
Feedback-Directed Data Cache Optimizations for the x86

Ronald D. Barnes
*
 Ronnie Chaiken David M. Gillies

Microsoft Research

One Microsoft Way, Redmond WA, 98052
rdbarnes@crhc.uiuc.edu, {rchaiken, dgillies}@microsoft.com

Abstract

The vast majority of desktop microprocessors in use 1
today belong to a single architectural family, the x86. 2
The success of this architecture has led to a large 3
number of microarchitectures and a growing need to 4
evolve the ISA to meet the changing demands of 5
applications. Unfortunately, most compiled code 6
today targets the 486 or Pentium® ,¤ thereby missing 7
performance opportunities of newer processors. We 8
believe that specialized compilation within the x86 9
family can yield large performance gains over 10
generically compiled code. This paper examines the 11
effectiveness of the Pentium III data cache 12
management instructions on desktop applications. We 13
use a memory trace analysis in our optimization to 14
guide the placement of cache prefetch and cache 15
bypass instructions at the binary-level. Our results 16
show that significant performance improvements can 17
be achieved for a wide range of applications. 18

1 Introduction

Since the advent of the 386, the number of 19
implementations within the x86 family of 20
microprocessors has grown very rapidly. These 21
implementations run the gamut of modern computer 22
architecture: non-pipelined to pipelined, scalar to 23
superscalar, in-order to out-of-order, cacheless to 24
having a highly stratified cache structure. At the same 25
time, the ISA has been evolving to meet the changing 26
demands of applications. ISA enhancements include 27
support for 32 bit addressing, partial instruction 28
predication, multimedia extensions with SIMD 29
support, and an increase and widening of the register 30
set. In addition, the circuitry surrounding the CPU has 31
changed. For example, the sizes of off-chip cache and 32
main memory have increased many-fold. Factoring 33
the contributions of several different manufacturers 34
into the mix has made for a very diverse landscape 35
within the x86 family. 36

Unfortunately, most code intended for the x86 37
platform is compiled targeting the 486 or Pentium 38
thereby missing performance opportunities of newer 39
processors. There are several reasons for this choice. 40

* Ronald D. Barnes is currently with the IMPACT Research

Group in the Center for Reliable and High-Performance

Computing, University of Illinois, Urbana-Champaign,

Illinois 61801.
¤ Intel, Pentium, MMX and Pentium® III Xeon are either

registered trademarks or trademarks of Intel Corporation in

the United States and/or other countries.

In order to deliver software that runs on the full range 41
of x86 platforms one cannot make assumptions about 42
the existence of special new instructions or try to 43
exploit a new microarchitectural feature. Also, due to 44
the ever-tightening product development cycle time, 45
testing multiple executables has generally prevented 46
machine-specific versioning. This limitation has been 47
overcome in a very small number of cases by the 48
conditional execution of specialized code within 49
dynamically linked libraries. These examples are 50
often handwritten in assembly language to maximize 51
the performance of a few critical routines. However, 52
this is far from a complete solution for general 53
programs. 54

While there are a number of pragmatic reasons for 55
adopting the one-size-fits-all approach to software 56
delivery, we contend that significant potential 57
performance gains offered by variations in x86 58
platforms are being overlooked. In this paper we 59
demonstrate one area for performance improvement in 60
this space. Specifically, we make use of the Pentium 61
III’s data cache management instructions to illustrate 62
the gains that are available in general programs. Our 63
optimization heuristics improve data cache 64
performance by inserting prefetch and bypass 65
instructions directly into the binary, through binary 66
rewriting. The heuristics use information that is 67
gathered from a cache simulation that consumes 68
memory traces on the fly. 69

The remainder of this paper is divided into five 70
sections. Section 2 reviews previous related work in 71
this area. Next we describe the methodology used in 72
our experiments. Section 4 describes the Pentium III 73
instructions used in this study and the heuristics used 74
to drive the optimizations are described in Section 5. 75
Our results are presented in Section 6 and the final 76
section contains some concluding remarks. 77

2 Previous Work

Previous work advocating processor-specific 78
optimizations on x86 processors has been done by 79
Merten[13]. Much of this work focused on a 80
framework that enables optimizations, rather than on 81
the optimizations themselves. In addition, the 82
optimizations presented were mostly ad-hoc pattern 83
matching. In this work, we present a trace-directed 84
analysis to guide the placement of data cache 85
management instructions. 86

Feedback-Directed Data Cache Optimizations for the x86

Ronald D. Barnes
*
 Ronnie Chaiken David M. Gillies

Microsoft Research

One Microsoft Way, Redmond WA, 98052
rdbarnes@crhc.uiuc.edu, {rchaiken, dgillies}@microsoft.com

Table 1. Cache specifics of the target Pentium III Xeon machine.

L1 Cache Size 16kB

L1 Associativity 4-way

L1 access latency 1 cycle (assumed)

L2 Cache Size

(instruction & data)
512kB

L2 access latency (measured) ~20 cycles

Main memory latency

(measured)
~65 cycles

Cache Replacement LRU (assumed)

Cache block size 32 bytes

The performance limitations caused by the ever- 1
widening gap between processor and main memory 2
speed are well understood, and hierarchical caches 3
have been used to ameliorate this effect. Methods for 4
instruction cache optimizations, like code 5
reordering[12][21] and instruction cache 6
prefetching[11], have been studied and shown to 7
increase performance in some cases. Hardware 8
mechanisms for runtime data cache management[8] 9
have been examined; these mechanisms, however, 10
often require expensive hardware support. Although 11
dynamic scheduling has been shown to increase the 12
tolerance of load latency[19], even machines with out-13
of-order execution benefit from prefetching[3] and 14
load speculation[18]. 15

Standard compiler techniques[15] for data 16
prefetching are well established and are used in many 17
modern compilers. These algorithms, however, tend 18
to rely on strided loops such as those in scientific 19
applications[17]. Since such loops are rare in integer 20
programs, data prefetching is not often used for 21
general applications. Much of the work[16] relating to 22
prefetching in integer programs has relied upon 23
informing memory operations that expose the cache 24
behavior of instructions to the program. However, 25
such instructions are not yet available in the x86 26
microarchitectural family. In this work, we 27
demonstrate that significant improvements can be 28
achieved by using Pentium III specific cache 29
management instructions and that this is applicable to 30
a wide range of integer and floating point applications. 31

3 Trace Methodology

To effectively utilize the instruction set extensions, we 32
rely on memory trace information to locate 33
opportunities for optimizations. To gather this 34
information, every memory reference in a binary is 35
instrumented to generate a call to a runtime routine 36
that generates output to a trace buffer with information 37
about the memory reference. The instrumentation code 38
sends the address of the memory instruction, the 39
address of the accessed data and the corresponding 40
size of the access to a runtime routine on each 41
invocation. Control is occasionally passed to a cache 42
simulator that consumes this trace on the fly. The 43
simulator, which is modeled after the Pentium III 44
Xeon L1 data cache, keeps track of the miss 45
statistics for each memory reference. The specifics of 46

the cache hierarchy are shown in Table 1. The latency 47
values are determined experimentally and are used 48
later to determine the optimal prefetch distance. 49

To enable prefetch and bypass optimizations the 50
simulation keeps track of memory accesses and their 51
reuse patterns. Four types of information are gathered 52
during the simulation that is used later in the 53
optimization phase: 1. a record of the miss frequency 54
of all loads and stores is kept; 2. the strides between 55
successive dynamic occurrences of each memory 56
instruction are recorded; 3. the result of analysis 57
performed to determine if the cache lines brought in 58
by each memory instruction tend to be reused before 59
being replaced from the cache is stored; 4. lines that 60
are displaced by store instructions are recorded to 61
determine if those lines are later brought back into the 62
cache on a miss. This last mechanism detects 63
situations where the miss could be avoided if the 64
earlier store instruction had not write-allocated. 65

During the analysis phase, the executables and 66
dynamically linked libraries of the benchmarks are 67
instrumented. The C runtime libraries however are 68
not instrumented, nor are the Microsoft®* Windows 69
NT® system libraries. While the simulation thus sees 70
only a partial list of all data memory accesses, the 71
number of memory references and cache misses found 72
during the simulation was a close approximation when 73
measured against the Pentium III performance 74
counters. This validation check provides some level of 75
confidence in our simulation. 76

Both the instrumentation and optimization of the 77
benchmarks is performed at the binary level using a 78
post-link binary rewriting technology called Vulcan 79
[20]. This technology is similar to ATOM[4], 80
EEL[10], or the IMPACT Binary Reoptimization 81
System[13]. Information from the simulation is fed to 82
a post-link optimizer tool to produce an optimized 83
binary using the heuristics detailed in Section 5. The 84
optimized binaries are then rerun using the same input 85
data as the training set to measure the effectiveness of 86
the transformation. All of our measurements are made 87
using a Pentium III Xeon 500 MHz machine running 88
Microsoft Windows NT 4.0. Each program is run 89
repeatedly on an unloaded machine and the actual 90
execution time is measured. The additional91

* Microsoft and Windows NT are registered trademarks of

Microsoft Corporation in the United States and/or other

countries.

Table 2 – Data cache control instructions

prefetcht0 Prefetch into 0th level cache

 (Into both L1 and L2 in Pentium III) movntps 128 bit streaming store

prefetcht1 Prefetch into 1st level cache (From Streaming SIMD Extensions register set)

 (Into just L2 in Pentium III) movntq 64 bit streaming store

prefetcht2 Prefetch into 2nd level cache (From MMX register set)

 (Into just L2 in Pentium III) maskmov Masked variable length streaming store

prefetchnta Prefetch non-temporal data (From MMX register set)

 (Into just L1 in Pentium III)

prefetch instructions streaming store instructions

performance metrics detailed in Section 6 are also 1
measured during these runs using the Pentium III 2
performance counters. 3

Although all the described optimizations are 4
performed on existing binaries, the techniques 5
described can be used at compile time to generate a 6
machine-specific executable. In addition, since the 7
source code is not used, these optimizations possibly 8
could be done on the host machine. This might be 9
facilitated by hardware profiling mechanisms[4][14]. 10

4 Using the Pentium III

Instructions

The Intel® Pentium III microarchitecture features 11
several ISA extensions that can be used to manage 12
placement of data in the memory hierarchy. The 13
extensions include both data cache prefetching and 14
cache-bypassing types of instructions. These 15
instructions can dramatically improve the performance 16
of the memory hierarchy, and thus can also 17
substantially improve application performance. 18

4.1 ISA Extensions

The Pentium III’s cache control instructions are shown 19
in Table 2. Four prefetch instructions are provided to 20
allow prefetching into different levels of the cache 21
hierarchy. Since only two levels of cache are visible 22
on the Pentium III, the effect of the prefetcht1 23
and prefetcht2 instructions is the same. Three 24
streaming store instructions provide support for stores 25
of various sizes that bypass the cache hierarchy. Each 26
of these instructions performs a non-allocating store 27
from either the 64 or 128 bit registers. These stores 28
bypass the cache hierarchy if their cache line is not 29
already present in the cache, otherwise they act as 30
normal store instructions. The maskmov instruction 31
performs a streaming store of selected bytes from an 32
MMX register that are determined by a mask in an 33
additional MMX register. For more information about 34
these instructions see [6] and [7]. Further information 35
on how these instructions are used in this work, and 36
the difficulties and costs for employing them can be 37
found in [1]. 38

4.2 Data Prefetching

A significant body of previous research demonstrates 39
that software controlled data prefetching can 40

significantly improve cache effectiveness and system 41
performance (see Section 2). In order to effectively 42
use any type of data prefetching, however, it is 43
necessary to determine how far in advance of a load to 44
place a corresponding prefetch. To determine this 45
optimal distance, experimental measurements are 46
made. The results of using prefetch instructions in this 47
test program executing on a Pentium III are presented 48
in Figure 1. In at test program, the number of cycles 49
between the prefetch and a load are varied from 1 to 50
100. The program consisted of long sequences of 51
dependent instructions to minimize the effect of the 52
out-of-order execution of the Pentium III. The test 53
program also ensures that the load targets would reside 54
in the L2 cache, but would not reside in the L1 cache. 55
Each run of the test program is identical, except for 56
the number of dependant instructions between the load 57
and store. Figure 1 shows that the optimal number of 58
cycles needed for prefetching an L1 cache miss in our 59
test program is around 18 cycles. Not surprisingly, 60
this corresponds approximately to the latency of a L1 61
cache miss as given in Section 3. It is important to 62
note from Figure 1 that as long as the prefetch is 63
issued a few cycles before the corresponding load, 64
some performance gain is achieved, and this benefit 65
increases relatively linearly up to the optimal distance. 66
However, if a prefetch occurs too far in advance of the 67
load, there is an increased chance that the desired 68
cache line might be displaced before it is needed or the 69
fetched line might displace some data that is needed 70
first. When the load must go to main memory, 71
maximum benefit will come from prefetching much 72
farther in advance. Thus, maximum benefit comes 73
from knowing which level of the memory hierarchy 74
the data resides and scheduling the prefetch 75
appropriately. 76

4.3 Important issues in using cache

control instructions

The use of the machine-specific optimizations 77
considered in this work is not without cost. In the case 78
of data prefetching, the inserted prefetches can 79
significantly increase the dynamic instruction count. 80
If the memory hierarchy is swamped with prefetches it 81
can cause trailing loads to stall. Also, extraneous 82
prefetches can displace useful cache lines. When 83
streaming stores are performed, an increase in memory 84
transactions can occur if the cache line of the stored 85
value is loaded soon after the store. In addition, since 86

- 2

- 1

0

1

2

3

4

5

6

7

8

9

0 3 6 9 12 15 18 21 24 27 30 60 90

C y c le s b e t w e e n p r e f e t c h a n d lo a d

P
e

rc
e

n
t

Figure 1. Speedup vs. prefetch distance in an experimental program.

there are no streaming stores from the 32-bit register 1
set, general purpose stores cannot be made to be 2
streaming without performing potentially costly 3
moves of the data to the MMX register set. In 4
addition, to do a 32-bit store requires setting up an 5
additional mask register for the maskmov instruction. 6

5 Code Transformations and

Heuristics

To effectively use the ISA extensions during 7
optimization, several heuristics are used for 8
determining where and when to apply transformations 9
that use these instructions. The heuristics are tuned to 10
minimize the total number of transformations made to 11
the code by optimizing only those memory accesses 12
that have a high probability of causing a cache miss. 13
This might leave some opportunities unexplored but 14
the goal of this work is to demonstrate the feasibility 15
of such machine specific optimizations. This section 16
details some of the code transformations and 17
optimization heuristics that are used in this work. For 18
further details see [1]. 19

5.1 Important issues in using cache

control instructions

There are several kinds of code transformations that 20
are useful for making the optimizations considered in 21
this work more effective and less expensive. This 22
usually requires transforming the code sequence to 23
make it more amenable to the optimization. 24

Often randomly strided memory accesses occur 25
inside loops for integer applications. In these cases, it 26
is often not possible to calculate the target address of 27
loads in future iterations. One technique that might 28
help in this situation is to speculatively prefetch across 29
the back edge of a loop. In such cases, loop 30
rotation[15] may allow more distance to be placed 31
between the prefetch and its matching load. As shown 32

in Figure 2, this technique allows the target address 33
calculation for a load in the next iteration to be 34
speculatively performed in the current iteration. In 35
comparison to the original code sequence, this type of 36
speculation causes more instructions to be executed, as 37
it performs the address calculation for one more 38
iteration than the original code. Therefore, it is 39
important to ensure that the loop iteration count is 40
relatively large so that the additional calculation 41
becomes relatively insignificant. 42

Frequently, the address calculation for a candidate 43
load instruction is dependent on another load 44
instruction. In this case, the control flow often limits 45
the distance that the two loads can be moved apart; 46
thereby limiting the distance between the prefetch and 47
the load. However, using conditional move 48
instructions, the load can be moved above a branch 49
without breaking the semantics of the program, as the 50
execution of the load is still predicated on the branch 51
condition. Now the corresponding prefetch can move 52
above the branch, and the number of cycles between 53
the issue of the prefetch and the load can be increased, 54
improving the effectiveness of the optimization. This 55
type of speculative load transformation is shown in 56
Figure 3. 57

The x86 architecture features string instructions that 58
can load and store to memory using a single 59
instruction. Often these instructions are designated 60
with a rep prefix so that they are repeated without 61
fetching and decoding additional instructions. In this 62
way, a single instruction can operate on a large 63
amount of memory. These instructions are found in 64
many general programs and are amenable to special 65
optimizations. Since these instructions access a large 66
portion of contiguous memory, the 64-bit registers can 67
be used to operate on the majority of this data, 68
reducing the dynamic number of memory operations. 69
The single instruction is replaced with an optimized 70
loop that can utilize both prefetches and streaming 71
stores from the MMX register set. The string 72
instructions use a loop counter to specify how much 73

data is to be accessed. This counter can be properly 1
adjusted and the majority of the data can be accessed 2
through 64-bit MMX registers, facilitating the use of 3
streaming stores of this data. For string instructions 4
with poor cache behavior, performance is greatly 5
improved by using prefetches to bring data needed for 6
future iterations of the loop into the cache and by 7
using streaming stores to store data with poor temporal 8
locality. Although these optimizations increase the 9
number of instructions that execute, they improve 10
execution performance. 11

5.2 Prefetch Heuristics

Much of the prior work related to data prefetching has 12
looked at optimizing array accesses in inner loops of 13
numerical applications. Unfortunately, these accesses 14
occur infrequently in general integer applications. To 15
determine if a load behaves in a strided fashion, our 16
simulation uses a form of value profiling[2][9] in the 17
simulation on the target addresses of the load 18
instructions. For every static load instruction in an 19
executable the simulation maintains a last address-20
accessed datum. The difference between the current 21
memory location and the last memory location is a 22
stride that gets recorded into a stride list for a 23
particular load instruction. For a load that accounts 24
for more than five percent of all the misses, we use the 25
most commonly encountered strides to determine the 26
prefetch optimization. 27

When a candidate has a single dominant stride 28
(>70%) we found that placing it in the cache as early 29
as possible gives the best results. Intel defines the 30
number of iterations to prefetch ahead as the prefetch 31
distance and provides a formula for its calculation[7]. 32
A similar, but slightly simpler approach is taken in this 33
work. The length of a loop iteration in dynamic 34
instructions is used to determine the distance to 35
prefetch ahead. Since the loop may contain some 36
control flow, profiling information can be used to 37
determine the frequency of each control flow edge, 38
and the average length of a loop iteration is used. The 39
prefetch is inserted to attempt to prefetch 25 dynamic 40
instructions before the load. Thus the number of 41
iterations to prefetch ahead is equal to 25 divided by 42
the average length of a loop in instructions. The 43
distance of 25 dynamic instructions was chosen 44
experimentally, and corresponds to an IPC of 45
approximately 1.4 if the distance in cycles is desired to 46
be 18. 47

Often in integer programs, memory accesses fail to 48
follow any strided pattern. Only the current iteration 49
of a loop is prefetched in these cases. It is generally 50
difficult to prefetch effectively within one loop 51
iteration. However, several of the optimizations 52
described earlier in this section can be used to increase 53
the distance between the availability of the load 54
address and the execution of the load instruction. A 55
candidate falling into this category is not prefetched if 56
the prefetch cannot be placed at least three instructions 57
before the load, since as shown in Figure 1, inserting 58

prefetches immediately before corresponding loads 59
hurts performance. 60

5.3 Streaming Store Heuristics

Using the streaming store instructions in general 61
programs is slightly more complicated than using the 62
prefetching instructions. There is the additional cost 63
described in of moving data to the MMX register set 64
before performing the store that must be accounted for 65
in the cost analysis. 66

Candidates for streaming store optimization are 67
chosen via the same cache simulation used for the 68
prefetch analysis. We found that the best candidates 69
for optimization are those stores that miss in the cache 70
more than 90% of the time. Due to the cost of this 71
optimization, it is detrimental to use a streaming store 72
on a location that is already resident in the cache. 73
Cache hits due to cache lines brought in by previous 74
executions of the same instruction are not considered 75
hits in this determination. This helps to eliminate the 76
cache hits that would not occur if it a non-allocating 77
write had been executed. Of these candidates, only 78
the store instructions with data that are written back to 79
L2 before being read in more than 90% of its dynamic 80
occurrences are considered. Analysis is done to 81
determine if bringing a cache line in for each store 82
miss pollutes the cache and causes additional misses. 83
The number of additional misses caused by an 84
instruction is multiplied by the latency of a L1 cache 85
miss. This value is compared to the number of times 86
the instruction executed times 6 to account for the 87
overhead of inserting the code transformation. If the 88
effect of the additional cache misses is larger than the 89
assumed transformation cost, the benefit of using the 90
streaming store instruction likely outweighs the large 91
cost in the general case. 92

The cost of using the streaming store optimization in 93
general programs makes it unlikely to be of much 94
benefit. However, several special cases do occur in 95
general programs that make effective use of the 96
streaming store optimization. For example, if two 97
instructions store to consecutive memory locations and 98
these operations are both cache polluting then the two 99
stores can be combined into a single larger store using 100
the 8-byte registers. This has the advantage of possibly 101
reducing bus traffic and reducing the number of 102
instructions executed. 103

Another example of stores that can often be 104
effectively transformed is the string instructions. As 105
described earlier in this section, using the streaming 106
stores for this case is inexpensive since the code 107
transformation has already placed the data in an MMX 108
register. If the string instruction is likely to cause a 109
large number of cache misses and poor temporal 110
locality is identified, then expanding the instruction 111
into a small loop using both prefetching and streaming 112
stores tends to improve the performance. 113

LOOP: MOV EDX, DWORD PTR [ECX]

 ADD EDX, ESI

 XOR ECX, EDX

 ADD EDI, DWORD PTR [ECX]

 .

 .

 .

 CMP DWORD PTR [ECX], EBX

 JNE LOOP

 MOV EDX, DWORD PTR [ECX]

 ADD EDX, ESI

 XOR EAX, EDX

LOOP: MOV ECX, EAX

 MOV EDX, DWORD PTR [ECX]

 ADD EDI, EDX

 ADD EDX, ESI

 XOR EAX, EDX

 PREFETCHT0 BYTE PTR [EAX]

 .

 .

 .

 CMP DWORD PTR[ECX], EBX

 JNE LOOP

Figure 2. Using loop rotation to facilitate prefetching across a back edge

 .

 .

 .

 CMP EAX, 0

 JE NULL

 .

 .

 .

 MOV EBX, DWORK PTR [EAX]

 .

 .

 .

 MOV EDX, DWORD PTR [EBX]

 MOV EBX, 0

 CMP EAX, 0

 CMOVNE EBX, DWORD PTR [EAX]

 PREFETCHT0 BYTE PTR [EBX]

 .

 .

 .

 JE NULL

 .

 .

 .

 MOV EDX, DWORD PTR [EBX]

Figure 3. Using speculative load to increase distance between prefetch and load

6 Experimental Evaluation

By improving the cache behavior of application 1
programs, significant overall performance increases 2
can be achieved. To demonstrate that machine 3
specific optimizations on the Pentium III can yield this 4
improvement, seven test cases are run on six different 5
applications. Each is probed and simulated to 6
determine locations for optimization, and then 7
optimized using a binary rewriting tool. 8

6.1 Benchmarks

The benchmarks in the study are chosen to represent a 9
wide range of applications. Compress and tomcatv are 10
taken from the SPEC95 integer and floating-point 11
benchmark suites respectively. For these benchmarks, 12
the SPEC reference inputs are used for performance 13
measurements. Ghostscript is taken from the Aladdin 14
Ghostscript 5.5 public release from the University of 15
Wisconsin. Ghostscript is a postscript interpreter, and 16
as the test case, a postscript file containing a large 17
document is rastered and displayed. Microsoft FoxPro 18
is a database application, and a scenario performing 19
numerous transactions on a database is used as its test 20
case. Microsoft Word and Microsoft Excel are large 21
desktop applications, taken from the Microsoft Office 22
2000 suite. As a test case for word, a large word 23
document is run through the find-and-replace 24
operation. For excel, two different test cases are used. 25
The first test case stresses the recalculation engine of 26
excel by making numerous changes to a large 27

spreadsheet. The second test case stresses the column 28
editing operation over the same spreadsheet. 29

6.2 Performance

As shown in Figure 4, significant gain can be achieved 30
on a wide range of applications. An average speedup 31
of 6.8% with speedups as high as 27% is measured 32
using the prefetch and bypass optimizations. Ignoring 33
the high and low outlier results, an average of 4.3% 34
speedup is obtained. 35
While the speedups for each benchmark vary 36
considerably, only compress shows insignificant 37
performance improvement. The performance statistics 38
in Figure 4 is broken into three components: the 39
combined effect, the prefetching optimization alone 40
and the effect of the streaming store optimization 41
alone*. Where the streaming store optimization is 42
applied alone, a small decrease in performance is 43
observed in all cases except ghostscript. There are a 44
number of reasons for this decrease in performance. 45
For compress, the insertion of several consecutive 46
streaming store instructions has a serializing effect on 47
instruction issue, since each of these instructions 48
require the single complex instruction decoder 49
available on the Pentium III. For the other 50
applications, the weight of the enabling instructions 51
for the streaming store optimization proves costly. 52
The prefetching optimization alone has a positive 53

* foxpro and tomcatv, however, did not have streaming store

optimization candidates.

effect on all applications. For word we have the 1
situation where the combined optimizations yield a 2
superior result to prefetching alone, even though the 3
streaming store optimization alone has a negative 4
effect. In the combined optimization, the use of 5
prefetches, by placing greater pressure on the L1 6
cache, has made the use of streaming stores more 7
effective. 8

Word is a clear outlier with the most improved 9
performance. The majority of this improvement 10
comes from the string optimization described in 11
Section 5. Since a large number of changes are made 12
to the word document in the test case, a routine for 13
moving memory is called frequently. With the 14
improved performance of this routine, the 15
performance of word improves dramatically. 16
Another way of evaluating the effectiveness of the 17
optimizations is the utilization of the data cache as 18
seen from Figure 5. This chart shows the weighted 19
number of cycles that the processor might have to wait 20
on the data cache to service an outstanding miss due to 21
a load. This is calculated in the following way: during 22
each cycle a count of the number of outstanding load 23
misses is added to a running sum which is then 24
normalized by the total number of cycles to execute 25
the original program. For tomcatv, compress, foxpro 26
and the excel insertion scenario, this number is 27
originally very close to one. Thus, on average there is 28
one outstanding cache miss throughout the run of the 29
test. This is further evidence that the out-of-order 30
execution of the Pentium III is quite successful in 31

tolerating load misses, since for this average to be 32
close to one, often the processor must have several 33
outstanding loads at a time. However, when 34
optimized, there is a dramatic difference in this 35
average. This difference is caused by the data 36
prefetches that are started earlier than the load. These 37
measurements are made using the performance 38
monitoring counters of the Pentium III. Unfortunately 39
this metric does not count any cycles for a load whose 40
address is prefetched, even if the prefetching is not 41
done in time. Thus the decrease in relative weighted 42
number of cycles is the load latency that prefetching 43
attempts to tolerate, not the latency that is actually 44
tolerated. 45

6.3 Memory Bandwidth

An undesirable side effect of data prefetching is the 46
increase in bus traffic as shown in Figure 6. This can 47
happen if the prefetch displaces data from the cache 48
that is used before the prefetched data, or if 49
speculative prefetches are made for memory locations 50
that are not in fact loaded. One notable result is the 51
relatively dramatic increase in the memory bus 52
transactions in the ghostscript benchmark. As the 53
number of bus transactions almost double, this likely 54
hampers some of the gain from using the cache 55
optimization. It should also be noted however that 56
while there is a large percentage increase in this bus 57
traffic, the total number of memory bus transactions in 58
ghostscript is actually rather small. 59

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

gh
os

ts
cr

ip
t

w
or

d

ex
ce

l (
re

ca
lc
)

ex
ce

l (
in
se

rti
on

)

to
m

ca
tv

co
m

pr
es

s

fo
xp

ro

S
p

e
e
d

u
p Combined Operation

Prefetch Alone

Streaming Store Alone

Figure 4. Breakdown of performance improvement

0

0.2

0.4

0.6

0.8

1

1.2

gh
os

ts
cr

ip
t

w
or

d

ex
ce

l (
re

ca
lc
)

ex
ce

l (
in
se

rti
on

)

to
m

ca
tv

co
m

pr
es

s

fo
xp

ro

C
y
c
le

s Original

Optimized

Figure 5. Weighted numbers of cycles with an outstanding cache miss

0

0.02

0.04

0.06

0.08

0.1

0.12

gs

w
in
w
or

d

ex
ce

l (
re

ca
lc
)

ex
ce

l (
in
se

rt)

to
m

ca
tv

co
m

pr
es

s

fo
xp

ro

B
u

s
 T

ra
n

s
a
c
ti

o
n

s

Original

Optimized

Figure 6. Bus transactions normalized by the original number of memory references

Since a streaming store is not write-allocating, it 1
prevents the need for an initial read to bring the line 2
into the cache hierarchy. This can serve to decrease 3
the number of memory bus requests, canceling out 4
some of the effect of increased pressure caused by 5
data prefetching. In addition, the reduction in cache 6
pollution and corresponding reduction in cache misses 7
can reduce the traffic to memory as well. This 8
positive effect is shown most prominently in Word. In 9
addition, optimizations such as the string 10
optimizations detailed in Section 4, use a 64-bit 11
register where 32-bit registers were used previously. 12
Since the memory bus of the Pentium III is 64 bits 13
wide, this can also serve to reduce the pressure on the 14
memory bus. 15

7 Conclusions

This paper provides some experimental support for 16
specialized compilation within the x86 processor 17
family. To do so, this paper studies the effectiveness 18

of the Pentium III prefetch and streaming store data 19
cache-controlling instructions. These instructions 20
are highly effective in optimizing the cache 21
behavior under ideal circumstances. To show that 22
the instructions can be useful to general programs, 23
several applications are studied including non-loop 24
intensive, integer desktop applications. Memory 25
traces are collected with the aid of program 26
articulation at the binary level and are concurrently 27
processed by a cache simulator. With information 28
from the cache simulation, heuristic optimization 29
techniques are applied to identify and optimize, 30
again at the binary level, a small number of 31
instructions with poor cache behavior. The 32
performance results show that the Pentium III 33
cache-controlling instructions can be effectively 34
utilized to achieve performance improvements in 35
the range of 3-27%, with an average of 6.8%. With 36
this and other specialized compilation techniques, 37
the performance of applications within the x86 38

family can be greatly improved over generically 1
compiled code. 2

This paper also demonstrates that, for general 3
programs, it is relatively easy to utilize the Pentium III 4
prefetch instructions but that there can be significant 5
overhead associated with the use of the streaming 6
store instructions. To enable streaming store 7
optimization on a wide range of programs it is highly 8
recommended that the hardware implement a version 9
of the streaming store instruction using a general-10
purpose register. 11

Acknowledgements

The authors would like to thank all the members of the 12
Programmer Productivity Research Center at 13
Microsoft Research and the IMPACT compiler team 14
at the University of Illinois for their support, 15
comments, and suggestions. We would also like to 16
thank the anonymous referees for their constructive 17
comments. 18

References

[1] Barnes, Ronald, Ronnie Chaiken, and David Gillies. 19
“Feedback-Directed Data Cache Optimizations for the 20
x86”, Technical Report, Microsoft Research, Sept. 21
1999. 22

[2] Calder, Brad and Peter Feller, and Alan Eustace. 23
“Value Profiling and Optimization”, Journal of 24
Instruction Level Parallelism, March 1999. 25

[3] Chen, William Y., Scott A. Mahlke, Pohua P. Chang, 26
and Wen-mei W. Hwu. “Data Access 27
Microarchitectures For Superscalar Processors with 28
Compiler-Assisted Data Prefetching”, Proceedings of 29
the 24th International Symposium on 30
Microarchitecture, Nov. 1991. 31

[4] Dean, J., J. E. Hicks, C. A. Waldspurger, W. E. Weihl, 32
and G. Chrysos, “Profileme: Hardware support for 33
instruction level profile-driven compilation using the 34
profile buffer,” in Proceedings of the 29th International 35
Symposium on Microarchitechure, Dec. 1996. 36

[5] Eustace, Alan and Amitabh Srivastava. “ATOM: A 37
Flexible Interface for Building High Performance 38
Program Analysis Tools”, USENIX Winter 39
Conference, 1995. Also available as WRL Technical 40
Report TN-44. 41

[6] Intel Architecture Software Developer’s Manual, 42
Volume 2: Instruction Set Reference. Intel 43
Corporation, 1999. 44

[7] Intel Architecture Software Optimization Reference 45
Manual. Intel Corporation, 1999. 46

[8] Johnson, Teresa L., Matthew C. Merten, and Wen-mei 47
W. Hwu. “Run-time Spatial Locality Detection and 48
Optimization”, Proceedings of the 30th International 49
Symposium on Microarchitechure, Dec. 1997. 50

[9] Kalamatianos, John, Ronnie Chaiken, and David 51
Kaeli. “Parameter Value Locality of Windows NT-52
based applications,” Workshop on PC-Performance 53
and Analysis held in conjunction with Micro-31, 54
November 1998. 55

[10] Larus, James R. and Eric Schnarr. “EEL: Machine-56
Independent Executable Editing”, Proceedings of the 57
Conference on Programming Language Design and 58
Implementation, June 1995. 59

[11] Luk, Chi-Keung and Todd C. Mowry. 60
“Cooperative Prefetching: Compiler and Hardware 61
Support for Effective Instruction Prefetching in 62
Modern Processors”, Proceedings of the 31st 63
International Symposium on Microarchitechure, 64
Nov. 1998. 65

[12] McFarling, Scott. “Program Optimization for 66
Instruction Caches,” Proceedings of the 3rd 67
International Conference on Architectural Support 68
for Programming Languages and Operating 69
Systems, April 1989. 70

[13] Merten, Mathew C. “A Framework for Profile-71
Driven Optimization in the IMPACT Binary 72
Reoptimization System”, Masters Thesis, 73
University of Illinois, 1999. 74

[14] Merten, Matthen C., Andrew R. Trick, Christopher 75
N. George, John C. Gyllenhaal, and Wen-mei W. 76
Hwu. “A Hardware-Driven Profiling Scheme for 77
Identifying Program Hot Spots to Support Runtime 78
Optimization”, Proceedings of the 26th 79
International Symposium on Computer 80
Architecture, May, 1999. 81

[15] Muchnick, Steven S. Advanced Compiler Design 82
& Implementation, Morgan Kaufmann Publishers, 83
Inc., San Francisco, CA 1997. 84

[16] Mowry, Todd C. and Chi-Keung Luk. “Predicting 85
Data Cache Misses in Non-Numeric Applications 86
Through Correlation Profiling”, Proceedings of the 87
30th International Symposium on 88
Microarchitechure, Dec. 1997. 89

[17] Mowry, Todd C., Monica S. Lam, and Anoop 90
Gupta. “Design and Evaluation of a Compiler 91
Algorithm for Prefetching”, Proceedings of the 5th 92
International Conference on Architectural Support 93
for Programming Languages and Operating 94
Systems, October 1992. 95

[18] Reinman, Glenn and Brad Calder. “Predictive 96
Techniques for Aggressive Load Speculation”, 97
Proceedings of the 31st International Symposium on 98
Microarchitechure, Nov. 1998. 99

[19] Srinivasan, Srikanth T., and Alvin R. Lebeck. 100
“Load Latency Tolerance In Dynamically 101
Scheduled Processors”, Proceedings of the 31st 102
International Symposium on Microarchitechure, 103
Nov. 1998. 104

[20] Srivastava, Amitabh, et. al. “Vulcan”, Technical 105
Report, Microsoft Research TR-99-76, Sept. 1999. 106

[21] Torrellas, J. and C. Xia, and R. Daigle. "Optimizing 107
Instruction Cache Performance for Operating 108
System Intensive Workloads", IEEE Transactions 109
on Computers, IEEE, Inc., Vol. 47, Number 12, 110
December 1998. 111

