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ABSTRACT

With the rapid growth of deep learning models and higher expectations for

their accuracy and throughput in real-world applications, the demand for

profiling and characterizing model inference on different hardware/software

stacks is significantly increased. As the model inference characterization

on GPU has already been extensively studied, it is worth exploring how

performance-enhancing libraries like Intel MKL-DNN help to boost the per-

formance on Intel CPU. We develope a profiling mechanism to capture the

MKL-DNN operation calls and formulate the tracing timeline with spans on

the server. Through profiling and characterization that give insights into Intel

MKL-DNN, we evaluate and demonstrate that the optimization techniques

including blocked memory layout, layers fusion, and low precision operation

used in deep learning model inference have accelerated the performance on

the Intel CPU.
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CHAPTER 1

INTRODUCTION

1.1 Background

Machine learning (ML) as a technique of artificial intelligence grants ma-

chines the capability to learn from big data and make accurate predictions 

without human intervention. Deep learning (DL) is a subfield of ML, which is 

more advanced as it can extract the features from raw data through deep 

neural network architecture. DL models have been widely applied across 

various domains to solve real-world problems like image classification, ma-

chine translation, object detection, segmentation, etc. To make DL model 

computation more reliable, robust, and scalable for large datasets running on 

distributed heterogeneous hardware, the DL frameworks are developed as an 

interface or library that allows developers to build DL models much more 

efficiently [1]. Popular frameworks like TensorFlow, PyTorch, and Apache 

MXNet serve as efficient tools to reduce the computational complexity of DL. 

Given a DL model, it is crucial to optimize the model so that it achieves 

efficient runtime performance under a constrained hardware resource. This 

optimization introduces an increasing demand for understanding and char-

acterizing the DL model using a profiling mechanism. In the past few years, 

many deep neural networks have been accelerated by many-core processors 

such as modern graphical processing units (GPUs), which feature high com-

putational throughput and large memory access bandwidth [2]. In partic-
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ular, Nvidia supports a parallel computational architecture called CUDA

that helps to accelerate simple processing operations in parallel computing

methodologies [3]. A central processing unit (CPU) also has the capabil-

ity to perform fast complex computations such as matrix multiplication or

vector operation through auxiliary math kernel libraries. There are trade-

offs between using GPU or CPU for a DL model computation in terms of

reliability, speed, memory cost, and latency [4]. It is always preferable to

have a high throughput, low latency, and low hardware cost for a DL ap-

plication, so it is critical to use a profilier to understand these performance

metrics and reveal the possible optimization for a DL model. As we already

have many GPU-based DL profiling tools provided by Nvidia CUDA (e.g.,

nvproof, CUPTI), it becomes an interesting topic to profile and characterize

the DL model performance on CPU.

1.2 Architecture of Deep Learning Frameworks

The rapid proliferation of deep neural networks (DNN) in the past few

decades has become the focus of many researchers and developers in AI com-

munities. The collection of DNN architectures is diversified with the surging

of neural networks such as AlexNet [5], ResNet [6], VGG [7], GoogleNet

[8], etc. The development and innovations of these neural networks are in-

tended to provide better feature detection and higher accuracy in prediction

tasks [9], which results in architectural divergences between DNN models.

First and foremost is the difference in the number of layers. Starting with

AlexNet in 2012, which only has 8 layers in total [5], ResNet has evolved from

18 layers to 152 layers in 2016 [6]. These changes in layer numbers indicate

that deep network architectures usually produce better results on complex
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learning problems compared to shallow architecture. Moreover, DNNs are 

distinguished from each other in terms of filter dimensions, the number of 

parameters, padding/stride size, etc., but the commonality is that they all 

demand acceleration and optimization on both hardware and software sys-

tems [9].

DNN training consists of a feed-forward propagation step using the training 

samples and a backward propagation that adjusts the network parameters. 

It is a compute-intensive process due to the massive number of input data 

and training epochs. The goal of training is to get a converged, well-trained 

model. There are two types of learning processes in training: supervised and 

non-supervised. In supervised learning, the labeled ground truth is provided 

throughout the training process. In non-supervised learning, DNNs can infer 

and extract the features from input data without labeled responses.

Most DNN structures use a cascade of layers to model in a high-level 

abstraction. In general, these layers are nonlinear processing units and are 

connected successively, so the output from the previous layer is fed into the 

next layer as the input [9]. Common layers are Convolution, ReLu, Pooling, 

and Fully-Connected.

1.3 Machine Learning Pipeline

A machine learning pipeline is mostly used for automating machine learning 

workflows. Running an ML algorithm typically involves a sequence of tasks, 

including data pre-processing, feature engineering (extraction), model fitting, 

prediction, and validation stage [10]. Figure 1.1 explains the end-to-end ML 

pipeline block. It can be considered as a high-level logical flow of how an ML 

project is operated. An ML pipeline manages and monitors the entire
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workflow, while an ML model is only a small part of pipeline infrastructure 

[11].

Figure 1.1: Machine learning pipeline. The figure is adapted from [11].

There are various motivations for creating and using an ML pipeline, but the 

most important thing is to have a better structure and to segregate different 

parts of the ML stage.

1.4 Math Kernel Library for Deep Neural Network

Math Kernel Library for Deep Neural Network (MKL-DNN) [12] is an open-

source performance library for deep learning application developed by Intel 

and is intended for improving the application performance on Intel CPU ar-

chitecture. It is also known as the Deep Neural Network Library (DNNL) and 

oneAPI Deep Neural Network Library (oneDNN). Traditionally, the training 

processes of deep learning frameworks like TensorFlow, Caffe, and MXNet are 

accelerated by massive parallel computing on GPUs with CUDA, as well as 

software frameworks like cuBLAS and cuDNN. CPU can conduct training and 

inference as well, but it is not commonly used in deep learning due to its 

limited arithmetic throughput,  memory bandwidth, and thread-parallelism. 

Intel’s recent augmen-tation of CPU hardware, as well as the toolkits and 

libraries like MKL-DNN, have ensured the performance improvement of 

CPU-based deep learning ap-plications.
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MKL-DNN takes advantage of single-instruction multiple-data (SIMD) in-

structions through vectorization [13]. It utilizes the hardware cache and in-

struction sets effectively. Moreover, the library supports multithreading by

exploiting multiple cores in modern Intel CPU architecture. Having more

available cores to work in parallel can remarkably boost the performance of

deep learning applications

Figure 1.2: MKL-DNN scope of design. The figure is adapted from [14].

MKL-DNN, as the CPU-based deep learning optimization, has achieved a

speed-up over the under-optimized design. Figure 1.2 shows the MKL-DNN

scope of design. It includes highly vectorized threads as building blocks

for implementing convolutional neural networks with C and C++ interface
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[15]. Currently, MKL-DNN implements the optimized operators, which are

also called primitives, that are commonly used in convolutional neural net-

works and recurrent neural networks. The most frequently used primitives

are Convolution, Batch normalization, Inner Product, Eltwise Relu, Pooling,

and Reorder.

Figure 1.3: MXNet latency improvements with Intel MKL-DNN. The figure
is adapted from [16].

MKL-DNN generates optimal code for some functions at runtime based on

their input parameters and instruction sets that are supported by the system

using just-in-time compilation (JIT). It chooses the optimal computation

algorithm under the current CPU dynamic status. Currently, there are many

existing frameworks like MXNet supporting Intel-Architecture CPU-based

training and inference with MKL-DNN integrated to accelerate the neural

network operator on multiple operating systems (e.g., Linux, macOS, and

Windows). In the v1.2.0 MXNet release, Intel MKL-DNN is applied for

the performance improvement in terms of latency optimization, throughput
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improvement, and batch scalability [17].

The figure 1.3 shows that MXNet with MKL-DNN integration achieves an

at-most 43x lower latency compared to the MXNet without any optimization

when batch size is small [18]. More experiments have demonstrated perfor-

mance improvements while using MKL-DNN. The result [17] presented by

Google at TensorFlow summit 2018 shows that 3x performance enhancement

and scaling efficiency can be achieved by using Intel MKL-DNN.

1.5 OpenTracing

OpenTracing [19] is an API library for distributed tracing. Distributed trac-

ing is a method for monitoring applications that are built with microservices

architectures, and it helps debug and understand the performance of the

software architecture [19].

Figure 1.4: A single trace with multiple spans

A trace in OpenTracing is a set of spans ordered in a particular sequence.

Figure 1.4 is a simple example for a single trace. A span contains the fol-

lowing metadata: an operation name, a start timestamp, a finish timestamp,

span tags, span logs, a span context, and span references. The relationship

between two different spans can be ChildOf or FollowsFrom. For a ChildOf

relationship, a parent span can have multiple child spans, and they execute
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in either parallel or sequential. For a FollowFrom relationship, the child span 

follows the parent span at any timing position.

OpenTracing has reduced the programmer's workload for instrumenting 

applications for dis-tributed tracing. To instrument an application via 

OpenTracing API, it is necessary to have an OpenTracing-compatible tracer 

correctly deployed and listening for incoming span requests [19]. In the 

current release version, there are two distributed tracing systems: Zipkin 

and Jaeger. Both systems are powerful tools for tracking requests, and 

which one to use in the real-world application largely depends on the 

development demand. While Zipkin has existed for a more extended 

period, Jaeger has seen a wider adoption in programming language 

coverage and OpenTracing instrumentation libraries [20].
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CHAPTER 2

RELATED WORK

2.1 MLModelScope

MLModelScope [21] is a platform that helps to facilitate the experimenta-

tion with and evaluation of machine learning models. It is designed as a tool 

to measure and evaluate ML models with real-world artificial intelligence 

workflow across the hardware/software stack. It serves as an integrated plat-

form, which makes it easier for users to deploy their models/frameworks, 

evaluate the model performance and accuracy, and analyze the results. The 

MLMoelScope component for across-stack profiling  is named XSP [22], which 

provides an insightful view of ML model execution and leverages distributed 

tracing to aggregate profiling results from different sources. Despite the 

profiling overhead at hardware/software stack, XSP can accurately capture 

the latencies at all levels with a leveled and iterative measurement approach.

Figure 2.1 depicts the six profiling trace levels of MLModelScope: appli-

cation, model, framework, layer, library, and hardware. By selecting dif-

ferent trace levels, it allows user to profile the corresponding tracing span. 

Its scalable across-stack profiling scheme helps to coordinate and combine 

the tracing span from different profilers into a single trace [21]. Currently, 

MLModelScope is focused on ML model performance evaluation, specifically 

on the GPU platform.

The paper by Li, et al [22] illustrates the model-, layer-, and GPU kernel-level profiling
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Figure 2.1: The overview of MLModelScope. The figure is adapted from 
[21].

levels on GPUs.

Model-level profiling measures the execution steps within the model infer-

ence. The XSP design makes use of tracing APIs to mark the beginning and 

ending position within an inference job. For example, in a model prediction 

using the TensorFlow framework with TF SessionRun call, the tracing APIs 

can be put around this call to record the tracing span.

Layer-level profiling aims to profile the layer granularity [22]. An CNN ML 

model consists of multiple layers, and each layer contains information like 

operation name (e.g., convolution, batch normalization, softmax), input/

output size, kernel size, etc. Layer-level profiling deploys the existing ML 

framework
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profiling options. TensorFlow RunOptions setting allows users to choose the 

desired TraceLevel variable, and the result returned from a session run can 

be collected and published onto the tracing server.

GPU-kernel level profiling is achieved by NVIDIA CUPTI [23] library, 

which can capture the CUDA API calls, GPU activities, and metrics. Since 

GPU kernels are always launched asynchronously in ML frameworks or li-

braries, the XSP design creates two spans in the timeline [22]. One is the 

launch span that captures the CUDA API calls, and the other is the execution 

span that captures the execution duration. These two spans are correlated 

by CUPTI and then aggregated during the profiling analysis.

2.2 MLPerf

MLPerf [24] serves as a machine learning benchmark suite that covers a wide 

range of ML applications, including image classification, machine translation, 

reinforcement learning, recommendation, and object detection [25]. In par-

ticular, the MLPerf Inference has been developed to measure the performance 

model training and inference on ML hardware/software.

Table 2.1 indicates a set of tasks in the vision and language area and their 

corresponding reference models. The heavy task refers to the model that con-

sumes substantial computational resources on large systems like data centers. 

In contrast, light task refers to the model that is not limited by the 

computational resources and requires low latency on some small devices [18]. 

The reference models use a 32-bit floating-point weight. In contrast to the 

training per-formance metrics, which place more emphasis on the clock time 

spending to reach a specific model quality, the inference benchmark requires 

the model qualities, including latency and throughput. All tasks are 

standardized on
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Table 2.1: ML Tasks in MLPerf Inference v0.5 [18].

well-recognized datasets (e.g., ImageNet, Microsoft COCO, etc.).

According to the MLPerf Inference design, it has three basic concepts:

SUT (system under test), sample, and query [18]. Sample can be an image

or a sentence, while the query is a set of N samples of an inference run. The

load generator is responsible for simulating queries, tracing the latency of a

query, validating the accuracy of the result, and computing the final metrics.

To test the representativeness of inference applications on different platforms

and systems, MLPerf defines four scenarios: single-stream, multiple-streams,

server, and offline.

In the single-stream scenario, the load generator sends the initial query

and continues to send the query with batch size one (one sample in a query)

after the previous one completes. It considers the 90th-percentile latency

in a query stream as the performance metric for this scenario [18]. In the

multiple-streams scenario, the load generator runs multiple times to test the

maximum number of streams that a system can support, which is also the

performance metrics for this scenario.

The server scenario evaluates the online request of data center services.
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The load generator sends queries in the same manner as the Poisson distri-

bution, and the performance metrics are the maximum possible queries-per-

second of the system [18].

The offline scenario simulates the batch-processing situation in the real 

world. In this case, a large number of input data can arrive simultaneously, 

and the latency can be nonnegligible, so the performance metrics are mea-

sured as the throughput in samples-per-second.

MLPerf includes two divisions of competition/comparison of performance 

results among submissions [10]. The closed division only allows the 

designated ML model and calibration dataset to compare the hardware/

software performance fairly. Open division requires the same dataset but 

accepts any model with fewer restrictions that intends to advance 

innovation of ML [12].

2.3 Machine Learning Framework Profilers

Popular machine learning frameworks like TensorFlow and Apache MXNet 

have their built-in profilers for measuring the framework-level performance 

metrics.

TensorFlow has tf.Profiler module that can capture the layer information 

and metadata of a machine learning model layer. MXNet profiler [14] sup-

ports four types of profiling: symbolic operators, imperative operators, mem-

ory usage, and C API [26]. When properly configuring the profiler setting, the 

user can set the profiler state to “run” at the beginning of the opera-tions and 

disable it when all operations are complete. Another way to enable profiling is 

to turn on the global environment variable for automatic profiling. The 

profiling result shows the time spent on each operation and the count of 

operation calls. Figure 2.2 is a sample profiling output using MXNet profiler.
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Figure 2.2: MXNet profiler output.
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CHAPTER 3

PROFILER IMPLEMENTATION

3.1 Choose Profiling Tool for MKL-DNN

In deep learning, while training is about learning a new capability from ex-

isting data, the inference is more about applying this well-trained capability 

to new data. In other words, the model inference step is referring to make a 

prediction based on a pre-trained machine learning algorithm [27]. Training 

is computed intensively mostly on GPUs due to their massively parallelizable 

computing capability, but inference can perform on both CPUs and GPUs. 

Libraries like Intel MKL-DNN and Intel MKL that optimize deep learning 

applications on Intel processors have provided great benefits for CPU-based 

DL tasks. To achieve maximum performance, widely used DL frameworks 

like TensorFlow, Caffe, and MXNet that demand efficient utilization of com-

putational resources have already been adapted to use MKL-DNN primitives 

for common types of neural network layers [27].

Profiling and characterizing DL model inference is a complicated task. 

Instead of manually insert timing code around the inference step, we want to 

find a more elastic and flexible profiling tool for CPU-based DL model 

inference.

Py-Spy. Py-Spy [28] is a sampling profiler for Python. A large portion of 

ML frameworks support the Python interface, and Python itself also has an 

extensive set of libraries for deep learning.
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Figure 3.1: Py-Spy profiling sample

Figure 3.1 shows an AlexNet inference Py-Spy profiling sample. It discloses 

application-level performance metrics. The Py-Spy profiling result shows the 

CPU time and the percentage for each function call. It can be used to trace 

the Python function calls, but it has no access to capture specific MKL-DNN 

primitives.

MKL-DNN Verbose. Currently, Intel MKL-DNN has limited support for 

existing profiling tools since it has no annotated object code generated at run-

time [14]; thus, other profilers cannot correctly attribute measurements to 

sections of the code. It has its own mode called ”verbose” that turns out to be 

very useful for collecting information about the MKL-DNN primitives, 

including what computational functions are
16

w-hwu
Cross-Out



called, what parameters are passed, and the execution time of these functions.

To activate the verbose mode, we can control either the DNNL VERBOSE vari-

able or the built-in function dnnl set verbose. The verbose mode should

take precedence over any environmental variable while running a DL model

inference.

Figure 3.2: AlexNet inference task verbose output

Figure 3.2 shows a sample inference profiling using verbose mode for AlexNet 

from Apache MXNet Gluon model zoo [29]. Each subsequent line in the figure 

gives the infor-mation of an MKL-DNN primitive call, containing marker 

string, operation, engine kind, primitive name, propagation kind, input/

output data format, auxiliary information, description, and execution time 

in millisecond. For convolution primitive, the problem description is dumped 

in BenchDNN [30] format. Other primitives like reorder, sum, and 

concatenate simply describes the logical dimensions.

3.2 Data Parsing and Processing

Verbose mode outputs a list of comma-separated lines that describe the MKL-

DNN primitive calls. It gives a framework library level view of a model infer-

ence step, as it records the details of primitives that are used for deep neural 

network computation. Since verbose output does not distinguish the layer of

17
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a model, we need to process the data to reproduce the layer information, e.g.,

the execution time spent on each layer of DL model, for a holistic view of

the DL model inference stage. A framework can perform model optimization

at runtime, so the measured layers may differ from those statically defined

in the model graph [6]. We also notice that MKL-DNN has its mechanism

to determine the best fit memory layout at the runtime, so there are certain

operations for memory format reorder operations that happened during the

inference job.

Figure 3.3: AlexNet architecture. The figure is adapted from [29].

We use the inference task for AlexNet as an example. Figure 3.3 elaborates 

the architecture of AlexNet, as proposed in [29] by Krizhevsky. To extract the 

layer in accordance with the given model architecture, the curial attributes 

in the verbose output are the primitive kinds and their descriptions. The 

size of the input, output, and kernel can be obtained from the description 

string that is separated by “ ”. We make use of the regular expression in 

the Golang “regexp” package to derive the corresponding dimensions from 

the verbose output in key-value pairs and collect these pairs to match the 

statistical model layer information. Then we can reconstruct each layer of 

the model in sequence and get the output as shown in Figure 3.4:. Note that 

we have annotated the layer information in the last column of the table.
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Figure 3.4: AlexNet layer reconstruction output.

3.3 Publish to Tracing Server

To incorporate the pre-processed verbose data for different levels of profiling

(e.g., framework level, library level), we leverage the distributed tracing sys-

tem Jaeger [20], as discussed in Chapter 1. A span in Jaeger is referred to as

a piece of timed operation or work. Each span contains unique information

regarding the operation, which can be determined and customized by the

developer. We collect the start and end timestamps, as well as the duration

of primitive operations. The key-value pair tags, operation name, and other

auxiliary information are described in the user-defined annotation. At the

beginning of the model inference, we initiate a root span as the parent ref-

erence for all following spans. We then build the child span and establish

necessary parent-child relations for some cases (e.g., make library-level spans

the children of layer-level spans) during the span creation, which depends on

what level of profiling we want to perform.

We create and publish the spans to either local or remote tracing server

using a tracer. Then the tracing server aggregates the spans as published

by different tracers into a single tracing timeline. First, we have to define a

TraceEvent struct type that contains a collection of fields: operation name,

timestamp, execution time, in/out data format, and a set of parameter key-

value pairs. Each line of verbose output is assigned as a TraceEvent, and

19



then grouped as a list of TraceEvent for publishing.

Figure 3.5: AlexNet inference output published to the tracing server.

Figure 3.5 shows a sample library-level profiling trace that represents one

iteration of forward inference with batch size = 1 for AlexNet. The profil-

ing result reveals what MKL-DNN primitives are called and the timestamp

for each call in the inference endurance.
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CHAPTER 4

PERFORMANCE CHARACTERIZATION
OF CPU BASED DL INFERENCE

4.1 Evaluation on DL Models and Their Variants

4.1.1 Hyper-parameters tuning

In this section, we perform experiments on MobileNet1.0 [31] and evaluate

how the performances of the model and its variants are altered by tuning

the hyperparameters through profiling. MobileNet is a lightweight convolu-

tional neural network primarily built for mobile or embedded-device vision

applications [32]. It takes advantage of deep-wise convolution to reduce the

number of parameters and computational complexity. MobileNet introduces

a hyper-parameter α, named the width multiplier, within 0 and 1. By multi-

plying α to channel (c), we can reduce the total number of channels to make

the original model narrower. We apply α equals 0.25, 0.5, 0.75, and 1.0 to

get four variant MobileNet models in our test and profile the corresponding

inference performance in Figure 4.1. The only difference between variants

is the number of channels. We can see that the more channel we have in a

model inference, the higher the latency it induces. On the other hand, having

more channels also results in higher accuracy. Therefore, it is essential to find

an optimal number of channels to balance between latency and accuracy.

Another interesting observation is that for variants with α = 0.25 and 0.75

(channel number = 8 and 24), the reorder primitive is called twice in the
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Figure 4.1: MobileNet variants latency of MKL-DNN primitives

model inference while the other two cases call it only once. This behavior is

correlated to the MKL-DNN memory layout issue. MKL-DNN requires the

use of blocked memory layout, which means concatenating input images in

a fixed length of a block. The existing popular memory layouts for image

recognition are nhwc (batch size, height, width, channel), nchw, and chwn. If

nchw is blocked by 16 (denote as nChw16c), then 16 channels will be treated

as a single input and dumped into system memory at one time. MKL-

DNN allows channels to be blocked by 8 or 16. Therefore, if channels are

a multiple of 8 or 16, MKL-DNN will automatically detect and perform the

reorder primitive to copy data between different memory formats.

MobileNet-0.25 and MobileNet-0.75 start with channel numbers 8 and 24,

so nChw8c serves as the primary memory layout in the computation of the

first few layers. As the channel number becomes a multiple of 16 (e.g., c =

48), MKL-DNN evokes the reorder primitive immediately to switch memory

format from nChw8c to nChw16c. nChw16c is preferable to nChw8c because

it is supported and accelerated by AVX-512 while nChw8c only uses AVX2.

AVX-512 instruction set supports 512-bit width register and higher computa-
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tional capability. MobileNet-0.5 and MobileNet-1.0 whose starting channel

numbers are already multiples of 16 do not require reordering during the

inference. The above explains why only the numbers of reorder operations

differ among the four variants of MobileNet.

4.1.2 Neural Network Depth Tuning

In this section, we evaluate the pre-trained ResNet from the MXNet Gluon

model zoo with different network depths and perform insightful profiling for

all its five variants. The architecture of 18-layer, 34-layer, 50-layer, 101-layer,

and 152-layer ResNet is shown in Table 4.1. In the paper [6], the author

divides the entire network into 5 components, so each layer name represents

a section of network architecture but not a single layer.

Table 4.1: ResNet Architecture. The table is adapted from [6].

We run the model inference on the Intel i9-7900x processor and use the

profiler as introduced in Chapter 3 to characterize the latency in each layer

for the five models. We only consider the latency of the convolutional layer

and fully-connected layer and do not take the activation or pooling layer
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into account. Figure 4.2 shows the latency comparison between different

layers for the five models. From conv1 to conv 5x, the latency is computed

by accumulating the execution time of MKL-DNN convolution primitives.

The fully-connected layer involves three MKL-DNN primitive calls: sum,

eltwise relu, and inner product, so the latency is the add-on of all three

operations time.

We observe that for models whose layer structures are the same, they have

similar latency in that layer. The channel of 50-layer conv5 x is 8 times larger

than conv2 x, but the latency shown in Figure 4.2 is only 1.1 times longer.

One possible explanation for this is the hardware architecture support on

Intel CPUs.

4.2 Model Quantization With MKL-DNN

4.2.1 Low precision inference on CPU

We compare the performance of models from Apache MXNet on the In-

tel Core i9-7900X processor with 20-core for three configurations: the de-

fault MXNet model, the MXNet 32-bit floating-point (FP32) model built

with MKL-DNN, and MXNet INT8 model built with MKL-DNN. Figures

4.3 and 4.4 show the MXNet inference speed-up with batch size = 1 and

batch size = 128 accordingly under the above three configurations. We

perform experiments on six pre-trained deep neural network models. The

default MXNet native build serves as the baseline. Compared to the re-

sult between the baseline and MXNet optimized with MKL-DNN, it is ob-

vious that both inference throughput and latency performance are greatly

improved.

24

w-hwu
Cross-Out

w-hwu
Text Box
sum

w-hwu
Text Box
This is intuitive assuming that the CPU can accommodate up to 8-wide SIMD vectors. The layout allows up to 8 channels to be consecutive to each other for SIMD execution.



Figure 4.2: ResNet and its variants’ execution time on layers

To enhance the performance metrics and reduce the deployment cost for

inference, Apache MXNet has integrated the MKL-DNN backend into its de-

fault build. It is also commended for its quantization approaches that “allow

inference to be carried out using integer-only arithmetic” [33]. In general,

most of the DNN models are in FP32 precision mode, but the quantized

inference takes advantage of lower precision (e.g., INT8). The paper [33]

indicates that lower precision arithmetic helps to speed up the computation

and save more memory storage and bandwidth. In Figures 4.3 and 4.4, the
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Figure 4.3: MXNet model inference speed-up with batch size = 1.

Figure 4.4: MXNet model inference speed-up with batch size = 128.

second and third columns in each cluster show the acceleration between us-

ing FP32 and INT8. We can conclude that using INT8 low-precision mode

results in more significant performance improvement.

Figure 4.5 shows the pipeline for deriving an INT8 inference from a given

pre-trained FP32 model. Quantization with calibration is an offline stage

that collects statistical thresholds information and uses symmetric quantiza-

tion for each layer to determine the scaling factors [34]. The following INT8

inference stage then makes use of the calibrated model for inference with

higher throughput but lower accuracy due to the decrease in precision.
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Figure 4.5: Model quantization pipeline. The figure is adapted from [34].

4.2.2 Layer Fusion

We take advantage of our profiling schema, as discussed in Chapter 3, to

provide a detailed analysis of Apache MXNet ResNet50.v1 quantization. We

perform both FP32 and INT8 ResNet50.v1 inference with batch size = 1

on the same Intel-CPU Architecture. We call the FP32 model the “baseline

model” and the INT8 model the “quantized model”. As shown in Figure

4.3 and 4.4, the quantized model achieves a 3x or even 4x speed-up over the

baseline model with batch size = 1 and batch size = 128.

Figure 4.6: Left: MKL-DNN primitive calls distribution for ResNet50.v1
(FP32). Right: MKL-DNN primitive calls distribution for ResNet50.v1
(INT8).

Since the pre-trained ResNet50.v1 from MXNet Gluon model zoo is al-

ready optimized with the MKL-DNN, Figure 4.6 shows the distribution of

the number of MKL-DNN primitive calls in both baseline and quantized
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models. Reorder does not count as a strict forward inference in propagation,

and it mostly appears in the warmup stage for inference. It is mainly used

for transforming data between different memory formats without changing

the mathematical tensor in MKL-DNN [35]. The tracing spans visualize

the sequence of the primitive calls in the ResNet50.v1 inference step and

reorder always happens before convolution. THe reason for this is that, in

MKL-DNN, some compute-intensive operations like convolution, inner prod-

uct, and LSTM require particular memory format to achieve a performance

boost.

We notice that the number of convolution primitives in the baseline has an

approximately x3 increase in the quantized model. The tradeoff for this be-

havior is the decrease in the number of other primitives like batch normalization,

eltwise relu, and sum. This is how quantization happened with layers fusion.

Figure 4.7: Residual block for ResNet50.v1 (FP32).

Layer fusion in the quantized model is to combine the primitive operations

like convolution, batch normalization, and eltwise relu into a single quan-
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Figure 4.8: Residual block for ResNet50.v1 (INT8).

tized convolution layer. It is powered by the MKL-DNN that allows several

operations running in a single execution. The benefit of layer fusion is to re-

duce the library call overhead. Instead of calling three operations and having

data read/write in between each layer, it only requires one-time preparation

for a library call, saving many memory I/O operations. Figure 4.7 shows a

residual block with four sets of convolution-batch normalization-relu opera-

tions, and Figure 4.8 is the quantized residual block with four corresponding

fused convolution layers.

Figure 4.9: Left: MKL-DNN primitive calls execution time distribution for
ResNet50.v1 (FP32). Right: MKL-DNN primitive calls execution time
distribution for ResNet50.v1 (INT8).

We observe that for each quantized convolution layer, the execution time

for a single primitive operation is less than the accumulated time for three
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separate primitives. This observation validates the performance improvement

powered by layer fusion and quantization. Figure 4.9 shows the latency

distribution aggregated by layer type in baseline and quantized model.

Figure 4.10: Execution time for ResNet50.v1 (FP32) layer primitives

Convolution makes up a majority of latency in both models. Especially

in the INT8 precision model, it takes up to 95% of total latency. The time

complexity of convolution is determined by the input/output channel number

and the kernel size. Figure 4.10 shows the execution time for each layer

primitive in the FP32 precision model. According to [6], which discusses the

proposed structure of ResNet, the last three blocks (each block consists of

three convolution layers, and activation or pooling layers if necessary) have

larger channel numbers. It is reflected in Figure 4.10 that the layer with a

larger index is more time-consuming than the layer with a lower index.
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Figure 4.11 shows the correlated INT8 model inference execution time on

different layers. The average latency on each layer is 50% less than the

average layer latency in the FP32 model. Along with the reduced number

of primitives calls in each layer, the quantized model overall performance is

better than that of the baseline model.

Figure 4.11: Execution time for ResNet50.v1 (INT8) layer primitives
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CHAPTER 5

CONCLUSION

5.1 Accomplishment

In conclusion, the Intel MKL-DNN is a powerful library for machine learning

and deep learning acceleration on Intel CPU architecture. For any deep

neural network application, it is worthwhile to characterize its performance,

which helps developers to explore more possible optimization on the model

in the future. There are helpful tools to get the application or model level

profiling, but it is also beneficial to learn the behavior of the framework

libraries.

We study how the MKL-DNN library helps to boost the performance of

the DNN inference stage. We design the profiler to capture the MKL-DNN

library API calls together with all necessary auxiliary information (e.g., la-

tency, input/output data format, memory layout, etc.), and we parse and

analyze these data to get a holistic library- and layer-level view. We then

warp and convert these statistics/metadata into spans, and publish to tracer

server as tracing events for better data visualization. We also perform exper-

iments to evaluate a variety of DNN models from Apache MXNet leveraging

our profiler as well as other toolkits. By analyzing the profiling results and

the corresponding model implementation, we have seen how MKL-DNN helps

to improve the ML model inference performance in terms of blocked memory

layout, layer fusion, and low-precision quantization.
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5.2 Lessons Learned

Profiling CPU-based DL model inference is an interesting field to dive into

deeply. GPU has already been widely adopted in deep learning. Its per-

formance on deep neural networks training and inference stages is studied

extensively by researchers as well. Therefore, it is worthwhile to explore

CPU and its performance libraries that help to make the DL computation

more efficient.

I have learned how to design and implement a profiler that helps to visu-

alize and gain insight into a model inference stage. It is crucial to have a

general idea of what one’s profiler should be able to show at the first stage.

A good profiler is user-friendly and should be intuitive enough for better vi-

sualization.

By implementing a profiling schema and characterizing the inference of DNN

models, I gained a deep understanding of the Intel MKL-DNN library. The

information I get from profiling results allows me to explore the mechanism

behind MKL-DNN. I learned the optimization techniques used in MKL-DNN

through conducting extensive research and experiments, and the profiling

outputs validate my predictions as well. Through this research study, I found

that there are many commonalities between optimization techniques on both

CPU and GPU. I also gained insights into optimization in future work.
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