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ABSTRACT

Out-of-program-order execution has become almost a ubiquitous characteristic of

modern processors because of its ability to tolerate variable memory-instruction latency.

As designs are becoming increasingly power-conscious, the cost and complexity of the

components of out-of-order execution are becoming problematic. Compilers have gener-

ally proven adept at planning useful static instruction-level parallelism, but relying solely

on the compiler's instruction arrangement has been shown to perform poorly when cache

misses occur. This work proposes two multiple-pass pipelining "flea-flicker" microarchi-

tectural techniques , two-pass pipelining and mukipass pipelining, both of which exploit

a static compiler's meticulous scheduling as well as advance execution beyond otherwise

stalled instructions without the complexity of true out-of-order execution.

With twopass pipelining, programs execute on two in-order back-end pipelines cou-

pled by a queue. The "advance" pipeline often defers instructions dispatching with

unready operands rather than stalling. The "backup" pipeline allows concurrent reso-

lution of instructions deferred by the first pipeline allowing overlapping of useful "ad-

va,nced" execution with miss resolution. Multipass pipelining is based upon a similar
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concept, but overcomes the shortfalls of two-pass pipelining through simultaneous exe-

cution of architectural and advance instructions on a common pipeline in a simultaneous

multithreading-like fashion. These techniques perform similarly to achievable out-of-

order designs while comparing favorably in terms of power and complexity. An accompa-

nying compiler technique and instruction marking further enhances the handling of miss

latencies and reduces fruitless speculative execution by statically denoting instructions

that, when stalled, indicate there is little opportunity for advanced execution.
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1 INTRODUCTION

Out-of-order execution is a common microarchitectural strategy that allows the processor

itself to determine how to efficiently order instruction execution. Under this execution

model, the microarchitecture typically chooses multiple instructions for execution in par-

allel from a running program each clock cycle. The cost of long latency operations can

be hidden by the concurrent execution of other instructions. F\rrthermore, since this

selection is dynamic, the ordering of instruction execution can be adjusted to adapt to

run-time conditions. Primarily because of this ability to adapt to run-time events (such

as data-cache misses), out-of-order execution is used in the majority of high-performance

microprocessors [1, 2, 3].

This general dynamic reordering ability effectively hides data cache miss delays, &-

commodating load latencies as they vary at run time by sustaining useful computation

during cache misses. However, the mechanisms providing it replicate, at great expense,

much work which was already done effectively at compile time. Aggressive register re-

naming [4] is used in out-of-order designs to eliminate output and antidependences that

restrict the motion of instructions. This duplicates much of the effort of compile-time

register allocation. Dynamic scheduling [5, 6, 7] relies on complex scheduling queues and



large instruction windows to find ready instructions, and in choosing the order of instruc-

tion execution based on dependencies, repeats the work of the compile-time scheduler.

These mechanisms incur significant power consumption, add instruction pipeline latency,

reduce predictability of performance, and occupy substantial additional chip real estate.

A static, in-order execution model would, in contrast, generally be less complex. Mi-

croarchitectures that execute instruction strictly according to the compiler's specified

plan of execution [8] avoid the overheads that are associated with out-of-order execution.

While compilers have generally proven adept at planning useful static instruction-level

parallelism (ILP) for in-order microarchitectures, the efficient accommodation of unantic-

ipable latencies, like those of load instructions, remains a vexing problem. The inability

of in-order microarchitectures to adapt to cache-miss latency is a critical deficiency in

in-order processors, because the execution time contribution of cache miss stall cycles is

significant in the current generation of microprocessors and is expected to increase with

the widening gap between processor and memory speeds [9].

This chapter will introduce multiple-pass "flea-flicker" 1 pipelining, microarchitectural

techniques that exploit a static compiler's meticulous scheduling while also providing for

persi,stent, advance execution beyond otherwise stalled instructions. Before elaborating

on the proposed microarchitectural extensions, it is useful to delineate the opportunity

rln American football, the fl,ea-fli,cker offense tries to catch the defense off guard with the addition of a
forward pass to a lateral pass play. Defenders covering the ball carrier thus miss the tackle and, hopefully,
the ensuing play. Multiple-pass pipelining utilizes two (or more) passes of preexecution/execution to
achieve its performance efficacy.



exploited with the help of a case study in a modern instruction-set architecture, the Intel

Itanium Architecture [10, 11,12).

1.1 Case Study: Intel Itanium 2

Several instruction set architecture features have been proposed to offer the compiler

features to enhancing instruction level parallelism. Large register files grant the broad

computation restructuring ability needed to overlap the execution latency of instructions.

Explicit control speculation features allow the compiler to mitigate control dependences,

further increasing static scheduling freedom. Predication enables the compiler to optimize

program decision and to overlap independent control constructs while minimizing code

growth. In the absence of unanticipated run-time delays such as cache miss-induced stalls,

the compiler can effectively use these features, utilizing execution resources, overlapping

execution latencies, and working around execution constraints [S, 13]. For example, when

run-time stall cycles are discounted, the Intel reference compiler (Intel ecc v.7.0) [14] at a

high level of optimization (-O3 -ipo -prof-use) can achieve an average throughput of 2.5

instructions per cycle (IPC) across SPECint2000 [15] benchmarks for a 1.0GHz Itanium

2 processor with 3 MB of L3 cache.

The Itanium architecture is an implementation of Explicitly Parallel Instruction Com-

puting (EPIC) in which the above mentioned instruction set features are provided to allow

the compiler to effectively expose ILP to the microarchitecture. EPIC compilers express

the program parallelism using an encoding technique in which groups of instructions



intended by the compiler to issue together in a single processor cycle are explicitly delim-

ited. AII instructions within such an "issue group" are guaranteed by the compiler to be

free from true register dependences, and thus can be executed in parallel [11]. Because

the Itanium 2 microarchitecture is in-order, if an issue group contains an instruction

whose operands are not ready, the entire group and all groups behind it are stalled.

This design accommodates wide instruction issue by reducing the complexity of the issue

logic, but introduces the likelihood of "artificial"2 dependences between instructions of

unanticipated latency and instructions grouped with or subsequent to their consumers.

A large proportion of EPIC execution time is spent stalled waiting for data cache

misses to return. For example, when SPECint2000 is compiled and executed as detailed

above, 38% of execution cycles are consumed by data memory access-related stalls. Fur-

thermore, depending on the benchmark, between 10% and 95% of. these stall cycles are

incurred due to accesses satisfied in the second-level cache, despite its having a latency of

only five cycles. As suggested previously, the compiler's carefully generated, highly paral-

lel schedule is being disrupted by the injection of many, unanticipated memory latencies.

For a closer examination of performance issues on the Itanium 2 processor, readers are

directed to [16].

2These dependences are artificial in the sense that they would not be observed in a dependence-graph
based execution of the program's instructions, as in an out-of-order microprocessor.
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Figure 1.1 Cache miss stall and artificial dependences in mcf.

1.1.1 An example from mcf

Figure 1.1 shows an example from one of the most significant loops in the

SPECint2000 benchmark with the most pronounced data cache problems, rncl. The

figure, in which each row constitutes one issue group and arrows indicate data depen-

dences, shows one loop iteration plus one issue group from the next. In a typical EPIC

machine, on the indicated cache miss stall caused by the consumption of r42 tn group

1, all subsequent instructions (dotted box) are prevented from issuing until the load is

resolved, although only those instructions enclosed in the solid box are truly dependent

on the cache miss. (Since the last of these is a branch, the instructions subsequent to the

branch are, strictly speaking, control dependent on the cache miss, but a prediction ef-

fectively breaks this control dependence.) This severely hampers processor performance

from its potential, evidenced by studies that have found that large numbers of useful

instructions following a data cache miss are independent of the miss [17].

mp.n€.urc p18 = |0, r40



An out-of-order processor would begin the processing of instructions such as the load

in slot 3 of group 1 during the miss latency, potentially overlapping multiple cache misses.

To achieve such economy here, however, the compiler must explicitly schedule the code

in such a way as to defer the stall (for example, by moving the consuming add after the

load in slot 3 of group 1). In general, the compiler cannot anticipate statically which

loads will miss and when. As load latencies vary dynamically, the best a compiler can

hope to achieve is a schedule to maximize performance in the most common cases. A

limited degree of dynamic execution could easily overcome this problem, but true out-

of-order execution, in addition to unnecessarily complicating the design, would render

an efficient implementation of EPIC features difficult to achieve. In particular, register

renaming, a standard assumption of out-of-order design, very substantially complicates

the implementation of predicated execution, a fundamental feature of EPIC design [18].

Run-ahead preexecution is one type of limited dynamic execution mechanism, in

which instructions subsequent to the stalling instruction are executed during the stall

to prepare microarchitectural state for more ef;ficient execution of future instructions. A

checkpointing-based, in-order preexecution mechanism (expanding on the ideas proposed

by Dundas and Mudge [19, 20] can capitalize on the execution of instructions following a

miss consumer, but it provides only a limited tolerance of cache miss, primarily through

overlapping the handling of long, independent misses. The multiple-pass pipelining design

provides much more effective tolerance of both long and short misses while continuing to

allow efficient exploitation of the compiler's generally good schedule.



I.I.2 Addressing the data-cache stall problem with large caches

As described in the previous section, in-order processors like the Itanium 2 are unable

to satisfactorily tolerate cache miss latencies. The compiler can attempt to hide fore-

seeable cache latency through explicit data prefetching, but compiler-directed prefetch-

ing [21, 22, 23] is typically only effective for anticipable, long-latency misses in appli-

cations with largely regular accesses. The main strategy available to in-order processor

architects to address the cache tolerance deficiencv is to increase cache sizes to

reduce the average latency of a memory access. Not only is this approach expensive,

but since only outer levels of cache can typically be made very large, this approach is

only effective at dealing with distant cache misses. It does little to address the more

diffuse stalls due to difficult-to-anticipate, first- or second-level misses that often thwart

the effective exploitation of static schedules.

An attempt to address in-order cache-miss stalls with larger cache sizes is demon-

strated within the case-studied Itanium Processor Family. Figure 1.1 charts the pro-

gression of Itanium processor generations over the 5 years since its introduction. Each

line describes a particular implementation of the five generations of Itanium processors.

Published Standard Performance Evaluation Corporation (SPEC) ratios [15] are given

for two benchmarks, mcf and gzi,p for each implementation. As mentioned earlier in this

chapter, the performance of mcf is dominated by cache misses. gztp on the other hand is

one of the more compute-bound SPECint2000 benchmarks.

m$s



Table 1.1 Five generations of Itanium processors.

o announced,
* Intel  C** Compiler 5.0
t Intel  C** Compiler 8.0
f Intel  C** Compiler 8.1

The SPEC ratios in bold in Table 1.1 are the measure of performance of the corre-

sponding benchmark. The effectiveness of the increasing cache sizes at addressing the

problem of in-order cache stalls can be considered when examining the scaling of appli-

cation performance with the increase of both frequency and cache sizes in each processor

generation.

A significant performance increase was seen for both benchmarks moving from the

first generation [24] of the Itanium family and the second generation [25] (the first imple-

mentation of the Itanium 2 processor). Not only did the frequency and caches improve

from the first to second generations, but the core microarchitecture changed as well, with

a reduction in the first-level data-cache latency, a reduction in the branch misprediction

Generation Frequencv Caches l'rocess Transistors nc" gzxp

First* 800 MHz 2-cycle L6 kB 11,
96 kB 12, 2 MB* L3

180 nm.  1 .6  V 2 5 M 187 332

Secondl L GHz l-cycle 16 kB 11,
256 kB 12, 1.5 MB L3

LBO nm.  1 .5  V 227 M 684 630

ThirdT 1.3  GHz l-cycle 16 kB Ll,
2s6 kB 12, 3 MB L3

130 nm,  1 .35  V 1106 809

1 .4  GHz 1-cycle 16 kB L1,
2s6 kB 12, 3 MB L3

130 nm, 1.35 V LLI4 872

1.5  GHz 1-cycle 16 kB 11,
256 kB 12, 6 MB L3

130 nm, 1.35 V 410 M 1961. 9L8

1.6  GHz 1-cycle 16 kB 11,
256 kB 12, 6 MB L3

130 nm,  1 .35  V 2340 1"069

Fourthf 1 .6  GHz L-cycle 16 kB 11,
256 kB 12, 9 MB L3

130 nm.  1 .35  V 592 M 2666 r.069

Fifth" 2.0  GHz l-cycle 16 kB 11,
2 5 6  k B  L 2 , 7 2  M B  L 3

90 nm.  1 .2  V t.72 B

* Intel  C** Compiler 5.0.



resolution pipeline length, and an increase in the number of functional units. Addition-

ally, compiler technology became much more capable since the first Itanium introduction.

More interesting, in terms of evaluating the effectiveness of increasing cache sizes, is

the progress of the next three generations of the Itanium family, each of which are genera-

tions of the Itanium 2 processor. Moving from the second generation to the third [26], the

core microarchitecture remained basically the same, while a 30% increase in frequency

was seen, and the third level of cache increased from 1.5 MB to 3 MB for the imple-

mentations charted in Figure 1.1. The benchmark mcf saw a dramatic 1.6x increase in

performance while gzip's 1.28x speedup closely tracked the increased frequency. On the

next charted implementation, the 1.4-GHz Itanium 2 with a 3-MB level-three cache, mcf

saw virtually no improvement, while gzi,p's speedup of 1.08x again closely tracked the fre-

quency gain. This trend continued moving to higher-frequency and larger-cache designs

up to the fourth Itanium family generation [27]. The published performance of these

implementations on the benchmark mcf was seen to improve with increases in cache size

and improvements in compiler technology (in particular, compiler-directed data-cache

prefetching techniques [28]), while the performance on the more-compute-bound bench-

mark gzi,p mrch more closely tracked increases in frequency.

Table 1.1 demonstrates that the technique of adding more cache is effective at reducing

the average latency of memory accesses for applications with large data footprints like

rncf. However, increases in ievel-three cache size do little to improve the performance

of benchmarks like gzip, even though, on the second generation of the Itanium family,



gzip spends 20Yo of its execution stalled on data cache misses [16]. Most of. gzi,p's misses

are shorter misses. Additionally, while the average latency of a memory access in mcf

has been reduced by the addition of large caches, the majority of mcfs execution still

remains spent stalled on lower-level cache misses. Further increases in the size of lower

levels of cache are unlikely due to tight timing constraints.

As cache sizes have increased, microprocessor die area and transistor count has in-

creasingly been dedicated to cache. Since the third generation of the Itanium family,

the majority of chip area has been consumed by third-level cache. By the fourth gener-

ation, 213 of. die area was consumed by cache. The announced fifth generation Itanium

processors [29] has 1.72 billion transistors, over 90% of which are cache. While process

scaling has shrunk the absolute area of the core, the total die area has remained large

(and actually increased for the fourth generation). This accretion in area due to cache

impacts the cost of manufacturing each chip in a straightforward way.

Aside from the direct financial cost of maintaining large low-level caches and increas-

ing the size of the outer-level of on-chip cache, this investment in cache has a substantial

power cost as well. As process sizes and threshold voltages (I/1) shrink, transistor leak-

age current is becoming responsible for a greater amount of power consumption. The

International Technology Roadmap for Semiconductors [30] predicts that leakage power

will soon be the dominant source of microprocessor power consumption. As the over-

whelming majority of on-chip transistors are in data caches, such caches are a prime

3This processor has two Itanium 2 cores, each with a 12-MB third-level cache.

10



source of leakage power [31]. In the first Itanium 2 implementation, ali leakage povrer

accounted for only 5% of total chip power consumption. In the next generation, leakage

power increased to 2lYo of chip power (with 7% of chip power leaking from the third-level

cache). Through the aggressive use of long channel and high V1 transistors [32], leakage

power has been announced to have been held on average at 25% of total chip power in

the latest Itanium generation [29] (with 5% of. total power leaking from the third-level

cache). More troubling, however, is that the total leakage power has been published to

vary as much as 2x due to silicon processing variability.

Apart from area and power costs, the large numbers of cache transistors have other

costs as well. As process sizes have shrunk, soft errors have become more likely, and

the large numbers of cache transistors make the caches susceptible to such errors [33].

Enhanced error correction is needed to tolerate soft errors and maintain reliability [29].

Additionally, in nanometer technologies, processing variation makes failures in SRAM

cells more common [33]. Adaptability to failures of cache lines is required to provide

acceptable reliability [29].

As evidenced by the case study of the Itanium 2 processor, the technique of using

Iarge caches to reduce the average latency of a memory access, thus the susceptibility to

in-order cache-miss stalls, is successful in improving performance for benchmarks with

significant numbers of far misses, while doing little to reduce the cost of unpredictable,

nearer misses (since increases in the size of the lower-latency, nearest levels of cache are

1 1



unlikely). Performance gains from the seemingly simple technique of increasing cache

sizes comes at a high cost in terms of die area, power and design complexity.

Multipass pipelining addresses in-order processors' intolerance of cache misses by

providing a more adaptable microarchitecture. Chapter 4 will show that this approach

will enable equivalent performance with smaller cache sizes, and will continue to provide

performance even at large cache sizes by tolerating the more frequent and less predictable

short cache misses that interrupt even the best compiler-planned execution.

I.2 Introductory Example

Figure 1.2 demonstrates the enhanced execution behavior that multiple-pass pipelin-

ing techniques achieve over the traditional in-order execution model. The example in

Figure 1.2 shows an execution and memory access time-line repeated for several different

models of execution, each labeled on the left. For each model, the execution activity is

divided into actual instruction execution (EXE) and the handling of data cache misses

caused by executing load instructions (MEM). In the example, the EXE line represents

many executing instructions, but a selected few instructions of interest for the purposes

of the example are shown as lettered (A-F) points on the time-line. Instructions A, C, and

E are load instructions that miss in the data cache. Two types of misses are shown in

Figure 1.2: relatively long misses labeled L2 MISS and relatively short misses labeled

Ll MISS. The handling of these misses is shown as the bold MEM component of the
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time-line. Finally, interesting data dependences between these instructions are shown as

arrows to the dependent instruction.

L.z.L In-order time-line

The in-order time-line in Figure 1.2(a) reiterates the problem, accompanying in-order

processors as detailed in Section 1.1, that instructions can become artificially, positionally

stalled behind previous (in program order) load-miss-interlocked instructions. When

instruction A misses in the data cache, its latency in lengthened by the handling of the

cache miss. In the case of A the handling of the miss is relatively lengthy. Instructions

that are independent of A continue to execute, until instruction B, the first consumer

of load A, is reached. For the remaining duration of A's miss, the in-order processor

is stalled, represented in the gap in the EXE time-line before instruction B. Similarly,

when C's relatively short miss occurs, execution continues until instruction D, the first

instruction dependent on C. Execution is stopped until the miss is handled and D can

execute. This pattern is finally repeated for a third time with the interlock of F on the

miss of E.

I.2.2 In-order runahead time-line

It is apparent from the in-order time-line that maintaining the static order of in-

struction execution prevents the handling of any of the example's misses in parallel, even

though C and E are independent of A's result. One straightforward approach to overlap

the handling of cache misses that are blocked behind other interlocking instructions is to
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allow execution to temporarily allow execution to run ahead past otherwise interlocked

instructions in an attempt to use the subsequent independent instructions to generate

data prefetches. This approach is mentioned in Section 1.1 as in-order, runahead preex-

ecution. This continuation forward in the instruction stream is shown in Figure 1.2(b)

as a faint continuation of the EXE line in the time-line bevond the first instance of

instruction B.

The in-order runahead time-line in Figure 1.2(b) represents an aggressive form of the

runahead preexecution described in [19]. In it, as in each of the time-lines, A misses in

the cache. However, unlike that of the in-order time-line, execution continues beyond

the consumer B. Since the destination register of A is one of the operands of B, B cannot

compute any valid result. The execution of B is feigned, and it bypasses and writes its

specially marked nonresult to its consumers and destination. Execution continuing past

B reaches independent instruction C, which can thus begin the handling of its memory

access, overlapping its access with that of A. This overlap is represented in Figure 1.2(b)

by the overlapping bold lines in the MEM component of the time-line.

Just as B was skipped while it awaits an input value from memory, D is skipped

because it requires the result of C's memory access that is not available at time of D's

execution. Similarly, load E does not execute because it depends on the result of C. In

the in-order runahead approach, execution proceeds beyond E, as a result also skipping

F. In the example in Figure 1.2(b), no further independent misses can be accessed before

the handling of A's miss is complete. At that point the speculative, transitory runahead
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period ends, and the execution time-line returns to instruction B. Normal execution begins

again at that point, denoted with the reestablishment of the solid EXE line. All of the

work done during the runahead execution (whether valid or invalid) is discarded with

the restoration of normal execution. Instructions in the program execution, beginning

with instruction B are processed again. When load instruction C is executed for a second

time, its memory access is a hit in the cache, because its original miss was handled

during runahead execution. Execution continues to instruction E. Since E's execution was

skipped during runahead execution, its full miss latency is observed during the second

attempt at its execution. Finally, because F is dependent on E, it is skipped to commence

a second period of runahead execution. In this example, this period of execution does

not incur any additional cache misses.

The goal of runahead preexecution is to use the predicted instruction stream beyond

an otherwise interlocked instruction to initiate memory accesses in the hope of having a

prefetching effect. In the example, instruction C is a hit in the cache during its actual

execution because of this prefetching effect of its earlier precomputation. The length of

the in-order runahead time-line is shorter than that of the in-order time-line by the length

of the stall before D in the in-order case. This demonstrates the speedup of the runahead

preexecution technique. However, two limitations of this prefetching mechanism are

evident from the example time-line. The first is that once an instruction's execution

is skipped, it will not be considered again for execution until normal execution begins

again. In the example in Figure 1.2(b), D is skipped during runahead execution. Even
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when C's miss is handled and D's operands are ready, D execution cannot be considered

because execution has already proceeded farther down the instruction stream. The second

Iimitation is that because runahead preexecution is only a prefetching technique, none

of the results of the valid computation done during runahead execution are persistent.

Rather than eventually becoming part of architectural state, these results are forgotten

when normal execution returns.

I.2.3 Two-pass pipelining time-line

The third time-line in Figure 1.2 is that for a execution model called two-pass pipelin-

ing [34, 35]. This is the first implementation of multiple-pass pipelining. Like the sim-

ple in-order runahead approach, two-pass pipelining similarly uses preexecution of in-

structions beyond a potential in-order stall to accelerate normal execution. In two-pass

pipelining, two fixed in-order pipelines are bridged by a first-in-first-out (FIFO) queue.

The first, preexecution pipeline executes all instructions executes all instructions spec-

ulatively wi,thout stalli,ng. This pipeline provides the preexecution seen in the in-order

runahead model. As in the in-order runahead model, instructions dispatching without

an input operand ready (because of a cache miss) are suppressed rather than incurring

stalls, while other instructions execute normally. The second, execution pipeline exe-

cutes instructions deferred in the preexecution pipeline and incorporates all results in

a consistent order. This two-pipe structure allows cache miss latencies incurred in one
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pipe to overlap with independent execution and cache miss latencies in the other while

preserving in-order semantics in each.

In the example for two-pass pipelining in Figure 1.2(c), preexecution is shown as

the faint PRE-EXE component of the two-pass pipelining time-line. In this execution

model, the handling of A's cache miss is initiated in the preexecution pipeline, while the

execution of instruction B is subsequently skipped. This allows the handling of C's miss

to be initiated with its precomputation and thus overlapped with the miss of A. Like the

preexecution in Section I.2.2, the two-pass pipelining's preexecution skips instructions D,

E and F. In the in-order runahead model, preexecution was abandoned whenever normal

execution could occur. However, preexecution under two-pass pipelining is occurring

in a separate pipeline from the actual execution. This preexecution will continue with

its state contaminated by the nonresults of the skipped instructions until some exter-

nal event causes the preexecution and execution pipelines to become synchronized. To

avoid synchronizing these pipelines frequently, the preexecution in two-pass pipelining is

controlled to avoid too much of its state being contaminated with nonresults preventing

useful preexecution from occurring [35]. In the example, this control is exerted at the

dark point ending preexecution after instruction F. This control halts preexecution while

it awaits a critical result. Preexecution resumes right before the end of the two-pass

pipelining example.

In the execution pipeline, shown with the solid EXE component of the time-line, the

handling of A's miss is not complete when B is reached. The EXE pipeline stalls until
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B can execute, because this pipeline behaves just as the in-order pipeline described in

Section t.2.1. However, once the miss is handled, the instructions in the next segment

of the EXE pipeline have all been preprocessed in the PRE-EXE pipeline. The re-

sults of preexecuted instructions (such as instruction C) are queued for incorporation in

the EXE pipeline. The reuse of many preexecution results is marked in the two-pass

pipelining time-line with the widening of the EXE line. Only instructions skipped during

preexecution must be computed as normal execution. Additionally, since many results

have been precomputed, a technique known as i,nstructi,on regroupi,ng can be used to

accelerate execution while maintaining instruction order. This technique is described in

Section 2.2.8.

As in the in-order runahead example described in Section 1.2.2, E was not successfully

preexecuted. The handling E's miss is started in the EXE pipeline, and thus F must await

E's result, stalling the normal execution. However, while F's execution was irrevocably

deferred to the EXE pipeline, by halting preexecution to wait on critical results, the

PRE-EXE pipeline is spared from allowing invalid nonresults to completely contaminate

fruitful preexecution until an event synchronizes PRE-EXE and EXE. This halting is

shown with the dark point terminating the first PRE-EXE segment in Figure 1.2(c).

The two-pass approach has two important advantages over the in-order runahead

model. First, since preexecution and execution are performed on separate pipelines,

these actions can occur concurrently. Misses and execution initiated on both pipeiines

can be overlapped with the other. The second advantage is that through the coupling
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of PRE-EXE results to the EXE pipeline, valid preexecution results are preserved as

mentioned above.

L.2.4 Multipass pipelining time-line

Figure 1.2(d) shows the execution profile for the second multiple-pass pipelining tech-

nique, multipass pipelining [36]. This model of execution uses a technique similar to that

used in two-pass pipelining, but with both execution and preexecution occurring on the

same in-order pipeline.

The behavior of the multipass approach at first appears similar to that of the simple

in-order runahead model described in Section 1.2.2. When A misses in the data cache,

instruction B's execution is deferred, and preexecution proceeds in place of the interlock

on the cache-miss result. This again is shown with the faint EXE line segment in

the example. Preexecution continues on to initiate C's short cache miss. As instruction

computation is suppressed because of unavailable source operands, the preexecution state

may become so contaminated that continued advance execution is fruitless. Rather than

wasting preexecution effort in this case, preexecution is restarted whenever an instruction

producing a critical result is not ready for execution. This concept of criticality is shared

with the two-pass approach as explained in Section 1.2.3. The selection of instructions

whose results are critical is detailed in Chapter 3.

By restarting preexecution at instruction B (which is still not ready), preexecution

might be able to perform instructions which were not ready for execution on an earlier
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pass. In the exampie in Figure 1.2(d), load instruction E could not preexecute initially be-

cause it was the dependent on missing load C. For the same reasons, E did not preexecute

in the in-order runahead example shown in Figure 1.2(b). However, once preexecution

begins again in the example at the dark point following instruction F, C's miss has been

handled and D and F can now execute. F's preexecution allows the handling of its miss to

overlap with that of A in a way that was not possible in the previously described models.

The example in Figure 1.2(d) demonstrates the trade-off between continuing preexe-

cution and restarting with the first suppressed instruction. In this case, had preexecution

continued, it was unlike to perform useful work because a critical result (needed directly

or indirectly by a significant number of instructions) was not ready. Had preexecution

not restarted, instruction E would have sat unexecuted until normal execution began

again.

The use of criticality to restart preexecution is an obvious improvement over the two-

pass approach described in the previous section, where, in the two-pass model, criticality

was used to halt preexecution rather than reinitiating it. In addition, since multipass

pipelining is not tied to a fixed number of pipelines, preexecution can occur for any

miss, even if it is on a dependent chain from another miss. In the case of two-pass

pipelining, once an instruction has produced an invalid nonresult, none of its dependents

will preexecute, forcing subsequent misses in dependent chains to the execution pipeline.

Like in the two-pass approach, in multipass pipelining, valid preexecuted results are

preserved and eventually incorporated into execution state. This result reuse is similarly
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used to accelerate execution. The only important advantage of the two-pass technique

was that since it took advantage of two physical pipelines, it could overlap preexecution

with normal execution in a straightforward way.

L.2.5 Out-of-order time-line

Out-of-order execution is a general dynamic strategy for instruction execution in

which instructions are executed as their data dependencies are met. Figure 1.2(e) shows

the example time-line for an out-of-order execution model. Because the compiler's ar-

rangement exposed the available ILP, instructions are initially executed in their original,

nonspeculative order shown with the initial, solid EXE component of the time-line. As

more instructions become ready for execution, the out-of-order microarchitecture can

occasionally reorder instructions to exploit more ILP than expressed in the compiler

ordering. Speculative orderings of instructions are represented by the faint segments

of EXE component of the time-line. However, because the compiler arranged instruc-

tions according the visible parallelism and the predicted available resources, instructions

execute largely in the compiler-specified order in the absence of perturbative run-time

effects.

When cache misses occur, such as that caused by instruction A, out-of-order execu-

tions dynamic schedule allows execution of all independent instructions in the program's

instruction stream while the cache miss is being serviced. In Figure 1.2(e), this allows

instruction C to be eventually issued speculatively, overlapping C's miss with that of A.
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Soon, no ready instructions can be found for execution because of the outstanding cache

misses, shown with the gap in the EXE iine. In the example, C's miss is quickly handled

and new ready instructions are executed, including load instruction E. E's miss is then

overlapped with that of A. When A's miss is finally handled, this causes several of the

oldest instructions in program order to be ready for execution. Execution returns to

mostly in-program-order once all cache misses are handled.

It is important to note that in the out-of-order model, since instruction are executing

as soon as they are ready, instruction E executes almost immediately after C's miss is

over. Instruction E is woken up for execution once all of its source operands are ready.

In the multipass approach, E was executed only after preexecution returned to process

instructions again a second time under A's miss. Because of the delay in reaching E, E's

miss is overlapped to a lesser degree in the multipass pipelining approach than in the

true out-of-order execution approach. The performance advantage of greedily executing

instructions as they are ready is seen with the shortened execution time-line for the

out-of-order approach.

1.3 Contributions

In this dissertation, I show that multiple-pass pipelining is a microarchitectural tech-

nique that provides beneficial tolerance ofthe unanticipable latency ofdata-cache accesses

through preexecution of instructions positionally blocked behind a data-cache-interlocked
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instruction. I show that the "flea-flicker" technique of performing multiple passes of. per-

sistent in-order execution achieves this tolerance by overlapping independent data-cache

accesses and other useful work while maintaining a mostly in-order model of execution.

This work wili focus on three key contributions over previous work. First, I show that

multiple-pass pipelining outperforms other preexecution techniques, and approaches the

performance of more general out-of-order approaches while avoiding the complexity that

accompanies out-of-order designs. Second, I demonstrate the use of compiler-applied

hints to direct preexecution by informing the microarchitecture which instructions pro-

duce operands are "critical." I provide a simple, but well-performing heuristic for stati-

cally applying these hints, and through the exploitation of these hints achieve significant

speedups. Finally, my proposed multiple-pass pipelining techniques preserve the results

of correctly preexecuted instructions to improve efficiency, hide the latency of multiple-

cycle instructions and, most significantly, accelerate execution by using preexecuted re-

sults (and nonresults) to break dependencies between instructions and form new issue

groups without reordering instructions.

The two-pass and multipass pipelining microarchitectures are presented in Chap

ter 2. The

Chapter 3.

use

An

of application of the compiler-applied criticality hints is explored in

evaluation of the implementation costs and a comparison of the costs

with the more-general implementations of out-of-order execution are examined in Chap-

ter 5. An overview of related work is given in Chapter 6, and conclusions and future

work are outlined in Chapter 7.

24



2 ARCHITECTURE

The multiple.pass pipelining schemes are designed to allow the productive processing

of independent instructions during the memory stall cycles left exposed in traditional

in-order pipelines. Figure 2.L(a) shows a snapshot of instructions executing on a styl-

ized representation of a general in-order processor, such as Intel's Itanium [12, 37] or

Sun's SPARC [38]. In the figure, the youngest instructions are at the left; each col-

umn represents an issue group. A dependence checker determines if instructions have

ready operands and are therefore ready to be dispatched to the execution engine. If any

instruction is found not to be ready, its issue group is stalled. The darkened instruc-

tions in the dependence check stage and incoming instruction queue are dependent on

the stall, as indicated by arrows; the light-colored instructions, on the other hand, are

data-flow-independent but nonetheless stymied by the machine's in-order execution of

instructions.

Figures 2.1(b) and (c) show the proposed alternative. For the purposes of this exam-

ple, the "flea-flicker" multiple-pass behavior is shown in context of exactly two passes,

but this example is useful for introducing both two-pass and multipass pipelining. In
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Figure 2.1(b), when an input operand of a "noncritical"l instruction is not ready at

dependence check, the processor, rather than stalling, marks the instruction and aII de-

pendent successors (as they arrive, through a propagation of "invalid" bits in the bypass

network and register file) as deferred instructions. These are skipped by the first (A)

execution pass. Subsequent independenf instructions, however, continue to execute in

pass A. Deferred instructions are queued up for processing in the second (B) pass. Be-

tween passes, instructions shown as blackened have begun execution; execution of the

remaining instructions has been deferred under the A pass due to unavailable operands.

These will execute for the first time in during the B pass, shown in Figure 2.1(c),

when their operands are ready. The B pass also incorporates into architectural state the

results of instructions previously resolved in A. In the case of long- or undetermined-

latency instructions, such as loads, an instruction begun in the B pass may not be

finished executing when its results are demanded during B; however, in this example, all

instructions which began execution during A have completed by the B pass.

2.I Baseline In-Order Microarchitecture

Before presenting the implementation details of the multiple-pass pipelining ap-

proaches, the baseline microarchitecture, to which the multiple-pass pipelining schemes

lThe idea of criticality was introduced in Chapter 1. The use of criticality will be expounded upon
in Sections 2.2.7 and 2.3.9. The determination of criticality is explained in Chapter 3.
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will be applied, will first be introduced. The baseline integer pipeline, presented in Fig-

ure 2.2, was chosen to closely match that of the Intel Itanium 2 [11], a contemporary

high-performance in-order processor.2

The front-end portion of the pipeline,(instruction pointer generation (IPG), bundle

rotation (ROT), bundle expansion (EXP), and instruction decoding (DEC), prepares

instructions for execution on the many functional units of the execution core. As in the

Itanium 2 pipeline, a 24-instruction buffer decouples instruction fetch from decode and

execution, allowing the fetch of several cycles' worth of instructions to proceed during

back-end execution pipeline stalls.

Once instructions reach the back-end portion of the pipeline, shown as the darkened

stages in Figure 2.2, their operands are read from the register file or bypass network in the

register read (REG) stage. In-order machines stall in this stage if the current issue group

2Although the proposed pipeline scheme is described in the context of implementing the Intel Itanium
Architecture, it could be applied similarly to other typically in-order architectures such as SPARC [38],
ARM, and TI C6x.
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contains instructions with unready operands (often as the result of outstanding data-

cache misses). In a typical machine, these stalls consume a large fraction of execution

cycles. Instructions, once ready, execute (EXE), detect exceptions and mispredictions

(DET), and finally write their register results in the register file (WRB). The back-

end floating point and memory pipeline are similarly considered in this work, assuming

pipeline lengths reflecting latencies described in Chapter 4.

2.2 The Two-Pass Pipeline Microarchitecture

This section presents the first implementation of multiple-pass pipelining, two-pass

pi,peli,ni,ng, in which execution passes are performed in two separate pipelines. In the terms

of the example in Figure 2.1, execution of the B pass always stalls when an instruction's

operands are not ready, because there is no pipeline in which to perform a '(C" pass. These

instructions may be unready either because they depend on a long-latency instruction

whose executed started during the B pass, or because they depend on a long-latency

instruction, started during the A pass, that has yet to complete. The latter situation is

handled through the coupling mechanism described in the Section 2.2.L.

The two-pass arrangement effectively separates the execution of the program into

two concurrently executing streams: an "advance" stream comprising instructions whose

operands are readily available at the first dispatch opportunity and those that are "crit-

ical," and a "backup" stream encompassing the remainder. This section describes the
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proposed pipeline scheme in detail, focusing on the management of the two streams to

maintain correctness as well as to maximize efficiency and concurrency.

2.2.7 Basic mode of two-pass operation

Figure 2.3 shows a potential design of the proposed mechanism as applied to the

Itanium 2-like pipeline introduced in Section 2.1. Again, while both multiple-pass ap-

proaches will be presented in the context of an EPIC pipeline, the strategies are applicable

to any in-order processor. The reader will note marked similarities between the front-end

and architectural pipelines with the front-end and back-end pipelines of the Itanium 2-

Iike baseline pipelines. The remaining portions of the figure show the additions necessary

to implement the proposed two-pass pipeline scheme.

The speculative pipeline in Figure 2.3, referred to as the A-pipe, executes instructions

on an issue group by issue group basis. Operands are read from the register file or bypass
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network in the REG stage. In the proposed two-pass scheme, noncritical instructions

found to be unready in the REG stage do not stall the A-pipe; these instructions and

their data-dependent successors are instead suppressed. Any subsequent, independent in-

structions are allowed to execute in the (EXE) stage, and subsequently detect exceptions

and mispredictions (DET), and write their register results in an A-file (-WRB).

The portion of Figure 2.3 referred to as the B-pipe completes the execution of those

instructions deferred in the A-pipe and integrates the execution results of both pipes

into architectural updates. The A and B pipes are largely decoupled (e.g., there are no

bypassing paths between them), contributing to the simplicity of this design. The B-

pipe stage DEQ receives incoming instructions from the coupling queue (CQ), as shown

in Figure 2.3. The coupling queue receives decoded instructions as they proceed, in

order, from the processor front end. When an instruction is entered into CQ, an entry is

reserved in the coupling result store (CRS) for each of its results (including, for stores,

the value to be stored to memory). Instructions deferred in the A-pipe are marked as

deferred in CQ and their corresponding CRS entries are marked as invalid. The B-pipe

completes the execution of these deferred instructions. An optional update queue is also

shown in Figure 2.3. If utilized, this queue carries the results of B-pipe executions to

be potentially merged into the register state of A-pipe in an attempt to increase the

frequency of nondeferred executions there, as described in Section 2.2.6.

When, on the other hand, instructions complete normally in the A-pipe, their results

are written both to the A-file (if the target register has not been reused) and to the CRS.
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These "precomputed" values are incorporated in the merge (MRG) stage of the B-pipe,

to be bypassed to other B-pipe instructions and written into the architectural B-file as

appropriate. The destinations of instructions whose execution began in the A-pipe but is

not yet complete will be scoreboarded, just as the destinations of long- or variable-latency

instructions are normally scoreboarded. This handles "dangling dependences" due to

instructions that begin in the the A-pipe but are not complete when they reach the B-

pipe through the coupling queue. Such instructions are allowed to dispatch in the B-pipe,

but with scoreboarded destinations, to be unblocked when results arrive from the A-pipe.

Through this mechanism, the need to reexecute (in the B-pipe) instructions successfully

preexecuted (or even prestarted) in the A-pipe is obviated. This has two effects: first,

it reduces the energy-inefficient redundant execution and reduces pressure on critical

resources such as the memory subsystem interface; second, the latency of long-latency,

such as multiply instructions, is hidden; third, since these preexecuted instructions are

free of input dependences when they arrive in the B-pipe, an opportunity for height

reduction optimizations is created. In an optimization described in Section 2.2.8, the B-

pipe dispatch logic can re-group (without reordering) instructions as they are dequeued,

allowing instructions from adjacent, independent instruction groups available at the end

of the queue to issue together as machine resources allow.

As an example of the concurrency exposed by the two-pass technique, Figure 2.4

shows four successive stages of execution of the code of Figure 1.1 on the two-pass system.

Instructions flow in vertical issue groups from the front end on the left into the A-pipe and
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Figure 2.4 Applying two-pass pipelining to the previous mcf example.

coupling queue, and then into the B-pipe. In Figure 2.4(a), a load issues in the A-pipe

and misses in the first-level cache. In (b), a dependent, noncritical instruction dispatches

in the A-pipe. Since its operands are not ready, it is deferred and marked as such in

the queue. A typical in-order pipeline would have stalled issue rather than dispatch this

instruction. In (c), an additional dependent instruction is marked and a second cache

miss occurs in the A-pipe. The concurrent processing of the two misses is enabled by the

two-pass system. Finally, in (d), two groups have retired from the A-pipe and reexecution

has begun in the B-pipe. Many preexecuted instructions assume the values produced in

the A-pipe, as propagated through the coupling result store. The original cache miss, on

the other hand, is still being resolved, and the inherited dependence causes a stall of the

B-pipe. During this event, provided there is room in the coupling queue and result store,

the A-pipe is stili free to continue preexecuting independent instructions.
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2.2.2 Critical two-pass design issues

Ensuring correctness and efficiency in the two-pass design requires the careful consid-

eration of a number of issues. Chief among these is the fact that the B-pipe "trusts" the

A-pipe in most situations to have executed instructions correctly; that is, the B-pipe does

not confirm or reexecute instructions begun in the A-pipe, but merely incorporates their

results. First, this entails that the A-pipe must accurately determine which instructions

may be preexecuted and which must be deferred and must ensure that the A-file contains

correct values for vaiid registers, even though write-after-write (WAW) stall conditions

and other constraints typical to EPIC systems are to be relaxed. Second, the proper (ef-

fective) ordering of loads and stores must be maintained, even though they are executed

partially in the A-pipe and partially in the B-pipe. Finally as the new pipe includes

two stages at which the correct direction of a branch may be ascertained, the mispre-

diction flush routine needs to be augmented. Similar issues will have to be considered

for multiple-pass pipelining. In the case of allowing WAW issue in two-pass pipelining,

the solution I first introduced in [34] is explained in Section 2.2.3. This mechanism is

tied to support for updates through the optional update queue. However, the simpler

approach used for multipass pipelining can be applied to two-pass pipelining achieving

similar results if the update queue is not used as examined in Chapter 4. The following

sections investigate the three issues listed in this section in further detail.

34



2.2.3 Maintaining the A-file

The A-fiIe, a speculative register file, operates in a manner somewhat unconventional

to in-order EPIC designs, as delinquent instructions can write "invalid" results and WAW

dependences are not enforced by the A-pipe through the imposition of stalls (this is

legitimate only because the B-file is the actual architectural pipeline in which all register

writes must be visible). Each register in the A-file is accompanied by a "valid" bit (V),

set on the write of a computed result and cleared in the destination of an instruction

whose result cannot be computed in the A-pipe; each also has a "speculative" bit (S),

set when an A-pipe instruction writes a result and reset when an update from the B-pipe

arrives. Under the design presented in [34], an additional "DynID" is added to each

register. This tag indicates the ID of the last dynamic instruction to write the register,

sufficiently large to guarantee uniqueness within the machine at any given moment. The

V bit supports the determination in the A-pipe of whether an instruction either has

all operands available, and therefore may execute normally, or relies on an instruction

deferred into the B-pipe, and therefore must also be deferred to the B-pipe. The S bit

marks those values written by the A-pipe but not yet committed by the B-pipe. All data

so marked is speculative, since, for example, a mispredicted branch might resolve in the

B-pipe and invalidate subsequent instructions in the queue and the A-pipe, including

ones that have already written to the A-fiIe. This bit supports a partial update of the

A-file as an optimization of the B-pipe flush routine, as discussed later in Section 2.2.8.

Finally, the dynamic ID tag (DynID) serves to allow the speculative issue of instructions
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that are output-dependent on previously issued instructions which have have completed,

and can optionally be used to allow updates to the A-file from instruction execution in

the B-pipe.

Modern in-order processors allow instructions to potentially retire out of order. In

order to maintain the proper order of writes to the same register, Iong-latency instructions

scoreboard their destination so that future writers will suffer a WAW stall. Because such

stalls would greatly interfere with preexecution, WAW stalls are not enforced. Instead,

instructions executing (or being deferred) in the EXE stage will write their DynID to the

tag for the register entry corresponding to their register destination. Only instructions

writing back to register file entries matching their DynID tag are allowed to modify

the register value, enabling writes only from the last issued writer. The same mechanism

serves to allow the selective update of the A-file with results of retiring B-pipe instructions

through the update queue. Entries in the A-file can only be updated by B-pipe retirement

if its outstanding invalidation was by the particular instruction retiring in the B-pipe on

its deferral in the A-pipe and described in Section 2.2.6.

The DynID mechanism was first introduced in [34] and was largely tied to the desire to

allow updates of B-pipe execution to provide for future A-pipe instructions. A somewhat

different approach is utilized in the multipass pipelining technique, avoiding the DynID

complexity added to the register file, but requiring a mechanism integrated into the data-

cache access pipeline. If B-pipe---+A-pipe updates are not supported, this approach would

be appropriate for two-pass pipelining.
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2.2.4 Preserving a correct and efficient memory interface

Since the two-pass model can allow memory accesses to be performed out of order,

the system must do some bookkeeping, beyond what is ordinarily required to implement

consistency semantics, to preserve a consistent view of memory. For the purposes of

presenting this issue, consider representative pairs of accesses that end up having over-

lapping access addresses, but where program order is violated by the deferral of the first

instruction to the B-pipe. The term a indicates an instruction that executes in the A-

pipe and B one that executes in the B-pipe. Three dependence cases are of interest, as

follows. Seemingly violated antidependences Ldlad,d,rlB 4 st[ad,d,r]o and output depen-

dences stlad,d,r]P 9 stlad,d,rlo are resolved correctly because loads and stores executing

in the B-pipe do so with respect to architectural state and that stores executing in the

A-pipe do not commit to this state, but rather write only to a speculative store buffer

(an almost ubiquitous microarchitectural element), for forwarding to A-pipe loads. When

A-pipe stores reach the B-pipe, their results are committed, in order with other memory

instructions, to architectural state.

Preserving a flow dependenc e stfad,d,rl? ! n]oaarlo requires more effort. In this case a

store in B-pipe needs to forward its stored value to a load in A-pipe. As indicated earlier,

the general assumption is that instructions executed in the A-pipe either return correct

values or are deferred. If, when the store passes through the A-pipe, it has unknown data

but is to a known (ready) address, the memory subsystem can defer the load, causing

it to execute correctly in the B-pipe, after the forwarding store. If, however, the store
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address is not known in the A-pipe, it cannot be determined in the A-pipe if the value

loaded should have been forwarded or not. If a load executes in the A-pipe without

observing a previous, conflicting store, the B-pipe must detect this situation and take

measures to correct what (speculative) state has been corrupted. Fortunately, a device

developed in support of explicit data speculation in EPIC machines, the Advanced Load

Alias Table (ALAT) [39, 40] can be adapted to allow the B-pipe to detect when it is

possible for such a violation to have occurred (since all stores are buffered, memory has

not been corrupted).

With a traditional ALAI, an advanced load writes an entry into an ALAT, a store

deletes entries with overlapping addresses, and a check instructions determines if the entry

created by the advanced load remains [40]. In two-pass pipelining, Ioads executed in the

A-pipe create ALAT entries (indexed by DynID rather than by destination register),

stores executed in the B-pipe delete entries, and the merger of load results into the

B-pipe checks the ALAT to ensure that a conflicting store has not intervened since the

execution of the load in the A-pipe. If such a store has occurred, as indicated by a missing

ALAT entry, corrupted speculative state must be flushed (conservatively, all instructions

subsequent to the load and all marked speculative entries in the A-file), the A-file must

be restored from the architectural copy, and execution must resume with the offending

load.

Figure 2.5 demonstrates a simple example of this operation. In Figure 2.5(a), in-

struction 1, executing in A-pipe writes the address of its access (A) to an appropriate
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3. LD *[B] 2. ST [B]*
(d)

Figure 2.5 Two-pass pipelining Advanced Load Alias Table (ALAT) operation.

ALAT entry. When 1 is processed in B-pipe, in Figure 2.5(b), it verifies that no store,

deferred in A-pipe but subsequently executed in B-pipe, has conflicted with 1's initial

access. Figure 2.5(c) shows two instructions in A-pipe. The first, instruction 2, a store,

is deferred because its address was not readv. The second, instruction 3. a load writes

the address of its access B to an ALAT entry, just as 1 did in Figure 2.5(a). When

instructions 2 and 3 are processed in B-pipe in Figure 2.5(d), store instruction 2 first

evicts any entry in the ALAT with a conflicting address because 2 is executing in B-pipe

due to its address being unready at the time of its A-pipe opportunity. Load instruction

3, upon finding no corresponding entry in the ALAT, has detected that a conflicting store

has intervened since execution, causing a pipeline flush.
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Since such pipeline flushes can have a detrimental performance effect, Chapter 4

reflects results indicating the infrequency of these events. It should also be noted that

this ALAT is distinct from any architectural ALAT for explicit data speculation, and

that, because of its cachelike nature, the ALAT carries the (small) possibility of false-

positive conflict detections.

2.2.5 Limitation of miss resilience of two-pass approach

The two-pass model tolerates a miss by passing dependent consumers to the B-pipe for

subsequent execution. Each such "tolerated" miss event potentially denies a dependent

chain of operations the ability to tolerate misses, since operations executing in B-pipe

have no further pipeline to which to defer. This "single-second-chance" phenomenon

limits the ability of two-pass to approach ideal out-of-order levels of performance and, if

a deferred miss delays detection of a branch misprediction, may even degrade performance

relative to traditional in-order execution. This section illustrates this problem, and the

following section explains how two mechanisms mitigate these effects: B---+A update and

compiler-based critical operation identification.

To illustrate the single-second-chance phenomenon, Figure 2.6 shows a dependence

graph including five issue groups, totaling 13 instructions. In the graph, each edge is

marked with the dependence latency. Nonunit latencies on edges O--C, D---+H, F*J, and

K---+M indicate cache missesl each of these pairs, however, is scheduled at hit latency (1

cycle). When A's result is not available for C's dispatch, C is deferred to B-pipe, as will be
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Figure 2.6 Limitation on overlap of latency events.

all its data-flow successors F, G, and so on. Because C deferred instead of stalling A-pipe,

D and dependents can immediately begin execution in A-pipe, performing independent

execution while C waits in B-pipe for its operand to be resolved. Miss latencies A---+C and

D---+H are thus overlapped. Since instructions F and K execute in B-pipe, however, their

unscheduled latencies to J and M, respectively, are exposed and serialized by B-pipe's

in-order semantics; as deferred instructions they cannot benefit from two-pass. Here, a

greedy deferral strategy that never stalls the A-pipe would be outperformed by a strategy

that sometimes chooses to expose a miss cost in A-pipe to preserve later benefit.

2.2.6 Encouraging the success of A-pipe execution

One means of coping with the single-second-chance limitation is to ensure timely

updates of corrected state (and corresponding V-bits) from the architectural (B) register

1

@

47



file to the A-fiIe. This optional update path allows dependent instructions to get the

correct operands and execute in the A-pipe, as long as their producers have executed

in B-pipe by the time they go to dispatch in A-pipe. The DynID tag on each A-file

register allows this update, as described in Section 2.2.3. In the initial design [34], every

retirement in the B-pipe attempted to update the A-file. Since these updates may contend

with retiring instructions in the A-pipe for A-file write ports, the update queue, shown

in Figure 2.3, buffers updates waiting on an A-file port. Since whenever a decision is

made to defer the execution of an instruction to the B-pipe, it will not write the A-file,

the bandwidth required is not expected to be much higher than in a traditional EPIC

design. As the V-bits of these deferred instructions' destination registers in the A-file are

cleared at dispatch time, the V-bits on these registers will defer all consumers until an

update arrives from the B-pipe. The obvious limitation of this update mechanism is that

they are only applicable in cases where no intervening instruction in A-pipe has had the

same destination. As A-pipe is continually performing preexecution, these updates may

often be disallowed through the replacement of the DynID by a later writer.

Without running updates (and because of their limitations, potentially even with

them), the accumulation of invalid state in the A-file state might theoretically cause ever-

increasing deferral to the B-pipe, although A-file state is periodically completely updated

in the restoration the follows detection of branch mispredictions in the B-fiIe. Chapter 4

describes the performance consequences of the running B---+A feedback path, showing

that while this feedback is useful for minimizing the number of instructions deferred to
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the B-pipe, for the majority of benchmarks, the benefits of two-pass pipelining can be

achieved without needing to rely on the running update model.

2.2.7 Critical instructions in the two-pass model

Even if updates from the B-pipe are legal, they are only useful if they arrive before

consumers execute in the A-pipe, assuming a large amount of slack in the schedule. When

the dependence is tighter, as in the example of Figure 2.6, however, this mechanism alone

is insufficient. Once an instruction is deferred to the B-pipe, its data flow*dependent

instructions will generally be deferred as well, with any unscheduled latency incurred

being fully exposed in an in-order manner. There are situations where it is better to stall

the A-pipe to allow an instruction to receive its source operand rather than deferring

the instruction to the B-pipe. This way, the latencies of it consumer instructions can

be initiated in parallel from the A-pipe. (For example, stalling C in Figure 2.6 allows

parallel service of subsequent latencies F-+J and K-+M.) While the hardware generally

lacks the foreknowledge to determine when a stall should be materialized in the A-pipe to

preserve later opportunities in the B-pipe, the compiler can be made to supply this crucial

information through the application of "critical" hint bits as described in Chapter 3. As

previously implied, critical instructions in the two-pass model stall in A-pipe when their

operands are not ready. Results in Chapter 4 will show that this is an effective technique

to increase useful preexecution in A-pipe.
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2.2.8 Managing branch resolution

Constructing a two-pass pipeline results in two stages where branch mispredictions

can be detected: A-DET and B-DET, shown as the DET stages of the A-pipe and the

B-pipe in Figure 2.3. A conditional branch has subtly different execution semantics from

other instructions in the A-pipe. When the direction of a branch cannot be computed in

the execution stage of the A-pipe, the mi,spredi,cti,on detecti,on of the branch and not the

effect of the branch itself is deferred to the B-pipe. This is implicit in the design of the

pipelined machine, since the branch prediction has already been incorporated into the

instruction stream in the front end. When a branch misprediction is detected "early"

in A-DET, the B-pipe continues to execute instructions preceding the branch until it

"catches up" to the A-pipe by emptying the coupling queue. Any subsequent instructions

present in the coupiing queue, if any, must be invalidated, but otherwise fetch can be

redirected and the A-pipe restarted as if the B-pipe were not involved. This would result

in a reduction in observable branch misprediction penalties.

When mispredicted branches depend on deferred instructions for determination of ei-

ther direction or target, however, the misprediction cannot be detected until the B-DET

stage. In this case, the A-file may have been polluted with the results of wrong-path in-

structions beyond the misprediction. Consequently, all subsequent instructions in both

the A-pipe and the B-pipe must be flushed, all corrupted state in the A-file must be

repaired from the B-fiIe, and fetch must be redirected. The "speculative" flags in the

A-file reduce the number of registers requiring repair: only the A-file entries marked as
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speculative need to be repaired from B-file data. As this procedure somewhat lengthens

the branch misprediction recovery path for these instructions, performance may be de-

graded if too many misprediction resolutions are delayed to the B-pipe. Alternatively, one

could employ a checkpoint repair scheme to enable faster branch prediction recovery at a

higher register file implementation cost [41]. Other invalidation or A-file double-buffering

strategies could also be applied.

Issue Regrouping

Because of the (hopefully substantial) advance execution performed by A-pipe, often

while an in-order processor would otherwise be stalled by cache misses, much of the

B-pipe's execution consists of merely merging precomputed instruction results into the

processor state. Because the B-pipe does not recompute the results of such instructions,

they can be considered to no longer be dependent on the original producers of their source

operands. This elimination of input dependences permits an optimization called issue

regroupi,ng. Rather than executing strictly according to the compiler's plan of execution-

executing in each cycle the issue group the compiler explicitly prearranged-new issue

groups can be formed by exploiting preexecution but without changing the compiler-

specified instruction order. This work presents two approaches to issue regrouping, simple

and fuil issue regrouping.

Figure 2.7 shows demonstrates simple regrouping occurring within a two-pass

pipelined system. In Figure 2.7,two iterations of a three-cycle loop are shown. In this
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Figure 2.7 Simple regrouping. (a) A-pipe execution according to compiler's plan of exe-
cution; and (b) B-pipe issue regrouping.

example and future examples in this section and in Chapter 3, Ioads are represented as

hexagons, stores as squares, arithmetic instructions as circles and branches as triangles.

Data dependence arcs between the instructions are also shown.

Figure 2.7(a) shows the dynamic schedule, or the dynamic order of instruction execu-

tion, in the A-pipe. A-pipe's dynamic schedule occurs exactly according to the compiler's

statically arranged schedule. In Figure 2.7, the load instruction marked 2 in the first it-

eration misses in the cache. Since A-pipe executes without interlock, execution proceeds

past 2's two dependent instructions in the next two cycles. Because load instruction 1

hit in the cache, all instructions in the next iteration are ready in time for their execution

in A-pipe.

Figure 2.7(b) shows the execution schedule of the same instructions in B-pipe. In-

structions which have successfully preexecuted are shown in the figure with small squares
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-

Cycle 4 @

(b)
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within the instruction symbol. Because of the dependences from load instruction 2,

whose cache miss has now been handled, the instructions in the first iteration execute

according to their original schedule. However, through the simple regrouping technique,

the two highlighted instructions execute in the cycle previous to the one in which they

were originally scheduled. In simple regrouping, preexecuted instructions can be merged

into immediately preceding issue groups. Such mergers never generate intra-issue-group

dependences because, as mentioned above, preexecuted instructions have no input depen-

dences. By restricting the compaction of issue groups to the movement of preexecuted

instruction, the complexity of issue regrouping is minimized. No additional dependence

check is required for these instructions because they are guaranteed to be independent

of the previous instructions in the issue group.

Simple issue regrouping captures much of the potential of the issue regrouping strat-

egy. During B-pipe reprocessing of instructions, dependences between the instructions

deferred in A-pipe tends to be rather dense, limiting the additional opportunity for

general compaction of the dynamic schedule by moving these unexecuted instructions

into earlier issue groups. However, there are cases where there is room for such general

regrouping-based compaction. Figure 2.8 shows a single iteration of the loop from the

example in Figure 2.7. In Figure 2.8(a), load instruction 1 misses in the cache during

its A-pipe execution, two-cycles later deferring the branch instruction dependent on 1.

During B-pipe processing, shown in Figure 2.8(b), since the chain of instructions fed by

load instruction 2 has been preexecuted, the store instruction in the example can be
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(a)

Figure 2.8 Full regrouping. (a) A-pipe execution
tion; and (b) B-pipe issue regrouping.

(b)

according to compiler's plan of execu-

combined into the issue group for the second cycle using simple regrouping (shown with

a light shading). In addition, even though the branch instruction was not preexecuted,

it can be combined with the issue group for the second cycle if dependence checking is

performed under full issue regrouping (shown with a dark shading). It can be combined

with the previous issue group because it is independent of other instructions executing in

the second cycle. Full regrouping is done by checking dependences on an instruction-by-

instruction basis in the REG stage (as would be done in a non-EPIC in-order processor

such as SPARC [38]), thus still respecting the compiler's ordering of instructions.

Chapter 4 demonstrates that the more complex full regrouping outperforms the simple

regrouping technique, occasionally significantly. As the in-order superscalar approach to

issue (i.e., relying on the compiler's ordering of instructions, but not limiting issue to the

compiler's explicit cycle assignment) could be used in the baseline model, this technique

was also experimentally examined. Results in Chapter 4 show that without the multiple-

pass pipeiining preexecution, there is little room for issue regrouping.
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2.3 The Multipass Pipeline Microarchitecture

The two-pass pipelining approach presented in Section 2.2 serves as a helpful intro-

duction to the concepts of the more general multipass pipelining approach. Multipass

pipelining can be conceptually considered as a two (or more)-pass pipelining scheme which

all passes implemented virtually on a single physical pipeline. Alternatively, multipass

pipelining could be considered to be a significant extension to in-order runahead [19, 20]-

an extension which incorporates the "flea-flicker" ideas first presented with two-pass

pipelining [34].

To lay a foundation for outlining the aspects of the multipass model which have

already been presented and introduce an extension designed to capture the concurrent

preexecution and execution present in the two-pass model, a small example in the same

style as Figure 1.2 is helpful in illustrating the ability to overlap effect of cache-misses in

three different architectural models.

2.3.L Developing the multipass pipelining model

Figure 2.9 shows execution time-lines for three different execution modeis, each case

suffering the same pattern of four cache misses. As in Figure 1.2, activity in the execution

stage of the pipeline is shown in the EXE component of the time-line, while the handling

of cache misses is shown in the MEM component line. The example presented is an

extension in time of the example in Figure 1.2, with the example extended to include
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Figure 2.9 Execution time-line for multipass models of execution.

data-cache missing load instruction G. Note that G is a miss to distant level of cache. The

handling of G takes long enough that its handling extends beyond the shown time-line.

Revisiting the in-order model

The first model, in-order, shown in Figure 2.9(a) matches closely the example in Fig-

ure 1.2. As in the previously detailed example, because of the cache-miss dependencies,

A---+B, C-+D, and E--+F, the bulk of the time in the example is spent stalled on cache

misses. No stall for G's miss is evident in Figure 2.9, because the example ends before

any consumers of G are reached.
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Introducing the multipass model

In the second model, base multipass pipelining, shown in Figure 2.9(b), instructions

execute in order until one attempts to consume the result of an outstanding cache miss

(such as B). While such an instruction would normally suffer an in-order stall, that

instruction is simply deferred. Advance preexecution is allowed to occur while the cache

miss is being serviced. Once the cache miss starting the preexecution is complete, this

advance execution is terminated, and normal execution returns to the deferred consumer.

Note that execution resumes with the consumer rather than the instruction immediately

following the missing load (as in the simple run-ahead preexecution model presented

in [19]). Since preexecution execution in the multipass model3 occurs only on consumpti.on

of a missing value and not on the miss itself, a consumer scheduled at miss latency by

the compiler will not be penalized unnecessarily, as opposed to the original run-ahead

preexecution model.

There are three key concepts that are evident from the example in Figure 2.9(b):

1. Cache-miss resilience of multipass pipelining, even for dependent chains of misses

(demonstrated in Figure 2.9(b) by the preexecution following the execution of the

previously deferred load instruction E).

2. Acceleration of execution (and additional preexecution) through the reuse of pre-

executed results (shown in Figure 2.9(b) as the widening of the EXE line).

3Similarly, preexecution in the two-pass approach defers only unready consumers, speculatively mov-
ing on to subsequent instruction after such a consumer.
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3. Restart of advance preexecution after critical instruction deferral (shown in Fig-

ure 2.9(b) with immediate return to the first deferred consumer, instruction B, at

the dark point of the preexecution segment of the EXE line.

The mechanism behind each of these concepts will be detailed in the subsequent

sections.

The sneak multipass extension

Figure 2.9(c) shows an extension, sneak multipass, to the base multipass pipelining

design that seeks to capture some degree of the concurrent execution and preexecution

that was inherent in the two-pass model. This model utilizes the same basic design as

the basic multipass approach, but uses an interesting optimizalion to exploit some of the

potential for concurrent processing of these two streams using a technique analogous to

a very limited form of simultaneous multithreading [42].

In Figure 2.9(c), when cache-missing load A is complete, execution returns to A's

consumer B. However, in the sneak multipass model, preexecution is also allowed to

continue to occur from the last preexecuted instruction. preexecuted instructions sneak

through available issue and functional resources (available because the execution stream

of instructions does not fully utilize them). In the example, this concurrent preexecution

is shown with the SNEAK PRE-EXE line. In this example, by sneaking preexecution

during the execution segment starting with B, load instruction G is reached much earlier

than in the base multipass approach.
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Figure 2.10 Base integer multipass pipeline.

2.3.2 Base multipass pipeline organization

Figure 2.10 shows the base multipass pipeline organization, adapted from the contem-

porary in-order pipeline design described in Section 2.1. The additions to the pipeline

shown in Figure 2.2 occur between the four front-end stages and the four back-end stages

of the base pipeline. First, the multipass pipeline extends the 24-instruction buffer in

size and functionality. Rather than storing freshly fetched instructions, the multipass

instruction buffer instead buffers decoded instructions. This allows the instructions to

be buffered at a stage closer to the back-end pipeline. New stages are added to ENqueue

and DEQueue (or PEEK-at) instructions in the buffer. A third additional stage is

added to perform the instruction regrouping described in Section 2.2.8.

53



w,cy " ' '  I
oc(ixkq 1

Preconput.atlon
no longer in

advance of
,architectural
l:, stream

eHorym€|trE/
m6(!hgdwro

gfiaem

Figure 2.11 Three modes of multipass operation.

2.3.3 Modes of multipass operation

In a single pipeline, multipass pipelining performs the same kind of persistent, advance

preexecution that was described for the two-pass pipelining approach in Section 2.2. Be-

cause both execution and preexecution occurs on the same physical pipeline, at different

time, this pipeline operates in different modes. Figure 2.11 shows the three modes of

operation of the multipass pipeline.

Architectural execution

Initially, the pipeline enters the architectural mode when the execution of a program

starts. In the absence of run-time stalls. instructions are released from the instruction
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Figure 2.12 Multipass pipelining operation: (a) cache miss interrupts in-order execution,
(b) peeking ahead in the instruction queue, and (c) return to faci,li,tated in-
order execution.

buffer using the DEQ pointer. The release and execution of these instructions very much

resembles that of conventional in-order execution pipelines.

Advance execution

As in the general multiple-pass pipelining example in Figure 2.1, advance multipass

preexecution begins with the failure of an instruction to receive a valid operand. For

example, in Figure 2.12(a), the load B misses in cache, causing dependence checking logic

in the REG stage to detect an unready operand for instruction C. At this point, the

pipeline enters the aduance mode.

In order that in-order execution can be resumed without delay when C's data returns,

instructions C and D at the REG stage; E at REGROUP; and F and G at DEQ are

all preserved in a set of latches at these stages. These instructions are also allowed to
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proceed through the pipeline as advance instructions. Additionally, the current value of

the DEQ pointer is preserved for future use.

Another pointer, PEEK, is initialized with the current value of DEQ. PEEK is used

to release instructions from the instruction queue during advance mode. Instructions

that follow G will now be released from the instruction buffer as advance instructions.

Dequeued instructions, A through G, and their peeked successors released from the in-

struction buffer form an advance stream. Any instructions failing to receive valid input

operands are simply suppressed from execution. In a way similar to A-pipe deferral in

the two-pass model, an invalid (l) tag is attached to their output value(s) to indicate that

these instructions were deferred. This allows consumers of the suppressed instructions'

result to be suppressed in turn. As in the A-pipe, the multipass pipeline in advance mode

selectively executes only the advance stream instructions that can be preexecuted with

ready data.

Advance stream instructions are not allowed to write their results into the architec*

tural register file (ARF). Instead, their results are redirected to the speculative register

file (SRF). The ARF is analogous to the B-fiIe, storing the architecturally committed

results. The SRF is analogous to the A-file from the two-pass model, except that the

SRF wili be used to store the speculative state from each pass of advance preexecution.

When the pipeline enters advance mode, SRF does not contain any valid information.

Advance stream instructions thus initially access ARF for their input operands. As ad-

vance stream instructions write into SRF. their consumers need to be redirected to this
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Figure 2.13 Execution subpipeline datapath.

file for input operands. This redirection is realized with a bit vector, shown as A in the

detailed back-end multipass pipeline in Figure 2.13. Each "advance" bit (A-bit) indicates

that future accesses to its associated register entry should be redirected to SRF. During

normal execution, the A-bits are clear, and all instructions read operands from the ARF.

When the processor enters the advance mode, each advance stream instruction sets the

A-bits of its destination registers to L, enabling subsequent consumers to read that value

from SRF. Note that since the A-bit vector is read in the REGROUP stage, advance

stream instructions may write their result to the SRF (and thus the A-bit vector) after a

dependent instruction has read the A-bit's of its source operands. The logic for bypassing

between in-flight advance stream instructions is detailed in Section 2.3.4.
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As implied earlier this section, each SRF entry contains an l-bit to mark invalid values

written by advance stream instructions. If the execution of an advance stream instruction

is suppressed, the l-bit in its destination register is set. Future instructions reading this

register will thus be suppressed.

An important feature of the advance mode is that results of the correctly executed

advance stream instructions are preserved in a result store (RS), an analogous component

to the CRS in the two-pass approach. The RS is written in addition to the advance file

by preexecuting instructions during advance mode. There is a one-to-one correspondence

between instruction buffer and RS entries. The RS entries corresponding to suppressed

advance stream instructions are simply marked as empty. In Figure 2.13, a bit vector

with entries corresponding to the RS is read in the REG stage. The E-bit denotes that

the corresponding RS entry is empty.

Note that, when advance execution begins, three pipeline stages worth of instructions

have already been dequeued from the instruction queue. If the entries occupied by

these instructions have been recycled to new instructions, these instructions have no

corresponding instruction queue entries (and thus no corresponding RS entries) when

advance mode begins. In this work, the instruction queue entry for a dequeued instruction

is not reused until that instruction has been issued from the REG stage in normal mode.

An alternate approach would have been to disassociate instructions dequeued during

normal mode from their instruction queued entries, thus preventing such instructions
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from writing their results to any RS entry, slightly reducing the amount of reuse of

precomputed advance results.

Rally mode

When the load miss that caused the original transition to advance mode is satis-

fied in the REG stage, the pipeline switches to rally mode wherein architecture-stream

instructions resume execution. This is triggered by a successful bypass to the waiting

architecture-stream instruction latched at the REG stage. Upon entering rally mode, the

pipeline stops executing the advance stream.a The latched architecture-stream instruc-

tions at the DEQ, REGROUP, and REG stages are now unlatched and allowed to

proceed as if in normal mode. Furthermore, the preserved DEQ pointer now returns to

its use releasing succeeding architecture-stream instructions from the instruction buffer.

Architecture-stream instructions that have already been correctly preexecuted in the

advance mode are indicated by an entry marked with a clear E-bit in the result store.

They do not need to be reexecuted; rather, the EXE stage simply merges these results

into the architectural file. Just as with the reuse of precomputed results in the two-pass

model, this is beneficial for three reasons. First, the pipeline does not have to spend

the energy to execute an instruction whose results are available from prior advance-mode

execution. Second, long-latency instructions, such as multiply instructions, are effectively

converted into single cycle instructions with this feature, further reducing potential stalls

aln the "sneak" model, execution of advance-stream instructions will continue at this point.
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in rally mode. Third, this reuse enables instruction regrouping, just as in the two-pass

approach. Specifics of multipass instruction regrouping are described in Section 2.3.8.

If any architecture-stream instruction receives an unready operand bypass value at

the REG stage, the pipeline switches to advance mode again. The architectural stream

of instructions at the stages between the instruction buffer and the EXE stage again

need to be preserved in the Iatches as in the architecture mode.

Alternatively, if the DEQ pointer reaches the farthest point of the preserved PEEK

pointer while in the rally mode, then the architecture stream has caught up with the

advance stream. This indicates that there are no longer any instructions deferred on

pending cache misses. The pipeline can now switch back to architectural mode. Note

that in the base multipass model, execution in rally mode and architectural mode is, in

reality, treated identically. The original PEEK pointer serves only to denote the furthest

point of the most-recent advance execution.

Return to in-order execution

Peeking of instructions begins when an dispatching instruction would consume the

result of a load that is still being handled in the data cache. At that point, in addition

to being dispatched, these instructions (which had been dequeued from the instruction

buffer) are specially latched. When the cache miss completes, these latched instructions

can now be processed as part of the architectural in-order execution. These instructions

are unlatched, preempting peeked instructions in the same stages. Peeking halts and
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dequeuing begins again. All A-bit file entries are set (only the architectural register file

values are meaningful). Bypassing from any in-flight peeked instructions is suppressed.

In Figure 2.I2(c), architectural execution has resumed with the in-order dequeuing

of instructions. Instructions that were correctly preexecuted simply read their result

from the RS rather than reexecuting. If this preexecution consisted of cache-misses (or

other long-latency operations) as in the example in 2.9, the architectural execution is

potentially accelerated.

2.3.4 Maintaining correct execution of independent streams

The multipass pipelining model must accommodate in-order and advance streams in

a single pipeline without comingling their values in an undesired fashion. This involves

preventing spurious bypasses and respecting certain output dependences.

Spurious bypasses between advance and in-order instructions are easily prevented

through the addition of an "architectural" bit (A) to each register identifier in the by-

pass network, to indicate whether an in-order or an advance instruction generated the

value being bypassed. Instructions dequeued in architectural mode write a t to the A-

bit of their destinations; instructions peeked during advance mode write a 0 denoting

that advance preexecution has overwritten the value stored in the ARF for that register.

Advance instructions accept the bypass of the most recently executed instruction; ar-

chitectural instructions are insensitive to bypasses marked with the A-bit. Allowing the
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bypass network to discriminate among these values, rather than performing a renaming-

style labeling of source operands in an early pipeline stage, allows the straightforward

implementation of predication characteristic of in-order designs rather than the more

complicated schemes necessary for out-of-order pipelines [18]. This is an advantage of

the multiple-pass pipeline designs-they preserve the simplicity of in-order models in-

cluding ease-of-implementation of key features like predication while providing much of

the cache-miss tolerance of the dvnamic models.

2.3.5 Handling WAW dependences in the multipass approach

In an EPIC implementation like the Itanium 2, all instructions are issued strictly in

order, but variable-latency instructions might complete out of order. Since EPIC proces-

sors do not dynamically rename register operands, a shorter-latency writer might follow a

longer-latency writer of the same operand. Out-of-order instruction completions cannot

be allowed to cause inconsistent register state. Thus, variable-cycle latency instructions

(in particular loads) are scoreboarded to force output dependent instructions to stall.

Similarly, the architectural stream of execution stalls when write-after-write depen-

dencies present themselves. However, in the execution of advance instructions, an al-

ternate approach is preferred. Dynamic write-after-write dependencies are reached fre-

quently in loops, as dynamic instances of the same static instruction are obviously output

dependent. Additionally, when a write-after-write is reached in advance execution, all
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buffer to subsequent peeked loads, a consistent memory interface is maintained. However,

stalling the peeking in the instruction queue due to the limited capacity of this buffer can

easily hamper the achieved advance-execution instruction window. Additionally, peeked

store instructions may be deferred due to an unavailable or invalid target address, casting

the results of subsequent memory reads in doubt.

To guarantee that an inconsistent view of memory does not incorrectly affect exe-

cution, some bookkeeping beyond what is ordinarily required to implement consistency

semantics is needed. Multiple straightforward approaches present themselves; the mod-

ified advanced load alias table could be used as in Section 2.2.4, with the ALAT reset

every time advance mode is entered. A more general approach iike that used in many

out-of-order processors [2] where a content-addressable memory to detect when the pro-

cessing of a load dynamically reordered with a conflicting store. However, these kinds

of approaches add additional hardware complexity and are still limited in capacity. Ex-

ploiting the fact that peeked instructions will be processed again after they are dequeued

in-order, multipass pipelining takes a value-based approach [43].

Figure 2.14 shows the simple approach used in the multipass pipelining model. In Fig-

ure 2.14(a), store instruction 1 is deferred. Because the address stored by 1 is unknown,

such a deferral means that all future load instructions (and their dependents) are data

speculative. Advance mode, data-speculative instructions mark their RS entries with the

S-bit in Figure 2.13. In the example in Figure2.l4(a), a subsequent load instruction, 2

reads the value of variable A in advance mode. When these instructions are processed
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Figure 2.14 Multipass pipelining
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in rally mode, the previously deferred store instruction 1 executes, stores the value of

variable B. Because 2's result is marked data speculative in the RS, it will reperform its

memory access (most likely hitting in the first-level cache as this address was previously

loaded in advance mode) and will verifv that the value loaded is the same as the value

loaded in advance mode. In Figure 2.L4(b) because no intervening store has overwritten

the value loaded by 2, its value is confirmed.

In Figure 2.I4(c), a store instruction 3 is deferred because of an unknown address

and a load instruction 4 data speculatively reads the value of variable B in advance

mode. In the architectural mode, shown in Figure 2.14(d), the deferred store, 3, executes,

overwriting the variable B in memory. When 4 attempts to confirm its value, it discovers

that it loaded the wrong value in advance mode, and a pipeline flush is performed.

2.3.7 Increasing the throughput during multipass execution

This subsection will detail three specific mechanisms that improve the effectiveness

of multipass execution. The first, instruction regrouping, accelerates execution as it

did in the two'pass model. Second, critical operations are used in a unique way in the

multipass model to improve performance. Finally, the sneak model enables a degree of

the concurrent preexecution and execution, a desirable property inherent to the two-pass

model.
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2.3.8 Instruction regrouping in multipass pipelining

Instruction regrouping was described as an optimization in two-pass pipelining in

Section 2.2.8. Simple or full regrouping can similarly be used within multipass pipelining

to accelerate rally mode (and sometimes advance mode) execution. In advance or rally

mode, instructions with a clear E-bit in their RS entry merge their result rather than

reexecuting. Just as in two-pass pipelining, instruction regrouping can exploit this result

reuse to accelerate execution.

As described in Section 2.3.6, dynamically data-speculative loads do re-access mem-

ory to confirm their results in the multipass model. It is possible that an incorrectly

speculatively executed load may be grouped with a (incorrectly) preexecuted consumer.

However, the ensuing pipeline flush maintains correct execution state.

2.3.9 Critical instruction restart

In the two-pass model, critical results of instructions are used to control preexecution

in the A-pipe. Because it is desirable to prevent preexecution from becoming replete with

invalid operands, advance preexecution is prevented from proceeding when the result of

a critical instruction is not ready.

The multipass approach does not suffer from the single-second-chance problem of

two-pass pipelining, and therefore it is not desirable to stall preexecution. However,

when the result of a critical instruction is not ready, if preexecution continues, it is

unlikely to produce much fruitful computation or memory access. Rather than continuing
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into a great deal of deferred execution, aduance erecut'ion restart occurs. As seen from

the examples in Figure L.2 and Figure 2.9, by restarting advance mode execution with

the instructions latched when advance mode began can provide for additional useful

preexecution. Instructions that were previously deferred might be ready for execution

because the miss causing their deferral has completed. Thus, in multipass pipelining,

this restart is performed whenever an unready critical instruction is reached in advance

mode. The A-bit vector is cleared, latched instructions in the DEQ, REGROUP, and

REG stages are unlatched, but preserved for future restart. Advance mode execution is

thereby restarted.

The sneak multipass model: Enabling two concurrent streams

When the cache miss that inaugurated advance execution completes, rally mode com-

mences, and, in the base model, advance execution ends. As described in Section 2.3.3,

the old location of the PEEK pointer serves only to denote the farthest reach of the

most resent advance execution. However, in the sneak model, advance execution contin-

ues concurrently with architectural execution during rally mode.

Because of limited available ILP, the compiler often cannot successfully schedule the

maximum issue width of instruction every cycle. In the sneak model, instruction peeking

continues in rally mode, and peeked instructions sneak ahead using issue and functional

unit resources not consumed by architectural execution. The peeked instructions pulled

from the instruction queue are grouped with the ongoing architectural execution in the
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IIEGROUP stage according to available resources. No dependences with architectural

execution need to be observed; in the sneak model the values in the speculative register file

are maintained and thus the only architectural register values that the peeked instructions

will read were computed before the advance execution began. This mechanism enables

the simultaneous execution of instructions from the advance and architecture streams in

a way reminiscent of simultaneous multithreading [42] or helper threads [44].

As in-order processors already must dispatch instruction according to limited func-

tional resources, sneaking requires little additional complexity and is a considerably less

complex operation than out-of-order execution's dynamic scheduling of instructions-

reordering the execution of instructions based on both operand and functional unit avail-

ability.

Since resource priority is given to the architectural execution, eventually the DEQ

pointer may catch up with the PEEK pointer, returning the processor to architectural

mode. Additionally, the architectural execution may encounter another miss-consuming

instruction, setting the PEEK pointer to the DEQ pointer and beginning fresh advance

execution.

69



3 COMPILER-BASED CRITICAL INSTRUCTION IDENTIFICATION

Critical instructions are instructions whose pre-execution deferral will lead to the vast

majority of subsequent instructions also becoming deferred. The same notion of crit-

ical instructions are used in both two.pass and multipass pipelining, but as described

in Chapter 2, they are used in somewhat different mechanisms reflecting the different

characteristics of the two designs. The insight behind the compiler strategy for critical

operation identification will first be presented within the context of the two-pass pipelin-

ing model, followed by the actual algorithm used for each of the multiple'pass pipelining

approaches.

3.1 Critical Recurrences

Figure 3.1 shows an example of a situation in which the compiler can distinguish be-

tween operations that should be deferrable and those "critical instructions" that, within

two-pass pipelining, should always complete execution in A-pipe, in the interest of pre-

serving future deferral opportunities. Figure 3.1(a) shows three iterations of a stylized

unrolled loop dependence graph, in which arrows indicate dependences among the clouds

of instructions. The arrov/ running through all iterations indicates a recurrence through
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the loop, on which at least some parts of all subsequent iterations are dependent. Given

the identification of operations participating in this recurrence, other loop operations

can be classified as "prerecurrence" (preceding the recurrence in the dependence graph),

or "postrecurrence" (dependent on recurrence operations). This classification is signif-

icant to the operation of two-pass, as shown in Figure 3.1(b). (It also is important in

the comparison of two-pass to out-of-order execution, but this will be discussed later.)

Here, the marked operation in the recurrence part of the first iteration is deferred to B-

pipe. This constrains all data-flow-dependent successors-all subsequent recurrence and

postrecurrence operations-to be deferred as well. Any unscheduled latencies among

these operations will be materialized in the B-pipe, degrading performance. The cost

of these stalls may far outweigh the benefit of deferring the original recurrence-bound

operation. Figure 3.1(c) shows the result of preventing the deferral of operations par-

ticipating in the recurrence. Here, a stall is materialized in A-pipe, slowing down the

"advance" track, but the opportunity to absorb stalls among subsequent postrecurrence

operations is preserved.

Preventing the deferral of all instructions that participate in recurrences can, however,

detract from performance potential by delaying the execution of subsequent prerecurrence

operations, as apparent in a comparison of Figures 3.1(b) and (c). Since prerecurrence

operations are not data-dependent on the recurrence, they are initiated without delay in

the scheme of (b). However, in (c) the stall of A-pipe will delay the A-pipe processing of

the prerecurrence operations, thus reducing the ability of the two-pass pipeline to tolerate

72



the latency of these instructions. There is thus a need to balance the desires to initiate

subsequent operations early and to initiate a useful proportion of unscheduled-latency

operations in the A-pipe.

These considerations lead to a straightforward compiler technique for marking opera-

tions for which, in the event of dispatch with unready operands, stalling in the A-pipe is

a better strategy than deferring to the B-pipe. An addition to each instruction of a single

bit, a hint called an audi,bler is assumed. Alternate strategies are considered in Chap-

ter 5. When this bit is set, marking an instruction "critical," and an operand is unready

in the dependence check stage, the A-pipe stalls rather than deferring the instruction to

the B-pipe. The compiler sets these bits in the following manner: for each procedure,

all strongly-connected components (recurrences) in the data dependence graph are iden-

tified. Each recurrence is evaluated to determine if its constituent operations should be

marked with the "audible" bit, forbidding deferral. To do this, the compiler identifies

for each recurrence the sets of pre- and postrecurrence operations, according to the data

dependence graph. The total execution weight (derived from a previous profiling run,

part of a normal profile-guided compilation path) of operations with latency-masking

potential (loads and long-latency operations like multiplications and divisions) is com-

puted for both sets. If the "masking potential" weight of the postrecurrence operations

significantly outweighs that of the prerecurrence operations, the recurrence operations

are marked critical-not to be deferred. Otherwise, the benefit of starting prerecurrence

rln American football an audible is a verbal command by the qua,rterback to change an offensive play
on short notice.
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operations early is judged to outweigh the cost of possibly deferring all postrecurrence

operations, and the recurrence is not specially marked.

3.2 Code Examples

To better discern how multiple-pass pipelining microarchitectures exploit opportu-

nities for cache latency tolerance (particularly by exploiting instructions identified as

critical), it is useful to further analyze examples of real program behavior. Three ex-

amples will be presented from some of the most important loops in mcf, show varying

potential for cache miss latency tolerance. In all three examples, execution time is dom-

inated by frequent cache misses. The degree to which the flea-flicker mechanism can

cover the cache miss latency in these examples is used to help explain the mechanisms'

benefits in Chapter 4. An additional example from gap, will illustrate the treatment of

reductions as a special type of recurrence and shows how multiple-pass pipelining garners

benefits besides cache miss latency. In these examples, as in the examples in Figures 2.7

and 2.8, Ioads are represented as hexagons, stores as squares, branch instructions as trian-

gles, and other simple arithmetic instructions as circles. Data dependence arcs reflecting

cross-iteration dependences are dashed, rather than solid, lines.

3.2.I Loop recurrences independent of cache misses

The first example in Figure 3.2 shows the data dependence graph of a loop from

function prinal-bea-spp O in mcf, in which each iteration depends simply on a stride
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Figure 3.2 Example loop ftom mcf. strided recurrence.

computation, the recurrence highlighted in gray. In this example, loads 1 and 2 miss

in the first-level cache on roughly half of their executions while 3, 4, 5, and 6 virtually

always miss. Since the stride computation, independent of all the carche misses, always

executes in the A-pipe, loads L, 2, 3, and 4, whose addresses it supplies, also execute in

the A-pipe. As these loads incur misses, their dependents defer to the B-pipe; because

the loopdriving recurrence is independent, such deferral does not negatively a,ffect future

iterations of the loop. Loads 5 and 6, however, as dependents of loads 2 and 3 (which

alrnost always miss), are usually deferred to the B-pipe. Their dependents suffer in-order

stalls for lack of a third pipe to which to defer. Flea-flicker multiple'pass pipelining

succeeds in overlapping subsequent execution with the miss latencies of loads t, 2, 3, and

' (b



Figure 3.3 Example loop from mcf. pointer dereference recurrence.

4, and in so doing hides most of the memory latency exposed in an in-order execution.

The twepass approach, however, fails to hide misses in the dependence shadow of other

misses, thus falling short of the multipass or out-of-order approaches.

3.2.2 Loop recurrences containing cache misses

Figure 3.3, from refresh-potentialO, has six miss-prone loads like the previous

example, but here load instruction 1 participates in the loop recurrence (again highlighted

in gray). In this linked-list traversal, in which load 1 generates the pointer to the node

to be processed in the next iteration, as long as preexecution (either in A-pipe for the

two-pass model or during advance mode for the multipass model) is successful, the next

iteration's loads I,2, 3, and 4 can be preexecuted, allowing misses on loads 2, 3, and 4

to be tolerated. As in the example from Figure 3.2, loads 5 and 6 are frequently deferred
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Figure 3.4 Example loop fuom mcf,, no misses disjoint from recurrence.

because of the frequent misses in loads 2 and 3; thus, in two-pass pipelining, the B-

pipe stall incurred by their 5 and 6's dependents cannot be overlapped with misses from

those instructions in future iterations. Since, in this example, load 1 participates in the

recurrence, if its miss were to result in a deferral, all subsequent loads for the duration of

the loop would be deferred as well. This recurrence is therefore marked by the compiler

as critical to maintain a steady-state potential for benefit in two-pass pipelining, and

allow additional benefit through advance execution restart in multipass pipelining.

3.2.3 Loop with all cache misses entangled with the recurrence

Figure 3.4 shows a loop from the function price-out-inp1O containing five loads,

all usually satisfied from the L3 cache. If, during preexecution, a cache miss occurs

in load 2, 3, or 4 (not part of the recurrence), the miss's dependents can be deferred,

77



enabling preexecution of the next iteration. In such a case, the multiple-pass pipelining

mechanism would allow the overlap of the initial misses with cache misses in the next

iteration. In reality, however, this loop does not yield performance benefit on any of

the two-pass, multipass or out-of-order microarchitectures. Almost every dynamic load

in this example is a cache miss-the latency tolerance mechanisms can do nothing to

accelerate initiations of this loop beyond the sequential stalls caused by misses in load

instructions 1 and 5. Additionally, the loads in this example access related memory

locations. Different fields of onlv two different structures are accessed bv these loads. and

because of this relationship, load 1 and load 2 both access the one cache line while loads 3,

4, and 5 all access another. Since there are no misses disjoint from the misses that occur

in the recurrence, no overlap of cache misses is possible from one iteration of the loop to

the next. Time spent in data cache stalls is thus not a universal indicator of potential for

latency tolerance through even dynamic instruction scheduling; the dependence graph

and relative data lavout often limit benefit.

3.2.4 A reduction example

Figure 3.5 shows yet another data dependence graph, this one from gap's ProdlntO.

In this example, loads almost always hit in cache. The execution time of this loop is

dominated by the long-latency multiply instructions shown as dark circles, and the loop

recurrence is again indicated by the shaded portion. Shaded squares and wide arrows

indicate stores and (spurious) memory flow dependences to subsequent (hexagonal) loads,
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Figure 3.5 Reduction in gap.

respectively. These dependences reflect an inability of the compiler's pointer analysis to

resolve completely the store and load addresses. In the compiled code (assuming explicit

data speculation is not applied) the store-load dependences serialize the long latencies of

the multiplies, resulting in a dramatic loss performance in an in-order microarchitecture

compared to an out-of-order microarchitecture that does dynamic data speculation. FIea-

flicker multiple-pass pipelining's compiler extension determines that this loop's recurrence

is a reduction, one whose operations should be allowed to defer to capitalize on latency

tolerance among the prerecurrence instructions.

During preexecution, since the indicated operations are deferred, rather than stalling,

subsequent loads and multiplies can be preexecuted while the previous multiply instruc-

tion completes. This involves the implicit data speculation (mentioned in Sections 2.2.4
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and 2.3.6) because the subsequent load is preexecuted before the store. Here, the com-

piler's recurrence-based critical instruction classification and the microarchitecture's de-

ferral scheme work together to allow flea-flicker multiple-pass pipelining to achieve some

of the benefit that an out-of-order model achieves by overlapping the long-latency mul-

tiplies.

3.3 Critical Instruction Identification Algorithm

This section describes the specific algorithm used by the compiier to assign the "audi-

ble" critical instruction bits. The basic philosophy behind this technique was described in

Section 3.1. The approach is to identify recurrences and determine whether its "prerecur-

rence" producers or its "postrecurrence" dependent consumers have the most opportu-

nity for hiding latency through the multiple-pass pipeline mechanism. If postrecurrence

instructions have the majority of such opportunity, the instructions that compose the

recurrence are marked as critical.

3.3.1 Algorithm detail

Algorithm 1 shows the specific compiler algorithm for finding and marking critical

instructions. This algorithm operates on a data-flow graph [45] built for each function.

Cross-iteration dependences a data-flow graph result from loop recurrences, the focus

of the approach to critical instruction identification. Such dependences create strongly

connected components (SCCs) of the data-flow graph made up of nodes corresponding to
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Algorithm 1 Assign audi,blebits.
1: DFG GDFsnod"number : O
2: for all Node N e G do
3: DFS-number(N, G)
4: end for
5:  for  i :  (Gors-nod.e_number -  1) . . .0  do
6: Set SCC : A
7: SCC-self loop:0
8: Reverse-DFS-find-SCC(NDF^s_,urnb.,::.i, CC)
9: if (SCC-size> t)ll(SCC-selfloop:: 1) then

10: Gscc*.t <- SCC
11: end if
12: end for
13: for all Set SCC e Gsss-.1 do
14: if WEIGHT(PIed(SCC)) << WEIGHT(Succ(SCC)) then
15: for all Node N € SCC do
16: Mark Nor4i61"
17: end for
18: end if

19: end for

the instructions that comprise the fecurrence. Thus, the critical instruction identification

algorithm operates on SCCs.

Algorithm 1 consists of three steps: numbering each node according to a depth-first

postorder [46] traversal of the data-flow graph, using this order to find the SCCs of the

graph that make up the units of critical instruction identification, and determining for

each SCC if its constituent instructions should be considered critical.

A counter, GDFsnod,e:tumbert to be used for postorder numbering is first initialized

in Algorithm 1. Next, in a loop over each node 1/ in the data-flow graph G initiates

a depth-first search at .n/ by performing DFS:rumberQ (Algorithm 2) on that node in

the graph. The nodes in the graph are not assumed to be processed in this loop in

any particular order. However, since this step performs a postorder numbering, when
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complete, this ordering represents a reverse topological sorting of the nodes, as (ignoring

cycles) successors of any node .l/ in the graph will have an earlier ordering than l[.

Algorithm 2 Depth-first search numbering.

l.: if Node No.i"y"4 then
2: Mark Nr4"41"4
3: for all Node S e Succ(N) do
4: if ffi"i1,4 ttren
5: DFS-number(S, G)
6: end if
7: end for
8: Node N6rpg -number : GDFs-nodenumber

9: PDFs:ood"-number : GDFs-node-nu*b., * L

10: end if

In a second loop over all of the the nodes, the set of all strongiy connected components

in the data-flow graph, Gcc-set, is formed. During each iteration, the set of nodes that

will comprise the current SCC is initialized, and Reverse-DFS-find-Cc0 (Algorithm 3)

is performed on each node to find the SCC containing that node. The resultant set is

discarded if it contains only one node (the current iteration's node $ and if that node

is not part of a single-node loop in the data-flow graph. Each SCC found, is then added

to the graph's set of SCCs, Gcc-.t.

Algorithm 3 Reverse depth-first search to find connected components.

1: if Node Nr.r.r"-ra"a1.a tnen
2: Mark Nr"r", ee-uisited
3: for all Node S e Pred(N) do
4: if S :: N then
5: SCC -self loop : L
6: else if S*r"r"-ra"ar"a tnen
7: Reverse-DFS-find-SCC(S, SCC)
8: end if
9: end for

10: Set ,SCC <- N

11: end if

82



The last step in Algorithm 1 is to determine for each SCC if the instructions mak-

ing up the SCC should be considered critical. The weight of opportunity, computed

through Algorithm 4, tor the set data-flow predecessor nodes of the nodes in the SCC

(Pred(SCC)), is compared to that of the data-flow successor nodes of the nodes in the

SCC (Succ(SCC)). If the successors, i.e. the postrecurrence instructions vastly outweighs

the predecessors, the SCC is heuristically determined to be critical. For the results in

this work, if the weight of the successors was 10x that of the predecessors, the SCC was

judged to be critical.

Algorithm 4 Compute weight of set of nodes.
1:  we igh t :0
2: for all Node N e Set SCC do
3: if N e interesting then
4: weight: weight * NpTof ite-ueieht
5: end if

6: end for

Postorder numbering of data-flow graph nodes

Algorithm 2 details the process of performing the postordering of nodes. If a node has

already been visited (and thus is already numbered) it does not need to be considered.

Otherwise, a recursive depth-first traversal from that node is performed. Each of the

successors of the current node are visited unless it has alreadv been numbered or has

already been visited as part of the current traversal. Each node l/ is numbered based on

the current value of Gopsnode:number when the traversal through l/has terminated. Thus,
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Table 3.1 Interesting instructions for critical instruction identification.

Load
Integer Multiplv
Integer Divide

Integer Remainder
Floating Point Arithmetic

the result is a graph with each node assigned a postorder numbering. The node number-

ings provides a reverse topological sort of the nodes. For acyclic graphs, predecessors in

the graph will have a higher numbering than their successors.

Algorithm 3 performs a reverse-depth-first (or a height-first) traversal of the graph.

This traversal is performed within Algorithm 1 starting with the highest numbered nodes,

thus starting with the nodes at the top of the topologically sorted graph. Since the

numbering provides a sorting of the nodes, nodes with untraversed predecessors (or nodes

that are there own predecessor in the graph) are part of a cycle in the graph and thus

an SCC.

Algorithm 4 shows the process for computing the criticality weight of a set of nodes,

SCC. This algorithm is performed on both the predecessors and the successors of every

SCC for determining if it is a critical SCC. The weight is computed as the simple sum of

the compile-time control-flow profile of each of the interesting nodes in the set. A node

is interesting if it represents an instruction that has potential for latency deferral. These

instruction types are listed in Table 3.1.
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3.3.2 Critical instruction identification algorithm example 1

Figure 3.6 shows an example of the application of the algorithm presented in Sec-

tion 3.3.1. A data-flow graph for a seven-instruction function is shown. Dark nodes in

the graph represent load instructions, while the remaining nodes represent other instruc-

tions not of the types specified as interesting for the purpose of this algorithm in Table 3. 1.

The numbering for is node is shown as that node's DFSrrr-6"", with the deepest nodes

numbered first through Algorithm 2. The profile weights, generated through compile-

time profiling, for each instruction in the function are shown within their corresponding

node. Using Algorithm 3, node 7 is first considered. Since it has no predecessors, it is

rejected for consideration as part of an SCC. During processing of node 6, the SCC in

the graph is found through a traversal through 6's predecessors. The SCC in the graph,

composed of four nodes, is highlighted. This SCC represents a cross-iteration dependence

within a loop in the represented function. Nodes 2, 3, 5, and 6 are not reconsidered since

they are already part of a discovered SCC, and nodes 1 and 4 are rejected because their

only predecessors are nodes already traversed as part of the discovered SCC.

The "interesting" predecessors and successors of the nodes making up the SCC are

weighed using Algorithm 4 to determine whether the SCC should be considered critical.

The interesting predecessor, node 7, has a profile weight of 100, while the interesting

successor, node 4, has a weight of 10 000. Since the weight of successors (10 000)

outweighs that of predecessors (100), the SCC is determined to be critical.
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WEIGHT(PRED(CC)) = 1oo
WEIGHT(SUCC(CO)) = 10000

Selected
scc

Figure 3.6 Calculation of connected component weights for "audible" hint assignment.
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In this example it is undesirable to deferring instructions that comprise the SCC

when their operands are not ready (in this example because of a data-cache-miss of the

Ioad instruction represented by node 1). Deferring the instructions in the SCC due to a

data-cache-miss of the infrequently executed load instruction 1, will cause the deferral,

in each iteration of the represented loop, of the heavily-profile-weighted load 4.

3.3.3 Critical instruction identification algorithm example 2

Figure 3.7, shows another example, similar to that in Section 3.3.2 except that for

this example the proposed algorithm may identify an SCC as critical in a way that is

suboptimal. In this case, an infrequently iterated loop is nested within a heavily iterated

outer loop. This loop nesting is shown in Figure 3.7. The outer loop iterates 10 000

times, while the inner loop iterates only an average of 1.1 times (for example, it could

have one iteration 90% of the time and two iterations r0% of the time).

The SCC contained in the inner loop is shown with the four selected nodes. Because

the profile weight of the important node in the inner loop is higher than the interesting

node in the outer loop, the SCC successor weight is larger than the predecessor weight

in this example, and the SCC could be determined to be critical. Requiring a large

magnitude of difference between the weight of successors and predecessors would prevent

this example SCC from being declared critical, but given different profile weightings this

problem can occur no matter how great a ratio is required. In this case, marking the

recurrence in the inner loop as critical would prevent the deferral of the (infrequently
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WEIGHT(PRED(CC)) = 21 000
WEIGHT(SUCC(CC)) = 22000

10000 tteratons

Loop nesting

Figure 3.7 Limitation in "audible" assignment heuristic in handling of outer loops.
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iterating) inner loop and could prevent the advance execution of subsequent (frequently

iterating) outer loop iterations.

There are other cases where Algorithm 1 may not mark instructions as critical in a

way that is also suboptimal. For example, the presented assignment algorithm focuses

only on SCCs, acyclic subgraphs are ignored, while it may be preferable to have nodes at

the base of a graph tree marked as critical if its deferral will lead to the deferral of many

interesting instructions. Hovrever, as shown in Chapter 4, the presented heuristic allows

the compiler to control the multiple-pass pipelining in a way that provides significant

performance.
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4 EXPERIMENTAL RESULTS

A number of experiments were conducted to test the effectiveness of multiple-pass pipelin-

ing. While the technique is applicable across in-order microarchitectures, an EPIC plat-

form, based loosely on the Itanium 2 architecture was chosen for these studies.

4.1 Evaluation Setup

4.t.I Benchmarks

Listed in Table 4.1 are the applications used to test the performance of muttiqle-

pass pipelining. They represent a wide variety of application types selected from

SPECint2000 [15]. Each application was compiled through the IMPACT ILP Compiler

(Internal Version l2-L3-2004) [16, 47, 48] using the SPEC-distributed training inputs

to generate basic block profile information. Interprocedural points-to analysis [49, 50]

was used to determine independence of load and store instructions enabling aggressive

code reordering during optimizations. Optimizations performed include aggressive in-

lining, hyperblock formation, control speculation, modulo scheduling, and acyclic intra-
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Table 4.1 Desc of pipelining.ription of benchmarks used to evaluated multiple-
Benchmark Description
bzi,p2 Compression
gap Group Theory, Interpreter
gzxp Compression
rncf Combinatorial Optimization
parser Word Processing
twoI, Place and Route Simulator
uorter Object-oriented Database
apr FPGA Circuit Placement and Routing

hyperblock instruction scheduling [16]. Results reflect rigorously sampled [51] complete

runs of SPEC reference inputs.

4.I.2 Compilation

The IMPACT research ILP compiler built each of the applications from native C

code in order to provide a solid, aggressive code base for which to examine the perfor-

mance of the multiple-pass pipelining approaches. The specific steps in the compilation

process are as follows. Basic block control-flow profiling was performed to guide cross-

file function inlining. After inlining, aggressive interprocedural pointer aliasing analysis

generates memory dependence information used throughout the compilation process. A

variety of architecture-independent optimizations were then applied including classical

optimizations, hyperblock predicated region formation utilizing advanced predicate anal-

ysis, superblock formation and optimization, and other IlP-enhancing optimizations.

F\rrther predicate-aware optimizations were then performed, followed by two rounds of
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instruction scheduling utilizing general control speculation and register allocation. Select

portions of the C library, mainly portions of the string and memory manipulation and

sorting functions, were also compiled through IMPACT with similar levels of aggressive-

ness and simulated along the each of the benchmarks.

The performance measurements reported in this work are generated by a custom

software simulator, Linterpret, that performs cycle-by-cycle, full-pipeline simulation of

each instruction. The simulator fully accounts for the effects of branch prediction, wrong

path execution, cache utilization and pollution, varying memory latency, interlocking,

and bypassing. As previously mentioned, a subset of the C library calls have been

compiled and included with the application code, thus enabling cycle-by-cycle simulation

of these codes as well. A number of library calls and system services cannot be compiled

through IMPACT with current compiler constraints, and thus the native library codes

are called on behalf of the application. Cycles spent in the native calls, therefore, are not

accounted for in the simulation results, but generally represent an insignificant portion

of overall application execution. Readers are directed to [52, 53] for a full description of

the Linterpret simulation environment.

4.t.3 Baseline microarchitectural models

To evaluate the multiple-pass pipelining paradigm, an in-order model, a two-pass

model, a multipass model, and an idealized out-of-order model were developed in Lin-

terpret. Table 4.2 shows the relevant machine parameters, which are derived from the
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Table 4.2 Experimental machine configuration.

Feature Parameters
Functional Units 6-issue, ltanium 2 FU distribution
uata model lLP32 (inteeer, long, and pointer are 32 bits)
L l l  Lache

L1D Cache
L2 Cache
L3 Cache
Max Outstanding Misses

r cycre, rot(E, /Fway, 04t, ttnes
1 cycle, 16K8, 4-way, 648 lines
5 cycles, 256KB, 8-way, 1288 lines
12 cycles, 3MB, 12-way, 1288 lines
t6

Main Memorv 145 cycles
Branch Predictor 1024-entry gshare

I wo-pass Loupltng Queue 256 entry
Two-pass ALAT penect (no capactty confltcts)

Multipass Instruction Queue 256 entry
Out-of-Order Scheduling Window 64 entry
Uut-ol-Order Reorder Buffer 256 entry
Out-of-Order Scheduling and Renaming Stages 3 additional stages
gut-ot-Urder Pred,cated Renaminc ideal

Intel Itanium 2 design. This models an achievable near-term design; a futuristic design

with longer cache latencies would further accentuate the demonstrated benefits. For the

two-pass model, all nonmemory functional units are replicated in the advance pipeline

and load and store Dorts are arbitrated.

Baseline in-order microarchitecture

The simulated explicitly parallel instruction set was that of the IMPACT EPIC ar-

chitecture [13] which is similar to that the of the Itanium instruction set without the

constraints of template bundling. One significant difference is that the IMPACT EPIC in-

struction set contain single-instruction long-latency operations rather than the multiple-

instruction emulation found in the Itanium instruction set [10].
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Out-of-order model

The out-of-order model used for comparison with multiple-pass pipelining was con-

structed to give an idealized indication of the performance opportunities from dynami-

cally ordering instructions. Some of the performance limiting overheads of out-of-order

execution mentioned in Chapter 5 were excluded from the model to demonstrate the rel-

atively ideal performance potential from dynamic scheduling. For one example, because

of the multiple stages needed for instruction scheduling and register file read, modern

instances of out-of-order execution require speculative wake up and dispatch to allow

back-to-back dispatch of a producing and consuming instruction. In the simulated out-

of-order execution model, both scheduling and register file read are done in the REG

stage, eliminating the need for speculative wakeup. Additionally, since predication com-

plicates renaming in an EPIC processor because multiple potential producers can exist

for each consuming instruction, an ideal renamer was used, avoiding the performance cost

of a realistic implementation as described in like [18]. Finally, unconstrained reordering

of loads and stores is performed in the scheduler of our out-of-order model. Since no

prediction (oracle or realistic) is used to prevent loads from reordering with stores to un-

resolved addresses, there is the potential for costly data misspeculation flushes. As later

examined in Section 4.2.3, in our presented results, these flushes only seriously impact

one benchmark, upr, almost doubling the number of front-end stalls.
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Figure 4.1 Normalized execution cycles; baseline (base), two-pass (2P), and out-of-order
(ooo).

4.2 Two-Pass Pipelining Evaluation

Benchmark execution cycle counts are shown in Figure 4.1 for baseline (base), two-

pass pipelining (2P), and out-of-order (OOO) configurations, normalized to the number

of cycles in the baseline machine. Within each bar, execution cycles are attributed to

four categories: erecut'ion, in which instructions are issuing without delay; front-end,

stalls including branch misprediction flushes and instruction cache missesl other, stalls

on multiplies, divides, floating-point arithmetic, and other non-unit-latency instructions;

and load, stalls on consumption of unready load results. For two-pass pipelining, these

are measured in the B-pipe so that the architectural pipeline of the two-pass pipelined

system is compared with that of the baseline. Cycles that out-of-order execution does not

execute a single instruction are attributed to the cause of the stall of its oldest instruction

(or as a front-end stall in the case of an empty instruction queue).
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For each benchmark, a significant number of memory stall cycles are eliminated by

two-pass pipelining. This improvement results in a reduction in executed cycles for the

2P system. For example, mcf shows a 4570 rcdrction in memory stall cycles and a 37Yo

reduction in overall cycles. On average, two-pass pipelining reduces cache miss stalls

by a0% relative to an in-order model. Not all of this reduction, however, results in

performance increase. The removal of a load-miss stall may occasionally expose another

previously hidden stall. For example, in uorter, load stalls are reduced by 32%, while

other stalls are almost doubled, resulting in only a g% net reduction in total cycles.

Additionally, a small number of the eliminated load-miss stall cycles have been converted

to fruitful execution cycles. The average reduction in total stall cycles (both load and

nonload) is 32%, yielding a I.2x average speedup.

The idealized out-of-order execution model reduces load stall cycles by an average of

62To, and total stall cycles by 60%. The largest magnitude of difference between OOO

and 2P load stall benefits occurs in mcf. As described in Section 3.2, the loops from mcf

in Figures 3.2 and 3.3 both contain two tiers of loads that are not part of the recurrence.

While 2P gets significant benefit from the ability to overlap cache misses in loads from

the first tier, the miss penalties of the deferred, second-tier loads are serialized in the B-

pipe. Out-of-order execution does not share the "single-second-chance" limitation and is

free to overlap these misses as well. Where 2P achieves a 2.1x speedup on the first loop

and a 2.2x speedup on the second, OOO achieves 3.4x and 2.9x speedups, respectively,
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Figure 4.2 Two-pass speedup without and with the use of "audible" hints.

in these experiments. This results in a 1.6x benchmark speedup for 2P in mcf compared

to the potential 2x total speedup shown by OOO.

The benefit of the compiler-based critical operation identification described in Sec-

tion 2.2.7 is presented in Figure 4.2. This benefit is clearly seen in mcf and gap. Without

the use of audible hint bits here, 2P would only achieve a 1.03x speedup over the base-

line in-order model on mcf and a 1.25x speedup on gap. The benchmark upr is the

only other benchmark that achieves substantial benefit from use of this technique, in

which it increases the speedup from 1.02x to 1.13x . For bzi,p2, gzxp, parser, and uorter,

stalling the A-pipe on unready critical instructions costs a fraction of two-pass potential

performance benefit. In twolf, only a slight speedup is seen. In each of these bench-

marks, register-dependence recurrences are much iess significant and they do not suffer

frequently from chained cache misses. It is also important to note that these comparisons

| 2P wlo critical insts.
| 2P wlcritical insts.
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are made against a two-pass model utilizing the update queue. The update queue serves

to decrease the amount of deferred execution in the A-pipe as will be explored in Sec-

tion 4.2.4. Without the update queue, the performance impact of the critical "audible"

hints is larger.

Much of the load stall time that is suffered by OOO (and by 2P represents the

memory access latency that simply cannot be tolerated through execution of independent

instructions. In the example from mcf in Figure 3.4, load misses occur on the critical

path through the loop, and there are no disjoint cache accesses that can begin early and

be overlapped. In this case, base performs as well as OOO or 2P. Where OOO benefit

outstrips that of 2P, this performance improvement often comes not from the memory

tolerance targeted by 2P, but from motion of instructions in the presence of compile-

time scheduling barriers such as potential store to load memory dependences and control

dependences [5a].

As shown in the example from gap in Section 3.2.4, the reordering of potentially con-

flicting loads and stores can significantly reduce the schedute height and yield substantial

performance improvement. While, in the example of Figure 3.5, the previously serial-

ized multiplies can be overlapped in the 2P model, instructions are processed according

to the original schedule and thus only one multiply can start every 4 cycles. Through

dynamic scheduling, the OOO model can begin two multiplies each cycle (assuming the

independent instructions have been fetched into its scheduling window). Thus, while this

example highlights its ability to tolerate some nonload"stall cycles, it also highlights it
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inability to move instructions earlier in the schedule. In another example, an almost

identical loop in Sunlnt O from gap, a loop performing additions is serialized by false

Ioad-store dependences. In this case, there are no opportunities to defer instructions

because addition is scheduled for its single cycle latency. Since the A-pipe executes in-

structions according to the original schedule, it can only defer instructions which are

not ready. It cannot execute ready instructions any earlier than their compiler-specified

placement, thus limiting the potential for 2P benefit. In this example, while OOO re-

duces its execution cycles through overlapping several iterations of this loop, the loop

executed in the 2P model exactlv as it would in the base.

Another benchmark exhibiting a non-memory-tolerance speedup on OOO that is

much more significant than its reduction in load-stall cycles is upr. The most significant

loop occurs in try-swapO for one of the two reference inputs. This loop spans 93 cycles

and four separate hyperblocks, the last of which contains 30 cycles of floating point

computation that is not consumed by any further iteration of the loop. T[ace expansion

was performed in the compiler, but replication is limited by code expansion constraints.

Because each hyperblock represents the compile-time "scheduling scope," the compiler

was not able to hide the latency of this computation in the last hyperblock in the loop.

OOO is able to overlap this computation with the next iteration of the loop. It is due to

opportunities like this that OOO achieves a 56% reduction in nonmemory stalls. These

nonmemory opportunities are already targeted by proposed mechanisms providing quasi-

dynamic scheduling described in Section 6.2. Since these benefits are largely orthogonal,
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one of the multiple-pass pipelining techniques could be applied to a quasi-dynamically

scheduled system.

4.2.L Distribution of memorv access initiations

Figures 4.3-4.6 show the distribution of the initiation of memory accesses to the A-

and B-pipes. Four charts are shown, one for each level of the cache hierarchy. To

aid in interpreting this data, Table 4.3 shows, for each benchmark, the proportion of

Ioads satisfied by each level of cache. For every benchmark, the majority of accesses

are initiated in the A-pipe, indicating that it is largely successful in preexecuting loads,

with a smaller portion of accesses being deferred to the B-pipe. Notable is the significant

portion of the L3 cache misses in mcf started in the A-pipe. The benefit of overlapping

the handling of these cache misses is clearly reflected in the performance improvement

for mcf. The benchmark apr, on the other hand, executes most of its substantial number

of main memory accesses in the B-pipe, and thus displays only a small decrease in data-

cache miss stall cycles.

Because all execution in this pipeline is speculative (potentially down a wrong path of

execution) there is a risk this speculative execution will result in an increase in the total

number of memory accesses made. As can be seen in Figures 4.3-4.6 this increase is, in

general, a small percentage. The overall increase in number of loads is 5.4%. However,

two-pass execution does result in a significantly increased number of accesses that go all

the way to main memory. For example, gzrp has more than a ninefold increase in its small
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Figure 4.6 Distribution of initiated accesses to A and B pipes: Main memory.

Table 4.3 Distribution of cache access to satisfying level and percentage of load latencies
deferrable.

Benchmark
Memon
L1

access satlstaction levels
L2  l t - s  l l r , i l v t

Dynamic proportion
of noncritical loads

gztp 81.8o/o L8.L% O.OYo o. t% 74.7%
vpr 78.2% L5.4"h 5 .L% r.3% 84.6%
mcf aI .L - /o L9.6% 17.8% r.5% 68.sYo
parser 9L.LYo 7.L% L,IYO o.L% 90.OYo
gap 9( . ( " /o t ,6-/0 o.2& o.3!a 975%
vortex 94.OYo 4.5Yo t .2% 03% 99.9%
bzip2 95.57o 2s% L.|570 o.2% 9L. (5'/o

twolf 82.2% 9.lYo 6.LYo 0.0% 96.77%

r02



number of main memory accesses. These accesses that are not handled by any level of

the cache are likely "wild loads" to invalid addresses, such as dereferencing a pointer off

the end of an array or a linked-list traversal. In most cases, while the percentage increase

in main memory accesses is significant, such accesses make up only a tiny fraction of all

loads (0.1% for parser). Therefore, while these accesses are undesirable, they do not have

a significant performance impact in our simulated results. Depending on the design of a

realistic system, however such misses have the potential to cause performance-impacting

translation iook-aside buffer (TLB) misses and faults [16].

Table 4.3 also presents the percentage of dynamic loads in each benchmark with

a deferrable latency (i.e., the percentage of dynamic loads with no consumers marked

critical). Marking too many consumers would keep the majority of load initiation in the

A-pipe, but would eliminate opportunities for benefit. The benchmark mcf whichhas the

largest improvement from the application of the "audible" hints, is also the benchmark

with the lowest percentage of loads whose consumers can be deferred (68.b%). For the

remaining benchmarks, more than7\% (and in most cases more than 90%) of the dynamic

Ioads fall into this category. Therefore, the high rate of loads initiated in A-pipe is not

simply the result of an over application of these hints.

4.2.2 Modes of benefit

Two modes of benefit from tolerating cache misses with two-pass pipelining have

been posited. First, as demonstrated in the examples from mcf,long latency memory

103



instructions that would have otherwise been blocked by preceding stalled instructions

can be started early in the two-pass system. This allows multiple long latency loads to

be overlapped rather than processed sequentially. The second mode of benefit is that

continuing execution beyond the consumer of a delinquent load allows the absorption

of short cache misses. Since the code has been scheduled by a compiler assuming hit

Iatencies, loads that miss in the first level of cache are often followed in quick succession

by consuming instructions; in two-pass pipelining these instructions can be deferred to the

B-pipe, hiding the latency of these misses. Both of these techniques reduce the number

of cycles in which the processor reports being stalled on load misses, as demonstrated in

Figure 4.1. When an application has poor cache locality, the benefit of overlapping long

accesses dominates the benefit of hiding shorter ones (as in mcf). For other benchmarks,

Iike gzi,p, there are relatively few long latency misses. The performance gain seen in 2P

for gzr,p is likely due to the second source, the absorption of latencies from short but

ubiquitous misses.

4.2.3 Negative performance effects

Other than the potential increase in memory traffic, two-pass execution has the po-

tential to degrade performance in two other situations. First, it extends the effective

pipeline length for any misprediction detected in the B-pipe, increasing misprediction

recovery cost. In the experimental simulations, an average of 68% of branch mispredic-

tions were discovered and repaired in the A-pipe. The effects of these mispredictions are
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less severe than in the single-pipe design, as the B-pipe may continue to process instruc-

tions during the redirection of the A-pipe as long as the coupling queue has instructions

remaining. Second, store-conflict flushes are incurred whenever a store initiated in the

B-pipe conflicts with a programmatically subsequent load that was already initiated in

the A-pipe, as discussed in Section 2.2.4. Initiating loads in the A-pipe (even in the pres-

ence of deferred, ambiguous stores) is advisable, as g8.9% of all load accesses initiated in

the A-pipe while a deferred store is in the queue are free of store conflicts. Overall, only

0.2% of all stores are deferred to the B-pipe and eventually cause a conflict flush.

Taking into account misprediction and store flushes, the results of Figure 4.1 show by

the reasonable size of the front-end stall segment that neither substantially erodes the

performance gained from two-pass pipelining. In fact, by executing branches that would

were positionally blocked by cache-miss stalls, 2P often sees a reduction in front-end stall

time. OOO in general sees an even greater reduction in front-end stalls with the notable

exception of. upr. The more aggressive reordering of instructions in OOO resulted in 10

times as many load/store conflict flushes in the OOO compared to the 2P model. This

has resulted in more than a doubling of the front-end stall cycles over the baseline for

opr. While the idealized OOO shows an average decrease in front-end stalls, this would

be offset in a realistic implementation by its additional pipeline stages.
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Figure 4.7 Two-pass speedup without and with update queue feedback.

4.2.4 Update queue

Finally, continued successful preexecution might require that committed results in

the B-pipe be fed back in a timely manner into the A-pipe to prevent the deferral of

ever-greater numbers of instructions. As this interpipe communication may add some

degree of complexity, the total effect of this update path was evaluated. The speedup

of two-pass pipelining with and without update queue feedback is shown in Figure 4.7.

In many cases, the total omission of update had a small impact on performance. The

benchmark most impacted by the lack of A-file update was gap which sa'vy more than a

doubling in cycles when the update queue was removed from the 2P model. In the case

of. gap, timely updates from B-pipe are needed to maintain sufficient execution in A-pipe

to support the overlap of the long-latency multiplies from the ProdInt O example.

f 2P wlo update queue

a 2P wlupdate queue
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4.3 Multipass Pipelining Evaluation

Benchmark execution cycle counts are shown in Figure 4.8 for baseline in-order (in-

order), multipass pipelining (MP), and out-of-order (OOO) configurations, normalized,

to the number of cycles in the baseline machine. Within each bar, execution cycles are at-

tributed to the same four categories as in Figure 4.1. During advance mode in multipass

pipelining, cycles when no new instruction executions occur (as opposed to merges or

deferrals) are attributed to the unsatisfied latency that initiated advance mode. This is

analogous to the cycle accounting in the out-of-order execution model where stall cycles

are attributed to the cause of the stall of its oldest instruction.

As in the two-pass results presented in Figure 4.L, a significant number of memory

stall cycles are eliminated through multipass pipelining for each benchmark. This im-

provement results in a reduction in executed cycles for the MP system. Though the

hardware overhead required by multipass pipelining is less than that of two-pass pipelin-

ing, this reduction is generally greater than that the 2P system evaluated in Section 4.2.

For example, mcf shows a57% reduction in memory stall cycles (as opposedto a40%

reduction in 2P) and a 40% reduction in overall stall cycles (as compared to fhe 32%

reduction in 2P) relative to the in-order baseline. The benchmark rncl suffers from fre-

quent cache misses that often occur in dependent chains of misses for which multipass

pipelining provides tolerance in cases where two-pass pipelining cannot.
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Figure 4.8 Normalized execution cycles; baseline (base), multipass (MP) and out-of-order
(ooo).

The average reduction in totai stall cycles (both load and nonload) due to application

of multipass pipelining is 37%, yielding a 7.27x average speedup. The results in Fig-

ure 4.8 demonstrate that even though multipass pipelining avoids the pipeline replication

that constitutes two-pass pipelining, the average speedup is more than that of two-pass

pipelining. The one benchmark where 2P significantly outperforms MP isin gap. There,

the dual pipelines of 2P achieve benefit from concurrently performing preexecution and

execution. The fixed, long-latency instructions in gap are preexecuted. The dependent

reduction is deferred during preexecution but can be simultaneously executed in the exe-

cution pipeline. On gap, MP achieves only a 1.45x speedup, wheres 2P achieved a 1.58x

speedup. Overall, out-of-order execution only achieves a 1.11x speedup over a multipass

pipelined system from its ability to find ILP by reordering instruction executions and its

more general tolerance of run-time latency.
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Figure 4.9 Distribution of accesses between advance and architectural modes: L1 hits.

4.3.L Distribution of memorv access initiations

Figures 4.9-4.12 show the distribution of the initiation of memory accesses during

advance or architectural mode multipass execution. Four charts are shown, one for each

level of the cache hierarchy, similar to Figures 4.3-4.6 for two-pass pipelining. Unlike

in two-pass, where the majority of memory accesses are initiated as part of advance

execution, advance mode execution only occurs when the processor would be otherwise

stalled (a small percentage of total execution for many benchmarks. Similar to the two-

pass model, multipass does not result in a large increase in memory accesses handled at

each level of cache, other than main memory. As in the case of two-pass pipelining, while

an increase in main memory access is seen, this increase is over a very small number of

main memory accesses to begin with for most benchmarks. The number of main memory

accesses seen with multipass pipelining is similar to that seen in out-of-order execution.
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Figure 4.10 Distribution of accesses between advance and architectural modes: L2 hits.

Figure 4.11 Distribution of accesses between advance and architectural modes: L3 hits.

Figure 4.12 Distribution of accesses between advance and architectural modes: Main
memory.
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Figure 4.13 Normalized execution cycles; in-order, simple multipass (simpleMP) and sim-
ple multipass with critical restart (w/ restart).

4.3.2 Critical instruction restart in multipass pipelining

One of the unique features of multipass execution is the use of the compiler-directed

critical instruction hints to direct advance execution. Figure 4.13 shows the performance

effect of this critical instruction restart technique. Execution cycles, normalized to the

number of cycles executed in the in-order baseline, are presented for a simple multipass

implementation without critical instruction restart, instruction regrouping or "sneaking"

of peeked instruction, and a similar implementation with the addition of critical instruc-

tion restart. The in-order baseline is also shown for comparison. Note that the simple

multipass implementation could be considered an extension of the runahead preexecu-

tion proposed by Dundas and Mudge [19]. In this multipass implementation execution

results are preserved, hiding the latency of long-latency, preexecuted instructions, but

these results are not further exploited through instruction regrouping.
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As with the two-pass approach's use of critical instructions to control A-pipe, the

biggest performance impacts of the critical instruction restart approach are seen for mcf

and gap. For mcf,large performance improvements are enabled by critical instruction

restart. During advance execution initiated by the consumption of a long-latency cache

miss, critical instruction restart improves the performance of mcfby providing for the ex-

ecution of instructions which were earlier deferred but whose operands are now available

(independent of the missing load that initiated advance mode). Similarly, critical instruc-

tion restart hides most of the load latency stalls in gap exposed by the simple multipass

technique. To a smaller extent, instruction restart allows the overlap of shorter misses

in bzi,p2 slightly improving its performance. For the other benchmarks, the performance

impact of this technique is minimal. Based on the results of the application of critical

instruction bits in Figure 4.2, this is not unexpected as in these benchmarks, the im-

portant strongly connected data-flow behavior is most pronounced. However, in bzi,pZ, a

performance loss was seen under two-pass pipelining from stalling on unready critical in-

structions. Because of the somewhat different application of critical instructions-restart

advance preexecution rather than stalling-the application of critical instruction infor-

mation is a performance win in bzi,pZ. On average, a 1.06x speedup is seen from the

application of critical instruction restarting.

4.3.3 Effect of issue regrouping

The last performance impact measured for multipass pipelining is instruction regroup-
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ing. Figure 4.14 compares the cycle accounting breakdown for the in-order baseline, the

simple multipass implementation as in Section 4.3.2, and the simple implementation with

the addition of full instruction regrouping. By forming new issue groups at runtime, a

performance improvement is seen on each benchmark. Fot mcf, whose performance is

dominated by cache-miss stalls, finding new issue groups exploiting the reuse of pre-

computed results makes a minimal performance improvement. Other benchmarks like

bzi'p2 see more dramatic effects. In these results, instruction regrouping was performed

in all three modes of execution, not just in Rally mode, although only in Rally mode

(or additional passes of Advance mode) are preexecuted results available for reuse. An

average speedup of 1.11x is seen from instruction regrouping.

The full instruction regrouping examined in Figure 4.14 requires a dependence check

before issue to determine which instructions (whether preexecuted or not) are ready

for issue. This expands the complexity of dependence checking beyond what would

normally be done in an EPIC processor. Simple regrouping explained in Section 2.2.8 does

not significantly complicate the dependence checking process because only preexecuted

instructions are allowed to execute with instructions in earlier issue groups. The input

dependences of such instructions can simply be ignored. The slowdown of multipass

pipelining with simple regrouping is shown in Figure 4.15. For most benchmarks, this

slowdown is within 3%, however, for three benchmarks (each with large performance wins

from instruction grouping) the slowdown is closer to l0%.
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Figure 4.15 Slowdown of multipass pipelined microarchitecture with simple regrouping.
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5 IMPLEMENTATION COST

Justifying the overhead of the multiple-pass pipelining implementations requires not only

an examination of the performance potential demonstrated in Chapter 2, but also a de-

tailed evaluation of the complexity, power, and area required. Because the more conven-

tional approach to tolerate dynamic memory latency is through out-of-order execution,

the complexity of multiple-pass pipelining will be examined relative to the complexity of

an out-of-order design. The relative expense of anaiogous structures and rough estima-

tions for structures unique to the particular designs can provide insight into the relative

cost of these implementations.

5.1 The Cost of Out-of-Order Execution

Since the implementation cost of multiple-pass pipelining will be evaluated in terms

of the relative cost of out-of-order execution, the implementation cost of out-of-order

execution will first be considered. First, the structures central to out-of-order design can

be very expensive. For example, in the POWER4 processor, the instruction schedulers

and register renaming hardware alone account for more than 10% of total core power

and the integer issue queue has the highest power density of any unit [55]. In another
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processor, the Alpha 21264 [56], the out-of-order logic consumes 78% of the total power-

as much as all of its integer and floating point units combined. While aggressive out-of-

order implementations are desired to maximize the tolerance of cache miss latency, power

concerns are driving more conservative implementations of out-of-order processors [57].

Decomposing the costs of out-of-order execution, a typical out-of-order implementa-

tion consists of three processes: register renaming, dynamic scheduling, and instruction

reordering for retirement. To eliminate false dependences created because the reuse of

the same architectural register names, register renaming [4] is needed to make dynamic

scheduling effective. With dynamic scheduling, the processor itself decides the order of

instruction execution, issuing instructions when their data-flow dependences are met.

Lastly, to insure that instruction execution affects architectural state in a way consistent

with the original program, the results of instruction execution are buffered for incorpo-

ration in program order.

5.1.1 Register renaming

In register renaming, the destination register operand of every instruction is assigned

a physical register destination. The source operands of subsequent consumers will be

renamed so that the correct physical register operand is read by each consumer. While

there are multiple implementations of register renaming, each has similar overhead. The

out-of-order evaluation in this work assumes an efficient register renaming strategy similar

to that of the Pentium 4 [3], in which register values do not have to be moved from their
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Physical
Register File

Figure 5.1 Register renaming table.

physical location at retirement. The register renaming structures are shown in Figure 5.1.

The register alias table (RAT) is a RAM which stores for every architectural register

name the mapping to a physical register name. At register rename time, instruction

destinations are assigned a physical register location, and the RAT is updated to reflect

the current mapping. In the implementation assumed in this work, a separate RAT is used

at the retirement to reflect the register locations that reflect architecturally committed

state. The physical register file thus must be large enough to store the result of every in-

flight instruction while maintaining the last committed value of every architected register.

Since the RAT is basically a RAM structure, the access time of the RAT is directly

related to both its size (which is determined by the number of architected registers)

and the number of ports (with is determined by the issue width of the processor) [58].

EPIC processors with large architectural register files and wide-issue thus require large,

complex renaming hardware. In addition, predication, an assumed feature of EPIC

processors, seriously complicates register renaming [18]. Since at the time of register
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renaming it is unknown whether a predicated instruction will write its register destination

or whether it will be squashed, it is unknown whether the RAT should be updated

to reflect the renaming of that instruction. Implementations of register renaming for

predicated architectures thus include significant additional complexity. As mentioned in

Chapter 4, the out-of-order performance results in this work assumes prescient renaming

of predicated instructions.

5.1.2 Dynamic scheduling

Dynamic scheduling allows the processor itself to determine the order of instruction

execution based of the dynamic availability of operands. This provides a very effective

mechanism for tolerating cache-miss latency, as instructions that are independent of any

cache miss can be dynamically scheduled even if they are later in program order than

instructions that are dependent upon the cache miss.

In conventional dynamic scheduling, instructions are buffered while they await their

register operands. They are woken up when their operands become available and dynamic

scheduling selects woken up instructions for issue to execution units. Figure 5.2 shows

the mechanism behind the dynamic wakeup of instructions. As instructions execute, the

tag of each renamed register destination is compared with the tag of the source operand

of every instruction buffered in the scheduling table. Once both source operands of

an instruction are available, the instruction is woken up. Because of the large number

of dynamic comparisons required every cycle, wakeup is typically the most complex
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Figure 5.2 Dynamic scheduling wakeup comparisons.

component of out-of-order execution [58]. The number of comparisons is determined

by the number of instructions executed each cycle (determined by the issue width) and

the size of the scheduling table. The complexity of wakeup limits the practical size of

scheduling tables, and this complexity is compounded for wide-issue EPIC processors.

5.1.3 Reorder buffer

Even though the processor reorders instructions dynamically, the effects of these in-

struction executions need to occur in the programmer specified order. To accomplish this,

a reorder buffer maintains the necessary record keeping to commit instruction results to

architectural state in program order. Because there are potentially a large number of in-

flight instructions in the processor, the reorder buffer maintaining the state of all of these

instructions will also be large. In the implementation mentioned above, the overhead of

the RAT is also replicated for retirement so that a separate table maps the architectural

register names to the location of the physical register for the architecturally committed

value for that register name.
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ROT EXP DEC EXE DET

Out-of-order equivalent: (10 Itanium II stages)

Figure 5.3 Pipeline comparison between in-order and out-of-order processors.

5.7.4 Pipeline overhead

Figure 5.3 compares the pipeline (up to the branch misprediction resolution stage) of

an in-order and an out-of-order pipeline. In the figure, additional stages have been added

for register renaming, insertion into the scheduling table and dynamic scheduling. While

obviously implementation dependent, the overheads of out-of-order execution typically

add an overhead of roughiy 30% additional pipeline length [18]. The pipeline of the

Pentium 4 [3] shows a proportional pipeline overhead.

5.2 The Cost of Multiple-Pass Pipelining

5.2.7 Overhead of two-pass pipelining

In justifying the use of both an advance and backup pipeline in the two-pass design,

is important to consider the contribution of the execution pipeline's cost with respect

to the entire processor. The actual execution pipelines of a typical, contemporary mi-

croprocessor consumes only a small fraction of the chip's transistor count and power
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consumption. For example, the Intel ltanium 2 integer pipeline and integer register file

together consume an average of less than 5Yo of the total chip power and occupy less than

2% of the total chip area [59]. Even when the additional overhead of pipeline control

is included, the impact of adding a second register file and an additional pipeline can

be a reasonable trade-off for the cache miss tolerance that it provides. Because two-

pass pipelining's relatively independent pipelines internally maintain in-order semantics,

it has some implementation advantages. For example, for predicated instruction sets,

the in-order semantics make two-pass pipelining a more natural implementation that

out-of-order execution with register renaming.

Within the replicated pipelines, the doubling of memory units would imply additional

data-cache read ports. The nonlinear relationship between cache size and porting makes

this an expensive proposition. However, the two-pass pipelining design lends itself readily

to partial replication of expensive components. In the implementation assumed in this

work, the A-pipe and B-pipe memory units arbitrate for the same port resources. As

shown in Chapter 4, the total number of memory accesses is very similar to a single pass

approach because, despite two passes, no dynamic memory instruction accesses the cache

twice. For this reason, there is only a negligible penalty for arbitrating load ports rather

than replicating them. Some subpipelines, such as the floating-point subpipeline, can

be fairly large. If necessary, arbitration could also be used there, allowing only partial

replication or even complete sharing of any large functional units.
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As stated in Section 2.2, the two-pass microarchitecture requires both an advance

and an architectural register file. Additionally, each register in the advance file requires

valid and speculative bits, and a DynID. In contrast, typical out-of-order designs have a

monolithic, physical register file with a size equal to the number of architected registers

plus the planned number of in-flight instructions. This capacity could be compared to the

size of the coupling result store in addition to the coupling result store which stores results

of in-flight instructions awaiting merger into architectural state. Such large capacity is

critical to supporting effective renaming and a large instruction window, and may be

comparable in number of registers to that used in a two-pass processor. Additionally, if an

out-of-order processor utilizes a monolithic register file, such a register file is substantially

larger and requires more power than two smaller register files [60, 61].

The storage of the coupling queue (in terms of number of bits) is the same as an identi-

cally sized scheduling table, as both store complete instructions for execution processing.

However, this queue is likely much less complex than an out-of-order architecture's queue

of instructions awaiting scheduling. While the A-pipe to B-pipe coupling structure is a

simple FIFO queue, with a single, wide port for adding instructions to the queue and

another for reading instructions from the queue, a conventional scheduling table requires

a number of read port equal to the processor's issue width and contains comparators for

the wakeup process described in Section 5.1.2.

Out-of-order processors require a reorder buffer to support, at a minimum, bookkeep-

ing to enable the reordering of retired instructions into program order. Implementations
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like that considered in this work involve an additional file with entries for every phys-

ical register (thus corresponding to every in-flight instruction). This file requires two

read ports for every instruction issuing in a cycle and one write port for every instruc-

tion retiring. The storage in this file could be considered to be matched by additional

bookkeeping that might be kept for pre-executed instructions within the coupling result

store, however, as described above the coupling result store structure is much simpler.

In addition, other reorder buffers implementations involve power-hungry, associatively

addressed storage [62].

Another component of two-pass pipelining is the update queue used to feed retired

values from the B-pipe back to the A-fiIe. This structure is also a simple FIFO. Fur-

thermore, not only is this feedback path very localized and latency-tolerant, simplifying

its design, but, as the results in Chapter 4 indicate, the majority of the benefit from a

two-pass design can be achieved without this queue. Because this queue necessitated the

DynID, eliminating the updates queue from the design could reduce significant complex-

ity with a nominal degradation in performance. As register file access is often tied closely

to cycle time, these DynIDs are the component of two-pass pipelining that is most likely

to have cycle-time impact. When eliminated, the simple design of two-pass pipelining is

unlikely to affect achievable processor frequency.

Finally, both two-pass and out-of-order designs require hardware to ensure correctness

in the presence of load and store reordering. The ALAT hardware is used in two-pass

pipelining and is similar in complexity to the content-addressable load and store buffers
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Table 5.1 Side-by-side comparison of hardware structures differentiating the multiple-
pass pipelining and out-of-order designs.

Two-pass pipelining Mult ipass pipel ining O ut-of-order execution
Replicated register f i le (A-File)
Coupling result store

Speculative register storage (ARF)
Result store

Large monolithic renamed
register file

Loupl ing queue Instruction queue Schedul ing table
Reorderbuffer

In-order dependence check In-order dependence check Rename.time dependence check
ALAT Value-based re-execution LD/ST Ordering Hardware
Replicated back-end pipeline

Update queue
Renaming logic

used by aggressive out-of-order implementations [2] to detect when a load is dynamically

reordered with a conflicting store.

5.2.2 Overhead of multipass pipelining

In large part, the implementation overhead of multipass pipelining is a subset of the

that of the two-pass pipelining described in the previous section. Multipass pipelining

does not require the largest augmentation of two-pass pipelining: the additional execution

pipeline. Table 5.1 shows a breakdown comparison between the specific additions of two-

pass, multipass and out-of-order designs.

Analogous to the two-pass coupling queue, the multipass instruction queue is a large,

but simple, FIFO queue. The multipass queue is slightly more complex in that it it

must support peeking of instructions in the queue (with sneak-multipass, simultaneous

dequeuing and peeking must be supported), but this queue requires only two read ports

for dequeuing and peeking and one write port for enqueueing. It is still significantly
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simpler than the general scheduling table required by dynamic scheduling. As described

in Section 5.L.2, the scheduling table supports the reading of any general instruction

in the table, and thus needs a port for every instruction issued simultaneously in a

given cycle. Additionally, instruction dequeuing (or peeking) occurs strictly in-order

from the queue, while conventional scheduling tables perform tag comparisons between

every register destination generated by execution and every register source of instructions

awaiting issue.

Similar to the relationship between the multipass instruction queue and two-pass

pipelining's couping queue, the multipass pipelining result store is incrementally more

complex than the two-pass coupling result store. Both result stores have a one-to-one

relationship with queued instructions. Since the multipass instruction queue can be read

from exactly two locations (the lOq or PEEK pointers into the queue), the result store

must also support two read ports (where each port supports reading of a number of

operands equal to the issue width).

Finally, the overhead of insuring the proper semantic ordering of memory loads and

stores is greatly reduced in the implementations proposed for multipass pipelining. In-

stead of the content-addressable ALAT structure used in two-pass pipelining, multipass

pipelining allows the reordering of loads and stores and verifies that the value loaded by

data speculative loads is correct. The results in Chapter 4 demonstrate that front-end

stalls are not significantly increased by the pipeline flushes caused by the maintenance
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of semantic memory ordering since conflicts between the loads and stores seldom occur

in practice.

While the two-pass approach's A-file is a speculative copy of the register file, the

advance register file could be implemented in a somewhat different manner. Instructions

issuing in the single physical pipeline read either the advance or the architectural register

file for each of their operands. Thus, ports can be shared for both the advance and

architectural register storage. In the latest Itanium 2 processor, a similar register file

with storage for two register values for every architectural register has been implemented

to support simultaneous multithreading [42]. Because only the storage is doubled and

not the tag decoding, read or write ports, this implementation has only a 15% increase

in area and virtually no impact on timing [63]. Such a register file could be similarly

used for multipass pipelining.

5.2.3 Critical instruction identification

Another overhead to be considered for both multiple-pass pipelining models is the

addition of the "audible" hint bits on each instruction to indicate that the instruction

is critical. These hints are similar in spirit to the two-bit hints on load instructions in

the Itanium instruction set architecture [11], communicating the desired capability of the

loaded data to the hardware. Similarlv. Itanium branch instructions contain hint bits

that the compiler can use to indicate the desired amount of instruction prefetching to be

performed at the target of the branch.
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While the critical instruction hints fit well within the EPIC philosophy [8] of compiler-

directed execution, instruction sets which have aiready been defined are unlikely to have

unused opcode space for the purposes of these new hints. In an EPIC implementation,

templates specify the instruction types of several bundled instructions and the explicit

parallelism between them. In the Itanium instruction set there are some unused tem-

piate specifications that might be usable by the compiler to specific criticality. The

compile-time scheduler choosing the bundle template [64] could consider criticality as an

additional constraint.

A final alternate implementation of the complier-specified criticality would be through

explicit critical operand hint instructions. Rather than marking hint bits on every in-

structions, hint instructions could be inserted, indicating that its source operands are

critical (stalling the two-pass model on an unready operand or restarting advance exe-

cution in the multipass model). These instructions would slightly increase code size, but

only loads (or other long-latency instructions) would potentially need hints to consume

their produced destinations. As shown in Table 4.3, only a small percentage of load in-

structions have critical destination operands. Additionally, since hint instructions could

have multiple source operands this would additionally reduce the number of instructions

that would need to be inserted.

Another approach to achieving similar benefits in multiple-pass pipelining is through

the use of a heuristic prediction of criticality. In the two-pass approach, a history-based

critical instruction predictor like those described in the the related work in Chapter 6
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Table 5.2 Instruction executions, merges, and deferrais per cycle.

bzip2 gztp gap mcf parser twolf vortex vpr
Architecture mode executions r.34 2.12 0.56 0.26 0.s6 0.65 2.06 0.74
Rally mode executions 0.45 0.40 0.77 0.72 0.54 0.53 0.36 0.61
Rally mode merges 0.56 0.42 0.78 0.35 0.26 0.27 0.48 0.55
Rally mode sneak executions 0.85 0.59 0 .89 1.10 0.34 0.62 0.38 0.73
Rally mode sneak deferrals 0.39 0.30 0.43 0.46 0.09 0.19 0.36 0.20
Rally mode sneak merges 0.32 0.02 0.77 2.51 0.02 0.08 0.00 0.45
Advance mode executions 0.28 0.22 0.55 0.04 1.01 0.96 0.20 0.99
Advance mode deferrals 0.27 0.16 0.47 0.02 0.54 0.32 0.33 0.54
Advance mode merges 0.02 0.00 0.19 0.00 0.02 0.03 0.00 0.28

could be used to predictively stall the processor before the advance execution was inun-

dated with deferred execution. Such a predictor could similarly be used in the multipass

approach. Additionally, in this approach, a simple heuristic based on the number of

deferred instructions could be used to initiate advance execution restart.

5.2.4 "Flea-flicker" reprocessing of preexecuted instructions

The final overhead of multiple-pass pipelining to be examined is the efficiency of the

reprocessing of preexecuted instructions. Since power is a paramount concern in modern

processor design, significant reprocessing effort for preexecuted instructions is undesir-

able. Figure 5.2 shows a breakdown by execution mode in the multipass pipelined system

evaluated in Chapter 4, broken down by benchmark. On average 2l% of instruction pro-

cessing in these benchmarks is the simple merging of persistent preexecution results stored

in the result store. Unlike previous preexecution techniques, these dynamic instructions

merely commit their precomputed values rather than performing any reexecution.
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Likewise, 15% of instruction processing is the advance deferral of unready instruc-

tions. Energy wasteful execution can also be avoided for instructions while the invalid

condition of their destination registers is propagated. Thus, while the number of times

an instruction is processed is greater than that in an in-order processor, a great deal of

efficiency savings is achieved by not executing preexecuted or deferred instructions.
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6 RELATED WORK

6.1 Runahead Preexecution Approaches

This work is not alone in proposing a mechanism for improving the tolerance of

variable-latency instructions. Dundas and Mudge [19, 20] proposed an in-order runa-

head implementation that relied upon checkpointing and repair. In a single.issue, short-

pipeline machine, Dundas examined runahead preexecution in a special mode during any

LL cache miss. When a miss occurred, a runahead mode began. Execution continued

without stall in the hope of initiating additional cache misses early. In a manner similar

to the multiple-pass pipelining approach, Dundas' runahead design utilized a second reg-

ister file to store runahead results. When the cache miss as handled, execution returned

to the checkpointed state following the cache miss. Since in Dundas' model, runahead

preexecution begins when a cache miss occurs, not, as in this work, when a consuming

instruction executes, Dundas' mechanism entered runahead unnecessarily in cases where

the consumers of a load are scheduled farther away than the load's hit latency. Aside

from the memory accesses initiated, this approach discarded all results of runahead exe-

cution. (In [20] the preservation of branch outcomes v/as preseryed and shown to slightly
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improve performance by partially hiding branch misprediction flushes.) Since runahead

work is not preserved, register state is repaired at the end of each runahead effort and

instructions are refetched from the instruction immediately following the cache miss.

Mutlu et al. [65] presented an implementation called runahead execution that tar-

gets long-latency misses in out-of-order machines. The technique attempts to accom-

modate such misses effficiently without over-stressing out-of-order instruction scheduling

resources. When an out-of-order instruction window is exhausted because of a long-

latency cache miss, the oldest instruction in the window is artificially released with an

invalid operand, allowing subsequent dependent instructions to be issued, further inval-

idating their destinations in a way much like invalid nonresults are propagated in the

flea-flicker approaches.

The potential for preserving and reusing the correct results produced during out-

of-order runahead preexecution was examined in [66]. Only insignificant performance

improvements were seen from the preservation of these results. Such preservation was

less important than is observed for multiple-pass pipelining, Iargely because the amount

of reuse in this approach was small. This reuse opportunity in [66] was small for two

reasons. First, because runahead execution only occurs after the reorder buffer-limited

instruction window was full, a small percentage of overall time is spent in runahead. Sec-

ond, because the instructions preexecuting in this model are many instructions away from

the oldest nonretired instruction, there is a reasonably high probability that an interven-

ing unready branch will have been mispredicted, making the preexecuted instructions
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off the correct path of execution. Note that the critical restart in multipass pipelining

detailed in Section 2.3.6 was proposed in part to increase the amount of successfully

preexecuted (and thus reusable) results.

Continual flow pipelines [67] use an approach to out-of-order execution that subsumes

runahead execution. Through the use of nonblocking dynamic scheduling similar to that

of the Pentium a [3] and reorder buffer checkpointing [68], a very large instruction window

is achieved with an implementable scheduling table and register file. While continual flow

pipelines achieve the large instruction window of runahead approaches while performing

only persistent execution, continual flow pipelines require the complexity of dynamic

scheduling and register renaming unlike multiple-pass pipelining approaches.

6.2 Thread-Based Approaches

In addition to runahead approach, several thread-based approaches perform preexe-

cution of application code or subset of an application code to achieve similar benefits.

Such approaches utilize simultaneous subordinate microthreading [44] (SSMT), sharing

resources between execution and preexecution. SSMT adds "microthreads" the sole pur-

pose of which is to help the microarchitecture execute the main thread more efficiently.

Idle threads on machines supporting simultaneous multithreading [a2] (SMT) are used to

perform the preexecution of portion of the running program. This preexecution performs

speculative address generation and prefetching and resolves difficult-to.predict branch

outcomes [69] to accelerate the main thread. Like the runahead architectures, these
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threads can initiate memory accesses early with the goal of reducing the cache stalls of

the main thread. Simiiarly, Zilles and Sohi [70] proposed targeting performance degrading

events such as branch mispredictions and cache misses with microthreads by executing

speculative program slices [71] that compute the outcome of such problem instructions.

Collins ef aI.172] proposed software-based speculative pre-computation and prefetch-

ing targeted to particular delinquent loads. Dubois [73] used threads to perform strided

software prefetching. Annavaram et aI. l7al proposed a dynamic mechanism to generate

prefetching microthreads for preexecution. Such techniques have been demonstrated to

provide significant performance improvements on real SMT systems [75, 76]. However,

these techniques require code generation 177 , 781or dynamic slice extraction for specific

delinquent loads and thus cannot address the diffuse serialization of occasional misses

that are tolerated through multiple-pass pipelining.

The thread-based approach most similar to two-pass pipelining was proposed by Bal-

asubramonian [79]. In this SMT architecture, available registers were dynamically allo-

cated between the primary program thread and a future thread. The future thread was

to examine a larger instruction window and jump far ahead to execute ready instructions.

Results were communicated back to the primary thread by warming up the register file,

instruction cache, data cache, and an instruction reuse buffer, and by resolving branch

mispredictions early.

Master/slave speculative parallelization (MSSP) [80] and Slipstream processors [81]

are other approaches with simiiarities to two-pass pipelining. Both techniques attempt
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to exploit additional instruction-level parallelism (ILP) by selecting program threads

for preexecution. MSSP assumed a chip multiprocessor system in which one processor

executed an approximate version of the program to compute selected program values

while additional slave processors checked the execution results by executing the entire

program. In slipstream processors, predictably-useless instructions are squashed out of

the "advance" stream. As in two-pass pipelining, these approaches partition program

execution which the strategy of achieving better parallelism. In these approaches, the

leading thread performs persistent program execution; these systems, however, use a

much coarser mechanism for partitioning program streams than two-pass pipelining's

fine-grained, cycle-by-cycle mechanism. Unlike these thread approaches that attempt to

execute all useful work in the leading thread, the flea-flicker technique specifically defers

useful computation to avoid stalling the leading, in-order thread on the consumers of

load misses.

6.3 Quasi-Dynamic Scheduling

Another approach overcoming the limitations of static scheduling is to utilize dynamic

trace-based rescheduling. The schedules of these run-time created traces are ofben better

than the compile-time static schedule as they can dynamically adapt to run-time events,

in particular the run-time control-flow profile that led to the creation of the dynamic

trace. tace-based dynamic scheduling, or "quasi-dynamic" scheduling maintains ad-

vantages over true out-of-order execution in that execution traces are only occasionally
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formed and scheduled and this trace formation occurs offiine separately from the cur-

rent, on-line execution. taces can executed many times on an in-order pipeline between

scheduling occasions in contrast to the continual rescheduling done in an out-of-order

processor.

One example, dynamic instruction formating (DIF) [82], collects instructions executed

along frequent paths and dynamically bundles them into sets of independent parallel

instructions. The sets are then formed into atomically executed groups and stored in a

special hardware DIF cache.

Merten et al. [53, 83] proposed a run-time optimization architecture (ROAR) serving

a similar purpose, but supporting persistent, arbitrarily long traces. ROAR generated

scheduled and optimized traces that composed a run-time detected program phase or

"hot spot." This mechanism stored persistent traces in memory for each program hot

spot to avoid rescheduling the same dynamic trace. This mechanism exploited the phase

behavior of programs, choosing optimized and scheduled traces based on the current

program phase.

Another proposed system, the rePlay framework [84], provides a microarchitecture

in which instructions are collected into much longer traces and optimized and scheduled

by hardware. In this system, an enhanced trace cache [85] delivers units of execution

called frames to the processor core. Each frame consists of a long sequence of instructions

selected such that there is high probability of executing through to the end of the trace.

Thus, instruction reordering can be performed without regard to side-exits from the
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trace. A checkpoint of architectural state prior to a frame's execution is kept, since a

frame must completely execute in order to commit any changes to register or memory

state. The rePlay framework detects and forms new frames much more frequently than

ROAR' in part because rePlay does not persistently store generated traces but rather

keeps them in a cache. Because of the larger amount of trace formation compared with

ROAR, a greater percentage of dynamic execution occurred within rePlay's traces.

A further approach using rePlay allowed overlap of two traces (frames) in the pro-

cessor issue queue, increasing the amount of exposed ILP [86]. Further breaking with an

underlying in-order model, this issue queue was basically a complexity-effective dynamic

scheduler [58].

tansmeta's Crusoe processors [87, 88] and IBM's BOA [89] use a software approach

to quasi-dynamic scheduling. These systems translate, profile, schedule and optimize

programs at run time. Software profiling monitors execution and scheduled traces of

frequently executed blocks are formed.

While these quasi-scheduling approaches capture some of the benefit of out-of-order

execution, their scheduling benefit focuses only on exploiting the dynamic profile. Dy-

namic scheduling in out-of-order processors, apart from the tolerance of cache misses, is

significant [54], but falls short of the more important benefits of tolerating data-cache

miss latency. Addressing this problem, prefetching has been performed within run-time

optimization systems [90], but like compiler-directed prefetching such techniques only

effectively address predictable, long-latency cache misses.
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6.4 Critical Instructions

Previous work has examined the utilization of criticality information about individual

instructions. Because these critical instructions were used in somewhat different manners,

the definition of instruction criticality in these works differ from that established in

Chapter 3. The definition most similar to that of this work cite was that of Srinivasen [Sf]

who identified critical loads as those which precede in data-flow cache-missing loads,

mispredicting branches or the majority of subsequent execution. The performance of

applications was demonstrated to be highly dependent upon the miss behavior of these

critical loads.

A more frequent definition of instruction criticality refers to instructions that are

on the data-flow critical path. Focusing out-of*order processor resources on these critical

instructions has been shown to improve performance [92]. Dynamic approaches have been

proposed to predict which instructions are critical under this definition [93, 94]. While

a dynamic approach could be used to identify instructions that should be considered

critical within a multiple-pass pipelined system, this work demonstrates a static, compiler

approach to identify beforehand those instructions that are likely to precede a large

number of instructions in dynamic data-flow. This static approach avoids the hardware

expense of a criticality predictor.
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7 CONCLUSIONS

Because of the disparity between processor logic and memory speed, tolerating cache

misses through dynamic scheduling has become almost a ubiquitous characteristic of

modern processors. While out-of-program-order execution can tolerate variable memory-

instruction latency, it adds hardware components that are problematic for power-

conscious design and whose complexity limits the practical ability to reorder instruc-

tions. Unfortunately, while compilers have generally proven adept at planning useful

static instruction-level parallelism, alternative architectures that rely solely on the com-

piler's instruction arrangement have been found to suffer because of this dependence

when cache misses occur. This work proposes the multiple-pass "flea-flicker" microarchi-

tectural techniques that exploits a static compiler's meticulous scheduling while providing

for advance execution beyond otherwise stalled instructions.

The first implementation, two-pass pipelining, was a novel two-pipeline organization

designed to carry out useful work during unscheduled latencies while retaining the basic

simplicity of an in-order pipeline model. With detailed simulations, an implementation

of this technique achieves 70% the total stall cycle reduction of an idealized out-of-order

design in an Itanium 2-like EPIC machine. This result is a 1.27x average speedup
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over in-order and 1.67x on mcf (the SPECint2000 benchmark with the most cache-miss

related stalls). This improvement is significant, as real out-of-order implementations for

such an EPIC instruction set architecture would be heavily penalized due to features

such as predication and an already-large architectural register space, as well as pipeline

and power constraints, shrinking the remaining gap between two-pass pipelining and

out-of-order execution.

Analysis and examples of SPECint2000 benchmarks illuminated the effects of two-

pass pipelining and out-of-order execution in different dependence contexts, showing

how each's potential is impacted by miss interdependence. This analysis led to compiler-

placed annotations that drastically improved the gain on mcf, the most miss-laden appti-

cation in SPECint2000, by helping the microarchitecture maintain a steady-state oppor-

tunity for benefit in important loops. Opportunities exist in the two-pass model both to

reduce replication cost and to mitigate the "single-second-chance" phenomenon by ap-

plying the flea-flicker paradigm to a single-shared pipeline providing an arbitrary number

of virtual "passes."

Multipass pipelining builds upon the initial two-pass pipelining model. In an in-

order multipass pipeline, instructions dispatching with unready (because of a cache-miss)

operands are deferred, rather than stalled, allowing subsequent instructions to proceed.

When deferred instructions finally become ready, these instructions are revisited. Untike

most preexecution schemes, multipass pipelining provides for the persistence of valid ad-

vance execution results. Reusing these results increases efficiency and, through a novel
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mechanism, accelerates in-order execution. The same accompanying compiler analy-

sis that was useful for two-pass pipelining marks critical instructions, further enhances

the handling of miss latencies and reduces fruitless speculative execution by indicating

when there is little opportunity for advanced execution. By using only a single physical

pipeline, multipass pipelining overcomes many of the impediments of two-pass pipelining,

both improving performance and reducing complexity. Excluding the one outlier bench-

mark, out-of-order execution achieves only a 1.1x speedup over multipass pipelining with

significantly more hardware complexity.

Each of the "flea-flicker" multiple-pass pipelining implementations tolerate long-

latency (in particular unanticipated data-cache memory latency) without the overhead

associated with dynamic scheduling or register renaming. Multiple-pass pipelining tech-

niques preserve the results of correctiy preexecuted instructions to improve efficiency,

hide the latency of multiple-cycle instructions and accelerate execution by using preex-

ecuted results to break dependencies between instructions and form new issue groups

without reordering instructions. Multiple-pass pipelining is an effective implementation

of limited dynamic execution (since though instructions are processed in-order, the in-

structions successfully execute in a dynamic order) that outperforms other preexecution

techniques while maintaining the efficiencies of in-order pipelines.
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