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C H A PT E R  1

Introduction

The progress of IT (Information Technology) industry is driven by the simultaneous 

advance of semiconductor manufacturing technology, hardware, application, and design 

methodology. More advanced manufacturing technology enables more powerful hardware, 

which in turn enables more advanced application. On the other hand, more advanced 

application motivates more powerful hardware, which in turn motivates more advanced 

manufacturing technology. Although less visible, design methodology plays a crucial role 

in meshing technology to hardware, and hardware to application, so that the whole IT 

industry is not out of gear.

To put the rest of this dissertation in perspective, this chapter will examine the 

trends on manufacturing technology, hardware, and application, and point out, among 

the many challenges faced by the current design methodology, which problem domain 

this dissertation is trying to make some small step contributions. Chapter 2 will review 

previous works to understand how the problems are approached by other researchers in 

different ways, and to identify the specific problem that this work will focus on. Chapter 3 

will present the problem statement to set the goal of this work, and outline the steps 

to achieve the goal by decomposing the problem into sub-problems. Later chapters of 

this dissertation will discuss each of these sub-problems and the proposed solutions in

1
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detail. Finally, this dissertation will conclude with the results and insights obtained from 

prototyping the proposed solutions, and propose some future works.

1.1 Technology Trend

The rapid growth of the semiconductor industry is fundamentally driven by a trend 

observed by Gordon Moore in 1965, that is transistor density doubles every 18 months [1]. 

In this rate, a single chip will have a billion transistors on it in the near future, enough 

for the integration of a whole system [2], However, to utilize this enormous amount of 

transistors, we need to solve many problems. Below is an incomplete list of the problems.

• The NRE (Non-Recurrent Engineering) cost is soaring. For example, the cost of 

mask set has risen from several hundred thousand dollars for 0.18-micron process 

to over 1 million dollars for 90-nm process, and 3 million dollars for 65-nm pro­

cess [3] [4] [5]. Moreover, mask cost is only a fraction of the total NRE cost. The 

design and verification costs are also sky-rocketing as chip design is becoming more 

and more complex.

•  Because of the shrinking of feature size, transistors can switch very fast, and are 

thus no longer the performance bottleneck. However, the RC delay of long wire does 

not scale down proportionally [6]. Signals can no longer propagate along long wires 

in one clock cycle [7]. One implication of this wire delay problem is that, because 

of clock skew, it is getting harder and harder to synchronize the whole chip at high 

clock frequency [8]. Even if technically possible, increasing clock frequency will no

2
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longer be a feasible approach to achieve high performance, because of prohibitive 

power dissipation.

•  Power dissipation has been a recurring problem since the early days of semicon­

ductor industry. Integrating more transistors on a single chip will increase the 

power density, because more transistors switching simultaneously will cause more 

dynamic power dissipation. Moreover, in the deep sub-micron era, leakage power 

is no longer a second order effect. In the future, leakage power will even contribute 

more to total chip power dissipation than dynamic power [[] [

•  Related to the power dissipation problem, energy efficiency is becoming a top de­

sign consideration for extending the operating period of small portable information 

appliances operating on batteries, and for reducing the utility cost of large data 

warehouses consisting of thousands of servers [9].

• Yet another everlasting problem is the memory bottleneck. While the density of 

DRAM quadruples in three years, even faster than the increase of logic density, 

the speed of memory cannot catch up the speed of logic. Putting more memory 

on chip does not necessarily solve the memory bottleneck problem, due to the wire 

problem and the limitation on the number of memory access ports.

The semiconductor industry will not stall building more powerful hardware because 

of these problems. Instead, people are developing innovative hardware architectures to 

more efficiently use the coming billion transistors [11].

3
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1.2 Hardware Trend

The state-of-the-art hardware systems are composed of ASICs (Application Specific 

Integrated Circuits) and/or programmable devices like digital signal processors and mi­

croprocessors. The goal of hardware design is to achieve a balance among performance, 

cost, and flexibility for the target applications. Technology trend profoundly affects how 

people build hardware systems to maintain this balance.

For example, traditional standard cell based ASIC design is being challenged as a cost- 

effective approach to achieve low power and high performance, because of soaring NRE 

cost, high design risk and constantly changing industry standards. For applications which 

microprocessors and digital signal processors still cannot meet the performance, power, 

and area requirements, people are seeking alternatives like structured ASIC, FPGAs 

(Field Programmable Gate Arrays), and reconfigurable architectures, to replace standard 

cell based ASICs. These alternatives promise lower cost and/or more flexibility, without 

sacrificing too much performance [12] [13].

The technology trend is also challenging the conventional wisdom in microprocessor 

design. Because the centralized organization of current high-performance microproces­

sors does not scale well with the advance of semiconductor manufacturing technology, 

researchers are proposing alternative architectures like the M.I.T. RAW processor [14], 

the Stanford Stream processor [15] and Merrimac machine [16], and the U.T. Austin 

TRIPS processor [17], to address the issues faced by future billion transistor micropro­

cessors [18].

4
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For commercial microprocessors, the design objective now is not performance, but 

performance per Watt. Instead of increasing clock frequency, which will incur too much 

power dissipation, both Intel and AMD are shipping dual-core microprocessors and will 

resort to multi-core architectures to achieve high performance in the future [19] [20] [21]. 

The Cell processor developed by Sony, Toshiba and IBM also adopts multi-core architec­

ture, consisting of one PowerPC Processing Unit and 8 Synergetic Processing Units for 

SIMD processing [22] [23].

Although microprocessors have been making significant progress in performance and 

will be more power efficient in the future, I believe general-purposed architecture alone is 

not the most efficient hardware platform. Future system on chip will consist of multiple 

general-purposed cores and application specific accelerators in order to power efficiently 

and cost effectively meet the requirements of emerging applications.

1.3 Application Trend

In the past, the growth of semiconductor industry is driven by PCs (Personal Com­

puters) and desktop applications. As the analog world is gradually digitized, and more 

and more richer and richer digital contents are delivered through the Internet, (portable) 

telecommunication, multimedia, and gaming applications are replacing PC desk-top ap­

plications as the new driving applications.

These applications present much higher design challenges than traditional PC desk­

top applications because 1) they require much higher computing power for complicated

5
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F igu re  1.1 The block diagram and data-flow of the post-filter of G.724 decoder

algorithms to, for example, analyze and synthesize audio and video streams; 2) they 

impose much tighter design constraints on form factor, cost, power dissipation and energy 

efficiency.

These applications usually consist of DSP (Digital Signal Processing) kernels, with 

inputs and outputs of sequences of frames. Usually an input frame is further divided 

into sub-frames or blocks, which are then individually processed by the DSP kernels. So 

potentially there is abundant parallelism in processing these sub-frames or blocks.

As a simple but concrete illustrating example, Figure 1.1 shows the components and 

data-flow of the post-filter used in the G.724 decoder [24], The 160-bit input speech 

frame syn[0. .159] is divided into four 40-bit sub-frames to be individually processed 

by the post-filter.

Parallelism also exists in each computation kernel. The W eight block is basically a 

vector multiplication, scaling its input signals by different weights. The R esid u  block 

is a FIR (Finite Impulse Response) filter and the SynJfilt and P reem p h asis  blocks 

are HR (Infinite Impulse Response) filters. The C o rre la tio n  block computes two auto­

correlations. The age block for automatic gain control is a little more complicated, but 

the basic computations are still vector multiplication and accumulation.
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To meet the, often conflicting, design requirements, it is necessary to exploit all the 

possible inherent parallelism in these applications.

1.4 Exploiting Parallelism

For the post-filter shown in Figure 1.1, potentially we can at least exploit the following 

parallelism.

•  Frame level data parallelism. If there is no data dependence between the processing 

of consecutive frames, we could potentially duplicate the hardware to post-filter 

different frames in parallel.

•  Sub-frame level data parallelism. If there is no data dependence between the pro­

cessing of consecutive sub-frames, we could potentially duplicate the hardware to 

process each sub-frames in parallel.

•  Sub-frame level function parallelism. Instead of duplicating hardware, we could 

pass the sub-frames through the DSP kernels in a pipelining or data-flow fashion 

to exploit the coarse-grained function parallelism among these kernels.

• Signal level data parallelism. For digital signal processing kernels, we could use 

techniques like Intel MMX/SSE [25] [26] to exploit fine-grained data parallelism.

• Instruction/operation level parallelism. We could implement these kernels us­

ing state-of-the-art high-performance digital signal processors or microprocessors, 

which exploit instruction level parallelism to speed up the execution. We could also

7
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design ASIC to directly map the operations of these kernels to parallel arithmetic 

units.

In spite of its abundant parallelism, the post-filter contributes only about 50% of the 

total G.724 decoder execution time. According to Amdahl’s law [27], the performance of 

the G.724 decoder cannot be significantly improved without speeding up the other 50% 

of its computation, which may exhibit different characteristics from the post-filter and 

thus require different approaches to improving performance.

It is no surprise that people build today’s telecommunication and media applications 

using an array of hardware components, from ASIC and DSP (Digital Signal Processor) 

to micro-controller and microprocessor, exploiting coarse-grained and fine-grained, data 

and function parallelism to balance performance and cost.

Partitioning complex software into concurrent tasks, exploiting different forms of 

parallelism, mapping these tasks onto complex hardware and searching for a balance 

point between performance and cost is a daunting task. However, the current design 

practice mainly relies on designer’s experience and instinct. With shorter time-to-market 

and product lifetime, the development of future applications needs more efficient and 

systematic design methodology.

1.5 Improving Design Productivity

The exponential increase of transistor density is followed by the exponential increase 

of hardware and software complexities. However, we cannot exponentially improve our

8
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productivity using the same design methodology. To boost productivity, we shift to 

higher level design abstraction to hide complexity. In the past, software design moved 

from assembly language programming to high-level language programming; hardware 

design moved from gate-level design to RTL (Register Transfer Level) design. However, 

abstraction alone cannot achieve paradigm shift. We need the tools that can translate 

designs from higher level representation to lower level representation without sacrificing 

too much design quality. The success of the first high-level programming language Fortran 

is because of the accompanying good Fortran complier; the success of Verilog/VHDL is 

because of good RTL synthesis tools.

In summary, Figure 1.2 depicts the big picture of the problem domain that this 

dissertation is trying to make some small contributions. The problem is two-fold.

• W hat is the programming model for capturing complex emerging applications in a 

compact representation? To improve design productivity, the programming model 

must be simple. To cover wide range of applications, the programming model must 

be versatile.

•  What are the compiler techniques to extract parallelism out of the compact rep­

resentation, and to map concurrent tasks onto complex multi-core hardware? The 

complex hardware will consist of multiple general-purposed microprocessors, ASICs 

and even FPGAs.

9
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Figure 1.2 The challenge of the design methodology community.

I realize that this is not a new research topic. Many researchers have made great 

contributions before. The next chapter will scan the previous works, trying to find an 

empty slot in the book shelf for this dissertation.

10
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C H A PT E R  2

Previous Work

Exploiting parallelism and boosting productivity are the recurring challenges of the IT 

industry, especially when the advance of technology accumulates enough momentum to 

make a hardware architecture leap, or to surpass the existing design methodology. This 

chapter will review the previous works on optimizing compilers, high-level synthesis, 

and concurrent languages. Although they take different approaches, or target different 

hardware platforms, all these three areas concern how to exploit parallelism and boost 

productivity.

2.1 Optim izing Compilers

Compiler optimization is an active and exciting research area. Researchers have been 

innovating new techniques to efficiently implement new programming language constructs 

and to effectively utilize new architecture features. We can roughly divide optimizing 

compilers into two categories, vectorizing/parallelizing compilers targeting supercomput­

ers [28] [29] and optimizing compilers targeting super-scalar, VLIW (Very Long Instruc­

tion Word) or EPIC (Explicitly Parallel Instruction Computing) architectures [30] [31]. 

Great progresses have been made in these two areas.
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2.1.1 V ectorizing Com pilers

Early vectorizing compiler researches [32] [33] [34] [35] [36], most notably the Parafrase 

project at the University of Illinois [37] and the Parallel Fortran Converter project at Rice 

University [36], not only formalized fundamental notions like data dependence, depen­

dence distance, dependence direction, and dependence level, but also pioneered depen­

dence test techniques for automatically identifying the inherent parallelism in sequential 

programs. Furthermore, to enable more vectorization and to better utilize the underly­

ing hardware features, these ground-breaking works also invented program restructuring 

techniques [38] [39] [40] [28], for example, loop interchanging [41] [42], loop skewing [43], 

scalar renaming [44], array renaming [36], strip-mining, and vector register allocation [45].

Although these early vectorizing compiler works focused on exploiting fine-grained 

data parallelism to speed up scientific computations on vector or SIMD (Single Instruction 

Multiple Data) machines, they also laid the foundation for the parallelizing compilers 

targeting MIMD (Multiple Instruction Multiple Data) machines, and more recently for 

the vectorizing compilers targeting instruction sets like the Intel MMX and SSE [26] for 

speeding up multimedia applications on microprocessors.

2.1.2 Parallelizing Com pilers

Because MIMD machines usually have high inter-processor communication cost, par­

allelizing compilers targeting MIMD machines must look beyond the inner-most loop to 

seek more coarse-grained parallelism in the outer loops [46] [47] [48] [49] [50] [51] [52].
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To maximize parallelism and to increase locality, researchers have developed many pro­

gram analysis and transformation techniques, for example, loop distribution [28], loop 

fusion [46] [53], loop tiling [54], unimodular transformation [55], array data-flow analy­

sis [56] [57] [58] [59], and array privatization [60] [61] [60] [62] [63].

Because parallelizing compilers need to examine larger program regions for paral­

lelism, many analyses need to cross the procedure boundaries to get more accurate anal­

ysis results. Because full program in-lining is too costly, researchers have developed many 

inter-procedural analysis techniques [64] [65] [66] [67] [68] [69] [70] [71].

Most of the parallelizing compiler works are based on the SPMD (Single Program 

Multiple Data) model to exploit coarse-grained data parallelism. This is suitable for 

scientific applications with data set much larger than the number of processors. However, 

researchers found that SPMD alone may not be the best way to parallelizing applications 

like many digital signal processing applications which have many kernels with small 

working set. For this kind of applications, it is better to exploit function (or task) 

parallelism in addition to data parallelism [72] [73].

In data parallelism, different processors (or functional units) execute the same pro­

gram (or function) on different data at the same time. In function parallelism, different 

processors (or functional units) execute different programs (or functions) on different 

data at the same time. Researchers have developed techniques for task scheduling and 

resource allocation given the dependence or data-flow among the tasks [74] [75] [76].

Unlike parallelizing compilers targeting MIMD machines, which must exploit coarse­

grained data and/or function parallelism in order to avoid excessive costly inter-processor
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communication, optimizing compilers targeting high performance microprocessors exploit 

instruction level parallelism, which can be classified as fine-grained function parallelism.

2.1.3 S up ersca lar/V L IW /E P IC  Com pilers

High performance microprocessors are capable of executing multiple instructions at 

the same time. People have made micro-architecture and compiler innovations to increase 

the number of instructions available for parallel execution.

For example, Tomasulo’s algorithm [77], which is widely used in superscalar micropro­

cessors, eliminates false dependencies among instructions by register renaming [78] [79]; 

branch prediction [80] [81] [82] [83], trace cache [84] [85], predication [86] [87] [88], spec­

ulation [89] [90] [91], and memory disambiguation [92] enable more parallel instruction 

execution by eliminating the synchronization barriers caused by spurious control depen­

dencies and memory dependencies.

Often, the micro-architecture features for exploiting ILP (Instruction Level Paral­

lelism) rely on compiler supports to achieve better utilization. For example, to expose and 

schedule more instructions for parallel execution, people have developed trace schedul­

ing [93], superblock formation [94], software pipelining, modulo variable expansion and 

modulo scheduling [95] [96] [97]; to enable more effective predication, people have de­

veloped hyperblock formation and predication analysis [98] [99]; to support speculation, 

people have developed sentinel scheduling [100]; to obtain more accurate compile-time 

memory disambiguation, people have been improving the accuracy and efficiency of de­

pendence tests [101] and pointer analysis [102] [103].
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It is due to the micro-architecture and compiler innovations combined, and always 

being manufactured using the cutting-edge process technology, that microprocessors can 

make such impressive progress in performance and cost. However, general-purposed ar­

chitecture still cannot meet the performance and cost requirements of many applications. 

Many products still rely on special hardware to achieve the required performance under 

strict cost and power constraints.

2.2 H igh-level Synthesis

Hardware designers have long been exploiting parallelism to improve the performance 

and efficiency of their products. However, designing hardware at circuit level or gate 

level is tedious and difficult. Designers must determine circuit topology, size transistors, 

optimize logic, synchronize signals with respect to clocks and perform circuit or logic 

simulations for functional verification and for timing analysis. As circuits become larger 

and larger, it is very time consuming to capture and verify the whole design at such low 

level.

To improve design productivity, people developed hardware description languages like 

Verilog and VHDL as well as RTL synthesis tools. The hardware description languages 

essentially abstract hardware as a hierarchy of concurrent processes following an event- 

driven execution model. Instead of drawing schematics, designers can now capture their 

designs using hardware description languages just like writing software programs, or 

more precisely concurrent programs. The RTL synthesis tool will then take the high-
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level descriptions along with user specified design constraints, perform all the low level 

design activities, and finally generate a netlist ready for the place-and-route tool [104]. 

This enables designers to focus on RTL and architecture level design exploration and 

verification.

However, RTL designers still need to take care of details like circuit reset, clock 

synchronization and dividing critical timing path into several pipeline stages, as well 

as explicitly expressing fine-grained and/or coarse-grained, function and/or data, par­

allelism as a hierarchy of concurrent processes with bit-level or word-level interprocess 

communication signals. In other words, the designers still need to describe the design 

structurally, not behaviorally. As ASICs are getting more complex, RTL design is also 

becoming too time-consuming. We are again facing the productivity crisis.

Researchers are advocating moving to even higher design abstraction and high-level 

synthesis [105] [106] [107]. Starting from an abstraction like data flow graph [108], which 

describes the dependences between fine-grained or coarse-grained tasks, people have done 

extensive researches on how to optimize the mapping of concurrent tasks onto hardware 

building blocks.

There are already commercial tools that can take C programs and generate the cor­

responding RTL implementation [109] [110] [111] [112]. Although the users of these tools 

can describe their design behaviorally, in order to obtain better synthesis results, they 

still need to explicitly express parallelism, especially coarse-grained function parallelism, 

as well as the inter-process communication mechanism using compiler directives or con­

current language constructs.
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2.3 Concurrent Program m ing Languages

In addition to the techniques that extract parallelism from sequential programs, vec­

torizing and parallelizing compiler researchers also developed compiler directives and 

language constructs to let programmers explicitly express parallelism. For example, 

Fortran-D [113] and High Performance Fortran (HPF) [114] extend the Fortran language 

with vector operations and data partitioning directives for explicit data parallelism on 

top of a shared memory model; the MPI standard [115] is proposed as a portable library 

for explicit inter-process communication under the message-passing paradigm. While it 

is natural to target shared-memory programs on shared-memory multiprocessors, and 

message-passing programs on distributed memory multicomputers, the memory model of 

a concurrent programming language is not tightly coupled to the memory organization 

of the underlying machines. It is up to the compiler and the run-time system to bridge 

the semantic gap.

In addition to vector, SIMD, shared-memory MIMD, and distributed-memory MIMD 

machines, researchers also experimented data-flow supercomputers [116] [117] [118] to 

exploit massive parallelism. In parallel with the development of data-flow machines, 

researchers also designed data-flow languages [119] [120] for explicitly expressing fine­

grained function parallelism. Different from a program written in imperative languages, 

a program written in data-flow language is side-effect free and each of its variables has 

only single assignment.
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Interestingly, researchers also developed compiler analyses and transformations that 

can translate an imperative program to a form with some data-flow properties. For 

example, there exists efficient algorithms to translate an imperative program into the SSA 

(Single Static Assignment) form [121], gated SSA form [122], or dependence web [123]. 

Researchers [124] even argued that it is not necessary to design data-flow languages for 

data-flow machines, because imperative programs can obtain the same performance on 

data-flow machines using advanced compiler techniques, and the compilers for both types 

of languages have similar complexities. Also, the von Neumann programming model of 

imperative languages could be more intuitive and result in more compact programs than 

the data-flow programming model for some applications, especially for applications with 

a lot of partial state changes in complex data structures.

Because of these and other reasons, in spite of their many creative concepts, data­

flow languages did not become mainstream x. The dominating programming languages 

today are still imperative languages. Instead of for expressing massive parallelism in gen­

eral applications, recent data-flow language researches are more for software engineering 

purpose [120] and for specific application domains.

For example, to model DSP applications, researchers have developed formal represen­

tations like synchronous data flow [125] and data-flow process networks [126]. In these 

models, a task or a process, which could be an imperative program, represents a DSP 

kernel which is repeatedly applied to its input signals. Also explicitly expressed in these

1Neither did general purposed data-flow machines. Instead, it is the restricted data-flow model [78] 
that prevails in commercially successful high-performance microprocessors.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



models are the signal flow among these tasks and the signal generating and consuming 

rates of each kernel. The motivation for these formalisms is to enable automatic synthesis 

and optimization of real systems from the models [127] [128] [129] [130] [131].

W ith similar motivation, and language semantics, researchers also developed stream­

ing languages like Streamlt [132] and Brook [133] to ease the programming for machines 

like the MIT RAW machine [14], the Stanford Merrimac [16] or even graphics proces­

sors [134], The fundamental concepts of these streaming languages are stream consist­

ing of possibly infinite number of independent data, and kernel (or filter) operating on 

streams. Thus, a streaming program explicitly expresses the function parallelism among 

the execution of kernels, as well as the data parallelism among the processing of stream 

elements.

The previous works on exploiting parallelism and on boosting productivity are really 

tightly correlated, and we can unify them in a single picture, as shown in Figure 2.1. 

Figure 2.1 can be divided into two halves. The top half is extracting parallelism from 

the applications by compilers, or expressing parallelism in the applications by software 

programmers or hardware designers. The bottom half is mapping concurrent tasks onto 

hardwares exploiting various types of parallelism. Each edge in Figure 2.1 corresponds 

to the enormous amount of knowledge and techniques obtained in decades of compiler, 

high-level synthesis and programming language researches. The next chapter will discuss 

where my work will make a dent in this big picture, considering both the learned lessons 

and the projected trends.
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C H A PT E R  3

Thesis Overview

This chapter will serve two purposes. First, it will establish the problem statement 

of my PhD research based on the reflection on the technology, hardware and application 

trends discussed in Chapter 1 and the previous works on exploiting parallelism discussed 

in Chapter 2. Second, it will discuss what sub-problems we need to solve and give an 

overview of the remaining chapters of this dissertation.

3.1 Problem  Statem ent

Figure 3.1 relates the previous works with the perceived multi-core architectures. 

Many of the works people have done for partitioning and distributing computations onto 

MIMD machines can be readily used for exploiting coarse-grained data and function par­

allelism for the multi-core architecture. For efficiently utilizing superscalar/VLIW /EPIC 

cores and SIMD/vector execution units, researchers have already developed a lot of tech­

niques, and are keeping pushing the envelope. Very likely, the coming multi-core archi­

tecture will also include ASICs or coprocessors to efficiently accelerate applications [135]. 

The CAD community have been innovating more powerful tools to facilitate the devel­

opment of these accelerators.
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Figure 3.1 The position of this work with in mapping applications onto multi-core 
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The works of mapping concurrent tasks onto multi-core architectures are all based 

on an abstraction, the dependence graph, which describes the partial order between 

the execution of computational tasks. Researchers have been pushing the accuracy of 

dependence test. There already exists exact data dependence test, the Omega test [101], 

which is very efficient for common cases. Because of the way they are constructed,
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dependence graphs may contain many false dependences. While false dependences may 

not affect the effective accuracy of the dependence graph for compiler applications like 

vectorization, the removal of false dependences can improve the effectiveness of many 

other compiler optimizations [136].

Dependence graph without false dependences can be called data-flow graph, because it 

contains only the true data dependences, or data-flows, between computational tasks. A 

data-flow graph can be fine-grained, with each node corresponding to basic operations like 

addition, or it can be coarse-grained, with each node corresponding to more complicated 

computations like filters. Because they expose the maximum available parallelism, data­

flow graphs are instrumental in high-level synthesis and in mapping tasks onto array of 

processors, and also the ’’programs” for the data-flow computation model.

It is indisputable that the data-flow model is ideal for building hardware, because of its 

localized memory access, neighboring communication, and maximum parallelism. Indeed 

it has been the model for designing high performance ASICs like DSP circuits [137]. For 

the perceived multi-core architecture, the data-flow model will also play an important 

role not only in building the accelerators, but also in core-to-core, core-to-accelerator, and 

accelerator-to-accelerator communications through the on-chip interconnection network.

However, as discussed in Chapter 2, there are two schools of thoughts about how to 

construct the data-flow graph. The first school of thought is to let the programmers 

write programs using data-flow or streaming languages. The second school of thought 

is to let the programmers write programs using conventional imperative languages, and
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the compilers translate the imperative programs into data-flow graphs. This thesis work 

follows the second school of thought for the following reasons.

• There have already existed a huge code base written in imperative languages. As 

time goes by, more and more important imperative programs will be developed. 

These imperative programs will still need to run efficiently on future multi-core 

processors.

• The von Neumann programming model of the imperative languages is widely appli­

cable. Many complicated applications have been written in imperative languages 

based on the von Neumann programming model. On the other hand, the data-flow 

or streaming languages are still in the stage of proving concepts. If we could develop 

a program analysis system to extract data-flow from imperative programs, the need 

for developing new data-flow or streaming languages, as well as the associated tool 

chains, will be questionable.

Because there are already efficient algorithms to convert imperative programs to fine­

grained data-flow graphs [138] [123] [121] [139], and because exploiting coarse-grained 

parallelism will become more and more important for future multi-core processors, this 

thesis work will focus on extracting coarse-grained data-flows from imperative programs 

to facilitate the exploitation of coarse-grained function parallelism in multi-core proces­

sors, as indicated in Figure 3.1. More specifically, this thesis work will target programs 

written in the C language, partly because of the popularity of C and partly because of the
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F ig u re  3.2 Illustration of the problem statement using the post-filter of G.724 decoder

compiler infrastructure used for prototyping and experiments. However, the techniques 

developed in this work could also be applied to other imperative languages.

To specifically illustrate the problem that this work is to solve, Figure 3.2(a) shows the 

original C code and the corresponding memory accesses of the G.724 post-filter example 

presented in Figure 1.1. Note that the original program accesses both memory objects 

statically allocated in the global memory and memory objects dynamically allocated in 

the stack and the heap memory. These memory objects are often shared by different 

functions. The challenge is to sort out the memory data-flow as shown in Figure 3.2(b) 

from the complicated memory accesses as shown in Figure 3.2(a).

In summary, the problem statement of this research is as follows.
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Problem statement: Building a program analysis system to extract coarse-grained 

data-flow from C programs for exploiting coarse-grained function parallelism.

This concludes the philosophy part, and start the engineering part, of this PhD disser­

tation.

3.2 Fine-grained Analogy

To obtain some insights on how to extract coarse-grained data-flow from imperative 

programs, this section will use Figure 3.3 to review how fine-grained data-flow is extracted 

from imperative programs to exploit fine-grained function parallelism.

By pairwise comparison of variable reads and variable writes in the code segment 

of Figure 3.3(a), we can construct the dependence graph shown in Figure 3.3(b). Each 

dependence is annotated with the corresponding dependence distance. Note that the 

dependence distance is an interval, not necessarily a single integer number [101]. For 

clarity, only the lower bound of the dependence distance is shown in Figure 3.3(b).

These dependences prevent the parallel execution of instructions in the same iteration 

and/or in different iterations. However, many of the dependences in Figure 3.3(b) are 

false dependences caused by writing to the same variable a. If each dynamic instruction 

writes to a different memory location, we can eliminate all the false dependences and 

obtain the maximum parallelism which is only constrained by the true dependences and 

hardware resources, as shown in Figure 3.3(c) 1.

1Here we assume there are 1 adder, 1 multiplier, and 1 divider.
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Superscalar processors achieve this by performing the architecture register to phys­

ical register renaming on the fly [79]. Renaming can also be done using compile-time 

techniques like SSA [121], which can easily convert the loop body in Figure 3.3(a) to 

the data-flow graph in Figure 3.3(d). To obtain better instruction scheduling results, 

software pipelining [95] or modulo scheduling [96] also perform register renaming using 

techniques like modulo variable expansion [95] to allocate different registers to instruc­

tions in different iterations.

The key to exploiting fine-grained function parallelism is really to extract the data­

flow between instructions by eliminating false dependences through renaming. Essentially 

there are three issues in extracting data-flow for function parallelism.

• Defining function. For fine-grained function parallelism, a function is an instruction 

or an operation.

•  Identifying the memory storages accessed by each function. For instructions operat­

ing on registers, the accessed memory storages can be identified using the specified 

register numbers for the source and the destination operands.

•  Identifying the producer and consumer relation between functions. Superscalar 

processors use hardware structures like RAT (Register Alias Table) to establish 

the producer and consumer relation between instructions at run-time. Compilers 

identify the producer and consumer relation by performing data-flow analysis or by 

SSA construction.
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F ig u re  3.3 Example illustrating extracting fine-grained data-flow

The next section will address these three issues in the context of extracting coarse­

grained data-flow to exploit coarse-grained function parallelism.
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1
2
3
4
5
6
7
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9

10
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13
14
15
16
17
18
19
20 
21 
22
23
24
25

in t  A [40] ;

fooO ( . . . )

fo r  (iO = 0 ; iO <= 3 ; i0++) { 
fo o l (A, . . . ) ;  
foo2 ( . . .  A, . . . ) ;  
foo3 ( . . .  A);

fo o l (sh o rt y [ ] ,  . . . )

fo r  ( i l  = 0 ; i l  <= 39 ; il++) 
y [ i l ]  = . . .

}
foo2 ( . . . ,  sh o rt s [ ] , . . . )

fo r  ( i2  = 0 ; i2  >= 0 ; i2 —)
s [ i2 ]  = s [ i2 ]  . . .

}
foo3 ( . . .  sh o rt x [ ] )

fo r  (13 = 0 ; i3  <= 39 ; i3++)
. . . = x [i3 ] . . .

}

Figure 3.4 Example coarse-grained functions of subroutine calls

3.3 Coarse-grained Issues

This section will examine the issues in extracting coarse-grained data-flow from im­

perative programs to exploit coarse-grained function parallelism. The discussion will 

follow the three issues summarized in the previous section. As explained in the follow­

ing sections, extracting coarse-grained data-flow is much more difficult than extracting 

fine-grained data-flow.

3.3.1 D efining C oarse-G rained Function

To exploit coarse-grained function parallelism, we must first define what is coarse­

grained function, then we can discuss how to execute coarse-grained functions in parallel.
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1 in t  A[40] ;
2
3 fooOa ( . . . )
4 {
5 /*
6 * loopOa:
7 */
8 fo r  (iO = 0 ; iO <= 3 ; i0++) {
9 /*

10 * lo o p la : w rite  A [0 ..39]
11 * /
12 fo r  ( i l  = 0 ; i l  <= 39 ; il++)
13 A [il] = . . .
14 /*
15 * loop2a: read  A [3 9 ..0 ] , w rite  A [39..0]
16 * /
17 fo r  (i2  = 39 ; i2  >= 0 ; i2 —)
18 A[i2] = A[i2] . . .
19 /*
20 * loop3a: read  A [0..39]
21 */
22 fo r  ( i3  = 0 ; i3  <= 39 ; i3++) 

. . . = A[i3] . . .23
24 }

F igu re  3.5 Example coarse-grained functions of loops

For the program segment in Figure 3.4, it is natural to consider the subroutine calls to 

fo o l, foo2 and foo3 as coarse-grained functions. For the program segment in Figure 3.5, 

we may consider each inner loop as a coarse-grained function. Coarse-grained function is 

really not as well defined as fine-grained function. While subroutine calls and loops are 

natural candidates for program regions, there could be other ways to divide a program 

into regions, or coarse-grained functions.

Ideally we would like each program region, or coarse-grained function, is side-effect 

free and accesses most of its data in local memories. We would also like to partition a 

program in such a way that communication between program regions is localized in the 

memories only accessed by the two communicating program regions. Ideally we would 

like to partition a program into program regions in so that we could generalize the fine-
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grained data-flow execution model to a coarse-grained data-flow execution model, and 

maximize the available coarse-grained function parallelism.

But this rarely happens in imperative programs which often use global variables for 

the communication between many program regions. To convert imperative programs into 

coarse-grained data-flow programs, a more practical approach is to sort out the producer 

and consumer relation between program regions and then convert global memory accesses 

to local memory accesses, as discussed in the next section.

3.3.2 Identifying Producer and Consum er R elation

Consider the example in Figure 3.5, which has three inner loops as coarse-grained 

functions, all accessing the same array A. As shown in Figure 3.6(a), we can speed up the 

execution of fooOa using three hardware accelerators for loopla, loop2a, and loop3a, 

with a memory block for the communication between these three accelerators, just as 

the software implementation in the original program. This may speed up the execution 

of individual innder loop, but there is not too much overlap between the execution of 

accelerators as illustrated in Figure 3.6(a). Note that lo o p la  at outer loop iteration i 

can not start writing to A [0] until loop3a at outer loop iteration i — 1 finishes reading 

the value of A [0] generated by loop2a at outer loop iteration i — 1.

Similar to the example in Figure 3.3, the problem here is that both lo o p la  and 

loop2a write to the same array A. If we can use different buffers for lo o p la  and loop2a 

at different outer loop iterations, like renaming variables in Figure 3.3(c), we can increase
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the overlapping between the execution of loopla , loop2a, and loop3a at different outer 

loop iterations, as illustrated in Figure 3.6(b).

Basically, we can uncover more inherent coarse-grained function parallelism by sep­

arating the memory data-flow between lo o p la  and loop2a from the memory data-flow 

between loop2a and loop3a. However, this is possible only if we can prove the following.

• All the array A elements consumed by loop2a are produced by lo o p la  at the same 

outer loop iteration.

• All the array A elements consumed by loop3a are produced by loop2a at the same 

outer loop iteration.

The proof for this simple example is trivial. Note that the lo o p la  produces the set of 

array A elements {A [i]  |0 < i  <  39}, which is also the set of array A elements consumed 

by loop2a. Similarly, the same set of array A elements are produced and consumed 

by loop2a and loop3a respectively. However, in general it is not easy to identify the 

producer and consumer relation between coarse-grained functions, because determining 

the exact memory locations accessed in a coarse-grained program region is not as easy 

as in the fine-grained case.

3.3.3 Sum m arizing Coarse-grained M em ory A ccesses

Summarizing the accessed memory locations by a coarse-grained function is more 

difficult than summarizing the accessed memory locations by a fine-grained function. 

For the fine-grained case, the memory consists of registers (or scalar variables). The
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loopla loop2a loop3a

CaJ
loopla

I-  loopOa (i = 0)

loopla

loop2a

loop3a
H

I-  loopOa (i = 1)

(a)

loop2a

loop3a

loopla
Al

A2
loop2a

B1
— /•

B2
loop3a

loopla loopla

loop2a loop2a

loop3a loop3a
loopOa (i = 0)

I-  loopOa (i = 1)

(b)

loop3blooplb loop2b

loop3b loop3b

loop2b loop2b

looplb looplb

h loopOb (i = 0) -H
h loopOb (i = 1) ~H

(C)

F ig u re  3.6 Illustration of the producer-consumer relations between coarse-grained func­
tions
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1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15
16
17
18
19
20 
21 
22
23
24

in t  A[40] ;

{
/ *

* loopOb: 
* /

fo r  (iO = 0 ; iO <= 3 ; i0++) {
/ *

* loop lb : w rite  A [0..39]
* /

fo r  ( i l  = 0 ; i l  <= 39 ; il++)
AEi l ]  = . . .

/*
* loop 2b: read  A[0 ..3 9 ] ,  w rite  A[0 ..3 9 ] 
* /

fo r  (i2  = 0 ; i2  <= 39 ; i2 —)
A[i2] = A[i2] . . .

/ *
* loop 3b: read  A [0 ..39]
* /

fo r  (13 = 0 ; i3  <= 39 ; i3++)
s = A[i3] . . .

}

Figure 3.7 Producer and consumer program regions with the same memory access 
patterns

source and destination operands of an instruction unambiguously specify which registers 

are accessed. The set of accessed registers can be easily represented using a bit vector, 

with each bit corresponding to a register.

When performing data-flow analysis to identify the producer and consumer relation 

between instructions, we need to check whether two instructions may access the same 

registers. This checking can be easily done by applying bit-level operations on bit vectors.

On the other hand, a coarse-grained program region can access not only scalar vari­

ables, but also arrays and aggregates like structures or unions in the C programs. Using 

pointer to access dynamically allocated memories only makes the situation worse. In 

general, we cannot use bit vectors to represent the set of memory locations accessed by 

a coarse-grained function. Instead, we need to use complicated data structures to repre-
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sent the accessed array elements, aggregates and dynamically allocated memories. If the 

array accesses are irregular, or we cannot figure out exactly which dynamically allocated 

memories are accessed, at best we can only have an inaccurate but conservatively correct 

representation.

This inevitably complicates the identification of producer and consumer relation be­

tween coarse-grained functions. When performing data-flow analysis, instead of applying 

bit-level operations on bit vectors, we need to apply complicated procedures on compli­

cated data structures to check whether two coarse-grained functions may access some 

common memory locations.

There is another difference between accessing an array and accessing a scalar. The 

access order of array elements could be very useful information, as discussed in next 

section.

3.3.3.1 M em ory A ccess Order

Consider the program segment in Figure 3.7, which is essentially the same as the 

example in Figure 3.5 except that loop2a in Figure 3.5 accesses array A from element 39 

to element 0, while loop2b in Figure 3.7 accesses array A from element 0 to element 39. 

Because of this reversal of the array accessing order, looplb  and loop2b in Figure 3.7 not 

only have a producer and consumer relationship but also have the same access pattern 

of array A. Similarly, loop2b and loop3b also have the same access pattern of array A. 

Because of this, the array elements produced by loop lb  can be immediately consumed 

by loop2b, and the array elements produced by loop2b can be immediately consumed
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by loop3b, without the need to buffer the whole array A. This data streaming not only 

eliminates the buffering overhead but also increases the overlap between the execution of 

producer and consumer, as illustrated in Figure 3.6(c).

Note that, in Figure 3.4 and Figure 3.5, we use more memory for the communica­

tion between producer and consumer pairs to increase the available function parallelism. 

However, if the communication between producer and consumer can be in streaming 

fashion, like the one shown in Figure 3.6(c), we can increase the available coarse-grained 

function parallelism without using additional memory 2.

Strictly speaking, the data path in Figure 3.6(c) may not be correct, because the 

output of loop2b may be consumed by program regions outside loopOb. On the other 

hand, we are certain that the output of looplb is only consumed by loop2b, because 

the writes of looplb are ’’killed” by the writes of loop2b, and thus will not get exposed 

outside loopOb. Therefore, when we summarize the memory accesses of a program region, 

we only need to record the exposed memory accesses. The next section will elaborate on 

this.

3.3.3.2 Sum m arizing Exposed Accesses

Consider the program segment in Figure 3.8, which is different from Figure 3.7 in 

that loop2c reads and writes both array A and array B. However, knowing that loop2c 

reads array B from element 0 to element 39 will not help find more producers for loop2c, 

because all the array B elements are produced from within the loop body of loop2c.

2 In this case, we even use less memory.
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1 in t  A [40] ;
2 in t  B[40];
3
4 fooOc ( . . . )
5 {
6 /*
7 * loopOc:
8 */
9 fo r  (iO = 0 ; iO <= 3 ; i0++) {

10 /*
11 * loop lc : w rite  A [0 ..39]
12 */
13 fo r  ( i l  = 0 ; i l  <= 39 ; il++)
14 A [il] =
15 /*
16 * loop 2c: read  A [0 ..3 9 ], w rite  A [0 ..3 9 ],
17 * read  B [0..39] (not exposed)
18 */
19 fo r  (i2  -  0 ; i2  <= 39 ; i2 —) {
20 B[i2] = A[i2] . . .
21 A[i2] = . . .  B[i2] . . .
22 }
23 /*
24 * loop 3c: read  A [0 ..  39]
25 * /
26 fo r  (i3  = 0 ; i3  <— 39 ; i3++)
27 s = A[i3] . . .
28 }

Figure 3.8 Example illustrating summarization of exposed accesses.

In general, to find the producers and consumers of a program region, we only need 

to know its exposed memory accesses. The exposed memory reads of a program region 

are the memory reads that are not ’’covered” by any memory write executed earlier 

within the same program region. The exposed memory writes of a program region are 

the memory writes that are not ’’killed” by any memory write executed later within the 

program region.

An exposed read should have some producer outside its program region, unless it 

is an access of some implicitly initialized memory like look-up table. Otherwise the 

programmer may forget to initialize some memory. On the other hand, an exposed write 

may or may not have consumers outside its program region.
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In general, to exactly summarize the truly exposed memory accesses of a coarse­

grained function is difficult, partly because of the reason discussed at the beginning of 

Section 3.3.3, and partly because of the difficulty in calculating the addresses of accessed 

memories.

3.3.3.3 Sym bolic Scalar Variable Evaluation

The target language of this research work is the C language. C programs use pointers 

to reference memory extensively, which causes difficulty in summarizing the exposed 

memory accesses of program regions.

Take the program segment of f  oo2d in Figure 3.9 as example, which is simplified from 

the original source code of the pre-emphasis filter of G.724 decoder [24], To determine 

the exposed memory reads of loop2d, we need to know the memory locations accessed 

by the pointer dereferences *p and *q in the loop body. Inter-procedural pointer analy­

sis [140] [141] [142] [103] could tell us that both pointers p and q point to the memory 

object array A. However this information is not accurate enough for us to deduce that 

the reads by *p and *q at line 20 get their data from outside loop2d, not from the write 

*p at line 20. To figure out this, we must know that the assignment statement at line 20 

is equivalent to the assignment statement in the comment at line 21. Then we can use 

dependence test to confirm that there is no true data dependence between the write of 

*p and the reads of *p and *q at line 20.
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1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28

sh o rt A[40];

fooOd ()
{

foo2d (A, tmp2, 40);

}
foo2d (sh o rt *s, sh o rt n, in t  L)
{

sh o rt *p, *q, temp, i ;

p = s + L -  1;
/*  p = A + 39 */ 
q = p -  1;
/*  q = A + 38 */ 
temp = *p; /*  A [39] * / 

loop2d: fo r  ( i  = 0 ; i  <= L -  2 ; i++) {
*p  = *p  -  * q —  * n ;
/*  A [39-i] = A [39-i] -  A [38-i] * n; * / 

} P”
/*  p = A + 0 * /
*p = *p -  n * mem_pre;
/*  A[0] = A[0] -  n * mem_pre; */ 
mem_pre = temp;

F ig u re  3.9 Example illustrating symbolic scalar variable evaluation.

We have discussed the sub-problems we need to solve to extract coarse-grained data­

flow from C programs. The next section will outline the proposed program analysis 

system to solve these problems and the organization of the rest of this dissertation.

3.4 Thesis Organization

The proposed memory data-flow analysis system to extract coarse-grained data-flow 

from C programs for the exploitation of function parallelism is sketched in Figure 3.10, 

which shows the components of this program analysis system, as well as the information 

flow between them. The current implementation first does function in-lining to embed
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all C source code into the main function. Flow-insensitive pointer analysis [103] is then 

performed to obtain the set of objects that each pointer may points to. Next, control 

flow graph is constructed to facilitate the symbolic evaluation of scalar variables, as well 

as to obtain more accurate pointer information by taking control flow into consideration. 

The shaded components in Figure 3.10 constitute the main work of this research. The 

rest of this dissertation will present more detailed discussion on symbolic scalar variable 

evaluation (Chapter 4), program region construction (Chapter 5), exposed memory ac­

cesses summarization (Chapter 6), and producer-consumer relation analysis (Chapter 7). 

Chapter 8 will discuss the prototyping of the memory data-flow analysis system and the 

experiment results. Chapter 9 will conclude this dissertation with the obtained insights 

and some possible future research directions.
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C source files

C function annotated with inlined function boundary

C function annotated with points-to information

control flow graph representation of the program

C function with scalar variables annotated with (symbolic) values

a graph for the program region hierarchy

exposed memory accesses for program regions

conservative producer-consumer relation among program regions

more accurate producer-consumer relation among program regions

program region construction

producer-consumer relation analysis (top-down phase)

control flow graph construction

function inlining

symbolic scalar variable evaluation

summarization of exposed memory of program regions

flow-insensitive pointer analysis

producer-consumer relation analysis (bottom-up phase)

F igu re  3.10 Components of the proposed memory data-flow analysis system
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C H A PT E R  4

Sym bolic Scalar Variable Evaluation

This chapter will explain how the proposed memory data-flow program analysis sys­

tem evaluates the symbolic value of each scalar variable, based on SSA form [121] and 

induction variable detection [143]. The limitation of these algorithms is that they can 

not go beyond the procedure boundary. To work around this limitation, procedures are 

in-lined first, as indicated in Figure 3.10.

4.1 SSA-based Sym bolic Evaluation

Use the program segment in Figure 3.9 as example. After in-lining, we can covert 

the function fooOd into the SSA form shown in Figure 4.1(a). Note that the variables in 

Figure 4.1(a) are annotated with different subscripts so that the value of each variable is 

generated by a single assignment statement. For straight-line code, the single assignment 

property can be easily obtained by renaming variables. However, in an arbitrary control 

flow graph, different values of the same variable can reach the same program point via 

different paths in the control flow graph. To preserve the single assignment property, <fi- 

functions are inserted at adequate confluence points in the control flow graph to represent 

all the possible reaching values using one dummy variable. For example, in Figure 4.1(a),

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



bbO:

bbl:

bb2 : p3 = <|)(p0, p2) ;

memjrej = temp0;

n0 = tmp2 ;

q 0 = Po 
temp0 =

Pi = <t>(Po- P2) ;

4 0

— Po >

* mem_pre0 ;

(a) (b)

F ig u re  4.1 Example SSA form nd value flow graph

both values of the variable p, p0 and p2, can reach the beginning of basic block bbl. 

Therefore, a ^-function is inserted at the beginning of basic block bbl to represent the 

two possible reaching values p0 and p2 using the dummy variable pr

Basically, SSA form is a sparse representation of the value flow between variables. 

By back-tracking the SSA link, we can do backward substitution to find the symbolic 

value of a variable. For example, in Figure 4.1(b), we can find the symbolic value of p0
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as follows.

Po =  ( s o +  ^o) — 1

=  (s0 4- 40) — 1 , given L0 =  40

=  (A +  40) — 1 , given so =  A

=  A +  39

The problem with back-tracking the value flow through SSA links is that there may

be cycles in the value flow graph, as the one highlighted in Figure 4.1(b) by red edges.

Cycles in value flow graph axe caused by reading and writing the same variables within 

loops. These variables are called induction variables. Induction variables must be handled 

carefully, otherwise, back-tracking the value flow graph may get trapped in infinite loop.

4.2 Induction Variable D etection

For the detection of induction variables, we use the method invented in [144], First, 

we identifies the SCCs (Strongly Connected Components) [145] in the value flow graph. 

Each SCC is corresponding to an induction variable. The nodes in SCC could be scalar 

variables, arithmetic operators, and 0-functions. If the combination of the operators and 

^-functions in a SCC matches some predefined patterns, we can determine the symbolic 

value of each node in the SCC.

Take the SCC, marked with red edges, in Figure 4.1(b) as example. It has two 

operators: 1) a 0-function at the loop header with an operand p0 from outside the loop 

and another operand p2 from within the loop; 2) a ” —” operator with the second operand
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being a constant 1. For this type of SCC, each node in the SCC will be an induction 

expression with symbolic value of the form d +  (—l)h. Here h is called fundamental

induction variable [144], which takes the values 0, 1, 2, 3, •••.  The coefficient of the

fundamental induction variable is —1, which means the value of each induction expression 

in this SCC will decrement by 1 every iteration. Each induction expression in this SCC 

will have a different offset d, depending on its position in the SCC. Below are the symbolic 

values of the induction expressions p, and p2.

Pi =  Po +  (“ I)!1 ) where h =  0, 1, 2, 3, • • •

P2 =  Pi -  1

= Po + t- 1)*1- 1

We can further substitute the value of p0 into the symbolic values of pL and p2 as follows.

p1 =  a +  39 +  (—l)h  , given p0 =  A +  39

p2 =  A +  38 +  (—l)h

The technique presented in [144] can identify higher-order induction variables which 

can be represented as polynomials of the fundamental induction variable. For the current 

implementation, we only represent symbolic values as affine expressions of the form d+c-h, 

where h is the fundamental induction variable, c is an integer constant, and d can be 

either an integer constant or a scalar variable. Back-tracking will proceed in the value 

flow graph until any non-affine term is encountered. For example, in Figure 4.2, back-
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F ig u re  4.2 Example illustrating non-affine expressions

tracking will stop before L0 =  x * x. The symbolic value of p0 will be represented as 

A +  Lo — 1, without further expanding L0 into x * x.

4.3 SSA Extension

Symbolic evaluation only based on SSA form has its limitation. For example, in 

Figure 4.1, the SSA form only tell us that the value of p3 can be either p0 or p2. Note 

that the value of p3 could be p0 only if the branch at the end of the basic block bbO is not 

taken. However, the branch at the end of the basic block bbO is always taken, because 

its branch condition i 0 <= L0 — 2 is always true. (The value of i 0 is 0, and the value of 

L0 is 40.) Therefore, the value of p3 is actually equal to p2.

Furthermore, p2 is an induction variable, and thus can take more than one values. 

p3 should take the last value of p2 when the loop terminates, because p3 is outside the 

loop, while p2 is inside the loop. However, we can not figure out this using the SSA 

representation. The fundamental problem of SSA form is that it retains only data flow
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bbO: bbO:

bbl: bbl:

bb3 : bb3 :

bb2 : bb2 : * P 3 = * P 3 - n 0 * i 
memjirej = temp0;* P 4 = * P 4 - n o * 1 

merajjrej = temp0;

L0 = 40; 
n0 = tmp2 ;

qo = Po 
temp0 = Po-'

n0 = tmp2;

Pi = *Pi

(a) (b)

F ig u re  4.3 Example gated SSA form and pruned control flow graph

information but no control flow information. The ^-function contains no information to 

determine which of the reaching values it should take. To remedy this problem, people 

has extended SSA form to gated SSA form [123].

In gated SSA form, </>-function is augmented with predicate for the selection of possible 

reaching values. Special ^-functions called //-functions and ^-functions are placed at loop 

entry and loop exits. A //-function has two operands. The output of a //-function will 

take the value of the first operand for the first loop iteration, and the value of the second 

operand for the remaining loop iterations. The value of a r\ function is the value of the
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corresponding variable when control reaches the corresponding loop exit. Figure 4.3(a) 

shows the corresponding gated SSA form of Figure 4.1(a). For clarity, it does not show 

the predicates in ^-functions, //-functions and //-functions. Note that a dummy basic 

block is inserted at the loop exit to facilitate the insertion of //-functions.

The implementation and interpretation of gated SSA form is complicated. For the 

symbolic evaluation of scalar variables in the prototype memory data-flow analysis sys­

tem, we implemented a simplified version of gated SSA form. To ease the job of identifying 

induction variables and calculating their loop-exit values, we extended the SSA form with 

//-functions and //-functions, but without having predicates in ^-functions, //-functions 

and //-functions. W ithout resorting to predicate evaluation, we can still prune the control 

flow graph by checking whether some branch conditions are always true or always false.

For the control flow graph in Figure 4.3(a), the false-branch at the end of basic 

block bbO is never taken, so we can prune this edge and obtain the simplified control flow 

graph in Figure 4.3(b). After pruning the fa lse-branch  edge at the exit of basic block 

bbO, we can also prune the the 0-function at the beginning of basic block bb2, because 

now the control can reach basic block bb2 only through bacic block bb3. This can be 

accomplished by re-constructing the SSA form using the pruned control flow graph 1.

Prunning control flow graph and SSA enables us to have more accurate symbolic 

scalar variable evaluation. For example, we can easily conclude that, in Figure 4.3(b),

T t will be interesting to implement an algorithm to incrementally modify the SSA form from an 
incremetally modified control flow graph, but this is beyond the scope of this work.
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variable p at the basic block bb2 has the symbolic value of p3. We cannot easily reach 

this conclusion in Figure 4.3(a) without full-blown implementation of gated SSA.

Given Figure 4.3(b), the value of p3 can be derived as follows.

P3 =  ^(Pa)

=  »7(Pi — 1)

=  77((A +  39 -  h) -  1) 

=  rj(k +  38 — h)

=  v W  +  *7(38) -  rj(h)

= A+  3 8 - 3 8  

=  A

Note that h is the fundamental induction variable, which starts from 0. Its last value 

7 7(h) is the loop trip count minus 1, that is 38. The loop trip count in this example can 

be calculated by checking the loop exit condition, ± 2  > L0 - 2. Note that the value of 

± 2  is 1 +  h and the value of Lo is 40, and thus the value of the loop exit condition is h 

> 37. So, when the loop terminates, the value of h would be 38. In general, it is not 

so straightforward to calculate the trip counts for arbitrary loops, which is beyond the 

scope of this work.
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C H A PT E R  5 

Program Region Hierarchy

This chapter will discuss how the proposed memory data-flow analysis system parti­

tions a program into program regions as coarse-grained functions. It will also discuss the 

limitation of this program partitioning and how to handle library functions which have 

no source code available.

5.1 Program Region Hierarchy

For the current implementation, we define a coarse-grained function to be one of the 

following 4 program regions.

• in-lined function;

•  loop with single loop entry, the so called natural loop [146];

•  loop body;

• memory read;

•  memory write.

By partitioning a program segment into these regions, we can impose a program region 

hierarchy upon the program segment. For example, Figure 5.1 is the program region
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Loop Body Mem. Wr

Loop
Mem. Rd

Loop Body

Loop Body
Mem. Wr

Inlined Function
Loop Loop

Mem. Rd

Loop ... Mem. Wr

Loop Body
Mem. Rd

control flo w

region

region 9

region 12
region 2 region 7

region 6

region 13

region 5

region 0

region 14

region 10

region 1

region 3

region 4

region 11

A[i3]

A[i2] = . .

B[i2] = ..

.. = A[i2]

B[i2]

■ r

A[il]

for i l  = 0, 39/1

for i3 = 0, 39, 1

for iO = 0, 3, 1-
fooOc ( )

F ig u re  5.1 Example program region hierarchy

hierarchy of the in-lined function fooOc in Figure 3.8. Memory reads and memory writes 

are the fundamental regions which are always at the bottom of program region hierarchy, 

like the regions 9 to 14 in Figure 5.1. Although it is hard to call a single memory read or 

memory write coarse-grained, treating memory read and memory write as fundamental 

program regions will simplify the implementation of the the memory data-flow analysis 

and the discussion of later chapters.

Except the fundamental regions, all other program regions consist of sub-regions. A 

loop region, like the regions 1, 3, 4, and 5 in Figure 5.1, has only one sub-region, its loop 

body. A loop body region, like the regions 2, 6, 7 and 8 in Figure 5.1, or an in-lined 

function region, like the region 0 in Figure 5.1, may have more than one sub-regions. The 

sub-regions of a program region are represented as a directed graph called the sub-region
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graph. The nodes in a sub-region graph are corresponding to the sub-regions. The edges 

in a sub-region graph are corresponding to the control flow between the sub-regions.

Accordingly, we use two major recursive data structures to implement the program 

region hierarchy, -reg ion  and _subregion_graph. Each -region has a reference to a 

_subregion_graph. Each node in a _subregion_graph has a reference to the jreg ion  

data structure of the corresponding sub-region. We basically build the .reg io n  and 

_subregion_graph data structures from bottom up. To build the .reg io n  data structure 

for a program region, we first build the -reg ion  data structures for its sub-regions, then 

build a _subregion_graph with its nodes pointing to the jreg ion  data structures of the 

sub-regions.

Program regions are identified in the control flow graph. A loop region and the 

corresponding loop body region can be found using the algorithm for finding natural 

loops [146]. The entry basic block and exit basic block of an in-lined function are marked 

for the identification of the in-lined function. The marking of in-lined function entry 

block and exit block is done during the construction of control flow graph, with the help 

of in-liner generated compiler pragmas.

By our definition and implementation of program regions, the sub-region graph of a 

program region is actually a directed acyclic graph, since a loop region has only one sub- 

region and a loop body region contains no back-edges. This simplifies the implementation 

of the memory data-flow analysis, which will be discussed in the following chapters. 

However, our definition and implementation of program regions do have some limitations 

as discussed in the next section.
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i  = 13; 
sw itch  (m) {

case 3: *p++ = 0; 
case 2: do {

*p++ = 0;
case 1: *p++ = 0;
case 0: *p++ = *x+ +;

} while ( - - i )

(a)

bbO:

i  = 12; 
switch (m) { 

case 3 
case 2 
case 1 
case 0 

}
do {

*p++ = 0; 
*p++ = 0;
*p++ = *x++; 

} while (- - i ) ;

(C)

p++ = 0;
p++ = 0;
p++ = 0;
p++ = *x++;

bbl:

bb2 :

bb3 :

bb4 :

i  = 13; 
sw itch  (m)

case 2: *p++

case 1: *p++

case 3: *p++

case 0: *p++ *x++;

(b)

Figure 5.2 Work-around of improper loop

5.2 Lim itations

The definition and implementation of program regions in this work have the following 

limitations.

•  It cannot handle improper loops, which have more than one loop entry. Fig­

ure 5.2(a) shows a program segment from one of the MediaBench programs. Note 

that the do-w hile loop has multiple entry points. We can not identify an improper 

loop using the algorithm for finding natural loops, which is based on the detection of 

back-edges. A back-edge is an edge in the control flow graph so that the destination 

basic block of the edge dominates the source basic block of the edge.
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As shown in Figure 5.2(b), the ’’loop-back” edge from basic block bb4 to basic 

block bb2 in the control flow graph is not a back-edge, because basic block bb2 

does not dominate basic block bb4. Therefore we will not group basic blocks bb2, 

bb3 and bb4 as a loop body region. Instead, we will group all the basic blocks 

in Figure 5.2(b) as one program region, which will have a sub-region graph with 

the same structure as the control flow graph shown in Figure 5.2(b). Note that 

the control flow graph in Figure 5.2 is not an acyclic graph. This violates our 

assumption of sub-region graph and breaks the memory data-flow analysis.

The current remedy to this problem is to hand modify an improper loop to a 

natural loop by peeling out the first iteration, as shown in Figure 5.2(c). We 

expect improper loops will occur very rarely in common programs, as we only find 

one case in all the benchmark programs we tried.

•  It cannot handle indirect function calls. This is really the limitation of our in­

lining based approach. In the current implementation, in-lining takes place before 

the pointer analysis, as shown in Figure 3.10. So, the in-liner does not know the 

possible values of function pointers, and thus does not in-line functions at the 

call-site of indirect function calls.

The current remedy to this problem is to hand replace the call-site of indirect 

function call with several call-sites of direct function calls based on the pointer 

analysis results. This is illustrated in Figure 5.3.
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s o r t_ d a ta ( q u ic k _ s o r t ) ; 
s o r t_ d a ta ( b u b b le _ s o r t ) ;

s o r t_ d a ta ( q u ic k _ s o r t ) ; 
so r t_ d a ta (b u b b le  s o r t ) ;

s o r t_ d a ta (v o id  ( * s o r t ) 0 ) so r t_ d a ta (v o id  ( * s o r t ) 0 )

( ♦ s o r t ) () ; i f  ( so r t  == qu ick_sort)  
q u ic k _ s o r t () ;  

e l s e  i f  ( so r t  == bubb le_sort)  
b u b b le _ s o r t () ;

(a)

(b)

F ig u re  5.3 Work-around of indirect function call

• It cannot handle recursive functions. This is the limitation of any in-lining based 

program analysis. We may convert tail-recursions to loops, but, to handle recursions 

in general, we must resort to inter-procedural memory data-flow analysis, which is 

left as future work. For the telecommunication and media benchmark programs 

used in this work, we only find one recursion case for implementing the intrinsic 

functions of l e f  t_ sh if  t  and r ig h t_ sh if  t .  We hand modified the program to break 

this recursion, as illustrated in Figure 5.4.

• It cannot handle functions with variable number of arguments, for example, p r i n t f . 

For the current in-lining based implementation, we manually replace the p r in t f  

at different call-sites with different variants of the p r in t f  function according to 

the number and the data types of the actual parameters. For each new version of 

p r in t f ,  a template function is created to model its memory access patterns.

Not just for p r in t f ,  we also use template to model the memory access behaviors of 

other library functions.
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s h i f t _ l e f t ( i n t  s h i f t c n t )
{

i f  ( s h i f t c n t  < 0)
s h i f t _ r i g h t ( - s h i f t c n t ) ; 

/*  do s h i f t  l e f t  */

s h i f t _ r i g h t ( i n t  s h i f t c n t )

i f  ( s h i f t c n t  < 0)
s h i f t _ l e f t  ( - s h i f t c n t ) ;  

/*  do s h i f t  l e f t  */

foo ()

s h i f t _ l e f t ( s h i f t c n t ) ; 
s h i f t _ r i g h t ( s h i f t c n t ) ;

(a)

s h i f t _ l e f t ( i n t  s h i f t c n t )

/*  do s h i f t  l e f t  */ 

s h i f t _ r i g h t ( i n t  s h i f t c n t )

/* do s h i f t  l e f t  */ 

foo ()

i f  ( s h i f t c n t  > 0)
s h i f t _ l e f t ( s h i f t c n t ) ;

e l s e
s h i f t _ r i g h t ( - s h i f t c n t ) ;

i f  ( s h i f t c n t  > 0)
s h i f t _ r i g h t ( s h i f t c n t ) ;

e l s e
s h i f t _ l e f t ( - s h i f t c n t ) ;

(b)

F ig u re  5.4 Work-around of recursive function call

1
2
3
4
5
6
7
8 
9

10
11
12
13

s ize_t f read  (void * p t r ,  s ize_ t s i z e ,  s ize_ t nitems, FILE * f i l e )  

i n t  i , j ;

♦ f i l e  = * f i l e ;
fo r  ( i  = 0 ; i  < nitems ; i++) { 

fo r  ( j  = 0 ; j  < s ize  ; j++)
((char  *) p t r )  [ i  * s iz e  + j ]  = 0 ;  

i f  ( i )
break;

}
re tu rn  i ;

F igu re  5.5 A template describing the memory access behavior of fread

5.3 Handling Library Functions

The proposed program analysis system is trying to do whole program memory data­

flow analysis. No m atter it is in-lining based or inter-procedural, whole program analysis 

cannot proceed if the source code of some function is not available. However, it is very 

common in a program to call library functions which have no source code available. This
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work uses template function to model the memory access behavior of library functions, 

similar to the approach used in [141] for whole program pointer analysis. For example, 

Figure 5.5 shows the template function for the library function fread . The outer loop 

of the template in Figure 5.5, lines 6-11, models writing the items to the buffer pointed 

by the formal parameter p tr .  The trip count of the outer loop, the maximum number of 

items to read, is given by the formal parameter nitem s. Lines 9-10, Figure 5.5, models 

that the outer loop can exit early and read fewer data items. The inner loop (lines 7-8, 

Figure 5.5) models writing each byte of the read item to the buffer. The formal parameter 

s iz e  gives the size of each item in bytes.

In addition to modeling the memory access behavior of software library functions, 

hardware IP (Intellectual Property) providers can also provide the templates that model 

the memory access behavior of their IPs 1. Template is really a way to enable whole sys­

tem memory data-flow analysis in order to optimize the communication between software 

and/or hardware components.

5.4 Related Work

This work has the same program regions as those used in [62] and [147]. The goal 

of [62] and [147] is to exploit coarse-grained data parallelism in outer loops, while the 

goal of this work is to exploit coarse-grained function parallelism among the program 

regions. It is not clear how [62] and [147] handled improper loops, indirect function

1A hehavioral C model also works, but from the memory data-flow analysis point of view, a template 
only modeling the memory access behavior is accurate enough and requires less analysis time.
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calls, recursion and library functions. Some of these issues may not m atter in their case, 

because their target language is Fortran.

The templates used in [141] only model the accessed memory objects. This is enough 

for the purpose of whole program pointer analysis. For whole program memory data-flow 

analysis, we may obtain more accurate analysis results by using templates which have 

more detailed modeling of the memory access patterns.
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C H A PT E R  6

Exposed M em ory Access Summarization

For each program region, exposed memory access analysis tries to find its exposed 

memory reads that consume the data generated by other program regions, and the ex­

posed memory writes that produce the data for other program regions. For each exposed 

read and exposed write, we use a data structure called Memory Access Descriptor (MAD), 

as explained below, to describe its memory access pattern. The exposed reads, and the 

exposed writes, of a program region is a set of MADs which have mutually exclusive 

memory accesses.

6.1 M em ory Access Descriptor

For our current implementation, the MAD data structure for describing memory 

access pattern can be represented as a 6-tuple, {size, alias, base, offset, displace, type).

•  size: This is the size of each access in terms of bytes.

•  alias: This is the alias set given by the flow-insensitive pointer analysis [102] [103], 

which gives us the most conservative information about the memory objects which 

may be accessed.
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int A [3] [2] ; 
for (i=0 ; i<3 ; i++) 

for (j =0 ; j <2 ; j++) 
. . . A [i] [j] ...

int A [3] [2] ; 
for (j =0 ; j <2 ; j++) 

for {i = 0 ; i<3 ; i++) 
. . . A[i] [j] ...

11 4  bytes |

A[0][0] A[0][1] A[1][0] A [l][ l] A[2][0] A [2][l]

------- ►!
(stride, trip

(

4 bytes

------- ►!------- ►)------- ----------►!
-count) = ( 4 ,  6 )

a)

A[0][0] A[0][1] A[1][0] A [l][ l] A[2][0] A [2][l]

k
(stride, trip-count)' 
= ( 4 , 2 )

(stride, trip-count) = ( 8, 3 )

(b)

F igu re  6.1 Example illustrating the displace field of the MAD data structure

• base: This is the base address of the accessed memory locations. A base can be 

static or dynamic. A static base is like the array A in the memory reference A [ i ] . 

A dynamic base is like the pointer p in the memory reference *p.

•  offset: This is byte offset from the base address. For example, for the memory 

accessed by *(p+7), the base is p, and the offset is 28, assuming p is a pointer to 

Tbyte integers.

•  displace: This is a list of (stride in bytes, trip-count) pairs. For example, accessing 

all the elements of a 3-by-2 integer array A in row major order will have base A, offset 

0, and displace [(4, 6)], as shown in Figure 6.1(a). On the other hand, accessing all 

the elements of A in column major order will have displace [(8,3)(4, 2)], as shown 

in Figure 6.1(b).
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i f  ( . . . )  {
/* access A[0] to  a[9] */ 
fo r  (i  = 0 ; i  <= 9 ; i++)

. . .  A [i] . . .
} else {

/* access a [9] down to  a[0] */ 
fo r  (i  = 9 ; i  >= 0 ; i — )

. . . A [i] . . .
}

(a)

i f  ( . . . )  {
/ *  access A [ 0 ]  to  a[9] */ 
fo r  (i = 0 ; i  <= 9 ; i++) 

. . .  A [i] . . .
} else {

/* access all] to  a [10] */ 
fo r  (i = 1 ; i  <= 10 ; i++) 

. . . A [i] . . .

(b)

i n t  A  [ 1 0 ]  ; i n t  A [ 1 0 ]  ;
i n t  B [ 2 0 ]  ; i n t  B [ 2 0 ]  ;
i f  ( . . . )  { i f  ( . . . )  {

p = A ; p = A ;
} e l s e  { } e l s e  {

p = B; p = B;
} , }
while ( . . . )  { fo r  (i  = 0 ; i  < 10 ; i++) {

. . . p [x] . . . . . . p[x] . . .

} (c) } (d)

struct {
int A [10] ; 
int B [20] ;

} s;
for (i = 0 ; i < 20 

. s.B[i] . . .
}

(e)

struct { 
int a; 
int b;

} A [10] ; 
for (i = 0 ; i 

... A[i].b
}

10

(f)

F igu re  6.2 Examples for illustrating different MAD structures

• type: Different type values represent different accuracy levels of the memory access 

description. Below are the 4 possible values of type, from the most accurate to the

least accurate.

— Seq: This type of MAD is the most accurate memory access description. A 

5e<7-type MAD describes not only the accessed memory locations but also the 

access order. For example, we can figure out the exact accessed memory loca­

tions and the access order for the for-loops in Figure 6.1. Using the 6-tuple 

notation, (size, alias, base, offset, displace, type), the MADs describing the ac-
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cesses of array A by the for-loops in Figure 6.1 are (4, {A}, A, 0, [(4,6)], Seq) 

and (4, {A}, A, 0, [(8,3)(4, 2)], Seq) respectively.

— Must'. A Must-type MAD describes only the accessed memory locations, but 

not the access order. For example, in Figure 6.2(a), one of the for-loops 

accesses array A from element A [0] to element A [9], and the other from A [9] 

down to A[0]. We are certain that the code segment in Figure 6.2(a) accesses 

the set of array elements {A[i]|0 <  i < 9}, but we cannot determine the access 

order at compile time. Therefore, we describe these memory accesses using a 

Must-type MAD, (4, {A}, A,, [(4,10)], Must).

— May. While a Must-type MAD describes the exact set of accessed memory 

locations, a May-type MAD describes only an upper bound of the possibly 

accessed memory locations. Some memory locations in the set described by 

a May-type MAD may not be accessed. For example, the code segment in 

Figure 6.2(b) will access the set of array elements {A[i]|0 < i < 9} if the 

branch condition is true, or (A[z]|l <  i < 10} if the branch condition is false. 

Therefore, the May-type MAD for Figure 6.2(b) is (4, {A}, A,, [(4,11)], May). 

Note that, at run time, it will access either A[0] or A [10], but not both.

— Doomed: If we cannot even determine an upper bound of the accessed memory 

locations, we can only conservatively use a Doomed-type MAD to describe the 

possibly accessed memory objects given by the pointer analysis. For example, 

we cannot determine the memory locations accessed by the code segment
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in Figure 6.2(c). We only know it may access the memory objects, array 

A or array B, but we are not certain which array elements of which array 

the while-loop will access. The corresponding Doomed-type MAD is thus 

(4, {A,B}, J_, _L, J_, Doomed).

Figures 6.2(d) to (f) illustrate the MAD structures for other memory access cases. 

Like Figure 6.2(c), we cannot determine, at compile time, whether the for-loop in Fig­

ure 6.2(d) will access array A or array B. However, instead of giving up too early and 

using a Doomed-type MAD, we can still describe the memory accesses of the for-loop in 

Figure 6.2(d) using a Se^-type MAD, (4, {A,B},p,, [(4,10)], Seq). Note that the alias set

of the MAD is {A, B}, and the base address of the MAD is p.

For the loop in Figure 6.2(e), which accesses the array B in the structure s, we can 

use (4, (s. B}, s, 40, [(4,10)], Seq) to describe its memory accesses, which has the starting 

address of the structure s as the base, and the offset of array B from the starting address 

of structure s, 40, as the offset.

For the loop in Figure 6.2(f), which accesses an array of structures, we can use 

(4, {A.b}, A, 4, [(8,10)], Seq) to describe its memory accesses, which has the starting ad­

dress of array A as the base, the byte offset of the b field in the structure, 4, as the offset, 

and the byte size of the structure array element, 8, as the stride.

There are many memory descriptors proposed in the past, each with different trade­

offs between accuracy and complexity [148] [56] [149] [58] [147] [150] [151]. We choose 

MAD mainly for the following reasons.
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• C programs use pointer and pointer arithmetics extensively.

• We want MAD to be able to describe not only the accessed memory locations but 

also the access order.

•  We want MAD to be simple enough so that we can get a quick prototype to do 

experiments on real programs.

•  We expect MAD to be accurate enough for telecommunication and media applica­

tions.

It is always possible to have more sophisticated MAD design at the expense of more 

engineering effort and more analysis time. Indeed, one of the goal of the prototyping 

effort is to shed light on how to improve the MAD structure. The design of MAD 

structure is basically orthogonal to the bottom-up summarization process and the top- 

down pruning process, which will be explained in the following sections and the next 

chapter.

6.2 B ottom -up Sum marization Process

Figure 6.2 shows the top-level function S um m arize  for summarizing the exposed 

reads and the exposed writes of the given region R. If R  is a Memory Read region, Sum ­

m arize  will call new _M A D  to create a MAD structure representing the corresponding 

memory read, which will be the only element of the set exposedjreads of R, and the set 

exposed-write of R  is empty (lines 2-4, Figure 6.2). On the other hand, if R  is a Memory
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1
2
3
4
5
6
7
8 
9

10
11

12

13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30
31

function Summarize (/?'. a  region) begin  
if R  is a Memory Read region then  

R. exposedjreads :=  { new_MAD(7J) };
R.exposed-writes :== { }; 

else if  R  is a Memory Write region then  
R. expose/Lreads :=  { };
R.exposed-writes :=  { newJM AD(it) }; 

else
/ /  R.subregions is a directed acyclic graph (V ,E), w ith  
/ /  V  is the set o f nodes representing sub-regions of R  
/ /  E  is the set of edges representing control flow am ong V  
for v e  R. subregions do

let r be the corresponding sub-region o f v 
Summarize (r); 

end for
if  R  is not a Loop region then

R. expose/Lreads FindExposedReads (R,.subregions) ;
R.exposed.writes :=  FindExposedW rites {R. subregions)] 

else
let b be the only Loop Body sub-region o f R]
Inter IterationD ependenceTest (b) ;
R . expos ed-reads : =  Ylb loop ( ̂  • exP0S ed-reads);
R.exposed-writes :=  Ylbloop (^• exposed-writes); 

end if  
end if
for x  € (/?. exposedjreads U R.exposedjwrite do 

if x  is not invariant w ith  respect to  R  then  
x.type :=  Doomed; 

end if  
end for 

end function

Figure 6.3 The pseudo-code of Summarize

Write region, a new M A D  will be created for the corresponding memory write, and the 

exposedjreads will be empty (lines 5-7, Figure 6.2).

If R  is not a fundamental region, Summarize first recursively calls itself to find the 

exposed reads and writes of its sub-regions (lines 12-15, Figure 6.2), before finding its
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own exposed reads and exposed writes (lines 16-21, Figure 6.2). This is the reason why 

the summarization of exposed memory accesses is a bottom-up process.

If R  is a Loop Body or a In-lined Function region, Summarize will call FindEx- 

posedR eads and FindExposedW rites to find the exposed reads and exposed writes 

(lines 16-18, Figure 6.2). The pseudo-codes of FindExposedR eads and FindExposed­

W rites are shown in Figure 6.6 and Figure 6.8, which will be explained later.

If R  is a Loop region, it has only one Loop Body sub-region, say b. First, Sum m arize 

will find the inter-iteration producer-consumer relationship between the sub-regions of b 

(line 21, Figure 6.2). Next, Sum m arize will call Sum m ation (]T)) to find the exposed 

reads and the exposed writes of R  by expanding the exposed reads and writes of b for all 

the iterations of R  (lines 22-23, Figure 6.2).

Finally, Sum m arize will check each exposed memory access x  to see whether x  is 

invariant with respect to region R  (lines 26-30, Figure 6.2). If not, the type of x  is 

changed to Doomed. Here, x  is invariant with respect to R  if its MAD fields like base, 

offset and displace are all represented by affine expressions in terms of variables defined 

outside the region R, and thus not changing during the execution of the program region 

R. Note that the fundamental induction variable associated with a loop is invariant with 

respect to the corresponding loop body region. During each execution of the loop body, 

which is corresponding to one loop iteration, the value of the fundamental induction 

variable remains constant, because it only increments from iteration to iteration.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sum m arize (region3) 

1
Sum m arize (region6)

I
Sum m arize (region?)

Sum m arize (regionO)

t
Sum m arize (region 1)

t
Sum m arize (region2)

- -  I “

Sum m arize (region4)

i
Sum m arize (region7)

Sum m arize (region 10) /  \  Sum m arize (reg ion l3 )

Sum m arize (reg ion l 1) Sum m arize (reg ion l2 )

Sum m arize (region5)

t
Sum m arize (region8)

t
Sum m arize (region 14)

region 0

F ig u re  6.4 Example recursive calls of Sum m arize
Loop Body

Loop lc
for i l =  0,39,1 /

region 9

region 6
(<Seq, A[hl]>}

Loop Body
,{<Seq, A[0..39]>) {<Seq, A[h2]>}

Loop Body

Inlined Function Loop 0c
fooOc for i0 = 0,3,1

region 1

*

region 2

w u

(<M ust, A [0 .J9 ]>  |<M ust, A[0..39]> , 
<M ust, B[0..39]>) <M ust, B[0..39]>) ,

region 3

region 4

region 5

Loop 2c 
for i2 = 0,39,1 

{<Seq, A[0..39]>).

W

region 7

\

{<Seq, A[0..39]> \  
<Seq, B[0..39]>)

•  •  •
(< S e q ,A [0 ..3 9 ]> .\ Loop3c 

<Seq, B[0..39]>) for 13 = o.39,X

— ► exposed memory access/data flow 
h i : fundamental induction variables for loop i

1*
region 8

V- J

region 10

region 11

region 12

region 13

{<Seq, A[h2]>

Loop Body 
(<Seq, A[h31>)

region 14

A [il] =

Jjt ,
(<Seq, A [h l]> ) 

{<Seq, A[h2]>)

m
.. =  A[i2]

B[i2] = ..

L_L_
{<Seq, B[h2]>) 

(<Seq, B[h2]>)

,. = B[i2]

A[i2] = ..

_ L _
{<Seq, A[h2]>} 

{<Seq, A[h3]>}

I
. = A[i3]

F ig u re  6.5 Illustration of the bottom-up summarization process

6.2.1 A n Exam ple

Taking the fooOc in Figure 3.8 as an example, whose program region hierarchy is 

shown in Figure 5.1. Suppose Summarize(regionO) is called to summarize the exposed
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memory access of fooOc. According to lines 12-15, Figure 6.2, Summarize(regionO) 

will call Sum m arize(regionl) first; which will in turn call Summ arize(region2) first, 

and so on. The complete recursive call sequence of Sum m arize in this case is shown in 

Figure 6.4, and the result of the whole bottom-up process is shown in Figure 6.5.

When Summ arize(region9) is called, there will be no further recursive call of Sum ­

m arize, because region9 is a Memory Write region, which has no sub-region. A new 

MAD structure will be created to represent the exposed write A [il] - Using the 6-tuple 

notation (size, alias, base, offset, displace, type) for MAD, the exposed writes of region9 

is {(4, {ObjIDpff, A, h\, [(0,1)], Seq)}, a set with only one MAD h

Here we assume the elements of array A are 4-byte integers. {ObjlDpff is the may- 

alias set given by the pointer analysis. The offset is the symbolic value of the array 

index i l ,  which is h\, the fundamental induction variable of the enclosing loop loop lc  

in Figure 3.8. The displace [(0,1)] indicates that the stride is 0, and the trip-count is 1, 

because there is only one accessed memory location, A +  h\.

Note that the type of the exposed memory access of a fundamental region is always Seq. 

This is because we define a single must-accessed memory location as a Seq access. Also, 

the symbolic values of the offset and displace must be defined outside a fundamental 

region. This means the exposed memory access of a fundamental region R  is always 

invariant with respect to R. Therefore, its type will never be down graded to Doomed at 

line 28, Figure 6.2.

1For simplicity, in Figure 6.5, the exposed writes of region9 is denoted as {(Seq.  A[/ii])}

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



After summarizing the exposed writes of the Memory Write region region9, we next 

summarize the Loop Body region region6. Because region9 is the only sub-region of 

region6, region6 has the same set of exposed writes as region9, and has no exposed reads. 

One subtlety here is that hi, the fundamental induction variable of the enclosing loop, 

is an invariant with respect to the Loop Body region, so Summ arize(region6) will not 

down grade (Seq,k[hi\) to Doomed.

After calling Sum m arize(region6), Summ arize(region3) will deduce the exposed 

memory access of the Loop region region3 from the exposed memory access of the Loop 

Body region region3 (line 22-23, Figure 6.2). Basically, given {(Seq, A[/ii])}, and the 

loop trip count of looplc , which is 40, S um m atio n  (£)) would return {{Seq, A[0..39]}} 

because hi =  0,1,2, ••• ,39. Recall that {(Seq, A[0. .39])} is an abbreviation of the 6- 

tuple (4, {ObjIDpff, A, 0, {[(1,40)]}, Seq), with 4 being the size, { ObjID being the may- 

alias set, A being the base, 0 being the offset, (1,40) being the (stride, trip-count) pair 

describing the displace, and Seq being the type.

Similarly, we will summarize the fundamental regions, regionlO, regionll, regionl2, 

and regionl3, and then the Loop Body region region7, the Loop region region4, and so on. 

Eventually we will get the summary for the In-lined Function region regionO, as shown 

in Figure 6.5.

Note that in Figure 6.5, the exposed reads of regionl2, (Seq, B[hff), is not exposed out­

side region7. This is because {(Seq, B[1i2])} is covered by the exposed writes of regionll, 

which is also {(Seq, Bf/^])}. This producer-consumer relationship between regionll and 

regionl2 is identified during the execution of F in d E x p o sed R ead s (line 17, Figure 6.2).
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Figure 6.5 indicates the producer and consumer relation by an arrow from regionll to 

regionl2.

Also note that region7 is the corresponding Loop Body region of loop2c. A producer- 

consumer relationship may exist between different iterations of loop2c, because both 

the exposed reads and the exposed writes of region7 contain (Seq, Inter-iteration

producer-consumer relationship is identified during the execution of InterlterationDe- 

pendenceTest (line 21, Figure 6.2). In this example, there is no inter-iteration true 

dependence between iterations of loop2c. Therefore, there is no arrow from region7 to 

itself, nor from regionl3 back to regionlO, in Figure 6.5.

If a consumer region has only intra-iteration dependences, which have dependence 

distance 0, the consumer region and its producers are all executed in the same loop 

iteration. In other words, the consumer region and its producers regions are all sub- 

regions of the same parent loop body region. Therefore, there is no region outside the 

loop body region and the corresponding loop region to produce the data needed by the 

consumer region.

On the other hand, if a consumer region has some mter-iteration dependences, be­

cause the dependence distances must be larger than 0, its data are generated by some 

producer regions which are executed in previous iterations. For the first iteration of the 

loop, there is no previous iteration, therefore, the data of the consumer region must be 

generated by some producer regions outside the loop body region and the corresponding 

loop region. In other words, the consumer region has producer regions which are in its 

parent loop body region, and also producer regions outside its parent loop body region.
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Memory writes can cover memory reads as well as memory writes. For example, 

both region3 and region4 have the same expose write (Seq. A[0..39]). Because region4 is 

executed later than region3, as indicated by the control flow in Figure 5.1, so the same 

exposed write of region3 is killed by the exposed write of region4. Writes are killed during 

the execution of FindExposedW rites, line 18, Figure 6.2.

One final point about Figure 6.5, before diving into more detailed explanation of 

FindExposedR eads and FindExposedW rites, is that the type of the exposed writes 

of region2 is Must, instead of Seq. This is because for array A and B, the memory access 

pattern of loopOc is (0,1, 2, • • • , 39,0,1, 2, • • • , 39,0,1, 2, • • • , 39,0,1,2, ■ • • 39). Strictly 

speaking, this is not a sequential pattern, because, for a sequential memory access pattern, 

each memory location can be accessed only once.

6.2.2 F inding E xposed Reads

Figure 6.6 outlines the function FindExposedR eads. Given the sub-region graph 

G of region R, it will return the exposed reads of R. Let G — ( V. E), where V  is the set 

of nodes representing the sub-regions, and E  is the set of edges representing the control 

flow between sub-regions. Note that G is a direct acyclic graph due to our definition and 

implementation of program regions.

FindExposedR eads visits the nodes in V  in reverse topological order (lines 5-6, 

Figure 6.6). A node is visited only after all its successor nodes have been visited. This 

order can be enforced by performing a topological sort on V  [145]. The exposed reads of 

sub-regions are backward propagated along the control flow until they are covered by the

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1: function FindExposedReads (G: subregions) begin
2: / /  G = (V, E) is a directed acyclic graph for the sub-regions of region R
3: / /  V, the set of nodes, represent the sub-regions
4: / /  E, the set of edges, represent the control flow between sub-regions
5: Topological sort V
6: for v € V in reverse topological order do
7: if 3 so € v.successors then
8* Rin '— .S'o. / :iI ■
9: for s € (v.successors \  {so}) do

10 : Rin •—  Rin U s .R 0ut)
11: end for
12: else
13: Rin :=  {};
14: end if
15: / /  Let r be the corresponding region of v;
16: Rgen :== r - exposedjreads;
17: Wgen •=  r.exposed-writes;
18. V.Rout • Rgen ® (Rin O 1T ên),
19: end for
20: /  /  Let ventry be the entry node of V
2 1 : return Vontry-Rout)
22: end function

F ig u re  6.6 The pseudo-code of F in d E x p o sed R ead s

exposed writes of other sub-regions. Otherwise, they will pass through the entry node 

v e n try  and become the exposed reads of region R .

For each node v E V, let r  be the corresponding region of v; Wgen be the set of 

exposed writes of r; Rgen be the set of exposed reads of r; v.R mit be the set of reads that 

propagate through v. The v .R mii can be calculated as follows (lines 7-18, Figure 6.6).

First, the sets of reads that propagate through the successors of v are merged together 

to form R in, the set of reads entering v (lines 7-14, Figure 6.6). The M erge  (U) operation 

basically takes two sets of MADs, merges the MADs that may access the same memory
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objects, and produces a set of MADs with disjoint memory accesses. Section 6.2.4.2 will 

explain M erge in more details.

Next, FindExposedR eads checks whether any reads in R in are (partially) covered 

by any writes in Wgen, (Rin 0  Wgen, line 18, Figure 6.6). In addition to finding the 

’’difference” between two sets of MADs, the Subtract (©) operation also helps identify 

producer and consumer relation. Section 6.2.4.3 will have more detailed explanation of 

Subtract.

Then, v.Rout can be obtained by concatenating Rgen with {Rin 0  Wgen). The Con­

catenate (0 ) operation basically takes two sets of MADs, concatenates the MADs that 

may access the same memory objects, and produces a set of MADs with mutually exclu­

sive memory accesses. C oncatenate (0 ) differs from M erge (U) in that the result of 

C oncatenate (0 ) depends on the order of its operands, but the result of M erge (u) is 

independent of the order of its operands. Section 6.2.4.1 will explain C oncatenate in 

more details.

Finally, FindExposedR eads returns neritr r f?0„i as the exposed reads of region R, 

(line 21, Figure 6.6).

6.2.2.1 A n Exam ple

This section will use the example in Figure 6.7 to illustrate FindExposedR eads. In 

reverse topological order, FindExposedR eads may visit the 4 regions 2 in Figure 6.7 

in the order of region3 first, then region2, then regionl, and finally regionO as follows3.

2For brevity, we do not distinguish between a graph node and its corresponding region.
3The order of visiting region2 and regionl is arbitrary.
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/* region 0 */
f o r (il=0;il<40;il++)

A[il] = . . . 
if (condition)

/* region 1 */ 
for(i2=0;i2<40;i2++) 

A[i2] * . . . A[i2] ,
else

/* region 2 */ 
for(i3=0;i3<40;i3++) 

B[i3] = . . . B[i3] ; 
/* region 3 */ 
for (i4 = 0; i4<4 0 ,* i4++)

. . . = A[i4] ;

(a)

region 0

R out={<May,B[0..39]>)

R gen = { )
W gen= {<Seq, A[0..39]>)

R in = {<Seq, A[0..39]>, <May, B[0..39]>)

region 2
Rgen ={<Seq,B[0..39]>} 
W gen= {<Seq, B[0..39]>} region 1

n  0U( VVkJcq, n iv ..jy js'\
R gen = {<Seq, A[0..39]>} 
W gen= (<Seq, A[0..39]>)

R in = {<Seq, A[0..39]>} R ,n = (<Seq, A[0..39]>}

region 3

R oul= « S eq , A[0..39]» 
R gen = (<Seq, A[0..39]>) 
W gen = { }

R in = ( )
(b)

control flow

Figure 6.7 Example illustrating FindExposedReads

1. v — region3: The R in of region3 is {}, because region3 has no successor. The 

exposed reads of region3 is {(Seq, A[0..39])} and the exposed writes is {}. Therefore, 

the Rout of region3 can be calculated as follows.

region3./?out =  region3. Rgen © (region3.Rire 0  region3.W9en)

=  {(Seq, A[0..39])} © ({} Q {})

=  {(Seq, A[0..39])}

2. v = region2: Because region3 is the only successor of region2, the R in of region2 

is the Rout of region3. Both the exposed reads and exposed writes of region2 is 

{(Seq, B[0..39])}, thus the Rout of region2 can be calculated as follows.

region2.fi,■out = region2.R gen © (region2. Rin 0  region2.M/ge„)

=  {(Seq, B[0..39])} © ({(Seq, A[0..39])} © {(Seq, B[0..39])}) 

=  {(5eg,B[0..39])} © {{(Seq, A[0..39])})

=  {(Seq, A[0..39]), (5e?,B[0..39])}
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3. v =  regionl: This is similar to the case of region2, except that both the exposed 

reads and the exposed writes of regionl are {(Seq, A[0..39])}. The R mt of regionl 

can be calculated as follows.

region 1.Rmd -  region 1.Rgen ® (regionl .R in Q region 1.Wgen)

=  {{Seq, A[0..39])} ® {{{Seq, A[0..39])} © {{Seq, A[0..39])»

=  {(Seq, A[0..39])}©({})

=  {{Seq, A[0..39])}

Note that although both the R ^ t  of regionl and the Rmt of region2 have the same 

(/S'eg, A[0..39]), they are generated by different regions. The (Seq, A[0..39]) in the 

Rout of region2 is the exposed reads of region3. While the (Seq, A[0..39]) in the R out 

of regionl is the exposed reads of regionl, not region3, because the exposed reads 

of region3 is covered by the exposed writes of regionl. The MAD structure can 

track the originating regions of its memory accesses. More details on this will be 

discussed later.

4. v = regionO: regionO has two successors, regionl and region2, thus the R out of 

regionl and the R ^ t  of region2 will be merged together to form the Rin of regionO.

r e g i o n O . =  regionl J i ^  □ region2.A(ntt

=  {(Se?,A[0..39])} U  {(Seq, A[0..39]), (5e?,B[0..39])}

=  {(Seq, A[0..39]), (May, B[0..39])}
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Note that both the R ^ t  of regionl and the Rmt of region2 have (Seq, A[0..39]), so 

the R in of regionO includes (Seq, A[0..39]). On the other hand, only the R out of 

region2 has (Seq, B[0..39]). Therefore, M erge ( U )  will generate a new May-type 

MAD, (May, B[0..39]), to be included in the R in of regionO. Here, the type May 

means the memory access B[0..39] may happen, if the control flow actually reaches 

region2. Because regionO has only exposed writes {(Seq, A[0..39])}, but no exposed 

reads, the R ^ t  of regionO can be obtained as follows.

regionO.R ^ t  = regionO.Rgen © (regionO.R in © regionO.Wgen)

=  {} © ({(Seq, A[0..39]), (May, B[0..39])} 0  {{Seq, A[0..39])»

=  {}© {{(May, B[0..39]»)

=  {{May, B[0..39])}

Since regionO is the entry subregion in Figure 6.7(b), the R ^  of regionO becomes 

the exposed reads of the program segment in Figure 6.7(a), that is {{May, B[0..39])}. So 

FindExposedR eads has deduced that the program segment in Figure 6.7(a) may need 

B[0..39] from the outside.

6.2.3 F inding E xposed  W rites

The algorithm of FindExposedW rite is outlined in Figure 6.8. It is like a ’’reversed” 

version of FindExposedReads. FindExposedW rites visits the nodes of V  in topo­

logical order (lines 5-6, Figure 6.8). A node in V  is visited only after all its predecessors
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1: function FindExposedW rites (G: subregions) begin
2: / /  G = (V, E) is a directed acyclic graph
3: / /  V, the set of nodes, represent the regions
4: / /  E, the set of edges, represent the control flow between regions
5: Topological sort V
6: for v G V  in topological order do
7: if 3 po G v.predecessors then
3- .— PQ.Wout,
9: for p € (v .predecessors \  {po}) do

10: Win '■= Win Up.Wout]
11: end for
12: else
13: Win := {};
14: end if
15: / /  let r b e  th e corresponding region of i>;
16: Wgen := r.exposed-writes;
17: O^W0ut •=  (ttbi 0 Wgen) 0  IT/en,
18: end for
19: / /  let vexit be the exit node of V
20: return vexit .W0Ut;
21: end function

Figure 6.8 The pseudo-code of FindExposedW rites

have been visited. The exposed writes of sub-regions are forward propagated along the 

control flow until they are killed by the exposed writes of other sub-regions. Otherwise, 

they will pass through the exit node vexit and become the exposed writes of region R.

For each node v G V, let r  be the corresponding region of v; Wgen be the set of 

exposed writes of r; Rgen be the set of exposed reads of r; v.Wout be the set of writes that 

propagate through v. The v.Wout can be calculated as follows (lines 7-17, Figure 6.8).

First, the sets of writes propagated through the predecessors of v are merged to­

gether to form Win, the set of writes entering v (lines 7-14, Figure 6.8). Next, FindEx­

posedW rites checks whether any writes in Win are (partially) killed by the writes in 

Wgen (Win © Wgen, Hne 17, Figure 6.8). Then, v.Wout can be obtained by concatenating
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/* region 0 */ win= { )
for(il=0;il<40;il++) 

A  [il] = ... regionO W g e n =  {<Seq, A[0..39]>}

if (condition)
/* region 1 */ 
for(i2=0;i2<40;i2++)

W0Ut = {<Seq, A[0..39]>}

A  [12] = .. . A[i2] ; Win= {<Seq, A[0..39]>} Wi(1— {<Seq, A[0..39]>}

else
/* region 2 */ 
for (i3»0;i3<40;i3++)

region 2 W g e n =  {<Seq, B[0..39]>}

Wom = (<Seq, A[0..39]>, <Seq, B[0..39]>}

regionl W g e n =  {<Seq, A[0..39]>}

Wout = {<Seq, A[0..39]>)
B[i3] = . . . B [13] ;

U/* region 3 */
Win= {<Seq, A[0..39]>, <May, B[0..39]>}

for (i4 = 0;i4<40;i4++) 
. . . = A[i4] ; region 3 W gen =  { }

(a)

control flow

Figure 6.9 Example illustrating FindExposedW rites

(Win ©Wgen) with W gen. Finally, FindExposedW rites returns v ex it.R ou t as the exposed 

writes of region R  (line 20, Figure 6.8).

FindExposedW rites and FindExposedR eads apply the same M erge (U) and 

C oncatenate (©) operations. The Subtract (©) operation is essentially the same, 

except that when invoked by FindExposedW rites, it will not identify any producer- 

consumer relationship.

6.2.3.1 A n Exam ple

Figure 6.9 uses the same example in Figure 6.7(a) to illustrate FindExposedW rites. 

Here the regions in Figure 6.9 will be visited in topological order with regionO first, then 

region2, then regionl, and finally region34.

1. v = regionO: Because regionO is the entry node in Figure 6.9, the Win of regionO is 

{}. Given the exposed writes of region3, {(Seq, A[0..39])}, the Wmd of regionO can

4Again, the order of region2 and regionl is arbitrary.
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be calculated as follows.

regionO. =  (regionO. Win 0  region3.Wgen) 0  regionO. Wgen 

=  (0 © {{Seq, A[0..39]») © {(Seq, A[0..39])}

=  {} © {(Seq, A[0..39])}

=  {(Seq, A[0..39])}

2. v =  region2: Because regionO is the only predecessor of region2, the W in of region2 

is the Wout of regionO. Given the exposed writes of region2, {(Seq, B[0..39])}, the 

Wont of region2 can be calculated as follows.

region2. Wont =  (region2.Wm © region2. Wgejl) © region2.W9e„

=  {{(Seq, A[0..39])} 0  {(Seg, B[0..39])}) 0  {(Seq, B[0..39])}

-  ({(Se?, A[0..39])}) 0  {<Se?,B[0..39]>}

=  {{Seq, A[0..39]), (Seq, B[0..39]>}

3. v =  regionl: The W.n of regionl is the same as the Wj„ of region2. Given the 

exposed writes of regionl, {{Seq, A[0..39]}}, the Wout of regionl can be calculated 

as follows.

regionl.Wont =  (regionl.Win © regionl.Wgen) © regionl.Wgen

= ({(Seq, A[0..39]}} © {{Seq, A[0..39])» 0  {{Seq, A[0..39])}

=  ({}) © {(Seq, A[0..39])}

=  {(Seq, A[0..39])}
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Note that, although {Seq, A[0..39]) is in both the Wout of regionl and the Wout of 

region2, the one in the Wmit of regionl and the one in the Wout of region2 are 

generated by different regions. The one in the Wout of region2 is the exposed writes 

of regionO. However,the one in the W ^ t  of regionl is its own exposed writes, because 

the exposed writes of regionO are killed by the exposed writes of regionl.

4. v =  region3: The \Vin of regionO is obtained by merging the lTOMt’s of its predeces­

sors, regionl and region2.

r e g i o n O . =  r e g i o n l . U  region2.VKout

=  {{Seq, A[0..39])} U {{Seq, A[0..39]), {Seq, B[0..39])}

=  {{Seq, A[0..39]), {May, B[0..39])}

Note that the type of memory access B[0..39] in the W m of region3 is May because 

it propagates to region3 only from region2, but not from regionl. The W mit of 

region3 can be calculated as follows, given that region3 has no exposed writes.

regionS.ITo^ =  (region3.Win © region3.WSen) © regionO. Wgen 

=  {{{Seq, A[0..39]), {May, B[0..39])} © {}) ® {})

=  {{{Seq, A[0..39]), {May, B[0..39])}) © {})

=  {{Seq, A[0..39]), {May, B[0..39])}

The Wout of region3 becomes the exposed writes of the program segment in Fig­

ure 6.9(a), because region3 is the exit sub-region. Finally, FindExposedW rites re-
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turns {(Seq, A[0..39]), (May, B[0..39]}}, which means the program segment in Figure 6.7(a) 

writes sequentially to array A from element 0 to element 39, meanwhile, it may write to 

array B from element 0 to element 39.

6.2 .4  M em ory A ccess D escriptor O perations

This section will explain the C oncatenate (0 ), M erge (U), Subtract (©), and 

Sum m ation (][)) operations used by Summarize, FindExposedReads, and Find­

ExposedW rites.

6.2.4.1 C oncatenate (0)

Figure 6.10 shows the top-level algorithm for the C oncatenate operation. The input 

operands of C oncatenate are two sets of MAD structures, S ^ i  and 2- The elements 

in Sin>i are disjoint memory accesses in the sense that, for different u and v in S ^ i ,

u. alias and v. alias are disjoint sets of memory objects. So are the elements in S in^ ■ 

Also, the set of MADs returned by Concatenate, Sout, wiH also have this property.

C oncatenate basically does pair-wise comparison between the elements of S in^ and 

the elements of S u i t 2 (lines 4-22, Figure 6.10). For m i € and m 2  € S in<2 which may 

access the same memory objects (line 8, Figure 6.10), C oncatenateM A D  is invoked to 

’’concatenate” the memory access patterns of mi and m2 (line 10, Figure 6.10). Some 

examples of concatenating two memory access patterns are shown in Figure 6.13 5.

5Here we overload ® for both the operation on two MADs and the operation on two sets of MADs
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1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25

function Concatenate S i „ i2 )  / /  S in,i © 5 ' in ,2  begin
/ /  Sin,i,Sint2 ■ set of memory access descriptors (MAD)
$  o u t  • { } ,

for mi G Sin>i do
ml_m2_concatenated := False]

^ t m p  • { }  5

for m2 € Sin,i do
if  m i.a lias  D m?.alias ^  {} then

I I  mi and m2 may access the same objects 
mi :=  C oncatenateM A D (m i, m2); 
m 1 _m2 .concatenated := True] 

else
S t m p  ■ S tm p U {m 2};

end if  
end for
if  ml_m2_concatenated =  True then

S tr a p . —  S f m p  U

else
S o u  t  ■—  S o u t  U

end if
S i n , 2 ■ — S tr a p i

end for
S o u t  * S ou t  U  S i n , 2 1

return S out] 
end function

Figure 6.10 The pseudo-code of C oncatenate (©)

Figure 6.11 shows how C oncatenateM A D  generates a new MAD structure m  with 

the ’’concatenated” memory access pattern from the input MAD operands, m i  and m 2. 

The may-alias set of m  is the union of the may-alias sets of m i and m 2 (line 4, Fig­

ure 6.11). The components field of m is generated by Com bineCom ponents to keep 

track of the originating program regions of its constituent MADs. This will be explained 

in more details.

If the type of m i, or m2, is Doomed, or if m x and m2 have different bases, Concate­

nateM A D  will just give up, and create anew Doomed-type MAD (lines 6-9, Figure 6.11).
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1: function ConcatenateM A D (m i ,m 2 ) begin  
2: / /  mi,m2: memory access descriptor MAD
3: to :=  new MAD;
4: to. alias :=  m i. alias U m 2 -alias',
5: to.components :=  CombineCom ponents (m i, m 2 )',
6: if mi-type — Doomed or m 2 .type =  Doomed then
7: (m.type, m.base, m . offset, m. displace)
8: else if  mi.base m 2 .base then
9: (m.type, m.base, m.offset, m.displace)

10: else
11: / /  mi.base =  m 2 .base
12: m.base = mi-base;
13: if  mi-type /  m 2 .type then
14: down grade m i or m 2  so that they have the same type',
15: end if
16: (m.type, m.offset, m.displace) :=  C oncatenatePattern (m i, m 2 )',
17: end if
18: return to;
19: end function

Figure 6.11 The pseudo-code of C oncatenateM A D

Otherwise, C oncatenateM A D  will first adjust mi and m 2  so that they have the same 

type, "down grading” one of them if necessary. Then, the adjusted access patterns of m i 

and m 2  will be concatenated as accurately as possible (lines 12-16, Figure 6.11).

C oncatenatePattern, shown in Figure 6.12, essentially compares the type, offset, 

and displace fields of m  1 and m 2  to determine the type, offset and displace field of the 

new MAD. First, it will try to generate a new pattern of the same type as m i and m 2. 

If this is not possible, it will try  a pattern of less accuracy. For example, the current 

implementation cannot concatenate the two Seq-type patterns in Figure 6.13(b) to an­

other Seq-type pattern, C oncatenatePattern will then concatenate these two patterns 

into a Must-type pattern. If m i and m 2  are May-type MADs, concatenating them is

:=  (Doomed, _L, 1_, _l_); 

:=  (Doomed, _L, ± , J_);
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1: function C oncatenatePattern (m i ,m 2 ) begin  
2: / /  mi,m2: memory access descriptors MAD
3: / /  Assume mi-type =  m 2 .type
4: if m i.type =  Seq then
5: Try to generate a new Seq-type pattern (offset, displace) by concatenating (m i.offset,

ml.displace) and (m 2 -offset, m 2 .displace)',
6: if Succeeded then
7: return (Seq, offset, displace);
8: else
9: down grade m i and m2 to Must-type MADs;

10: end if
11: end if
12: if mi-type =  Must then
13: Try to generate a new Must-type pattern (offset, displace) by concatenating

(mi.offset, ml.displace) and (m 2 -offset, m 2 .displace)',
14: if  Succeeded then
15: return (Must, offset, displace)]
16: else
17: down grade m i and m2 to May-type MADs;
18: end if
19: end if
20: / /  m i and m2 are May-type MADs
21: return M ergePattern (m i, m 2 )]
22: end function

Figure 6.12 The pseudo-code of C oncatenatePattern

the same as merging them (line 21, Figure 6.12). Merging two MADs are explained in 

Section 6.2.4.2.

Before explaining Merge, here is some explanation about C om bineCom ponents, 

Figure 6.14, which are invoked by both C oncatenate and Merge. The components 

field of the original MAD structures for the exposed reads and the exposed writes of 

sub-regions is empty. During the process of backward or forward propagation, MAD 

structures will be concatenated or merged with each other to form new MAD struc­

tures. Combine_com ponents basically combines the component sets of the input MAD
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1 2 3 4  5 6 7 8
4------ 1----- 1----- 1----- 1----- 1----- 1----- 1-- (type, offset, [(stride, trip-count)])

0

•

(a)

0 O

(b)

• — • — •  • — • — • — •
o  o  

©— ©— ©— ©---- ©----©— ©--- ©
(C)

(Seq, 1, [(1,3)]) 
©  (Seq, 4, [(1,4)]) 

(Seq, 1, [(1,7)])

(Seq, 1, [(1,3)]) 
©  (Seq, 7, [(-1 ,4)]) 

(Must, 1, [(1,7)])

(Must, 1, [(1,3)]) 
©  (Must, 5, [(1,4)]) 

(May, 1, [(1,8)])

Figure 6.13 Examples of concatenating two memory access patterns

1: function Com bineCom ponents (mi,m2 ) begin  
2: / /  mi,m2: memory access descriptor MAD
3: if  m\.components =  {} and m 2 .components =  {} then
4: return {mi,m2};
5: else if  mi.components — {} and m 2 .components /  {} then
6: return {mi} U m 2 . components]
7: else if  mi.components /  {} and m 2 .components =  {} then
8: return mi.components U {m2};
9: else

10: / /  mi.components {} and m 2 .components ^  {}
11: return m i. components U m 2 -components]
12: end if
13: end function

Figure 6.14 The pseudo-code of C om bineCom ponents

nated or merged with each other to form new MAD structures. The components field of 

these new MAD structures due to concatenation or merge operations will then keep track 

of the concatenated or merged MAD structures and their generating sub-regions 6. The

6In addition to the fields describing memory access patterns, the MAD structure also has book-keeping 
fields, including the generating subg-region.
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components field of MAD will be used by Subtract when identifying producer-consumer 

relationship between sub-regions. This will be explained in more details when discussing 

Subtract.

6 .2.4.2 M erge (U)

M erge and the auxiliary functions, M ergeM A D  and M ergePattern, are shown 

in Figures 6.15, 6.16, and 6.17, which have very similar algorithmic structures as the 

C oncatenate, C oncatenateM A D , and C oncatenatePattern shown in Figures 6.10 

to 6.12.

The may-alias set and the components of the merged MAD are obtained in the same 

way as a concatenated MAD (lines 4-5, Figure 6.16). However, there are still some 

differences between M erge and C oncatenate, because C oncatenate is applied when 

propagating MAD along straight line of code, while M erge is applied at the confluence 

point of control flow. Figure 6.18 shows some examples of merging two memory access 

patterns.

The major difference between M erge and C oncatenate is that if a Seq-type or 

Must-type MAD is not merged with other MADs, it will be down graded to a May-type 

MAD (lines 22-23, 27-31, Figure 6.15). An example of this is shown in Figure 6.7. When 

calculating the R in of regionO, the {Seq, B[0..39]) in the R ^ t  of region2 is not merged 

with any MAD in the R rmt of regionl, and thus it is down graded to (May, B[0..39]).

Like C oncatenatePattern  (Figure 6.12), M ergePattern (Figure 6.17) will try  to 

produce, as accurate as possible, a memory access pattern by comparing the type, offset,
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1: function M erge (S'in,i, 5 in,2) / /  S'j„,i □ Sin, 2 begin
2: / /  SinA,S i n t 2 '■ set of memory access descriptors (MAD)
3: Sout {}j
4: for m 2  eS _ in ,l do
5: m 2 .merged :=  False;
6: end for
7: for mi € 5<n>i do
8: m i.m erged  : =  False;

Stmp •— 0;
10: for to2 S 5i„ , 2 do
11: if mi.alias Pi m 2 -alias ^  {} then
12: / /  mi and m2  may access the same objects
13: m i :=  M ergeM AD(m i, m2);
14: m i.m erged  :=  TYne;
15: else
16: Sfmp . U {m2 },
17: end if
18: end for
19: if  m i.m erged  =  True then
20: Stmp • ~~~ Stmp U {m i},
21: else
22: down grade mi to M ay-type MAD;
23: Sout '■= Sout U { m i } ;

24: end if
25: S int2 •— Stmp>
26: end for
27: for m2 € S i n t 2  do
28: if  m 2 .merged =  False then
29: down grade m2 to M ay-type MAD;
30: end if
31: end for
32: S 0ut ' Sout tl Si ji 2  ■
33: return Sout]
34: end function

F ig u re  6.15 The pseudo-code of M erge (u)

and displace fields of its input MADs. For the current implementation, two Seq-type 

(Must-type) memory access patterns will be merged into a Seq-type (Must-type) pattern

only if they are the same (line 4 and line 11, Figure 6.17), as the example shown in
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1: function M ergeM AD (mi, m2 ) begin  
2: / /  mi,m2: memory access descriptor MAD
3: m := new MAD;
4: m.alias '.= mi.alias U m 2 -alias',
5: m.components '.= Com bineCom ponents (m i, m2 );
6: if mi-type =  Doomed or m 2 .type =  Doomed then
7: (m.type, m.base, m.offset, m.displace)
8: else if  mi.base ^  m 2 -base then
9: (m.type, m.base, m.offset, m.displace)

10: else
11: / /  m i.base =  m 2 .base
12: m .base =  mi.base',
13: if  mi.type  /  m 2 -type then
14: down grade m i  or m2 so th at th ey  are o f the sam e type;
15: end if
16: (m.type, m.offset, m.displace) :=  M ergePattern (m i, m2);
17: end if
18: return m;
19: end function

Figure 6.16 The pseudo-code of M ergeM AD

Figure 6.18 (b); otherwise, M ergePattern will generate a pattern of less accurate type. 

The worst scenario is that M ergePattern totally gives up, and returns a Doomed-type 

memory access pattern (line 21, Figure 6.17).

Note that M erge (U) is commutative, but C oncatenate (©) and Subtract (©) are 

not.

6.2.4.3 Subtract (©)

The Subtract operation, shown in Figure 6.19, basically calculates the ’’difference” 

between two sets of MADs, S in,i and Sin^- Unlike the the input sets of C oncatenate  

and M erge, which are either both memory read accesses or both memory write accesses, 

the second input operand SiUt2 of Subtract is always a set of memory write accesses.
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1: function M ergePattern (m i ,m 2 ) begin  
2: / /  Assume m i. type =  m 2  .type
3: if m i.ty p e  =  Seq then
4: if  (m i.o ffse t, m i.d isp lace) =  (m 2 .offset, m 2 -displace) then
5: return (Seq, m i.o ffse t, m i.d isp lace)]
6: else
7: down grade mi and m2 to M ust-type MADs;
8: end if
9: end if

10: if  m i.ty p e  =  M ust then
11: if (m ,i.offset, m i.d isp lace) — (m 2 .offset, m 2 . displace) then
12: return (M ust, m i.o ffse t, m i.d isp lace)]
13: else
14: down grade mi and m2  to M ay-type MADs;
15: end if
16: end if
17: Try to generate a new M ay-type pattern (offset, displace) by merging (m i.o ffse t,

m l.d isp lace)  and (m 2 -offset, m 2 . displace)]
18: if  Succeeded then
19
20 
21 
22 
23

return (M ay, offset, displace)] 
else

return (Doomed, _L, J-); 
end if  

end function

F ig u re  6.17 The pseudo-code of M e rg e P a tte rn

Like C o n ca ten a te  and M erge, S u b tra c t also does pair-wise comparison between 

the elements of 5j„,i and S in^  (lines 4-5, Figure 6.19). Each rrii in Sin<i is ’’subtracted” 

by any m 2 in Sin 2̂ which may access the same memory objects (lines 6 -8 , Figure 6.19). If 

m i is not totally covered by m 2, (mi 7  ̂ _L, line 13, Figure 6.19), a new MAD describing 

the remaining memory accesses of m \  will be included in the returned S'out (lines 13-14, 

Figure 6.19).

S u b trac tM A D , shown in Figure 6.20, is the function responsible for generating a 

MAD to describe the memory accesses that are in m i, but not in m 2. At the beginning,
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1 2 3 4 5 6 7 8
H ------1----- 1-- 1------1----- 1----- 1----- 1-- ftype, offset, [(stride, trip-count)])

•  ^  (Seq, 1, [(1,3)])
O  O  U (Seq, 4, [(1,4)])

©-----©----- ©----- ©----- ©----- ©-----© (May, 1, [(1,7)])

(a)

(b)

(Seq, 1, [(1,7)]) 
U (Seq, 1, [(1,7)]) 

(Seq, 1, [(1,7)])

• ----- • ----- •  • ----- • ----- • ----- •  (Must, 1, [(1,3)])
O  O  U (Must, 5, [(1,4)])

©----- ©----- ©----- ©----- ©----- ©----- ©-----© (May, 1, [(1,8)])

(c)

F ig u re  6.18 Examples of merging two memory access patterns

1: function Subtract (Si„,i, Si„,2) / *  Sm.i © Sin,2 * /  begin  
2: / /  Sinti ,S i n>2 : set of memory access descriptors (MAD)
3 :  “S o u t  . =  { } ]

4: for mi € Si„,i do
5: for m2 € S,n)2 do
6: if  m i.alias C\ m 2 .alias ^  {} then
7: mi :=  SubtractM A D (m i, m2);
8: end if
9: if  m i =  JL then

10: break;
11: end if
12: end for
13: if  mi ^  J_ then
14. Sout •— $out © {tTll},
15: end if
16: end for
17: return Sout;
18: end function

F ig u re  6.19 The pseudo-code of S u b tra c t (©)
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1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

function SubtractM AD (m i,m 2 ) begin  
/ /  m i: a MAD for memory read or write
/ /  m2: a MAD for memory write
comps :=  {# : 3c £  m i.com ponents, x =  SubtractM A D (c, m 2) 1};
if  m i.com ponents /  {} and comps — {} then  

m :=  _L; 
else

if  m i.ty p e  =  Doomed then
m :=  m i; m .com ponents '.— comps; 

else if  m 2 -type =  Doomed or m i. base ^  m 2 , base then
m :=  m i down graded to M ay-type; m .com ponents :=  comps; 

else / /  m i.base =  m 2 -base
if IntersectPattern (m i, m2) =  False then  

m :=  m i; 
else

if m 2 -type =  M ay then
m :=  m i down graded to May-type', m .com ponents :=  comps; 

else / /  m 2 . type =  Seq or Musf
if  PatternCovered (m i, m 2) =  True then  

m :=  J_; 
else

m :=  new MAD;
(m .components, m .alias, m .base) {comps, m i.a lias , m i.base)',
{m .type, m .offset, m .displace) : =  Pattern_subtract (m i, m2); 

end if  
end if  

end if  
end if
if  m ^  mi and m i is memory read and mi .components =  {} then  

/ /  identified a producer-consumer relationship 
m i.producer : =  m i.producer U {m2}; 
m 2 . consumer :=  m 2 -consumer U {mi}; 
m 2 . Consumed :=  True', 

end if  
end if 
return m; 

end function

F ig u re  6.20 The pseudo-code of S u b trac tM A D

S u b trac tM A D  recursively calls itself to subtract the components of m i  by m2 (line 

4, Figure 6.20). This is because SubtractMAD is also responsible for identifying the
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1: function Pattern_subtract (m i,m2 ) begin
2: / f  mi', a M ay-,M ust- or Seq-type MAD for memory read or write
3: / /  m2: a Must- or Seq-type MAD for memory write
4: Try to describe the memory locations which are in mi but not in m2, using a

memory access pattern [m i.typ e , offset, displace);
5: if Succeeded then
6: return [m i.typ e , offset, displace);
7: else
8: return [M ay, m i.o ffse t, m i.d isp lace)]
9: end if

10: end function

Figure 6.21 The pseudo-code of Pattern_subtract

1 2 3 4  5 6 7 8
H------ 1----- 1----- 1----- 1----- i----- 1----- 1  (type, offset, [(stride, trip-count)])

(Seq, 1, [(1, 8)])
J} ©  (M ust,! , [ ( ! ,  5)])

(a)
© © © © © ©

© — © — © — ©

(b)

(Seq, 6, [(1, 3)])

(May, 1, [(1, 6)])
© (Seq, 5, [(1 ,4)])

(May, 1, [(1 ,4)])

(Must, 1, [(1, 8)])
© (Must, 2, [(1 ,4)])

(May, 1, [(1, 8)])o o
©  ©  ©  © — © — © — © — ©

(c)

Figure 6.22 Examples of subtracting two memory access patterns

producer-consumer relationship between program regions, and the components of a MAD 

may be generated by different program regions. If mi is a composite MAD, and it has 

no component MADs left after the subtraction, SubtractM A D  will return J_, meaning 

that mi is totally covered or killed by m 2 .
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1: function IntersectPattern (mi,m2 ) begin 
2: / /  m  1 : a MAD for memory read or write
3: / /  m 2 : a  MAD for memory write
4: Let mi.displace = [(si,i,Ti,i)... (si.DuTi.dJ]-
5: Let m 2 .displace = [(s2 ,i,?2 ,i) ... (s2 ,D,) T2 .d2)]-
6: / /  where s: stride, T: trip count.
7: return True, if the following proposition holds; otherwise, False.

3*i,j> 0 < i i j  < j  — 1 ... D 1 

3«2,fe, 0 < *2 ,ft < Ti.fc, k — 1... D2 
mi.offset + J2f=i h ,j • sij = m 2.offset + h,k • s2,k

8: end function

Figure 6.23 The pseudo-code of IntersectPattern

1: function PatternCovered (mi,m2 ) begin 
2: / /  m x: a MAD for memory read or write
3: / /  m 2: a MAD for memory write
4: Let mi.displace = [(sM, Ti,i)... (sXjDl, Ti,Dl)].
5: Let m2.displace = [(s2,i,T2 ,i)... (s2 ,£>i,T,2 ;£)2)].
6: / /  where s: stride, T: trip count.
7: return True, if the following proposition holds; otherwise, False.

< iXj  < TXj , j  = 1... £ > 1

3*2,k, 0 < *2,fc < Tx%k, k = 1 ... Z?2
mi.offset + 1 *i,j ' «i,j = m 2.offset + Y % lx *2 ,ft • «2 ,fc

8: end function

Figure 6.24 The pseudo-code of PatternCovered

If mi is a Doomed-type MAD, the result of subtraction will still be still a Doom-type 

MAD (lines 8-9, Figure 6.20). SubtractM A D  has a chance to figure out exactly which 

part of m x is subtracted, only if m 2 is not a Doomed-type MAD and mi and m2 have the 

same bases (lines 12-28, Figure 6.20). Otherwise, at best it can return a down graded 

version of m x (lines 10-11, Figure 6.20).
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If the memory accesses of mi and m 2  have no overlap, as determined by Intersect­

Pattern, which is shown in Figure 6.23 and will be explained later, the same m x can 

be returned intact (lines 13-14, Figure 6.20). If the memory accesses of m x and m 2  do 

intersect, but m 2  is a M ay-type MAD, SubtractM A D  can at best figure out which 

part of m x may be subtracted, and thus a May-type m x is the best possible MAD that 

SubtractM A D  can generate (lines 16-17, Figure 6.20).

If m 2  is Must- or Seq-type MAD, SubtractM A D  first invokes PatternCovered, 

which is shown in Figure 6.24 and will be explained later, to check whether m i is totally 

covered by m 2. If so, SubtractM A D  will return _L (lines 19-20, Figure 6.20). If m x is 

only partially subtracted by m2, SubtractM A D  will call Pattern_subtract to deter­

mine the type, offset, and displace of the remaining memory accesses of m x subtracted 

by m 2 . Figure 6.22 shows some examples of the special cases which can be handled by 

Pattern_subtract in the current implementation.

Figure 6.23 outlines the problem formulation for determining whether memory access 

m i intersects with memory access m 2. Basically it is an integer programming problem. 

If the system of inequalities in Figure 6.23 has solution, m x and m 2 will have intersec­

tion. This thesis work relies on the Omega test package [101] for solving the integer 

programming problem.

Figure 6.24 formulates the problem of whether memory access m i is a subset of 

memory access m2. It requires the evaluation of Presburger formula, which consists 

of affine equality and inequality constraints on integer variables, combined with logical 

operators A, V, -> and existential quantifiers V, 3. In general, it is a much more difficult
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1: function Sum m ation (Sin ,L )  / /  (<%«) begin
2 : / /  Sin : set of memory access descriptor (MAD)
3: / /  L: loop
4: S 0ut -=  {};
5: for m  £ Sin do
6: S out '■= Sout U Sum m ationM AD(m , L);
7: end for
8: return Sout]
9: end function

F ig u re  6.25 The pseudo-code of S u m m ation

problem than the integer programming problem shown in Figure 6.23. For special cases 

like the one in Figure 6.24, a solver based on the Omega test can solve the problem 

quickly [136] [152] [153].

Finally, if m* and m 2  have intersection, or equivalently m =  (mi — m 2 ) 7  ̂mi,  line 29, 

Figure 6.20, a producer-consumer relationship between the generating program region 

of m 2  and the generating program region of m i  is found. S u b trac tM A D  will record 

this relation by including the generating program region of m 2  in the producer set of 

m i, and the generating program region of m i in the consumer set of m 2, and marking 

m 2.Consumed as True (lines 31-33, Figure 6.20).

6 .2.4.4 S u m m atio n  (]P)

The function S u m m atio n  ( ^ ) ,  shown in Figure 6.25, is for finding the set of exposed 

memory accesses of a Loop region, given the exposed memory accesses of the enclosed 

Loop Body region Sin, and the corresponding loop L. As suggested by the name, the 

functionality of S um m atio n  can be implemented as concatenating the exposed memory 

accesses of all the iterations, as illustrated in Figure 6.28.
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1: function SummationMAD (rrii,L) begin 
2: / /  mi : memory access descriptor (MAD)
3: / /  L: loop
4: m  new MAD;
5: if nii.type  =  Doomed then
6: (m .typ e , m .base, m .offset, m .displace) :=  (Doomed, -L, ± ,  J_);
7: else if m i. offset is an unknown induction expression then
8: (m .typ e , m .base, m .offset, m .displace) :=  ( Doomed, _i_, _L, J_);
9: else

10: Find T , the trip count of L;
11: if T  is unknown then
12: (m .typ e , m .base, m .offset, m .displace) := (Doomed, _L, _L, ±);
13: else
14: if T  is an upper bound then
15: down grade m to a May-typed MAD;
16: end if
17: m .base  := mi.base',
18: (m .typ e , m .offset, m .displace) := SummationMAD (m ,, T);
19: end if
20: end if
21: return m;
22: end function

Figure 6.26 The pseudo-code of Sum m ationM AD

For example, in Figure 6.28(a), the loop body has a Seq-type exposed memory access 

with offset =  (1 +  h), and displace = [(stride, trip-count)] =  [(0,1)], where h is the 

fundamental induction variable of some loop that iterates 8 times. As indicated by 

stride = 0 and trip-count = 1, for a particular iteration h, the loop body accesses only 

one memory location. The relative address of accessed location, with respect to  the base, 

is given by the offset, h -1-1. From iteration 1 to iteration 8, for h = 0,1, 2 , . . .  7, the 

whole loop will access the memory locations from 1 to 8 7. Therefore, the memory access

7Precisely, we should say ’’memory location of relative address 1 with respect to the base.”
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1
2
3
4
5
6
7
8 
9

10

11

12
13
14
15
16
17
18

19
20 
21 
22
23
24
25
26

27
28
29
30
31
32
33

function Sum m ationM AD (m ,,T ) begin  
/ /  ??ij : a MAD descriptor 
/ /  T  : trip count of loop L 
Let m i.o ffse t =  c +  s l  ■ h-L,
/ /  where hL is the fundamental induction variable of loop L. 
if  m i is a read with inter-iteration data dependence then  

down grade m* to M ay-type; 
end if
if m i-type =  Seq then

Try to generate a Seq-type pattern ( offset, displace), comparing the relationship 
between c, s l ,  m i.displace, and T . 
if  Succeeded then

return {Seq, offset, displace); 
else

down grade mt to M ust-type 
end if 

end if
if m i.typ e  =  M ust then

Try to generate a M ust-type pattern (offset, displace), comparing the relationship 
between c, s l ,  m i.displace, and T . 
if  Succeeded then

return (M ust, offset, displace)', 
else

down grade m i to M ay-type 
end if  

end if
if m i-type  =  M ay then

Try to generate a M ay-type pattern ( offset, displace), comparing the relationship 
between c, s l ,  m i.displace, and T . 
if  Succeeded then

return {M ay, offset, displace)', 
else

return (Doomed, ± , ± ); 
end if 

end if  
end function

F ig u re  6.27 The pseudo-code of S um m ationM A D

pattern of the whole loop is {Seq, 1, [(1,8)]), using the {type, offset, [{stride, trip-count)]) 

notation.
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1 2 3 4  5 6 7 8
_)-------- 1------- (.------- 1------- 1------- 1--------1------ 1—

h=0 h=l h=2 h=3 h=4 h=5 h=6 h=7
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F ig u re  6.28 Example illustrating S um m atio n  QT])

For nested loops, we may need more than one pairs of (stride, trip-count) to describe 

the memory access pattern of the whole loop. For example, in Figure 6.28 (b), the memory 

access pattern of the inner loop has offset — (l+ 3h), where h is the fundamental induction 

variable of the outer loop. This means, when the outer loop iterates, the starting memory 

access location of the inner loop will shift to the right by 3, the coefficient of h in the offset. 

Since the loop trip-count of the outer loop is 3, as indicated by 0 <  h < 3, the displace 

of the memory access for the whole loop will be [(1,2)(3,3)], where (1, 2) describing the 

stride and the trip-count of the memory accesses of inner loop, and (3,3) describing the
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stride of the starting point of the inner loop memory access and the trip-count of the 

outer loop.

For the examples in Figure 6.28(a) and (b), the type of the memory access of the 

loop body is preserved by summation. It is not always possible to describe the memory 

accesses of a Loop region as accurate as describe the memory accesses of the corresponding 

Loop Body region. For example, the Loop Body region in Figure 6.28(c) has a Seq-type 

MAD, but the memory accesses of the Loop region can be only described using Must-type 

MAD in the current implementation.

Implementing S u m m atio n  by concatenating the memory accesses of the loop body 

for all iterations is not efficient. S um m ationM A D , Figure 6.26, outlines how to do 

summation, given a MAD m* and the corresponding loop L. As illustrated in Figure 6.28, 

the key is to figure out the trip count of L , and the coefficient of the fundamental induction 

variable of L  in the offset of mj.

If mj is a Doomed-type MAD, or if the offset of mj is an induction expression which 

can not be represented as an affine expression in terms of fundamental induction variables, 

or if the trip count of loop L  is unknown, S um m ationM A D  just returns a Doomed-type 

MAD (lines 5-12, Figure 6.26). If we know the loop trip count T, but T  is just an upper 

bound, mi is conservatively down graded to May-type (lines 14-16, Figure 6.28), because 

L  may iterate less than T  times. If T  is the exact loop trip count of L, S u m m ationM A D  

in Figure 6.27 will try  to find the type, offset, and displace of MAD as accurate as possible.

S um m ationM A D  first separates the offset of mj to two terms, Sl ■ and c, where 

h i  is the fundamental induction variable of loop L  (line 4, Figure 6.27). Then, Sum -
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m atio n M A D  will try  to generate a pattern with the same type as m* by checking the 

relationship between c, s l , rrii, displace, and T. If this is not possible, S u m m ationM A D  

will try  less accurate descriptors until it gives up, and returns a Doomed type pattern 

(lines 9-32, Figure 6.27).

There is one subtlety in S um m ationM A D . If m* is a memory read access and has 

some inter-iteration dependence, some of its data will come from previous iterations, 

instead of from outside the loop. Thus, the summation of the exposed reads of loop body 

for all the iterations should be calculated as follows. Note that the exposed reads R  

and the exposed writes W  of the loop body are functions of the fundamental induction 

variable h of loop L.

T  h rL - l

h o t

1st iteration t
the rest iterations

The calculation of this formula is complicated. A conservative but quick approximation 

is to down grade m, to May-type if it has any inter-iteration true dependence (lines 6-8, 

Figure 6.27).

6.3 R elated Work

People have developed techniques to summarize the side effects of procedures in order 

to perform dependence tests across procedure boundary [64] [154] [155] [149]. A summary
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of side effects describes the sets of memory locations that the procedure reads and writes, 

called the use-set and the modify-set in literature.

The summaries are propagated in the program call graph from bottom up. The sum­

mary of a procedure is generated by combining the memory access information of its own 

loops with the summary information propagated from its callees. For conservatively iden­

tifying possible dependencies between procedures, this approach is efficient and effective 

enough.

However, the information provided by pair-wise dependence tests between program 

regions is too conservative for more advanced parallelization techniques, which require 

more accurate information about the data-flow between program regions [156] [56]. The 

array data-flow problem is first addressed by Feautrier [57], who developed a technique 

called parametric integer programming [157] to derive, for each memory read, the corre­

sponding memory write which generates the data. Array data-flow analysis based on the 

parametric integer programming method has two major problem. First, the complexity 

of parametric integer programming could be high8. Second, it can handle only control 

structures like the Fortran DO-loop, but not arbitrary control flow. To address the first 

problem, researchers developed a more efficient, but less general, method that can handle 

most of the common cases [60], which, however, still can not handle arbitrary control 

flow.

8While the original paper claimed param etric integer programming m ethod is practical [57], other 
authors claimed it is not practical [60],
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In general, it is very difficult, if not impossible, to exactly describe the producer- 

consumer relation for programs with arbitrary control flow. For some parallelization 

purposes, for example, array privatization, exact producer-consumer relation is not nec­

essary. Array privatization could enable more loop parallelization by eliminating false 

dependences between loop iterations. It replicates the arrays so that each iteration gets 

its own private copy. Array privatization can be applied to a loop as long as we can prove 

that every read in the loop gets its data from a write in the same loop iteration. This is 

a weaker condition than knowing the producer of each read.

Based on this observation, researchers have developed array data-flow analysis tech­

niques which are capable of handling arbitrary control flow, and also efficient and effective 

enough for array privatization [61] [62] [58] [71] [63] [147] [59] [158]. Essentially all these 

works follow the same approach of partitioning the program into regions, summarizing 

the memory accesses for each region, propagating and combining the summary informa­

tion in the control flow graph and the program call graph. They differ from each other 

mainly in the data structures that represent the memory accesses of each region, and the 

complexities of the operations that manipulate these data structures.

The concepts and techniques developed in these works laid the foundation for this 

work. Because of different target languages and different type of parallelisms exploited, 

this work differs from the previous works in the following aspects.

•  Previous works on parallelizing compilers mainly target scientific applications writ­

ten in Fortran. On the other hand, this work targets the programs written in 

C. While scientific Fortran programs use arrays as their main data structures, C
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programs can have more complicated data structures referenced through pointers. 

The data structure MAD used in this work for describing the memory accesses in C 

programs must incorporate pointer informations, and the operations on the MAD 

data structure must manipulate the included may-alias set. This is not necessary 

in the previous works.

•  In the previous works, the summary of each program region can only tell the set of 

accessed memory locations, but not the order of accessing these memory locations. 

This is sufficient for array data-flow analysis to identify candidate loops for array 

privatization. However, for the potential optimizations shown in Figure 3.6, we 

need to know not only the accessed memory locations, but also the memory access 

order. The MAD data structure used in this work is designed for a memory data 

flow analysis whose lattice values also contain the memory access order information. 

The operations on MAD will try  to preserve the memory access order information 

before moving up the data flow value lattice.

• For the array data flow analysis designed for array privatization, the goal is to 

exploit coarse-grained data parallelism in the outer loop, so it is not a concern for 

them to identify the producer-consumer relations between program regions. On 

the other hand, the goal of this thesis work is to uncover coarse-grained function 

parallelism, so the bottom-up process not only summarizes the memory accesses for 

each program region, but also identifies the possible producer-consumer relations 

between program regions. Because of this, the MAD data structure used in this
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work not only records the memory access pattern, but also tracks the generting 

progrom regions of memory accesses.

The main focus of this work is identifying the producer-consumer relations between 

program regions, which is also the fundamental cause of the differences between this work 

and the previous works. Next chapter will discuss how the producer-consumer relations 

identified by the bottom up process can be refined by a top-down process.
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C H A PT E R  7

Producer-Consum er R elation Analysis

The producer-consumer relations among program regions are identified in two phases. 

During the bottom-up summarization process discussed in Chapter 6, we constructs a 

conservative producer-consumer relation. This producer-consumer relation is then refined 

by an ensuing top-down pruning process. These two phases are explained in the following 

sections.

7.1 B ottom -up Phase

During the bottom-up summarization process, to summarize the exposed reads of 

region R, we forward propagates the exposed reads of its sub-regions along the edges 

in the sub-region graph of R. When propagating the exposed reads of sub-region R r 

through sub-region R w, we subtract the exposed writes of R w from the exposed reads of 

Rr. If the SubtractMAD operation deduces that an exposed write of R w and an exposed 

read of Rr access some common memory locations, it will record this new identified 

producer-consumer relation between Rw and Rr, and mark the exposed write of Rw as 

Consumed (fine 33, Figure 6.20).
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F ig u re  7.1 Illustration of the bottom-up phase

For example, when summarizing the exposed reads of region7, in Figure 7.1, we will 

propagate the exposed reads of regionl2 through regionll. Because both regionll and 

regionl2 access the same memory, B[h2], there exists a producer-consumer relationship 

between regionll and regionl2, and the exposed write (Seq,B[h2]) of regionll will be 

marked as Consumed. Similarly, when summarizing the exposed reads of region2, we 

will identify the producer-consumer relationship between region4 and region5, and the 

exposed write (Seq, A[0..39]) of region4 is marked as Consumed.

Although the bottom-up phase can identify the producer-consumer relationship be­

tween the sub-regions of region R, the exposed writes of the sub-regions may or may not
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be consumed outside the region R. For example, in Figure 7.1, both regionll and re- 

gionl3 are sub-regions of region7. The exposed write (Seq, A[/?,2]) of regionl3 is consumed 

by region5, a region outside region7, but the exposed write (Seq, B[h2]) of regionll has 

no consumer outside region7.

Being confined within the scope of region7, the bottom-up phase does not know 

whether any region outside region7 will consume the exposed writes of regionll or not, 

so it must conservatively included both (Seq, A[/i2]) and (Seq, B[h2]) in the exposed writes 

of region7. To prune the spurious exposed writes like (Seq, B[h2]), we need a top-down 

phase after the bottom-up phase.

7.2 Top-down Phase

Figure 7.2 illustrates the top-down pruning process using the same example in Fig­

ure 7.1. The top-down pruning process starts from the top-level region, regionO in this 

case. Since regionO is the top-level region, no other region will consume the exposed 

writes of regionO. So we can prune all the exposed writes of regionO, as indicated by 

crossing the exposed writes with red lines in Figure 7.2. Next, we prune the exposed 

writes of the sub-regions of regionO.

If an exposed write w of regionO is pruned, which means it has no consumer outside 

regionO, none of the components of w will be consumed outside regionO. Note tha t the 

components of w of regionO are the exposed writes of some sub-regions of regionO. So, if a 

component c of w is an exposed write of sub-region R, and c is not marked as Consumed
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Figure 7.2 Illustration of the top-down phase

when summarizing the exposed memory accesses of regionO, that mean c is not consumed 

by any sub-region of regionO, either. Therefore, we can prune c from the exposed writes 

of R. So, we can prune the exposed writes of regionl, the only sub-region of regionO, 

then we can similarly prune the exposed writes of region2, the only sub-region of regionl.

Note that, in Figure 7.2, only (Seq, B[0..39]} is pruned from the exposed writes of 

region4, but not (Seq, A[0..39]). This is because (Seq, A[0..39]) is consumed by region5, 

and thus marked as Consumed during the bottom-up phase.

The components of the exposed writes of region4 are the exposed writes of its sub- 

region region7. For similar reason, we prune (Seq, B[/i2]), but not (Seq, A[h2]) marked as
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1: function PruneExposedW rites (R: a region) begin  
2: for w g i?.exposed_writes do
3: if w. Consumed =  True then
4: for c € x. components do
5: c.Consumed :=  True;
6: end for
7: end if
8: end for
9: for r G R.subregions do

10: PruneExposedW rites(r);
11: end for
12: end function

Figure 7.3 The pseudo-code of PruneExposedW rites

Consumed. While the pruning of the exposed write (Seq, B[/i2]) of region7 is correct, the 

preservation of (Seq, k[h2]) is still a conservative approximation. This is because only a 

subset of A[0..39] can be consumed, but by marking (Seq, A[̂ i2]) as Consumed, we are still 

making a conservative assumption that every elements of A[0..39] are consumed. This 

should be the common case in practice.

The function PruneExposedW rites in Figure 7.3 outlines the top-down pruning 

process. Instead of explicitly pruning exposed writes, PruneExposedW rites marks 

those exposed writes which should not be pruned as Consumed. For any exposed write 

which is marked Consumed, PruneExposedW rites marks its components as Consumed 

(Lines 2-8, Figure 7.3). Then, the pruning process will continue for the sub-regions of R  

(Lines 9-11, Figure 7.3).
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7.3 R elated Work

The top-down pruning phase basically refines the live range of variables. Accurate 

live range information also benefits parallelization techniques like array privatization. 

A privatized array must be written back to the global memory, only if is read after 

the privatized loop. Researchers have proposed another phase of analysis backward 

propagating the memory access summary of loops in the control flow graph to extend 

scalar liveness analysis for array liveness analysis [62] [159].

This work is different from the previous works in the following aspects.

•  For the purpose of array privatization, live range information is only needed for 

privatized arrays in privatized loops. For our purpose, we need to do liveness 

analysis for the exposed writes of every program region, not just for the exposed 

writes of loop which can be privatized.

•  Instead of having another compiler pass for liveness analysis as suggested by pre­

vious works, the liveness analysis in this work is partly done during the bottom-up 

phase by marking the exposed writes of program regions as Consumed. This greatly 

simplifies the top-down phase which essentially refines the live ranges of exposed 

writes.

The next chapter will discuss the experiment results of prototyping the memory data­

flow analysis system, consisting the bottom-up process discussed in the previous chapter 

and the top-down process discussed in this chapter.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C H A PT E R  8 

Prototyping and Experim ent Result

We implemented the memory data-flow analysis algorithms presented in the previ­

ous chapters on top of the IMPACT compiler infrastructure [160], which supports the 

needed software modules for the in-lining of whole program, the construction of control 

flow graph from abstract syntax tree, a flow-insensitive and context sensitive pointer 

analysis [102] [103], and the interface to the Omega library [101]. We tried the prototype 

program analysis system on extracting coarse-grained data-flow from several benchmark 

programs in the MediaBench suite [161] and the open-source programs of G.724 coder 

and decoder. This chapter will present the experiment results on the efficiency and 

effectiveness of the prototype memory data-flow analysis system.

8.1 M odification of Benchmark Programs

We made the following modifications on the benchmark programs to work around the 

limitations of the current prototype memory data-flow analysis system.

•  The intrinsic functions le f t_ s h i f t  and r ig h t_ s h if t  used in the G.724 coder and 

decoder are modified to remove recursion.
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• The intrinsic functions used in G.724 coder and decoder are also simplified to 

eliminate the unnecessary details. These intrinsic functions are written for bit- 

accurate function simulation. However, the detailed modeling of bit-level operations 

only significantly increases the analysis time, with no improving on the analysis 

accuracy. In practice, the templates modeling the memory access behaviors of 

library functions are accurate enough for the purpose of memory data-flow analysis.

• The multi-entry loops in the MediaBench gsmdec and gsmenc programs are con­

verted to single-entry loops.

• The call-sites of functions with variable number of arguments are renamed to func­

tions with fixed number of arguments.

• Indirect function calls are converted to multiple direct function calls to enable whole 

program in-lining.

Section 5.2 has more detailed discussion on these modifications.

8.2 Verification and Visualization

For verification purpose, a graphical user interface is built to visualize the memory 

data-flow between program regions. For each program region, the visualization system 

could display its exposed reads, exposed writes, and sub-region graph.

Figure 8.1 demonstrates a sample output of the visualization system. By clicking on 

a grey box on the top, the visualization system will display the memory access pattern
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F igu re  8.1 Demonstration of the memory data-flow visualization system

of the corresponding exposed reads. The grey boxes on the bottom are corresponding to 

the exposed writes. The yellow boxes in the middle are corresponding to the sub-regions. 

In addition to the control flow (black edges) between the sub-regions, the visualization 

system also displays the memory data-flow (red and blue edges) among the sub-regions. 

By clicking on a memory data-flow edge, the user can inspect the memory access pattern 

of the producer, which is the source node of the memory data-flow edge, and the memory 

access pattern of the consumer, which is the destination node of the memory data-flow 

edge. By clicking on a sub-region node in the sub-region graph, the user can navigate 

down the program region hierarchy1.

1 There is also a way for the user to  navigate up the program region hierarchy.
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T able 8.1 Breakdown of the execution time of the prototype memory data-flow analysis 
system

adpcm D adpcm E g721 D g721 E g724 D g724 E gsm D gsm E
I 0.121 0.119 2.160 2.000 9.408 31.377 34.484 19.967
II 0.104 0.117 1.201 1.092 3.348 11.424 15.549 19.180
III 0.035 0.049 2.289 7.881 9.629 161.12 92.057 119.510

Using this visualization tool, we manually check the memory data-flow analysis result 

of g724dec. We found the prototype system works as expected and generates satisfactory 

memory data-flow analysis result.

The visualization system is built on top of uDraw(Graph) [162] and Tcl/Tk [163]. 

During the bottom-up and top-down processes of the memory data-flow analysis, we 

retains all the necessary data structures and the analysis results which may be used 

by the visualization system. When the analysis is done, the visualization system will 

interact with uDraw(Graph) and Tcl/Tk to accept user requests. It will then retrieve 

the requested analysis results from the retained data structures, and send the reformatted 

data back to uDraw(Graph) and Tcl/Tk for display.

Although the visualization system is originally created for verification purpose, po­

tentially we can enhance it to a full-fledged program visualization system serving other 

software engineering purposes.
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8.3 Efficiency

The execution times of the prototype memory data-flow analysis system on the tested 

benchmark programs are listed in Table 8.1, which break down the execution time to three 

major components: (I) the in-lining time, (II) the pointer analysis time, and (III) the 

memory data-flow analysis time. For the benchmark programs used in this study, the 

memory data-flow analysis takes less than 3 minutes. However, these benchmarks are 

not very large programs. For large programs like JPEG or MPEG, the current in-lining 

based implementation may not be efficient, as suggested by comparing in-lining based 

pointer analysis with inter-procedural pointer analysis [103]. The major problem with 

the in-lining approach is that it may cause code bloat and increase the problem size 

exponentially. This may significantly increase the memory footprint and the execution 

time of the memory data-flow analysis.

It is very common that a function is invoked at different call-sites, and thus the same 

function is in-lined several times. However, these in-lined versions of the same function 

often have isomorphic memory data-flow analysis results. Therefore, for each function, we 

could potentially analyze its memory data-flow just once, then derive the memory data­

flow analysis result at each call-site based on the calling context, without re-analyzing 

the same function. A potential implementation of an inter-procedural memory data-flow 

analysis will be discussed in the Chapter 9.
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A[i]/*regionl*/ = .. A[i]/*regionl*/ = ..

Aji]/*region2*/ = ...
* * * •*».... = ... A[i]/*region3*/ ...

^gion2*/ = ...

.. A[i]/*region3*/ ...

(a) (b)

Figure 8.2 Example for illustrating spurious data producers

8.4 Effectiveness

The goal of memory data-flow analysis is to figure out an accurate producer-consumer 

relationship among program regions by eliminating false dependences. Therefore, we 

would like to understand whether there exist false dependences in real programs and 

whether our prototype memory data-flow analysis system can eliminate them. If there 

exists false dependences among program regions, which means some program regions 

have spurious data producers, our memory data-flow analysis system should filter out 

these spurious data producers.

When summarizing the exposed reads of a program region, the memory data-flow 

analysis will backward propagate the exposed reads of its sub-regions along the edges in 

the sub-region graph. During the backward propagation, the exposed reads of the sub- 

regions will be subtracted by the exposed writes of the sub-regions which could be their 

data producers. If an exposed read r of a program region R r is totally covered by the 

exposed write of another program region R w, the exposed read r will not be propagated, 

and R w will be the last found data producer of R r, if the basic block of R w dominates 

the basic block of R w. On the other hand, if we do not subtract r  with w, and keep
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F igu re  8.3 Eliminated spurious data producers (false dependences) in g721dec

propagating r  beyond R w, we could find spurious data producers for R r, if there is other 

regions before R w which write to the same memory locations as R w, even though the 

basic block of R w dominates the basic block of R r.
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memory dataflow analysis on g721enc
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F igu re  8.4 Eliminated spurious data producers (false dependences) in g721enc

For example, in Figure 8.2(a), when the exposed read of region3, A [i], is propa­

gated to region2, it is totally covered by the exposed write of region2, which is also 

A [i], Therefore, A[i] will not be propagated further, and region2 is the only data
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memory dataflow analysis on g724dec
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F igu re  8.5 Eliminated spurious data producers (false dependences) in g724dec

producer of region3, even though re g io n l also writes to A [ i ] . On the other hand, if 

we do not subtract the exposed read of region3 by the exposed write of region2, and
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memory dataflow analysis on gsmdec
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F igu re  8.6 Eliminated spurious data producers (false dependences) in gsmdec

keep propagating it to reg io n l, region3 will have another data producer, reg io n l, 

illustrated in Figure 8.2(b).
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memory dataflow analysis on gsmenc
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F ig u re  8.7 Eliminated spurious data producers (false dependences) in gsmenc

So, without subtracting the exposed reads of the sub-regions by the exposed writes of 

other sub-regions during the bottom-up summarization phase, we can identify the false 

dependences or spurious data producers eliminated by the prototype memory data-flow
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analysis system. Figures 8.3 to 8.7 show the spurious data producers eliminated by the 

prototype memory data-flow analysis system for some of the benchmark programs. The 

X-axis corresponds to all the program regions. The Y-axis is the number of data produc­

ers for each program region. For each program region, the blue dots are corresponding 

to the number of data producers identified by the memory data-flow analysis system 

with exposed reads subtracted by exposed writes. The red dots are corresponding to 

the number of its data producers identified without having exposed reads subtracted by 

exposed writes. If a red dot is above the blue dot of the same program region, it means 

the memory data-flow analysis eliminates some spurious data producers, or false data 

dependences. Note that, for the same program region, the blue dot is never above the 

red dot.

As demonstrated in Figures 8.3 to 8.7, there are indeed false dependences existing in 

real programs, due to writing to the same variables, which are eliminated by the prototype 

memory data-flow analysis systems. However, it is hard to tell whether the prototype 

memory data-flow analysis system eliminates all the false memory dependences. It is 

even harder to tell what benefit the client of the memory data-flow analysis will get by 

eliminating the false dependences. The ultimate test of the effectiveness of the memory 

data-flow analysis system is how the extracted coarse-grained data flow can enable better 

mapping of applications onto multi-core architectures. However, an end-to-end mapping 

from C programs to multi-core architectures is not available in our compiler infrastructure 

at this moment.
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Table 8.2 Breakdown of the type of MADs for exposed reads

adpcm D adpcm E g721 D g721 E g724 D g724 E gsm D gsm E
Seq 10 12 111 90 625 1644 517 653
Must 0 0 6 6 33 61 24 42
May 5 5 172 112 141 233 305 698
Doomed 33 31 86 95 336 948 1544 1582

T able 8.3 Breakdown of the type of MADs for exposed writes

adpcm D adpcm E g721 D g721 E g724 D g724 E gsm D gsm E
Seq 3 1 16 20 420 807 206 390
Must 0 0 0 0 19 45 0 12
May 6 6 0 2 141 307 434 192
Doomed 7 9 10 17 167 447 39 100

In addition to counting the number of eliminated false dependences, we can also 

assess the effectiveness of the prototype memory data-flow analysis system by counting 

the types of the MADs for exposed reads and exposed writes. If most of the exposed 

reads and exposed writes are Doom-typed or May-typed, the prototype memory data­

flow analysis system may not be effective in summarizing the memory access patterns 

of program regions for the tested programs. On the other hand, if many of the exposed 

reads and exposed writes are de^-typed or Must-typed, the prototype memory data-flow 

analysis system can be considered effective in capturing accurate memory access patterns 

for test programs.

Tables 8.2 and 8.3 show the breakdown of the types of the exposed reads and the 

exposed writes of all program regions. Not to exaggerate the effectiveness of the prototype 

memory data-flow analysis system, Table 8.2 and Table 8.3 exclude the exposed scalar
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Table 8.4  Breakdown of the percentages of the causes of May-type MAD

Cause adpcm D adpcm E g721 D g721 E g724 D g724 E gsm D gsm E
I 92.86 90.32 80.77 80.17 78.18 80.65 96.7 92.01
II 0 3.23 0 1.24 7.5 5.31 0.06 0.27
III 0 0 0 0 2.95 2.63 0.06 1.56
IV 3.57 3.23 13.64 11.16 0.94 0.68 0.92 0.89
V 0 0 4.2 4.96 2.14 5.48 1.43 4.2
VI 0 0 1.05 1.24 1.07 1.2 0.12 0.16
VII 3.57 3.23 0.35 1.24 6.16 3.08 0.71 0.86
VIII 0 0 0 0 1.07 0.97 0 0.05

variable reads and writes, and the exposed reads and exposed writes of fundamental 

memory access regions, which are always 5e^-typed.

As shown in Tables 8.2 and 8.3, the prototype memory data-flow analysis system 

can capture the sequential memory access patterns of many exposed reads and exposed 

writes using the simple MAD structure. An more important implication of this is there 

are indeed many sequential memory accesses in the tested programs. If our memory 

access descriptor can only describe the set of accessed memory locations, but not the 

access order, we may miss many opportunities for the optimization shown in Figure 3.6. 

An interesting observation is that Table 8.3 has higher percentage of S'eg-type memory 

accesses than Table 8.2. This means memory writes have more regular access patterns 

than memory reads.

However, Table 8.2 and Table 8.3 also show that there are many May-type and 

Doomed-type exposed reads and exposed writes. These May-type and Doomed-type 

MADs will result in less accurate producer and consumer relation. Therefore, the first 

step in improving the accuracy of the prototype memory analysis system is to find out
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why May-type and Doomed-type MADs are generated in the first place. We insert probes 

in the prototype memory data-flow analysis system to profile the causes of May-type and 

Doomed-type MADs.

Table 8.4 shows the breakdown of percentages of the 8 causes of May-type MAD, 

where Cause I is that the corresponding memory access of the MAD is in a conditional 

statement, and thus may or may not occur; Cause II is that a MAD is subtracted by a 

Doom-type MAD; Cause III is that when subtracting a MAD by another MAD, we can 

not determine the relation between the base of these two MADs; Cause IV is that when 

summarizing the exposed memory accesses of a loop, we can only know an upper bound 

of the loop trip count, because of early exit of the loop; Cause V is the inaccuracies of the 

C oncatenate operation; Cause VI is the inaccuracies of the M erge operation; Cause 

VII is the inaccuracies of the Subtract operation, other than cause II and cause III; 

Cause VIII is the inaccuracies of the Sum m ation operation, other than cause IV.

Apparently, cause I is the most common reason why a May-type MAD is generated. 

This is due to the characteristics of the applications, and we can not replace May-type 

MADs of this cause with more accurate MADs to improve the accuracy of the prototype 

memory data-flow analysis system.

Cause IV is the second common cause, which is also due to application characteristics. 

Therefore, we cannot replace May-type MADs of this cause with more accurate MADs.

W hat is surprised is that only a small fraction of May-type MADs are due to the 

inaccuracies of MAD operations (causes V, VI, VII, and VIII), except for g724dec and 

g724enc. For these two benchmarks, some fraction of the May-type MADs are also due
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Table 8.5 Breakdown of the percentages of the causes of Doomed-type MAD

Cause adpcm D adpcm E g721 D g721 E g724 D g724 E gsm D gsm E
I 33.33 33.33 50 45.45 3.23 0.94 2.11 1.99
II 0 0 0 0 33.87 22.54 2.11 1.99
III 0 0 0 0 1.61 0 0 0.66
IV 33.33 33.33 45 40.91 27.42 27.7 93.66 88.74
V 0 0 0 0 0 3.29 0 0
VI 33.33 33.33 5 4.55 9.68 16.9 0 1.32
VII 0 0 0 0 11.29 11.74 2.11 4.64
VIII 0 0 0 0 0 0.47 0 0.66
IX 0 0 0 0 0 0 0 0
X 0 0 0 9.09 12.9 16.43 0 0

to cause II. This means we can potentially replace some May-type MADs with more 

accurate MADs if we can replace some Doomed-type MADs.

Table 8.5 shows the breakdown of the percentages of the 10 causes of Doomed-type 

MAD, where Cause I is that, when performing some operation on two MADs, we found 

they have different access sizes in bytes; Cause II is that we cannot resolve the relation 

between two scalar variables, using the current implementation of symbolic scalar variable 

evaluation, when performing operations, other than S u b trac t, on two MADs; Cause III is 

that, when summarizing an exposed memory access for some loop, we found an induction 

variable of the loop cannot be represented in close form, using the current implementation 

of symbolic scalar variable evaluation; Cause IV is that, when summarizing an exposed 

memory access for some loop, we do not know the loop trip count, not even an upper 

bound; Cause V is that, when summarizing an exposed memory access for some loop, 

we found an induction variable of the loop has variable stride; Cause VI is that, when 

summarizing an exposed memory access for some region, we found the description of
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the exposed memory access is not invariant with respect to that region; Cause VII is 

other inaccuracies of the C oncatenate operation; Cause VIII is other inaccuracies of 

the M erge operation; Cause IX is other inaccuracies of the Subtract operation; Cause 

X is other inaccuracies of the Sum m ation operation.

Unlike May-type MAD, there is no single dominating cause of Doom-type MAD. 

Across all programs, a high percentage of Doomed-type MADs are due to cause IV. For 

the current implementation of the symbolic evaluation, if the exit condition of a loop 

cannot be represented as an affine induction expression, the loop will have unknown trip 

count, not even an upper bound. So, we can potentially replace some of the Doom-type 

MADs of this cause with more accurate MADs by improving the symbolic scalar variable 

evaluation. However, it is a difficult problem to deduce the trip count for arbitrary loops. 

To some extent, this should also be considered as due to application characteristics.

For g724dec and g724enc, a high percentage of Doomed-type MADs are due to cause 

II. This means there is definitely room in improving the symbolic scalar variable evalua­

tion.

For adpcmdec and adpcmenc, a significant percentage of Doomed-type MADs are due 

to cause V. Usually this means the program region is doing some table lookup using 

some dynamically generated index, which cannot be figured out at compile time. To 

some extent, this should also be considered as due to the application.

For adpcmdec/adpcmenc and g721dec/g721enc, a significant fraction of Doomed-type 

MADs are due to cause I. This is a known limitation of the current implementation, and
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Doomed-type MADs of this type will be replaced by more accurate MADs after we 

improve the MAD operations.

Table 8.5 shows that the other inaccuracies of C oncatenate and Sum m ation cause 

a fair amount of Doomed-type MADs for g724dec and g724enc. Therefore, we can poten­

tially improve the effectiveness of the memory data-flow analysis system by enhancing 

these two operations.

From the experiment results, we have identified some inefficiencies in the prototype 

memory data-flow analysis system. However, some inaccuracies of the analysis results are 

due to application characteristics. The next chapter will conclude this dissertation with 

the insights obtained from the experiment of prototyping the memory data-flow analysis 

system.
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C H A PT E R  9 

Conclusion and Future Work

In the last chapter of this dissertation, I would like to reflect on my work on memory 

data-flow analysis, and discuss my thoughts on some future works.

9.1 Conclusion

To efficiently utilize the emerging heterogeneous multi-core architecture, it is essen­

tial to exploit the inherent coarse-grained parallelism in applications. In addition to 

data parallelism, applications like telecommunication, multimedia, and gaming can also 

benefit from the exploitation of coarse-grained function parallelism. To exploit coarse­

grained function parallelism, the common wisdom is to rely on programmers to explicitly 

express the coarse-grained data-flow between coarse-grained functions using data-flow or 

streaming languages.

This work is set to explore another approach to exploiting coarse-grained function 

parallelism, that is to rely on compilers to extract coarse-grained data-flow from impera­

tive programs. I believe imperative languages and the von Neumann programming model 

will still be the dominating programming model in the future. For this exploration, this 

research accomplishes the following.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• It developed a memory data-flow analysis framework to extract coarse-grained data­

flow from C programs, or imperative programs in general. First, the memory data­

flow analysis system partitions a C program into a hierarchy of program regions. 

It then traverses the program region hierarchy from bottom up, summarizing the 

exposed memory accesses for each program region. During this bottom-up sum­

marization process, it also constructs a conservative producer-consumer relation 

between the program regions. After the bottom-up process, a top-down traversal 

of the program region hierarchy refines the producer-consumer relation by elimi­

nating exposed memory writes which have no consumers.

• It built a prototype of the memory data-flow analysis system. The efficiency and 

effectiveness of the prototype are studied using real C programs from the the Medi- 

aBench suite and open-source G.724 coder and decoder. It also built a visualization 

system to displace the memory data-flow analysis results. In addition to the original 

purpose of verification, the memory data-flow visualization system can potentially 

be enhanced for other software engineering purposes.

• Experiment results show that the prototype memory data-flow system performs 

reasonably well for the tested C programs. However, the in-lining based proto­

type memory data-flow analysis system may not be efficient for larger programs. 

Also, we can still improve the prototype to obtain more accurate memory data-flow 

analysis results. Root cause analysis of the memory data-flow analysis inaccura­

cies shows that the memory data-flow analysis can potentially be more accurate by
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improving the symbolic scalar variable evaluation, the memory access descriptor 

and the associated operations used by the memory data-flow analysis. However, 

some of the inaccuracies are due to the application characteristics, and cannot be 

eliminated by improving the memory data-flow analysis.

This study shows that it is possible to build a program analysis system to extract 

coarse-grained data-flow from C programs. However, we found it is difficult to extract 

accurate coarse-grained data-flow from ’’spaghetti” code or programs with complicated 

control flow and extensive accesses of dynamically allocated memory objects. Program­

mers can improve the effectiveness of the memory data-flow analysis by writing more 

structured code, grouping related code into functions, and using statically allocated vari­

ables as much as possible.

In my opinion, reasoning about complicated control flow and dynamically allocated 

memory objects will remain the two main challenges of memory data-flow analysis. On 

the other hand, it is also not clear how successful the programming model of data-flow 

or streaming languages will be in handling complicated control flow and dynamically 

allocated memory objects. Unfortunately, as the applications become more and more 

complicated, it is very unlikely that we can avoid complicated control flow and dynami­

cally allocated memory objects will be .

I believe, most likely, we can partition any application into a data-flow part and a von 

Neumann part which is either impossible or inefficient to fit into the data-flow model. 

The data-flow part will be implemented in ASICs, accelerators, or other unconventional 

architectures, while the von Neumann part will still be executed in von Neumann archi-
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tectures. Hopefully, the ”80-20” rule will put most of the computation in the data-flow 

part for efficient execution. Indeed, this is how people design their systems today, but in 

an ad hoc way. The question is ’’Can we do this partition systematically and automati­

cally ?”.

We can re-phrase this question as ”Is it necessary to extend imperative languages 

with data-flow or streaming language constructs?” . Of course, to reply ” no” , we need a 

compiler to demonstrate the following.

• For any imperative program that the compiler cannot sort out its data-flow, it is 

also difficult, if not impossible, to re-write the program in data-flow or streaming 

language constructs.

• For any imperative program that can be re-written in data-flow or streaming lan­

guage constructs, the compiler can also extract its data-flow.

For extracting scalar data-flow from imperative programs, researchers have already de­

veloped the needed compiler techniques. For extracting coarse-grained data-flow from 

imperative programs, this work has made an attempt. Although I cannot say I have 

solved this problem in this work, I think it is an interesting problem for intellectual chal­

lenge, and an important problem for practical purposes, worthy of further investigation. 

Next, I will sketch some future works.
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int A [10] ;
foo() bar (int *x, int *y)
{ {pi = A ; *x = . . . ;

<3l = A + 1; *y . . . ;
bar(pl, ql); /* callsite 1 */ }
p2 = A + 2; 
q2 = A + 4 ;
bar(p2, q2); /* callsite 2 */

F igu re  9.1 Example of function with the same summary at two call-sites

9.2 Future Work

There is always more works to be done than has been done. This section will outline 

some future works on improving the efficiency and effectiveness, and on the evaluation, 

of our memory data-flow analysis system.

9.2.1 Inter-procedural M em ory D ata-flow  A nalysis

For large applications, we need to develop an inter-procedural memory data-flow anal­

ysis. By avoiding re-analyzing the same function at different call-sites, inter-procedural 

memory data-flow analysis can be more efficient than in-lining based approach. The 

question is how to determine whether we should re-analyze a function or not.

Figure 9.1 shows the example code segment, where the function b ar is called twice by 

the function foo. To summarize the exposed memory accesses of bar, we need to know 

the relation between its pointers x and y. If x has the same value as y, the memory read 

*y will be covered by the memory write *x, and thus bar will have no exposed read. If 

the value of x is different from the value of y, then b ar will have exposed read *y.
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( <  x=y?, no > )

=> ( {*ylread. {*x }wrile

/* added at callsite 1 */

<x=y/, no>

({*y}read> { * x ) w r i t e )

<x=y?, no> ?

(P y lr e a d -  f * x l w r i t e )

memo o f bar

• at callsite 1
- analyze bar

. ask foo “x=y?”

. foo reply “no”

. memorize 
< x=y?, no >

. get summary o f bar
(  (  * y  f r e a d ’ { * x l w r i c e )

. associate the summary 
with < x=y?, no >

- translate the summary to 
( {A[l] Iread, {A[0]}write)

• at callsite 2
- ask foo “x=y?”
- get answer “no”
- search < x=y?, no > 

in the memo; found
- retrieve the summary 

associated with
< x=y?, no >

- translate the summary to 
( {A[4]}read, {A[2] }wrile)

pl=ql?

p2=q2 ?

value flow graph o f foo

bottom-up process

F ig u re  9.2 Illustration of function calls with isomorphic memory data-flow analysis 
results

The relation of x and y may be different at different call-sites of bar. If b ar has 

the same relation between x and y at two call-sites, bar will have the same summary 

of exposed reads and exposed writes at these two call-sites. The The exposed reads 

(exposed writes) of these In other words, if we can know a function will have the same 

summary of exposed reads and exposed writes at two call-sites, we only need to analyze 

the function once. The exposed reads (and writes)

Figure 9.2 illustrates memoization based approach to determine whether a function 

will have the same summary of exposed reads and exposed writes at different call-sites. 

When the memory data-flow analysis reaches call-site 1, because this is the first call-site 

of bar, we go analyze the exposed reads and exposed writes of bar. During the analysis
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int A [10] ;
foo2() bar (int *x, int *y)
{ {pi = A ; *x = . . .  ;

ql = A + 1; *y . . . ;
bar(pl, ql); /* callsite 1 */ }
p2 = A + 2;
q2 = A + 2;
bar(p2, q2); /* callsite 2 */

}

Figure 9.3 Example of function with different summaries at two call-sites

of bar, we need to know whether x has the same value as y. This depends on the calling 

context and cannot be resolved by only looking at the code bar. So, we query the value 

flow graph of foo, the caller of bar, ”x = y ?” . After translating the formal parameters, 

x and y, to the corresponding actual arguments, p i and q l, we can infer from the value 

flow graph of foo that p i 7  ̂ q l, and the answer to the query is ”no” . The tuple of query 

and answer, (x = y ?, no), is then recorded in a memo for bar.

After resolving the relation between x and y, we continue the analysis of the exposed 

reads and exposed writes of bar, and eventually obtain the summary of exposed reads 

and exposed writes of bar at call-site 1, (*y, *x). In the memo for bar, we then associate 

this summary of expose reads and exposed writes with the corresponding list of query- 

answer tuples, shown as (*y,*y) —»• ((x = y ?,no)) in Figure 9.2. After substituting p i 

with A, and q l with A+ 1, the exposed memory reads and memory writes of the function 

call to bar at call-site 1 are A[0] and A[l] respectively.

When the memory data-flow analysis reaches call-site 2, if we re-analyze b a r again, 

we will again ask the same question ”x = y ?” . Instead of blindly re-analyzing bar, we 

first evaluate the query ”x = y ?” at call-site 2. After translating x and y to p 2  and q2 ,
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( <  x=y?, no > )  
=>(f*y}read. {*x )wri.e) 

/* added at callsite 1 */

( <  x=y?, yes > )
= > (  { Iread’ {*x lwrite)

/* added at callsite 2 */

< x=y?, no >

({*y)read> ( * x ) w r , t e )

< x=y?, yes > ?
not found

d  Iread’ 1 X1 write)

memo o f bar

• at callsite 1
- analyze bar

. ask foo “x=y?”

. foo reply “no”

. memorize < x=y?, no> 

. get summary o f bar
U * y } read. {*x}wrile)

. associate the summary 
with < x=y?, no >

- translate the summary to 
( (A [ l] } read, { A t O ] } ^ )

• at callsite 2
- ask foo “x=y?”
- get answer “yes”
- search < x=y?, yes > 

in the memo; not found
- memorize < x=y?, yes >
- analyze bar

. get summary o f bar

( { 1 read’ 1 x  1 write )
. associate the summary 

with < x=y?, yes >
- translate the summary to 

( ( 1read’ {A [2]}write)

pl=ql?

p2=q2?
yes

value flow graph of foo2

bottom-up process

Figure 9.4 Illustration of function calls without isomorphic memory data-flow analysis 
results

we can infer from the value flow graph of foo that p2  ^  q2 , and the answer to query 

is ”no”. Then, in the memo for bar, we search the query-answer tuple (x = y ?,no) 

generated at call-site 2 , and will find that it has already been associated with a summary 

of exposed reads and exposed writes. This means that we have analyzed bar at other 

call-sites, call-site 1  in this case, and bar will have the same summary of exposed reads 

and exposed writes at call-site 1 and call-site 2. Therefore, without re-analyzing bar, we 

can obtain the pair of exposed reads and exposed writes of bar at call-site 2  by retrieving 

the associated (*y, *y) from the memo for bar.
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( < y-x=?, 1 > )

= > ( {  *yIread’ {*X}write)

/* added at callsite 1 */

( < y-x=?, 2 > )

= > ( { * y W  1 * x  1 w r i t e  )

/* added at callsite 2 */

< y-x=7, 1 >

( { * y } Kad> { * x } w r i t e )

< y-x=?, 2 > ?

not found

( f * y } read> {*x }write)

■ at callsite 1
- analyze bar

. ask foo “y-x=?”

. foo reply “1”

. memorize < y-x=?, 1 >  

. get summary of bar

(  ( * y }read’ { * x }write)
. associate the summary 

with <  y-x=?, 1>
- translate the summary to 
({Am h^fA fO ]}^ )

• at callsite 2
- ask foo “y-x=?”
- get answer “2”
- search < y-x=?, 2 >

in the memo; not found
- memorize < y-x=?, 2 >
- analyze bar

. get summary o f bar

({*y)read> {*x )wri.e)
. associate the summary 

with < y-x=?, 2 >
- translate the summary to 

( {A [4]}read, {A [2]}wrile)

ql-pl=

q2-p2=?

value flow graph of foo

memo o f bar bottom-up process

Figure 9.5 Illustration of inefficient queries to value flow graph

After substituting x with p2 (=  A +  2), and y with q2 (= A +  4), we can obtained 

the exposed reads and exposed writes of the function call to bar at call-site 2, A [2] and 

A [4],

Figure 9.3 shows an example that a function has different summaries of exposed reads 

and exposed writes at two call-sites. Figure 9.3 is different from Figure 9.1 only in the 

value of q2. In Figure 9.3 q2 is equal to A +  2, while in Figure 9.3 q2 is equal to A + 4. 

When we reach the call-site 2 in Figure 9.3, we will ask the query ”x = y ?” . After 

translating x to p2, and y to q2, we can infer from the value flow graph in Figure 9.3 

that p2 =  q2 =  A +  2. Therefore, the answer to the query ”x = y ?” is ”yes” at call-site 

2 in Figure 9.3.
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In Figure 9.3, we cannot find the query-answer tuple (x = y  ?,yes) in the memo 

for bar. This means tha t the summary of exposed reads and exposed writes of bar at 

call-site 2 may1 be different from the summaries at previous call-sites. Therefore, we 

must re-analyze bar at call-site 2, and eventually find the summary of exposed reads and 

exposed writes to be ({}, *x)2, which is indeed different from (*y, *x), the summary of 

exposed reads and exposed writes of foo at call-site 1.

The efficiency of this memoization based inter-procedural memory data-flow analysis 

will be affected by the queries we ask. If we do not design the queries carefully, we 

may have the situation that a function has different list of query-answer tuples at two 

call-sites, even though the function has the same summary of exposed reads and exposed 

writes at these two call-sites. For example, if the queries we ask in Figure 9.2 were ” y 

-  x  = ?”, instead of ”x = y  ?”, we will have the situation shown in Figure 9.5. Note 

that bar still has the same summary of exposed reads and exposed writes at call-site 1 

and call-site 2 in Figure 9.5. However, the answer to the query ”y  -  x = ?” at call-site 

1 is ”1”, while the answer to the same query at call-site 2 is ”2”. This will mislead us 

to assume bar has different summary of exposed reads and exposed writes at call-site 1 

and call-site2, and result in re-analyzing bar at call-site 2.

Like the in-lining based approach, the effectiveness of this inter-procedural memory 

data-flow analysis is also affected by the accuracy of the symbolic evaluation of queries. 

If the queries generated when analyzing a function can always be resolved at the value

xNext paragraph will explain why it is may’’, instead of ” m ust" . It depends on the query.
2Note that, if x and y in bar are equal, *y will be covered by *x. Therefore, the exposed reads of 

bar will be empty.
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flow graphs of its ancestor functions, inter-procedural symbolic query evaluation is not 

difficult. Inter-procedural symbolic query evaluation will become difficult if the resolution 

of the queries generated for analyzing a function cannot be done at its ancestors, but 

also need information from its child, sibling, or any other functions.

For this kind of queries, a quick and dirty solution is just to say ”1 don’t know”, 

and have a conservative summary for the querying function. Although this may affect 

the effectiveness of the memory data-flow analysis, it could work very efficiently, and 

reasonably well if this kind of queries are rare. Just like other program analysis problems, 

we often need to make a trade-off between efficiency and effectiveness.

9.2.2 Im proving V ersatility and Effectiveness

We can improve the versatility and effectiveness of the memory data-flow analysis in 

the following fronts.

•  The memory data-flow analysis would be more versatile, if we can eliminate the 

limitations discussed in Section 5.2. Among these limitations, indirect function 

calls, recursive functions, and functions with variable number of arguments are 

common in ordinary programs, and should be considered along with the design of 

inter-procedural memory data-flow analysis.

•  For the current prototype, we partition a C program into functions and other prede­

fined program regions. We could try more sophisticated approaches to partitioning 

a C program. For example, we can try  some iterative partitioning method, which
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starts from some fixed partition, and then iteratively refines the partitioning to 

minimize the communication between program regions.

• We can potentially improve the accuracy of the memory data-flow analysis by 

improving the symbolic evaluation of scalar variables, as shown in Section 8.4, For 

example, we can implement full-fledged gated SSA for more accurate evaluation 

of scalar variables by taking predicates into consideration. Another direction is to 

perform symbolic evaluation beyond scalar variables. Programmers also use array 

elements or structure fields to index another array. W ithout knowing the relation 

between the values stored in arbitrary memory locations, we cannot have accurate 

memory data-flow analysis results for general applications.

• We can also potentially improve the operations used in memory data-flow analysis. 

For example, in Section 6.2.4.4, the current implementation will down grade an 

exposed read of a loop to a less accurate memory access descriptor, if the exposed 

read has inter-iteration dependence. Potentially, for some special cases, we can 

use the dependence distance information to refine the exposed read of the loop, by 

excluding those memory accesses which are generated inside the loop.

9.2.3 Evaluation

To evaluate the effectiveness, and to show the real benefit, of memory data-flow 

analysis, we need to connect the memory data-flow analysis to the back-end of the tool
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chain in order to form a complete compilation path from C program to hardware, as 

illustrated in Figure 3.1.

One possibility is to connect the memory data-flow analysis to a high-level synthesis 

tool. Given the memory data-flow analysis result, we can select a set of program regions 

for synthesis, based on some cost mode. We can then do source-to-source translation 

of these program regions using the native language of the high-level synthesis tool. For 

example, we can translate the selected program regions into concurrent tasks, and specify 

the communication between these tasks based on the producer-consumer relation between 

the corresponding program regions.

For each program region, we also need to specify an inter-process communication 

interface for each of its exposed memory accesses. For a Seq-type exposed memory 

access, we can specify a FIFO interface for streaming data access. For a Must-type or 

May-type exposed memory access, we can allocate a memory buffer, or even use double 

buffering, to store the accessed data. For a Doomed-type memory access, we need to 

allocate enough memory to hold all the possibly accessed memory objects. This may be 

inefficient, which should be reflected in the cost model. If a task accesses the system 

memory, we can specify an address generator, or instantiate a DMA, which uses the 

base and offset of the corresponding memory access descriptor to determine the starting 

address, and the displace to determine the access stride and access count.

This ends the documentation of my works and my thoughts on extracting coarse­

grained data-flow from C programs for the exploitation of coarse-grained function paral­

lelism. Looking back, it is really fascinating to me that researchers have made so much
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effort and so many innovations to map applications onto parallel architectures. We have 

come a long way. Looking forward, I believe there is still a long way to go, but, no matter 

which road we will take, I believe the journey will be interesting and we will eventually 

reach our destination.
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