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ABSTRACT

This dissertation focuses on efficient generation of custom processors from

high-level language descriptions. Our work exploits compiler-based optimiza-

tions and transformations in tandem with high-level synthesis (HLS) to build

high-performance custom processors. The goal is to offer a common multi-

platform high-abstraction programming interface for heterogeneous compute

systems where the benefits of custom reconfigurable (or fixed) processors can

be exploited by the application developers.

The research presented in this dissertation supports the following thesis: In

an increasingly heterogeneous compute environment it is important to lever-

age the compute capabilities of each heterogeneous processor efficiently. In

the case of FPGA and ASIC accelerators this can be achieved through HLS-

based flows that (i) extract parallelism at coarser than basic block gran-

ularities, (ii) leverage common high-level parallel programming languages,

and (iii) employ high-level source-to-source transformations to generate high-

throughput custom processors.

First, we propose a novel HLS flow that extracts instruction level par-

allelism beyond the boundary of basic blocks from C code. Subsequently,

we describe FCUDA, an HLS-based framework for mapping fine-grained and

coarse-grained parallelism from parallel CUDA kernels onto spatial paral-

lelism. FCUDA provides a common programming model for acceleration

on heterogeneous devices (i.e. GPUs and FPGAs). Moreover, the FCUDA

framework balances multilevel granularity parallelism synthesis using effi-

cient techniques that leverage fast and accurate estimation models (i.e. do

not rely on lengthy physical implementation tools). Finally, we describe an

advanced source-to-source transformation framework for throughput-driven

parallelism synthesis (TDPS), which appropriately restructures CUDA ker-

nel code to maximize throughput on FPGA devices. We have integrated the

TDPS framework into the FCUDA flow to enable automatic performance
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porting of CUDA kernels designed for the GPU architecture onto the FPGA

architecture.
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CHAPTER 1

INTRODUCTION

Parallel processing, once exclusively employed in supercomputing servers and

clusters, has permeated nearly every digital computing domain during the

last decade. Democratization of parallel computing was driven by the power

wall encountered in traditional single-core processors, and it was enabled by

the continued shrinking of transistor feature size that rendered chip multipro-

cessors (CMP) feasible. Meanwhile, the importance of parallel processing in

a growing set of applications that leverage computationally heavy algorithms,

such as simulation, mining or synthesis, underlined the need for on-chip con-

currency at a granularity coarser than instruction level. The vast amounts

of data used in such applications often render processing throughput more

important than processing latency. Massive parallel compute capability is

necessary to satisfy such high throughput requirements.

Achieving higher on-chip concurrency predominantly relies on increasing

the percentage of on-chip silicon real estate devoted to compute modules. In

other words, instantiating more, but simpler (i.e. without complex out of

order and speculative execution engines), cores. This philosophy is reflected

in the architecture of different multicore and manycore devices such as the

Cell-BE [1], the TILE family [2] and the GPU [3, 4] devices. Apart from a

larger number of cores, these devices also employ different memory models

and architectures. The traditional unified memory space model that is im-

plemented with large multilevel caches in traditional processors is replaced

by multiple programmer-visible memory spaces based on distributed on-chip

memories. Moreover, data transfers between off-chip and on-chip memory

spaces are explicitly handled by the programmer.

Achieving high throughput through parallelism extraction at the opera-

tion, the data and the task level has been traditionally accomplished with cus-

tom processors. Application-specific processors have been employed in sys-

tems used in time-sensitive applications with real-time and/or high through-
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put requirements. Video and audio encoders/decoders, automotive con-

trollers and even older GPUs have been implemented as custom ASIC de-

vices targeted to serve specific application domains. However, skyrocketing

fabrication costs make the use of custom processors impractical in applica-

tions with low-volume deployment. On the other hand, FPGAs have been

growing into viable alternatives for acceleration of compute-intensive appli-

cations with high throughput requirements. By integrating large amounts of

reconfigurable logic along with high-performance hard macros for compute

(e.g. DSPs) and data communication (e.g. PCIe PHY) they are provid-

ing an attractive platform for implementing custom processors that may be

reprogrammed.

1.1 Compute Heterogeneity

Current high-performance computing systems are based on a model that

combines conventional general purpose CPUs for the tasks that are pre-

dominantly sequential (i.e. tasks that contain fine-grained instruction level

parallelism) with throughput-oriented multicore devices that can efficiently

handle massively parallel tasks. This model has also been successfully used

in the supercomputing domain. For example, Roadrunner [5] is based on

AMD Opteron CPUs [6] and IBM Cell [1] multicores and it was the first

supercomputer to break the peta-FLOP barrier. Moreover, Novo-G [7] is a

supercomputer located at the University of Florida comprising 26 Intel Xeon

CPUs [8] and 192 Altera FPGAs [9]. Finally, the Titan supercomputer [10],

which currently holds the leading position in the Top 500 supercomputers

ranking, as well as the Tianhe-1A supercomputer [11], which was one of the

first supercomputers to break the petaflop performance barrier, employ mul-

ticore CPUs (AMD Opteron [6], and Intel Xeon [8], respectively) with Nvidia

Tesla GPUs [4].

The benefits of heterogeneous systems lie in the use of different applica-

tion workloads with different characteristics and throughput requirements

which are better served by different architectures. The promise of hetero-

geneous compute systems is driving industry towards higher integration of

heterogeneity for higher performance and lower power and cost. On-chip in-

tegration has been led in the reconfigurable computing domain with 32-bit
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PowerPC processors embedded in Xilinx Virtex-2 [12] and subsequent Virtex

and other FPGA devices [13]. Devices integrating conventional CPUs with

graphics controllers [14] or even full-blown GPUs [15] have been recently

released by the major microprocessor vendors, presaging important develop-

ments in the software side as well. The value of heterogeneity is especially

important in the embedded domain where low area and power footprints as

well low cost are critical factors leading to interesting industry collaborations,

such as the forthcoming Stellarton [16] system-in-package (SIP) which pairs

an Intel Atom CPU with an Altera FPGA.

Exploring higher degrees of heterogeneity seems a natural follow-up step.

By “higher degree” we refer to the extension of the basic model to include

more than one type of throughput-oriented device along the conventional

general-purpose CPU. The diverse architectures and features of different ac-

celerators render them optimal for different types of applications and usage

scenarios. For example, Cell [1] is a multiprocessor system-on-chip (MPSoC)

based on a set of heterogeneous cores. Thus, it can operate autonomously,

exploiting both task and data level parallelism, albeit at the cost of lower

on-chip concurrency (i.e. it has fewer cores than other types of multicore

devices). GPUs, on the other hand, consist of hundreds of processing cores

clustered into streaming multiprocessors (SMs) that can handle kernels with

a high degree of data-level parallelism. However, launching execution on the

SMs requires a host processor. An early effort at increased heterogeneity was

the Quadro Plex cluster [17] at the University of Illinois, which comprised 16

nodes that combined AMD Opteron CPUs with Nvidia GPUs and Xilinx FP-

GAs. In a more recent effort, researchers at Imperial College demonstrated

the advantages of utilizing CPUs, GPUs and FPGAs for N-body simulations

on the Axel compute cluster [18].

1.2 Programming Models and Programmability

The advantages of heterogeneity do not come without challenges. One of the

major challenges that has slowed down or even hindered wide adoption of het-

erogeneous systems is programmability. Due to their architecture differences,

throughput-oriented devices have traditionally supported different program-

ming models. Such programming models differ in several ways including
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the level of abstraction and the structures used to express and map appli-

cation parallelism onto the hardware architecture. Migrating from platform-

independent and well-established general purpose programming models (e.g.

C/C++ and Java) to device-dependent and low-abstraction programming

models involves a steep learning curve with an associated productivity cost.

Moreover, achieving efficient concurrency in several of these programming

models entails partial understanding of the underlying hardware architecture,

thus restricting adoption across a wide range of programmers and scientists.

The evolution in programmability of GPUs, FPGAs and other multicore

devices, such as the Cell MPSoC, reflect the lessons learned by industry and

academia. Issues such as low abstraction (e.g. RT-level programming on

FPGAs) and domain-specific modeling (e.g. OpenGL and DirectX graphics-

oriented programming models on GPUs) have been addressed to enable

higher adoption. The proliferation of high-level synthesis (HLS) tools for FP-

GAs, and the introduction of C-based programming models such as CUDA

for GPUs have contributed significantly toward democratization of parallel

computing. Nevertheless, achieving high-performance in an efficient man-

ner in heterogeneous systems still remains a challenge. The use of different

parallel programming models by heterogeneous accelerators complicates the

efficient utilization of the devices available in heterogeneous compute clus-

ters, which reduces productivity and restricts optimal matching of kernels to

accelerators.

In this dissertation we focus on the programmability of FPGA devices.

In particular we leverage HLS techniques along with compiler techniques to

build frameworks that can help the programmer to efficiently design custom

and domain-specific accelerators on reconfigurable fabric. Our work aims to

enable high design abstraction, promote programming homogeneity within

heterogeneous compute systems and achieve fast performance evaluation of

alternative implementations. In the next sections we motivate the use of

FPGAs as acceleration devices and we discuss our contributions. The tech-

niques implemented in this work can potentially be employed with minor

adjustments for the design of ASIC accelerators. Alternatively, novel com-

mercial tools [19] propose automated conversion of FPGA-based designs into

ASICs.
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1.3 Reconfigurable Computing

State-of-the-art reconfigurable devices fabricated with the latest process tech-

nologies host a heterogeneous set of hard IPs (e.g. PLLs, ADCs, PCIe PHYs,

CPUs and DSPs) along with millions of reconfigurable logic cells and thou-

sands of distributed static memories (e.g. BRAMs). Their abundant compute

and memory storage capacity makes FPGAs attractive for the acceleration

of compute intensive applications [20, 21, 22], whereas the hard IP modules

offer compute and data communication capacity, enabling high-performance

system-on-chip (SoC) implementations [23]. One of the main benefits of hard-

ware reconfigurability is increased flexibility with regard to leveraging differ-

ent types of application-specific parallelism, e.g. coarse and fine-grained,

data and task-level and versatile pipelining. Moreover, parallelism can be

leveraged across FPGA devices such as in the Convey HC-1 [24] application-

specific instruction processor (ASIP) which combines a conventional multi-

core CPU with FPGA-based custom instruction accelerators. The potential

of multi-FPGA systems to leverage massive parallelism has been also ex-

ploited in the recently launched Novo-G supercomputer [7], which hosts 192

reconfigurable devices.

Power is undeniably becoming the most critical metric of systems in all

application domains from mobile devices to cloud clusters. FPGAs offer a sig-

nificant advantage in power consumption over CPUs and GPUs. J. Williams

et al. [25] showed that the computational density per watt in FPGAs is much

higher than in GPUs. The maximum power consumption of the 192-FPGA

Novo-G [7] is roughly three orders of magnitude lower compared to Opteron-

based Jaguar [26] and Cell-based Roadrunner [5] supercomputers, while deliv-

ering comparable performance for bioinformatics-related applications. Apart

from application customization and low-power computing, FPGAs also offer

long-term reliability (i.e. longer lifetime due to low-temperature operation),

system deployment flexibility (i.e. can be deployed independently as SoC

or within arbitrary heterogeneous compute system) and real-time execution

capabilities. Moreover, they can serve as general purpose, domain-specific or

application-specific processors by combining embedded hard/soft CPUs with

custom reconfigurable logic.

However, hardware design has been traditionally based on RTL languages,

such as VHDL and Verilog. Programming in such low-abstraction languages
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requires hardware design knowledge and severely limits productivity (com-

pared to higher-level languages used in other throughput-oriented devices).

Similarly to compilers in software design, high-level synthesis (HLS) offers

higher abstraction in hardware design by automating the generation of RTL

descriptions from algorithm descriptions written in traditional high-level pro-

gramming languages (e.g. C/C++). Thus, HLS allows the designer to focus

on the application algorithm rather than on the RTL implementation de-

tails (similarly to how a compiler abstracts away the underlying processor

and its corresponding assembly representation). HLS tools transform an un-

timed high-level specification into a fully timed implementation in three main

steps: (i) hardware resource allocation, (ii) computation scheduling, and (iii)

computation and data binding onto hardware resources [27]. Different ap-

proaches have been proposed over the years for automatically transforming

high-level-language (HLL) descriptions of applications into custom hardware

implementations. The goal of all these efforts is to exploit the spatial paral-

lelism of hardware resources by identifying and extracting parallelism in the

HLL code. Most of these approaches, however, are confined by basic block

level parallelism described within the intermediate CDFG (control-data flow

graphs) representation of the HLL description. In this dissertation we pro-

pose a new high-level synthesis framework which can leverage instruction-

level parallelism (ILP) beyond the boundary of the basic blocks. The pro-

posed framework leverages the parallelism flexibility within superblocks and

hyperblocks formed through advanced compiler techniques [28] to generate

domain-specific processors with highly improved performance. We discuss

our HLS flow, called EPOS, in Chapter 3.

Even though application-specific processors may be deployed as autonomous

SoCs, the performance advantages of FPGA and ASIC-based custom proces-

sors can also be exploited in highly parallel applications or kernels. Thus,

the concept of heterogeneous compute systems that combine ILP-oriented

CPUs (for sequential tasks) and throughput-oriented accelerators (for par-

allel tasks) can be served well by reconfigurable devices. HLS can provide

an efficient path for designing such FPGA/ASIC accelerators. However, the

sequential semantics of traditional programming languages restrict HLS tools

from extracting parallelism at granularities coarser than instruction-level par-

allelism (ILP). We address this by leveraging the CUDA parallel program-

ming model, which was designed for GPU devices, to generate fast custom
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accelerators on FPGAs. Our CUDA-to-FPGA framework, called FCUDA,

is based on HLS for automatic RTL generation. A source-to-source compi-

lation engine initially transforms the CUDA code into explicitly parallel C

code which is subsequently synthesized by the HLS engine into parallel RTL

designs (Chapter 4). Furthermore, FCUDA enables a common programming

model for heterogeneous systems that contain GPUs and FPGAs.

As mentioned earlier, reconfigurable fabric allows leveraging of application

parallelism across different granularities. Nevertheless, the effect on through-

put depends on the combined effect of different parallelism granularities on

clock frequency and execution cycles. Evaluation of the rich design space

through the full RTL synthesis and physical implementation flow is pro-

hibitive. In other words, raising the programming abstraction with HLS is

not enough to exploit the full potential of reconfigurable devices. In Chapter

5 we extend the FCUDA framework to enable efficient multilevel granularity

parallelism exploration. The proposed techniques leverage (i) resource and

clock period estimation models, (ii) an efficient design space search heuristic,

and (iii) design floorplanning to identify a near-optimal application mapping

onto the reconfigurable logic. We show that by combining HLS with the

proposed design space exploration flow, we can generate high-performance

FPGA accelerators for massively parallel CUDA kernels.

Supporting a homogeneous programming model across heterogeneous com-

pute architectures, as done with FCUDA, facilitates easier functionality port-

ing across heterogeneous architectures. However, it may not exploit the per-

formance potential of the target architecture without device-specific code

tweaking. Performance is affected by the degree of effectiveness in map-

ping computation onto the target architecture. Restructuring the organiza-

tion of computation and applying architecture-specific optimizations may be

necessary to fully take advantage of the performance potential of throughput-

oriented architectures, such as FPGAs. In Chapter 6 we present the throughput-

driven parallelism synthesis (TDPS) framework, which enables automatic

performance porting of CUDA kernels onto FPGAs. In this work we pro-

pose a code optimization framework which analyzes and restructures CUDA

kernels that are optimized for GPU devices in order to facilitate synthesis of

high-throughput custom accelerators on FPGA.

The next chapter presents previous research work on high-level synthe-

sis and throughput-oriented accelerator design. Chapters 3, 4 and 5 discuss

7



our work on EPOS, FCUDA and multilevel granularity parallelism synthesis.

Subsequently, Chapter 6 discusses the automated code restructuring frame-

work we designed, which enables throughput-driven parallelism synthesis for

compilers like FCUDA that target heterogeneous compute arhictectures. Fi-

nally, Chapter 7 concludes this dissertation.
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CHAPTER 2

RELATED WORK

Ongoing developments in the field of high-level synthesis (HLS) have led to

the emergence of several industry [29, 30, 31] and academia based [32, 33, 34]

tools that can generate device-specific RTL descriptions from popular high-

level programming Languages (HLLs). Such tools help raise the abstrac-

tion of the programming model and constitute a significant improvement

in FPGA usability. However, the sequential semantics of traditional pro-

gramming languages greatly inhibit HLS tools from extracting parallelism at

coarser granularities than instruction-level parallelism (ILP). Even though

parallelizing optimizations such as loop unrolling may help extract coarser-

granularity parallelism at the loop level [35, 36], the rich spatial hardware

parallelism of FPGAs may not be optimally utilized, resulting in suboptimal

performance.

The EPOS flow has several features in common with the NISC work pro-

posed by M. Reshadi et al. [34]. This custom processor architecture removes

the abstraction of the instruction set and compiles HLL applications directly

onto a customizable datapath which is controlled by either memory-stored

control words or traditional FSM logic. The compilation of the NISC sys-

tem is based on a concurrent scheduling and binding scheme on basic blocks.

Our processor architecture, EPOS, builds on this instruction-less architec-

ture by adding new architectural elements and employing novel scheduling

and binding schemes for exploiting instruction-level parallelism beyond basic

blocks.

The increasingly significant effect of long interconnects on power, timing

and area has led to the development of interconnect-driven HLS techniques.

J. Cong et al. [37] have looked into the interconnect-aware binding of a sched-

uled DFG on a distributed register file microarchitecture (DRFM). Based on

the same DRFM architecture, K. Lim et al. [38] have proposed a complete

scheduling and binding solution which considers minimization of intercon-
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nections between register files and FUs. EPOS, on the other hand, uses a

unified register-file (RF) and allows results to be forwarded directly from the

producing to the consuming FUs for reduced latency.

J. Babb et al. [39] focused on extracting parallelism by splitting an appli-

cation into tiles of computation and data storage with inter-tile communica-

tions based on virtual wires. Virtual wires comprise the pipelined connections

between endpoints of a wire connecting two tiles. Application data is dis-

tributed into small tile memory blocks and computation is then assigned to

the different tiles. This work can produce efficient parallel processing units

for the class of applications that can be efficiently distributed into equal data

and computation chunks. However, applications with control-intensive algo-

rithms could result in contention on the communication through the virtual

wires, imposing many idle cycles on the distributed datapaths. We leverage

a similar tiling approach in FCUDA, but only at the level of core-clusters.

In a different approach, S. Gupta [40, 41] has focused on extracting par-

allelism by performing different types of code motions and compiler opti-

mizations in the CDFG of the program. In particular, they maintain a

hierarchical-task-graph (HTG) besides the traditional CDFG. The nodes in

an HTG represent HLL control-flow constructs, such as loops and if-then-else

constructs. The authors show that their tool, named SPARK, offers signifi-

cant reductions both in the number of controller states and also in the latency

of the application. However, all the code motions are validated using CDFGs

built from basic blocks, which may limit the opportunity for optimizations.

In FCUDA we employ similar code motion optimizations, but at the task

level (instead of instruction level). Moreover, the TDPS framework (Chap-

ter 6) integrated in FCUDA, leverages hierarchical region graphs to represent

control flow structures in the code and facilitate throughput-oriented code

restructuring.

The shift toward parallel computing has resulted in a growing interest in

computing systems with heterogeneous processing modules (e.g. multicore

CPUs, manycore GPUs or arrays of reconfigurable logic blocks in FPGAs).

As a consequence, several new programming models [42, 43, 44] that explic-

itly expose coarse-grained parallelism have been proposed. An important

requirement with respect to the usability of these systems is the support of a

homogeneous programming interface. Recent works have leveraged parallel

programming models in tandem with high-level synthesis (HLS) to facilitate
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high abstraction parallel programming of FPGAs using parallel programming

models [45, 46, 47, 48].

The popularity of C across different compute systems makes this program-

ming model a natural choice for providing a single programming interface

across different compute platforms such as FPGAs and GPUs. Diniz et al.

[33] propose a HLS flow which takes C code as input and outputs RTL code

that exposes loop iteration parallelism. Baskaran et al. [49] leverage the

polyhedral model to convert parallelism in C loop nests into multithreaded

CUDA kernels. Their framework also identifies off-chip memory data blocks

with high reuse and generates data transfers to move data to faster on-chip

memories.

The OpenMP programming interface is a parallel programming model that

is widely used in conventional multicore processors with shared memory

spaces. The transformation framework in [46] describes how the different

OpenMP pragmas are interpreted during VHDL generation, but it does not

deal with memory space mapping. On the other hand, the OpenMP-to-

CUDA framework proposed in [50] transforms the directive-annotated paral-

lelism into parallel multi-threaded kernels, in addition to providing memory

space transformations and optimizations to support the migration from a

shared memory space (in OpenMP) to a multi-memory space architecture

(in CUDA). The OpenMP programming model is also used in the optimizing

compiler of the Cell processor [51] to provide a homogeneous programming

interface to the processor’s PPE and SPE cores while supporting a single

memory space abstraction. As described in [51], the compiler can orches-

trate DMA transfers between the different memory spaces, while a compiler-

controlled cache scheme takes advantage of temporal and spatial data access

locality.

Exploration of several configurations in the hardware design space is often

restricted by the slow synthesis and place-and-route (P&R) processes. HLS

tools have been used for evaluating different design points in previous work

[35, 36]. Execution cycles and area estimates from HLS were acquired without

going through logic synthesis of the RTL. Array partitioning was exploited

together with loop unrolling to improve compute parallelism and eliminate

array access bottlenecks. Given an unroll factor, all the nondependent array

accesses were partitioned. However. such an aggressive partitioning strat-

egy may severely impact the clock period (i.e. array partitioning results in
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extra address/data busses, address decoding and routing logic for on-chip

memories). In this work, we identify the best array partition degree con-

sidering both kernel and device characteristics through resource and clock

period estimation models.
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CHAPTER 3

EPOS APPLICATION ACCELERATOR

Different approaches have been proposed over the years for automatically

transforming high-level-language (HLL) descriptions of applications into cus-

tom hardware implementations. Most of these approaches, however are con-

fined by basic block level parallelism described within the CDFGs (control-

data flow graphs). In this chapter we present a high-level synthesis flow which

can leverage instruction-level parallelism (ILP) beyond the boundary of the

basic blocks. We extract statistical parallelism from the applications through

the use of superblocks [52] and hyperblocks [53] formed by advanced front-

end compilation techniques. The output of the front-end compilation is then

used to map the application onto a domain-specific processor, called EPOS

(Explicitly Parallel Operations System). EPOS is a stylized microcode driven

processor equipped with novel architectural features that help take advantage

of the parallelism extracted. Furthermore, a novel forwarding path optimiza-

tion is employed the proposed flow to minimize the long interconnection wires

and the multiplexers in the processor (i.e. improve clock frequency).

Figure 3.1 gives an outline of the EPOS HLS flow. Initially, we leverage the

advanced compiler optimizations available in the IMPACT compiler [28] to

transform the original C code into Lcode, a three-address intermediate repre-

sentation. Lcode is optimized through traditional compilation techniques and

advance ILP extraction techniques that use profiling to generate superblocks

[52] and hyperblocks [53]. Lcode is then fed to our scheduler together with

the user-specified resource constraints, in order to produce scheduled Lcode.

This Lcode is not yet bound to the functional units of the processor. Binding

is done during the last step of the flow, during which the data forwardings

entailed in the scheduled Lcode are considered. Three different algorithms for

binding the operations onto the FUs while minimizing the forwarding paths

and the corresponding operand multiplexing are presented in Section 3.3.
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for (int i = 0;i<v;++i) {
if (x==0) {
d = a*b + f(5);

…
…
}

load r3, r7, 10 
sub r1, r2, r3
cmp r0, r1, 0
br label2
…
...

op2  op3   
op8
op6   op5   
op4
op9 op10 

C code Lcode Scheduled 
Lcode

EPOS w/
Opt. FW 
Network

compile Schedule Bind

Constraints

Figure 3.1: High-level synthesis flow

3.1 EPOS Overview

3.1.1 EPOS Philosophy

Extracting instruction-level parallelism can be done either statically [54] (at

compile time) or dynamically [55] (at execution time). Dynamic extraction of

parallelism is based on complex hardware like branch predictors and out-of-

order schedulers, whereas static techniques [28] shift the burden of identifying

parallelism onto the compiler [56, 57]. Thus, extracting ILP statically allows

for higher computational density processor implementations by replacing the

ILP-extraction resources with computation units. Moreover, higher clock

frequencies can be achieved by moving from complex dynamic ILP extraction

logic to simpler statically-scheduled logic. This strategy was expressed in

the EPIC (Explicitly Parallel Instruction Computer) [58] philosophy. The

EPOS accelerator is based on this philosophy. ILP is extracted statically

by the compiler and an ILP-driven plan of execution is generated by the

scheduling and binding engine. The custom processor, which is designed with

relatively simple control logic and high compute density, follows the statically

generated execution plan. Special architectural elements are added to the

main datapath architecture to handle potential mispredictions of the static

parallelism extraction. Since the custom processor is synthesized for a specific

application or a domain of applications, static parallelism extraction can offer

significant performance benefits with a minimal hardware cost. That is, the

application ILP can be mapped very efficiently onto the custom accelerator

without the constraints imposed by a general-purpose EPIC architecture

[56, 57].
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3.1.2 EPOS Architecture

The main elements of the EPOS accelerator are the microcode memory

banks, which store all the datapath control information for the functional

units (FUs) that carry out the application computation. The microcode de-

tails the plan of execution as determined by the compiler and the high-level

synthesis engine. It is split in microwords, each of which controls the flow

of data in the processor datapath for one clock cycle. Each microword can

be split into multiple memory banks that are potentially placed close to the

datapath elements they control, thus facilitating better routing. There is also

a microcode address controller that holds the current microword to be exe-

cuted, and has address generation logic that determines the next microcode

word address. The functional units can have different characteristics in terms

of latency, pipeline and functionality characteristics.

As shown in Figure 3.2 there are two register files, one for application values

(RF) and one for predicate values (PRF). Moreover, each FU output is also

connected to a small shifting register file (SRF) where results may be stored

temporarily. The latest result produced by a functional unit is stored in the

top register of its respective SRF while previous values are shifted by one po-

sition further down in the SRF. This allows for predicated operations to be

speculated or, in other words, promoted over the predicate definition opera-

tion by a few cycles. Using the distributed SRFs offers several performance

and frequency advantages. Firstly, speculation of predicated operations can

be implemented without stalling or using a unified multiport shadow register

file for speculated results. Secondly, the existing RF writeback ports and

the FU forwarding paths can be used to store and forward, respectively, the

results of speculated operations that turn out to be true predicated. Simple

circuitry is used to squash the misspeculated operations while allowing the

rest to store their results in the register file.

Forwarding and register-file bypassing (RFB) are used to optimize the per-

formance of data-intensive applications. For a result produced by a FU in

cycle n, forwarding allows its use in cycle n+1 by the same or a different FU.

Forwarding paths are implemented with interconnection busses that commu-

nicate results from the output of FUs to their inputs without having to go

through the register file. Moreover, the use of forwarding paths eliminates

the need to store intermediate results that are alive for only one cycle in the
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Figure 3.2: EPOS architecture

register file (that is, results that are only used in the cycle immediately after

their generation). This is rendered possible by the instruction-less scheme

that is used in EPOS (values do not need to be assigned to registers as is done

in instruction-based processors) and can result in lower register-file pressure,

i.e. less register spilling into memory or even smaller register files. Generated

results that are alive for more than one cycle are stored in the register file.

This means, however, that a value produced in cycle n will not be available in

cycle n+2 (and cycle n+3 if RF writes take two cycles) while it is written into

the RF. Register-file bypassing is essentially an extension of forwarding that

allows the forwarding of results during the cycles that they are being written

in the RF. The SRFs can handily provide a temporary storage for results

until they are stored in the RF. Moreover, similarly to regular forwarding,

RFB can be used to eliminate writes to RF of values that are only alive 2 (or

3 in case of 2-cycle write RFs) cycles after they are produced. The downside

of forwarding and RFB is the effect in clock frequency from the use of long

interconnections between FUs and multiplexing at the input of FUs to im-

plement them. Our HLS flow considers the effect of forwarding during the

binding phase by leveraging algorithms that try to minimize the number of

forwarding paths and multiplexing for each customized EPOS configuration.

3.1.3 ILP Identification

For the identification of the statistical ILP in the application, we use the IM-

PACT compiler, which transforms the HLL code into the Lcode intermediate

representation. Lcode goes through various classic compiler optimizations
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and also gets annotated with profile information. The profile annotation is

used to merge basic blocks into superblocks and hyperblocks. The generation

of coarser-granularity blocks can allow the scheduling engine to exploit more

parallelism.

Superblocks are formed by identifying frequently executed control paths

in the program that span many basic blocks. The basic blocks that com-

prise the identified control path are grouped into a single superblock that

may have multiple side exits but only one entry point at the head of the

block. Hyperblocks, on the other hand, differ from superblocks in the way

the selection of the basic blocks to be merged in a single block is done. In

particular, hyperblocks may group basic blocks that are executed in mutu-

ally exclusive control flow paths in the original program flow. To preserve

execution correctness, predicate values that express the branch conditions

of the exclusive paths are attached to the instructions of the merged basic

blocks. The instructions are executed or committed based on the values of

their attached predicates. Hyperblocks, like superblocks, may have multiple

side exits but only a single entry point.

3.2 ILP-Driven Scheduling

After the identification of the statistical instruction-level parallelism and its

expression into superblocks and hyperblocks by the front-end compilation,

our scheduling engine focuses on the extraction of the maximum parallelism

under resource constraints. The superblocks, hyperblocks and basic blocks

contained in the generated Lcode are scheduled using an adapted version of

the list scheduling [59] algorithm. This algorithm is designed to handle the

intricacies of predication, speculation and operation reordering within blocks

that may contain more than one exit. Scheduling is performed on a per-

block basis, in order to maintain the parallelism that was identified within

superblocks and hyperblocks. The output of the scheduling phase is sched-

uled Lcode that honors the latency, pipeline and multitude characteristics of

the available FUs.

Initially, a direct acyclic graph (DAG), Gd = (V,A), is built based on

the dependence relations of the Lcode operations. Set V corresponds to

Lcode operations and set A corresponds to three different types of dependence
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relations between the operations: (i) data dependencies (read-after-write),

(ii) predicate dependencies and (iii) flow dependencies

The data dependence arcs represent real dependencies between producer

and consumer operations. The dependencies of predicated operations on

predicate definition operations are represented with special predicate de-

pendence arcs. Differentiating between predicate and data dependencies is

mainly done in order to handle speculation of predicated operations which al-

lows us to exploit some extra ILP (as shown in Section 3.4). This is achieved

by using the flexibility of the temporary storage provided by the shift-register-

files to schedule predicated operations up to a few cycles ahead of the pred-

icate definition. Finally, the flow dependence arcs are used to ensure that

branch and store operations are executed in their original order within Lcode,

i.e. avoid speculation of memory writes. Mis-speculation of these types of

operations may lead to incorrect execution and requires complex hardware

to fix.

After the data dependence graph construction, slack values are computed

for each node of the graph. Two slack metrics are used to determine the

criticality of operations: local slack and global slack. Local slack is calculated

within the operation’s containing block and represents the criticality of the

operation when the dynamic control flow does not follow any of the block

side branches. Global slack, on the other hand, is calculated based on the

function-wide dependencies and represents the criticality of the operation

when side branches are also considered. Local and global slacks are used in a

weighted function to determine the total slack. The relative weighting of the

local and global slacks determines a balance between ILP optimization for

the statistically likely case vs. the statistically unlikely case. For example,

assume the following operation sequence within a superblock: op1→br→op2,

where a side branch (br) exists between two operations (op1 and op2). Let us

assume that operation op2 has a relatively lower local slack (op2 locally more

critical) and operation op1 has a relatively lower global slack (op1 globally

more critical). Then if the local slack weighting is much higher than the

global slack, operation op2 will be executed before operation op1, which will

potentially lead to a shorter execution latency in case the control flow follows

the statistically most likely control path through the final exit of the block.

However, in the case that the control flow falls through the side exit (less

likely flow) we will have executed a redundant operation (op2) that may
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result in longer execution latency. On the other hand, if slack weighting

favors global slacks, operation op1 will be executed before op2, optimizing

the case that the control flow follows the side branch.

Subsequently, our modified list-scheduling algorithm is performed on a

per-block basis taking into consideration the different types of dependencies.

For example, data-dependent operations cannot enter the ready list until the

corresponding data producing operation is scheduled and finished executing,

that is, only if the data producing operation belongs in the same block. On

the other hand, predicate-dependent operations in a system with SRFs can

be scheduled a number of cycles, equal to the SRF depth, ahead of their

predicate producer. Flow dependencies are also not as strict dependencies as

data dependencies. In particular a flow-dependent operation can be sched-

uled to complete its execution in the same cycle with the operation it is

dependent on. For example a store operation can be scheduled in the same

cycle with a branch that it is flow-dependent on. If the branch turns out to

be taken, the operation-squashing logic (used for false predicated operations)

can terminate the store operation before it writes into memory.

An overview of the scheduling algorithm is given in Algorithm 3.1 for the

case in which register file bypassing is enabled. The operations are handled

with the help of six lists. Initially operations are assigned to the ready-list

and the unshed-list depending on whether they are ready to execute or they

are dependent on operations that have not executed yet. The wait-list is used

to hold operations that would be ready to execute if enough resources were

available. The active-list is used to hold operations that are currently being

computed. Finally done-list is used to hold all the operations that have

finished execution while temp-list holds only the operations that finished

execution during the current cycle.

3.3 Forwarding Path Aware Binding

At the end of the scheduling phase, we get a feasible timing plan of exe-

cution for all the operations of the application based on the number and

type of available functional units and the assumption that every computed

value can be forwarded to any FU. However, before we can generate the mi-

crocode (MC) words that will be loaded on the EPOS MC memory banks,
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Algorithm 3.1: Operation Scheduling within each Procedure
Input: Procedure DAG
Output: Schedule of Procedure operations

1 procBlocks← basic blocks of procedure
2 cyc← 0 // initialize cycle count

3 foreach blk ∈ procBlocks do
4 init(blk,unschedList,readyList) // initialize operation lists

5 while oper ∈ {unschedList ∪ readyList ∪ waitList} do // unscheduled op

6 cyc← cyc + 1 // proceed to next cycle

7 readyList← waitList
8 foreach oper ∈ unschedList do // Look for unsched operations

9 if isReady(oper) then // that have become ready

10 readyList← oper // move them to ready list

11 tempList← ∅
12 foreach oper ∈ activList do // currently executing ops

13 if oper.schedCyc + oper.latency = cyc then // if done

14 doneList← oper // move to done list

15 tempList← oper // copy to temp list

16 if oper.pipeline == (cyc− oper.schedCyc) then // check pipelining

17 oper.freeResource() // free FU resources

18 foreach oper ∈ tempList do
19 foreach oper′ ∈ oper.successors() do // if dependent ops

20 if oper′ ∈ unschedList then // are not scheduled

21 if isReady(oper’) then // but ready

22 readyList← oper′ // move to ready list

23 while readyList 6= ∅ do
24 oper ← minSlack(readyList) // pick ready op with min slack

25 if resAvailable(oper) then // suitable free resource exist

26 activList← oper // add op to active list

27 foreach oper′ ∈ oper.successors() do // if dependent ops

28 if oper′ ∈ unschedList then // are not scheduled

29 if isReady(oper’) then // but ready

30 readyList← oper′ // move into ready list

31 else // resource not available

32 waitList← oper // push into wait list

we need to map the operations onto the functional units for each scheduled

cycle. This is done during the binding phase of our HLS flow which, even

though it does not impact the number of execution cycles, can significantly

affect the clock period and thus the execution latency of the application. As

shown in Figure 3.3, binding has a direct effect on the number of forwarding
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Figure 3.3: Binding impact on FWP and MUX count

paths (FWPs) and multiplexers, that are required in the custom EPOS con-

figuration to render the scheduled plan of execution feasible. By choosing a

binding solution that minimizes the required FWPs and multiplexers, we can

create EPOS configurations that can execute applications at a faster clock

frequency. A FWP-aware binding algorithm was presented in [60]. In the

rest of this section we will present and compare three different FWP-aware

binding algorithms that can be used in the EPOS HLS synthesis flow. The

first one is a fairly simple algorithm that can produce relatively good results

in terms of number of required FWPs. In Section 3.3.2 we will present the

algorithm that was introduced in [60] in more detail and will provide new

insight with regard to the related challenges and possible optimizations. Fi-

nally in Section 3.3.3 we will describe a new heuristic that we have developed

for more efficient binding solutions. In Section 3.4 we will provide experi-

mental results for the efficiency of the three binding algorithms described in

this section. In the rest of this chapter we will use the terms:

Forwarding path (FWP) to refer to the physical interconnection between

the output of a FU and the input of a FU

Data forwarding (DFW) to refer to the data value forwarded from one

operation that ends in cycle n to another operation that starts in cycle

n+ 1. Using these terms we can rephrase the objective of the binding

engine as: “binding the DFWs entailed in the schedule on the minimum

number of FWPs”.
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Algorithm 3.2: Simple FWP Aware Binding
Input: List of Data Forwardings (DFWList)
Output: Binding of operations onto FUs

1 cyc← DFWList.first().cyc // get cycle of 1st DFW

2 initFU(availFU ) // initialize current cycle available FUs

3 initFU(availNextFU ) // initialize next cycle available FUs

4 foreach dfw ∈ DFWList do
5 if cyc 6= dfw.cyc then // if new sched cycle

6 availFU← availNextFU // copy next cycle FUs to current cycle

7 initFU(availNextFU ) // initialize next cycle FUs

8 availFWP← allocFWP // copy allocated FWPs to available FWPs

9 cyc← dfw.cyc // update schedule cycle

10 op1← dfw.sourceOp // get source op of dfw

11 op2← dfw.sinkOp // get dest op of dfw

12 bind← 0 // init bind flag

13 foreach fwp ∈ availFWP do // Look into unbound FWPs

14 if isFeasible(fwp,op1,op2,cyc) then // if fwp feasible for

op1&op2

15 update(availFU,op1,cyc) // update available FU

16 update(availNextFU,op2,cyc+1) // update available FU

17 bind← 1 // flag binding

18 break

19 if bind == 1 then // if DFW bound to pre-allocatedDFW

20 allocFWP← fwp // updated allocated FWP set

21 availFWP.remove(fwp) // update available FWP set

22 else // no feasible FWP was found

23 allocFWP← newFWP(op1,op2) // allocate new FWP

3.3.1 A Simple FWP Aware Binding Algorithm

The simple binding algorithm takes as inputs a list of all data forwardings and

the number of available FUs (Algorithm 3.2). It goes through all DFWs and

tries to bind them to pre-allocated FWPs, if feasible, in a greedy way. Oth-

erwise, if no pre-allocated FWPs are available or the available ones are not

suitable for binding the DFW under consideration, it allocates new FWPs.

We should note that the DFWs list is ordered so that all DFWs of earlier

cycles are before DFWs of later cycles. There is no ordering between DFWs

that belong to the same cycle.

Since every DFW is related to two cycles of the schedule (i.e. cycle n that

the producer operation finishes and cycle n+1 that the consumer operation

starts), we need to maintain two sets of available FUs (availFUs and nextCy-

cleAvailFUs) for the producing and consuming cycles of the DFW. Whenever
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the next cycle becomes the current cycle, availFUs is initialized with nextCy-

cleAvailFUs and nextCycleAvailFUs is initialized with a full set of all FUs

available. There are also two sets of FWPs maintained (allocFWPs and avail-

FWPs); allocFWPs holds all the allocated FWPs, whereas availFWPs stores

a set of the available FWPs that can be considered for binding the unbound

DFWs in the current cycle. The allocFWPs set is updated every time a

new FWP is allocated and the availFWP set is updated for every DFW that

gets bound to a pre-allocated FWP and also every time the current cycle is

incremented.

In the simple binding algorithm, DFWs are bound by explicitly mapping

operations onto specific FUs. This way, a feasible solution that honors func-

tional unit resource constraints is derived at the end of the iteration over

all DFWs. In this solution all allocated FWPs are explicit in the sense that

they are described by a source FU id and a sink FU id. As we will see in

the next subsections, the more sophisticated algorithms use implicit FWPs

which then are mapped onto explicit physical FWPs.

3.3.2 Network Flow Binding Algorithm

The network-flow (netflow) algorithm is based on a transformation of the

EPOS binding problem into a clique partitioning one. A network flow for-

mulation is used to solve the clique partitioning. A post-processing phase

may be required to make the network solution feasible for our schedule.

Compatibility Graph Construction

We use a modified version, Gd2 = (V,A2), of the DAG constructed during the

scheduling phase, where set A2 corresponds to the data dependencies only

(Figure 3.4(a)). Predicate dependencies can be handled in a similar manner

with a separate DAG, whereas flow dependencies do not correspond to value

communication and are only used during scheduling. A new DAG, Gd3 =

(V3, A3), is formed as shown in Figure 3.4(b) by pruning away the nodes

that do not have any data flowing from/to operations in the preceding/next

cycle of the schedule. Edges attached to the pruned nodes are also pruned

away. Graph Gd3 represents the forwardings entailed in the schedule; i.e.,

an edge α = (vi, vj) corresponds to a forwarded value from operation vi
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Figure 3.4: Building the compatibility graph from the data-dependence
graph

to vj. A compatibility graph Gc = (Vc, Ac) for these forwardings (FWs)

can then be constructed, as shown in Figure 3.4(c). Note that the nodes

in Vc do not represent the operation nodes in Gd3 but correspond to the

DFWs (i.e. the edges of Gd3) involved in the schedule. A directed edge

αc = {(vm, vn) | vm ∈ Vc, vn ∈ Vc} is drawn between two vertices, if the

producer operation of the DFW vm is scheduled to finish in an earlier cycle

than the producing operation of DFW vn. Each edge αc is assigned a weight

wmn, which represents the cost of binding vm and vn to the same FWP.

Given a data forwarding pattern represented by the compatibility graph

Gc, our goal is to find an edge subset in Gc that covers all the vertices in Vc in

such a way that the sum of the edge weights is minimum with the constraint

that all the vertices can be bound to no more than k FWPs, where k is

the minimum number of FWPs required to fulfill the schedule. This can be

translated into a clique partitioning problem, where each clique corresponds

to the DFWs that can be bound into a single FWP (Figure 3.4(d)).

Min-Cost Network Flow Solution

To solve the clique partitioning problem we build a network DAG, NG, from

the compatibility graph Gc and calculate a min-cost flow solution. In partic-

ular a source vertex s and a sink vertex t are added at the top and bottom of

the DAG (Figure 3.5(a)) along with directed edges as = {(s, vn) | vn ∈ VN}
and at = {(vn, t) | vn ∈ VN}. Moreover, a new set of vertices is introduced

in the network DAG to prevent infeasible sharing of DFWs that share a

producer or a consumer operation. We refer to such groups of forwardings

as complex forwarding structures (CFS). For example, if in Figure 3.4(c) a

network flow solution assigns forwardings f1 and f7 in one clique (i.e. share
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Figure 3.5: Building the network graph

a FWP) and forwardings f2 and f8 in a second clique (i.e. share a second

FWP), it would not be a feasible solution (that is, f1 and f2 imply that the

two FWPs begin at the output of the same FU, while f2 and f8 imply that

the two FWPs begin at the output of different FUs). In order to avoid this

infeasible binding we add vertex c (Figure 3.5(a)) in between the pair of for-

wardings f1-f2 and other singular forwardings (i.e. FWs that do not share

producer or consumer operations) in later cycles. Finally, the network DAG

is further modified by the split-node technique [61] which ensures that each

node is traversed by a single flow. This is achieved by splitting each node into

two nodes connected with a directed edge of a single capacity (Figure 3.5(b)).

By assigning cost and capacity values to each edge through a cost function

C and a capacity function K, respectively, we conclude the transformation of

the compatibility graph Gc into the network graph NG = (s, t, VN , AN , C,K).

The cost, C, of the network edges tries to capture, among other things, the

similarity of the neighboring forwarding patterns of two compatible FWs, so

as to lead to better solutions. The Fschema parameter is used to represent

this factor and it is calculated based on Gd3. For example, let us consider the

DAG shown in Figure 3.6(a). The minimum number of FWPs required to

satisfy this schedule is two. However, in order to produce a feasible binding

with two FWPs, f1, f3 and f5 need to be bound to the same FWP while f2, f4

and f6 are bound to a second FWP. Otherwise, 3 FWPs will be required. This

can be fulfilled with the help of the Fschema value. Fschema is calculated

by trying to find the maximum match in the neighboring FW patterns. In

Figure 3.6(b), the bigger values produced for pairs f2-f4 and f3-f5 show that

these pairs of forwardings have more similarities in their FW neighboring

patterns. These values can help bias the network flow to find better solutions

by binding similar pairs together.
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Figure 3.6: Building the Fschema values

The problem of minimizing FWPs has been transformed into building the

network graph from the data dependence graph and finding the min-cost flow

in the network DAG. When the min-cost flow is computed, k flows from the

node s to the node t are produced. The nodes traversed by each flow should

be bound to the same FWP.

Flow Solution Post-Processing

By using the CFS concept and the Fschema values in the cost function, we

are able to build feasible binding solutions for several patterns of DFWs that

are encountered in the benchmarks we used. However, there are cases where

the network flow formulation may lead to a solution with infeasible bindings.

For example, the compatibility graph in Figure 3.7(b) that corresponds to

the data forwarding DAG in Figure 3.7(a) demonstrates a case where the

cost function cannot guarantee that one of the two feasible binding solu-

tions will be chosen over the infeasible binding solution. As can be seen in

Figure 3.7(b), depending on the DFW inter-relations, the FWP that corre-

sponds to a generated clique has certain attributes. Thus, one of the feasible

solutions translates to two FWPs, each of which starts at the output of a FU

and end to the input of the corresponding FU, whereas the second feasible

solution translates to two FWPs that forward values to the input of different

FUs than the ones that produced them (Figure 3.7(c)). On the other hand

the infeasible binding creates cliques of DFWs with conflicting inter-relations,

thus generating an infeasible solution. Dealing with such infeasible bindings

could be achieved by extending the network flow formulation to incorporate

equal-flow constraints for certain edges. For the example of Figure 3.7, we

would add the constraint the flow of the edges in the following pairs to be
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equal:

(f1, f3) ≡ (f3, f5) ∧ (f2, f4) ≡ (f4, f6)

(f1, f4) ≡ (f4, f5) ∧ (f2, f3) ≡ (f3, f6)

The min-cost problem flow problem with equal-flow constraints has been

shown to be NP-hard [62]. In [63] they used integer-linear-programming tech-

niques to solve the problem of network min-cost with equal flow, whereas in

[64] they proposed clever heuristics to efficiently solve the equal flow prob-

lem. In this work we use a post-fix phase during which the min-cost solution

is checked and fixed by unbinding the DFWs that cause the infeasibility and

binding them to different pre-allocated FWPs or new FWPs. Further details

on how the check and fix is done are provided in [60].

3.3.3 Clustered Binding

As we saw in the previous subsection, DFWs form complicated inter-relations

with each other and choosing a feasible binding of the DFWs in cycle n+ 1

is dependent on how the DFWs in cycle n were bound. However, in the case

that there are no DFWs scheduled in cycle n, the binding decisions for cycles

n + 1 and thereafter can be independent of how DFWs scheduled earlier

than cycle n were bound. Based on this observation we partition the DFWs

into clusters, where a cluster is defined as a set of DFWs that are scheduled

between cycle n and n + k and for each cycle within [n, n + k] there is at

least one scheduled DFW that belongs to the DFW set. As the name of this

algorithm implies, binding is done on a per-cluster basis, while seeking to

achieve maximum FWP sharing both at the intra-cluster (i.e. within cycles

of the cluster) and the inter-cluster (i.e. across clusters) level.
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Cluster Setup

Initially, the application DFWs are divided into clusters according to the

previous definition. Each cycle in every cluster is assigned a complexity value

based on a weighted function of the number of scheduled DFWs and the

presence of CFSs. The role of the complexity value is to provide a measure

of the probability that a feasible binding of the cycle’s DFWs will require

extra FWPs to be allocated. For each cluster the cycle with the maximum

complexity is identified and the average complexity of the cluster is computed

as the sum of all the cluster cycle complexities divided by the number of

cycles in the cluster. The average complexity is used to order the clusters in

decreasing order, so that binding can begin from the clusters with the highest

average complexity to the ones with the lowest average complexity. Binding

the lower complexity clusters later is likely to create more chances for FWP

sharing and thus fewer FWPs. The cycle with the maximum complexity

in each cluster is the first cycle to be bound during each cluster binding,

following the same philosophy as described above.

Cluster Binding

For each cluster, binding is done cycle-by-cycle starting with the cluster cycle

that is identified as of the highest complexity. For each cycle the pre-allocated

FWPs are first considered. If there are more DFWs than pre-allocated FWPs,

or the pre-allocated FWPs do not lend themselves for feasible bindings, new

FWPs are allocated. Before binding the DFWs to the pre-allocated FWPs,

a compatibility computation function is called. This function computes a

compatibility value for each pair of DFWs and FWPs. The compatibility

value represents the suitability of binding the respective FWP on the DFW

with regards to the inter-relations of the DFW with its neighboring DFWs

in the previous, the current and the next cycles of the cluster. Binding

the DFWs to the pre-allocated FWPs is done in decreasing order of the

compatibility values.
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Binding Solution Flexibility

In order to ensure feasibility of the binding solution, four sets of relation

rules are maintained for each FWP that is allocated: ProducerEq, Produc-

erNeq, ConsumerEq and ConsumerNeq. These sets hold the equality and

nonequality relations for the producing and consuming FUs of each FWP

with respect to the producing and consuming FUs of the other FWPs. Fig-

ure 3.8(a) shows an example of the relation rules for a cluster of five DFWs

that is partially bound (DFW f5 is not bound yet) on two FWPs.

Each binding results in the addition of new rules into the relation rules.

Feasibility of the binding is checked by searching for rule conflicts that may be

created by integrating the new rules into the existing rules. If a rule conflict is

found, the binding is not feasible and the new rules are discarded. A binding

to a different FWP is then attempted. For example, in Figure 3.8(b) the

updated rules for binding DFW f5 on fwp1 are depicted. As can be seen, a

rule conflict emerges by this binding for the rules regarding fwp1.

In some cases, an attempted binding may be infeasible even if no rule

conflicts emerge. The infeasibility is raised by the implications that the new

relation rules may have in the number of required resources. Thus, during

feasibility check, extra tests are performed to determine if the new rules

impose resource requirements that break the resource constraints. If this is

the case, the binding is discarded and a new binding is attempted.

Virtual vs. Physical FWPs

By using the relation rules for enforcing feasibility, the allocated FWPs are

not explicitly linked to functional units. Instead, virtual FWPs are allocated,

while ensuring feasibility were these virtual FWPs to be mapped on the actual

FU resources of the EPOS architecture. As new virtual FWPs are allocated,
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the new relations added in the rule sets may not define explicitly the relation

of both producer and consumer FUs with respect to the FUs of the other

FWPs. For example Figure 3.8(c) shows the rules created for binding DFW

f5 onto a new FWP, fwp3. As we can see, the relation of the consuming FU

of newly bound fwp3 is not defined. This gives us great flexibility to share

virtual FWPs between different DFWs, as long as no conflicts are generated

and the resource constraints are not broken. A similar approach is used in

the post-fix phase of the network flow binding algorithm.

When all DFWs have been bound onto virtual FWPs, a heuristic is used

to map the virtual FWPs onto physical FWPs that define explicitly the FUs

they are connected to. Using the binding information of the physical FWPs

in combination with the schedule information from the scheduler, we can

generate microcode words that describe the execution plan of the application

on the custom EPOS configuration.

3.4 Evaluation

Initially we present a useful evaluation of the different ILP-driven features

of the EPOS architecture and the HLS flow we have presented in the previ-

ous sections. During this evaluation we also compare the different binding

algorithms that were presented in Section 3.3. Subsequently, in Section 3.4.2

we perform a comparison with the NISC accelerator in terms of execution

cycles, datapath frequency and overall latency.

3.4.1 EPOS Evaluation

Application ILP Identification and Extraction

The EPOS framework uses several ILP-driven features both in the hardware

(i.e. architecture) of the accelerator, as well as in the software (i.e. HLS

flow) that affect significantly its performance. In this section we evaluate

the contribution of the different ILP features in the execution cycles of the

application. Firstly we run our set of benchmarks without using superblocks

and hyperblocks in the compilation face. We also switch off the hardware

ILP-extraction features such as register file bypassing and predicated opera-
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Table 3.1: Execution Cycles for Different ILP Schemes

Benchmark Base SB & HB RFB POS

bdist 1910 1902 1326 1326
bubble 17413 5076 3704 3447
dct 3142 2285 1997 1997

dijkstra 53014 23450 20495 18022
idct 51 37 30 30
mdct 61 61 57 57

startup 1859 1464 1268 1129
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Figure 3.9: ILP - Extraction features (SP&HB: superblock & hyperblock,
RFB: register file bypassing, POS: predicated operation speculation)

tion speculation, which are implemented by the distributed shifting register

files. The results with this configuration provide the baseline performance

that we use to measure the effectiveness of our ILP-aware HLS flow. The

baseline performance results are listed in column 2 of Table 3.1. Column

3 of Table 3.1 lists the performance results when the applications are com-

piled with superblocks and hyperblocks. Statistical ILP extraction through

superblocks and hyperblocks is also applied for the performance results in

columns 4 and 5, but with register file bypassing activated on top of that.

Finally, the results in column 5 are obtained by enabling predicated operation

speculation on top of the other ILP-driven features. Figure 3.9 shows the

speedup achieved over the base case for each of the configurations described

in Table 3.1.

FWP Aware Binding

The three binding algorithms that we presented in Section 3.3 seek to bind

the operations on FUs while minimizing the number of FWPs that are used.

The simple binding algorithm is essentially the most greedy algorithm of

the three, as it only maintains a local view which is limited to the next
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Table 3.2: Comparison of FWP-Aware Binding Algorithms

Benchmark Simple Network Flow Clustered

bdist 3 4 3
bubble 2 2 2
dct 5 5 4

dijkstra 6 4 4
idct 13 15 12
mdct 5 5 5

startup 3 2 2

DFW in the list of DFWs. The sharing heuristic that it uses is naive but

relatively fast. On the other hand the network flow has a better global view

of the DFWs in the application, but it may require a post-fix stage to get

a feasible solution. Based on some experiments we carried out, the network

flow algorithm seems to give better solutions (including the post-fix stage)

when a better estimation of the required FWP is made in the beginning.

This also has an advantage for the run time as the min-cost algorithm does

not need to iterate as many times in order to get a solution that covers all the

nodes. Finally the clustered algorithm has a broader view than the simple

algorithm as it considers the neighboring DFWs before deciding on a binding.

Table 3.2 shows the number of FWPs that the three presented algorithms

allocate for the set of benchmarks that we use for this evaluation.

As we can see, the Clustered algorithm always provides the minimum num-

ber of FWPs. It is also interesting that the simple algorithm does not perform

that poorly despite the naive sharing algorithm that is used. In fact, it pro-

vides smaller sets of FWPs than the network flow algorithm for 2 of the

benchmarks we run.

3.4.2 Comparison with NISC

Execution Cycles

First we focus on the number of cycles required for the execution of the

application when synthesized by EPOS and NISC. Since NISC does not have

register file bypassing and operation predication features, we turn these two

features off in EPOS for this comparison, so as to measure the effect of our

ILP-extracting synthesis flow. The datapath configuration used for all the

experiments consists of 4 ALUs that execute arithmetic, logic and shifting
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Table 3.3: NISC vs. EPOS: Cycles

Benchmark NISC EPOS (SB&HB) Speedup

bdist 2110 1902 1.11
bubble 31247 5076 6.16
dct 4920 2285 2.15

dijkstra 104610 23450 4.46
mdct 146 61 2.39

startup 2838 1464 1.94

Average 3.03

operations, 1 multiplier, and 1 LD/ST unit.

In Table 3.3 we can see that there is a significant decrease in execution

cycles for almost all benchmarks when they are synthesized on EPOS. The

speedup gained in EPOS ranges from 1.11 to 6.16, with an average value of

just over 3.

Clock Frequency

In order to evaluate our forwarding path binding technique we compare the

critical paths of the synthesized processors. The data and control memories

are stripped off in both NISC and EPOS and only the datapath, the register

file and the FWPs with the multiplexers are synthesized. Synthesis and

timing analysis were done in Altera’s Quartus II environment. First, we

built EPOS with all the possible FWPs (i.e. without any FWP optimization).

Then, we performed the binding optimization to optimize FWPs. The results

are listed in Tables 3.4 and 3.5. The second column“UnOpt EPOS” shows

the results for the unoptimized EPOS, i.e the EPOS with a full set of FWPs.

Table 3.4 lists the reported frequencies and Table 3.5 shows the total size

of the multiplexers (i.e. the total number of mux inputs). We can see that

there is a correlation between the frequency and the MUX size. The binding

optimization of EPOS minimizes the number of FWPs which has a large

impact on the total required size of multiplexing and consequently on the

critical path delays. We can observe that compared to unoptimized EPOS,

the optimized EPOS reports up to 41% improvement on frequency and up

to 62% reduction on total MUX size. Compared to NISC, EPOS achieves

higher clock frequencies in most cases, while the MUX size is on average the

same. By combining the execution cycles with the achieved frequency for

both processors we can compare the benchmark execution latencies. These

results are shown in Figure 3.10 and an average speedup of 3.34X over NISC
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Table 3.4: NISC vs. EPOS: Frequency (MHz)

Opt. EPOS vs.
Benchmark UnOpt. EPOS NISC Opt. EPOS UnOpt EPOS NISC

bdist

80.76

81.52 104.98 +30% +29%
bubble 103.33 113.68 +41% +10%
dct 85.60 97.79 +21% +14%

dijkstra 96.79 114.85 +34% +19%
mdct 110.00 103.37 +28% −6%

startup 118.20 113.58 +41% −4%
Average +33% +10%

Table 3.5: NISC vs. EPOS: Total MUX Inputs

Opt. EPOS vs.
Benchmark UnOpt. EPOS NISC Opt. EPOS UnOpt EPOS NISC

bdist

136

82 56 −59% −32%
bubble 48 52 −62% +8%
dct 76 64 −53% −16%

dijkstra 54 64 −53% +19%
mdct 54 60 −56% +11%

startup 46 52 −62% +13%

Average −58% +1%

is observed.
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Figure 3.10: EPOS vs. NISC speedup
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CHAPTER 4

CUDA TO FPGA SYNTHESIS

The recent introduction of the CUDA programming interface by Nvidia

marked a significant milestone toward the efficient use of the massively par-

allel computing power of GPUs for nongraphics applications. CUDA en-

ables general-purpose GPU computing through a C-based API which has

been gaining considerable popularity. In this work we explore the use of

CUDA for programming FPGAs in the FCUDA framework. FCUDA of-

fers a programming flow (Figure 4.1) which is designed to efficiently map

the coarse and fine grained parallelism expressed in CUDA kernels onto the

reconfigurable fabric. The proposed programming flow combines high-level

synthesis (HLS) with source code level transformations and optimizations,

enabling high-abstraction programming and high-performance acceleration,

respectively. A state-of-the-art high-level synthesis tool, AutoPilot [31], is

integrated into the flow to generate RTL from C-style source code. The C-

style code consumed by AutoPilot is the product of a novel source-to-source

transformation and optimization (SSTO) engine (Figure 4.1) which takes as

input SIMT (single instruction, multiple thread) CUDA code.

The SSTO engine performs two main types of transformations: (i) data

communication and compute optimizations and (ii) parallelism mapping trans-

formations. The first are based on analysis of the kernel dataflow followed

by data communication and computation reorganization. This set of trans-

formations aims to enable efficient mapping of the kernel computation and

data communication onto the FPGA hardware. The latter exposes the par-

allelism inferred in the CUDA kernels in the generated AutoPilot-C descrip-

tions which are converted by the HLS engine into parallel processing engines

(PEs) at the register transfer level (RTL).

The use of CUDA for mapping compute-intensive and highly parallel ker-

nels onto FPGAs offers three main advantages. First, it provides a C-styled

API for expressing coarse grained parallelism in a very concise fashion. Thus,
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Figure 4.1: FCUDA flow

the programmer does not have to incur a steep learning curve or excessive

additional programming effort to express parallelism (expressing massive par-

allelism directly in AutoPilot C can incur significant additional effort from

the programmer). Second, the CUDA-to-FPGA flow shrinks the program-

ming effort in heterogeneous compute clusters with GPUs and FPGAs by

enabling a common programming model. This simplifies application devel-

opment and enables efficient evaluation of alternative kernel mappings onto

the heterogeneous acceleration devices by eliminating time-consuming appli-

cation porting tasks. Third, the wide adoption of the CUDA programming

model and its popularity render a large body of existing applications available

to FPGA acceleration.

4.1 Overview of Programming Models in FCUDA

4.1.1 CUDA C

The CUDA programming model was developed by Nvidia to offer a simple

interface for executing general-purpose applications on the Nvidia manycore

GPUs. Thus, CUDA is designed for exposing parallelism on the SIMT (single

instruction, multiple thread) architectures of CUDA-capable GPUs. CUDA

C is based on a set of extensions to the C programming language which en-

tail code distinction between host-executed and GPU-executed code. The

set of GPU-executed procedures is organized into kernels which contain the

embarrassingly parallel parts of applications and are invoked from the host-

executed code. Each kernel implicitly describes thousands of CUDA threads
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that are organized in groups called threadblocks. Threadblocks are further

organized into a grid structure (Figure 4.2). The number of threadblocks

per grid and threads per threadblock are specified in the host code, whereas

built-in variables (i.e. threadIdx, blockIdx) may be used in the kernel to

specify the computation performed by each thread in the SIMT architec-

ture. It is the programmer’s responsibility to partition the computation into

parallel coarse-grained tasks (threadblocks) that consist of finer-grained sub-

tasks (threads) that can execute in parallel. The proposed FCUDA frame-

work maps the dual-granularity parallelism contained in the hierarchy of

threads and threadblocks of the kernel onto spatial hardware parallelism on

the FPGA.

CUDA extends C with synchronization directives that control how threads

within a threadblock execute with respect to each other (i.e. synchronization

points impose a bulk-synchronous type of parallelism). Conversely, thread-

blocks are designed to execute independently in any parallel or sequential

fashion without side-effects in the execution correctness. In recent updates

of the CUDA platform, atomic operations and fence directives can be used

to enforce the order of memory accesses either at the threadblock or the grid

level. The two granularities of CUDA parallelism are also represented in the

SIMT architecture (Figure 4.2), where streaming processors (SPs) are clus-

tered in streaming multiprocessors (SMs). Each threadblock is assigned to

one SM and its corresponding threads are executed on the SPs of the SM in a

sequence of bundles, called warps. The SIMT architecture executes warps in

a SIMD (single instruction, multiple data) fashion when warp threads con-

verge on the same control flow. On the other hand, control flow divergent

threads within a warp execute sequentially, limiting the amount of exploited

concurrency from the SIMT hardware. The FCUDA framework generates

threadblock customized processing engines (PEs) with custom thread-level

parallelism, as specified by the programmer and performance-resource budget

tradeoffs.

The CUDA programming model entails multiple memory spaces with di-

verse characteristics. In terms of visibility, memory spaces can be distin-

guished into thread-private (e.g. SP-allocated registers), threadblock-private

(e.g. SM-coupled on-chip memory) and global (e.g. off-chip DDR mem-

ory). Each SP is allocated a set of registers out of a pool of SM registers

according to the kernel’s variable use. The SM-coupled memory is called
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Figure 4.2: CUDA programming model

shared memory and it is visible by all the threads within the threadblock

assigned to the corresponding SM (Figure 4.2). In terms of globally visible

memory spaces, CUDA specifies one read-write (global memory) space and

two read-only (constant and texture memory) spaces. Registers and shared

memory incur low access latency but have limited storage capacity (similarly

to CPU register-file and tightly-coupled scratch pad memories). The three

globally visible memory spaces are optimized for different access patterns and

data volumes. In the FPGA platform we leverage two main memory struc-

tures: off-chip DDR and on-chip BRAMs and registers. The visibility and

accessibility of the data stored on these memories can be set up arbitrarily

depending on the application’s characteristics.

4.1.2 AutoPilot C

AutoPilot is an advanced commercial HLS tool which takes C code and gen-

erates an equivalent RTL description in VHDL, Verilog and SystemC. The C

input is required to conform to a synthesizable subset of the ANSI C99 stan-

dard. Some of the main features not supported in hardware generation are

dynamic memory allocation, recursive functions and, naturally, the standard

file/io library procedures. The C input may be accompanied by user-injected

directives that enable automatic application of different source code transfor-

mations. AutoPilot converts each C procedure into a separate RTL module.

Each RTL module consists of the datapath that realizes the functionality of

the corresponding C procedure along with FSM logic that implements the

control flow and the pipelining of the datapath. Procedure calls are converted

to RTL module instantiations, thus transforming the procedure call graph

of the application into a hierarchical RTL structure. A pair of start/done
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I/Os is attached to each module’s FSM to signal the beginning and end of

the module’s operation, facilitating inter-module synchronization.

AutoPilot leverages the LLVM compiler infrastructure [65] to perform code

transformations and optimizations before translating the described function-

ality into datapath and FSM logic and generating the corresponding RTL

output. Some transformations and optimizations are performed by default

whereas others are triggered by user-injected directives. In particular, Au-

toPilot will automatically attempt to extract parallelism both at the instruc-

tion level and the task level (i.e. multiple sequential procedure calls may be

converted to concurrent RTL modules, if proven data dependence free). On

the other hand, transformations such as loop unrolling, loop pipelining and

loop fusion can be triggered by user-injected directives as long as dataflow

order can be preserved (Figure 4.3).

With regard to memory, AutoPilot distinguishes between two main storage

types: on-chip and off-chip. On-chip storage needs to be statically allocated

and thus it is suitable for scalar variables (mapped onto FPGA slice registers)

and fixed size arrays and structures (mapped onto FPGA BRAMs). Off-chip

storage can be inferred through C pointers along with corresponding user-

injected directives and its size does not need to be statically defined (the

programmer bears the responsibility to ensure off-chip accesses are within

memory bounds). In the FPGA platform, the on-chip BRAMS may be ar-

ranged into either a unified memory or multiple independent memories. Au-

toPilot maps each nonscalar variable onto a set of BRAMs (with sufficient

aggregate storage capacity) which is only visible to the RTL modules that

correspond to procedures accessing the nonscalar variable.
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4.1.3 Programming-Model Translation Advantages

As compute infrastructure becomes increasingly heterogeneous with differ-

ent types of parallel processing accelerators, FCUDA is essentially offering

an inter-programming-model translation tool for efficient kernel portability

across GPUs and FPGAs. In this work we facilitate translation of CUDA

C into AutoPilot C. However, the proposed techniques can be applied in

the translation of alternative parallel programming models (e.g. OpenCL).

Moreover, alternative HLS tools with different coarse-grained parallelism se-

mantics in their programming models can be considered in similar frame-

works.

The current implementation of FCUDA combines the advantages of the

CUDA programming model with the advanced high-level synthesis infras-

tructure of AutoPilot. The CUDA C programming model provides high

abstraction and incurs a low learning curve while enabling parallelism expres-

sion in a very concise manner (i.e. enables higher programming productivity

compared to AutoPilot C). FCUDA uses source-to-source transformations

and optimizations to convert the CUDA threadblock and thread parallelism

into procedure and loop iteration parallelism in AutoPilot’s C programming

model. By leveraging high-level source-to-source transformations rather than

low level IR translation (e.g. from CUDA’s assembly-like PTX IR to RTL),

FCUDA can efficiently exploit different levels of coarse-grained parallelism

while leveraging existing HLS infrastructures. Furthermore, an important

benefit of leveraging CUDA for FPGA programming is the distinction of on-

chip and off-chip memory spaces in the CUDA C programming model. This

fits well with the memory view within hardware synthesis flows. The trans-

formations entailed in FCUDA automate the cumbersome task of replication

and interconnection of parallel processing engines (PEs) along with their

associated on-chip memory buffers and the data transfers from/to off-chip

memories.

4.2 FCUDA Framework

The CUDA-to-FPGA flow of FCUDA (Figure 4.1) is based on a source-to-

source transformation and optimization (SSTO) engine which implements

two main types of code transformations: (i) dataflow and compute opti-
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mizations (DCO) and (ii) parallelism translation transformations (PTT).

The dataflow and compute optimizations are based on analysis of the kernel

dataflow followed by data communication and computation re-organization.

These optimizations facilitate efficient fitting of the kernel computation and

data communication onto the FPGA hardware. The parallelism transla-

tion transformations leverage the kernel inherent parallelism by mapping it

into AutoPilot C coarse-granularity parallel structures. Some of these trans-

formations are applicable to all of the kernels, while others are triggered

by code-injected pragmas which specify their application parameters. The

FCUDA SSTO engine has been implemented using the Cetus [66] paralleliz-

ing compiler infrastructure.

After FCUDA compilation, AutoPilot extracts fine-grained instruction-

level parallelism from the transformed code and pipelines the design accord-

ing to the user-specified clock period using its SDC-based scheduling engine

[31]. Moreover, it identifies and leverages parallel constructs in the input

code to generate coarse-grained concurrency in the RTL output. The flow

(Figure 4.1) is completed by leveraging the Xilinx FPGA synthesis and phys-

ical implementation tools to map the generated RTL onto the reconfigurable

fabric. In the following subsections we discuss the philosophy of the FCUDA

translation and present an overview of the transformation algorithm followed

by a description of the FCUDA pragmas leveraged in the framework to guide

the translation process.

4.2.1 CUDA-C to Autopilot-C Translation Philosophy

The FCUDA framework takes advantage of the abundant spatial parallelism

available on the reconfigurable logic to accelerate massively parallel com-

putations described in CUDA C. Thus, mapping application coarse-grained

parallelism on hardware is important in achieving high performance. In the

CUDA programming model, coarse-grained parallelism is organized in two

levels of granularity: threads and threadblocks (Figure 4.2). As mentioned

earlier, the FCUDA SSTO engine maps the CUDA coarse-grained paral-

lelism into loop- and procedure-level parallelism. Listings 4.1–4.3 offer some

insight into how this is achieved for the CP CUDA kernel. Listing 4.1 depicts

the kernel code expressed in the CUDA programming model. As mentioned
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Listing 4.1: CUDA code for CP kernel
1 c o n s t a n t f l o a t 4 atominfo [MAXATOMS] ;
2 g l o b a l void cenergy ( int numatoms , f loat gr idspac ing , f loat ∗ energygr id )

{
3 unsigned int xindex = ( blockIdx . x ∗ blockDim . x ) + threadIdx . x ;
4 unsigned int yindex = ( blockIdx . y ∗ blockDim . y ) + threadIdx . y ;
5 unsigned int outaddr = ( gridDim . x ∗ blockDim . x ) ∗ yindex + xindex ;
6 f loat coorx = gr id spac ing ∗ xindex ;
7 f loat coory = gr id spac ing ∗ yindex ;
8 int atomid ;
9 f loat energyva l =0.0 f ;

10 for ( atomid=0; atomid<numatoms ; atomid++) {
11 f loat dx = coorx − atominfo [ atomid ] . x ;
12 f loat dy = coory − atominfo [ atomid ] . y ;
13 f loat r 1 = 1 .0 f / s q r t f ( dx∗dx + dy∗dy + atominfo [ atomid ] . z ) ;
14 energyva l += atominfo [ atomid ] .w ∗ r 1 ;
15 }
16 energygr id [ outaddr ] += energyva l ;
17 }

earlier, the CUDA programming model uses the built-in dim3 vectors (i.e.

structures comprising 3 integer values) threadIdx and blockIdx to specify the

computation performed by each thread. In regular C code we could explicitly

express the computation done by all threads of one threadblock by wrapping

the statements of the kernel within a thread-loop (Listing 4.2). Similarly, we

could wrap the kernel procedure into a threadblock-loop to explicitly express

the computation involved in the entire CUDA grid (Listing 4.3). Thus, loop

unroll-and-jam [67] can be applied on the thread-loop and the threadblock-

loop to extract parallelism at the thread and threadblock levels, respectively.

Note that extracting parallelism at the threadblock level is feasible due to

CUDA’s requirement that threadblocks are data independent. AutoPilot can

convert the sequential kernel calls produced by unroll-and-jam of the thread-

block loop into parallel RTL modules, as long as it can determine their data-

independence (FCUDA implements unrolling and array replication so as to

help AutoPilot determine data-independence). The lack of data-dependence

and synchronization across threadblocks deems them the primary source of

coarse-grained parallelism extraction. Thread-loop iterations can be treated

as a secondary source of coarse-grained parallel extraction in FCUDA (i.e.

parallelism extraction within threadblocks may be less effective than paral-

lelism extraction across threadblocks, due to synchronization primitives and

memory access conflicts).

High latency off-chip memory accesses can severely impact performance,

especially in manycore architectures that incur high data transfer volumes
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Listing 4.2: Thread-loop instantiation for CP kernel
1 void cenergy ( int numatoms , f loat gr idspac ing , f loat ∗ energygr id ,
2 dim3 blockDim , dim3 blockIdx , dim3 gridDim ) {
3 for ( threadIdx . y = 0 ; threadIdx . y < blockDim . y ; threadIdx . y++) {
4 for ( threadIdx . x = 0 ; threadIdx . x < blockDim . x ; threadIdx . x++) {
5 unsigned int xindex = ( blockIdx . x ∗ blockDim . x ) + threadIdx . x ;
6 unsigned int yindex = ( blockIdx . y ∗ blockDim . y ) + threadIdx . y ;
7 unsigned int outaddr = ( gridDim . x ∗ blockDim . x ) ∗ yindex + xindex ;
8 f loat coorx = gr id spac ing ∗ xindex ;
9 f loat coory = gr id spac ing ∗ yindex ;

10 int atomid ;
11 f loat energyva l =0.0 f ;
12 for ( atomid=0; atomid<numatoms ; atomid++) {
13 f loat dx = coorx − atominfo [ atomid ] . x ;
14 f loat dy = coory − atominfo [ atomid ] . y ;
15 f loat r 1 = 1 .0 f / s q r t f ( dx∗dx + dy∗dy + atominfo [ atomid ] . z ) ;
16 energyva l += atominfo [ atomid ] .w ∗ r 1 ; }
17 energygr id [ outaddr ] += energyva l ;
18 } } }

Listing 4.3: Threadblock-loop instantiation for CP kernel
1 void c ene rgy g r i d ( int numatoms , f loat gr idspac ing , f loat ∗ energygr id ,
2 dim3 blockDim , dim3 blockIdx , dim3 gridDim ) {
3 for ( b lockIdx . y = 0 ; b lockIdx . y < blockDim . y ; b lockIdx . y++) {
4 for ( b lockIdx . x = 0 ; b lockIdx . x < blockDim . x ; b lockIdx . x++) {
5 cenergy (numatoms , gr id spac ing , energygr id , blockDim , blockIdx , gridDim

) ;
6 } } }

between off-chip memory and the on-chip compute cores. Thus, maximum

utilization of the off-chip memory bandwidth is important for performance.

Achieving high off-chip memory bandwidth utilization on the FPGA is con-

tingent on organizing data transfers into data block transfers (i.e. contiguous

chunks of multiple data elements). Block transfers help in (i) minimizing the

initial overhead entailed in initiating off-chip data transfers (e.g. gaining ac-

cess to the off-chip chip DDR channel) and (ii) efficiently utilizing the DDR

memory block granularity (i.e. the block size at which data is read/written

in DDR memory). The FCUDA SSTO engine converts the off-chip accesses

of threads into data block transfers at the threadblock level, which are then

synthesized by AutoPilot into DMA bursts. Data block transfer generation

is contingent to data coalescing of global memory accesses by the kernel

programmer (most high-performance kernels are designed with data access

coalescing in order to efficiently take advantage of the GPU compute poten-

tial). The generation of data-block accesses is based on a transformation that

decouples off-chip data transfers from the rest of the computation. Thus, the

threadblock code is re-organized into data transfer tasks and compute tasks

43



Interconnect
Logic

BRAM 

DDR 
Controller

Compute 
Logic

Active connection

Idle connection

(a) Sequential scheme

Interconnect
Logic

BRAM 
A

DDR 
Controller

Compute 
Logic

BRAM 
B

(b) Ping-pong scheme

Figure 4.4: Task synchronization schemes

through procedural abstraction transformations (i.e. the inverse of procedure

inlining in the sense that each task is abstracted using a callee procedure).

The transformation is described in more detail in Section 4.3.

Efficient utilization of off-chip memory bandwidth is not the only benefit

of separating data transfers from computation into corresponding tasks. It

also enables compute and data transfer overlapping at a coarser granularity

(i.e. task granularity) for more efficient kernel execution. By leveraging Au-

toPilot’s procedure-level parallelism the FCUDA SSTO engine can arrange

the execution of data transfer and compute tasks in an overlapped fash-

ion (Figure 4.4(b)). This implements the ping-pong task synchronization

scheme at the cost of more BRAM resources (i.e. twice as many BRAMs are

utilized). Tasks communicate through double-buffered BRAM storage in a

pipelined fashion where the data producing/consuming task interchangeably

writes/reads to/from one of the two intermediate BRAM buffers. Alter-

natively, the sequential task synchronization scheme (Figure 4.4(a)) sched-

ules tasks in an interleaving fashion in which the data producing/consuming

task has to wait for the data consuming/producing task to consume/pro-

duce data from/into the intermediate single buffer before executing. This

synchronization scheme is preferred for implementations on FPGAs with low

BRAM count or for kernels with very small data transfer volumes. Section

4.3 provides more details on the transformations used to implement these

task synchronization schemes.
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4.2.2 FCUDA Compilation Overview

The translation flow from CUDA-C to AutoPilot-C is based on a sequence of

DCO and PTT passes which are applied to each CUDA kernel. A high-level

overview of the FCUDA pass sequence is depicted in Algorithm 4.1. The first

two passes, constantMemoryStreaming() and globalMemoryBuffering(),

handle mapping of CUDA memory spaces onto on-chip BRAM buffers. The

constantMemoryStreaming() pass allocates BRAMs for buffering constant

memory arrays along with setting up constant data streaming to the allo-

cated constant memory buffers. Thus, it helps eliminate multiple kernel in-

vocations. The globalMemoryBuffering() pass, on the other hand, allocates

BRAMs for global memory data stored in shared memory arrays or registers

blocks. Both of the BRAM allocation passes are described in more depth in

Section 4.3.1.

Subsequently, createKernelTasks() splits the kernel into data-transfer and

compute tasks. This pass entails common-subexpression-elimination (CSE)

and code motion optimizations [67], along with task abstraction (i.e. pro-

cedural abstraction of tasks) transformations (Section 4.3.2). Thread-loop

generation and unrolling are implemented by createThreadLoop() and un-

rollThreadLoop() passes, respectively. The degree of thread-loop unrolling

is specified through an FCUDA directive (see Section 4.2.3). The program-

mer can specify a unit unroll degree to prevent thread-loop unrolling. The

array-partitioning pass, partitionArrays(), helps eliminate the BRAM ac-

cess performance bottleneck that unrolling may incur (degree of partitioning

specified through FCUDA directive).

The following three passes in lines 8–10 of Algorithm 4.1 leverage the

coarse-grained parallelism at the threadblock level. The createThreadblock-

Loop() transformation pass wraps the kernel code with a threadblock-loop,

while pass unrollThreadblockLoop() unrolls the threadblock-loop by the de-

gree specified in a corresponding FCUDA directive (see Section 4.2.3). In-

between these two passes, buildTaskSynchronization() sets up the task syn-

chronization scheme (sequential or ping-pong) across tasks.

The CUDA programming model contains thread-synchronization primi-

tives that can be used by the programmer to eliminate data races and

dependences within a threadblock (e.g.__syncthreads()). Representation

of CUDA threads as thread-loops in AutoPilot-C (Listing 4.2) may break
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Algorithm 4.1: FCUDA compilation

/* Sequence of FCUDA Transformation and Optimization passes on the

CUDA abstract syntax tree graph, GAST */

Input: Abstract syntax tree of CUDA code, GAST

Output: Abstract syntax tree of transformed code, G′
AST

1 foreach kernel ∈ GAST do
2 constantMemoryStreaming(kernel)
3 globalMemoryBuffering(kernel)
4 createKernelTasks(kernel)
5 createThreadLoop(kernel)
6 unrollThreadLoop(kernel)
7 partitionArrays(kernel)
8 createThreadblockLoop(kernel)
9 buildTaskSynchronization(kernel)

10 unrollThreadblockLoop(kernel)
11 threadloopFision(kernel)
12 tlicm(kernel)

thread synchronization, and thus affect functionality correctness. Enforcing

the programmer’s intended synchronization of threads within a thread-loop

is the job of the threadloopFision() pass in line 11 of Algorithm 4.1. This

pass is based on the loop-fission technique proposed by Stratton et al. [68],

which recursively breaks the initially generated kernel-wide thread-loop into

multiple sequential thread-loops that help enforce the semantics of CUDA

thread synchronization primitives or other irregular control flow primitives

(e.g. break and continue). Finally, the tlicm() pass implements thread-loop

invariant code motion by shifting thread-loop invariant statements outside

of the thread-loop for higher performance efficiency. Data dependence anal-

ysis is used to determine towards which direction (i.e. before or after the

thread-loop) to shift loop invariant statements.

4.2.3 FCUDA Directives

As depicted in Figure 4.1, the FCUDA flow entails annotation of the CUDA

kernel with pragma directives (#pragma) that convey hardware implementa-

tion information and guide the FCUDA compilation stage. These directives

may be inserted by the programmer just before the kernel procedure decla-

ration without affecting compilation of the kernel by other compilers. The

Cetus compiler [66] has been extended to parse the FCUDA pragma directives
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Table 4.1: FCUDA Pragma Directives

Pragma Clauses

SYNC type
COMPUTE name, unroll, part, ptype, array
TRANSFER name, type, io, global, size, gsize
GRID x dim, y dim, pe, cluster

and receive the information of the contained clauses to guide the source-to-

source transformation. Table 4.1 lists the set of FCUDA pragma directives

with their associated clauses. The SYNC directive contains the type clause

which specifies the task synchronization scheme (sequential or ping-pong).

As the names imply, COMPUTE and TRANSFER directives guide the

transformations and optimizations applied on the compute and data-transfer

tasks. The name clause contains the basic seed used to form the task name

(each task name consists of the basic seed along with processing engine ID

and task ID). Other implementation information specified by the COMPUTE

directive includes degree of unrolling (unroll), degree of array partitioning

(part), array partitioning scheme (ptype) and arrays to be partitioned (ar-

ray). The array partitioning scheme can be block-based or cyclic-based. On

the other hand, TRANSFER directives specify the direction of the trans-

fer (io) and the off-chip (global) variable as well as the data-block transfer

size (size), the off-chip array size (gsize) and the type of transfer (type). The

type of a transfer specifies whether the transfer corresponds to a regular burst

transfer or a constant streaming transfer (see Section 4.3.1). The GRID di-

rective uses clauses x_dim and y_dim to specify the CUDA grid dimensions

(y_dim clause is optional and may be omitted for single-dimension grids).

Grid dimensions are used during the setup of the threadblock-loop’s upper

bounds. The GRID directive also specifies the number of processing engines

to be instantiated (pe) along with the clustering scheme (cluster). Clustering

refers to the logical grouping and physical arrangement of processing engines.

Logical PE clusters are formed by partitioning the PE ID space into logical

groups and assigning a sub-grid of threadblocks to each group. On the other

hand, physical clustering refers to the physical partitioning of PEs into, ei-

ther multiple FPGA devices, or layout regions on the same device. Physical

clustering can be used to overcome resource limitations (leverage the aggre-

gate resource across multiple devices) or interconnection delays. Each PE

cluster would have its own designated DMA engine to reduce interconnect
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delay. This also enables more efficient data communication schemes across

PE clusters, such as pipelined busses or on-chip networks. These schemes

incur a resource penalty, which can be better leveraged at the cluster level

rather than the PE level.

4.3 Transformations and Optimizations in FCUDA

Compilation

FCUDA compilation consists of a sequence of source-to-source transforma-

tions and optimizations that convert the input CUDA-C code to AutoPilot-C

code with explicit procedure and loop-level parallelism that AutoPilot can

map into parallel hardware logic. Leveraging parallelizing transformations at

the source code level can be more effective than at lower intermediate repre-

sentations (e.g. CUDA PTX or LLVM IR) that decompose the code in much

finer operations and tasks. In this section we discuss in more detail some of

the transformations and optimization involved in the FCUDA compilation

flow.

4.3.1 CUDA Memory Space Mapping

As discussed in Section 4.1.2, CUDA leverages five different memory spaces:

(i) registers, (ii) shared memory, (iii) global memory, (iv) constant memory

and (v) texture memory. Each memory space has different attributes and ac-

cess latency characteristics which affect its usage scenarios and consequently

affect how they are leveraged in FCUDA (texture memory is not currently

supported in the FCUDA framework).

CUDA Constant Memory

Constant memory is used to store read-only variables that are visible to

all threadblocks. In the CUDA architecture a small portion of the off-chip

memory is reserved as constant memory, whereas SM-private caches help hide

the latency of constant memory accesses through access patterns with high

spatial and temporal localities. We leverage these attributes in handling con-

stant memory variables according to the compute/data-transfer task decou-
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pling philosophy of FCUDA. In particular, a new array is introduced to act

as a constant memory on-chip buffer (COCB) and all constant memory ac-

cesses are replaced by COCB accesses (e.g. atominfo_local in Listing 4.4).

Furthermore, the SSTO engine builds a two-level hierarchy of compute and

data-transfer tasks. At the higher level, the kernel procedure becomes the

compute task whereas the data-transfer task comprises the loading of COCB

with constant data (Figure 4.5). At the lower level (i.e. within the kernel

procedure), compute and data-transfer tasks are created according to the

algorithm described in Section 4.3.2.

Due to the limited size of constant memory on the GPU platform, pro-

cessing of large constant sets may need to be done in smaller sub-blocks by

invoking the corresponding kernel multiple times, e.g. once for each sub-

block. In FCUDA this scenario is handled by wrapping the kernel inside a

loop that streams constant data to COCB (e.g. strm_count loop in List-

ing 4.4). Thus, the overhead of multiple kernel invocations on the host side

is eliminated. The number of iterations of the constant data streaming loop

is calculated by dividing the values associated with clauses gsize and size

in the programmer-specified TRANSFER directive. Sequential or ping-pong

task synchronization schemes can be independently applied at each hierarchy

level.

CUDA Global Memory

According to CUDA’s philosophy, applications with massively data paral-

lel kernels take as input and/or produce large data sets that can only fit

in global memory. Significant acceleration of these compute-intensive data-

parallel kernels is contingent on efficient data communication between the
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Listing 4.4: Transformed CP kernel
1 void cenergy stream ( int numatoms , int totalatoms , f loat gr idspac ing , f loat ∗

energygr id ) {
2 f l o a t 4 a t om in f o l o c a l [MAXATOMS] ;
3 for ( int strm count = 0 ; strm count < tota latoms ; strm count+=numatoms) {
4 memcpy( a t om in f o l o c a l [ 0 ] , a t om in f o l o c a l+strm count ; strm count ∗ s izeof

( f l o a t 4 ) ) ;
5 cenergy (numatoms , gr id spac ing , energygr id , a t om in f o l o c a l [MAXATOMS] ) ;
6 }}
7

8 g l o b a l void cenergy ( int numatoms , f loat gr idspac ing , f loat ∗ energygr id ,
9 f l o a t 4 a t om in f o l o c a l [MAXATOMS] ) {

10 unsigned int xindex = ( blockIdx . x ∗ blockDim . x ) + threadIdx . x ;
11 unsigned int yindex = ( blockIdx . y ∗ blockDim . y ) + threadIdx . y ;
12 unsigned int outaddr = ( gridDim . x ∗ blockDim . x ) ∗ yindex + xindex ;
13 f loat coorx = gr id spac ing ∗ xindex ;
14 f loat coory = gr id spac ing ∗ yindex ;
15 int atomid ;
16 f loat energyva l [ blockDim . y ] [ blockDim . x ] ;
17 energyva l [ threadIdx . y ] [ threadIdx . x ]=0.0 f ;
18 for ( atomid=0; atomid<numatoms ; atomid++) {
19 f loat dx = coorx − a t om in f o l o c a l [ atomid ] . x ;
20 f loat dy = coory − a t om in f o l o c a l [ atomid ] . y ;
21 f loat r 1 = 1 .0 f / s q r t f ( dx∗dx + dy∗dy + atom in f o l o c a l [ atomid ] . z ) ;
22 energyva l [ threadIdx . y ] [ threadIdx . x ] += atom in f o l o c a l [ atomid ] .w ∗ r 1 ;
23 }
24 f loat e n e r g y g r i d l o c a l [ blockDim . y ] [ blockDim . x ] ;
25 // TRANSFER
26 e n e r g y g r i d l o c a l [ threadIdx . y ] [ threadIdx . x ] = energygr id [ outaddr ] ;
27 e n e r g y g r i d l o c a l [ threadIdx . y ] [ threadIdx . x ] += energyva l [ threadIdx . y ] [

threadIdx . x ] ;
28 // TRANSFER
29 energygr id [ outaddr ] = en e r g y g r i d l o c a l [ threadIdx . y ] [ threadIdx . x ] ;
30 }

manycore device and global memory. Thus, it is the programmer’s respon-

sibility to organize data transfers in a coalesced way in order to maximize

off-chip bandwidth utilization. FCUDA compilation exposes and converts

the coalesced global memory accesses into data block bursts.

Global memory variables are tagged by the programmer through the global

clause of the TRANSFER directive (global variables can alternatively be

identified from host code analysis; however, FCUDA pragma directives en-

able compilation of kernels that may not be accompanied by CUDA host

code, e.g. a kernel written specifically for FPGA implementation). Algo-

rithm 2 describes the code transformations used to facilitate separation of

global memory accesses from computation. In particular, the SSTO engine

checks whether global memory references are entangled in statements that

also contain computation (lines 7, 12). If the containing statement describes

a simple data transfer without any compute operations, nothing needs to be

done. Otherwise, the compute part is disentangled from the data transfer
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Algorithm 4.2: Global Memory Accesses Handling

/* Processing of global memory accesses to facilitate kernel

decomposition into compute and data-transfer tasks */

Input: Abstract syntax tree of CUDA kernel, KAST

Output: Abstract syntax tree of transformed kernel, K ′
AST

1 V ← set of global variables
2 foreach v ∈ V do
3 R← statements referencing v
4 foreach s ∈ R do
5 M ← {v | v ∈ V ∧ getAccess(s,v)} // get all accesses of v in s
6 foreach m ∈M do
7 if m ∈ RHS(s) ∧ ¬isIDexpression(RHS(s)) then
8 newVariableOfType(m, mLocal)
9 ss← newStatement(expression(mLocal = m))

10 insertBefore(KAST , s, ss)
11 replaceExpression(RHS(s), mLocal)

12 if m ∈ LHS(s) ∧ ¬isIDexpression(RHS(s)) then
13 newVariableOfType(m, mLocal)
14 ss← newStatement(expression(mLocal = LHS(s)))
15 insertBefore(KAST , s, ss)
16 LHS(s)← mLocal

part by introducing new variables (lines 8, 13), which correspond to on-chip

storage for buffering the result of the compute part (lines 9, 14). Then the

initial statement is converted to a simple data transfer assignment between

the global memory variable and the newly introduced on-chip memory vari-

able (lines 11, 16). In the CP running example, the statement in line 16 of

Listing 4.1 becomes transformed to the set of statements in lines 24–29 of

Listing 4.4. Once the compute and data-transfer operations are disentangled

at the statement level, further processing is required to partition the kernel

into compute and data-transfer regions that can efficiently utilize the com-

pute and off-chip memory access bandwidth capacities of the hardware (see

Section 4.3.2).

CUDA Registers

GPU registers are allocated as groups of threadblock-size sets to hold the

values of variables of scalar or CUDA built-in vector types (e.g. int4, float3

etc.). Each register in the allocated set is private to a single thread. Threads

in AutoPilot-C code are expressed as iterations of thread-loops (Listing 4.2).
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Thread serialization in the form of loop iterations creates the opportunity

for register sharing between threads. That is, the FPGA registers allocated

for scalar or vector variables may be re-used across iterations (clearly, in the

case of partial thread-loop unrolling, register sharing may be applied only

across nonconcurrent threads). However, for certain variables, register shar-

ing may not be feasible. This is the case for variables that are live across

CUDA synchronization primitives or FCUDA tasks (i.e. read-after-read and

read-after-write dependent accesses are located in alternate sides of thread

synchronization boundaries). The SSTO engine uses data dependence anal-

ysis to identify and convert such variables into arrays of threadblock dimen-

sionality (e.g. variable energyval in Listing 4.4). Subsequently, AutoPilot

maps them onto BRAMs.

CUDA Shared Memory

Shared memory variables are threadblock private (i.e. only threads within the

corresponding threadblock have visibility and access), and thus can be con-

veniently translated into BRAM-based memories that are accessible only by

the PE executing the corresponding threadblock. Leveraging shared memory

variables in FCUDA comprises (i) replication of the corresponding variable

declaration for each PE referenced in the AutoPilot-C code and (ii) conver-

sion of associated data transfers to/from off-chip memory into DMA bursts.

In terms of access bandwidth, shared memory in GPUs is organized into

banks, allowing multiple (usually 16 in most Nvidia GPUs) concurrent refer-

ences from an equivalent number of parallel threads. In FCUDA parallelism

is primarily and foremost extracted at the threadblock granularity (i.e. par-

allel PEs), whereas thread-level parallelism extraction is less aggressive (i.e

small degrees of thread-loop unrolling are often preferred). Nevertheless, un-

rolling might be useful in cases where threadblock parallelism extraction is

limited by resource or other restrictions. To overcome the performance bot-

tleneck caused by the BRAM port limitation, a pseudo banking technique

is employed. The FCUDA SSTO engine offers an array partitioning trans-

formation (i.e. for arrays accessed using affine expressions of thread-loop

indices), which can be leveraged to increase array access bandwidth by dis-

tributing the generated sub-arrays over multiple BRAMs. Thus, in the case

of thread-loop unrolling, the PE can complete multiple concurrent array ac-
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cesses. This technique is also applicable to arrays formed by vectorization of

scalar variables.

4.3.2 Kernel Decomposition into Compute and Data-Transfer
Tasks

Having completed handling of the memory accesses (constantMemoryStream-

ing() and globalMemoryBuffering() SSTO passes in Algorithm 4.1) for the

different memory spaces, the kernel compute and data-transfer operations are

disentangled at the statement level (as annotated in Listing 4.4). However,

efficient utilization of the off-chip bandwidth capacity as well as the com-

pute capacity of the device may be constrained by the interleaving between

compute and data-transfer statements (e.g. interleaving created by lever-

aging energygrid off-chip accesses in the CP kernel in Listing 4.4). As dis-

cussed previously, efficient off-chip bandwidth utilization requires high-degree

thread-loop unrolling to convert individual thread data-transfers into block

bursts. On the other hand, unrolling of the compute part of thread-loops

may be feasible (e.g. due to resource constraints) or beneficial (e.g. due to

performance peak) for lower unroll degrees. Moreover, overlapping compute

and data-transfer tasks, through the ping-pong task synchronization scheme,

is usually more efficient across long sequences of statements. Thus, prior to

applying procedural abstraction to create compute and data-transfer tasks,

SSTO createKernelTasks() pass performs code percolation to form compute

and data-transfer statement regions in the kernel. Subsequently, tasks can

be created at the granularity of statement regions.

The code percolation transformation employed in the FCUDA SSTO is

based on code motion of data-transfer statements. In particular, off-chip

memory read statements are percolated toward the top of the control flow

diagram (CFG), whereas write statements are percolated toward the bottom

of the CFG. Both upward and downward statement percolations shift data-

transfer statements until they encounter (i) another data transfer statement,

(ii) a CUDA synchronization directive or (iii) a data-dependent statement.

Upward code percolation is done in forward order of data-transfer statements

in the CFG, whereas downward code percolation is done in reverse order.

Code percolation may shift statements across entire control flow constructs
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Listing 4.5: Data-transfer statement percolation
1 g l o b a l void cenergy ( int numatoms , f loat gr idspac ing , f loat ∗ energygr id ,
2 f l o a t 4 a t om in f o l o c a l [MAXATOMS] ) {
3 unsigned int xindex = ( blockIdx . x ∗ blockDim . x ) + threadIdx . x ;
4 unsigned int yindex = ( blockIdx . y ∗ blockDim . y ) + threadIdx . y ;
5 unsigned int outaddr = ( gridDim . x ∗ blockDim . x ) ∗ yindex + xindex ;
6 f loat e n e r g y g r i d l o c a l [ blockDim . y ] [ blockDim . x ] ;
7 // TRANSFER
8 e n e r g y g r i d l o c a l [ threadIdx . y ] [ threadIdx . x ] = energygr id [ outaddr ] ;
9 f loat coorx = gr id spac ing ∗ xindex ;

10 f loat coory = gr id spac ing ∗ yindex ;
11 int atomid ;
12 f loat energyva l [ blockDim . y ] [ blockDim . x ] ;
13 energyva l [ threadIdx . y ] [ threadIdx . x ]=0.0 f ;
14 for ( atomid=0; atomid<numatoms ; atomid++) {
15 f loat dx = coorx − a t om in f o l o c a l [ atomid ] . x ;
16 f loat dy = coory − a t om in f o l o c a l [ atomid ] . y ;
17 f loat r 1 = 1 .0 f / s q r t f ( dx∗dx + dy∗dy + atom in f o l o c a l [ atomid ] . z ) ;
18 energyva l [ threadIdx . y ] [ threadIdx . x ] += atom in f o l o c a l [ atomid ] .w ∗ r 1 ;
19 }
20 e n e r g y g r i d l o c a l [ threadIdx . y ] [ threadIdx . x ] += energyva l [ threadIdx . y ] [

threadIdx . x ] ;
21 // TRANSFER
22 energygr id [ outaddr ] = en e r g y g r i d l o c a l [ threadIdx . y ] [ threadIdx . x ] ;
23 }

(e.g. energygrid read statement shift across atomid loop in Listing 4.5) as

long as there are no data dependences or contained synchronization primitives

and the dynamic execution characteristics of the statement do not change (i.e.

no statement shifts into or out of control flow bounds).

Upon generation of the compute and data-transfer statement regions, pro-

cedural abstraction is performed. Each task region is abstracted into a task

procedure called from the kernel procedure. Data dependence analysis is

used to distinguish intra-task from inter-task variables. Intra-task variables

are accessed only within the corresponding task region, and thus can be de-

clared within the task procedure. Shared variables are referenced beyond

a single task region and thus are declared in the kernel procedure and are

copied into the task procedure parameters. Procedural abstraction for data-

transfer tasks entails also conversion of off-chip memory read and writes to

burst transfers. Bursts are represented by memcpy() calls which reference

the off-chip and on-chip memory locations, along with the data block size

(Listing 4.6). The conversion process facilitates the information provided by

the programmer in the corresponding TRANSFER pragma directive along

with information derived from the actual data-transfer statement to derive

the parameters of the memcpy() call.
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Listing 4.6: Procedural abstraction of tasks
1 // TRANSFER TASK PROCEDURE
2 void c ene rgyg r id r ead ( energygr id , outaddr , e n e r g y g r i d l o c a l ) {
3 . . .
4 memcpy( energygr id+outaddr , e n e r g y g r i d l o c a l [ ] , . . . ) ;
5 . . .
6 }
7

8 // COMPUTE TASK PROCEDURE
9 void cenergy compute ( en e r gyg r i d l o c a l , . . . ) { . . . }

10

11 // TRANSFER TASK PROCEDURE
12 void c en e r gyg r i d wr i t e ( energygr id , outaddr , e n e r g y g r i d l o c a l ) {
13 . . .
14 memcpy( e n e r g y g r i d l o c a l [ ] , ene rgygr id + outaddr , . . . ) ;
15 . . .
16 }
17

18 g l o b a l void cenergy ( int numatoms , f loat gr idspac ing , f loat ∗ energygr id ,
19 f l o a t 4 a t om in f o l o c a l [MAXATOMS] ) {
20 // TRANSFER TASK CALL
21 c ene rgyg r id r ead ( energygr id , outaddr , e n e r gyg r i d l o c a l , . . . ) ;
22 // COMPUTE TASK CALL
23 cenergy compute ( en e r gyg r i d l o c a l , . . . ) ;
24 // TRANSFER TASK CALL
25 c en e r gyg r i d wr i t e ( energygr id , outaddr , e n e r gyg r i d l o c a l , . . . ) ;
26 }

4.3.3 Task Synchronization

Synchronization of the compute and data-transfer tasks is performed by the

SSTO engine according to the type clause of the SYNC pragma directive.

In the current implementation the available SYNC options are sequential

and ping-pong. The former corresponds to a simple task synchronization

scheme that does not require any further code massaging before feeding it

to AutoPilot. It essentially results in the serialization of all the compute

and data-transfer tasks of the kernel. The ping-pong option selects the ping-

pong task synchronization scheme in which two copies of each local array

are declared, doubling the amount of inferred BRAM blocks on the FPGA

(Figure 4.4). Moreover, the parent function is altered based on a double-

buffering coding template. An if-else statement is introduced to implement

the switching of the accessed BRAM block in each iteration of the block-loop.

4.4 Evaluation

Our experimental study aims to (i) evaluate the effect in performance of the

various parallelism extraction knobs implemented in FCUDA (as programmer-
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Table 4.2: CUDA Kernels

Application, Kernel (Suite) Data I/O Sizes Description

Matrix Multiply, mm (SDK) 4096 × 4096 matrices Computes multiplication of two 2D arrays
(used in many applications)

Fast Walsh Transform, fwt1
(SDK)

32MB Vector
Walsh-Hadamart transform is a general-
ized Fourier transformation

Fast Walsh Transform, fwt2
(SDK)

used in various engineering applications

Coulombic Potential, cp (Par-
boil)

512 × 512 Grid,
40000 Atoms

Computation of electrostatic potential in
a volume containing charged atoms

Discreet Wavelet Transform,
dwt (SDK)

120K points 1D DWT for Haar Wavelet and signals

injected pragma directives) and (ii) compare the FPGA-based kernel accel-

eration with the GPU-based acceleration. The CUDA kernels used in our

experiments have been selected from the Nvidia SDK [42] and the Illinois

Parboil [69] suites. Details of the benchmarks and the actual kernels are

presented in Table 4.2. Column 1 lists the application names and kernel

aliases, along with the parent benchmark suite. Column 2 contains infor-

mation about the input/output data sizes of the kernels, and the column 3

provides a short description of the corresponding application. In the exper-

iments discussed in the following sections we focus on integer computation

efficiency and we use modified versions of the kernels that do not include

floating point arithmetic. Moreover, we vary the integer arithmetic precision

of the modified kernels to evaluate the performance implications of different

integer arithmetic bitwidths (32- and 16-bit).

4.4.1 Parallelism Extraction Impact on Performance

In this part of the experimental evaluation we examine how different FCUDA

parallelism-extraction transformations affect the final execution latency. Note

that in FPGA computing, latency depends on the combination of three inter-

dependent factors: concurrency (i.e. number of parallel PE instances), cycles

and frequency. In the FCUDA flow, the programmer can affect these factors

through pragma directives: PE count (pe clause), unrolling (unroll clause),

array partitioning (part and array clauses), task synchronization scheme

(type clause) and PE clustering (cluster clause). Each of these pragma-

based knobs affects more than one of the performance-determining factors

in a highly convoluted fashion. First we explore the effect of threadblock

(i.e. PE count) and thread-level (i.e. unrolling and array-partitioning) par-
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allelism on kernel execution latency. Then we discuss the impact of task

synchronization schemes in performance. Performance evaluation of all the

FPGA implementations is based on frequency and execution cycles obtained

after placement and routing. For the following experiments we use the Xilinx

Virtex5-VSX240T device and we set the number of PE clusters equal to nine

(clustering the PEs in big FPGA devices helps to achieve netlists with rea-

sonable frequencies, whereas logic and physical synthesis runtimes are also

reduced).

Threadblock and Thread level Parallelism

In order to evaluate the effect of threadblock-level and thread-level paral-

lelism in the performance of the synthesized hardware we compare three

parallelism extraction schemes:

maxP represents the designs that expose parallelism primarily at the thread-

block level, i.e the PE count is maximized given a resource constraint.

Thread-level parallelism may also be extracted if remaining resource is

sufficient.

maxPxU represents the designs that maximize the total concurrency, i.e.

the product of PEs and thread-loop unroll degree (pe unroll). Array

partitioning may also be used if remaining resource is sufficient.

maxPxUxM represents the designs that maximize the concurrency along

with the on-chip memory bandwidth, i.e. the product of PE count,

unroll degree and array partitioning (pe× unroll × part).

Tables 4.3–4.5 list the design parameters selected for all the kernels under

the three different parallelism extraction schemes. As expected, the maxP

scheme entails high PE counts with almost no thread-loop unrolling or array

partitioning. Additionally, the maxPxU scheme instantiates fewer PEs but

entails high PEunroll concurrency with almost no array partitioning. Finally,

maxPxUxM results in less PEs than the two previous schemes, but facilitates

high unroll and partitioning factors achieving maximum pe × unroll × part
products.

Figure 4.6 depicts the kernel execution latencies for the three schemes

(normalized against the latencies of the maxP scheme). We can observe
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Table 4.3: maxP Scheme Parameters

Parameter
mm fwt2 fwt1 cp dwt

32bit 16bit 32bit 16bit 32bit 16bit 32bit 16bit 32bit 16bit

pe 153 162 126 180 144 171 54 99 126 144
unroll 1 1 1 1 1 1 1 1 1 1
part 1 1 1 1 1 1 1 1 1 1

Table 4.4: maxPxU Scheme Parameters

Parameter
mm fwt2 fwt1 cp dwt

32bit 16bit 32bit 16bit 32bit 16bit 32bit 16bit 32bit 16bit

pe 45 72 45 45 36 45 36 63 18 54
unroll 8 16 8 16 4 4 4 8 16 8
part 2 1 1 1 1 1 1 2 8 2

that no single scheme achieves best performance across all the kernels due

to their diverse characteristics. The maxP scheme provides the lowest (best)

latency results for kernels fwt1 and dwt. This can be attributed to the

fact that these two kernels contain complicated array access patterns which

inhibit array partition for most of their arrays (even though high memory

partitioning degree is applied in dwt, this partitioning refers to arrays that

represent a very small percentage of array accesses). Unrolling does not help

performance much by itself (i.e. maxPxU scheme), if it is not accompanied

by array partitioning (i.e. unfolding threads, and hence increasing the on-

chip memory access demand may be of no benefit if the on-chip memory

bandwidth supply remains the same). On the other hand, the maxPxUxM

scheme provides a better balance between unrolling and array partitioning

degrees and thus provides the best result for almost all of the other kernels

(besides fwt1 and dwt).

Compute and Data-Transfer Task Parallelism

To evaluate the effect of the ping-pong task synchronization scheme on per-

formance we use the MM kernel, which contains a loop that executes a

data-transfer task and a compute task in every iteration. By applying the

Table 4.5: maxPxUxM Scheme Parameters

Parameter
mm fwt2 fwt1 cp dwt

32bit 16bit 32bit 16bit 32bit 16bit 32bit 16bit 32bit 16bit

pe 27 27 27 27 72 90 9 18 36 18
unroll 8 16 8 8 2 2 8 16 8 16
part 8 16 4 8 1 1 8 16 8 16
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Figure 4.6: Performance comparison for three parallelism extraction
schemes

ping-pong task synchronization scheme it is possible to overlap compute and

data-transfer tasks. However, the efficiency of task concurrency comes at

the cost of higher resource utilization and lower execution frequencies, due

to more complex interconnection between compute logic and BRAM buffers

(up to 27% clock frequency degradation was observed between sequential

and ping-pong implementations). Figure 4.7 compares the execution latency

between sequential (seq) and ping-pong (pp) task synchronization for three

different off-chip memory bandwidth scenarios: (i) BW1, which corresponds

to a low off-chip bandwidth and makes the pp-based execution bound by

data-transfer latency, (ii) BW2, which is close to the bandwidth required to

achieve an equilibrium between compute and data-transfer latencies and (iii)

BW3, which is 10X higher than BW2 and facilitates smaller data-transfer

latencies compared to compute latencies. We can observe that for both ver-

sions of the MM kernel (32- and 16-bit), pp synchronization provides better

execution latency for lower bandwidth values, BW1 and BW2. However, for

higher bandwidths (BW3) the sequential synchronization scheme achieves

faster execution. In essence, pp is useful for kernels that are data communi-

cation bound whereas compute-bound kernels will most likely gain from the

sequential synchronization scheme.
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Figure 4.7: Task synchronization scheme comparison

4.4.2 FPGA vs. GPU

In this set of experiments we compare the performance of the custom FPGA-

based accelerator generated by the FCUDA flow with the GPU-based exe-

cution. To ensure a fair comparison we use devices manufactured with the

same process technology (65nm) and provide comparable transistor capac-

ities. For the GPU-based performance evaluation we use the Nvidia 9800

GX2 card which hosts two G92 devices with 128 stream processors (SPs)

and 64GB/sec (peak) off-chip memory bandwidth, each. For the purpose of

our evaluation we utilize only one of the G92 devices. With regard to FPGA-

based acceleration, we leverage the 1056-DSP and 1032-BRAM rich Xilinx

Virtex5-SX240T FPGA. We also take into account off-chip data transfer

delays and we compare execution latencies for two different memory band-

widths: 16 and 64GB/sec. The lower value represents a realistic off-chip

bandwidth scenario for Virtex5 FPGAs, whereas the highest bandwidth value

offers the opportunity to compare the compute efficiency of the two devices

in pseudo-isolation from the off-chip communication latency.

Figure 4.8 depicts the relative latencies of the GPU and FPGA-based ker-

nel executions, normalized over the GPU execution latencies. Note that for

16-bit kernels, latency comparison is based on the GPU execution latency for

the 32-bit version of the kernel. This is done to ensure best performance on

the 32-bit GPU architecture (GPU execution latency increases by 8.7X and

3.5X for the 16-bit versions of fwt2 and fwt1 kernels, compared to 32-bit ker-

nel execution latencies) and also to provide a fixed reference for comparing

the 32-bit and 16-bit FPGA implementations. The FPGA execution laten-

cies compared in Figure 4.8 are based on the best-performing parallelism

extraction scheme (maxP, maxPxU or maxPxUxM ) for each kernel. Note
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Figure 4.8: FPGA vs. GPU comparison

that further tuning of the FCUDA parallelism extraction knobs in combi-

nation with frequency and cycle information feedback from synthesis may

be used by the FPGA programmer to identify lower latency kernel-specific

configurations.

By comparing the FPGA latencies across the 32-bit and 16-bit versions of

the same kernel in Figure 4.8, we can observe that 16-bit kernel versions are

always faster than 32-bit ones. This is attributed to the higher concurrency

(less resource utilized per operation) and the lower cycle latency (smaller

critical paths and FSM states) feasible at lower arithmetic precisions. Fur-

thermore, off-chip bandwidth has a significant impact on performance for

data-communication intensive kernels. In particular, we observe that the

fwt2 kernel which involves high-volume data communication to/from off-chip

memory benefits significantly from a high off-chip bandwidth. In fact, when

the higher off-chip bandwidth (64GB/sec) is assumed, half of the kernels have

faster execution times on the FPGA compared to the GPU. On the other

hand, the CP kernel execution time is not affected by off-chip bandwidth.

The big latency reduction at 16-bit compared to 32-bit has to do mainly with

the big BRAM buffers used to hold constant data, which limit the number of

PEs that can fit on the device. The 16-bit version of CP needs half the size

of constant buffer memory, hence achieving higher PE count and enhanced

performance.
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CHAPTER 5

ML-GPS

In this chapter, we present a Multilevel Granularity Parallelism Synthesis

(ML-GPS) extension for FCUDA (Chapter 4). We leverage parallelism ex-

traction at four different granularity levels: (i) array (ii) thread, (iii) core

and (iv) core-cluster. By tuning parallelism extraction across different gran-

ularities, our goal is to find a good balance between execution cycles and

frequency. ML-GPS provides an automated framework for (i) considering

the effect of multilevel parallelism extraction on both execution cycles and

frequency and (ii) leveraging HLL code transformations (such as unroll-and-

jam, procedure call replication and array partitioning) to guide the HLS tools

in multilevel granularity parallelism synthesis. In this work, we propose re-

source and clock period estimation models that predict the resource and

clock period as a function of the degrees of different parallelism granularities

(array, thread, core and core-cluster). Additionally we incorporate floorplan-

ning information into the framework by partitioning the design into physical

layout tiles on the FPGA (each core-cluster is placed in one physical tile).

Our clock period estimation model takes into account the design resource

usage and layout on the FPGA and predicts the clock period degradation

due to wire routing. We combine our resource and period models with HLS

tool execution cycle estimations to eliminate the lengthy synthesis and P&R

runs during design space exploration. To explore the multidimensional de-

sign space efficiently, we propose a heuristic which leverages our estimation

models along with a binary search algorithm to prune the design space and

minimize the number of HLS invocations. Thus the ML-GPS framework can

efficiently complete the design space exploration within minutes (rather than

days if synthesis and physical implementation were used).
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Figure 5.1: Thread, core, core-cluster and memory BW granularities

5.1 Background and Motivation

The ML-GPS framework extends the original FCUDA framework described

in Chapter 4. In the rest of this chapter we will use the term SL-GPS to refer

to the maxP configuration (see Chapter 4) of FCUDA, where parallelism is

extracted only across the core dimension. Exposing parallelism at a single

level of granularity may result in loss of optimization opportunities that may

be inherent in different types and granularities of parallelism. Finer granu-

larities offer parallelism in a more lightweight fashion by incorporating less

resource replication at the expense of extra communication. On the other

hand, coarser granularities eliminate part of the communication by introduc-

ing more redundancy. ML-GPS provides a framework for flexible parallelism

synthesis of different granularities. In addition to the core granularity, the

proposed framework considers the granularities of thread, array and core-

cluster. As mentioned earlier, cores correspond to CUDA thread-blocks and

in ML-GPS each core is represented by a procedure (which contains the

thread-loop). Concurrent procedure calls are utilized to guide the instanti-

ation of parallel cores by the HLS tool. Threads correspond to thread-loop

iterations and are parallelized by unrolling the thread-loops. Array access

optimization is facilitated by array partitioning (only for arrays residing in

on-chip memories). Finally, core-clusters correspond to groups of cores that

share a common data communication interface (DCI) and placement con-

straints. The placement constraints associated with each core-cluster enforce

physical proximity and short interconnection wires between the intra-cluster

modules. As shown in Figure 5.1, the placement of each cluster is constrained

within one physical tile.

Both core and thread level parallelism extractions contribute to compute
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logic replication. However threads are more resource efficient (compared to

cores) as they allow more sharing opportunities for memories, registers and

other resource (Figure 5.1). The downside of thread-level parallelism is longer

and higher fan-out wires between shared resources and private logic of each

thread as the degree of unroll increases. Cores on the other hand require

fewer communication paths (only share DCI) at the expense of higher logic

replication (Figure 5.1). At an even finer granularity, array access parallelism

is extracted through array partitioning and it enables more memory accesses

per clock cycle, though at the expense of BRAM resources (each partition

requires exclusive use of the allocated BRAMs) and addressing logic.

The DCI module includes the logic that carries out the data transfers

to/from the off-chip memories through the DRAM controllers. Sharing a

single DCI module among all the cores on the FPGA may result in long

interconnection wires that severely affect frequency, annulling the benefit of

core-level parallelism. As a downside, DCI units consume device resources

while providing no execution cycle benefits. Core clustering helps elimi-

nate long interconnection wires by constraining the cluster logic placement

within physical tiles. Moreover, pipelining is used at the inter-cluster inter-

connection level (Figure 5.1) to connect the DCI modules with the DRAM

controller.

The optimal mix of parallelism extraction at different granularity levels

depends on the application kernel characteristics as well as the resource char-

acteristics of the FPGA device. Depending on the application, different gran-

ularity levels will affect execution cycles, clock frequency and resource usage

in different degrees. Moreover, the absolute and relative capacities of differ-

ent resource types in the targeted device will determine which granularity of

parallelism is more beneficial.

Figure 5.2 depicts a 2D plot of the design space for the mm kernel in

terms of compute latency vs. resource (slices) usage. Each point represents

a different configuration (i.e. combination of threads, cores, core-clusters

and array partition degree). We observe that performance is highly sensitive

to the parallelism extraction configurations. The depicted design space in-

cludes about 300 configurations and their evaluation through logic synthesis

and P&R took over 7 days to complete. The charts in Figure 5.3 offer a

more detailed view of a small subset of design points in terms of cycles, clock

frequency total thread count and latency, respectively. All of the configura-
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tions of the depicted subset have high resource utilization (greater than 75%

of device slices) and span a wide range of the design space. The leftmost bar

(C0) corresponds to the SL-GPS configuration which leverages only core-level

parallelism, whereas the other configurations exploit parallelism in multiple

dimensions. In each graph the highlighted bar corresponds to the best con-

figuration with respect to the corresponding metric. As we can observe, C8

is the configuration with minimum latency, whereas different configurations

are optimal in different performance related metrics (i.e. cycles, frequency

and thread count). The charts demonstrate that (i) single granularity par-

allelism extraction does not offer optimal performance and (ii) performance

constituents are impacted differently by different parallelism granularities.

5.2 ML-GPS Framework Overview

Before we introduce the ML-GPS framework, we first describe the corre-

sponding source code transformations leveraged for the different parallelism

granularities we consider.

Threads: unfolding of thread-loop iterations through unroll-and-jam trans-

formations (Figure 5.4(b)).

Array: on-chip array access concurrency is controlled by the degree of array

partitioning, which divides arrays to separate partitions (Figure 5.4(c)).

Each partition is mapped onto a separate BRAM, and thus the array

acquires multiple memory ports. In this work, array partitioning is

applied only to arrays with affine accesses [70].

65



2

3

4

5

6

C
yc

le
s  

(m
ill

io
n)

0

1

2

3

4

5

6

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C
yc

le
s  

(m
ill

io
n)

(a) Execution cycles

50

100

150

200

250

Fr
eq

ue
nc

y 
(M

H
z)

0

50

100

150

200

250

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

Fr
eq

ue
nc

y 
(M

H
z)

(b) Clock frequency

0
20
40
60
80

100

Th
re

ad
 C

ou
nt

0
20
40
60
80

100

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

Th
re

ad
 C

ou
nt

(c) Hardware concurrency

10
20
30
40
50
60

La
te

nc
y 

(u
s)

SL-GPS

0
10
20
30
40
50
60

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9 C

…

La
te

nc
y 

(u
s)

SL-GPS

(d) Execution latency

Figure 5.3: Performance attributes of mm design space configurations

Threads: unfolding of thread-loop iterations through 
unroll-and-jam transformations (Fig 4b).  

Array: on-chip array access concurrency is controlled by 
the degree of array partitioning, which divides arrays to 
separate partitions (Fig. 4c). Each partition is mapped onto a 
separate BRAM and thus, the array acquires multiple 
memory ports. In this work, array partitioning is applied only 
to arrays with affine accesses [19]. 

Cores: unfolding of threadblock-loop iterations through 
replication of thread-loop function calls (Fig. 4d). Each 
function call corresponds to the instantiation of one parallel 
core.  

Core-cluster: the set of thread-blocks is partitioned to 
subsets, with each subset assigned to one core-cluster.  

The ML-GPS framework leverages three main engines as 
depicted in Fig. 5a: i) a source-to-source transformation 
(SST) engine ii) a design space exploration (DSE) engine 
and iii) a HLS engine. The SST engine takes as input the 
CUDA code along with a set of configuration parameters 
that correspond to the degrees of the different parallelism 
granularities to be exposed in the output code. The 
configuration parameters are generated by the DSE engine 
which takes as input the target FPGA device data and 
determines the configurations that should be evaluated 
during the design space exploration. Finally, the HLS engine 
synthesizes the generated output code of the SST engine to 
RTL. In the ML-GPS framework we use a commercial HLS 
tool [2], which generates highly-optimized RTL code.  

The ML-GPS flow involves three automated main steps 
(Fig. 5b). Initially a kernel profiling step is performed in 
order to build the resource estimation model for each kernel. 
Profiling entails feeding the SST engine with a small set of 
multilevel granularity configurations which are subsequently 
synthesized by the HLS tool to generate the corresponding 
resource utilization estimations. A kernel-specific resource 
model is then built using regression analysis on the HLS 
resource estimations. The number of the profiled 

configuration points determines the accuracy of the resource 
estimation model generated. More configurations result in 
more accurate resource models, though, at the expense of 
extra profiling time. In the ML-GPS framework the user can 
determine the effort spent on profiling.  

After profiling, the design space is determined in the 
second main step. First the total number of core-cluster 
configurations is determined by considering both the 
resource estimation model generated in the 1st step (i.e. take 
into account the kernel characteristics) and the selected 
FPGA device (i.e. take into account the resource availability 
and distribution on the device). Subsequently the thread, 
array partitioning and core dimensions of the design space 
are determined for each core-cluster configuration with the 
help of the resource estimation model.  

Finally in the third main step, design space exploration is 
performed using the resource and the clock period estimation 
models along with cycle estimates from the HLS tool to 
evaluate the performance of the different design points. A 
binary search heuristic is used to trim down the number of 
HLS invocations and prune the design space. The DSE 
engine’s goal is to identify the optimal coordinates in the 
multi-dimensional parallelism granularity space in order to 
maximize the performance of the CUDA kernel on the 
selected FPGA device (i.e. given a fixed resource budget). 

IV. DESIGN SPACE EXPLORATION 
As mentioned previously, exploration of the multilevel 

granularity space is based on estimations of resource, clock 
period and cycles. We estimate resource and clock period 
degradation due to routing through regression analysis based 
equations, whereas we leverage cycle estimations from HLS. 
The formulas used for resource and clock period estimations 
are presented in the following section. To optimize the space 
exploration runtime we employ an efficient search 
optimization that helps minimize the number of HLS tool 
invocations during the search process. This is discussed in 
Section IV.B.  

A. Resource and Clock Period Estimation Models 
The resource model is built during the profiling step of 

the flow. A small number of points in the design space are 
used to generate different configurations of the input kernel 
exposing different granularities of parallelism. The HLS tool 
is fed with the profiled kernel configurations and it returns 
resource estimation results. We classify the resource 
estimations based on the degrees of parallelism exposed at 
the core (CR), thread (TH), and array-partitioning (AP) 
dimensions. Using linear regression we then evaluate the R0, 
R1, R2 R3 and R4 coefficients of (1):  

matmul_tblock( …)  { 
  for(ty=0; ty<bDim.y; ty++) 
    for(tx=0; tx<bDim.x; tx++) { 
      for (k=0; k<BLK_SIZE; ++k) 
        Cs[ty][tx] += As[ty][k] * Bs[k][tx];    
    }                              
} 
 

matmul_tblock( …)  { 
  for(ty=0; ty<bDim.y/2; ty++) 
    for(tx=0; tx<bDim.x; tx++) { 
      for (k=0; k<BLK_SIZE; ++k) 
        Cs[ty][tx] += As[ty][k] * Bs[k][tx]; 
        Cs[ty+bDim.y/2][tx] +=  
             As[ty+bDim.y/2][k] *Bs[k][tx]; 
  } } 

matmul_tblock( …)  { 
  for(ty=0; ty<bDim.y/2; ty++) 
    for(tx=0; tx<bDim.x; tx++) { 
      for (k=0; k<BLK_SIZE; ++k) 
        Cs1[ty][tx] += As1[ty][k] * Bs[k][tx]; 
        Cs2[ty][tx] += As2[ty][k] * Bs[k][tx]; 
  } 
} 
 

for(by=0; by<gDim.y/2; by++) 
    for(bx=0; bx<gDim.x; bx++) { 
       matmul( … ) 
       matmul( … )  
    } 
 

     a)  Original mm code                         b) Unrolled thread-loop                           c) Arrays A and C partitioned                   d) Thread-block concurrency 

Figure 4.  Source code transformations (mm kernel) 

 
     a)  ML-GPS components                                       b) ML-GPS flow  

                                   Figure 5.  ML-GPS Overview 

Figure 5.4: Source code transformations (mm kernel)

Cores: unfolding of threadblock-loop iterations through replication of thread-

loop function calls (Figure 5.4(d)). Each function call corresponds to

the instantiation of one parallel core.

Core-cluster: the set of thread-blocks is partitioned to subsets, with each

subset assigned to one core-cluster.

The ML-GPS framework leverages three main engines as depicted in Fig-

ure 5.5(a): (i) a source-to-source transformation (SST) engine (ii) a design

space exploration (DSE) engine and (iii) a HLS engine. The SST engine

takes as input the CUDA code along with a set of configuration parameters

that correspond to the degrees of the different parallelism granularities to be

exposed in the output code. The configuration parameters are generated by

the DSE engine which takes as input the target FPGA device data and de-
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termines the configurations that should be evaluated during the design space

exploration. Finally, the HLS engine synthesizes the generated output code

of the SST engine to RTL. In the ML-GPS framework we use a commercial

HLS tool [31], which generates highly-optimized RTL code.

The ML-GPS flow involves three automated main steps (Figure 5.5(b)).

Initially a kernel profiling step is performed in order to build the resource

estimation model for each kernel. Profiling entails feeding the SST engine

with a small set of multilevel granularity configurations which are subse-

quently synthesized by the HLS tool to generate the corresponding resource

utilization estimations. A kernel-specific resource model is then built using

regression analysis on the HLS resource estimations. The number of the

profiled configuration points determines the accuracy of the resource estima-

tion model generated. More configurations result in more accurate resource

models, although at the expense of extra profiling time. In the ML-GPS

framework the user can determine the effort spent on profiling.

After profiling, the design space is determined in the second main step.

First the total number of core-cluster configurations is determined by con-

sidering both the resource estimation model generated in the first step (i.e.

take into account the kernel characteristics) and the selected FPGA device

(i.e. take into account the resource availability and distribution on the de-

vice). Subsequently the thread, array partitioning and core dimensions of

the design space are determined for each core-cluster configuration with the

help of the resource estimation model.

67



Finally in the third main step, design space exploration is performed using

the resource and the clock period estimation models along with cycle esti-

mates from the HLS tool to evaluate the performance of the different design

points. A binary search heuristic is used to trim down the number of HLS

invocations and prune the design space. The DSE engine’s goal is to identify

the optimal coordinates in the multidimensional parallelism granularity space

in order to maximize the performance of the CUDA kernel on the selected

FPGA device (i.e. given a fixed resource budget).

5.3 Design Space Exploration

As mentioned previously, exploration of the multilevel granularity space is

based on estimations of resource, clock period and cycles. We estimate re-

source and clock period degradation due to routing through regression anal-

ysis based equations, whereas we leverage cycle estimations from HLS. The

formulas used for resource and clock period estimations are presented in the

following section. To optimize the space exploration runtime we employ an

efficient search optimization that helps minimize the number of HLS tool

invocations during the search process. This is discussed in Section 5.3.2.

5.3.1 Resource and Clock Period Estimation Models

The resource model is built during the profiling step of the flow. A small

number of points in the design space are used to generate different configura-

tions of the input kernel exposing different granularities of parallelism. The

HLS tool is fed with the profiled kernel configurations and it returns resource

estimation results. We classify the resource estimations based on the degrees

of parallelism exposed at the core (CR), thread (TH), and array-partitioning

(AP ) dimensions. Using linear regression we then evaluate the R0, R1, R2

R3 and R4 coefficients of (5.1):

R = R0 +R1×CR+R2×CR×TH+R1×CR×AP +R4×TH×AP (5.1)

Conceptually, the model characterizes the resource usage of a core-cluster

based on the core number (R1), count of threads (R2), array partitioning
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(R3), and the interaction between unrolling and array partitioning (R4). For

each type of resource (LUT, Flip-Flop, BRAM and DSP) we construct a sep-

arate equation which represents the core-cluster resource usage as a function

of the different parallelism granularities. These equations are kernel-specific

and are used during the design space exploration phase for resource budgeting

as well as for estimating the clock period. The total resource count, RFPGA, is

equal to the product of the core-cluster resource estimation, R, and the num-

ber of physical tiles, CL, (i.e. number of core-clusters): RFPGA = R× CL.

The clock period model aims to capture the clock period degradation re-

sulting from wire routing within the core-cluster. The HLS-generated RTL is

pipelined for a nominal clock period defined by the user. However the actual

clock period of the placed netlist is often degraded (i.e. lengthened) due to

interconnection wire delays introduced during P&R. Through this model we

incorporate the effect of different parallelism granularities as well as layout

information on interconnection wires (i.e. wires within the core cluster; inter-

cluster wires are pipelined appropriately, as mentioned earlier) and thus the

clock period. The period estimation model is described by (5.2) which is

pre-fitted offline using synthesis data (synthesized CUDA kernels were used

for the period estimation model construction):

Period = P0 + P1 ×Diag + P2 × Util + P3 × AP + P4 × TH (5.2)

Diag is calculated using (5.3) and it corresponds to the diagonal length (in

slices) of a virtual tile with the following properties: (i) the total core-cluster

slices can fit in the virtual tile, (ii) the dimensions of the virtual tile do not

exceed the dimensions of the allocated physical tile and (iii) the diagonal

length of the virtual tile is minimal given the two previous constraints. Util

in (5.2) represents the slice utilization rate of the physical tile by the core-

cluster logic.

Diag2 =

2×Rslice , ifRslice ≤ minDim2

minDim2 +
(

Rslice

minDim

)2
, ifRslice > minDim2

(5.3)

where minDim corresponds to the minimum dimension of the physical tile

(in slices) and Rslice is the slice count of the core-cluster logic. Parameters

Rslice (hence Diag) and Util in (5.2) are calculated by leveraging the re-
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source model described above. Conceptually, parameter Diag incorporates

the core-cluster resource area and layout information while Util incorpo-

rates the routing flexibility into the period model. AP and TH represent

the requirement for extra wire connectivity within each core due to array

partitioning and thread-loop unrolling.

5.3.2 Design Space Search Algorithm

Latency Estimation

Following the resource model construction for each kernel, the multidimen-

sional design space can be bound given a resource constraint, i.e. an FPGA

device target. Our goal is to identify the configuration with the minimum

latency, Lat, within the bound design space. Latency is a function of all

the parallelism granularity dimensions (i.e. thread (TH), array partition-

ing (AP ), core (CR) and core-cluster (CL)) of the space we consider and is

estimated using (5.4):

Lat(TH,AP,CR,CL) = Cyc× Nblock

CR× CL
× Period (5.4)

where Nblock represents the total number of kernel thread-blocks, Cyc is the

number of execution cycles required for one thread-block and Period is the

clock period. As was discussed earlier, Period is affected by all the design

space dimensions and is estimated through our estimation model in (5.2). On

the other hand, Cyc is generated by the HLS engine and is only affected by

the TH and AP dimensions (i.e. the HLS engine’s scheduling depends on the

thread-loop unrolling and array partitioning degrees). Thus for the design

subspace that corresponds to a pair of unroll (u) and array-partitioning (m)

degrees, Lat is minimized when the expression in (5.5) is minimized. We

leverage this observation in tandem with our binary search heuristic to prune

the design space and cut down the HLS invocations.

E(u,m,CR,CL) =
Nblock

CR× CL
× Period (5.5)
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Figure 5.6: Array partition and unroll effects on latency

Binary Search Heuristic

The binary search heuristic is guided by the following observation:

Observation 5.1. For a given loop unroll factor, latency decreases monotoni-

cally first with a subsequent monotonic increase as the array partition degree

increases.

Figure 5.6(a) depicts the fwt2 kernel latency for different unroll and array-

partition pairs (u, m). For each point in Figure 5.6(a), its latency is deter-

mined by using the core (CRm
u ) and core-cluster (CLm

u ) values that minimize

E in (5.5), and thus minimize Lat. We can observe (Figure 5.6(a)) that the

value of execution latency as a function of array partition degree for a fixed

unroll factor decreases monotonically until a global optimal point, after which

it increases monotonically. Intuitively, as the array partition degree increases,

on-chip array access bandwidth is improved as more array references can take

place concurrently (i.e. execution cycles decrease). However, after a certain

degree (saturation point), any further partitioning does not decrease clock

cycles. Additionally it hurts frequency due to increased wire connectivity

and higher logic complexity. More importantly, further partitioning may

constrain coarse granularity extraction at the core and core-cluster levels as

more BRAMS are used by each core. Thus, there exists an optimal array

partition degree for each unroll factor. Observation 1 has been verified for

other benchmarks as well.

A similar trend has also been observed for unroll factor (Figure 5.6(b)).

For each unroll factor u in Figure 5.6(b), its latency is determined by using

its optimal array partition degree m from Figure 5.6(a) and core CRm
u and

core-cluster CLm
u values. Intuitively, as the unroll factor increases, more

parallelism is exploited, thus improving the execution latency. However,
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unrolling beyond a certain degree may not be beneficial due to array access

bottleneck and frequency degradation (from increased connectivity and fan-

out issues). In summary, there is an optimal unrolling degree.

Based on the above observation and the intuition behind it, in Algo-

rithm 5.1 we propose a binary search algorithm to find the optimal point

(unroll factor u and array partition degree m). As shown in Algorithm 5.1,

we search unroll factor first followed by array partition degree. Array space[]

stores the feasible values for each dimension dim, in sorted order (line 9).

The size and value of space[] are obtained from the resource model. Then,

we perform binary search for dimension dim. In each round of the binary

search (line 11-22), we compare the performance of two middle neighboring

points (mid, mid+1). Function Select records the value selected for the di-

mension dim. The comparison result guides the search towards one direction

(the direction with smaller latency) while the other direction is pruned away.

In the end of the search across each dimension, the best result of the current

dimension (in terms of execution latency) is returned. For each point visited

during the search (i.e. (u, m) pair), the corresponding execution latency is

computed based on (4) (line 6). The function UpdateLatency compares the

current solution with the global best solution and updates it if the current

solution turns out to be better.

Let us consider fwt2, shown in Figure 5.6(b), as an example. We start

searching the unroll degree dimension and compare two neighboring points

in the middle (2 and 4). For each unroll factor (2 and 4), its minimal latency

is returned by recursively searching next dimension in a binary search fashion.

The best solution so far is stored and the latency comparison of unroll factors

(2 and 4) will indicate the subsequent search direction. The complexity of

our binary search is log |U | × log |M |, where U and M represent the design

dimensions of thread and array partition.

5.4 Evaluation

The goals of our experimental study are threefold: (i) to evaluate the ef-

fectiveness of the estimation models and the search algorithm employed in

ML-GPS, (ii) to measure the performance advantage offered by consider-

ing multiple parallelism granularities in ML-GPS versus SL-GPS and (iii) to
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Algorithm 5.1: Binary Search

/* binSearch(dim): search across unroll space followed by search

across array partition space */

Input: dim:current search dimension

1 if searched all dimensions then
2 (u,m)← selected unroll and partition pair
3 lat← Lat(u,m,CRm

u , CLm
u )

4 updateLatency(lat, u m)

5 return lat

6 space[]← design space of dimension dim
7 low ← 1
8 high← |Space|
9 while low < high do

10 mid← (low + high)/2
11 Select(dim,mid)
12 resMid← binSearch(dim + 1)
13 Select(dim,mid + 1)
14 resMidP lus← binSearch(dim + 1)
15 if resMid < resMidP lus then
16 high← mid− 1 // search left of mid

17 Update(curBest, resMid)

18 else
19 low ← mid + 2 // search right of mid

20 Update(curBest, resMidPlus)

21 return curBest

compare FPGA and GPU execution latency and energy consumption. We

use the kernels described in Table 4.2 in Chapter 4

5.4.1 ML-GPS Design Space Exploration

We have employed a mid-size Virtex 5 device (VSX50T) to explore the ex-

haustive design space of parallelism extraction in the multidimensional space

we consider. Figures 5.7(a) and 5.7(c) depict the entire design space for mm

and fwt2 kernels. Both maps consist of around 200 design points that have

been evaluated by running the complete implementation flow: HLS followed

by logic synthesis and P&R. Each design point corresponds to a unique con-

figuration of thread, array, core and core-cluster parameters. Figures 5.7(b)

and 5.7(d) portray a subset of design points that are within 3X of the optimal

configuration. The ’X’ markers highlight the configuration point identified

by the design space exploration (DSE) engine of the ML-GPS framework.
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Figure 5.7: Multigranularity parallelism design spaces

Our experiments indicate that the configuration selected by the proposed

search framework is, on average, within 10% of the optimal configuration’s

latency.

As described earlier, the DSE engine employs resource and clock period

estimation models and invokes the HLS engine to profile the kernel and ac-

quire cycle estimations. Thus, the design space exploration completes within

several minutes compared to running synthesis and P&R which may require

several days for multiple configurations.

5.4.2 ML-GPS versus SL-GPS

We compare the ML-GPS framework with SL-GPS where parallelism was

exposed only across the core dimension. Figure 5.8 shows the normalized

comparison data for a set of kernels. For these experiments we targeted a

mid-size virtex5 FPGA device (VSX50T). The ML-GPS space exploration

framework was used to identify the best configuration in the multigranular-

ity design space. Then the identified configuration was compared with the

configuration that utilizes the maximum number of cores (SL-GPS) given

the device resource budget. The comparison depicted in Figure 5.8 is based

on execution latencies derived from actual logic and physical synthesis im-
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Figure 5.8: Performance comparison: ML-GPS vs. SL-GPS

plementations.

For each kernel we have generated two integer versions with different

bitwidth arithmetic: 16-bit and 32-bit. Our experimental results show that

performance is improved by up to 7X when multigranularity levels of par-

allelism are considered. Note that for the fwt1 16 kernel there is no per-

formance improvement. The reason for this is due to the multiple access

patterns (with different strides) applied on the fwt1 kernel arrays. This ren-

ders static array partitioning infeasible without dynamic multiplexing of each

access to the right array partition. As a result, array partitioning is not con-

sidered for fwt1 (in both bitwidth versions), thus impacting the performance

contribution of unrolling (i.e. parallelism is exposed mainly across the core

and core-cluster dimensions). The limited degrees of freedom in parallelism

extraction result in small performance improvements for the 32-bit version

and no performance improvement for the 16-bit version of fwt1.

5.4.3 ML-GPS versus GPU

Performance

In this set of experiments we compare the performance of the FPGA-based

hardware configuration identified by ML-GPS with the software execution

on the GPU. For the GPU performance evaluation we use the Nvidia 9800

GX2 card which hosts two G92 devices, each with 128 stream processors.
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Figure 5.9: Latency comparison: FPGA vs. GPU

We utilize a single G92 device in our experimental setup. In terms of FPGA

device we target one of the largest Xilinx Virtex5 devices (VSX240T) which

includes a rich collection of embedded DSP (1056) and BRAM (1032) macros.

The FPGA and GPU devices have been selected to ensure a fair comparison

with regards to process technology (65nm) and transistor count.

In these comparison results we include both the compute latencies as well

as the data transfer latencies to/from off-chip memories. The G92 device

offers 64GB/sec peak off-chip bandwidth. For the FPGA device we evaluate

three different off-chip bandwidth capacities: 8, 16 and 64GB/sec. Figure 5.9

depicts the FPGA execution latencies for the ML-GPS chosen configuration,

normalized with regards to the GPU latency. First, we can observe that the

16-bit kernels perform better than the corresponding 32-bit kernel versions

on the FPGA (note that the GPU execution latencies are based on the 32-

bit kernel versions). This is due to smaller data communication volumes

(half-size values), as well as higher compute concurrency (smaller compute

units allow higher concurrency). Second, off-chip bandwidth has a significant

effect on performance, especially for kernels with high off-chip bandwidth

data traffic (e.g. fwt2). With equivalent off-chip bandwidths (i.e. 64GB/s),

the FPGA is faster than the GPU for half of the kernels.

Energy

Using the same FPGA and GPU devices as previously, we evaluate energy

consumption. For the GPU device we use the reported power consumption
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Figure 5.10: Energy comparison: FPGA vs. GPU

of 170W (i.e. 270W system - 100W board). For the FPGA chip we use the

Xilinx Power Estimator tool. The comparison results are depicted in Fig-

ure 5.10, normalized with regard to the GPU results. The energy consumed

by the FPGA execution is less than 16% of the GPU energy consumption for

all of the kernels. The 16-bit kernels show significant energy savings com-

pared to the corresponding 32-bit versions due to fewer DSP and BRAM

macro resources utilized per operation and operand, respectively.
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CHAPTER 6

THROUGHPUT-DRIVEN PARALLELISM
SYNTHESIS (TDPS)

As discussed in previous chapters, heterogeneity in compute systems is be-

coming widespread due to the ever increasing need for massively parallel com-

puting at low power consumption. Programming simplicity and efficiency is

a prerequisite for leveraging the benefits of heterogeneous computing. Par-

allel programming models such as CUDA [42], OpenCL [43] and OpenACC

[71] are addressing this need by providing a homogeneous programming in-

terface which can efficiently represent and map parallelism onto throughput-

oriented processors with heterogeneous architectures. In Chapter 4 we pre-

sented our work on the FCUDA flow which enables mapping CUDA ker-

nels on FPGA devices. The use of homogeneous programming model across

heterogeneous compute architectures facilitates higher programming produc-

tivity but may not achieve good performance without device-specific code

tweaking. Maximizing performance on the target processor is dependent on

effectively expressing the application’s computation for the target architec-

ture. Restructuring the application’s computation organization and applying

architecture-specific optimizations may be necessary to fully take advantage

of the performance potential of throughput-oriented architectures. Previous

studies with GPU architectures have shown that poorly optimized code can

lead to dramatic performance degradation [72]. Similarly, the performance

of custom accelerators implemented on FPGAs may be severely affected by

the application’s compute organization when using HLS-based flows (as in

FCUDA).

In this chapter we describe a source-to-source code transformation frame-

work that leverages throughput-driven code restructuring techniques to en-

able automatic performance porting of CUDA kernels onto FPGAs. In

CUDA, as in other parallel programming models supporting heterogeneous

compute architectures (e.g. OpenCL [43]), the programmer has explicit con-

trol over the data memory spaces as well as how computation is distributed
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across cores and how threads and cores share data and synchronize during

data accesses. Thus, CUDA kernels designed for the GPU architecture may

be structured inefficiently for reconfigurable devices. The throughput-driven

parallelism synthesis (TDPS) framework, proposed in this work, facilitates ef-

ficient computation mapping onto the reconfigurable fabric and performance

porting through kernel analysis and generation of a hierarchical region graph

(HRG) representation. Restructuring leverages a wide range of transforma-

tions including code motions, synchronization elimination (through array re-

naming), data communication elimination (through re-materialization), and

idle thread elimination (through control flow fusion and loop interchange).

Since data storage and communication play a critical role in performance

of massively threaded CUDA kernels, the proposed flow employs advanced

dataflow and symbolic analysis techniques to facilitate efficient data han-

dling. Graph coloring in tandem with throughput estimation techniques is

used to optimize kernel data structure allocation and utilization of on-chip

memories. The TDPS framework orchestrates all these kernel transforma-

tions and optimizations to generate high-throughput custom accelerators on

the reconfigurable architecture. We have integrated the TDPS framework

in the FCUDA flow (Chapter 4) in order to alleviate the programmer from

the time-consuming and error-prone code annotation and restructuring work.

Our experimental study shows that the proposed flow achieves highly effi-

cient (i.e. no manual code tweaking) and high-throughput (similar or better

to manual porting quality) performance porting of GPU-optimized CUDA

kernels on the FPGA device.

6.1 Background and Motivation

As we discussed in Section 4.1.1, CUDA supports a SIMT (single instruction,

multiple threads) parallel programming model which uses relaxed memory

consistency with respect to memory reference ordering among threads. Ex-

plicit synchronization directives are included in the model to enforce opera-

tion ordering and thread synchronization. For example, the __syncthreads()

directive (lines 3,5,8,18 in Listing 6.1) enforces thread synchronization at the

level of cooperative thread arrays (CTAs) by preventing threads to proceed

further until all CTA threads have finished executing the instructions before
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the directive. In Section 4.2 we described the SIMT-to-C (S2C) translation

philosophy for porting CUDA kernels onto non-GPU architectures such as

multicore CPUs [73] and FPGAs [74]. A common characteristic of these

S2C compilation schemes is explicit representation of threads as loops that

iterate across the CTA’s thread index (tIDX) values (hereafter referred as

tIDX-loops). Thread synchronization is enforced through loop fission (e.g.

tIDX-loop in line 1 of Listing 6.1 is split into 5 loops in Listing 6.2 - lines 1,

3, 5, 8 and 12), loop interchange (e.g. loops in lines 11, 12 in Listing 6.2) and

variable privatization (e.g. d0 in line 4, Listing 6.2) transformations. More-

over, tIDX-loop unrolling in tandem with vector loads/stores (for fixed CPU

architectures but also custom cores (CC) on FPGAs) may be used to exploit

the CUDA thread parallelism in the kernel. In addition, the FCUDA com-

pilation scheme applies decomposition of the kernel into data computation

(COMPUTE) and communication (TRANSFER) tasks. Task decomposition

is essential in optimizing the CTA execution latency on the reconfigurable

fabric. Decomposing all off-chip memory references across CTA threads into

TRANSFER tasks, for example, can facilitate organization of coalesced ac-

cesses into burst transfers. Hence, off-chip memory bandwidth can be op-

timized and address computation overhead can be eliminated. COMPUTE

tasks can also benefit from decomposition as multiple thread computation se-

quences are executed independently from long-latency off-chip accesses. The

implementation of kernel decomposition described in Section 4.2 is based on

user-injected annotations that assist the compiler through the transformation

of the kernel into COMPUTE and TRANSFER tasks.

6.1.1 Throughput-Oriented SIMT Porting onto FPGA

In this chapter we adopt the COMPUTE/TRANSFER kernel decomposition

philosophy, but propose a new compilation flow that eliminates the need for

user-injected annotations in the kernel code. The proposed flow leverages

sophisticated analysis and transformation techniques to identify the kernel

tasks and re-structure them so as to optimize execution throughput on the

FPGA architecture. We will use the Nvidia SDK kernel for discreet wavelet

transforms (DWT) as a running example in the rest of this chapter to moti-

vate the importance of throughput-driven parallelism synthesis (TDPS) im-
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Listing 6.1: CUDA code for DWT kernel
1 for ( t i d =0; t id<bdim ; t i d++){
2 shr [ t i d ] = id [ ida ta ] ;
3 sync th r ead s ( ) ;
4 data0 = shr [2∗ t i d ] ;
5 sync th r ead s ( ) ;
6 od [ t i d g l o b a l ] = data0∗SQ2 ;
7 shr [ t i d ] = data0∗SQ2 ;
8 sync th r ead s ( ) ;
9 numThr = bdim >> 1 ;

10 int d0 = t i d ∗ 2 ;
11 for ( int i =1; i<l e v ;++ i ) {
12 i f ( t i d < numThr) {
13 c0 = id0+(id0>>LNB) ;
14 od [ gpos ] = shr [ c0 ]∗SQ2 ;
15 shr [ c0 ] = shr [ c0 ]∗SQ2 ;
16 numThr = numThr>>1;
17 id0 = id0<<1; }
18 sync th r ead s ( ) ;
19 }
20 }

plemented in the enhanced compilation flow. The DWT kernel (a simplified

version of DWT is depicted in Listing 6.1) contains complex control flow,

several thread synchronization barriers, and highly intermingled computa-

tion and communication regions. Manual task annotation may not always

be straightforward at the source code level where statements may contain

both data computation and communication tasks (e.g. lines 6, 14 in Listing

6.1). Furthermore, complex and thread-dependent control flow in the ker-

nel may render kernel decomposition inefficient without code restructuring.

For example, decomposition of the code excerpt in Listing 6.1 into COM-

PUTE and TRANSFER tasks would result in fragmentation of the kernel

into multiple fine grained tasks: tsk[2], tsk[4], tsk[6], tsk[7], tsk[9 : 10], etc.,

where tsk[x{: y}] denotes the code portion derived from source code line(s)

(x{−y}) limiting the potential performance advantages of kernel decompo-

sition. The negative impact of fine-grained task fragmentation on perfor-

mance and throughput is contributed by (i) the overhead of the implicit

thread-synchronization between tasks (i.e. smaller code regions offer fewer

opportunities for parallelism, whereas tIDX-loop overhead increases) and (ii)

the increased number of variables referenced across tasks which results in

increased storage overhead due to variable privatization (e.g. data0 is refer-

enced in tsk[4] and tsk[6] and hence it is privatized with respect to tIDX).

However, if finer-grained tasks could be merged into coarser tasks, the num-

ber of variables requiring privatization can be significantly reduced, leading
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Listing 6.2: C code for DWT kernel
1 for ( t i d =0; t id<bdim ; t i d++){
2 shr [ t i d ] = id [ ida ta ] ; }
3 for ( t i d =0; t id<bdim ; t i d++){
4 d0 [ t i d ] = shr [ 2∗ t i d ] ; }
5 for ( t i d =0; t id<bdim ; t i d++){
6 od [ t i d g l o b ] = d0 [ t i d ]∗SQ2 ;
7 shr [ t i d ] = d0 [ t i d ]∗SQ2 ;}
8 for ( t i d =0; t id<bdim ; t i d++){
9 numThr = bdim >> 1 ;

10 id0 [ t i d ] = t i d ∗ 2 ;}
11 for ( int i =1; i<l e v ;++ i ) {
12 for ( t i d =0; t id<bdim ; t i d++){
13 i f ( t i d < numThr) {
14 c0 = id0 [ t i d ]+( id0 [ t i d ]>>LNB) ;
15 od [ gpos ] = shr [ c0 ]∗SQ2 ;
16 shr [ c0 ] = shr [ c0 ]∗SQ2 ;
17 numThr = numThr>>1;
18 id0 [ t i d ] = id0 [ t i d ]<<1;
19 }
20 }
21 }

to more efficient memory allocation on the FPGA device. Efficient stor-

age allocation and utilization is highly critical in reconfigurable devices for

achieving high-throughput execution of kernels. Manual code restructuring,

however, is error-prone, time-consuming and requires good knowledge of the

target architecture. The proposed flow implements the throughput-driven

parallelism synthesis (TDPS) scheme which leverages rigorous analysis and

transformations in tandem with throughput estimation techniques to max-

imize the total kernel throughput. In comparison with previous works, the

proposed flow recognizes the importance of data communication and stor-

age in execution throughput and tries to balance task latency optimization

with memory resource allocation for each task in order to maximize kernel

execution throughput on the reconfigurable architecture. Through advanced

dataflow, value range and symbolic expression analysis in tandem with effi-

cient code motion, memory allocation and utilization transformations, TDPS

restructures the code in a phased approach depicted in Figure 6.1. The pro-

posed framework has been integrated in FCUDA (Chapter 4) and comprises

six distinct transformation stages which can be classified into three major

phases: (i) kernel analysis (code is annotated with analysis info), (ii) task

latency optimization (through various code motions) and (iii) throughput

optimization (through smart storage allocation and utilization). A hierar-

chical region graph (HRG) representation of the kernel built in the analysis
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Figure 6.1: The TDPS flow integrated in the FCUDA flow

phase of TDPS is used in all of the subsequent transformation stages. In the

next subsection we describe the HRG representation while in Section 6.2 we

discuss more details of the techniques used in each transformation stage.

6.1.2 Hierarchical Region Graph (HRG)

To define what a region represents in the kernel’s HRG, we first tag each

executable statement S of the kernel code with an integer identifier, sID =

ord(S), which represents the order of the statement in the kernel source code

(with the first executable statement S1 assigned ord(S1) = 1). Addition-

ally, we tag every statement S with respect to two characteristics: (i) its

control-flow depth level, sLev = dLev(PCF ) + 1, where PCF is the hierar-

chical nesting level of the parent control flow structure, and (ii) the type of

operation, sTyp = opTyp(S) ∈ {CMP, TRN, SNC}, entailed in statement

S. CMP, TRN and SNC correspond to compute, transfer and synchroniza-

tion operations, respectively. In the case of statements comprising operations

of multiple types, a preprocessing transformation splits them into multiple

uni-type operation statements. Let rgn[x : y] denote the kernel code re-

gion beginning and ending with statements Sx and Sy, respectively, where:

x = ord(Sx), y = ord(Sy) and x ≤ y, (in the boundary case that x == y, we

denote the corresponding region as rgn[x], for brevity). Additionally, each

region’s statement needs to satisfy two more conditions: all the statements

contained in region, rgn[x, y], have to (i) be of the same type and (ii) belong

to the same control-flow hierarchy level:

∀S ∈ {Sk | x ≤ k ≤ y} → opTyp(Sk) = opTyp(Sx)

→ hLev(Sk) = hLev(Sx)
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where ord(Sk) = k. In other words, regions are sequences of statements of

homogeneous type and same control-flow hierarchy level.

The proposed TDPS framework builds a hierarchical region graph (HRG)

for each kernel during the analysis phase (Figure 6.1). The HRG represents

the kernel as a tree-structured graph GHRG = (V,E), where each leaf vertex

vl ∈ V represents a region (of type CMP, TRN or SNC) and each internal

vertex vh ∈ V represents a control-flow structure. Figure 6.2 depicts the HRG

for the DWT kernel, where CMP, TRN and SNC regions are represented as

blue (named CMP#), yellow (named TRN#) and orange nodes (named

SNC#), respectively. Double-rimmed nodes represent control flow (CF )

hierarchy in the kernel. Purple CF nodes represent tIDX variant (TVAR)

control flow, whereas green nodes represent tIDX-invariant (TiVAR) control

flow. The order of the child vertices of a control-flow vertex is determined

by the partial ordering of the statement IDs, sID, represented by each child

vertex. The set of edges, E, in the HRG graph, GHRG, comprises two types

of edge subsets: (i) EH which denotes hierarchy relations between region

nodes and (ii) ED (dashed edges) which denotes dependency relations be-

tween region nodes. The HRG offers a concise representation of the kernel

and facilitates efficient feasibility and cost/gain analysis of the different code

transformations used in TDPS. When feasibility and cost/gain analysis for a

particular transformation results in a positive outcome, the transformation is

applied in the source code and the HRG is modified accordingly to represent

the modified source code. Moreover, the HRG enables easy and correct kernel

decomposition into COMPUTE and TRANSFER tasks through depth-first

traversals (DFT) of the HRG tree. DFT facilitates grouping of region nodes

into tasks that satisfy two rules: (i) a task may contain control-flow (CF)

nodes as long as every child node of a contained CF node is also included

in the task, and (ii) a task may contain nodes across different control-flow

hierarchy levels as long as the corresponding CF nodes are also included in

the task (e.g. grouping nodes CMP12 and SNC13 in Figure 6.2 within the

same task is only allowed if nodes IF10, CMP10 and TRN11 are also in-

cluded in the task). HRG nodes are grouped into tasks based on their type.

A TRANSFER task comprises only TRN nodes whereas a COMPUTE task

may include CMP nodes as well as SNC nodes. For example, nodes SNC2,

CMP3, SNC4, and CMP5 may be grouped into one task.
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6.2 The TDPS Framework

The throughput-driven parallelism synthesis (TDPS) framework implemented

in this work is integrated into FCUDA (Chapter 4) which takes CUDA ker-

nels as input and generates C code that is fed to the HLS engine. The gen-

erated C code is appropriately structured and annotated to facilitate synthe-

sis of high-throughput RTL. TDPS analysis and transformation is preceded

and followed by pre-processing and post-processing stages, respectively. The

pre-processing stage includes kernel procedure identification and kernel code

tidying up through transformations such as (i) declaration and executable

statement separation (hoisting declarations out of executable kernel regions),

and (ii) return normalization ( i.e. converting multiple return statements into

a single return statement at the end of the kernel procedure). Additionally,

in the current implementation of the pre-processing stage, non-library pro-

cedures called by the kernel procedure are inlined. Note that callee inlining

facilitates easier kernel restructuring in subsequent processing stages, but is

not required for most transformations. Finally, it checks for unsupported

code structures, such as unstructured control flow (i.e. goto statements) in

the kernel and issues warnings (the HRG representation facilitates transfor-

mations with well-structured code).

The post-processing stage of the FCUDA flow entails (i) variable privati-

zation (i.e. variables storing thread-dependent values which are accessed in
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different regions of the HRG may need privatization with respect to threads),

(ii) kernel task outlining (i.e. the tasks formed by the TDPS framework are

outlined into separate task procedures), (iii) intra-CTA parallelism extraction

(i.e. thread parallelization through tIDX-loop unrolling and on-chip memory

banking), and (iv) inter-CTA parallelism extraction (through replication of

the task procedure calls, which results in multi-CC RTL). Pre-processing and

post-processing transformations are based on ideas discussed in earlier works

[74, 73, 48] and thus will not be further described here.

6.2.1 TDPS Framework Overview

The TDPS framework initially carries out an analysis phase which is imple-

mented by the region analysis stage (Figure 6.1). This stage performs region

identification and annotation in the kernel code and builds the HRG (Figure

6.2). Furthermore, each statement is annotated with region and referenced

variable information which is leveraged in later stages. The subsequent four

stages compose the latency optimization phase which is based on different

types of region motions. The first stage of this phase implements thread syn-

chronization optimization through SNC region motions. Data dependence

analysis and synchronization cost estimation on the FPGA architecture are

used to determine opportunities for profitable motions of SNC regions. Shift-

ing SNC regions within the HRG can enable merging of fine-grained CM-

P/TRN regions into coarser ones for higher kernel execution efficiency on

the reconfigurable fabric. In the burst conversion stage, CMP regions which

entail address computation for TRN regions are analyzed to determine the

feasibility of converting individual thread transfers into bursts. In case of

positive analysis outcome, the corresponding CMP and TRN regions are com-

bined into new TRN regions implementing the burst transfer. Subsequently,

the TRN region motions stage identifies the feasibility and potential benefits

from reorganizing TRN regions within the HRG sub-tree rooted at the parent

control-flow node. Data dependence and cost/gain analyses are leveraged to

identify new beneficial region orderings. The last stage of the latency op-

timization phase implements control-flow normalization by considering the

possibility of splitting control flow (CF) sub-trees with heterogeneous child

regions into separate CF sub-trees of single-type child regions. Addition-
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ally, the CF normalization stage entails sub-tree motions in the HRG, using

feasibility and cost/gain analyses similarly to the TRN motion stage.

After latency optimization at the custom core (CC) level, the throughput

optimization phase takes place (Figure 6.1). This phase considers through-

put optimization at the device level by analyzing the tradeoffs between CTA

latency and CTA throughput with respect to on-chip memory allocation. A

graph coloring algorithm is used to efficiently find a throughput-optimized

mapping of data structures onto FPGA BRAMs. Moreover, an efficient

throughput optimization algorithm considers region reordering opportunities

that facilitate enhanced overall throughput.

6.2.2 Analysis Phase

Region analysis identifies the CMP, TRN and SNC regions in the kernel and

annotates each statement with region and thread-dependence information.

The annotated information is also used for the generation of the HRG. The

analysis process is carried out as a sequence of six steps: (A1 ) Locate global

memory accesses, (A2 ) Normalize mixed-type statement, (A3 ) Build Def-

Use chains [75], (A4 ) Find tIDX-variant (TVAR) statements, (A5 ) Annotate

TVAR statements, and (A6 ) Build the kernel’s HRG. Initially global mem-

ory variables are identified and all global memory references are collected in

step A1. Global memory variables include CUDA __constant__ variables

and kernel procedure parameters of pointer type, as well as all of their kernel-

defined aliases through pointer arithmetic expressions. During step A2, ker-

nel statements are scanned to find mixed-type statements, i.e. statements

entailing both CMP and TRN operations. Each such statement is converted

into separate single-typed CMP and TRN statements. Once computation

and communication logic are decomposed at the statement level, dataflow

analysis is used to build Def-Use chains (step A3 ). Def-Use chains facilitate

tIDX-variant (TVAR) variable and statement identification (i.e. variables/s-

tatements that store/calculate tIDX-dependent values) during step A4 and

tagging during step A5. Finally the HRG is constructed in step A6 with the

help of the analysis information annotated on the kernel statements. Each

node in the HRG (Figure 6.2) which corresponds to a kernel region is as-

signed a region identifier, rID, that is used to create a partial ordering of all
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the CMP, TRN and SNC regions (rID partial ordering is determined through

depth-first traversal of the kernel code). Control-flow nodes are assigned the

smallest rID of the region nodes in their subtree (e.g. CF node IF9, is

tagged with the smallest rID of its subtree nodes: rIDIF9 = rIDCMP9 = 9).

Moreover, the HRG is annotated with inter-region dependence information

(dashed black arrows in Figure 6.2) based on the Def-Use analysis data.

6.2.3 Latency Optimization Phase

The latency optimization phase of TDPS comprises different region motion

stages which aim to eliminate the execution latency overhead originating

from excessive (i) CMP and TRN interleaving, and (ii) synchronization di-

rectives. Hence, the goal of the transformations applied in this phase is to

reduce CTA execution latency through HRG reorganization so as to avoid

fragmentation of the CTA into multiple fine-grained tasks. For example,

the initial organization of the DWT HRG (Figure 6.2) has eight interleaved

tasks (marked with the dashed red circles). Since each task is outlined in a

separate task procedure in the FCUDA flow, task boundaries represent im-

plicit synchronization points (ISPs) imposing synchronization overhead and

eliminating ILP extraction opportunities across tasks. Apart from task la-

tency, HRG reorganization also affects resource storage. That is, multiple

fine-grained tasks result in additional TVAR variables being accessed across

ISPs. In the FCUDA flow this is dealt with by variable privatization with

respect to tIDX, which results in higher BRAM resource usage (e.g. vari-

ables d0 and id0 in Listing 6.1 are privatized after standard SIMT-to-C task

decomposition in Listing 6.2). The TDPS framework considers the impact

on BRAM allocation and tries to reorder and merge regions into fewer tasks

so as to reduce ISPs formed by task boundaries.

The HRG in tandem with the annotated Def-Use chain information plays

a critical role in region motion feasibility analysis and cost/gain estimation

during the transformation stages in this phase. Each inter-region Def-Use

chain is characterized based on the type of variable it corresponds to as ei-

ther thread shared chain (TSC) or thread private chain (TPC). TSCs corre-

spond to chains related to __shared__ or global variables where inter-thread

dependence may require explicit synchronization between the definition re-
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Figure 6.3: SNC region motions

gion and the use region (e.g. the chain between the definition and use of

__shared__ variable shr in lines 2, 4 of Listing 6.1, respectively; also rep-

resented with dependence edge between TRN1 and CMP3 in Figure 6.2).

TPCs, on the other hand, correspond to thread-private variables and are not

affected by CTA synchronization directives. Nonetheless, synchronization

might affect the storage allocation for private thread chains, as discussed

earlier. Hence, TSCs affect the feasibility of region motions, whereas TPCs

affect the cost/gain estimation analysis of region motions. There are three

possible effects that region motions may have on Def-Use chains: (i) Desyn-

chronization (DSYNC), (ii) Synchronization (SYNC), or (iii) Not affected

(NA). Desynchronization happens in the case that the explicit or implicit

synchronization points between source and sink regions of a chain are re-

moved (e.g. in the case of SNC region motions, if SNCp is shifted to SNCn

in Figure 6.3(a), then chain CHN1 between def1 and use1 is desynchronized).

Correspondingly, CHN3 between def3 and use3 is synchronized for the same

SNCp → SNCn motion, whereas CHN2 is not affected by this region mo-

tion. Determining which case a region motion corresponds to, is based on

the partial ordering enforced by the region identifiers assigned to the involved

regions (see Section 6.2.2).

As mentioned earlier, TSCs may affect the feasibility of a region motion.

The feasibility of a region motion with respect to a TSC is determined by

the motion effect on the chain (i.e. DSYNC, SYNC or NA, as characterized
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above) in combination with the value of its dependence distance vector [76].

Specifically, in case of SYNC or NA motion effects on the TSC, feasibility is

positive regardless of the dependence vector distance (e.g. CHN2 and CHN3

in Figure 6.3(a)). However, in case of DSYNC motion effect on the TSC,

the dependence distance vector needs to be examined in order to determine

feasibility. We leverage the work in [77] and extend it by applying dependence

distance vectors in determining region motion feasibility. Specifically, the

authors in [77] show that it is feasible to remove implicit synchronization

points (ISPs) between the source and sink of a Def-Use chain as long as one

of the following rules holds with respect to the chain’s distance dependence

vector v:

• v[0] == 0

• v[0] < 0 ∧ v[1 : (|v| − 1)] == 0

• v[0] == v[i] : i ∈ [1 : (|v| − 1)] ∧ v[1 : i] == 0

where v[0] corresponds to the outer loop index (i.e. tIDX) and v[0] < 0 de-

notes an inter-thread data dependence. For the purpose of determining the

feasibility of a region motion we apply this test also for explicit synchroniza-

tion points (ESPs). To evaluate the distance vector we leverage symbolic

analysis ([75]) in combination with range analysis ([78, 66]) and array depen-

dence analysis ([75, 76]). If none of the conditions can be proven, feasibility

is not confirmed and the corresponding region motion is rejected. In the

following subsections we discuss further details of the transformation stages

in the latency optimization phase of TDPS.

SNC Region Motions

This stage identifies feasible SNC motions that facilitate region merging.

Region merging helps coarsen kernel tasks, reduce barrier and tIDX-loop

overhead and reduce task latency through more ILP extraction within larger

tasks. SNC region shifts are only considered within their current scope (i.e.

SNC nodes are not shifted across different HRG tree levels). The SNC mo-

tions stage involves four main steps: (SM1 ) Collect all SNC regions, (SM2 )

Get feasible destinations, (SM3 ) Estimate motion cost/gain, and (SM4 ) Per-

form motion. Initially SNC regions are collected (step SM1 ) and ordered
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with respect to their region identifier, rID. For each synchronization re-

gion, SNCp, destination location candidates in the current HRG level are

examined to identify the feasible ones (step SM2 ). Candidate destination

locations are explored in two sweeps of the corresponding HRG level: a for-

ward (Figure 6.3(a)) and a backward sweep (Figure 6.3(b)) starting from the

original location of SNCp in the HRG. Let us use rIDSNCp = p, of region

SNCp to denote its original location (note that region IDs provide partial

ordering of HRG nodes). During a sweep, the candidate destination location

is the location corresponding to one region hop in the corresponding sweep

direction. The sweep ends when the boundary of the level is reached or a

non-feasible destination is encountered. Feasibility is tested as described in

Section 6.2.3 with respect to all TSCs having source region ID, r : r < p,

and sink region ID, v : v > p and the new region ID, n, of destination lo-

cation, SNCn, satisfies the following condition: n > v, for forward sweeps

(Figure 6.3(a)), or n < v, for backward sweeps (Figure 6.3(b)). For each

shift during the sweep, only additional TSCs need to be tested with regard

to fulfilling the aforementioned feasibility conditions. The sweep ends when

the new candidate destination location, SNCn, breaks feasibility for a TSC.

Each of the feasible destinations identified is evaluated (step SM3 ) with

regard to the following factors:

• De-synchronized TPCs gain

• Synchronized TPCs cost

• Explicit synchronization point (ESP) elimination gain

• Implicit synchronization point (ISP) overhead cost

Note that ESP elimination may happen if the candidate destination location

has a SNC region neighbor. For example, SNC motion application on the

DWT HRG results in elimination of the SNC4 region (Figure 6.4). On the

other hand, ISP overhead may result from shifting the SNCp region among

regions that could potentially be merged within a single task (e.g. two neigh-

boring CMP regions). Finally, a destination location for SNCp is selected

based on evaluation of all the candidate destinations. Then, the correspond-

ing SNC region motion is implemented in the code and represented in the

HRG (step SM4 ).
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Figure 6.4: DWT HRG after SNC motions stage

Burst Conversion

This stage analyzes the format of the address generation computation related

to global memory accesses and identifies the feasibility of converting multiple

thread accesses into burst transfers. Burst transfers facilitate higher usabil-

ity of the off-chip memory interface bandwidth (i.e. DDR memories offer

enhanced throughput for accesses with high spatial address locality). More-

over, they offer two additional benefits: (i) reduce the address computation

complexity (i.e. a shared base address is initially calculated and subsequently

incremented for each memory word transfer instead of calculating the address

of each transfer separately) and (ii) facilitate region consolidation in the HRG

representation (e.g. CMP0 region which computes the addresses for TRN1 in

Figure 6.4 is eliminated after applying burst conversion on the DWT kernel;

see Figure 6.5).

The burst conversion stage involves four main steps: (BC1 ) identify all

CMP regions involved in address calculation, (BC2 ) analyze coalesced ac-

cesses with respect to tIDX, (BC3 ) analyze address coalescing with respect

to other loops in the kernel, and (BC4 ) perform HRG restructuring. Ini-

tially, the Def-Use chains computed earlier in the flow are leveraged to

identify statements and expressions performing address computation (step

BC1 ). Subsequently, symbolic analysis and value range analysis is used to

determine whether the range of computed addresses per CTA is coalesced

92



with respect to tIDX. In particular, forward substitution is used to derive

the address calculation expression, EA. Then, the tIDX variant (TVAR)

analysis performed during region analysis stage is used to decompose the

expression into a TVAR part, ETV AR, and a tIDX invariant part, ET iV AR:

EA = ETV AR + ET iV AR. Symbolic and range analyses are used to examine

the ETV AR expression and determine whether memory accesses are coalesced

in piecewise ranges, [si : ei], of the tIDX domain. If such piecewise domain

ranges can be identified, their maximum range value is returned. Otherwise,

a negative value is returned to signify the infeasibility of static conversion

of memory transfers into bursts. Subsequently, a similar analysis of the

address calculation expressions is carried out to identify coalescing opportu-

nities across piecewise ranges of non tIDX-loops (step BC3 ). Any additional

piecewise ranges found are used to extend the tIDX piecewise ranges identi-

fied previously (step BC2 ).

Finally, during the last step of this stage, the address computation analysis

results are utilized to perform any required HRG modifications. In the case of

statically identified coalesced address ranges, individual thread accesses are

converted into memcpy calls where ET iNV serves as the source/destination

address and the size of the piecewise address range, [si : ei], as the transfer

length. memcpy calls are subsequently transformed into DMA-based bursts

by the high-level synthesis engine. In the case that no address ranges are

returned by static analysis, address computations are kept within CMP re-

gions and computed addresses are stored for use by the corresponding TRN

regions. Moreover, the noncoalesced TRN regions are annotated so as to be

interfaced during the post-processing phase of FCUDA to a dynamic data co-

alescing module. This module coalesces temporally and spatially neighboring

accesses into short data blocks during reads/writes to off-chip memory. Fig-

ure 6.6 shows a high-level overview of the dynamic memory access coalescing

module.

TRN Region Motions

This transformation stage performs TRN region motions within their current

scope (i.e. TRN nodes are not shifted across different HRG tree levels). In

particular, TRN-Read (TRN-R) regions (i.e. off-chip to on-chip data trans-

fers) are shifted toward the beginning of the HRG level, while TRN-Write
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Figure 6.5: DWT HRG after burst conversion stage
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(TRN-W) regions (i.e. on-chip to off-chip data transfers) are shifted toward

the end of the HRG level. This transformation aims to enable coarsening of

CMP regions into bigger regions with more opportunity for ILP extraction

and resource sharing. For example, the TRN motions stage converts the

HRG of the DWT kernel in Figure 6.5 into the HRG depicted in Figure 6.7,

in which region CMP2 results from the consolidation of regions CMP2 and

CMP4 of the input HRG (Figure 6.5). The TRN motions stage involves four

main steps: (TM1 ) Collect all TRN regions in two lists representing TRN-

R and TRN-W regions, respectively, (TM2 ) Get feasible shift destinations,

(TM3 ) Estimate motion cost/gain, and (TM4 ) Perform TRN motion.

Initially TRN regions in the kernel HRG are identified (step TM1 ), and

based on their classification as TRN-R or TRN-W, they are ordered with

respect to their region ID, rID, in two separate lists. For each TRN region,

TRNp with rIDTRNp = p, candidate destination locations are examined to
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identify feasible destinations within their current HRG level represented by

region HRm with rIDHRm = m (step TM2 ). In the case of TRN-R regions,

the candidate destination locations correspond to region IDs: rIDc = {c|c ≥
n ∧ c < p}, where n = max(o,max(SW )) and SW is the set of region IDs

corresponding to nodes to which node TRNp is truly dependent (based on the

annotated dependence information in the HRG). Correspondingly, for TRN-

W regions, the candidate destination locations are represented by region ID

set: {rIDc|c > p ∧ c ≤ n}, where n = min(z,min(SW )), z is the region ID of

the last child node of HRm, and SW is the set of region IDs corresponding to

nodes that are truly dependent to node TRNp. Feasibility of the candidate

destination locations may be an issue in the cases that SNC regions exist

between the origin and the candidate destination of the TRN region. Testing

feasibility with respect to affected TSCs is done as described in the previous

subsection on “SNC Region Motions.” The candidate destination locations

are examined for feasibility in increasing order of: |p − c|; if a nonfeasible

destination is identified, any remaining candidates are dumped from the rIDc

set.

For each candidate destination in the rIDc set, cost is evaluated with

regard to the following factors (step TM3 ):

• Implicit synchronization point (ISP) cost/gain due to new or eliminated

ISPs

• Desynchronized TPCs gain due to ISP elimination

• Synchronized TPCs cost due to ISP introduction

Finally, a destination location for each considered TRN region is selected

based on the candidate destination evaluation and the region motion is im-

plemented in the code and represented in the HRG (step TM4 ). Note that

special care needs to be taken for region motions that break output and

anti-dependencies. Ensuring correct functionality in such cases requires the

declaration of extra storage and appropriate copy operations. The related

cost is also considered in the evaluation step TM3.
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Figure 6.7: DWT HRG after burst conversion stage

Control Flow (CF) Normalization

This stage handles control-flow (CF) structures that use tIDX-variant (TVAR)

conditional expressions and include heterogeneous regions (e.g. IF5 region

in Figure 6.7 contains CMP5 and TRN6 regions). TVAR CF structures

with heterogeneous regions need special handling in order to expose the im-

plicit synchronization points (ISPs) between heterogeneous regions. Expos-

ing the ISPs is critical in exploiting data transfer coalescing across neigh-

boring threads in TRN regions as well as exposing the data-level compute

parallelism in CMP regions. In order to expose the ISPs, the TVAR CF

structure needs to be interchanged with the tIDX-loop which expresses the

CTA threads. Let us use the code example in Listing 6.3 to demonstrate how

TVAR loops (line 4) are handled by the CF normalization stage. The stan-

dard FCUDA flow wraps a tIDX-loop around the TVAR loop, which inhibits

coalescing of the memory accesses in the TRN region (line 6) across threads.

The CF normalization stage handles this by converting the TVAR loop into

a TiVAR loop (line 5 in Listing 6.4) preceded by initialization of the induc-

tion variable (line 2) of the original TVAR loop. Thus, the ISPs between

regions are exposed through tIDX-loops wrapped around each region (lines

7, 10). Note that the variables in the example are still in SIMT notation.

A subsequent stage in the FCUDA flow determines whether they should be

privatized (i.e. incur storage overhead) or re-implemented (i.e. incur com-
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Listing 6.3: Unnormalize CF containing CMP and TRN regions
1 // t I dx := threadIdx . x
2 t i d=(blockIdx . x∗blockDim . x ) ;
3 for ( t Idx=0; tIdx<blockDim . x ; t Idx++) // Imp l i c i t Threadloop
4 for ( pos=t i d+tIdx ; pos<N; pos+=numThreads ) { // TVAR CF
5 locA1 = ( locA0 ∗ ( locB ∗ rcpN ) ) ; // CMP
6 d A [ pos ] = loc1A ; // TRN
7 }

putation redundancy). Variable pos, for example, would become an array

of size blockDim.x in the case of privatization, whereas reimplementation

would result in the code shown in Listing 6.5. In any case, the TRN regions

are now disentangled from the CMP regions and can be converted into burst-

like transfers by exploiting inter-thread coalescing. Other types of TVAR CF

structures can be handled in similar ways. FOR-loop structures require the

most work as their semantics include initialization, condition check and up-

date. For example, in the case of a TVAR IF structure, the transformation

would only entail breaking the IF body into its heterogeneous regions, with

each region guarded by a replicated IF statement and wrapped into a sepa-

rate tIDX-loop. Figure 6.8 depicts the resulting HRG representation of the

DWT after CF normalization: IF5 node is split into IF5 and IF6 nodes,

with each one containing only one type of regions. Once the TVAR CF

structures are converted into TiVAR structures, further processing can de-

termine whether TiVAR structures with heterogeneous types of regions can

be similarly normalized into single-type CFs (possibly at the cost of extra

resources and redundant computation overhead).

6.2.4 Throughput Optimization Phase

This phase comprises transformation stages that consider overall kernel exe-

cution throughput. One of the major performance bottlenecks in massively

data parallel applications is memory access bandwidth. Hence, this phase

leverages analyses that treat on-chip memory resource and bandwidth as a

first class citizen during throughput estimation and throughput-driven kernel

restructuring. The main optimization philosophy difference with respect to

the previous phase is that the analysis techniques and the algorithms used

in this phase consider the overall execution throughput with respect to the

target device resources (i.e. CTA concurrency) rather than the execution
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Listing 6.4: CF normalization using variable privatization
1 // t I dx := threadIdx . x ;
2 t i d=(blockIdx . x∗blockDim . x ) ;
3 for ( t Idx=0; tIdx<blockDim . x ; t Idx++)
4 pos [ t Idx ] = t i d+tIdx ;
5 cfCond=true ;
6 while ( cfCond ) {
7 for ( t Idx=0; tIdx<blockDim . x ; t Idx++) // Imp l i c i t Threadloop
8 i f ( pos [ t Idx ]<N)
9 locA1 = ( locA0 ∗ ( locB ∗ rcpN ) ) ;

10 for ( t Idx=0; tIdx<blockDim . x ; t Idx++) // Imp l i c i t Threadloop
11 i f ( pos [ t Idx ]<N)
12 d A [ pos [ t Idx ] ] = loc1A ;
13 cfCond = f a l s e ;
14 for ( t Idx=0; tIdx<blockDim . x ; t Idx++) // Imp l i c i t Threadloop
15 i f ( pos [ t Idx ]<N) {
16 pos [ t Idx ] += numThreads ;
17 cfCond |= ( pos [ t Idx ]<N) ;
18 }
19 }

Listing 6.5: CF normalization using compute reimplementation
1 // t I dx := threadIdx . x ;
2 t i d=(blockIdx . x∗blockDim . x ) ;
3 pos = t i d ;
4 cfCond=true ;
5 while ( cfCond ) {
6 for ( t Idx=0; tIdx<blockDim . x ; t Idx++) // Imp l i c i t Threadloop
7 i f ( ( pos+tIdx )<N)
8 locA1 = ( locA0 ∗ ( locB ∗ rcpN ) ) ;
9 for ( t Idx=0; tIdx<blockDim . x ; t Idx++) // Imp l i c i t Threadloop

10 i f ( ( pos+tIdx )<N)
11 d A [ pos ] = loc1A ;
12 cfCond = f a l s e ;
13 pos += numThreads ;
14 cfCond |= ( pos<N) ;
15 }

latency of each individual CTA. Memory resource allocation and bandwidth

play a significant role in this optimization strategy. First we discuss the met-

rics and estimation techniques used in this phase followed by descriptions of

the algorithms used in the transformation stages of this phase.

Throughput Factors and Metrics

As discussed previously, the main objective of the TDPS framework is to

maximize execution throughput on the FPGA architecture. The metric

guiding the throughput optimization phase is CTA execution throughput:

TPC = EPN ÷ cp where the throughput of configuration C with N custom

cores (CC) is measured as the ratio of cumulative CTA execution progress
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Figure 6.8: DWT HRG after CF normalization

(across all N CCs), EPN , completed per clock period, cp. Note that each

CTA occupies and controls the resources of one CC until it completes exe-

cution. For the purpose of throughput estimation we use the clock period

selection feature offered by the HLS engine leveraged in our flow. That is,

the generated RTL is pipelined according to the clock period selected by the

user, while the cycle latency of each operation is dependent on the selected

clock period. We have built cycle latency tables (CLTcp) by characterizing

operation cycle latencies for different clock periods (cp). These tables are

used by the TDPS framework to estimate cycle latency and throughput for

a chosen clock period. Hence, the CTA execution throughput metric can be

expressed in terms of cycle latencies as: TPC = NCC ÷ (CLCMP + CLTRN),

where configuration C has NCC cores with compute and transfer cycle laten-

cies of CLCMP and CLTRN , respectively. The number of cores, NCC , is esti-

mated for a target FPGA device based on (i) the number of arrays required

per CTA by configuration C, and (ii) resource allocation feedback provided

from the HLS engine. On the other hand, latencies CLCMP and CLTRN are

calculated as the sums of the sequential COMPUTE and TRANSFER task

latencies per CTA in configuration C, respectively: CLCMP =
∑

iCLATi,

and CLTRN =
∑

j TLATj. For concurrent tasks only the latency of the

longer task is considered. (The HLS engine schedules tasks in a synchronous

way; tasks may either start concurrently, if not dependent, or sequentially

when one is dependent to the other.) Cycle latency, CLATi, corresponding to
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COMPUTE task tski, is estimated by determining the task’s critical execu-

tion path. Def-Use chains are used for identifying the critical execution path,

while operation cycle latencies are referenced from CLTcp characterization

tables. TLATj, on the other hand, is the cycle latency estimate for TRANS-

FER task tskj. The TRANSFER latency is affected by two main factors:

(i) the on-chip memory bandwidth and (ii) the off-chip memory bandwidth.

The former is estimated based on the on-chip SRAM memory port band-

width (SMPBW ), the execution frequency and the read/write data volume.

The latter depends on the off-chip DDR memory system peak bandwidth

(DMBW , provided by the user), the extent of static coalescing achieved by

the burst conversion stage in the latency optimization phase (Section 6.2.3)

and the read/write data volume of the task. The final TRANSFER task la-

tency is calculated as TLATj = max(SMLATj, DMLATj), where SMLATi

corresponds to the on-chip memory access latency and DMLATi corresponds

to the off-chip memory access latency. It can be easily deduced from the pre-

vious description that SMLATj is mainly dependent on the architecture of

the examined configuration, C, while DMLATi is mainly constrained by the

value of DMBW provided by the user. The Throughput Optimization phase

aims to adjust the value of SMLATj as close as possible to the value of

DMLATj in order to take advantage of the maximum possible DDR band-

width while avoiding unnecessary over-allocation of on-chip memory resource.

Throughput-Driven Graph Coloring

Graph coloring has been traditionally used in compilers for allocation of

software-accessible registers to variables, temporary results or large constants

[79, 80]. Register allocation in CPUs is extremely important as it can af-

fect performance significantly. The volatile memory hierarchy of modern

microprocessors comprises multiple memory levels starting with registers (or

register-files) at the bottom of the memory hierarchy and ending with DRAM

memory modules at the top. Each upper level provides bigger storage capac-

ity at lower access bandwidth and higher latency. Graph coloring has been

shown to provide an efficient solution for allocating the precious, but ex-

tremely limited, register resource. In CUDA, the SIMT programming model

offers visibility of the different memory hierarchy levels, enabling the GPU

programmer to have significant control of the memory hierarchy allocation
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to kernel data. Hence, CUDA kernels are often designed with consideration

of the memory hierarchy of the target GPU device. The throughput-driven

graph coloring (TDGC) stage of the TDPS framework aims to enhance the

allocation of the on-chip FPGA memories (BRAMs), considering both the

kernel code characteristics and the resource capacity of the target recon-

figurable device. It uses graph coloring within a novel memory allocation

algorithm that determines two main implementation issues: (i) allocation of

arrays onto BRAMs and (ii) scheduling of data communication between off-

chip and on-chip memory levels. Note that in the S2C flow, individual thread

data transfers to/from off-chip DDR memory are organized in TRANSFER

tasks per CTA in order to take advantage of the DDR memory burst ca-

pability and coalesced data access patterns in the kernel. The TDGC stage

entails three main steps: (GC1 ) BRAM allocation to array variables through

array lifetime coloring, (GC2 ) Execution throughput evaluation, and (GC3 )

TRANSFER task rescheduling. The three steps may be iterated until no

other potentially promising region motions are available. In most cases, the

number of iterations is small.

Each array variable in the kernel code is mapped to a separate BRAM by

the HLS tool. Thus, different array variables with non-overlapping lifetimes

will be allocated to different BRAMs. This may lead to precious BRAM

resource waste and reduced throughput, as a result. Hence, through graph

coloring the TDGC stage aims to optimize sharing of BRAMs between arrays

and find optimal TRANSFER task invocation points, in terms of throughput.

Initially, the candidate arrays for allocation are identified (step GC1 ) and

their lifetime, aLT , is computed and defined as a set of live-intervals. Live-

intervals are represented by sID (statement ID) pairs, aLT = {[sIDi, sIDj}.
A lifetime, aLT , may comprise multiple live-intervals in case it can be deter-

mined that the corresponding array is only live across a subset of divergent

control flows with partially ordered sID ranges. Subsequently, an interfer-

ence graph, GI = (V,E), is generated based on the lifetime relations of the

arrays. The nodes, V , of GI correspond to the lifetime instances (i.e. an

array variable, Va may correspond to more than one lifetime instances, if, for

example, all of its elements are killed by an intermediate definition between

two different uses). An edge in set E of graph GI connects two lifetime nodes

if the beginning sID of one of them lies within one of the live-interval of the

other one (this way of interference edge generation results in fewer edges
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and leads to fewer colors required for coloring the graph [75]). Figure 6.9(a)

depicts the interference graph of kernel DWT after throughput optimization.

Subsequently, the interference graph, GI , is colored using a variation of

R-coloring [75] (where R is the number of available BRAMs). Note that the

interference graph represents the lifetime interferences of arrays at the CTA

level, which directly affects the resource requirements of one CC. Thus, if the

available BRAM modules on the target FPGA are NB, and the number of

CC that can fit on the FPGA is NCC , each CC can have R = bNB ÷ NCCc
BRAMS. Traditionally, the number of colors, R, is a fixed constraint in graph

coloring algorithms applied to fixed architectures. However, in the case of

BRAM allocation for custom cores on a configurable fabric, R depends on the

application algorithm and the implementation of task scheduling on the CC.

Our goal is to minimize R so as to increase NCC , which affects throughput.

Hence, we use a dynamically adjustable R value, which is initially set to one

and incremented when there is not any node with degree R− 1. Specifically,

the coloring process comprises an initial node pushing phase, during which

nodes are removed in increasing order of interference degree from GI and

pushed in a stack. (This resembles traditional R-coloring with fixed R, where

nodes with degree less than R are pruned first based on the observation that

a graph with a node of degree less than R is R-colorable if and only if the

graph without that node is R-colorable.) When a node is pruned the degrees

of its neighboring nodes are decremented and the list of nodes with degree less

than R is updated. Once all of the nodes are in the stack, they are popped

back into the graph in reverse order and assigned a color (Algorithm 6.1).

The assigned color for each popped node is the minimum color number that

has not been assigned to any of the previously popped neighboring nodes.

At the end of node popping, all the graph nodes are going to be colored with

at most Rm colors, where Rm is the maximum value of R used during the

node pushing phase of coloring.

The system configuration throughput, TPC , with the chosen BRAM al-

location is estimated in step GC2 as described in the previous subsection.

The number of instantiated CCs, NCC , is determined based on the BRAM

allocation selected in step GC1 and resource estimation feedback from the

HLS with respect to other type of resources. If BRAM usage turns out to be

the throughput limiting resource (i.e. NCC limiting factor), the nodes of the

interference graph, GI , are examined and ordered based on their interference
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Figure 6.9: Interference graphs for graph coloring

Algorithm 6.1: Graph coloring of the interference graph
Input: Uncolored interference graph GI

Output: Colored interference graph G′
I

1 nodes← nods(GI)
2 Rm← 1 // initialize max R

3 while nodes 6= ∅ do
4 sort(nodes) // sort nodes wrt interference degree

5 n← GetNod(nodes) // Get first node

6 d← degree(n) // Get interference degree

7 Rm← max(Rm, (d + 1)) // Update degree

8 push(n, stack) // Push to stack and prune graph

9 while stack 6= ∅ do
10 n← pop(stack) // Pop node from stack and add back to graph

11 getMinColor(n,Rm) // Allocate min color id<Rm

// not used by neighbors of n

degree and the sum of their idle lifetime intervals (ILI). The ILI of a node’s

lifetime consists of the lifetime intervals within HRG regions where the corre-

sponding array is not defined or used. The nodes are subsequently examined

(step GC3 ) in the predetermined order with regard to the feasibility of re-

ducing their ILI (and subsequently their interference degree) through TRN

region motions and the benefit of such motions in the interference degree

of the GI graph. If a node fulfilling these requirements is found, the HRG

is restructured and the TDGC process reiterated until no further candidate

nodes are available. At each iteration of the TDGC flow, the TPC of the

new configuration is estimated (step GC2 ) and the TRN region motion is

committed only for configurations with improved TPC . Figure 6.9(b) depicts

the updated interference graph for DWT kernel after the latency optimiza-

tion phase. The new interference graph entails lower BRAM pressure and

coloring results in the allocation of two BRAMs (compared to three BRAMs
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for the initial interference graph in Figure 6.9(a)).

6.3 Evaluation

The TDPS framework is implemented within the FCUDA flow (Chapter

4) and the analysis phase (Figure 6.1) replaces, essentially, the (manual)

annotation stage shown in Figure 4.1. Moreover, the latency and throughput

optimization phases of TDPS are integrated at the frontend of the FCUDA-

compilation stage (Figure 4.1) to apply throughput-driven code restructuring

prior to compiling the SIMT code into implicitly parallel C code for the HLS

engine. The HLS engine integrated in the flow is Vivado-HLS [81], which is

the successor of AutoPilot HLS engine [31] used in FCUDA (Chapter 4).

The philosophy of the TDPS evaluation in this section is centered around

exposing the performance effects of the transformations applied by TDPS.

Specifically, in the next section we measure the performance impact of the

latency optimization transformation stages to the kernel compute latency.

Subsequently, the effectiveness of the metric used to guide throughput op-

timization is evaluated in Section 6.3.2. Finally, we compare the total ker-

nel execution latency achieved by the TDPS-enhanced flow vs. the original

FCUDA flow in Section 6.3.3. The CUDA kernel benchmarks used in all of

the evaluations are described in Table 4.2. The original floating-point ker-

nels, as well as derived integer kernel versions, are used to further explore

the effectivenes of TDPS optimizations across compute systems with different

precision and range capabilities as well as resource and latency overheads.

Moreover, we also explore the adaptiveness of TDPS to different target FPGA

architectures by measuring the execution latency on two different families of

Virtex FPGAs. Finally, for some benchmarks we examine the effect of TDPS

optimization in relation to code optimizations enabled by different Vivado-

HLS performance-boosting directives. In particular, for the MM kernel which

contains compute intensive loops we apply the loop pipelining directive and

treat the optimized code (MMp) as a separate kernel version.
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6.3.1 Latency Optimization Phase Evaluation

First we evaluate the performance effect of the different optimizations and

transformations applied during the latency optimization phase (Figure 6.1)

on the CTA compute latency. In other words, we evaluate the speedup of

each CC, considering only the COMPUTE tasks of each kernel. Figure 6.10

depicts the compute speedup achieved over FCUDA compilation by applying

growing subsets of the TDPS optimizations; i.e., speedup from TRN motions

(TM) entails SNC motions (SM) and branch conversion (BC). The speedup

achieved by each latency optimization depends on the kernel code character-

istics. Kernels that either contain long dataflow paths (e.g. FWT2) or more

convoluted control flow paths (e.g DWT) offer more opportunity for optimiza-

tion. We can see that TRN motions (TM) can have significant impact in the

compute latency (e.g. FWT2 and DWT). This is due to enabling the genera-

tion of coarser COMPUTE tasks, by shifting TRN regions out of the way. It

is interesting to observe that burst conversion (BC) results in good speedups

for some kernels (e.g. FWT1 and FWT2), even though TRANSFER task

latency is not included in this evaluation. The main reason for this is due

to the address calculation simplification from consolidating the memory ad-

dress computation from all the threads into burst address computations at

the CTA level. On the other hand, SNC region motions do not seem to affect

compute latency in a considerable way. However, they enable elimination of

excessive variable privatization during FCUDA backend compilation phase,

which benefits BRAM resource requirements and hence throughput. Finally,

we would like to point out that the bars corresponding to the MMp kernel

in Figure 6.10 are normalized with respect to the FCUDA bar of MM ker-

nel. This comparison shows that despite the significant speedup achieved by

loop pipelining enabled by the HLS directive engine, TDPS achieves further

speedup improvement.

6.3.2 Throughput Optimization Phase Evaluation

In this section we measure the correlation between the throughput estima-

tion metric and the actual execution latency. For this purpose we use the

DWT kernel that has served as a running example throughout the previous

sections. Specifically, intermediate configurations Ci, of DWT kernel during
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Figure 6.10: CTA execution speedup by cummulatively adding to
optimization level, O, SNC region motions (SM), burst conversion (BC),
TRN region motions (TM), and control flow normalization (CFN).

compilation through the TDPS stages are extracted and fed to the FCUDA

backend and the HLS engine to collect execution results. Furthermore, TPC

is calculated for each configuration. Both execution latency and throughput

estimation results are depicted in the chart of Figure 6.11. The gray bars

correspond to execution latency, whereas the blue line corresponds to calcu-

lated TPC values. We can observe the inverse correlation between the two

performance metrics. This shows the effectiveness of the throughput met-

ric in guiding the selection of high-performance configurations during the

throughput latency phase.

6.3.3 TDPS vs. FCUDA Comparison

In this section we measure the kernel execution speedup achieved with the

TDPS framework over the FCUDA flow. During this evaluation phase, both

flows take as input the same CUDA kernel code. That is, no manual mod-

ifications or optimizations are applied to the kernels. Since FCUDA relies

on annotations in order to identify COMPUTE and TRANSFER tasks, we

leverage the region analysis phase in the TDPS framework (Figure 6.1) to

automatically add annotations in the code, but disable the rest of the opti-

mization stages during FCUDA evaluation. In order to evaluate the effect of

the optimizations in the code structure by the TDPS framework, we are tar-
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Figure 6.11: Effectiveness of TPc metric (left axis shows TPc value, right
axis shows execution latency)

getting the same execution frequency for all the kernels. Thus, we eliminate

the fuzziness induced by the effect of synthesis and place-and-route optimiza-

tions on different RTL structures. Instead, we synthesize all the kernels at

200MHz, but run them at 100MHz to ensure that routing will not affect our

evaluation (note that overconstraining the clock period during synthesis is

a common practice in industry, in order to absorb the frequency hit from

routing delays). In terms of memory interface and bandwidth we model in

our evaluation a similar memory interface as the one used in the convey

hybrid computer [24], where the compute-acceleration FPGA leverages the

high-speed serial tranceivers to transfer data to off-chip memory controllers

that support high-banwidth DDR memory accesses.

Figure 6.12 depicts the speedup of the TDPS-compiled kernels against the

FCUDA-compiled ones. The FP SX50 and FP SX95 bars use floating point

kernels and target VSX50T and VSX95T Virtex-5 devices, respectively. The

third bar (INT SX50) uses integer kernels and targets device VSX50T. Each

bar is normalized against the execution latency of FCUDA for the same device

and kernel. We can observe that the speedup achieved on the bigger VSX95T

device is slightly lower than the VSX50T (even though in absolute terms

latency on VSX95T is lower from latency on VSX50T). The main reason for

this trend is due to the fact that VSX95T is 80% bigger than VSX50T in

terms of compute/memory resource capacity, whereas its off-chip bandwidth
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Figure 6.12: Kernel execution speedup using TDPS vs. FCUDA

is only 50% higher than VSX50T, thus affecting the speedup achieved by the

TDPS transformations. With regard to speedup of the integer kernels, this is

similar to speedup for floating point kernels in most cases. FWT1 and MMp

stand out for different reasons; FWT1 optimizes away integer multipliers

for powers of two, while MMp exploits loop pipelining more efficiently with

integer operations (note that the MMp kernel speedup is here, also, measured

against the FCUDA-compiled latency of MM kernel).

Finally, comparing the speedup corresponding to bars FP SX50 with the

compute latency results in Section 6.3.1, we can observe that the performance

advantage of the TDPS flow is further improved. This is partially due to the

better allocation of BRAMs achieved by the TDGC stage and partially due to

more efficient exploitation of the off-chip memory bandwidth (i.e. transfers

can be more efficiently disentangled from compute and converted to bursts).
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CHAPTER 7

CONCLUSION

The power wall faced by traditional ILP-driven CPUs during the last decade

has caused a major shift towards parallel computing in every compute seg-

ment. This shift has been further enabled and encouraged by two other

factors: (i) the continuing increase of on-chip compute and storage capac-

ity due to the transistor feature shrinking size and (ii) the emergence of

compute intensive applications with high degree of inherent parallelism (e.g.

high-definition processing, fluid dynamics and N-body simulation). Never-

theless the need to achieve high throughput in these massively parallel appli-

cations, without losing the ILP-oriented performance features of traditional

CPUs, is pushing toward a heterogeneous compute ecosystem. A common

heterogeneous configuration today is available on almost every new PC moth-

erboard which includes a general purpose compute capable GPU. Moreover,

the power and performance advantages of FPGA (and ASIC) custom proces-

sors are the reason that several vendors offer cards that host CPUs together

with FPGAs. However, in order to exploit the benefits of reconfigurable de-

vices in a wide range of applications, it is important to achieve both efficient

programmability and high performance. That is, having high performance

at the cost of programmability or vice versa is not going to be acceptable by

the high-performance community.

In this dissertation, we first propose a high-level synthesis flow for enhanced

parallelism extraction from C applications onto a custom processor, named

EPOS. EPOS is a stylized microcode-driven processor with an architecture

that is customized to exploit instruction level parallelism beyond the basic

block boundary. In particular, the EPOS synthesis flow is based on advanced

compiler techniques for high ILP identification which is subsequently mapped

onto the customized EPOS architecture.

As the use of reconfigurable and ASIC custom processors in heterogeneous

systems is going to be better suited for the acceleration of massively paral-
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lel tasks, we propose the use of the CUDA programming model in a novel

flow, named FCUDA. CUDA is a popular parallel programming model that

targets the SIMT (single-instruction, multiple-thread) architecture of mod-

ern GPUs. The SIMT model of CUDA fits well with the highly regular

architectures of modern FPGAs. FCUDA consists of an initial code trans-

formation and optimization phase followed by a HLS phase which generates

high throughput RTL designs. By combining the CUDA programming model

with HLS, FCUDA enables a common programming model for systems that

include GPUs and FPGAs. Moreover, kernel porting between FPGAs and

GPUs becomes straightforward.

In our recent work on multilevel granularity parallelism synthesis, we ad-

dress the issue of balancing parallelism extraction across different granulari-

ties to achieve close to optimal configurations, in terms of clock frequency and

execution cycles. This work is based on the FCUDA framework. By lever-

aging efficient and accurate resource and clock period estimation models,

the proposed framework guides the design space exploration toward a near-

optimal configuration. A source-to-source transformation engine in tandem

with the HLS engine of FCUDA is utilized within a heuristic binary search

as described in Chapter 5.

Finally, in Chapter 6 we present the throughput-driven parallelism syn-

thesis (TDPS) framework which aims to provide throughput-oriented per-

formance porting of CUDA kernels onto FPGAs. The techniques applied in

this work could potentially be employed in other application programming

interfaces with similar SIMT programming semantics that target heteroge-

neous compute systems (e.g. OpenCL [43]). Our experimental evaluation

demonstrates the effectiveness of performance porting achieved through or-

chestration of advanced analysis and transformation techniques in the TDPS

framework.

As computing is moving toward massively parallel processing for big data

applications, it is critical to increase the abstraction level of optimization

and transformation techniques. Representing and leveraging application al-

gorithms at a higher level is crucial in managing the compute resources to

deliver high throughput and high performance in massively-parallel compute

domains. In this thesis, we have dealt with the issue of raising the abstraction

level in the field of high-level synthesis of parallel custom processing cores.

We have developed efficient throughput estimation and optimization tech-
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niques that improve performance beyond the thread-latency level by dealing

with conflicting performance factors at the thread-group level and managing

the compute and storage resources accordingly.
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