesting divergent control structures. In this figure, cond1 and cond2 are variant. The notation 〈p〉 means that the statement marked
by that notation is dynamically vectorized based on the predicate p.

The example in Figure 5(a) shows two nested divergent conditionals. The transformed version of the code is
shown in Figure 5(b). First, the child’s predicate is cloned from the parent’s predicate (line 2). Next, the child’s
condition is evaluated for only the work-items active in the parent (line 3). The code generation to dynamically
vectorize the then-statement of the conditional (line 4) is done as in Figure 3 lines 2-20 using the new predicate.
However, the code generation for the else-statement differs. This is because a zero value in p1 could mean that
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Name Description Treatment of convergence Treatment of divergence 

TL 
Modified MCUDA 

(thread-loop transformation) 
Serialize Serialize 

SVEC 
Static vectorization 

of convergent control flow 
Vectorize Serialize 

DVEC-N 
Dynamic vectorization  

of divergent control flow (naïve) 
Vectorize 

Vectorize work group if converges, else vectorize 

sub-group if converges, else serialize 

DVEC 
Dynamic vectorization of divergent 

control flow (transformation selection) 
Vectorize 

Code analysis to statically select whether to apply 

dynamic vectorization or to serialize 

TABLE I
ABBREVIATIONS USED FOR INCREMENTAL VERSIONS OF OUR IMPLEMENTATION

the work-item evaluated the cond1 to false, but it could also mean that the work-item was not active in the parent
to begin with (i.e. cond0 was false). For this reason, the parent’s predicate must also be included in the dynamic
convergence check, and the statement must only be executed if p1 is false and p0 is true (line 5).

F. Region Formation

In the thread-loop-based transformation in [22], the code is divided into multiple regions and each region is
transformed separately. Every barrier synchronization is treated as a region boundary and every control structure
containing a barrier synchronization is also treated as a region boundary. Since work-items execute an entire region
before moving on to the next, this ensures that barrier synchronizations are handled correctly.

The approach we take in this paper necessitates an augmentation to this region formation algorithm. First,
eliminating redundant computation of invariant variables necessitates that all work-items finish their computations
before those variables are updated. Therefore invariant computations also become synchronization points in the
code. Moreover, the dynamic vectorization technique necessitates that all work-items evaluate the condition of a
divergent control structure before any can enter it, in order to select what version to execute. Therefore divergent
control structures become synchronization points as well.

The region formation algorithm must now consider two new criteria for dividing regions: statement invariance
and control structure divergence. In other words, in the new algorithm, changes in the statement invariance property
must be treated as region boundaries, divergent control structures must be treated as region boundaries, and every
control structure containing either of these situations must also be treated as region boundaries.

G. Transformation Selection

The performance gained from using dynamic vectorization may sometimes not be worth the housekeeping
overhead incurred. This usually happens when the amount of work and memory access performed inside the control
structure is not significant enough. It also happens when no convergent work-item sequences can be extracted from
the divergence pattern and therefore the two vectorization tiers are never actually used. For this reason, we employ
a transformation selection analysis which statically decides whether to dynamically vectorize a divergent control
structure or just keep it serial. The analysis uses information such as the complexity of the control structure’s body
and the number of operations and memory accesses it contains to decide whether or not dynamic vectorization
should be applied.

The overall decision making flow for our transformations is shown in Figure 6. Each code region formed by the
region formation is transformed separately. If the region is statically convergent, it is unconditionally vectorized. If
it is statically divergent, it is analyzed for complexity. If transformation selection finds that the region has a handful
computation load, it will serialize the region with a thread-loop, otherwise it will emit the multi-tier dynamic
vectorization code. At runtime, the multi-tier dynamic vectorization code will perform vectorized execution if the
region is dynamically convergent. Otherwise, it will partition it into sub-groups and check each sub-group separately.
If the sub-group is dynamically convergent, it will take vectorized execution path, otherwise its execution will be
serialized with a thread-loop.
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   per work group: 

   for every sub-group: 

Divergence 

Analysis 

statically 

convergent 
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divergent 
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Selection 

Vectorize 
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Fig. 6. Overall decision making flow for multi-tier dynamic vectorization

IV. EXPERIMENTAL RESULTS AND EVALUATION

A. Experiment Setup

The proposed OpenCL stack is implemented as an extension of the Clang [16] compiler framework. Our tool
is an AST-based source-to-source translator which transforms OpenCL code to multithreaded C code that uses
vector operations. The compilation of the output code to final machine code is done offline using the Intel C
Compiler (ICC) 13.1.3. C Extensions for Array Notations (CEAN) [11] is exploited as a convenient representation
for communicating vector operations to the ICC.

The evaluation platform consists of an Intel i7-3820 processor running at 3.6GHz and 16G of DDR3 DRAM
with dual channel configuration, running 64-bit Ubuntu 12.04. Two benchmark suites were used to evaluate the
performance of each implementation: Parboil 2.5 [21] and Rodinia 2.4 [5].

We have modified MCUDA to work on OpenCL programs and use it as a reference for showing the incremental
improvement of each of the techniques we apply. We then compare the performance of our final version to that of
the two industry OpenCL implementations from AMD of version 1214.3 and Intel of Build 76921. Table I lists the
incremental versions of our tool which we evaluate, and designates abbreviations for each that will be used from
here on.

B. Incremental Evaluation of Proposed Techniques

Figure 7 compares the incremental performance impact of our OpenCL implementation starting from the modified
MCUDA version (TL) for all thirty benchmarks from the Parboil [22] and Rodinia [5] suites. It shows the relative
speedup of each version normalized to that of the best performing version. Similarly, Figures 8 and 9 show the
dynamic instruction count and number of L1 cache misses respectively, normalized to the version with the largest
value for the metric. The results are based on ten runs per benchmark per implementation.

1) Evaluation of Static Vectorization: Static vectorization of convergent regions (SVEC) shows substantial
performance improvement over TL for a large number of benchmarks. Sixteen benchmarks show a speedup greater
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Fig. 7. Relative speedup (higher is faster) of incremental versions for Parboil and Rodinia benchmarks. Fastest is 1.0. The geometric mean
speedups of each incremental version over to TL are 1.34×, 1.41×, and 1.60× for SVEC, DVEC-N, and DVEC respectively.
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Fig. 8. Dynamic instruction count (lower is better) of incremental versions for Parboil and Rodinia benchmarks. Worst is 1.0.
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Fig. 9. L1 cache misses (lower is better) of incremental versions for Parboil and Rodinia benchmarks. Worst is 1.0.
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than 3%, twelve of them being greater than 10%. Seven benchmarks are affected by less than 3%. Only seven
benchmarks show slowdowns greater than 3% with just four greater than 10%. The geometric mean speedup of
SVEC over TL is 1.34×.

The success of SVEC is mainly due to two factors: improved data locality and reduced dynamic instruction count
due to vectorization. The graphs in Figures 8 and 9 show a clear correlation between speedup, reduced dynamic
instruction count, and reduced L1 cache misses.

Out of the sixteen benchmarks showing speedup, eleven show improvement in both instruction count and L1
misses, or at least an improvement in one with little impact on the other. These benchmarks include backprop,
cutcp, lud, mri-gridding, mri-q, nw, and sgemm which are all dominated by convergent control flow and most have
coalesced memory accesses. They also include histo, hotspot, pathfinder, and tpacf which all have a reasonable
portion of convergence and most also have coalesced memory accesses. The remaining five show some degradation
in one of the metrics, but still show speedup overall. Reasons why SVEC could hurt instruction count or locality
in a few cases will be detailed shortly.

The seven benchmarks that are not affected by the transformation are all dominated by divergent regions, therefore
there is little difference between the code generated by TL and SVEC for these cases. These benchmarks include
b+tree, bfs (Rodinia), leukocyte, myocyte, particlefilter, spmv, and streamcluster. The remaining seven benchmarks
showing performance degradation all show substantial degradation in instruction count, L1 misses, or both.

There are several reasons why SVEC sometimes hurts instruction count or locality. First, SVEC’s region formation
divides the kernel into finer grain regions than TL because it has more criteria for creating region boundaries. Having
finer regions increases the number of variables with live ranges spanning multiple regions that need scalar expansion.
This is good when most regions are convergent because it enables vectorization, however when most regions are
divergent (and not dynamically vectorized) this is just a waste. Benchmarks that suffer most from this phenomenon
are kmeans, lavaMD, lbm, nn, sad, and srad. Second, TL performs better with benchmarks accessing data in array-
of-structures (AoS) format. That is because a thread-loop accesses each element of a structure before moving on
to the next structure, whereas vectorized kernels access the same element for all structures before moving on to
the next element. Thus, vectorization will result in a strided access pattern which has poorer cache behavior. The
benchmarks using AoS data layout are cfd, fft and lbm. We note that according to [19], [2], it is considered better
practice to use structure-of-arrays (SoA) format in GPU kernels as opposed to AoS.

2) Evaluation of Dynamic Vectorization: Dynamic vectorization of divergent regions (DVEC) shows speedup
over SVEC greater than 3% for twelve benchmarks, ten of them being greater than 10%. Nine benchmarks are
affected by less than 1%. Nine benchmarks show slowdowns greater than 3% with seven greater than 10%. The
geometric mean speedup of DVEC is 1.60× and 1.20× over TL and SVEC respectively.

The success of DVEC is also due to improved data locality and reduced dynamic instruction count. The correlation
is evident in Figures 8 and 9.

Out of the twelve benchmarks showing speedup, seven show improvement in both instruction count and L1
misses. These benchmarks include cutcp, gaussian, kmeans, spmv, srad, stencil and streamcluster. The remaining
five which show some degradation in the metrics but still show speedup overall are cfd, lavaMD, lbm, mri-gridding
and nn. Particularly interesting cases are kmeans and streamcluster which show very high speedup. Both these
cases are dominated by a convergent loop inside a boundary check which means DVEC will vectorize most of the
execution successfully. Other interesting cases are lavaMD and stencil which witness a lot of benefit from the the
sub-grouping vectorization tier. Reasons why DVEC could hurt instruction count or locality in a few cases will be
detailed shortly.

The nine benchmarks that are not affected by DVEC include fft, mri-q, and sgemm which are all dominated
by convergent regions making dynamic vectorization irrelevant. They also include b+tree, backprop, hotspot, nw,
and pathfinder, all of which have divergent regions that are very small. They are hurt by naive DVEC (DVEC-
N) but transformation selection successfully backs off. The remaining one (leukocyte) is anomalous because it
experiences no change in instruction count, substantial increase in cache misses, and no speedup. This benchmark
has a divergent region which is dominated by an arctan computation. The reason instruction count and execution
time do not benefit from vectorization is that the dominant arctan computation is inside a device function which
we treat by serializing. The L1 misses increase because we do more scalar expansion inside the divergent region,
but do not benefit from it due to serialization. The degradation in locality has no impact on performance because
it is a compute bound kernel. Device functions can easily be handled by inlining them before transformation. Our
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Fig. 10. Relative speedup (higher is faster) of our approach compared with AMD and Intel implementations for Parboil and Rodinia
benchmarks. Fastest is 1.0. Intel has a geometric mean speedup of 2.09× over AMD. DVEC has geometric mean speedups of 2.26× and
1.09× over AMD and Intel respectively.

implementation does not currently support that, but it can easily be incorporated.
The remaining nine benchmarks showing performance degradation also show degradation in instruction count,

L1 misses, or both. One of them is histo which has the same problem as leukocyte of having a device function
that is serialized. As for the others, there are several reasons why DVEC could sometimes hurt instruction count or
locality. First, some benchmarks are highly irregular and exhibit a great deal of dynamic control divergence. In such
situations, both vectorization tiers are futile and just incur overhead. These benchmarks are bfs (Parboil) and bfs
(Rodinia) in which control flow is highly data-dependent, tpacf in which each work-item executes a binary search
loop and has a different trajectory, and myocyte which only has two active work-groups each with one active work-
item. Second, there are a few cases where a convergent loop wrapped by divergent control flow issues consecutive
memory access with respect to the loop index, using work-items higher dimension. When SVEC serializes these
cases, the cache behavior is good because the serialized execution of work-item practices better spatial locality.
However, when loop iterations are reordered, the contiguous access is lost and locality suffers. The benchmarks
that face this problem are bfs (Parboil), bfs (Rodinia), and particlefilter.

It is noteworthy that the two patterns just mentioned are both the antitheses of the GPU best practices DVEC
attempts to capture which are control convergence and memory coalescing respectively. In other words, the bench-
marks in question all exhibit patterns that perform poorly on GPUs, but rather more appropriate for CPUs. It is
therefore expected that DVEC performs poorly on these benchmarks when it attempts to mimic the GPU’s execution
model. We are reviewing analysis techniques to allow DVEC to screen away such computation patterns.

C. Comparison to Industry Implementations

Figure 10 compares our OpenCL implementation based on the DVEC approach to two widely known industry
implementations of OpenCL for CPUs from AMD and Intel for the same benchmarks. It shows the relative speedup
of each version normalized to that of the best performing version. The results are based on ten runs per benchmark
per implementation.

DVEC outperforms AMD’s Twin Peaks at twenty-three benchmarks and matches it at one. One benchmark
(lavaMD) crashes using AMD’s implementation so it is excluded from the comparison. The remaining five bench-
marks in which AMD outperforms DVEC are bfs (Parboil), bfs (Rodinia), histo, leukocyte and tpacf. We previously
mentioned that we do not handle histo and leukocyte well because our implementation does not inline device
functions, not due to weaknesses in our methodology. We have also detailed in the previous section why the
remaining three benchmarks perform better with serialization-based approaches (such as thread-loops or user-level
threads) as opposed to vectorization-based approaches. The geometric mean speedup of DVEC over Twin Peaks
for all benchmarks is 2.26×.
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DVEC outperforms Intel’s implementation at fifteen benchmarks and Intel outperforms DVEC at fifteen. Since
we do not know what the Intel implementation does, it is difficult to make an in-depth analysis as to why certain
benchmarks perform better than others for each approach. The geometric mean speedup of DVEC over Intel for
all benchmarks is 1.09×.

V. RELATED WORK

Several works have been done in emulating GPU’s execution on CPUs. GPU Ocelot [8], Barra [6] and gpgpu-
sim [3] are designed to simulate CUDA programs for NVIDIA GPU. While they closely emulate the GPU execution
model, however, their greater focus is analyzing and debugging of GPU programs, not performance. MCUDA [22]
is one of early approaches in translating CUDA code for CPU performance which we closely reviewed. With the
advent of OpenCL, CPU vendors advanced their own implementation of OpenCL with a priority on performance,
such as AMD [10] and Intel [12]’s implementations as we discussed. pocl [1] is a community effort to provide a
portable compiler framework for OpenCL. Its performance and stability are yet to be evaluated.

Karrenberg et al. [14], [13] present a technique that also uses SIMD vectorization for vectorizing OpenCL code
on CPUs, and handle divergent regions with software predication techniques. We highlight the differences between
their work and ours due to the particular similarity between them. Their compiler vectorizes the kernel code with
the size of the hardware SIMD width (W ) instead of the number of work-items in a work-group. They execute an
entire region for the W work-items before moving on to the next W . This approach potentially reduces the working
set size, however it cannot exploit locality to the fullest in certain situations. For example, in the presence of a
convergent loop with coalesced memory accesses (such as that in kmeans, particlefilter, sgemm, and streamcluster),
their approach executes the entire loop for W work-items before moving on to the next, whereas ours will execute
each iteration for all work-items in the work-group. In other words, we perform the loop interchange more completely
bringing the entire thread-loop into the kernel loop. Moreover, in multi-dimensional cases, their approach can only
bring in one dimension of the thread-loop into the convergent loop whereas ours can bring in multiple dimensions.
This is beneficial for benchmarks like cutcp and sgemm. Finally, our approach handles divergence by generating
multiple statically vectorized or serialized versions and selecting them dynamically, whereas their approach has
one vectorized version that uses software predication. In situations with high dynamic divergence, their approach is
likely more efficient, however in situations with more dynamic convergence, our approach benefits from executing
statically vectorized code that escapes the drawbacks of software predication.

Handling control divergence in GPUs has drawn a lot of attention. Micro-architectural improvements over existing
architectures have been proposed in works such as Fung et al. [9], Narasiman et al. [18], Brunie et al. [4], Rhu et
al. [20] and Vaidya et al. [23]’s. Their main goal is to reduce the number of wasted SIMD lanes via filling them
with useful computation, by migrating threads either from intra or inter warp. Compiler level solutions have also
been proposed to address this problem. Diamos et al. [7] proposed thread frontier to schedule execution of basic
blocks for less degree of divergence.

The idea of predication is well established in computer architecture. Hyperblock, if-conversion, and different
levels of hardware support [17] are techniques to efficiently use wide execution units of VLIW architecture in the
presence of control flow. Our method is similar to predication but at a courser granularity where a predicate is used
for sections instead of individual operations.

VI. CONCLUSION

In this paper, we have presented an AST-based OpenCL implementation that efficiently executes GPU-optimized
kernels on multicore CPUs. It is based on the observation that GPU optimizations aim at maximizing utilization
of the memory subsystem and execution units a common optimization target for all architectures. By vectorizing
the execution of GPU work-items on the CPU and preserving memory access patterns through loop-interchange,
we exploit GPU optimizations to achieve better cache locality and instruction throughput on the CPU.

We use vector expressions to execute work-items in SIMD for code regions which are known statically to be
convergent. For regions where convergence is not known statically, we generate multiple versions of the code and
select between them at dynamically based on the convergence pattern of the work-items. If all work-items are
convergent, the entire work-group is vectorized, otherwise it is partitioned into sub-groups and each sub-group
is vectorized or serialized based on the convergence of the work-items it contains. Our approach demonstrates
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geometric mean speedups of 2.26× and 1.09× over AMD’s Twin Peaks and Intel’s OpenCL implementation
respectively.

Our speedups are highly correlated with improvements in dynamic instruction count and L1 cache misses which
demonstrates the effectiveness of our approach at maximizing resource utilization for well-behaved benchmarks.
The benchmarks that perform best with our approach are the same benchmarks that abide by GPU programming
best practices such as high dynamic convergence rates and coalesced memory access patterns. On the other hand,
the benchmarks that perform the poorest are the same ones that violate GPU programming best practices by having
high dynamic divergence rates, non-coalesced memory accesses, and data layouts which are less GPU-friendly.
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