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A major paradigm shift

" |n the 20th Century, we were able to understand, design, and
manufacture what we can measure

e Physical instruments and computing systems allowed us to see farther, capture
more, communicate better, ...
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A major paradigm shift

" |n the 21st Century, we are able to understand, design, and create what

we can compute
* Computational models are allowing us to see even farther, going back and

forth in time, learn better, test hypothesis that cannot be verified any other
way, ...
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Examples of Paradigm Shift

20th Century 215t Century

= Small mask patterns = QOptical proximity correction

= Electronic microscope and Crystallography with ® Computational microscope with initial
computational image processing conditions from Crystallography

= Anatomic imaging with computational image = Metabolicimaging sees disease before visible

orocessing anatomic change
= Optical telescopes = Gravitational wave telescopes
=  Teleconference = Tele-emersion —augmented reality
= GPS = Self-driving cars
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What is powering the paradigm shift?

* Large clusters (scale out) allow solving realistic problems
e 1.5 Peta bytes of DRAM in lllinois Blue Waters

e E.g., 0.5 A (0.05 nm) grid spacing is needed for accurate molecular dynamics
* interesting biological systems have dimensions of mm or larger
* Thousands of nodes are required to hold and update the grid points.

* Fast nodes (scale up) allow solution at realistic time scales

 Simulation time steps at femtosecond (10-1°> second) level needed for accuracy
* Biological processes take milliseconds or longer

e Current molecular dynamics simulations progress at about one day for each 100
microseconds of the simulated process.

* Interesting computational experiments take weeks (used to be months)
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What types of applications are demanding
computing power today?

* First-principle-based models

* Problems that we know how to solve accurately but choose not to because it
would be “too expensive”

* High-valued applications with approximations that cause inaccuracies and lost
opportunities

* Medicate imaging, earthquake modeling, weather modeling, astrophysics
modeling, precision digital manufacturing, combustion modeling, ....

* Applications that we have failed to program
* Problems that we just don’t know how to solve
* High-valued applications with no effective computational methods
 Computer vision, natural language dialogs, stock trading, fraud detection, ...
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2013: Blue Waters and Titan Computing Systems

NCSA ORNL

System Attribute Blue Waters Titan
Vendors Cray/AMD/NVIDIA Cray/AMD/NVIDIA
Processors Interlagos/Kepler Interlagos/Kepler
Total Peak Performance (PF) 12.5 27.1
Total Peak Performance (CPU/GPU) 7.1/5.4 2.6/24.5
Number of CPU Chips 49,504 18,688
Number of GPU Chips 4,224 18,688
Amount of CPU Memory (TB) 1600 584
Interconnect 3D Torus 3D Torus
Amount of On-line Disk Storage (PB) 26 13.6
Sustained Disk Transfer (TB/sec) >1 0.4-0.7
Amount of Archival Storage 300 15-30
Sustained Tape Transfer (GB/sec) 100 7

IirriNnoOTs

ECE ILLINOIS




Next Wave of Machines

* To be deployed in 2018-2019

* The NSF leadership machine will be 2-3X of Blue Waters in computing
throughput

* This does not increase the problem size much if your algorithm has
complexity of O(N?) or even O(N log(N))

* The nodes will be limited by the memory bandwidth for most low-
complexity algorithms

Most Blue Waters Job use less than or equal to 4,000 nodes
(1/6 of the machine) today.
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We know what we want but don’t know how
to build it.

2M training images

ImageNet
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Traditional Computer Vision Deep Learning Object Detection Deep Learning Achieves
Experts + Time DNN + Data + HPC “Superhuman” Results

Slide courtesy of Steve Oberlin, NVIDIA
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Some different modalities of Real-world Data

¢ e

Image Vision features Detection

This seems to be a combinational logic design problem.
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Combinations Logic Specification —
Truth Table aa bb ¢ c

Input
5 b c output
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
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What if we did not know the truth table?

* Look at enough observation data to construct the rules

* 000> 0
*011-> 0
* 100> 1
*110> O

* If we have enough observational data to cover all input patterns, we
can construct the truth table and derive the logic!

IirriNnoOTs

ECE ILLINOIS




LeNet-5, a convolutional neural network for hand-
written digit recognition.

This is a 1024*8 bit input, which will have a

truth table of 2 8196 entries
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Two Important ML Modalities in Science

* Comparing Theoretical Predictions and Observational Data
* Using theory to generate training data
* Use trained model to look for relevant patterns in the observational data

* Tradeoff training algorithm complexity for reduced data analysis algorithm
complexity (LIGO example)

e Using ML to identify the key dimensionalities in simulation or
observational data
* Based on more traditional statistical approaches such as Eigen analysis
* High algorithm complexity of data analysis
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Conclusion and Outlook

* Applications have very large and increasing appetite for more computing power

* Both larger scale clusters and faster nodes
* Key to solving large, real world problems

* We can expect only about 2-3X increase in machine capability every 5 years
moving forward
* Low-complexity algorithms will continue to gain importance

* Heterogeneity has become the norm for all hardware systems
* HPC community are currently seeing about 2-3x application speedup from GPUs
* Recent positive spiral between deep learning and GPU computing

* We expect much more heterogeneity in both computing and memory devices in the next
generation
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