
ON EXTRACTING COARSE-GRAINED FUNCTION PARALLELISM
FROM C PROGRAMS

BY

CHIEN-WEI LI

B.S., National Taiwan University, 1990
M.S., National Taiwan University, 1992

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2006

Urbana, Illinois

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3223652

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3223652

Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Copyright by Chien-Wei Li, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C e r t i f i c a t e o f C o m m i t t e e A p p r o v a l

University o f Illinois at Urbana-Champaign
Graduate College

May 12, 2005

We hereby recommend that the thesis by:

CHIEN-WEI LI

Entitled:

ON EXTRACTING COARSE-GRAINED FUNCTION PARALLELISM
FROM C PROGRAMS

Be accepted in partial fulfillment o f the requirements fo r the degree of:

Doctor of Philosophy

Signatures:

D irector o fR esearch - Professor W en-mei H wu H ea d o f D epartm ent - Professor M arc Snir

om m ittee on Final Examination

Chairperson - Professor W en-mei Hwu

C ojpm ttfeeM em ber - Professor V ikram Adve Committee Met Professor M ark Hasegawa-Johnson

miftee M ember - \Commi Proressia^Javid Padua

Committee M em ber - Committee M ember -

* Required for doctoral degree but not for m aster’s degree

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my family, my teachers, my friends, and people who helped me.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOW LEDGM ENTS

I would like to thank my advisor Professor Wen-mei Hwu for giving me this opportu­

nity to learn how to solve important problems. He teaches me to see the big picture, as

well as to pay attention to the details. I appreciate his patience in correcting my errors in

speaking, writing, and thinking. I feel grateful for his generosity in financial support. He

has done everything a good teacher could do, however, I am not capable enough to fully

carry out his vision. Efficiently mapping complex applications onto parallel machines is

a fascinating problem to me. Hope that I can work on this for the rest of my life, based

on what I ’ve learned from him.

I would like to thank Professors David Padua, Vikram Adve and Mark Hesagawa-

Johnson for their courtesy of being my thesis committee members. Their experiences,

comments, and critics broaden my knowledge and make me understand the problem more

deeply. I would like to thank Professors Nick Carter, M att Frank, and Steve Lumetta

for their feedback on my work.

Although they may not know me, I would still like to thank the professors who taught

those interesting and helpful courses that I took at UIUC. Especially, I would like to thank

Professor Benjamin Wah, visiting Professor Yao-Jen Chang, and late Professor Michael

Faiman for their personal instruction and assistance when I first came to America. I

would like to thank my M.S. thesis advisor Professor Jie-Yong Juang and my other

teachers in Taiwan, from K to 18, who really make my life at UIUC much easier.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I would like to thank my officemates Hong-Seok Kim and Dan Burke. I learned a

lot from Hong-Seok about pointer analysis and program analysis. Many ideas in my

research are inspired during our discussion. I also obtained a lot of hardware knowledge

from Dan. I would like to thank my colleagues, Ben-chung Cheng, Hong-Seok Kim,

and Erik Nystrom for their pointer analysis work; Robert Kidd, Hong-Seok Kim, Tahir

Mobashir, Erik Nystrom, James Player, Shane Ryoo, John Sias, and Ian Steiner for

their Pcode enhancement work. Especially, Bob and John made a lot of effort in system

administration and in perfecting the IMPACT compiler. I also appreciate the help of

other IMPACT colleagues, Ron Barnes, Kevin Cernekee, Marie Conte, Hillery Hunter,

Geoff Kent, M att Merten, Chris Rodriguez, Andy Schuh, Chris Shannon, Sain Ueng, and

Le-chun Wu. Especially, Le-chun and Ben-chung have been helping me since we met in

Taiwan.

I would like to thank the staffs of the IMPACT group, Sabrina Hwu, Marie-Pierre

Lassiva-Moulin and Xiaolin Liu, and the staffs of Coordinated Science Laboratory and

Computer Science department. Especially, Marie-Pierre helps me a lot for the deposit of

this dissertation. I really appreciate it.

I would like to thank the friends I made at Rockwell, Conexant and Mindspeed,

especially my mentor Dr. Kumar Ganapathy, for their help and sharing experience.

This research is funded by the Semiconductor Research Corporation and by the Gi-

gascale Systems Research Center.

Not to have an Acknowledgement longer than the other chapters, I ’ll just stop here.

Finally, I would like to thank my other friends and my family for taking care of me.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CO NTENTS

List of T a b le s ... viii
List of Figures .. ix

1 In troduction ... 1
1.1 Technology T re n d .. 2
1.2 Hardware T ren d ... 4
1.3 Application T ren d .. 5
1.4 Exploiting Parallelism .. 7
1.5 Improving Design Productivity .. 8

2 Previous Work ... 11
2.1 Optimizing Compilers .. 11

2.1.1 Vectorizing Compilers ... 12
2.1.2 Parallelizing C om pilers.. 12
2.1.3 Superscalar/VLIW /EPIC Compilers ... 14

2.2 High-level Synthesis.. 15
2.3 Concurrent Programming L a n g u a g es .. 17

3 Thesis Overview .. 21
3.1 Problem S ta te m e n t.. 21
3.2 Fine-grained A nalogy... 26
3.3 Coarse-grained Issu e s ... 29

3.3.1 Defining Coarse-Grained F unction .. 29
3.3.2 Identifying Producer and Consumer R elation 31
3.3.3 Summarizing Coarse-grained Memory Accesses................................... 32

3.4 Thesis O rganization.. 39

4 Symbolic Scalar Variable E v a lu a tio n .. 42
4.1 SSA-based Symbolic E v a lu a tio n .. 42
4.2 Induction Variable D etection.. 44
4.3 SSA Extension ... 46

5 Program Region H ierarchy .. 50
5.1 Program Region H ierarchy ... 50
5.2 L im ita tio n s ... 53
5.3 Handling Library F u n c tio n s .. 56
5.4 Related W o r k .. 57

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Exposed Memory Access Sum m arization ... 59
6.1 Memory Access D escrip to r.. 59
6.2 Bottom-up Summarization P r o c e s s ... 64

6.2.1 An E xam ple.. 67
6.2.2 Finding Exposed Reads .. 71
6.2.3 Finding Exposed W r i t e s .. 76
6.2.4 Memory Access Descriptor O p e ra tio n s .. 81

6.3 Related W o r k ... 100

7 Producer-Consumer Relation Analysis ... 105
7.1 Bottom-up P h a s e .. 105
7.2 Top-down Phase .. 107
7.3 Related W o r k .. 110

8 Prototyping and Experiment R esu lt... I l l
8.1 Modification of Benchmark P ro g ram s .. I l l
8.2 Verification and V isu a liza tio n ... 112
8.3 E ffic ien cy ... 115
8.4 Effectiveness.. 116

9 Conclusion and Future W ork .. 129
9.1 Conclusion... 129
9.2 Future W ork .. 133

9.2.1 Inter-procedural Memory Data-flow A nalysis..................................... 133
9.2.2 Improving Versatility and Effectiveness.. 139
9.2.3 Evaluation.. 140

R EFER EN C ES.. 143

AUTHOR’S B IO G R A P H Y ... 155

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

8.1 Breakdown of the execution time of the prototype memory data-flow analysis
sy s te m .. 114

8.2 Breakdown of the type of MADs for exposed reads .. 123
8.3 Breakdown of the type of MADs for exposed w r i te s .. 123
8.4 Breakdown of the percentages of the causes of May-type M A D 124
8.5 Breakdown of the percentages of the causes of Doomed-type M A D 126

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

1.1 The block diagram and data-flow of the post-filter of G.724 d e co d e r.............. 6
1.2 The challenge of the design methodology community... 10

2.1 A unified view of exploiting parallelism and boosting p ro d u c tiv ity 20

3.1 The position of this work with in mapping applications onto multi-core archi­
tectures ... 22

3.2 Illustration of the problem statement using the post-filter of G.724 decoder . 25
3.3 Example illustrating extracting fine-grained data-flow 28
3.4 Example coarse-grained functions of subroutine calls 29
3.5 Example coarse-grained functions of l o o p s ... 30
3.6 Illustration of the producer-consumer relations between coarse-grained functions 33
3.7 Producer and consumer program regions with the same memory access patterns 34
3.8 Example illustrating summarization of exposed accesses..................................... 37
3.9 Example illustrating symbolic scalar variable evaluation..................................... 39
3.10 Components of the proposed memory data-flow analysis s y s te m 41

4.1 Example SSA form nd value flow g ra p h ... 43
4.2 Example illustrating non-affine expressions... 46
4.3 Example gated SSA form and pruned control flow g r a p h 47

5.1 Example program region h ie ra rc h y .. 51
5.2 Work-around of improper lo o p ... 53
5.3 Work-around of indirect function c a l l .. 55
5.4 Work-around of recursive function c a l l ... 56
5.5 A template describing the memory access behavior of f r e a d 56

6.1 Example illustrating the displace field of the MAD data s t ru c tu re 60
6.2 Examples for illustrating different MAD structures ... 61
6.3 The pseudo-code of S u m m a r iz e ... 65
6.4 Example recursive calls of S u m m arize ... 67
6.5 Illustration of the bottom-up summarization process 67
6.6 The pseudo-code of F in d E x p o se d R ea d s ... 72
6.7 Example illustrating F in d E xp osed R ead s ... 74
6.8 The pseudo-code of F in d E xp osed W rites ... 77
6.9 Example illustrating F in d E x p o se d W r ite s ... 78
6.10 The pseudo-code of C oncatenate (©) ... 82
6.11 The pseudo-code of C o n ca ten a teM A D .. 83
6.12 The pseudo-code of C oncatenatePattern ... 84

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.13 Examples of concatenating two memory access p a tte rn s 85
6.14 The pseudo-code of C om bineC om ponents ... 85
6.15 The pseudo-code of M erge (U) ... 86
6.16 The pseudo-code of M erg eM A D .. 87
6.17 The pseudo-code of M ergePattern .. 88
6.18 Examples of merging two memory access p a t te rn s ... 89
6.19 The pseudo-code of Subtract (©) ... 90
6.20 The pseudo-code of S u b tr a c tM A D .. 91
6.21 The pseudo-code of P attern _su btract... 92
6.22 Examples of subtracting two memory access p a t te r n s 92
6.23 The pseudo-code of In te r se c tP a tter n ... 93
6.24 The pseudo-code of P a tte r n C o v e r e d ... 93
6.25 The pseudo-code of S u m m a tio n .. 95
6.26 The pseudo-code of Sum m ationM AD ... 96
6.27 The pseudo-code of Sum m ationM AD ... 97
6.28 Example illustrating Sum m ation (]T)).. 98

7.1 Illustration of the bottom-up p h a s e ... 106
7.2 Illustration of the top-down p h a se .. 108
7.3 The pseudo-code of P ru n eE x p o sed W rites ... 109

8.1 Demonstration of the memory data-flow visualization sy stem 113
8.2 Example for illustrating spurious data producers.. 116
8.3 Eliminated spurious data producers (false dependences) in g 7 2 1 d e c 117
8.4 Eliminated spurious data producers (false dependences) in g 7 2 1 e n c 118
8.5 Eliminated spurious data producers (false dependences) in g 7 2 4 d e c 119
8.6 Eliminated spurious data producers (false dependences) in gsm dec................. 120
8.7 Eliminated spurious data producers (false dependences) in gsm enc................. 121

9.1 Example of function with the same summary at two call-sites 133
9.2 Illustration of function calls with isomorphic memory data-flow analysis results 134
9.3 Example of function with different summaries at two ca ll-s ite s 135
9.4 Illustration of function calls without isomorphic memory data-flow analysis

r e s u l ts .. 136
9.5 Illustration of inefficient queries to value flow g r a p h .. 137

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PT E R 1

Introduction

The progress of IT (Information Technology) industry is driven by the simultaneous

advance of semiconductor manufacturing technology, hardware, application, and design

methodology. More advanced manufacturing technology enables more powerful hardware,

which in turn enables more advanced application. On the other hand, more advanced

application motivates more powerful hardware, which in turn motivates more advanced

manufacturing technology. Although less visible, design methodology plays a crucial role

in meshing technology to hardware, and hardware to application, so that the whole IT

industry is not out of gear.

To put the rest of this dissertation in perspective, this chapter will examine the

trends on manufacturing technology, hardware, and application, and point out, among

the many challenges faced by the current design methodology, which problem domain

this dissertation is trying to make some small step contributions. Chapter 2 will review

previous works to understand how the problems are approached by other researchers in

different ways, and to identify the specific problem that this work will focus on. Chapter 3

will present the problem statement to set the goal of this work, and outline the steps

to achieve the goal by decomposing the problem into sub-problems. Later chapters of

this dissertation will discuss each of these sub-problems and the proposed solutions in

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

detail. Finally, this dissertation will conclude with the results and insights obtained from

prototyping the proposed solutions, and propose some future works.

1.1 Technology Trend

The rapid growth of the semiconductor industry is fundamentally driven by a trend

observed by Gordon Moore in 1965, that is transistor density doubles every 18 months [1].

In this rate, a single chip will have a billion transistors on it in the near future, enough

for the integration of a whole system [2], However, to utilize this enormous amount of

transistors, we need to solve many problems. Below is an incomplete list of the problems.

• The NRE (Non-Recurrent Engineering) cost is soaring. For example, the cost of

mask set has risen from several hundred thousand dollars for 0.18-micron process

to over 1 million dollars for 90-nm process, and 3 million dollars for 65-nm pro­

cess [3] [4] [5]. Moreover, mask cost is only a fraction of the total NRE cost. The

design and verification costs are also sky-rocketing as chip design is becoming more

and more complex.

• Because of the shrinking of feature size, transistors can switch very fast, and are

thus no longer the performance bottleneck. However, the RC delay of long wire does

not scale down proportionally [6]. Signals can no longer propagate along long wires

in one clock cycle [7]. One implication of this wire delay problem is that, because

of clock skew, it is getting harder and harder to synchronize the whole chip at high

clock frequency [8]. Even if technically possible, increasing clock frequency will no

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

longer be a feasible approach to achieve high performance, because of prohibitive

power dissipation.

• Power dissipation has been a recurring problem since the early days of semicon­

ductor industry. Integrating more transistors on a single chip will increase the

power density, because more transistors switching simultaneously will cause more

dynamic power dissipation. Moreover, in the deep sub-micron era, leakage power

is no longer a second order effect. In the future, leakage power will even contribute

more to total chip power dissipation than dynamic power [[] [

• Related to the power dissipation problem, energy efficiency is becoming a top de­

sign consideration for extending the operating period of small portable information

appliances operating on batteries, and for reducing the utility cost of large data

warehouses consisting of thousands of servers [9].

• Yet another everlasting problem is the memory bottleneck. While the density of

DRAM quadruples in three years, even faster than the increase of logic density,

the speed of memory cannot catch up the speed of logic. Putting more memory

on chip does not necessarily solve the memory bottleneck problem, due to the wire

problem and the limitation on the number of memory access ports.

The semiconductor industry will not stall building more powerful hardware because

of these problems. Instead, people are developing innovative hardware architectures to

more efficiently use the coming billion transistors [11].

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

1.2 Hardware Trend

The state-of-the-art hardware systems are composed of ASICs (Application Specific

Integrated Circuits) and/or programmable devices like digital signal processors and mi­

croprocessors. The goal of hardware design is to achieve a balance among performance,

cost, and flexibility for the target applications. Technology trend profoundly affects how

people build hardware systems to maintain this balance.

For example, traditional standard cell based ASIC design is being challenged as a cost-

effective approach to achieve low power and high performance, because of soaring NRE

cost, high design risk and constantly changing industry standards. For applications which

microprocessors and digital signal processors still cannot meet the performance, power,

and area requirements, people are seeking alternatives like structured ASIC, FPGAs

(Field Programmable Gate Arrays), and reconfigurable architectures, to replace standard

cell based ASICs. These alternatives promise lower cost and/or more flexibility, without

sacrificing too much performance [12] [13].

The technology trend is also challenging the conventional wisdom in microprocessor

design. Because the centralized organization of current high-performance microproces­

sors does not scale well with the advance of semiconductor manufacturing technology,

researchers are proposing alternative architectures like the M.I.T. RAW processor [14],

the Stanford Stream processor [15] and Merrimac machine [16], and the U.T. Austin

TRIPS processor [17], to address the issues faced by future billion transistor micropro­

cessors [18].

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For commercial microprocessors, the design objective now is not performance, but

performance per Watt. Instead of increasing clock frequency, which will incur too much

power dissipation, both Intel and AMD are shipping dual-core microprocessors and will

resort to multi-core architectures to achieve high performance in the future [19] [20] [21].

The Cell processor developed by Sony, Toshiba and IBM also adopts multi-core architec­

ture, consisting of one PowerPC Processing Unit and 8 Synergetic Processing Units for

SIMD processing [22] [23].

Although microprocessors have been making significant progress in performance and

will be more power efficient in the future, I believe general-purposed architecture alone is

not the most efficient hardware platform. Future system on chip will consist of multiple

general-purposed cores and application specific accelerators in order to power efficiently

and cost effectively meet the requirements of emerging applications.

1.3 Application Trend

In the past, the growth of semiconductor industry is driven by PCs (Personal Com­

puters) and desktop applications. As the analog world is gradually digitized, and more

and more richer and richer digital contents are delivered through the Internet, (portable)

telecommunication, multimedia, and gaming applications are replacing PC desk-top ap­

plications as the new driving applications.

These applications present much higher design challenges than traditional PC desk­

top applications because 1) they require much higher computing power for complicated

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

syn[0:39] —
syn[40:79]
syn[80:119]
syn[120:159]

Az[0:10] -
A z[ll:21]
Az[22:32]
Az[33:43]

Weight

Weight

Residu

Syn_filt Correlation Preemphasis Syn_filt age

□
syn_pst[0:39]
syn_pst[40:79]
syn_pst[80:119]
syn_pst[120:159]

F igu re 1.1 The block diagram and data-flow of the post-filter of G.724 decoder

algorithms to, for example, analyze and synthesize audio and video streams; 2) they

impose much tighter design constraints on form factor, cost, power dissipation and energy

efficiency.

These applications usually consist of DSP (Digital Signal Processing) kernels, with

inputs and outputs of sequences of frames. Usually an input frame is further divided

into sub-frames or blocks, which are then individually processed by the DSP kernels. So

potentially there is abundant parallelism in processing these sub-frames or blocks.

As a simple but concrete illustrating example, Figure 1.1 shows the components and

data-flow of the post-filter used in the G.724 decoder [24], The 160-bit input speech

frame syn[0. .159] is divided into four 40-bit sub-frames to be individually processed

by the post-filter.

Parallelism also exists in each computation kernel. The W eight block is basically a

vector multiplication, scaling its input signals by different weights. The R esid u block

is a FIR (Finite Impulse Response) filter and the SynJfilt and P reem p h asis blocks

are HR (Infinite Impulse Response) filters. The C o rre la tio n block computes two auto­

correlations. The age block for automatic gain control is a little more complicated, but

the basic computations are still vector multiplication and accumulation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To meet the, often conflicting, design requirements, it is necessary to exploit all the

possible inherent parallelism in these applications.

1.4 Exploiting Parallelism

For the post-filter shown in Figure 1.1, potentially we can at least exploit the following

parallelism.

• Frame level data parallelism. If there is no data dependence between the processing

of consecutive frames, we could potentially duplicate the hardware to post-filter

different frames in parallel.

• Sub-frame level data parallelism. If there is no data dependence between the pro­

cessing of consecutive sub-frames, we could potentially duplicate the hardware to

process each sub-frames in parallel.

• Sub-frame level function parallelism. Instead of duplicating hardware, we could

pass the sub-frames through the DSP kernels in a pipelining or data-flow fashion

to exploit the coarse-grained function parallelism among these kernels.

• Signal level data parallelism. For digital signal processing kernels, we could use

techniques like Intel MMX/SSE [25] [26] to exploit fine-grained data parallelism.

• Instruction/operation level parallelism. We could implement these kernels us­

ing state-of-the-art high-performance digital signal processors or microprocessors,

which exploit instruction level parallelism to speed up the execution. We could also

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

design ASIC to directly map the operations of these kernels to parallel arithmetic

units.

In spite of its abundant parallelism, the post-filter contributes only about 50% of the

total G.724 decoder execution time. According to Amdahl’s law [27], the performance of

the G.724 decoder cannot be significantly improved without speeding up the other 50%

of its computation, which may exhibit different characteristics from the post-filter and

thus require different approaches to improving performance.

It is no surprise that people build today’s telecommunication and media applications

using an array of hardware components, from ASIC and DSP (Digital Signal Processor)

to micro-controller and microprocessor, exploiting coarse-grained and fine-grained, data

and function parallelism to balance performance and cost.

Partitioning complex software into concurrent tasks, exploiting different forms of

parallelism, mapping these tasks onto complex hardware and searching for a balance

point between performance and cost is a daunting task. However, the current design

practice mainly relies on designer’s experience and instinct. With shorter time-to-market

and product lifetime, the development of future applications needs more efficient and

systematic design methodology.

1.5 Improving Design Productivity

The exponential increase of transistor density is followed by the exponential increase

of hardware and software complexities. However, we cannot exponentially improve our

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

productivity using the same design methodology. To boost productivity, we shift to

higher level design abstraction to hide complexity. In the past, software design moved

from assembly language programming to high-level language programming; hardware

design moved from gate-level design to RTL (Register Transfer Level) design. However,

abstraction alone cannot achieve paradigm shift. We need the tools that can translate

designs from higher level representation to lower level representation without sacrificing

too much design quality. The success of the first high-level programming language Fortran

is because of the accompanying good Fortran complier; the success of Verilog/VHDL is

because of good RTL synthesis tools.

In summary, Figure 1.2 depicts the big picture of the problem domain that this

dissertation is trying to make some small contributions. The problem is two-fold.

• W hat is the programming model for capturing complex emerging applications in a

compact representation? To improve design productivity, the programming model

must be simple. To cover wide range of applications, the programming model must

be versatile.

• What are the compiler techniques to extract parallelism out of the compact rep­

resentation, and to map concurrent tasks onto complex multi-core hardware? The

complex hardware will consist of multiple general-purposed microprocessors, ASICs

and even FPGAs.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

complex application
telecommunication human-machine-interface)

multimedia gaming

design capturing
\ 7

programming model
simple and versatile

improve productivity

compact representation

compiler techniques
parallelism analysis
resource scheduling

exploit parallelism

extract and map parallelisms
\ /

complex multi-core hardware
microprocessors ASICs

DSPs FPGAs

Figure 1.2 The challenge of the design methodology community.

I realize that this is not a new research topic. Many researchers have made great

contributions before. The next chapter will scan the previous works, trying to find an

empty slot in the book shelf for this dissertation.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PT E R 2

Previous Work

Exploiting parallelism and boosting productivity are the recurring challenges of the IT

industry, especially when the advance of technology accumulates enough momentum to

make a hardware architecture leap, or to surpass the existing design methodology. This

chapter will review the previous works on optimizing compilers, high-level synthesis,

and concurrent languages. Although they take different approaches, or target different

hardware platforms, all these three areas concern how to exploit parallelism and boost

productivity.

2.1 Optim izing Compilers

Compiler optimization is an active and exciting research area. Researchers have been

innovating new techniques to efficiently implement new programming language constructs

and to effectively utilize new architecture features. We can roughly divide optimizing

compilers into two categories, vectorizing/parallelizing compilers targeting supercomput­

ers [28] [29] and optimizing compilers targeting super-scalar, VLIW (Very Long Instruc­

tion Word) or EPIC (Explicitly Parallel Instruction Computing) architectures [30] [31].

Great progresses have been made in these two areas.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.1 V ectorizing Com pilers

Early vectorizing compiler researches [32] [33] [34] [35] [36], most notably the Parafrase

project at the University of Illinois [37] and the Parallel Fortran Converter project at Rice

University [36], not only formalized fundamental notions like data dependence, depen­

dence distance, dependence direction, and dependence level, but also pioneered depen­

dence test techniques for automatically identifying the inherent parallelism in sequential

programs. Furthermore, to enable more vectorization and to better utilize the underly­

ing hardware features, these ground-breaking works also invented program restructuring

techniques [38] [39] [40] [28], for example, loop interchanging [41] [42], loop skewing [43],

scalar renaming [44], array renaming [36], strip-mining, and vector register allocation [45].

Although these early vectorizing compiler works focused on exploiting fine-grained

data parallelism to speed up scientific computations on vector or SIMD (Single Instruction

Multiple Data) machines, they also laid the foundation for the parallelizing compilers

targeting MIMD (Multiple Instruction Multiple Data) machines, and more recently for

the vectorizing compilers targeting instruction sets like the Intel MMX and SSE [26] for

speeding up multimedia applications on microprocessors.

2.1.2 Parallelizing Com pilers

Because MIMD machines usually have high inter-processor communication cost, par­

allelizing compilers targeting MIMD machines must look beyond the inner-most loop to

seek more coarse-grained parallelism in the outer loops [46] [47] [48] [49] [50] [51] [52].

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To maximize parallelism and to increase locality, researchers have developed many pro­

gram analysis and transformation techniques, for example, loop distribution [28], loop

fusion [46] [53], loop tiling [54], unimodular transformation [55], array data-flow analy­

sis [56] [57] [58] [59], and array privatization [60] [61] [60] [62] [63].

Because parallelizing compilers need to examine larger program regions for paral­

lelism, many analyses need to cross the procedure boundaries to get more accurate anal­

ysis results. Because full program in-lining is too costly, researchers have developed many

inter-procedural analysis techniques [64] [65] [66] [67] [68] [69] [70] [71].

Most of the parallelizing compiler works are based on the SPMD (Single Program

Multiple Data) model to exploit coarse-grained data parallelism. This is suitable for

scientific applications with data set much larger than the number of processors. However,

researchers found that SPMD alone may not be the best way to parallelizing applications

like many digital signal processing applications which have many kernels with small

working set. For this kind of applications, it is better to exploit function (or task)

parallelism in addition to data parallelism [72] [73].

In data parallelism, different processors (or functional units) execute the same pro­

gram (or function) on different data at the same time. In function parallelism, different

processors (or functional units) execute different programs (or functions) on different

data at the same time. Researchers have developed techniques for task scheduling and

resource allocation given the dependence or data-flow among the tasks [74] [75] [76].

Unlike parallelizing compilers targeting MIMD machines, which must exploit coarse­

grained data and/or function parallelism in order to avoid excessive costly inter-processor

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

communication, optimizing compilers targeting high performance microprocessors exploit

instruction level parallelism, which can be classified as fine-grained function parallelism.

2.1.3 S up ersca lar/V L IW /E P IC Com pilers

High performance microprocessors are capable of executing multiple instructions at

the same time. People have made micro-architecture and compiler innovations to increase

the number of instructions available for parallel execution.

For example, Tomasulo’s algorithm [77], which is widely used in superscalar micropro­

cessors, eliminates false dependencies among instructions by register renaming [78] [79];

branch prediction [80] [81] [82] [83], trace cache [84] [85], predication [86] [87] [88], spec­

ulation [89] [90] [91], and memory disambiguation [92] enable more parallel instruction

execution by eliminating the synchronization barriers caused by spurious control depen­

dencies and memory dependencies.

Often, the micro-architecture features for exploiting ILP (Instruction Level Paral­

lelism) rely on compiler supports to achieve better utilization. For example, to expose and

schedule more instructions for parallel execution, people have developed trace schedul­

ing [93], superblock formation [94], software pipelining, modulo variable expansion and

modulo scheduling [95] [96] [97]; to enable more effective predication, people have de­

veloped hyperblock formation and predication analysis [98] [99]; to support speculation,

people have developed sentinel scheduling [100]; to obtain more accurate compile-time

memory disambiguation, people have been improving the accuracy and efficiency of de­

pendence tests [101] and pointer analysis [102] [103].

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is due to the micro-architecture and compiler innovations combined, and always

being manufactured using the cutting-edge process technology, that microprocessors can

make such impressive progress in performance and cost. However, general-purposed ar­

chitecture still cannot meet the performance and cost requirements of many applications.

Many products still rely on special hardware to achieve the required performance under

strict cost and power constraints.

2.2 H igh-level Synthesis

Hardware designers have long been exploiting parallelism to improve the performance

and efficiency of their products. However, designing hardware at circuit level or gate

level is tedious and difficult. Designers must determine circuit topology, size transistors,

optimize logic, synchronize signals with respect to clocks and perform circuit or logic

simulations for functional verification and for timing analysis. As circuits become larger

and larger, it is very time consuming to capture and verify the whole design at such low

level.

To improve design productivity, people developed hardware description languages like

Verilog and VHDL as well as RTL synthesis tools. The hardware description languages

essentially abstract hardware as a hierarchy of concurrent processes following an event-

driven execution model. Instead of drawing schematics, designers can now capture their

designs using hardware description languages just like writing software programs, or

more precisely concurrent programs. The RTL synthesis tool will then take the high-

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

level descriptions along with user specified design constraints, perform all the low level

design activities, and finally generate a netlist ready for the place-and-route tool [104].

This enables designers to focus on RTL and architecture level design exploration and

verification.

However, RTL designers still need to take care of details like circuit reset, clock

synchronization and dividing critical timing path into several pipeline stages, as well

as explicitly expressing fine-grained and/or coarse-grained, function and/or data, par­

allelism as a hierarchy of concurrent processes with bit-level or word-level interprocess

communication signals. In other words, the designers still need to describe the design

structurally, not behaviorally. As ASICs are getting more complex, RTL design is also

becoming too time-consuming. We are again facing the productivity crisis.

Researchers are advocating moving to even higher design abstraction and high-level

synthesis [105] [106] [107]. Starting from an abstraction like data flow graph [108], which

describes the dependences between fine-grained or coarse-grained tasks, people have done

extensive researches on how to optimize the mapping of concurrent tasks onto hardware

building blocks.

There are already commercial tools that can take C programs and generate the cor­

responding RTL implementation [109] [110] [111] [112]. Although the users of these tools

can describe their design behaviorally, in order to obtain better synthesis results, they

still need to explicitly express parallelism, especially coarse-grained function parallelism,

as well as the inter-process communication mechanism using compiler directives or con­

current language constructs.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Concurrent Program m ing Languages

In addition to the techniques that extract parallelism from sequential programs, vec­

torizing and parallelizing compiler researchers also developed compiler directives and

language constructs to let programmers explicitly express parallelism. For example,

Fortran-D [113] and High Performance Fortran (HPF) [114] extend the Fortran language

with vector operations and data partitioning directives for explicit data parallelism on

top of a shared memory model; the MPI standard [115] is proposed as a portable library

for explicit inter-process communication under the message-passing paradigm. While it

is natural to target shared-memory programs on shared-memory multiprocessors, and

message-passing programs on distributed memory multicomputers, the memory model of

a concurrent programming language is not tightly coupled to the memory organization

of the underlying machines. It is up to the compiler and the run-time system to bridge

the semantic gap.

In addition to vector, SIMD, shared-memory MIMD, and distributed-memory MIMD

machines, researchers also experimented data-flow supercomputers [116] [117] [118] to

exploit massive parallelism. In parallel with the development of data-flow machines,

researchers also designed data-flow languages [119] [120] for explicitly expressing fine­

grained function parallelism. Different from a program written in imperative languages,

a program written in data-flow language is side-effect free and each of its variables has

only single assignment.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interestingly, researchers also developed compiler analyses and transformations that

can translate an imperative program to a form with some data-flow properties. For

example, there exists efficient algorithms to translate an imperative program into the SSA

(Single Static Assignment) form [121], gated SSA form [122], or dependence web [123].

Researchers [124] even argued that it is not necessary to design data-flow languages for

data-flow machines, because imperative programs can obtain the same performance on

data-flow machines using advanced compiler techniques, and the compilers for both types

of languages have similar complexities. Also, the von Neumann programming model of

imperative languages could be more intuitive and result in more compact programs than

the data-flow programming model for some applications, especially for applications with

a lot of partial state changes in complex data structures.

Because of these and other reasons, in spite of their many creative concepts, data­

flow languages did not become mainstream x. The dominating programming languages

today are still imperative languages. Instead of for expressing massive parallelism in gen­

eral applications, recent data-flow language researches are more for software engineering

purpose [120] and for specific application domains.

For example, to model DSP applications, researchers have developed formal represen­

tations like synchronous data flow [125] and data-flow process networks [126]. In these

models, a task or a process, which could be an imperative program, represents a DSP

kernel which is repeatedly applied to its input signals. Also explicitly expressed in these

1Neither did general purposed data-flow machines. Instead, it is the restricted data-flow model [78]
that prevails in commercially successful high-performance microprocessors.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

models are the signal flow among these tasks and the signal generating and consuming

rates of each kernel. The motivation for these formalisms is to enable automatic synthesis

and optimization of real systems from the models [127] [128] [129] [130] [131].

W ith similar motivation, and language semantics, researchers also developed stream­

ing languages like Streamlt [132] and Brook [133] to ease the programming for machines

like the MIT RAW machine [14], the Stanford Merrimac [16] or even graphics proces­

sors [134], The fundamental concepts of these streaming languages are stream consist­

ing of possibly infinite number of independent data, and kernel (or filter) operating on

streams. Thus, a streaming program explicitly expresses the function parallelism among

the execution of kernels, as well as the data parallelism among the processing of stream

elements.

The previous works on exploiting parallelism and on boosting productivity are really

tightly correlated, and we can unify them in a single picture, as shown in Figure 2.1.

Figure 2.1 can be divided into two halves. The top half is extracting parallelism from

the applications by compilers, or expressing parallelism in the applications by software

programmers or hardware designers. The bottom half is mapping concurrent tasks onto

hardwares exploiting various types of parallelism. Each edge in Figure 2.1 corresponds

to the enormous amount of knowledge and techniques obtained in decades of compiler,

high-level synthesis and programming language researches. The next chapter will discuss

where my work will make a dent in this big picture, considering both the learned lessons

and the projected trends.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

general applications —̂

streaming applications^^digital circuits

imperative
languages

dataflow
languages

streaming
languages hardware description

languages

imperative program

(gated) SSA
\dependence webdependence test extract/express parallelism

dependence graph
(spurious dataflow)

coarse-grained
dataflow graph/

map parallel computations

\ 7

superscalarvector
SIMD
machines

MIMD
machines

dataflow
machine ASICsEPIC

processors

fine-grained
data parallelism

coarse-grained
data parallelism
coarse-grained
function parallelsim

fine-grained
function parallelism

fine-grained
function parallelism

fine-grained
function parallelism
coarse-grained
function parallelsim
fine-grained
data parallelism

coarse-grained
data parallelism

Figure 2.1 A unified view of exploiting parallelism and boosting productivity

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PT E R 3

Thesis Overview

This chapter will serve two purposes. First, it will establish the problem statement

of my PhD research based on the reflection on the technology, hardware and application

trends discussed in Chapter 1 and the previous works on exploiting parallelism discussed

in Chapter 2. Second, it will discuss what sub-problems we need to solve and give an

overview of the remaining chapters of this dissertation.

3.1 Problem Statem ent

Figure 3.1 relates the previous works with the perceived multi-core architectures.

Many of the works people have done for partitioning and distributing computations onto

MIMD machines can be readily used for exploiting coarse-grained data and function par­

allelism for the multi-core architecture. For efficiently utilizing superscalar/VLIW /EPIC

cores and SIMD/vector execution units, researchers have already developed a lot of tech­

niques, and are keeping pushing the envelope. Very likely, the coming multi-core archi­

tecture will also include ASICs or coprocessors to efficiently accelerate applications [135].

The CAD community have been innovating more powerful tools to facilitate the devel­

opment of these accelerators.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

emerging applications
telecommunication

multimedia

human-machine-interface

gaming

imperative
languages

streaming
languages

hardware description
languages

imperative program

this work
(gat^d) SSA
dependence webdependence test

dependence graph
(spurious dataflow)

fine-grained coarse-grained
dataflow graph J dataflow graph

coarse-grained fine-grained
fupction parallelism

fine-grained coarse-grained
function parallelsim

coarse-grained
data parallelism

fine-grained/
coarse-grained

data parallelism
fine-grained

data parallelism

zzmulti-core
processors

vector
S1MD
units

ASICs
coprocessorsEPIC

cores

Figure 3.1 The position of this work with in mapping applications onto multi-core
architectures

The works of mapping concurrent tasks onto multi-core architectures are all based

on an abstraction, the dependence graph, which describes the partial order between

the execution of computational tasks. Researchers have been pushing the accuracy of

dependence test. There already exists exact data dependence test, the Omega test [101],

which is very efficient for common cases. Because of the way they are constructed,

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dependence graphs may contain many false dependences. While false dependences may

not affect the effective accuracy of the dependence graph for compiler applications like

vectorization, the removal of false dependences can improve the effectiveness of many

other compiler optimizations [136].

Dependence graph without false dependences can be called data-flow graph, because it

contains only the true data dependences, or data-flows, between computational tasks. A

data-flow graph can be fine-grained, with each node corresponding to basic operations like

addition, or it can be coarse-grained, with each node corresponding to more complicated

computations like filters. Because they expose the maximum available parallelism, data­

flow graphs are instrumental in high-level synthesis and in mapping tasks onto array of

processors, and also the ’’programs” for the data-flow computation model.

It is indisputable that the data-flow model is ideal for building hardware, because of its

localized memory access, neighboring communication, and maximum parallelism. Indeed

it has been the model for designing high performance ASICs like DSP circuits [137]. For

the perceived multi-core architecture, the data-flow model will also play an important

role not only in building the accelerators, but also in core-to-core, core-to-accelerator, and

accelerator-to-accelerator communications through the on-chip interconnection network.

However, as discussed in Chapter 2, there are two schools of thoughts about how to

construct the data-flow graph. The first school of thought is to let the programmers

write programs using data-flow or streaming languages. The second school of thought

is to let the programmers write programs using conventional imperative languages, and

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the compilers translate the imperative programs into data-flow graphs. This thesis work

follows the second school of thought for the following reasons.

• There have already existed a huge code base written in imperative languages. As

time goes by, more and more important imperative programs will be developed.

These imperative programs will still need to run efficiently on future multi-core

processors.

• The von Neumann programming model of the imperative languages is widely appli­

cable. Many complicated applications have been written in imperative languages

based on the von Neumann programming model. On the other hand, the data-flow

or streaming languages are still in the stage of proving concepts. If we could develop

a program analysis system to extract data-flow from imperative programs, the need

for developing new data-flow or streaming languages, as well as the associated tool

chains, will be questionable.

Because there are already efficient algorithms to convert imperative programs to fine­

grained data-flow graphs [138] [123] [121] [139], and because exploiting coarse-grained

parallelism will become more and more important for future multi-core processors, this

thesis work will focus on extracting coarse-grained data-flows from imperative programs

to facilitate the exploitation of coarse-grained function parallelism in multi-core proces­

sors, as indicated in Figure 3.1. More specifically, this thesis work will target programs

written in the C language, partly because of the popularity of C and partly because of the

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Data
(scalar/array)

global

static

local

Code
(loop body)

Az_4=Az_dec
[44]

syn=synth_bu
[170]

mem_syn_ps'
[10]

F_gamma3
[101

F gam m a4
[10]

syn_pst
[160]

Weight (Az, F_gamma3, Ap3)

4 Weight (Az, F_gamma4, Ap4)

£R esldu(A p3, &syn_subfr[i], r e s 2 ,40) J !

J
D!

jfCopy(Ap3, h, 11)

nSet_zero(&hlll], 11)
Syn_(itt(Ap4, h, h, 22, Sh[11], 0)

Imp * h[0] * h[0];
for (i» 1 ; i < 22 ; i++)

tm p = Imp + h[i] * h[i];
tm pl = tmp » 8;
tmp = h[0]* h [1];
for (i * 1 ; i < 21 ; i++)

tm p = tm p + h ji] ' h[i+t);
tmp2 = tmp » 6;
if (tmp2 <= 0)

tmp2 = 0;
e lse{

tmp2 = tmp2 * MU;
tmp2 = tmp2/tm p1;

preemph (res2, temp2, 40)

Syn_flH(Ap4, res2, Ssyn^pstfLsubfrj,
40, m em _syn_pst, 1);

a ge (&syn[i subfr], &syn_pst[i sublr],
29491,40)

weight
T

weight

correlation

preemph

syn_filt

age

syn_filt redisu

(a) (b)

F ig u re 3.2 Illustration of the problem statement using the post-filter of G.724 decoder

compiler infrastructure used for prototyping and experiments. However, the techniques

developed in this work could also be applied to other imperative languages.

To specifically illustrate the problem that this work is to solve, Figure 3.2(a) shows the

original C code and the corresponding memory accesses of the G.724 post-filter example

presented in Figure 1.1. Note that the original program accesses both memory objects

statically allocated in the global memory and memory objects dynamically allocated in

the stack and the heap memory. These memory objects are often shared by different

functions. The challenge is to sort out the memory data-flow as shown in Figure 3.2(b)

from the complicated memory accesses as shown in Figure 3.2(a).

In summary, the problem statement of this research is as follows.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Problem statement: Building a program analysis system to extract coarse-grained

data-flow from C programs for exploiting coarse-grained function parallelism.

This concludes the philosophy part, and start the engineering part, of this PhD disser­

tation.

3.2 Fine-grained Analogy

To obtain some insights on how to extract coarse-grained data-flow from imperative

programs, this section will use Figure 3.3 to review how fine-grained data-flow is extracted

from imperative programs to exploit fine-grained function parallelism.

By pairwise comparison of variable reads and variable writes in the code segment

of Figure 3.3(a), we can construct the dependence graph shown in Figure 3.3(b). Each

dependence is annotated with the corresponding dependence distance. Note that the

dependence distance is an interval, not necessarily a single integer number [101]. For

clarity, only the lower bound of the dependence distance is shown in Figure 3.3(b).

These dependences prevent the parallel execution of instructions in the same iteration

and/or in different iterations. However, many of the dependences in Figure 3.3(b) are

false dependences caused by writing to the same variable a. If each dynamic instruction

writes to a different memory location, we can eliminate all the false dependences and

obtain the maximum parallelism which is only constrained by the true dependences and

hardware resources, as shown in Figure 3.3(c) 1.

1Here we assume there are 1 adder, 1 multiplier, and 1 divider.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Superscalar processors achieve this by performing the architecture register to phys­

ical register renaming on the fly [79]. Renaming can also be done using compile-time

techniques like SSA [121], which can easily convert the loop body in Figure 3.3(a) to

the data-flow graph in Figure 3.3(d). To obtain better instruction scheduling results,

software pipelining [95] or modulo scheduling [96] also perform register renaming using

techniques like modulo variable expansion [95] to allocate different registers to instruc­

tions in different iterations.

The key to exploiting fine-grained function parallelism is really to extract the data­

flow between instructions by eliminating false dependences through renaming. Essentially

there are three issues in extracting data-flow for function parallelism.

• Defining function. For fine-grained function parallelism, a function is an instruction

or an operation.

• Identifying the memory storages accessed by each function. For instructions operat­

ing on registers, the accessed memory storages can be identified using the specified

register numbers for the source and the destination operands.

• Identifying the producer and consumer relation between functions. Superscalar

processors use hardware structures like RAT (Register Alias Table) to establish

the producer and consumer relation between instructions at run-time. Compilers

identify the producer and consumer relation by performing data-flow analysis or by

SSA construction.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f o r (i = 0; i < 4 ; i++) {
a = u + v ;
a = a * x ;
a = a / y ;

}
(a)

>=o >=i>=0 > = 1

>=0

\> = l

X t /
>=0

>=0 trae dependence
—I—► anti dependence
-O -* output dependence

(b)

iteration 0 iteration 1 iteration 2

cycle 0

cycle 1

aOO = u + v;
_ X

alO = aOO * x; aOl = u + v;

cycle 2 a20 = alO / y; a l l = aOl * x;
' " ' X

a02 = u + v;

cycle 3 a21 = a l l / y; al2 = a02 * x;

cycle 4 a22 = a l2 /y ;

cycle 5

iteration 3

a23 = a!3 / y;

aO = u + v ;

"X
a l = aO * x ;

v
a2 = a l / y ;

(d)

(c)

F ig u re 3.3 Example illustrating extracting fine-grained data-flow

The next section will address these three issues in the context of extracting coarse­

grained data-flow to exploit coarse-grained function parallelism.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

in t A [40] ;

fooO (. . .)

fo r (iO = 0 ; iO <= 3 ; i0++) {
fo o l (A, . . .) ;
foo2 (. . . A, . . .) ;
foo3 (. . . A);

fo o l (sh o rt y [] , . . .)

fo r (i l = 0 ; i l <= 39 ; il++)
y [i l] = . . .

}
foo2 (. . . , sh o rt s [] , . . .)

fo r (i2 = 0 ; i2 >= 0 ; i2 —)
s [i2] = s [i2] . . .

}
foo3 (. . . sh o rt x [])

fo r (13 = 0 ; i3 <= 39 ; i3++)
. . . = x [i3] . . .

}

Figure 3.4 Example coarse-grained functions of subroutine calls

3.3 Coarse-grained Issues

This section will examine the issues in extracting coarse-grained data-flow from im­

perative programs to exploit coarse-grained function parallelism. The discussion will

follow the three issues summarized in the previous section. As explained in the follow­

ing sections, extracting coarse-grained data-flow is much more difficult than extracting

fine-grained data-flow.

3.3.1 D efining C oarse-G rained Function

To exploit coarse-grained function parallelism, we must first define what is coarse­

grained function, then we can discuss how to execute coarse-grained functions in parallel.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 in t A[40] ;
2
3 fooOa (. . .)
4 {
5 /*
6 * loopOa:
7 */
8 fo r (iO = 0 ; iO <= 3 ; i0++) {
9 /*

10 * lo o p la : w rite A [0 ..39]
11 * /
12 fo r (i l = 0 ; i l <= 39 ; il++)
13 A [il] = . . .
14 /*
15 * loop2a: read A [3 9 ..0] , w rite A [39..0]
16 * /
17 fo r (i2 = 39 ; i2 >= 0 ; i2 —)
18 A[i2] = A[i2] . . .
19 /*
20 * loop3a: read A [0..39]
21 */
22 fo r (i3 = 0 ; i3 <= 39 ; i3++)

. . . = A[i3] . . .23
24 }

F igu re 3.5 Example coarse-grained functions of loops

For the program segment in Figure 3.4, it is natural to consider the subroutine calls to

fo o l, foo2 and foo3 as coarse-grained functions. For the program segment in Figure 3.5,

we may consider each inner loop as a coarse-grained function. Coarse-grained function is

really not as well defined as fine-grained function. While subroutine calls and loops are

natural candidates for program regions, there could be other ways to divide a program

into regions, or coarse-grained functions.

Ideally we would like each program region, or coarse-grained function, is side-effect

free and accesses most of its data in local memories. We would also like to partition a

program in such a way that communication between program regions is localized in the

memories only accessed by the two communicating program regions. Ideally we would

like to partition a program into program regions in so that we could generalize the fine-

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

grained data-flow execution model to a coarse-grained data-flow execution model, and

maximize the available coarse-grained function parallelism.

But this rarely happens in imperative programs which often use global variables for

the communication between many program regions. To convert imperative programs into

coarse-grained data-flow programs, a more practical approach is to sort out the producer

and consumer relation between program regions and then convert global memory accesses

to local memory accesses, as discussed in the next section.

3.3.2 Identifying Producer and Consum er R elation

Consider the example in Figure 3.5, which has three inner loops as coarse-grained

functions, all accessing the same array A. As shown in Figure 3.6(a), we can speed up the

execution of fooOa using three hardware accelerators for loopla, loop2a, and loop3a,

with a memory block for the communication between these three accelerators, just as

the software implementation in the original program. This may speed up the execution

of individual innder loop, but there is not too much overlap between the execution of

accelerators as illustrated in Figure 3.6(a). Note that lo o p la at outer loop iteration i

can not start writing to A [0] until loop3a at outer loop iteration i — 1 finishes reading

the value of A [0] generated by loop2a at outer loop iteration i — 1.

Similar to the example in Figure 3.3, the problem here is that both lo o p la and

loop2a write to the same array A. If we can use different buffers for lo o p la and loop2a

at different outer loop iterations, like renaming variables in Figure 3.3(c), we can increase

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the overlapping between the execution of loopla , loop2a, and loop3a at different outer

loop iterations, as illustrated in Figure 3.6(b).

Basically, we can uncover more inherent coarse-grained function parallelism by sep­

arating the memory data-flow between lo o p la and loop2a from the memory data-flow

between loop2a and loop3a. However, this is possible only if we can prove the following.

• All the array A elements consumed by loop2a are produced by lo o p la at the same

outer loop iteration.

• All the array A elements consumed by loop3a are produced by loop2a at the same

outer loop iteration.

The proof for this simple example is trivial. Note that the lo o p la produces the set of

array A elements {A [i] |0 < i < 39}, which is also the set of array A elements consumed

by loop2a. Similarly, the same set of array A elements are produced and consumed

by loop2a and loop3a respectively. However, in general it is not easy to identify the

producer and consumer relation between coarse-grained functions, because determining

the exact memory locations accessed in a coarse-grained program region is not as easy

as in the fine-grained case.

3.3.3 Sum m arizing Coarse-grained M em ory A ccesses

Summarizing the accessed memory locations by a coarse-grained function is more

difficult than summarizing the accessed memory locations by a fine-grained function.

For the fine-grained case, the memory consists of registers (or scalar variables). The

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

loopla loop2a loop3a

CaJ
loopla

I- loopOa (i = 0)

loopla

loop2a

loop3a
H

I- loopOa (i = 1)

(a)

loop2a

loop3a

loopla
Al

A2
loop2a

B1
— /•

B2
loop3a

loopla loopla

loop2a loop2a

loop3a loop3a
loopOa (i = 0)

I- loopOa (i = 1)

(b)

loop3blooplb loop2b

loop3b loop3b

loop2b loop2b

looplb looplb

h loopOb (i = 0) -H
h loopOb (i = 1) ~H

(C)

F ig u re 3.6 Illustration of the producer-consumer relations between coarse-grained func­
tions

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

in t A[40] ;

{
/ *

* loopOb:
* /

fo r (iO = 0 ; iO <= 3 ; i0++) {
/ *

* loop lb : w rite A [0..39]
* /

fo r (i l = 0 ; i l <= 39 ; il++)
AEi l] = . . .

/*
* loop 2b: read A[0 ..3 9] , w rite A[0 ..3 9]
* /

fo r (i2 = 0 ; i2 <= 39 ; i2 —)
A[i2] = A[i2] . . .

/ *
* loop 3b: read A [0 ..39]
* /

fo r (13 = 0 ; i3 <= 39 ; i3++)
s = A[i3] . . .

}

Figure 3.7 Producer and consumer program regions with the same memory access
patterns

source and destination operands of an instruction unambiguously specify which registers

are accessed. The set of accessed registers can be easily represented using a bit vector,

with each bit corresponding to a register.

When performing data-flow analysis to identify the producer and consumer relation

between instructions, we need to check whether two instructions may access the same

registers. This checking can be easily done by applying bit-level operations on bit vectors.

On the other hand, a coarse-grained program region can access not only scalar vari­

ables, but also arrays and aggregates like structures or unions in the C programs. Using

pointer to access dynamically allocated memories only makes the situation worse. In

general, we cannot use bit vectors to represent the set of memory locations accessed by

a coarse-grained function. Instead, we need to use complicated data structures to repre-

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sent the accessed array elements, aggregates and dynamically allocated memories. If the

array accesses are irregular, or we cannot figure out exactly which dynamically allocated

memories are accessed, at best we can only have an inaccurate but conservatively correct

representation.

This inevitably complicates the identification of producer and consumer relation be­

tween coarse-grained functions. When performing data-flow analysis, instead of applying

bit-level operations on bit vectors, we need to apply complicated procedures on compli­

cated data structures to check whether two coarse-grained functions may access some

common memory locations.

There is another difference between accessing an array and accessing a scalar. The

access order of array elements could be very useful information, as discussed in next

section.

3.3.3.1 M em ory A ccess Order

Consider the program segment in Figure 3.7, which is essentially the same as the

example in Figure 3.5 except that loop2a in Figure 3.5 accesses array A from element 39

to element 0, while loop2b in Figure 3.7 accesses array A from element 0 to element 39.

Because of this reversal of the array accessing order, looplb and loop2b in Figure 3.7 not

only have a producer and consumer relationship but also have the same access pattern

of array A. Similarly, loop2b and loop3b also have the same access pattern of array A.

Because of this, the array elements produced by loop lb can be immediately consumed

by loop2b, and the array elements produced by loop2b can be immediately consumed

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by loop3b, without the need to buffer the whole array A. This data streaming not only

eliminates the buffering overhead but also increases the overlap between the execution of

producer and consumer, as illustrated in Figure 3.6(c).

Note that, in Figure 3.4 and Figure 3.5, we use more memory for the communica­

tion between producer and consumer pairs to increase the available function parallelism.

However, if the communication between producer and consumer can be in streaming

fashion, like the one shown in Figure 3.6(c), we can increase the available coarse-grained

function parallelism without using additional memory 2.

Strictly speaking, the data path in Figure 3.6(c) may not be correct, because the

output of loop2b may be consumed by program regions outside loopOb. On the other

hand, we are certain that the output of looplb is only consumed by loop2b, because

the writes of looplb are ’’killed” by the writes of loop2b, and thus will not get exposed

outside loopOb. Therefore, when we summarize the memory accesses of a program region,

we only need to record the exposed memory accesses. The next section will elaborate on

this.

3.3.3.2 Sum m arizing Exposed Accesses

Consider the program segment in Figure 3.8, which is different from Figure 3.7 in

that loop2c reads and writes both array A and array B. However, knowing that loop2c

reads array B from element 0 to element 39 will not help find more producers for loop2c,

because all the array B elements are produced from within the loop body of loop2c.

2 In this case, we even use less memory.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 in t A [40] ;
2 in t B[40];
3
4 fooOc (. . .)
5 {
6 /*
7 * loopOc:
8 */
9 fo r (iO = 0 ; iO <= 3 ; i0++) {

10 /*
11 * loop lc : w rite A [0 ..39]
12 */
13 fo r (i l = 0 ; i l <= 39 ; il++)
14 A [il] =
15 /*
16 * loop 2c: read A [0 ..3 9], w rite A [0 ..3 9],
17 * read B [0..39] (not exposed)
18 */
19 fo r (i2 - 0 ; i2 <= 39 ; i2 —) {
20 B[i2] = A[i2] . . .
21 A[i2] = . . . B[i2] . . .
22 }
23 /*
24 * loop 3c: read A [0 .. 39]
25 * /
26 fo r (i3 = 0 ; i3 <— 39 ; i3++)
27 s = A[i3] . . .
28 }

Figure 3.8 Example illustrating summarization of exposed accesses.

In general, to find the producers and consumers of a program region, we only need

to know its exposed memory accesses. The exposed memory reads of a program region

are the memory reads that are not ’’covered” by any memory write executed earlier

within the same program region. The exposed memory writes of a program region are

the memory writes that are not ’’killed” by any memory write executed later within the

program region.

An exposed read should have some producer outside its program region, unless it

is an access of some implicitly initialized memory like look-up table. Otherwise the

programmer may forget to initialize some memory. On the other hand, an exposed write

may or may not have consumers outside its program region.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In general, to exactly summarize the truly exposed memory accesses of a coarse­

grained function is difficult, partly because of the reason discussed at the beginning of

Section 3.3.3, and partly because of the difficulty in calculating the addresses of accessed

memories.

3.3.3.3 Sym bolic Scalar Variable Evaluation

The target language of this research work is the C language. C programs use pointers

to reference memory extensively, which causes difficulty in summarizing the exposed

memory accesses of program regions.

Take the program segment of f oo2d in Figure 3.9 as example, which is simplified from

the original source code of the pre-emphasis filter of G.724 decoder [24], To determine

the exposed memory reads of loop2d, we need to know the memory locations accessed

by the pointer dereferences *p and *q in the loop body. Inter-procedural pointer analy­

sis [140] [141] [142] [103] could tell us that both pointers p and q point to the memory

object array A. However this information is not accurate enough for us to deduce that

the reads by *p and *q at line 20 get their data from outside loop2d, not from the write

*p at line 20. To figure out this, we must know that the assignment statement at line 20

is equivalent to the assignment statement in the comment at line 21. Then we can use

dependence test to confirm that there is no true data dependence between the write of

*p and the reads of *p and *q at line 20.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

sh o rt A[40];

fooOd ()
{

foo2d (A, tmp2, 40);

}
foo2d (sh o rt *s, sh o rt n, in t L)
{

sh o rt *p, *q, temp, i ;

p = s + L - 1;
/* p = A + 39 */
q = p - 1;
/* q = A + 38 */
temp = *p; /* A [39] * /

loop2d: fo r (i = 0 ; i <= L - 2 ; i++) {
*p = *p - * q — * n ;
/* A [39-i] = A [39-i] - A [38-i] * n; * /

} P”
/* p = A + 0 * /
*p = *p - n * mem_pre;
/* A[0] = A[0] - n * mem_pre; */
mem_pre = temp;

F ig u re 3.9 Example illustrating symbolic scalar variable evaluation.

We have discussed the sub-problems we need to solve to extract coarse-grained data­

flow from C programs. The next section will outline the proposed program analysis

system to solve these problems and the organization of the rest of this dissertation.

3.4 Thesis Organization

The proposed memory data-flow analysis system to extract coarse-grained data-flow

from C programs for the exploitation of function parallelism is sketched in Figure 3.10,

which shows the components of this program analysis system, as well as the information

flow between them. The current implementation first does function in-lining to embed

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all C source code into the main function. Flow-insensitive pointer analysis [103] is then

performed to obtain the set of objects that each pointer may points to. Next, control

flow graph is constructed to facilitate the symbolic evaluation of scalar variables, as well

as to obtain more accurate pointer information by taking control flow into consideration.

The shaded components in Figure 3.10 constitute the main work of this research. The

rest of this dissertation will present more detailed discussion on symbolic scalar variable

evaluation (Chapter 4), program region construction (Chapter 5), exposed memory ac­

cesses summarization (Chapter 6), and producer-consumer relation analysis (Chapter 7).

Chapter 8 will discuss the prototyping of the memory data-flow analysis system and the

experiment results. Chapter 9 will conclude this dissertation with the obtained insights

and some possible future research directions.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C source files

C function annotated with inlined function boundary

C function annotated with points-to information

control flow graph representation of the program

C function with scalar variables annotated with (symbolic) values

a graph for the program region hierarchy

exposed memory accesses for program regions

conservative producer-consumer relation among program regions

more accurate producer-consumer relation among program regions

program region construction

producer-consumer relation analysis (top-down phase)

control flow graph construction

function inlining

symbolic scalar variable evaluation

summarization of exposed memory of program regions

flow-insensitive pointer analysis

producer-consumer relation analysis (bottom-up phase)

F igu re 3.10 Components of the proposed memory data-flow analysis system

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PT E R 4

Sym bolic Scalar Variable Evaluation

This chapter will explain how the proposed memory data-flow program analysis sys­

tem evaluates the symbolic value of each scalar variable, based on SSA form [121] and

induction variable detection [143]. The limitation of these algorithms is that they can

not go beyond the procedure boundary. To work around this limitation, procedures are

in-lined first, as indicated in Figure 3.10.

4.1 SSA-based Sym bolic Evaluation

Use the program segment in Figure 3.9 as example. After in-lining, we can covert

the function fooOd into the SSA form shown in Figure 4.1(a). Note that the variables in

Figure 4.1(a) are annotated with different subscripts so that the value of each variable is

generated by a single assignment statement. For straight-line code, the single assignment

property can be easily obtained by renaming variables. However, in an arbitrary control

flow graph, different values of the same variable can reach the same program point via

different paths in the control flow graph. To preserve the single assignment property, <fi-

functions are inserted at adequate confluence points in the control flow graph to represent

all the possible reaching values using one dummy variable. For example, in Figure 4.1(a),

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bbO:

bbl:

bb2 : p3 = <|)(p0, p2) ;

memjrej = temp0;

n0 = tmp2 ;

q 0 = Po
temp0 =

Pi = <t>(Po- P2) ;

4 0

— Po >

* mem_pre0 ;

(a) (b)

F ig u re 4.1 Example SSA form nd value flow graph

both values of the variable p, p0 and p2, can reach the beginning of basic block bbl.

Therefore, a ^-function is inserted at the beginning of basic block bbl to represent the

two possible reaching values p0 and p2 using the dummy variable pr

Basically, SSA form is a sparse representation of the value flow between variables.

By back-tracking the SSA link, we can do backward substitution to find the symbolic

value of a variable. For example, in Figure 4.1(b), we can find the symbolic value of p0

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as follows.

Po = (s o + ^o) — 1

= (s0 4- 40) — 1 , given L0 = 40

= (A + 40) — 1 , given so = A

= A + 39

The problem with back-tracking the value flow through SSA links is that there may

be cycles in the value flow graph, as the one highlighted in Figure 4.1(b) by red edges.

Cycles in value flow graph axe caused by reading and writing the same variables within

loops. These variables are called induction variables. Induction variables must be handled

carefully, otherwise, back-tracking the value flow graph may get trapped in infinite loop.

4.2 Induction Variable D etection

For the detection of induction variables, we use the method invented in [144], First,

we identifies the SCCs (Strongly Connected Components) [145] in the value flow graph.

Each SCC is corresponding to an induction variable. The nodes in SCC could be scalar

variables, arithmetic operators, and 0-functions. If the combination of the operators and

^-functions in a SCC matches some predefined patterns, we can determine the symbolic

value of each node in the SCC.

Take the SCC, marked with red edges, in Figure 4.1(b) as example. It has two

operators: 1) a 0-function at the loop header with an operand p0 from outside the loop

and another operand p2 from within the loop; 2) a ” —” operator with the second operand

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

being a constant 1. For this type of SCC, each node in the SCC will be an induction

expression with symbolic value of the form d + (—l)h. Here h is called fundamental

induction variable [144], which takes the values 0, 1, 2, 3, •••. The coefficient of the

fundamental induction variable is —1, which means the value of each induction expression

in this SCC will decrement by 1 every iteration. Each induction expression in this SCC

will have a different offset d, depending on its position in the SCC. Below are the symbolic

values of the induction expressions p, and p2.

Pi = Po + (“ I)!1) where h = 0, 1, 2, 3, • • •

P2 = Pi - 1

= Po + t- 1)*1- 1

We can further substitute the value of p0 into the symbolic values of pL and p2 as follows.

p1 = a + 39 + (—l)h , given p0 = A + 39

p2 = A + 38 + (—l)h

The technique presented in [144] can identify higher-order induction variables which

can be represented as polynomials of the fundamental induction variable. For the current

implementation, we only represent symbolic values as affine expressions of the form d+c-h,

where h is the fundamental induction variable, c is an integer constant, and d can be

either an integer constant or a scalar variable. Back-tracking will proceed in the value

flow graph until any non-affine term is encountered. For example, in Figure 4.2, back-

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F ig u re 4.2 Example illustrating non-affine expressions

tracking will stop before L0 = x * x. The symbolic value of p0 will be represented as

A + Lo — 1, without further expanding L0 into x * x.

4.3 SSA Extension

Symbolic evaluation only based on SSA form has its limitation. For example, in

Figure 4.1, the SSA form only tell us that the value of p3 can be either p0 or p2. Note

that the value of p3 could be p0 only if the branch at the end of the basic block bbO is not

taken. However, the branch at the end of the basic block bbO is always taken, because

its branch condition i 0 <= L0 — 2 is always true. (The value of i 0 is 0, and the value of

L0 is 40.) Therefore, the value of p3 is actually equal to p2.

Furthermore, p2 is an induction variable, and thus can take more than one values.

p3 should take the last value of p2 when the loop terminates, because p3 is outside the

loop, while p2 is inside the loop. However, we can not figure out this using the SSA

representation. The fundamental problem of SSA form is that it retains only data flow

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bbO: bbO:

bbl: bbl:

bb3 : bb3 :

bb2 : bb2 : * P 3 = * P 3 - n 0 * i
memjirej = temp0;* P 4 = * P 4 - n o * 1

merajjrej = temp0;

L0 = 40;
n0 = tmp2 ;

qo = Po
temp0 = Po-'

n0 = tmp2;

Pi = *Pi

(a) (b)

F ig u re 4.3 Example gated SSA form and pruned control flow graph

information but no control flow information. The ^-function contains no information to

determine which of the reaching values it should take. To remedy this problem, people

has extended SSA form to gated SSA form [123].

In gated SSA form, </>-function is augmented with predicate for the selection of possible

reaching values. Special ^-functions called //-functions and ^-functions are placed at loop

entry and loop exits. A //-function has two operands. The output of a //-function will

take the value of the first operand for the first loop iteration, and the value of the second

operand for the remaining loop iterations. The value of a r\ function is the value of the

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

corresponding variable when control reaches the corresponding loop exit. Figure 4.3(a)

shows the corresponding gated SSA form of Figure 4.1(a). For clarity, it does not show

the predicates in ^-functions, //-functions and //-functions. Note that a dummy basic

block is inserted at the loop exit to facilitate the insertion of //-functions.

The implementation and interpretation of gated SSA form is complicated. For the

symbolic evaluation of scalar variables in the prototype memory data-flow analysis sys­

tem, we implemented a simplified version of gated SSA form. To ease the job of identifying

induction variables and calculating their loop-exit values, we extended the SSA form with

//-functions and //-functions, but without having predicates in ^-functions, //-functions

and //-functions. W ithout resorting to predicate evaluation, we can still prune the control

flow graph by checking whether some branch conditions are always true or always false.

For the control flow graph in Figure 4.3(a), the false-branch at the end of basic

block bbO is never taken, so we can prune this edge and obtain the simplified control flow

graph in Figure 4.3(b). After pruning the fa lse-branch edge at the exit of basic block

bbO, we can also prune the the 0-function at the beginning of basic block bb2, because

now the control can reach basic block bb2 only through bacic block bb3. This can be

accomplished by re-constructing the SSA form using the pruned control flow graph 1.

Prunning control flow graph and SSA enables us to have more accurate symbolic

scalar variable evaluation. For example, we can easily conclude that, in Figure 4.3(b),

T t will be interesting to implement an algorithm to incrementally modify the SSA form from an
incremetally modified control flow graph, but this is beyond the scope of this work.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variable p at the basic block bb2 has the symbolic value of p3. We cannot easily reach

this conclusion in Figure 4.3(a) without full-blown implementation of gated SSA.

Given Figure 4.3(b), the value of p3 can be derived as follows.

P3 = ^(Pa)

= »7(Pi — 1)

= 77((A + 39 - h) - 1)

= rj(k + 38 — h)

= v W + *7(38) - rj(h)

= A+ 3 8 - 3 8

= A

Note that h is the fundamental induction variable, which starts from 0. Its last value

7 7(h) is the loop trip count minus 1, that is 38. The loop trip count in this example can

be calculated by checking the loop exit condition, ± 2 > L0 - 2. Note that the value of

± 2 is 1 + h and the value of Lo is 40, and thus the value of the loop exit condition is h

> 37. So, when the loop terminates, the value of h would be 38. In general, it is not

so straightforward to calculate the trip counts for arbitrary loops, which is beyond the

scope of this work.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PT E R 5

Program Region Hierarchy

This chapter will discuss how the proposed memory data-flow analysis system parti­

tions a program into program regions as coarse-grained functions. It will also discuss the

limitation of this program partitioning and how to handle library functions which have

no source code available.

5.1 Program Region Hierarchy

For the current implementation, we define a coarse-grained function to be one of the

following 4 program regions.

• in-lined function;

• loop with single loop entry, the so called natural loop [146];

• loop body;

• memory read;

• memory write.

By partitioning a program segment into these regions, we can impose a program region

hierarchy upon the program segment. For example, Figure 5.1 is the program region

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Loop Body Mem. Wr

Loop
Mem. Rd

Loop Body

Loop Body
Mem. Wr

Inlined Function
Loop Loop

Mem. Rd

Loop ... Mem. Wr

Loop Body
Mem. Rd

control flo w

region

region 9

region 12
region 2 region 7

region 6

region 13

region 5

region 0

region 14

region 10

region 1

region 3

region 4

region 11

A[i3]

A[i2] = . .

B[i2] = ..

.. = A[i2]

B[i2]

■ r

A[il]

for i l = 0, 39/1

for i3 = 0, 39, 1

for iO = 0, 3, 1-
fooOc ()

F ig u re 5.1 Example program region hierarchy

hierarchy of the in-lined function fooOc in Figure 3.8. Memory reads and memory writes

are the fundamental regions which are always at the bottom of program region hierarchy,

like the regions 9 to 14 in Figure 5.1. Although it is hard to call a single memory read or

memory write coarse-grained, treating memory read and memory write as fundamental

program regions will simplify the implementation of the the memory data-flow analysis

and the discussion of later chapters.

Except the fundamental regions, all other program regions consist of sub-regions. A

loop region, like the regions 1, 3, 4, and 5 in Figure 5.1, has only one sub-region, its loop

body. A loop body region, like the regions 2, 6, 7 and 8 in Figure 5.1, or an in-lined

function region, like the region 0 in Figure 5.1, may have more than one sub-regions. The

sub-regions of a program region are represented as a directed graph called the sub-region

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

graph. The nodes in a sub-region graph are corresponding to the sub-regions. The edges

in a sub-region graph are corresponding to the control flow between the sub-regions.

Accordingly, we use two major recursive data structures to implement the program

region hierarchy, -reg ion and _subregion_graph. Each -region has a reference to a

_subregion_graph. Each node in a _subregion_graph has a reference to the jreg ion

data structure of the corresponding sub-region. We basically build the .reg io n and

_subregion_graph data structures from bottom up. To build the .reg io n data structure

for a program region, we first build the -reg ion data structures for its sub-regions, then

build a _subregion_graph with its nodes pointing to the jreg ion data structures of the

sub-regions.

Program regions are identified in the control flow graph. A loop region and the

corresponding loop body region can be found using the algorithm for finding natural

loops [146]. The entry basic block and exit basic block of an in-lined function are marked

for the identification of the in-lined function. The marking of in-lined function entry

block and exit block is done during the construction of control flow graph, with the help

of in-liner generated compiler pragmas.

By our definition and implementation of program regions, the sub-region graph of a

program region is actually a directed acyclic graph, since a loop region has only one sub-

region and a loop body region contains no back-edges. This simplifies the implementation

of the memory data-flow analysis, which will be discussed in the following chapters.

However, our definition and implementation of program regions do have some limitations

as discussed in the next section.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i = 13;
sw itch (m) {

case 3: *p++ = 0;
case 2: do {

*p++ = 0;
case 1: *p++ = 0;
case 0: *p++ = *x+ +;

} while (- - i)

(a)

bbO:

i = 12;
switch (m) {

case 3
case 2
case 1
case 0

}
do {

*p++ = 0;
*p++ = 0;
*p++ = *x++;

} while (- - i) ;

(C)

p++ = 0;
p++ = 0;
p++ = 0;
p++ = *x++;

bbl:

bb2 :

bb3 :

bb4 :

i = 13;
sw itch (m)

case 2: *p++

case 1: *p++

case 3: *p++

case 0: *p++ *x++;

(b)

Figure 5.2 Work-around of improper loop

5.2 Lim itations

The definition and implementation of program regions in this work have the following

limitations.

• It cannot handle improper loops, which have more than one loop entry. Fig­

ure 5.2(a) shows a program segment from one of the MediaBench programs. Note

that the do-w hile loop has multiple entry points. We can not identify an improper

loop using the algorithm for finding natural loops, which is based on the detection of

back-edges. A back-edge is an edge in the control flow graph so that the destination

basic block of the edge dominates the source basic block of the edge.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As shown in Figure 5.2(b), the ’’loop-back” edge from basic block bb4 to basic

block bb2 in the control flow graph is not a back-edge, because basic block bb2

does not dominate basic block bb4. Therefore we will not group basic blocks bb2,

bb3 and bb4 as a loop body region. Instead, we will group all the basic blocks

in Figure 5.2(b) as one program region, which will have a sub-region graph with

the same structure as the control flow graph shown in Figure 5.2(b). Note that

the control flow graph in Figure 5.2 is not an acyclic graph. This violates our

assumption of sub-region graph and breaks the memory data-flow analysis.

The current remedy to this problem is to hand modify an improper loop to a

natural loop by peeling out the first iteration, as shown in Figure 5.2(c). We

expect improper loops will occur very rarely in common programs, as we only find

one case in all the benchmark programs we tried.

• It cannot handle indirect function calls. This is really the limitation of our in­

lining based approach. In the current implementation, in-lining takes place before

the pointer analysis, as shown in Figure 3.10. So, the in-liner does not know the

possible values of function pointers, and thus does not in-line functions at the

call-site of indirect function calls.

The current remedy to this problem is to hand replace the call-site of indirect

function call with several call-sites of direct function calls based on the pointer

analysis results. This is illustrated in Figure 5.3.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s o r t_ d a ta (q u ic k _ s o r t) ;
s o r t_ d a ta (b u b b le _ s o r t) ;

s o r t_ d a ta (q u ic k _ s o r t) ;
so r t_ d a ta (b u b b le s o r t) ;

s o r t_ d a ta (v o id (* s o r t) 0) so r t_ d a ta (v o id (* s o r t) 0)

(♦ s o r t) () ; i f (so r t == qu ick_sort)
q u ic k _ s o r t () ;

e l s e i f (so r t == bubb le_sort)
b u b b le _ s o r t () ;

(a)

(b)

F ig u re 5.3 Work-around of indirect function call

• It cannot handle recursive functions. This is the limitation of any in-lining based

program analysis. We may convert tail-recursions to loops, but, to handle recursions

in general, we must resort to inter-procedural memory data-flow analysis, which is

left as future work. For the telecommunication and media benchmark programs

used in this work, we only find one recursion case for implementing the intrinsic

functions of l e f t_ sh if t and r ig h t_ sh if t . We hand modified the program to break

this recursion, as illustrated in Figure 5.4.

• It cannot handle functions with variable number of arguments, for example, p r i n t f .

For the current in-lining based implementation, we manually replace the p r in t f

at different call-sites with different variants of the p r in t f function according to

the number and the data types of the actual parameters. For each new version of

p r in t f , a template function is created to model its memory access patterns.

Not just for p r in t f , we also use template to model the memory access behaviors of

other library functions.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s h i f t _ l e f t (i n t s h i f t c n t)
{

i f (s h i f t c n t < 0)
s h i f t _ r i g h t (- s h i f t c n t) ;

/* do s h i f t l e f t */

s h i f t _ r i g h t (i n t s h i f t c n t)

i f (s h i f t c n t < 0)
s h i f t _ l e f t (- s h i f t c n t) ;

/* do s h i f t l e f t */

foo ()

s h i f t _ l e f t (s h i f t c n t) ;
s h i f t _ r i g h t (s h i f t c n t) ;

(a)

s h i f t _ l e f t (i n t s h i f t c n t)

/* do s h i f t l e f t */

s h i f t _ r i g h t (i n t s h i f t c n t)

/* do s h i f t l e f t */

foo ()

i f (s h i f t c n t > 0)
s h i f t _ l e f t (s h i f t c n t) ;

e l s e
s h i f t _ r i g h t (- s h i f t c n t) ;

i f (s h i f t c n t > 0)
s h i f t _ r i g h t (s h i f t c n t) ;

e l s e
s h i f t _ l e f t (- s h i f t c n t) ;

(b)

F ig u re 5.4 Work-around of recursive function call

1
2
3
4
5
6
7
8
9

10
11
12
13

s ize_t f read (void * p t r , s ize_ t s i z e , s ize_ t nitems, FILE * f i l e)

i n t i , j ;

♦ f i l e = * f i l e ;
fo r (i = 0 ; i < nitems ; i++) {

fo r (j = 0 ; j < s ize ; j++)
((char *) p t r) [i * s iz e + j] = 0 ;

i f (i)
break;

}
re tu rn i ;

F igu re 5.5 A template describing the memory access behavior of fread

5.3 Handling Library Functions

The proposed program analysis system is trying to do whole program memory data­

flow analysis. No m atter it is in-lining based or inter-procedural, whole program analysis

cannot proceed if the source code of some function is not available. However, it is very

common in a program to call library functions which have no source code available. This

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

work uses template function to model the memory access behavior of library functions,

similar to the approach used in [141] for whole program pointer analysis. For example,

Figure 5.5 shows the template function for the library function fread . The outer loop

of the template in Figure 5.5, lines 6-11, models writing the items to the buffer pointed

by the formal parameter p tr . The trip count of the outer loop, the maximum number of

items to read, is given by the formal parameter nitem s. Lines 9-10, Figure 5.5, models

that the outer loop can exit early and read fewer data items. The inner loop (lines 7-8,

Figure 5.5) models writing each byte of the read item to the buffer. The formal parameter

s iz e gives the size of each item in bytes.

In addition to modeling the memory access behavior of software library functions,

hardware IP (Intellectual Property) providers can also provide the templates that model

the memory access behavior of their IPs 1. Template is really a way to enable whole sys­

tem memory data-flow analysis in order to optimize the communication between software

and/or hardware components.

5.4 Related Work

This work has the same program regions as those used in [62] and [147]. The goal

of [62] and [147] is to exploit coarse-grained data parallelism in outer loops, while the

goal of this work is to exploit coarse-grained function parallelism among the program

regions. It is not clear how [62] and [147] handled improper loops, indirect function

1A hehavioral C model also works, but from the memory data-flow analysis point of view, a template
only modeling the memory access behavior is accurate enough and requires less analysis time.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

calls, recursion and library functions. Some of these issues may not m atter in their case,

because their target language is Fortran.

The templates used in [141] only model the accessed memory objects. This is enough

for the purpose of whole program pointer analysis. For whole program memory data-flow

analysis, we may obtain more accurate analysis results by using templates which have

more detailed modeling of the memory access patterns.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PT E R 6

Exposed M em ory Access Summarization

For each program region, exposed memory access analysis tries to find its exposed

memory reads that consume the data generated by other program regions, and the ex­

posed memory writes that produce the data for other program regions. For each exposed

read and exposed write, we use a data structure called Memory Access Descriptor (MAD),

as explained below, to describe its memory access pattern. The exposed reads, and the

exposed writes, of a program region is a set of MADs which have mutually exclusive

memory accesses.

6.1 M em ory Access Descriptor

For our current implementation, the MAD data structure for describing memory

access pattern can be represented as a 6-tuple, {size, alias, base, offset, displace, type).

• size: This is the size of each access in terms of bytes.

• alias: This is the alias set given by the flow-insensitive pointer analysis [102] [103],

which gives us the most conservative information about the memory objects which

may be accessed.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int A [3] [2] ;
for (i=0 ; i<3 ; i++)

for (j =0 ; j <2 ; j++)
. . . A [i] [j] ...

int A [3] [2] ;
for (j =0 ; j <2 ; j++)

for {i = 0 ; i<3 ; i++)
. . . A[i] [j] ...

11 4 bytes |

A[0][0] A[0][1] A[1][0] A [l][l] A[2][0] A [2][l]

------- ►!
(stride, trip

(

4 bytes

------- ►!------- ►)------- ----------►!
-count) = (4 , 6)

a)

A[0][0] A[0][1] A[1][0] A [l][l] A[2][0] A [2][l]

k
(stride, trip-count)'
= (4 , 2)

(stride, trip-count) = (8, 3)

(b)

F igu re 6.1 Example illustrating the displace field of the MAD data structure

• base: This is the base address of the accessed memory locations. A base can be

static or dynamic. A static base is like the array A in the memory reference A [i] .

A dynamic base is like the pointer p in the memory reference *p.

• offset: This is byte offset from the base address. For example, for the memory

accessed by *(p+7), the base is p, and the offset is 28, assuming p is a pointer to

Tbyte integers.

• displace: This is a list of (stride in bytes, trip-count) pairs. For example, accessing

all the elements of a 3-by-2 integer array A in row major order will have base A, offset

0, and displace [(4, 6)], as shown in Figure 6.1(a). On the other hand, accessing all

the elements of A in column major order will have displace [(8,3)(4, 2)], as shown

in Figure 6.1(b).

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i f (. . .) {
/* access A[0] to a[9] */
fo r (i = 0 ; i <= 9 ; i++)

. . . A [i] . . .
} else {

/* access a [9] down to a[0] */
fo r (i = 9 ; i >= 0 ; i —)

. . . A [i] . . .
}

(a)

i f (. . .) {
/ * access A [0] to a[9] */
fo r (i = 0 ; i <= 9 ; i++)

. . . A [i] . . .
} else {

/* access all] to a [10] */
fo r (i = 1 ; i <= 10 ; i++)

. . . A [i] . . .

(b)

i n t A [1 0] ; i n t A [1 0] ;
i n t B [2 0] ; i n t B [2 0] ;
i f (. . .) { i f (. . .) {

p = A ; p = A ;
} e l s e { } e l s e {

p = B; p = B;
} , }
while (. . .) { fo r (i = 0 ; i < 10 ; i++) {

. . . p [x] p[x] . . .

} (c) } (d)

struct {
int A [10] ;
int B [20] ;

} s;
for (i = 0 ; i < 20

. s.B[i] . . .
}

(e)

struct {
int a;
int b;

} A [10] ;
for (i = 0 ; i

... A[i].b
}

10

(f)

F igu re 6.2 Examples for illustrating different MAD structures

• type: Different type values represent different accuracy levels of the memory access

description. Below are the 4 possible values of type, from the most accurate to the

least accurate.

— Seq: This type of MAD is the most accurate memory access description. A

5e<7-type MAD describes not only the accessed memory locations but also the

access order. For example, we can figure out the exact accessed memory loca­

tions and the access order for the for-loops in Figure 6.1. Using the 6-tuple

notation, (size, alias, base, offset, displace, type), the MADs describing the ac-

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cesses of array A by the for-loops in Figure 6.1 are (4, {A}, A, 0, [(4,6)], Seq)

and (4, {A}, A, 0, [(8,3)(4, 2)], Seq) respectively.

— Must'. A Must-type MAD describes only the accessed memory locations, but

not the access order. For example, in Figure 6.2(a), one of the for-loops

accesses array A from element A [0] to element A [9], and the other from A [9]

down to A[0]. We are certain that the code segment in Figure 6.2(a) accesses

the set of array elements {A[i]|0 < i < 9}, but we cannot determine the access

order at compile time. Therefore, we describe these memory accesses using a

Must-type MAD, (4, {A}, A,, [(4,10)], Must).

— May. While a Must-type MAD describes the exact set of accessed memory

locations, a May-type MAD describes only an upper bound of the possibly

accessed memory locations. Some memory locations in the set described by

a May-type MAD may not be accessed. For example, the code segment in

Figure 6.2(b) will access the set of array elements {A[i]|0 < i < 9} if the

branch condition is true, or (A[z]|l < i < 10} if the branch condition is false.

Therefore, the May-type MAD for Figure 6.2(b) is (4, {A}, A,, [(4,11)], May).

Note that, at run time, it will access either A[0] or A [10], but not both.

— Doomed: If we cannot even determine an upper bound of the accessed memory

locations, we can only conservatively use a Doomed-type MAD to describe the

possibly accessed memory objects given by the pointer analysis. For example,

we cannot determine the memory locations accessed by the code segment

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in Figure 6.2(c). We only know it may access the memory objects, array

A or array B, but we are not certain which array elements of which array

the while-loop will access. The corresponding Doomed-type MAD is thus

(4, {A,B}, J_, _L, J_, Doomed).

Figures 6.2(d) to (f) illustrate the MAD structures for other memory access cases.

Like Figure 6.2(c), we cannot determine, at compile time, whether the for-loop in Fig­

ure 6.2(d) will access array A or array B. However, instead of giving up too early and

using a Doomed-type MAD, we can still describe the memory accesses of the for-loop in

Figure 6.2(d) using a Se^-type MAD, (4, {A,B},p,, [(4,10)], Seq). Note that the alias set

of the MAD is {A, B}, and the base address of the MAD is p.

For the loop in Figure 6.2(e), which accesses the array B in the structure s, we can

use (4, (s. B}, s, 40, [(4,10)], Seq) to describe its memory accesses, which has the starting

address of the structure s as the base, and the offset of array B from the starting address

of structure s, 40, as the offset.

For the loop in Figure 6.2(f), which accesses an array of structures, we can use

(4, {A.b}, A, 4, [(8,10)], Seq) to describe its memory accesses, which has the starting ad­

dress of array A as the base, the byte offset of the b field in the structure, 4, as the offset,

and the byte size of the structure array element, 8, as the stride.

There are many memory descriptors proposed in the past, each with different trade­

offs between accuracy and complexity [148] [56] [149] [58] [147] [150] [151]. We choose

MAD mainly for the following reasons.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• C programs use pointer and pointer arithmetics extensively.

• We want MAD to be able to describe not only the accessed memory locations but

also the access order.

• We want MAD to be simple enough so that we can get a quick prototype to do

experiments on real programs.

• We expect MAD to be accurate enough for telecommunication and media applica­

tions.

It is always possible to have more sophisticated MAD design at the expense of more

engineering effort and more analysis time. Indeed, one of the goal of the prototyping

effort is to shed light on how to improve the MAD structure. The design of MAD

structure is basically orthogonal to the bottom-up summarization process and the top-

down pruning process, which will be explained in the following sections and the next

chapter.

6.2 B ottom -up Sum marization Process

Figure 6.2 shows the top-level function S um m arize for summarizing the exposed

reads and the exposed writes of the given region R. If R is a Memory Read region, Sum ­

m arize will call new _M A D to create a MAD structure representing the corresponding

memory read, which will be the only element of the set exposedjreads of R, and the set

exposed-write of R is empty (lines 2-4, Figure 6.2). On the other hand, if R is a Memory

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
2
3
4
5
6
7
8
9

10
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

function Summarize (/?'. a region) begin
if R is a Memory Read region then

R. exposedjreads := { new_MAD(7J) };
R.exposed-writes :== { };

else if R is a Memory Write region then
R. expose/Lreads := { };
R.exposed-writes := { newJM AD(it) };

else
/ / R.subregions is a directed acyclic graph (V ,E), w ith
/ / V is the set o f nodes representing sub-regions of R
/ / E is the set of edges representing control flow am ong V
for v e R. subregions do

let r be the corresponding sub-region o f v
Summarize (r);

end for
if R is not a Loop region then

R. expose/Lreads FindExposedReads (R,.subregions) ;
R.exposed.writes := FindExposedW rites {R. subregions)]

else
let b be the only Loop Body sub-region o f R]
Inter IterationD ependenceTest (b) ;
R . expos ed-reads : = Ylb loop (̂ • exP0S ed-reads);
R.exposed-writes := Ylbloop (^• exposed-writes);

end if
end if
for x € (/?. exposedjreads U R.exposedjwrite do

if x is not invariant w ith respect to R then
x.type := Doomed;

end if
end for

end function

Figure 6.3 The pseudo-code of Summarize

Write region, a new M A D will be created for the corresponding memory write, and the

exposedjreads will be empty (lines 5-7, Figure 6.2).

If R is not a fundamental region, Summarize first recursively calls itself to find the

exposed reads and writes of its sub-regions (lines 12-15, Figure 6.2), before finding its

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

own exposed reads and exposed writes (lines 16-21, Figure 6.2). This is the reason why

the summarization of exposed memory accesses is a bottom-up process.

If R is a Loop Body or a In-lined Function region, Summarize will call FindEx-

posedR eads and FindExposedW rites to find the exposed reads and exposed writes

(lines 16-18, Figure 6.2). The pseudo-codes of FindExposedR eads and FindExposed­

W rites are shown in Figure 6.6 and Figure 6.8, which will be explained later.

If R is a Loop region, it has only one Loop Body sub-region, say b. First, Sum m arize

will find the inter-iteration producer-consumer relationship between the sub-regions of b

(line 21, Figure 6.2). Next, Sum m arize will call Sum m ation (]T)) to find the exposed

reads and the exposed writes of R by expanding the exposed reads and writes of b for all

the iterations of R (lines 22-23, Figure 6.2).

Finally, Sum m arize will check each exposed memory access x to see whether x is

invariant with respect to region R (lines 26-30, Figure 6.2). If not, the type of x is

changed to Doomed. Here, x is invariant with respect to R if its MAD fields like base,

offset and displace are all represented by affine expressions in terms of variables defined

outside the region R, and thus not changing during the execution of the program region

R. Note that the fundamental induction variable associated with a loop is invariant with

respect to the corresponding loop body region. During each execution of the loop body,

which is corresponding to one loop iteration, the value of the fundamental induction

variable remains constant, because it only increments from iteration to iteration.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sum m arize (region3)

1
Sum m arize (region6)

I
Sum m arize (region?)

Sum m arize (regionO)

t
Sum m arize (region 1)

t
Sum m arize (region2)

- - I “

Sum m arize (region4)

i
Sum m arize (region7)

Sum m arize (region 10) / \ Sum m arize (reg ion l3)

Sum m arize (reg ion l 1) Sum m arize (reg ion l2)

Sum m arize (region5)

t
Sum m arize (region8)

t
Sum m arize (region 14)

region 0

F ig u re 6.4 Example recursive calls of Sum m arize
Loop Body

Loop lc
for i l = 0,39,1 /

region 9

region 6
(<Seq, A[hl]>}

Loop Body
,{<Seq, A[0..39]>) {<Seq, A[h2]>}

Loop Body

Inlined Function Loop 0c
fooOc for i0 = 0,3,1

region 1

*

region 2

w u

(<M ust, A [0 .J9]> |<M ust, A[0..39]> ,
<M ust, B[0..39]>) <M ust, B[0..39]>) ,

region 3

region 4

region 5

Loop 2c
for i2 = 0,39,1

{<Seq, A[0..39]>).

W

region 7

\

{<Seq, A[0..39]> \
<Seq, B[0..39]>)

• • •
(< S e q ,A [0 ..3 9]> .\ Loop3c

<Seq, B[0..39]>) for 13 = o.39,X

— ► exposed memory access/data flow
h i : fundamental induction variables for loop i

1*
region 8

V- J

region 10

region 11

region 12

region 13

{<Seq, A[h2]>

Loop Body
(<Seq, A[h31>)

region 14

A [il] =

Jjt ,
(<Seq, A [h l]>)

{<Seq, A[h2]>)

m
.. = A[i2]

B[i2] = ..

L_L_
{<Seq, B[h2]>)

(<Seq, B[h2]>)

,. = B[i2]

A[i2] = ..

_ L _
{<Seq, A[h2]>}

{<Seq, A[h3]>}

I
. = A[i3]

F ig u re 6.5 Illustration of the bottom-up summarization process

6.2.1 A n Exam ple

Taking the fooOc in Figure 3.8 as an example, whose program region hierarchy is

shown in Figure 5.1. Suppose Summarize(regionO) is called to summarize the exposed

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

memory access of fooOc. According to lines 12-15, Figure 6.2, Summarize(regionO)

will call Sum m arize(regionl) first; which will in turn call Summ arize(region2) first,

and so on. The complete recursive call sequence of Sum m arize in this case is shown in

Figure 6.4, and the result of the whole bottom-up process is shown in Figure 6.5.

When Summ arize(region9) is called, there will be no further recursive call of Sum ­

m arize, because region9 is a Memory Write region, which has no sub-region. A new

MAD structure will be created to represent the exposed write A [il] - Using the 6-tuple

notation (size, alias, base, offset, displace, type) for MAD, the exposed writes of region9

is {(4, {ObjIDpff, A, h\, [(0,1)], Seq)}, a set with only one MAD h

Here we assume the elements of array A are 4-byte integers. {ObjlDpff is the may-

alias set given by the pointer analysis. The offset is the symbolic value of the array

index i l , which is h\, the fundamental induction variable of the enclosing loop loop lc

in Figure 3.8. The displace [(0,1)] indicates that the stride is 0, and the trip-count is 1,

because there is only one accessed memory location, A + h\.

Note that the type of the exposed memory access of a fundamental region is always Seq.

This is because we define a single must-accessed memory location as a Seq access. Also,

the symbolic values of the offset and displace must be defined outside a fundamental

region. This means the exposed memory access of a fundamental region R is always

invariant with respect to R. Therefore, its type will never be down graded to Doomed at

line 28, Figure 6.2.

1For simplicity, in Figure 6.5, the exposed writes of region9 is denoted as {(Seq. A[/ii])}

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After summarizing the exposed writes of the Memory Write region region9, we next

summarize the Loop Body region region6. Because region9 is the only sub-region of

region6, region6 has the same set of exposed writes as region9, and has no exposed reads.

One subtlety here is that hi, the fundamental induction variable of the enclosing loop,

is an invariant with respect to the Loop Body region, so Summ arize(region6) will not

down grade (Seq,k[hi\) to Doomed.

After calling Sum m arize(region6), Summ arize(region3) will deduce the exposed

memory access of the Loop region region3 from the exposed memory access of the Loop

Body region region3 (line 22-23, Figure 6.2). Basically, given {(Seq, A[/ii])}, and the

loop trip count of looplc , which is 40, S um m atio n (£)) would return {{Seq, A[0..39]}}

because hi = 0,1,2, ••• ,39. Recall that {(Seq, A[0. .39])} is an abbreviation of the 6-

tuple (4, {ObjIDpff, A, 0, {[(1,40)]}, Seq), with 4 being the size, { ObjID being the may-

alias set, A being the base, 0 being the offset, (1,40) being the (stride, trip-count) pair

describing the displace, and Seq being the type.

Similarly, we will summarize the fundamental regions, regionlO, regionll, regionl2,

and regionl3, and then the Loop Body region region7, the Loop region region4, and so on.

Eventually we will get the summary for the In-lined Function region regionO, as shown

in Figure 6.5.

Note that in Figure 6.5, the exposed reads of regionl2, (Seq, B[hff), is not exposed out­

side region7. This is because {(Seq, B[1i2])} is covered by the exposed writes of regionll,

which is also {(Seq, Bf/^])}. This producer-consumer relationship between regionll and

regionl2 is identified during the execution of F in d E x p o sed R ead s (line 17, Figure 6.2).

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.5 indicates the producer and consumer relation by an arrow from regionll to

regionl2.

Also note that region7 is the corresponding Loop Body region of loop2c. A producer-

consumer relationship may exist between different iterations of loop2c, because both

the exposed reads and the exposed writes of region7 contain (Seq, Inter-iteration

producer-consumer relationship is identified during the execution of InterlterationDe-

pendenceTest (line 21, Figure 6.2). In this example, there is no inter-iteration true

dependence between iterations of loop2c. Therefore, there is no arrow from region7 to

itself, nor from regionl3 back to regionlO, in Figure 6.5.

If a consumer region has only intra-iteration dependences, which have dependence

distance 0, the consumer region and its producers are all executed in the same loop

iteration. In other words, the consumer region and its producers regions are all sub-

regions of the same parent loop body region. Therefore, there is no region outside the

loop body region and the corresponding loop region to produce the data needed by the

consumer region.

On the other hand, if a consumer region has some mter-iteration dependences, be­

cause the dependence distances must be larger than 0, its data are generated by some

producer regions which are executed in previous iterations. For the first iteration of the

loop, there is no previous iteration, therefore, the data of the consumer region must be

generated by some producer regions outside the loop body region and the corresponding

loop region. In other words, the consumer region has producer regions which are in its

parent loop body region, and also producer regions outside its parent loop body region.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Memory writes can cover memory reads as well as memory writes. For example,

both region3 and region4 have the same expose write (Seq. A[0..39]). Because region4 is

executed later than region3, as indicated by the control flow in Figure 5.1, so the same

exposed write of region3 is killed by the exposed write of region4. Writes are killed during

the execution of FindExposedW rites, line 18, Figure 6.2.

One final point about Figure 6.5, before diving into more detailed explanation of

FindExposedR eads and FindExposedW rites, is that the type of the exposed writes

of region2 is Must, instead of Seq. This is because for array A and B, the memory access

pattern of loopOc is (0,1, 2, • • • , 39,0,1, 2, • • • , 39,0,1, 2, • • • , 39,0,1,2, ■ • • 39). Strictly

speaking, this is not a sequential pattern, because, for a sequential memory access pattern,

each memory location can be accessed only once.

6.2.2 F inding E xposed Reads

Figure 6.6 outlines the function FindExposedR eads. Given the sub-region graph

G of region R, it will return the exposed reads of R. Let G — (V. E), where V is the set

of nodes representing the sub-regions, and E is the set of edges representing the control

flow between sub-regions. Note that G is a direct acyclic graph due to our definition and

implementation of program regions.

FindExposedR eads visits the nodes in V in reverse topological order (lines 5-6,

Figure 6.6). A node is visited only after all its successor nodes have been visited. This

order can be enforced by performing a topological sort on V [145]. The exposed reads of

sub-regions are backward propagated along the control flow until they are covered by the

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1: function FindExposedReads (G: subregions) begin
2: / / G = (V, E) is a directed acyclic graph for the sub-regions of region R
3: / / V, the set of nodes, represent the sub-regions
4: / / E, the set of edges, represent the control flow between sub-regions
5: Topological sort V
6: for v € V in reverse topological order do
7: if 3 so € v.successors then
8* Rin '— .S'o. / :iI ■
9: for s € (v.successors \ {so}) do

10 : Rin •— Rin U s .R 0ut)
11: end for
12: else
13: Rin := {};
14: end if
15: / / Let r be the corresponding region of v;
16: Rgen :== r - exposedjreads;
17: Wgen •= r.exposed-writes;
18. V.Rout • Rgen ® (Rin O 1T ên),
19: end for
20: / / Let ventry be the entry node of V
2 1 : return Vontry-Rout)
22: end function

F ig u re 6.6 The pseudo-code of F in d E x p o sed R ead s

exposed writes of other sub-regions. Otherwise, they will pass through the entry node

v e n try and become the exposed reads of region R .

For each node v E V, let r be the corresponding region of v; Wgen be the set of

exposed writes of r; Rgen be the set of exposed reads of r; v.R mit be the set of reads that

propagate through v. The v .R mii can be calculated as follows (lines 7-18, Figure 6.6).

First, the sets of reads that propagate through the successors of v are merged together

to form R in, the set of reads entering v (lines 7-14, Figure 6.6). The M erge (U) operation

basically takes two sets of MADs, merges the MADs that may access the same memory

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

objects, and produces a set of MADs with disjoint memory accesses. Section 6.2.4.2 will

explain M erge in more details.

Next, FindExposedR eads checks whether any reads in R in are (partially) covered

by any writes in Wgen, (Rin 0 Wgen, line 18, Figure 6.6). In addition to finding the

’’difference” between two sets of MADs, the Subtract (©) operation also helps identify

producer and consumer relation. Section 6.2.4.3 will have more detailed explanation of

Subtract.

Then, v.Rout can be obtained by concatenating Rgen with {Rin 0 Wgen). The Con­

catenate (0) operation basically takes two sets of MADs, concatenates the MADs that

may access the same memory objects, and produces a set of MADs with mutually exclu­

sive memory accesses. C oncatenate (0) differs from M erge (U) in that the result of

C oncatenate (0) depends on the order of its operands, but the result of M erge (u) is

independent of the order of its operands. Section 6.2.4.1 will explain C oncatenate in

more details.

Finally, FindExposedR eads returns neritr r f?0„i as the exposed reads of region R,

(line 21, Figure 6.6).

6.2.2.1 A n Exam ple

This section will use the example in Figure 6.7 to illustrate FindExposedR eads. In

reverse topological order, FindExposedR eads may visit the 4 regions 2 in Figure 6.7

in the order of region3 first, then region2, then regionl, and finally regionO as follows3.

2For brevity, we do not distinguish between a graph node and its corresponding region.
3The order of visiting region2 and regionl is arbitrary.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/* region 0 */
f o r (il=0;il<40;il++)

A[il] = . . .
if (condition)

/* region 1 */
for(i2=0;i2<40;i2++)

A[i2] * . . . A[i2] ,
else

/* region 2 */
for(i3=0;i3<40;i3++)

B[i3] = . . . B[i3] ;
/* region 3 */
for (i4 = 0; i4<4 0 ,* i4++)

. . . = A[i4] ;

(a)

region 0

R out={<May,B[0..39]>)

R gen = {)
W gen= {<Seq, A[0..39]>)

R in = {<Seq, A[0..39]>, <May, B[0..39]>)

region 2
Rgen ={<Seq,B[0..39]>}
W gen= {<Seq, B[0..39]>} region 1

n 0U(VVkJcq, n iv ..jy js'\
R gen = {<Seq, A[0..39]>}
W gen= (<Seq, A[0..39]>)

R in = {<Seq, A[0..39]>} R ,n = (<Seq, A[0..39]>}

region 3

R oul= « S eq , A[0..39]»
R gen = (<Seq, A[0..39]>)
W gen = { }

R in = ()
(b)

control flow

Figure 6.7 Example illustrating FindExposedReads

1. v — region3: The R in of region3 is {}, because region3 has no successor. The

exposed reads of region3 is {(Seq, A[0..39])} and the exposed writes is {}. Therefore,

the Rout of region3 can be calculated as follows.

region3./?out = region3. Rgen © (region3.Rire 0 region3.W9en)

= {(Seq, A[0..39])} © ({} Q {})

= {(Seq, A[0..39])}

2. v = region2: Because region3 is the only successor of region2, the R in of region2

is the Rout of region3. Both the exposed reads and exposed writes of region2 is

{(Seq, B[0..39])}, thus the Rout of region2 can be calculated as follows.

region2.fi,■out = region2.R gen © (region2. Rin 0 region2.M/ge„)

= {(Seq, B[0..39])} © ({(Seq, A[0..39])} © {(Seq, B[0..39])})

= {(5eg,B[0..39])} © {{(Seq, A[0..39])})

= {(Seq, A[0..39]), (5e?,B[0..39])}

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. v = regionl: This is similar to the case of region2, except that both the exposed

reads and the exposed writes of regionl are {(Seq, A[0..39])}. The R mt of regionl

can be calculated as follows.

region 1.Rmd - region 1.Rgen ® (regionl .R in Q region 1.Wgen)

= {{Seq, A[0..39])} ® {{{Seq, A[0..39])} © {{Seq, A[0..39])»

= {(Seq, A[0..39])}©({})

= {{Seq, A[0..39])}

Note that although both the R ^ t of regionl and the Rmt of region2 have the same

(/S'eg, A[0..39]), they are generated by different regions. The (Seq, A[0..39]) in the

Rout of region2 is the exposed reads of region3. While the (Seq, A[0..39]) in the R out

of regionl is the exposed reads of regionl, not region3, because the exposed reads

of region3 is covered by the exposed writes of regionl. The MAD structure can

track the originating regions of its memory accesses. More details on this will be

discussed later.

4. v = regionO: regionO has two successors, regionl and region2, thus the R out of

regionl and the R ^ t of region2 will be merged together to form the Rin of regionO.

r e g i o n O . = regionl J i ^ □ region2.A(ntt

= {(Se?,A[0..39])} U {(Seq, A[0..39]), (5e?,B[0..39])}

= {(Seq, A[0..39]), (May, B[0..39])}

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that both the R ^ t of regionl and the Rmt of region2 have (Seq, A[0..39]), so

the R in of regionO includes (Seq, A[0..39]). On the other hand, only the R out of

region2 has (Seq, B[0..39]). Therefore, M erge (U) will generate a new May-type

MAD, (May, B[0..39]), to be included in the R in of regionO. Here, the type May

means the memory access B[0..39] may happen, if the control flow actually reaches

region2. Because regionO has only exposed writes {(Seq, A[0..39])}, but no exposed

reads, the R ^ t of regionO can be obtained as follows.

regionO.R ^ t = regionO.Rgen © (regionO.R in © regionO.Wgen)

= {} © ({(Seq, A[0..39]), (May, B[0..39])} 0 {{Seq, A[0..39])»

= {}© {{(May, B[0..39]»)

= {{May, B[0..39])}

Since regionO is the entry subregion in Figure 6.7(b), the R ^ of regionO becomes

the exposed reads of the program segment in Figure 6.7(a), that is {{May, B[0..39])}. So

FindExposedR eads has deduced that the program segment in Figure 6.7(a) may need

B[0..39] from the outside.

6.2.3 F inding E xposed W rites

The algorithm of FindExposedW rite is outlined in Figure 6.8. It is like a ’’reversed”

version of FindExposedReads. FindExposedW rites visits the nodes of V in topo­

logical order (lines 5-6, Figure 6.8). A node in V is visited only after all its predecessors

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1: function FindExposedW rites (G: subregions) begin
2: / / G = (V, E) is a directed acyclic graph
3: / / V, the set of nodes, represent the regions
4: / / E, the set of edges, represent the control flow between regions
5: Topological sort V
6: for v G V in topological order do
7: if 3 po G v.predecessors then
3- .— PQ.Wout,
9: for p € (v .predecessors \ {po}) do

10: Win '■= Win Up.Wout]
11: end for
12: else
13: Win := {};
14: end if
15: / / let r b e th e corresponding region of i>;
16: Wgen := r.exposed-writes;
17: O^W0ut •= (ttbi 0 Wgen) 0 IT/en,
18: end for
19: / / let vexit be the exit node of V
20: return vexit .W0Ut;
21: end function

Figure 6.8 The pseudo-code of FindExposedW rites

have been visited. The exposed writes of sub-regions are forward propagated along the

control flow until they are killed by the exposed writes of other sub-regions. Otherwise,

they will pass through the exit node vexit and become the exposed writes of region R.

For each node v G V, let r be the corresponding region of v; Wgen be the set of

exposed writes of r; Rgen be the set of exposed reads of r; v.Wout be the set of writes that

propagate through v. The v.Wout can be calculated as follows (lines 7-17, Figure 6.8).

First, the sets of writes propagated through the predecessors of v are merged to­

gether to form Win, the set of writes entering v (lines 7-14, Figure 6.8). Next, FindEx­

posedW rites checks whether any writes in Win are (partially) killed by the writes in

Wgen (Win © Wgen, Hne 17, Figure 6.8). Then, v.Wout can be obtained by concatenating

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/* region 0 */ win= {)
for(il=0;il<40;il++)

A [il] = ... regionO W g e n = {<Seq, A[0..39]>}

if (condition)
/* region 1 */
for(i2=0;i2<40;i2++)

W0Ut = {<Seq, A[0..39]>}

A [12] = .. . A[i2] ; Win= {<Seq, A[0..39]>} Wi(1— {<Seq, A[0..39]>}

else
/* region 2 */
for (i3»0;i3<40;i3++)

region 2 W g e n = {<Seq, B[0..39]>}

Wom = (<Seq, A[0..39]>, <Seq, B[0..39]>}

regionl W g e n = {<Seq, A[0..39]>}

Wout = {<Seq, A[0..39]>)
B[i3] = . . . B [13] ;

U/* region 3 */
Win= {<Seq, A[0..39]>, <May, B[0..39]>}

for (i4 = 0;i4<40;i4++)
. . . = A[i4] ; region 3 W gen = { }

(a)

control flow

Figure 6.9 Example illustrating FindExposedW rites

(Win ©Wgen) with W gen. Finally, FindExposedW rites returns v ex it.R ou t as the exposed

writes of region R (line 20, Figure 6.8).

FindExposedW rites and FindExposedR eads apply the same M erge (U) and

C oncatenate (©) operations. The Subtract (©) operation is essentially the same,

except that when invoked by FindExposedW rites, it will not identify any producer-

consumer relationship.

6.2.3.1 A n Exam ple

Figure 6.9 uses the same example in Figure 6.7(a) to illustrate FindExposedW rites.

Here the regions in Figure 6.9 will be visited in topological order with regionO first, then

region2, then regionl, and finally region34.

1. v = regionO: Because regionO is the entry node in Figure 6.9, the Win of regionO is

{}. Given the exposed writes of region3, {(Seq, A[0..39])}, the Wmd of regionO can

4Again, the order of region2 and regionl is arbitrary.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be calculated as follows.

regionO. = (regionO. Win 0 region3.Wgen) 0 regionO. Wgen

= (0 © {{Seq, A[0..39]») © {(Seq, A[0..39])}

= {} © {(Seq, A[0..39])}

= {(Seq, A[0..39])}

2. v = region2: Because regionO is the only predecessor of region2, the W in of region2

is the Wout of regionO. Given the exposed writes of region2, {(Seq, B[0..39])}, the

Wont of region2 can be calculated as follows.

region2. Wont = (region2.Wm © region2. Wgejl) © region2.W9e„

= {{(Seq, A[0..39])} 0 {(Seg, B[0..39])}) 0 {(Seq, B[0..39])}

- ({(Se?, A[0..39])}) 0 {<Se?,B[0..39]>}

= {{Seq, A[0..39]), (Seq, B[0..39]>}

3. v = regionl: The W.n of regionl is the same as the Wj„ of region2. Given the

exposed writes of regionl, {{Seq, A[0..39]}}, the Wout of regionl can be calculated

as follows.

regionl.Wont = (regionl.Win © regionl.Wgen) © regionl.Wgen

= ({(Seq, A[0..39]}} © {{Seq, A[0..39])» 0 {{Seq, A[0..39])}

= ({}) © {(Seq, A[0..39])}

= {(Seq, A[0..39])}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that, although {Seq, A[0..39]) is in both the Wout of regionl and the Wout of

region2, the one in the Wmit of regionl and the one in the Wout of region2 are

generated by different regions. The one in the Wout of region2 is the exposed writes

of regionO. However,the one in the W ^ t of regionl is its own exposed writes, because

the exposed writes of regionO are killed by the exposed writes of regionl.

4. v = region3: The \Vin of regionO is obtained by merging the lTOMt’s of its predeces­

sors, regionl and region2.

r e g i o n O . = r e g i o n l . U region2.VKout

= {{Seq, A[0..39])} U {{Seq, A[0..39]), {Seq, B[0..39])}

= {{Seq, A[0..39]), {May, B[0..39])}

Note that the type of memory access B[0..39] in the W m of region3 is May because

it propagates to region3 only from region2, but not from regionl. The W mit of

region3 can be calculated as follows, given that region3 has no exposed writes.

regionS.ITo^ = (region3.Win © region3.WSen) © regionO. Wgen

= {{{Seq, A[0..39]), {May, B[0..39])} © {}) ® {})

= {{{Seq, A[0..39]), {May, B[0..39])}) © {})

= {{Seq, A[0..39]), {May, B[0..39])}

The Wout of region3 becomes the exposed writes of the program segment in Fig­

ure 6.9(a), because region3 is the exit sub-region. Finally, FindExposedW rites re-

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

turns {(Seq, A[0..39]), (May, B[0..39]}}, which means the program segment in Figure 6.7(a)

writes sequentially to array A from element 0 to element 39, meanwhile, it may write to

array B from element 0 to element 39.

6.2 .4 M em ory A ccess D escriptor O perations

This section will explain the C oncatenate (0), M erge (U), Subtract (©), and

Sum m ation (][)) operations used by Summarize, FindExposedReads, and Find­

ExposedW rites.

6.2.4.1 C oncatenate (0)

Figure 6.10 shows the top-level algorithm for the C oncatenate operation. The input

operands of C oncatenate are two sets of MAD structures, S ^ i and 2- The elements

in Sin>i are disjoint memory accesses in the sense that, for different u and v in S ^ i ,

u. alias and v. alias are disjoint sets of memory objects. So are the elements in S in^ ■

Also, the set of MADs returned by Concatenate, Sout, wiH also have this property.

C oncatenate basically does pair-wise comparison between the elements of S in^ and

the elements of S u i t 2 (lines 4-22, Figure 6.10). For m i € and m 2 € S in<2 which may

access the same memory objects (line 8, Figure 6.10), C oncatenateM A D is invoked to

’’concatenate” the memory access patterns of mi and m2 (line 10, Figure 6.10). Some

examples of concatenating two memory access patterns are shown in Figure 6.13 5.

5Here we overload ® for both the operation on two MADs and the operation on two sets of MADs

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

function Concatenate S i „ i2) / / S in,i © 5 ' in ,2 begin
/ / Sin,i,Sint2 ■ set of memory access descriptors (MAD)
$ o u t • { } ,

for mi G Sin>i do
ml_m2_concatenated := False]

^ t m p • { } 5

for m2 € Sin,i do
if m i.a lias D m?.alias ^ {} then

I I mi and m2 may access the same objects
mi := C oncatenateM A D (m i, m2);
m 1 _m2 .concatenated := True]

else
S t m p ■ S tm p U {m 2};

end if
end for
if ml_m2_concatenated = True then

S tr a p . — S f m p U

else
S o u t ■— S o u t U

end if
S i n , 2 ■ — S tr a p i

end for
S o u t * S ou t U S i n , 2 1

return S out]
end function

Figure 6.10 The pseudo-code of C oncatenate (©)

Figure 6.11 shows how C oncatenateM A D generates a new MAD structure m with

the ’’concatenated” memory access pattern from the input MAD operands, m i and m 2.

The may-alias set of m is the union of the may-alias sets of m i and m 2 (line 4, Fig­

ure 6.11). The components field of m is generated by Com bineCom ponents to keep

track of the originating program regions of its constituent MADs. This will be explained

in more details.

If the type of m i, or m2, is Doomed, or if m x and m2 have different bases, Concate­

nateM A D will just give up, and create anew Doomed-type MAD (lines 6-9, Figure 6.11).

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1: function ConcatenateM A D (m i ,m 2) begin
2: / / mi,m2: memory access descriptor MAD
3: to := new MAD;
4: to. alias := m i. alias U m 2 -alias',
5: to.components := CombineCom ponents (m i, m 2)',
6: if mi-type — Doomed or m 2 .type = Doomed then
7: (m.type, m.base, m . offset, m. displace)
8: else if mi.base m 2 .base then
9: (m.type, m.base, m.offset, m.displace)

10: else
11: / / mi.base = m 2 .base
12: m.base = mi-base;
13: if mi-type / m 2 .type then
14: down grade m i or m 2 so that they have the same type',
15: end if
16: (m.type, m.offset, m.displace) := C oncatenatePattern (m i, m 2)',
17: end if
18: return to;
19: end function

Figure 6.11 The pseudo-code of C oncatenateM A D

Otherwise, C oncatenateM A D will first adjust mi and m 2 so that they have the same

type, "down grading” one of them if necessary. Then, the adjusted access patterns of m i

and m 2 will be concatenated as accurately as possible (lines 12-16, Figure 6.11).

C oncatenatePattern, shown in Figure 6.12, essentially compares the type, offset,

and displace fields of m 1 and m 2 to determine the type, offset and displace field of the

new MAD. First, it will try to generate a new pattern of the same type as m i and m 2.

If this is not possible, it will try a pattern of less accuracy. For example, the current

implementation cannot concatenate the two Seq-type patterns in Figure 6.13(b) to an­

other Seq-type pattern, C oncatenatePattern will then concatenate these two patterns

into a Must-type pattern. If m i and m 2 are May-type MADs, concatenating them is

:= (Doomed, _L, 1_, _l_);

:= (Doomed, _L, ± , J_);

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1: function C oncatenatePattern (m i ,m 2) begin
2: / / mi,m2: memory access descriptors MAD
3: / / Assume mi-type = m 2 .type
4: if m i.type = Seq then
5: Try to generate a new Seq-type pattern (offset, displace) by concatenating (m i.offset,

ml.displace) and (m 2 -offset, m 2 .displace)',
6: if Succeeded then
7: return (Seq, offset, displace);
8: else
9: down grade m i and m2 to Must-type MADs;

10: end if
11: end if
12: if mi-type = Must then
13: Try to generate a new Must-type pattern (offset, displace) by concatenating

(mi.offset, ml.displace) and (m 2 -offset, m 2 .displace)',
14: if Succeeded then
15: return (Must, offset, displace)]
16: else
17: down grade m i and m2 to May-type MADs;
18: end if
19: end if
20: / / m i and m2 are May-type MADs
21: return M ergePattern (m i, m 2)]
22: end function

Figure 6.12 The pseudo-code of C oncatenatePattern

the same as merging them (line 21, Figure 6.12). Merging two MADs are explained in

Section 6.2.4.2.

Before explaining Merge, here is some explanation about C om bineCom ponents,

Figure 6.14, which are invoked by both C oncatenate and Merge. The components

field of the original MAD structures for the exposed reads and the exposed writes of

sub-regions is empty. During the process of backward or forward propagation, MAD

structures will be concatenated or merged with each other to form new MAD struc­

tures. Combine_com ponents basically combines the component sets of the input MAD

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 3 4 5 6 7 8
4------ 1----- 1----- 1----- 1----- 1----- 1----- 1-- (type, offset, [(stride, trip-count)])

0

•

(a)

0 O

(b)

• — • — • • — • — • — •
o o

©— ©— ©— ©---- ©----©— ©--- ©
(C)

(Seq, 1, [(1,3)])
© (Seq, 4, [(1,4)])

(Seq, 1, [(1,7)])

(Seq, 1, [(1,3)])
© (Seq, 7, [(-1 ,4)])

(Must, 1, [(1,7)])

(Must, 1, [(1,3)])
© (Must, 5, [(1,4)])

(May, 1, [(1,8)])

Figure 6.13 Examples of concatenating two memory access patterns

1: function Com bineCom ponents (mi,m2) begin
2: / / mi,m2: memory access descriptor MAD
3: if m\.components = {} and m 2 .components = {} then
4: return {mi,m2};
5: else if mi.components — {} and m 2 .components / {} then
6: return {mi} U m 2 . components]
7: else if mi.components / {} and m 2 .components = {} then
8: return mi.components U {m2};
9: else

10: / / mi.components {} and m 2 .components ^ {}
11: return m i. components U m 2 -components]
12: end if
13: end function

Figure 6.14 The pseudo-code of C om bineCom ponents

nated or merged with each other to form new MAD structures. The components field of

these new MAD structures due to concatenation or merge operations will then keep track

of the concatenated or merged MAD structures and their generating sub-regions 6. The

6In addition to the fields describing memory access patterns, the MAD structure also has book-keeping
fields, including the generating subg-region.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

components field of MAD will be used by Subtract when identifying producer-consumer

relationship between sub-regions. This will be explained in more details when discussing

Subtract.

6 .2.4.2 M erge (U)

M erge and the auxiliary functions, M ergeM A D and M ergePattern, are shown

in Figures 6.15, 6.16, and 6.17, which have very similar algorithmic structures as the

C oncatenate, C oncatenateM A D , and C oncatenatePattern shown in Figures 6.10

to 6.12.

The may-alias set and the components of the merged MAD are obtained in the same

way as a concatenated MAD (lines 4-5, Figure 6.16). However, there are still some

differences between M erge and C oncatenate, because C oncatenate is applied when

propagating MAD along straight line of code, while M erge is applied at the confluence

point of control flow. Figure 6.18 shows some examples of merging two memory access

patterns.

The major difference between M erge and C oncatenate is that if a Seq-type or

Must-type MAD is not merged with other MADs, it will be down graded to a May-type

MAD (lines 22-23, 27-31, Figure 6.15). An example of this is shown in Figure 6.7. When

calculating the R in of regionO, the {Seq, B[0..39]) in the R ^ t of region2 is not merged

with any MAD in the R rmt of regionl, and thus it is down graded to (May, B[0..39]).

Like C oncatenatePattern (Figure 6.12), M ergePattern (Figure 6.17) will try to

produce, as accurate as possible, a memory access pattern by comparing the type, offset,

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1: function M erge (S'in,i, 5 in,2) / / S'j„,i □ Sin, 2 begin
2: / / SinA,S i n t 2 '■ set of memory access descriptors (MAD)
3: Sout {}j
4: for m 2 eS _ in ,l do
5: m 2 .merged := False;
6: end for
7: for mi € 5<n>i do
8: m i.m erged : = False;

Stmp •— 0;
10: for to2 S 5i„ , 2 do
11: if mi.alias Pi m 2 -alias ^ {} then
12: / / mi and m2 may access the same objects
13: m i := M ergeM AD(m i, m2);
14: m i.m erged := TYne;
15: else
16: Sfmp . U {m2 },
17: end if
18: end for
19: if m i.m erged = True then
20: Stmp • ~~~ Stmp U {m i},
21: else
22: down grade mi to M ay-type MAD;
23: Sout '■= Sout U { m i } ;

24: end if
25: S int2 •— Stmp>
26: end for
27: for m2 € S i n t 2 do
28: if m 2 .merged = False then
29: down grade m2 to M ay-type MAD;
30: end if
31: end for
32: S 0ut ' Sout tl Si ji 2 ■
33: return Sout]
34: end function

F ig u re 6.15 The pseudo-code of M erge (u)

and displace fields of its input MADs. For the current implementation, two Seq-type

(Must-type) memory access patterns will be merged into a Seq-type (Must-type) pattern

only if they are the same (line 4 and line 11, Figure 6.17), as the example shown in

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1: function M ergeM AD (mi, m2) begin
2: / / mi,m2: memory access descriptor MAD
3: m := new MAD;
4: m.alias '.= mi.alias U m 2 -alias',
5: m.components '.= Com bineCom ponents (m i, m2);
6: if mi-type = Doomed or m 2 .type = Doomed then
7: (m.type, m.base, m.offset, m.displace)
8: else if mi.base ^ m 2 -base then
9: (m.type, m.base, m.offset, m.displace)

10: else
11: / / m i.base = m 2 .base
12: m .base = mi.base',
13: if mi.type / m 2 -type then
14: down grade m i or m2 so th at th ey are o f the sam e type;
15: end if
16: (m.type, m.offset, m.displace) := M ergePattern (m i, m2);
17: end if
18: return m;
19: end function

Figure 6.16 The pseudo-code of M ergeM AD

Figure 6.18 (b); otherwise, M ergePattern will generate a pattern of less accurate type.

The worst scenario is that M ergePattern totally gives up, and returns a Doomed-type

memory access pattern (line 21, Figure 6.17).

Note that M erge (U) is commutative, but C oncatenate (©) and Subtract (©) are

not.

6.2.4.3 Subtract (©)

The Subtract operation, shown in Figure 6.19, basically calculates the ’’difference”

between two sets of MADs, S in,i and Sin^- Unlike the the input sets of C oncatenate

and M erge, which are either both memory read accesses or both memory write accesses,

the second input operand SiUt2 of Subtract is always a set of memory write accesses.

88

:= (Doomed, ± , ± , J_);

:= (Doomed, T, _L, -L);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1: function M ergePattern (m i ,m 2) begin
2: / / Assume m i. type = m 2 .type
3: if m i.ty p e = Seq then
4: if (m i.o ffse t, m i.d isp lace) = (m 2 .offset, m 2 -displace) then
5: return (Seq, m i.o ffse t, m i.d isp lace)]
6: else
7: down grade mi and m2 to M ust-type MADs;
8: end if
9: end if

10: if m i.ty p e = M ust then
11: if (m ,i.offset, m i.d isp lace) — (m 2 .offset, m 2 . displace) then
12: return (M ust, m i.o ffse t, m i.d isp lace)]
13: else
14: down grade mi and m2 to M ay-type MADs;
15: end if
16: end if
17: Try to generate a new M ay-type pattern (offset, displace) by merging (m i.o ffse t,

m l.d isp lace) and (m 2 -offset, m 2 . displace)]
18: if Succeeded then
19
20
21
22
23

return (M ay, offset, displace)]
else

return (Doomed, _L, J-);
end if

end function

F ig u re 6.17 The pseudo-code of M e rg e P a tte rn

Like C o n ca ten a te and M erge, S u b tra c t also does pair-wise comparison between

the elements of 5j„,i and S in^ (lines 4-5, Figure 6.19). Each rrii in Sin<i is ’’subtracted”

by any m 2 in Sin 2̂ which may access the same memory objects (lines 6 -8 , Figure 6.19). If

m i is not totally covered by m 2, (mi 7 ̂ _L, line 13, Figure 6.19), a new MAD describing

the remaining memory accesses of m \ will be included in the returned S'out (lines 13-14,

Figure 6.19).

S u b trac tM A D , shown in Figure 6.20, is the function responsible for generating a

MAD to describe the memory accesses that are in m i, but not in m 2. At the beginning,

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 3 4 5 6 7 8
H ------1----- 1-- 1------1----- 1----- 1----- 1-- ftype, offset, [(stride, trip-count)])

• ^ (Seq, 1, [(1,3)])
O O U (Seq, 4, [(1,4)])

©-----©----- ©----- ©----- ©----- ©-----© (May, 1, [(1,7)])

(a)

(b)

(Seq, 1, [(1,7)])
U (Seq, 1, [(1,7)])

(Seq, 1, [(1,7)])

• ----- • ----- • • ----- • ----- • ----- • (Must, 1, [(1,3)])
O O U (Must, 5, [(1,4)])

©----- ©----- ©----- ©----- ©----- ©----- ©-----© (May, 1, [(1,8)])

(c)

F ig u re 6.18 Examples of merging two memory access patterns

1: function Subtract (Si„,i, Si„,2) / * Sm.i © Sin,2 * / begin
2: / / Sinti ,S i n>2 : set of memory access descriptors (MAD)
3 : “S o u t . = { }]

4: for mi € Si„,i do
5: for m2 € S,n)2 do
6: if m i.alias C\ m 2 .alias ^ {} then
7: mi := SubtractM A D (m i, m2);
8: end if
9: if m i = JL then

10: break;
11: end if
12: end for
13: if mi ^ J_ then
14. Sout •— $out © {tTll},
15: end if
16: end for
17: return Sout;
18: end function

F ig u re 6.19 The pseudo-code of S u b tra c t (©)

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

function SubtractM AD (m i,m 2) begin
/ / m i: a MAD for memory read or write
/ / m2: a MAD for memory write
comps := {# : 3c £ m i.com ponents, x = SubtractM A D (c, m 2) 1};
if m i.com ponents / {} and comps — {} then

m := _L;
else

if m i.ty p e = Doomed then
m := m i; m .com ponents '.— comps;

else if m 2 -type = Doomed or m i. base ^ m 2 , base then
m := m i down graded to M ay-type; m .com ponents := comps;

else / / m i.base = m 2 -base
if IntersectPattern (m i, m2) = False then

m := m i;
else

if m 2 -type = M ay then
m := m i down graded to May-type', m .com ponents := comps;

else / / m 2 . type = Seq or Musf
if PatternCovered (m i, m 2) = True then

m := J_;
else

m := new MAD;
(m .components, m .alias, m .base) {comps, m i.a lias , m i.base)',
{m .type, m .offset, m .displace) : = Pattern_subtract (m i, m2);

end if
end if

end if
end if
if m ^ mi and m i is memory read and mi .components = {} then

/ / identified a producer-consumer relationship
m i.producer : = m i.producer U {m2};
m 2 . consumer := m 2 -consumer U {mi};
m 2 . Consumed := True',

end if
end if
return m;

end function

F ig u re 6.20 The pseudo-code of S u b trac tM A D

S u b trac tM A D recursively calls itself to subtract the components of m i by m2 (line

4, Figure 6.20). This is because SubtractMAD is also responsible for identifying the

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1: function Pattern_subtract (m i,m2) begin
2: / f mi', a M ay-,M ust- or Seq-type MAD for memory read or write
3: / / m2: a Must- or Seq-type MAD for memory write
4: Try to describe the memory locations which are in mi but not in m2, using a

memory access pattern [m i.typ e , offset, displace);
5: if Succeeded then
6: return [m i.typ e , offset, displace);
7: else
8: return [M ay, m i.o ffse t, m i.d isp lace)]
9: end if

10: end function

Figure 6.21 The pseudo-code of Pattern_subtract

1 2 3 4 5 6 7 8
H------ 1----- 1----- 1----- 1----- i----- 1----- 1 (type, offset, [(stride, trip-count)])

(Seq, 1, [(1, 8)])
J} © (M ust,! , [(! , 5)])

(a)
© © © © © ©

© — © — © — ©

(b)

(Seq, 6, [(1, 3)])

(May, 1, [(1, 6)])
© (Seq, 5, [(1 ,4)])

(May, 1, [(1 ,4)])

(Must, 1, [(1, 8)])
© (Must, 2, [(1 ,4)])

(May, 1, [(1, 8)])o o
© © © © — © — © — © — ©

(c)

Figure 6.22 Examples of subtracting two memory access patterns

producer-consumer relationship between program regions, and the components of a MAD

may be generated by different program regions. If mi is a composite MAD, and it has

no component MADs left after the subtraction, SubtractM A D will return J_, meaning

that mi is totally covered or killed by m 2 .

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1: function IntersectPattern (mi,m2) begin
2: / / m 1 : a MAD for memory read or write
3: / / m 2 : a MAD for memory write
4: Let mi.displace = [(si,i,Ti,i)... (si.DuTi.dJ]-
5: Let m 2 .displace = [(s2 ,i,?2 ,i) ... (s2 ,D,) T2 .d2)]-
6: / / where s: stride, T: trip count.
7: return True, if the following proposition holds; otherwise, False.

3*i,j> 0 < i i j < j — 1 ... D 1

3«2,fe, 0 < *2 ,ft < Ti.fc, k — 1... D2
mi.offset + J2f=i h ,j • sij = m 2.offset + h,k • s2,k

8: end function

Figure 6.23 The pseudo-code of IntersectPattern

1: function PatternCovered (mi,m2) begin
2: / / m x: a MAD for memory read or write
3: / / m 2: a MAD for memory write
4: Let mi.displace = [(sM, Ti,i)... (sXjDl, Ti,Dl)].
5: Let m2.displace = [(s2,i,T2 ,i)... (s2 ,£>i,T,2 ;£)2)].
6: / / where s: stride, T: trip count.
7: return True, if the following proposition holds; otherwise, False.

< iXj < TXj , j = 1... £ > 1

3*2,k, 0 < *2,fc < Tx%k, k = 1 ... Z?2
mi.offset + 1 *i,j ' «i,j = m 2.offset + Y % lx *2 ,ft • «2 ,fc

8: end function

Figure 6.24 The pseudo-code of PatternCovered

If mi is a Doomed-type MAD, the result of subtraction will still be still a Doom-type

MAD (lines 8-9, Figure 6.20). SubtractM A D has a chance to figure out exactly which

part of m x is subtracted, only if m 2 is not a Doomed-type MAD and mi and m2 have the

same bases (lines 12-28, Figure 6.20). Otherwise, at best it can return a down graded

version of m x (lines 10-11, Figure 6.20).

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the memory accesses of mi and m 2 have no overlap, as determined by Intersect­

Pattern, which is shown in Figure 6.23 and will be explained later, the same m x can

be returned intact (lines 13-14, Figure 6.20). If the memory accesses of m x and m 2 do

intersect, but m 2 is a M ay-type MAD, SubtractM A D can at best figure out which

part of m x may be subtracted, and thus a May-type m x is the best possible MAD that

SubtractM A D can generate (lines 16-17, Figure 6.20).

If m 2 is Must- or Seq-type MAD, SubtractM A D first invokes PatternCovered,

which is shown in Figure 6.24 and will be explained later, to check whether m i is totally

covered by m 2. If so, SubtractM A D will return _L (lines 19-20, Figure 6.20). If m x is

only partially subtracted by m2, SubtractM A D will call Pattern_subtract to deter­

mine the type, offset, and displace of the remaining memory accesses of m x subtracted

by m 2 . Figure 6.22 shows some examples of the special cases which can be handled by

Pattern_subtract in the current implementation.

Figure 6.23 outlines the problem formulation for determining whether memory access

m i intersects with memory access m 2. Basically it is an integer programming problem.

If the system of inequalities in Figure 6.23 has solution, m x and m 2 will have intersec­

tion. This thesis work relies on the Omega test package [101] for solving the integer

programming problem.

Figure 6.24 formulates the problem of whether memory access m i is a subset of

memory access m2. It requires the evaluation of Presburger formula, which consists

of affine equality and inequality constraints on integer variables, combined with logical

operators A, V, -> and existential quantifiers V, 3. In general, it is a much more difficult

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1: function Sum m ation (Sin ,L) / / (<%«) begin
2 : / / Sin : set of memory access descriptor (MAD)
3: / / L: loop
4: S 0ut -= {};
5: for m £ Sin do
6: S out '■= Sout U Sum m ationM AD(m , L);
7: end for
8: return Sout]
9: end function

F ig u re 6.25 The pseudo-code of S u m m ation

problem than the integer programming problem shown in Figure 6.23. For special cases

like the one in Figure 6.24, a solver based on the Omega test can solve the problem

quickly [136] [152] [153].

Finally, if m* and m 2 have intersection, or equivalently m = (mi — m 2) 7 ̂mi, line 29,

Figure 6.20, a producer-consumer relationship between the generating program region

of m 2 and the generating program region of m i is found. S u b trac tM A D will record

this relation by including the generating program region of m 2 in the producer set of

m i, and the generating program region of m i in the consumer set of m 2, and marking

m 2.Consumed as True (lines 31-33, Figure 6.20).

6 .2.4.4 S u m m atio n (]P)

The function S u m m atio n (^) , shown in Figure 6.25, is for finding the set of exposed

memory accesses of a Loop region, given the exposed memory accesses of the enclosed

Loop Body region Sin, and the corresponding loop L. As suggested by the name, the

functionality of S um m atio n can be implemented as concatenating the exposed memory

accesses of all the iterations, as illustrated in Figure 6.28.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1: function SummationMAD (rrii,L) begin
2: / / mi : memory access descriptor (MAD)
3: / / L: loop
4: m new MAD;
5: if nii.type = Doomed then
6: (m .typ e , m .base, m .offset, m .displace) := (Doomed, -L, ± , J_);
7: else if m i. offset is an unknown induction expression then
8: (m .typ e , m .base, m .offset, m .displace) := (Doomed, _i_, _L, J_);
9: else

10: Find T , the trip count of L;
11: if T is unknown then
12: (m .typ e , m .base, m .offset, m .displace) := (Doomed, _L, _L, ±);
13: else
14: if T is an upper bound then
15: down grade m to a May-typed MAD;
16: end if
17: m .base := mi.base',
18: (m .typ e , m .offset, m .displace) := SummationMAD (m ,, T);
19: end if
20: end if
21: return m;
22: end function

Figure 6.26 The pseudo-code of Sum m ationM AD

For example, in Figure 6.28(a), the loop body has a Seq-type exposed memory access

with offset = (1 + h), and displace = [(stride, trip-count)] = [(0,1)], where h is the

fundamental induction variable of some loop that iterates 8 times. As indicated by

stride = 0 and trip-count = 1, for a particular iteration h, the loop body accesses only

one memory location. The relative address of accessed location, with respect to the base,

is given by the offset, h -1-1. From iteration 1 to iteration 8, for h = 0,1, 2 , . . . 7, the

whole loop will access the memory locations from 1 to 8 7. Therefore, the memory access

7Precisely, we should say ’’memory location of relative address 1 with respect to the base.”

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
2
3
4
5
6
7
8
9

10

11

12
13
14
15
16
17
18

19
20
21
22
23
24
25
26

27
28
29
30
31
32
33

function Sum m ationM AD (m ,,T) begin
/ / ??ij : a MAD descriptor
/ / T : trip count of loop L
Let m i.o ffse t = c + s l ■ h-L,
/ / where hL is the fundamental induction variable of loop L.
if m i is a read with inter-iteration data dependence then

down grade m* to M ay-type;
end if
if m i-type = Seq then

Try to generate a Seq-type pattern (offset, displace), comparing the relationship
between c, s l , m i.displace, and T .
if Succeeded then

return {Seq, offset, displace);
else

down grade mt to M ust-type
end if

end if
if m i.typ e = M ust then

Try to generate a M ust-type pattern (offset, displace), comparing the relationship
between c, s l , m i.displace, and T .
if Succeeded then

return (M ust, offset, displace)',
else

down grade m i to M ay-type
end if

end if
if m i-type = M ay then

Try to generate a M ay-type pattern (offset, displace), comparing the relationship
between c, s l , m i.displace, and T .
if Succeeded then

return {M ay, offset, displace)',
else

return (Doomed, ± , ±);
end if

end if
end function

F ig u re 6.27 The pseudo-code of S um m ationM A D

pattern of the whole loop is {Seq, 1, [(1,8)]), using the {type, offset, [{stride, trip-count)])

notation.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 3 4 5 6 7 8
_)-------- 1------- (.------- 1------- 1------- 1--------1------ 1—

h=0 h=l h=2 h=3 h=4 h=5 h=6 h=7

• • • • • • • • Y (Sect 1+h’ K0*1)])
O Sl = 1 , T = 8 (k=h<8

(a)

(b)

h=0
0 - • - • h=l

>•< • - >

O *l = 2 , T = 3

(Seq, 1, [(1, 8)])

r (Seq, l+3*h, [(1,2)])
0<=h<3

(Seq, 1, [(1, 2)(3, 3)])

r (Seq, 4+2*h, [(-1 ,4)])
0<=h<3

(Must, 1, t (l , 8)])

(c)

F ig u re 6.28 Example illustrating S um m atio n QT])

For nested loops, we may need more than one pairs of (stride, trip-count) to describe

the memory access pattern of the whole loop. For example, in Figure 6.28 (b), the memory

access pattern of the inner loop has offset — (l+ 3h), where h is the fundamental induction

variable of the outer loop. This means, when the outer loop iterates, the starting memory

access location of the inner loop will shift to the right by 3, the coefficient of h in the offset.

Since the loop trip-count of the outer loop is 3, as indicated by 0 < h < 3, the displace

of the memory access for the whole loop will be [(1,2)(3,3)], where (1, 2) describing the

stride and the trip-count of the memory accesses of inner loop, and (3,3) describing the

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stride of the starting point of the inner loop memory access and the trip-count of the

outer loop.

For the examples in Figure 6.28(a) and (b), the type of the memory access of the

loop body is preserved by summation. It is not always possible to describe the memory

accesses of a Loop region as accurate as describe the memory accesses of the corresponding

Loop Body region. For example, the Loop Body region in Figure 6.28(c) has a Seq-type

MAD, but the memory accesses of the Loop region can be only described using Must-type

MAD in the current implementation.

Implementing S u m m atio n by concatenating the memory accesses of the loop body

for all iterations is not efficient. S um m ationM A D , Figure 6.26, outlines how to do

summation, given a MAD m* and the corresponding loop L. As illustrated in Figure 6.28,

the key is to figure out the trip count of L , and the coefficient of the fundamental induction

variable of L in the offset of mj.

If mj is a Doomed-type MAD, or if the offset of mj is an induction expression which

can not be represented as an affine expression in terms of fundamental induction variables,

or if the trip count of loop L is unknown, S um m ationM A D just returns a Doomed-type

MAD (lines 5-12, Figure 6.26). If we know the loop trip count T, but T is just an upper

bound, mi is conservatively down graded to May-type (lines 14-16, Figure 6.28), because

L may iterate less than T times. If T is the exact loop trip count of L, S u m m ationM A D

in Figure 6.27 will try to find the type, offset, and displace of MAD as accurate as possible.

S um m ationM A D first separates the offset of mj to two terms, Sl ■ and c, where

h i is the fundamental induction variable of loop L (line 4, Figure 6.27). Then, Sum -

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m atio n M A D will try to generate a pattern with the same type as m* by checking the

relationship between c, s l , rrii, displace, and T. If this is not possible, S u m m ationM A D

will try less accurate descriptors until it gives up, and returns a Doomed type pattern

(lines 9-32, Figure 6.27).

There is one subtlety in S um m ationM A D . If m* is a memory read access and has

some inter-iteration dependence, some of its data will come from previous iterations,

instead of from outside the loop. Thus, the summation of the exposed reads of loop body

for all the iterations should be calculated as follows. Note that the exposed reads R

and the exposed writes W of the loop body are functions of the fundamental induction

variable h of loop L.

T h rL - l

h o t

1st iteration t
the rest iterations

The calculation of this formula is complicated. A conservative but quick approximation

is to down grade m, to May-type if it has any inter-iteration true dependence (lines 6-8,

Figure 6.27).

6.3 R elated Work

People have developed techniques to summarize the side effects of procedures in order

to perform dependence tests across procedure boundary [64] [154] [155] [149]. A summary

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of side effects describes the sets of memory locations that the procedure reads and writes,

called the use-set and the modify-set in literature.

The summaries are propagated in the program call graph from bottom up. The sum­

mary of a procedure is generated by combining the memory access information of its own

loops with the summary information propagated from its callees. For conservatively iden­

tifying possible dependencies between procedures, this approach is efficient and effective

enough.

However, the information provided by pair-wise dependence tests between program

regions is too conservative for more advanced parallelization techniques, which require

more accurate information about the data-flow between program regions [156] [56]. The

array data-flow problem is first addressed by Feautrier [57], who developed a technique

called parametric integer programming [157] to derive, for each memory read, the corre­

sponding memory write which generates the data. Array data-flow analysis based on the

parametric integer programming method has two major problem. First, the complexity

of parametric integer programming could be high8. Second, it can handle only control

structures like the Fortran DO-loop, but not arbitrary control flow. To address the first

problem, researchers developed a more efficient, but less general, method that can handle

most of the common cases [60], which, however, still can not handle arbitrary control

flow.

8While the original paper claimed param etric integer programming m ethod is practical [57], other
authors claimed it is not practical [60],

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In general, it is very difficult, if not impossible, to exactly describe the producer-

consumer relation for programs with arbitrary control flow. For some parallelization

purposes, for example, array privatization, exact producer-consumer relation is not nec­

essary. Array privatization could enable more loop parallelization by eliminating false

dependences between loop iterations. It replicates the arrays so that each iteration gets

its own private copy. Array privatization can be applied to a loop as long as we can prove

that every read in the loop gets its data from a write in the same loop iteration. This is

a weaker condition than knowing the producer of each read.

Based on this observation, researchers have developed array data-flow analysis tech­

niques which are capable of handling arbitrary control flow, and also efficient and effective

enough for array privatization [61] [62] [58] [71] [63] [147] [59] [158]. Essentially all these

works follow the same approach of partitioning the program into regions, summarizing

the memory accesses for each region, propagating and combining the summary informa­

tion in the control flow graph and the program call graph. They differ from each other

mainly in the data structures that represent the memory accesses of each region, and the

complexities of the operations that manipulate these data structures.

The concepts and techniques developed in these works laid the foundation for this

work. Because of different target languages and different type of parallelisms exploited,

this work differs from the previous works in the following aspects.

• Previous works on parallelizing compilers mainly target scientific applications writ­

ten in Fortran. On the other hand, this work targets the programs written in

C. While scientific Fortran programs use arrays as their main data structures, C

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

programs can have more complicated data structures referenced through pointers.

The data structure MAD used in this work for describing the memory accesses in C

programs must incorporate pointer informations, and the operations on the MAD

data structure must manipulate the included may-alias set. This is not necessary

in the previous works.

• In the previous works, the summary of each program region can only tell the set of

accessed memory locations, but not the order of accessing these memory locations.

This is sufficient for array data-flow analysis to identify candidate loops for array

privatization. However, for the potential optimizations shown in Figure 3.6, we

need to know not only the accessed memory locations, but also the memory access

order. The MAD data structure used in this work is designed for a memory data

flow analysis whose lattice values also contain the memory access order information.

The operations on MAD will try to preserve the memory access order information

before moving up the data flow value lattice.

• For the array data flow analysis designed for array privatization, the goal is to

exploit coarse-grained data parallelism in the outer loop, so it is not a concern for

them to identify the producer-consumer relations between program regions. On

the other hand, the goal of this thesis work is to uncover coarse-grained function

parallelism, so the bottom-up process not only summarizes the memory accesses for

each program region, but also identifies the possible producer-consumer relations

between program regions. Because of this, the MAD data structure used in this

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

work not only records the memory access pattern, but also tracks the generting

progrom regions of memory accesses.

The main focus of this work is identifying the producer-consumer relations between

program regions, which is also the fundamental cause of the differences between this work

and the previous works. Next chapter will discuss how the producer-consumer relations

identified by the bottom up process can be refined by a top-down process.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PT E R 7

Producer-Consum er R elation Analysis

The producer-consumer relations among program regions are identified in two phases.

During the bottom-up summarization process discussed in Chapter 6, we constructs a

conservative producer-consumer relation. This producer-consumer relation is then refined

by an ensuing top-down pruning process. These two phases are explained in the following

sections.

7.1 B ottom -up Phase

During the bottom-up summarization process, to summarize the exposed reads of

region R, we forward propagates the exposed reads of its sub-regions along the edges

in the sub-region graph of R. When propagating the exposed reads of sub-region R r

through sub-region R w, we subtract the exposed writes of R w from the exposed reads of

Rr. If the SubtractMAD operation deduces that an exposed write of R w and an exposed

read of Rr access some common memory locations, it will record this new identified

producer-consumer relation between Rw and Rr, and mark the exposed write of Rw as

Consumed (fine 33, Figure 6.20).

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Loop Body

exposed write marked Consumed

— ► exposed memory access/data flow

h i : fundamental induction variables for loop i

Loop lc
for i l = 0,39,1 /

region 9

Loop Body

Inlined Function
fooOc

Loop 0c
for iO = 0,3,1

region 0 region 1

i f t r

'

region 2

ir v

(<M ust, A[0..39]> {<Must, A[0..39]>
<M ust,B [0 .39]>} <M ust, B[0..39]>}

region 3

region 4

region 5

A

region 6

i<Seq, A[0.J9]>}

Loop 2c
for i2 = 0,39,1

{<Seq, A[0..39]>}

u

region 7

u V

A [il] = ..

■ I
{<Seq, A [h l]>)

Loop Body
(<Seq, A[h2]>)

{<Seq, A [h l]>)

{<Seq, A[h2]>(

I • • • • {<Seq, A[0..39]>.
<Seq, B[0..39]>)

{<Seq, A [0 .J9]> .
<Seq, B[0..39]>) \

Loop 3c
. for i3 = 0.39,1

(<Seq, A[0..39]>)

region 10

region 11

region 12

region 13

T '
,. = A[i2]

B[i2] = ..

. I
{<Seq,Bfh2]>}

... {<Seq, B[h2]>}

n
. = B[i2]

t
region 8

v

{<Seq, A[h2]>
<Seq, B[h2]>)

Loop Body
(<Seq, A [h3]>)

A[i2] = ..

region 14

{<Seq, A[h2]>)

{<Seq, A[h3]>)

m
.. = A[i3]

• • i

F ig u re 7.1 Illustration of the bottom-up phase

For example, when summarizing the exposed reads of region7, in Figure 7.1, we will

propagate the exposed reads of regionl2 through regionll. Because both regionll and

regionl2 access the same memory, B[h2], there exists a producer-consumer relationship

between regionll and regionl2, and the exposed write (Seq,B[h2]) of regionll will be

marked as Consumed. Similarly, when summarizing the exposed reads of region2, we

will identify the producer-consumer relationship between region4 and region5, and the

exposed write (Seq, A[0..39]) of region4 is marked as Consumed.

Although the bottom-up phase can identify the producer-consumer relationship be­

tween the sub-regions of region R, the exposed writes of the sub-regions may or may not

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be consumed outside the region R. For example, in Figure 7.1, both regionll and re-

gionl3 are sub-regions of region7. The exposed write (Seq, A[/?,2]) of regionl3 is consumed

by region5, a region outside region7, but the exposed write (Seq, B[h2]) of regionll has

no consumer outside region7.

Being confined within the scope of region7, the bottom-up phase does not know

whether any region outside region7 will consume the exposed writes of regionll or not,

so it must conservatively included both (Seq, A[/i2]) and (Seq, B[h2]) in the exposed writes

of region7. To prune the spurious exposed writes like (Seq, B[h2]), we need a top-down

phase after the bottom-up phase.

7.2 Top-down Phase

Figure 7.2 illustrates the top-down pruning process using the same example in Fig­

ure 7.1. The top-down pruning process starts from the top-level region, regionO in this

case. Since regionO is the top-level region, no other region will consume the exposed

writes of regionO. So we can prune all the exposed writes of regionO, as indicated by

crossing the exposed writes with red lines in Figure 7.2. Next, we prune the exposed

writes of the sub-regions of regionO.

If an exposed write w of regionO is pruned, which means it has no consumer outside

regionO, none of the components of w will be consumed outside regionO. Note tha t the

components of w of regionO are the exposed writes of some sub-regions of regionO. So, if a

component c of w is an exposed write of sub-region R, and c is not marked as Consumed

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exposed writes marked Consumed during top-down phase

exposed writes marked Consumed during bottom-up phase

exposed writes pruned

 > exposed memory writes/data flow not needed

— ► exposed memory access/data flow

h i : fundamental induction variables for loop i

Loop Body

Loop lc
for i l = 0,39,1 /

region 9

Loop Body

Inlined Function
fooOc

Loop 0c
for i0 = 0,3,1

region 0 region 1

Ji V

r
region 2

v V
(<M usL A[0i,39]> (<M usf,Afft.,39 J> .

< M ustrB f0 .J9I>) fl{0i,39]>)

region 3

region 4

region 5

V V

A

region 6

v
{<Seq, A [0.J9]>}

Loop 2c
for i2 = 0,39,l

{<Seq, A[0.39]>1

region 7

w v ;

A [il] = ..

- I -

{<Seq, A [hl]>)

Loop Body
(<Seq, A[h2]>)

{<Seq, A[hl]>}

{<Seq,A[h2]>}

|<Seq, A f0.J9]>
<Seq,Bf0..39J>)

<5(̂ , Bf«..39i>f • Lo°P3c
\ for i3 = 0.39,1

\ ’{<Seq, A[0..39]>}

region 10

region 11

region 12

region 13

JL.

T
„ = A[i2]

B[i2] =

{<Seq, Bfh2]>}

..{<Seq, B[h2]>)

I
■ = B[i2]

s

region 8
,

{<Seq, A[h2]>

Loop Body
... (<Seq, A[h3]>)

A[i2] = ..

region 14

{<Seq, A[h2]>)

{<Seq, A[h3]>)

T
= A[i3]

Figure 7.2 Illustration of the top-down phase

when summarizing the exposed memory accesses of regionO, that mean c is not consumed

by any sub-region of regionO, either. Therefore, we can prune c from the exposed writes

of R. So, we can prune the exposed writes of regionl, the only sub-region of regionO,

then we can similarly prune the exposed writes of region2, the only sub-region of regionl.

Note that, in Figure 7.2, only (Seq, B[0..39]} is pruned from the exposed writes of

region4, but not (Seq, A[0..39]). This is because (Seq, A[0..39]) is consumed by region5,

and thus marked as Consumed during the bottom-up phase.

The components of the exposed writes of region4 are the exposed writes of its sub-

region region7. For similar reason, we prune (Seq, B[/i2]), but not (Seq, A[h2]) marked as

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1: function PruneExposedW rites (R: a region) begin
2: for w g i?.exposed_writes do
3: if w. Consumed = True then
4: for c € x. components do
5: c.Consumed := True;
6: end for
7: end if
8: end for
9: for r G R.subregions do

10: PruneExposedW rites(r);
11: end for
12: end function

Figure 7.3 The pseudo-code of PruneExposedW rites

Consumed. While the pruning of the exposed write (Seq, B[/i2]) of region7 is correct, the

preservation of (Seq, k[h2]) is still a conservative approximation. This is because only a

subset of A[0..39] can be consumed, but by marking (Seq, A[̂ i2]) as Consumed, we are still

making a conservative assumption that every elements of A[0..39] are consumed. This

should be the common case in practice.

The function PruneExposedW rites in Figure 7.3 outlines the top-down pruning

process. Instead of explicitly pruning exposed writes, PruneExposedW rites marks

those exposed writes which should not be pruned as Consumed. For any exposed write

which is marked Consumed, PruneExposedW rites marks its components as Consumed

(Lines 2-8, Figure 7.3). Then, the pruning process will continue for the sub-regions of R

(Lines 9-11, Figure 7.3).

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 R elated Work

The top-down pruning phase basically refines the live range of variables. Accurate

live range information also benefits parallelization techniques like array privatization.

A privatized array must be written back to the global memory, only if is read after

the privatized loop. Researchers have proposed another phase of analysis backward

propagating the memory access summary of loops in the control flow graph to extend

scalar liveness analysis for array liveness analysis [62] [159].

This work is different from the previous works in the following aspects.

• For the purpose of array privatization, live range information is only needed for

privatized arrays in privatized loops. For our purpose, we need to do liveness

analysis for the exposed writes of every program region, not just for the exposed

writes of loop which can be privatized.

• Instead of having another compiler pass for liveness analysis as suggested by pre­

vious works, the liveness analysis in this work is partly done during the bottom-up

phase by marking the exposed writes of program regions as Consumed. This greatly

simplifies the top-down phase which essentially refines the live ranges of exposed

writes.

The next chapter will discuss the experiment results of prototyping the memory data­

flow analysis system, consisting the bottom-up process discussed in the previous chapter

and the top-down process discussed in this chapter.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PT E R 8

Prototyping and Experim ent Result

We implemented the memory data-flow analysis algorithms presented in the previ­

ous chapters on top of the IMPACT compiler infrastructure [160], which supports the

needed software modules for the in-lining of whole program, the construction of control

flow graph from abstract syntax tree, a flow-insensitive and context sensitive pointer

analysis [102] [103], and the interface to the Omega library [101]. We tried the prototype

program analysis system on extracting coarse-grained data-flow from several benchmark

programs in the MediaBench suite [161] and the open-source programs of G.724 coder

and decoder. This chapter will present the experiment results on the efficiency and

effectiveness of the prototype memory data-flow analysis system.

8.1 M odification of Benchmark Programs

We made the following modifications on the benchmark programs to work around the

limitations of the current prototype memory data-flow analysis system.

• The intrinsic functions le f t_ s h i f t and r ig h t_ s h if t used in the G.724 coder and

decoder are modified to remove recursion.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The intrinsic functions used in G.724 coder and decoder are also simplified to

eliminate the unnecessary details. These intrinsic functions are written for bit-

accurate function simulation. However, the detailed modeling of bit-level operations

only significantly increases the analysis time, with no improving on the analysis

accuracy. In practice, the templates modeling the memory access behaviors of

library functions are accurate enough for the purpose of memory data-flow analysis.

• The multi-entry loops in the MediaBench gsmdec and gsmenc programs are con­

verted to single-entry loops.

• The call-sites of functions with variable number of arguments are renamed to func­

tions with fixed number of arguments.

• Indirect function calls are converted to multiple direct function calls to enable whole

program in-lining.

Section 5.2 has more detailed discussion on these modifications.

8.2 Verification and Visualization

For verification purpose, a graphical user interface is built to visualize the memory

data-flow between program regions. For each program region, the visualization system

could display its exposed reads, exposed writes, and sub-region graph.

Figure 8.1 demonstrates a sample output of the visualization system. By clicking on

a grey box on the top, the visualization system will display the memory access pattern

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F igu re 8.1 Demonstration of the memory data-flow visualization system

of the corresponding exposed reads. The grey boxes on the bottom are corresponding to

the exposed writes. The yellow boxes in the middle are corresponding to the sub-regions.

In addition to the control flow (black edges) between the sub-regions, the visualization

system also displays the memory data-flow (red and blue edges) among the sub-regions.

By clicking on a memory data-flow edge, the user can inspect the memory access pattern

of the producer, which is the source node of the memory data-flow edge, and the memory

access pattern of the consumer, which is the destination node of the memory data-flow

edge. By clicking on a sub-region node in the sub-region graph, the user can navigate

down the program region hierarchy1.

1 There is also a way for the user to navigate up the program region hierarchy.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T able 8.1 Breakdown of the execution time of the prototype memory data-flow analysis
system

adpcm D adpcm E g721 D g721 E g724 D g724 E gsm D gsm E
I 0.121 0.119 2.160 2.000 9.408 31.377 34.484 19.967
II 0.104 0.117 1.201 1.092 3.348 11.424 15.549 19.180
III 0.035 0.049 2.289 7.881 9.629 161.12 92.057 119.510

Using this visualization tool, we manually check the memory data-flow analysis result

of g724dec. We found the prototype system works as expected and generates satisfactory

memory data-flow analysis result.

The visualization system is built on top of uDraw(Graph) [162] and Tcl/Tk [163].

During the bottom-up and top-down processes of the memory data-flow analysis, we

retains all the necessary data structures and the analysis results which may be used

by the visualization system. When the analysis is done, the visualization system will

interact with uDraw(Graph) and Tcl/Tk to accept user requests. It will then retrieve

the requested analysis results from the retained data structures, and send the reformatted

data back to uDraw(Graph) and Tcl/Tk for display.

Although the visualization system is originally created for verification purpose, po­

tentially we can enhance it to a full-fledged program visualization system serving other

software engineering purposes.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.3 Efficiency

The execution times of the prototype memory data-flow analysis system on the tested

benchmark programs are listed in Table 8.1, which break down the execution time to three

major components: (I) the in-lining time, (II) the pointer analysis time, and (III) the

memory data-flow analysis time. For the benchmark programs used in this study, the

memory data-flow analysis takes less than 3 minutes. However, these benchmarks are

not very large programs. For large programs like JPEG or MPEG, the current in-lining

based implementation may not be efficient, as suggested by comparing in-lining based

pointer analysis with inter-procedural pointer analysis [103]. The major problem with

the in-lining approach is that it may cause code bloat and increase the problem size

exponentially. This may significantly increase the memory footprint and the execution

time of the memory data-flow analysis.

It is very common that a function is invoked at different call-sites, and thus the same

function is in-lined several times. However, these in-lined versions of the same function

often have isomorphic memory data-flow analysis results. Therefore, for each function, we

could potentially analyze its memory data-flow just once, then derive the memory data­

flow analysis result at each call-site based on the calling context, without re-analyzing

the same function. A potential implementation of an inter-procedural memory data-flow

analysis will be discussed in the Chapter 9.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A[i]/*regionl*/ = .. A[i]/*regionl*/ = ..

Aji]/*region2*/ = ...
* * * •*».... = ... A[i]/*region3*/ ...

^gion2*/ = ...

.. A[i]/*region3*/ ...

(a) (b)

Figure 8.2 Example for illustrating spurious data producers

8.4 Effectiveness

The goal of memory data-flow analysis is to figure out an accurate producer-consumer

relationship among program regions by eliminating false dependences. Therefore, we

would like to understand whether there exist false dependences in real programs and

whether our prototype memory data-flow analysis system can eliminate them. If there

exists false dependences among program regions, which means some program regions

have spurious data producers, our memory data-flow analysis system should filter out

these spurious data producers.

When summarizing the exposed reads of a program region, the memory data-flow

analysis will backward propagate the exposed reads of its sub-regions along the edges in

the sub-region graph. During the backward propagation, the exposed reads of the sub-

regions will be subtracted by the exposed writes of the sub-regions which could be their

data producers. If an exposed read r of a program region R r is totally covered by the

exposed write of another program region R w, the exposed read r will not be propagated,

and R w will be the last found data producer of R r, if the basic block of R w dominates

the basic block of R w. On the other hand, if we do not subtract r with w, and keep

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

memory dataflow analysis on g721dec

■ w/o subtracting read s by writes
■ w/ subtracting read s by writes

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200

program region s

memory dataflow analysis on g721dec
30

■ w/o subtracting reads by writes
by writes■ w /subtracting

25

20

S
!-
i
ic

10

5

0
846 946896 996 10961046 1146 1196

program region s

F igu re 8.3 Eliminated spurious data producers (false dependences) in g721dec

propagating r beyond R w, we could find spurious data producers for R r, if there is other

regions before R w which write to the same memory locations as R w, even though the

basic block of R w dominates the basic block of R r.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

memory dataflow analysis on g721enc

■ w/o subtracting reads by writes

■ w/ subtracting reads by writes

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050

program regions

memory dataflow analysis on g721enc
30

by writes

■ w/ subtracting re a d s by writes j
25

20

15

10

5

0
788 888838 938 1038988 1088

program r egion s

F igu re 8.4 Eliminated spurious data producers (false dependences) in g721enc

For example, in Figure 8.2(a), when the exposed read of region3, A [i], is propa­

gated to region2, it is totally covered by the exposed write of region2, which is also

A [i], Therefore, A[i] will not be propagated further, and region2 is the only data

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

memory dataflow analysis on g724dec
200

■ w/o subtracting
■ w/ subtracting r«

s by writes
by writes

180

160

140

i 120
3

I
I 100

i
i 80
c

60

40

20

0
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200

program regions

memory dataflow analysis on g724dec

■ w/o subtracting re a d s by writes
■ w/ subtracting read s by writes

program regions

F igu re 8.5 Eliminated spurious data producers (false dependences) in g724dec

producer of region3, even though re g io n l also writes to A [i] . On the other hand, if

we do not subtract the exposed read of region3 by the exposed write of region2, and

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

memory dataflow analysis on gsmdec

&
■5

ii 100

■ w/o subtracting read s by writes
■ w / subtracting read s by writes

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600 6000 6400 6800 7200 7600 8000

program region s

memory dataflow analysis on gsmdec

I*
I| 100

■ w/o subtracting read s by writes
■ w/ subtracting read s by w rites

J
5853 5953 6053 6153 6253 6353 6453 6553 6653 6753 6853 6953 7053 7153 7253 7353 7453 7553 7653 7753 7853 7953

program regions

F igu re 8.6 Eliminated spurious data producers (false dependences) in gsmdec

keep propagating it to reg io n l, region3 will have another data producer, reg io n l,

illustrated in Figure 8.2(b).

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

memory dataflow analysis on gsmenc
250

■ w/o subtracting
■ w /sub tracting r<

Is by writes
by writes

200

150

| 100

50

0
0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600 6000 6400 6800 7200 7600 8000 8400 8800 9200

program region s

memory dataflow analysis on gsmenc

'S
i
I 100

I w/o subtracting reads by writes
I w/ subtracting read s by writes

- J
4* ̂ ̂ ̂ ^ ̂ ̂ ̂ ̂ ̂ ^ 4? 4? ̂ 4 ̂̂ ̂ ̂ 4? 4? 4?

program regions

F ig u re 8.7 Eliminated spurious data producers (false dependences) in gsmenc

So, without subtracting the exposed reads of the sub-regions by the exposed writes of

other sub-regions during the bottom-up summarization phase, we can identify the false

dependences or spurious data producers eliminated by the prototype memory data-flow

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

analysis system. Figures 8.3 to 8.7 show the spurious data producers eliminated by the

prototype memory data-flow analysis system for some of the benchmark programs. The

X-axis corresponds to all the program regions. The Y-axis is the number of data produc­

ers for each program region. For each program region, the blue dots are corresponding

to the number of data producers identified by the memory data-flow analysis system

with exposed reads subtracted by exposed writes. The red dots are corresponding to

the number of its data producers identified without having exposed reads subtracted by

exposed writes. If a red dot is above the blue dot of the same program region, it means

the memory data-flow analysis eliminates some spurious data producers, or false data

dependences. Note that, for the same program region, the blue dot is never above the

red dot.

As demonstrated in Figures 8.3 to 8.7, there are indeed false dependences existing in

real programs, due to writing to the same variables, which are eliminated by the prototype

memory data-flow analysis systems. However, it is hard to tell whether the prototype

memory data-flow analysis system eliminates all the false memory dependences. It is

even harder to tell what benefit the client of the memory data-flow analysis will get by

eliminating the false dependences. The ultimate test of the effectiveness of the memory

data-flow analysis system is how the extracted coarse-grained data flow can enable better

mapping of applications onto multi-core architectures. However, an end-to-end mapping

from C programs to multi-core architectures is not available in our compiler infrastructure

at this moment.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8.2 Breakdown of the type of MADs for exposed reads

adpcm D adpcm E g721 D g721 E g724 D g724 E gsm D gsm E
Seq 10 12 111 90 625 1644 517 653
Must 0 0 6 6 33 61 24 42
May 5 5 172 112 141 233 305 698
Doomed 33 31 86 95 336 948 1544 1582

T able 8.3 Breakdown of the type of MADs for exposed writes

adpcm D adpcm E g721 D g721 E g724 D g724 E gsm D gsm E
Seq 3 1 16 20 420 807 206 390
Must 0 0 0 0 19 45 0 12
May 6 6 0 2 141 307 434 192
Doomed 7 9 10 17 167 447 39 100

In addition to counting the number of eliminated false dependences, we can also

assess the effectiveness of the prototype memory data-flow analysis system by counting

the types of the MADs for exposed reads and exposed writes. If most of the exposed

reads and exposed writes are Doom-typed or May-typed, the prototype memory data­

flow analysis system may not be effective in summarizing the memory access patterns

of program regions for the tested programs. On the other hand, if many of the exposed

reads and exposed writes are de^-typed or Must-typed, the prototype memory data-flow

analysis system can be considered effective in capturing accurate memory access patterns

for test programs.

Tables 8.2 and 8.3 show the breakdown of the types of the exposed reads and the

exposed writes of all program regions. Not to exaggerate the effectiveness of the prototype

memory data-flow analysis system, Table 8.2 and Table 8.3 exclude the exposed scalar

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8.4 Breakdown of the percentages of the causes of May-type MAD

Cause adpcm D adpcm E g721 D g721 E g724 D g724 E gsm D gsm E
I 92.86 90.32 80.77 80.17 78.18 80.65 96.7 92.01
II 0 3.23 0 1.24 7.5 5.31 0.06 0.27
III 0 0 0 0 2.95 2.63 0.06 1.56
IV 3.57 3.23 13.64 11.16 0.94 0.68 0.92 0.89
V 0 0 4.2 4.96 2.14 5.48 1.43 4.2
VI 0 0 1.05 1.24 1.07 1.2 0.12 0.16
VII 3.57 3.23 0.35 1.24 6.16 3.08 0.71 0.86
VIII 0 0 0 0 1.07 0.97 0 0.05

variable reads and writes, and the exposed reads and exposed writes of fundamental

memory access regions, which are always 5e^-typed.

As shown in Tables 8.2 and 8.3, the prototype memory data-flow analysis system

can capture the sequential memory access patterns of many exposed reads and exposed

writes using the simple MAD structure. An more important implication of this is there

are indeed many sequential memory accesses in the tested programs. If our memory

access descriptor can only describe the set of accessed memory locations, but not the

access order, we may miss many opportunities for the optimization shown in Figure 3.6.

An interesting observation is that Table 8.3 has higher percentage of S'eg-type memory

accesses than Table 8.2. This means memory writes have more regular access patterns

than memory reads.

However, Table 8.2 and Table 8.3 also show that there are many May-type and

Doomed-type exposed reads and exposed writes. These May-type and Doomed-type

MADs will result in less accurate producer and consumer relation. Therefore, the first

step in improving the accuracy of the prototype memory analysis system is to find out

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

why May-type and Doomed-type MADs are generated in the first place. We insert probes

in the prototype memory data-flow analysis system to profile the causes of May-type and

Doomed-type MADs.

Table 8.4 shows the breakdown of percentages of the 8 causes of May-type MAD,

where Cause I is that the corresponding memory access of the MAD is in a conditional

statement, and thus may or may not occur; Cause II is that a MAD is subtracted by a

Doom-type MAD; Cause III is that when subtracting a MAD by another MAD, we can

not determine the relation between the base of these two MADs; Cause IV is that when

summarizing the exposed memory accesses of a loop, we can only know an upper bound

of the loop trip count, because of early exit of the loop; Cause V is the inaccuracies of the

C oncatenate operation; Cause VI is the inaccuracies of the M erge operation; Cause

VII is the inaccuracies of the Subtract operation, other than cause II and cause III;

Cause VIII is the inaccuracies of the Sum m ation operation, other than cause IV.

Apparently, cause I is the most common reason why a May-type MAD is generated.

This is due to the characteristics of the applications, and we can not replace May-type

MADs of this cause with more accurate MADs to improve the accuracy of the prototype

memory data-flow analysis system.

Cause IV is the second common cause, which is also due to application characteristics.

Therefore, we cannot replace May-type MADs of this cause with more accurate MADs.

W hat is surprised is that only a small fraction of May-type MADs are due to the

inaccuracies of MAD operations (causes V, VI, VII, and VIII), except for g724dec and

g724enc. For these two benchmarks, some fraction of the May-type MADs are also due

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8.5 Breakdown of the percentages of the causes of Doomed-type MAD

Cause adpcm D adpcm E g721 D g721 E g724 D g724 E gsm D gsm E
I 33.33 33.33 50 45.45 3.23 0.94 2.11 1.99
II 0 0 0 0 33.87 22.54 2.11 1.99
III 0 0 0 0 1.61 0 0 0.66
IV 33.33 33.33 45 40.91 27.42 27.7 93.66 88.74
V 0 0 0 0 0 3.29 0 0
VI 33.33 33.33 5 4.55 9.68 16.9 0 1.32
VII 0 0 0 0 11.29 11.74 2.11 4.64
VIII 0 0 0 0 0 0.47 0 0.66
IX 0 0 0 0 0 0 0 0
X 0 0 0 9.09 12.9 16.43 0 0

to cause II. This means we can potentially replace some May-type MADs with more

accurate MADs if we can replace some Doomed-type MADs.

Table 8.5 shows the breakdown of the percentages of the 10 causes of Doomed-type

MAD, where Cause I is that, when performing some operation on two MADs, we found

they have different access sizes in bytes; Cause II is that we cannot resolve the relation

between two scalar variables, using the current implementation of symbolic scalar variable

evaluation, when performing operations, other than S u b trac t, on two MADs; Cause III is

that, when summarizing an exposed memory access for some loop, we found an induction

variable of the loop cannot be represented in close form, using the current implementation

of symbolic scalar variable evaluation; Cause IV is that, when summarizing an exposed

memory access for some loop, we do not know the loop trip count, not even an upper

bound; Cause V is that, when summarizing an exposed memory access for some loop,

we found an induction variable of the loop has variable stride; Cause VI is that, when

summarizing an exposed memory access for some region, we found the description of

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the exposed memory access is not invariant with respect to that region; Cause VII is

other inaccuracies of the C oncatenate operation; Cause VIII is other inaccuracies of

the M erge operation; Cause IX is other inaccuracies of the Subtract operation; Cause

X is other inaccuracies of the Sum m ation operation.

Unlike May-type MAD, there is no single dominating cause of Doom-type MAD.

Across all programs, a high percentage of Doomed-type MADs are due to cause IV. For

the current implementation of the symbolic evaluation, if the exit condition of a loop

cannot be represented as an affine induction expression, the loop will have unknown trip

count, not even an upper bound. So, we can potentially replace some of the Doom-type

MADs of this cause with more accurate MADs by improving the symbolic scalar variable

evaluation. However, it is a difficult problem to deduce the trip count for arbitrary loops.

To some extent, this should also be considered as due to application characteristics.

For g724dec and g724enc, a high percentage of Doomed-type MADs are due to cause

II. This means there is definitely room in improving the symbolic scalar variable evalua­

tion.

For adpcmdec and adpcmenc, a significant percentage of Doomed-type MADs are due

to cause V. Usually this means the program region is doing some table lookup using

some dynamically generated index, which cannot be figured out at compile time. To

some extent, this should also be considered as due to the application.

For adpcmdec/adpcmenc and g721dec/g721enc, a significant fraction of Doomed-type

MADs are due to cause I. This is a known limitation of the current implementation, and

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Doomed-type MADs of this type will be replaced by more accurate MADs after we

improve the MAD operations.

Table 8.5 shows that the other inaccuracies of C oncatenate and Sum m ation cause

a fair amount of Doomed-type MADs for g724dec and g724enc. Therefore, we can poten­

tially improve the effectiveness of the memory data-flow analysis system by enhancing

these two operations.

From the experiment results, we have identified some inefficiencies in the prototype

memory data-flow analysis system. However, some inaccuracies of the analysis results are

due to application characteristics. The next chapter will conclude this dissertation with

the insights obtained from the experiment of prototyping the memory data-flow analysis

system.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PT E R 9

Conclusion and Future Work

In the last chapter of this dissertation, I would like to reflect on my work on memory

data-flow analysis, and discuss my thoughts on some future works.

9.1 Conclusion

To efficiently utilize the emerging heterogeneous multi-core architecture, it is essen­

tial to exploit the inherent coarse-grained parallelism in applications. In addition to

data parallelism, applications like telecommunication, multimedia, and gaming can also

benefit from the exploitation of coarse-grained function parallelism. To exploit coarse­

grained function parallelism, the common wisdom is to rely on programmers to explicitly

express the coarse-grained data-flow between coarse-grained functions using data-flow or

streaming languages.

This work is set to explore another approach to exploiting coarse-grained function

parallelism, that is to rely on compilers to extract coarse-grained data-flow from impera­

tive programs. I believe imperative languages and the von Neumann programming model

will still be the dominating programming model in the future. For this exploration, this

research accomplishes the following.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• It developed a memory data-flow analysis framework to extract coarse-grained data­

flow from C programs, or imperative programs in general. First, the memory data­

flow analysis system partitions a C program into a hierarchy of program regions.

It then traverses the program region hierarchy from bottom up, summarizing the

exposed memory accesses for each program region. During this bottom-up sum­

marization process, it also constructs a conservative producer-consumer relation

between the program regions. After the bottom-up process, a top-down traversal

of the program region hierarchy refines the producer-consumer relation by elimi­

nating exposed memory writes which have no consumers.

• It built a prototype of the memory data-flow analysis system. The efficiency and

effectiveness of the prototype are studied using real C programs from the the Medi-

aBench suite and open-source G.724 coder and decoder. It also built a visualization

system to displace the memory data-flow analysis results. In addition to the original

purpose of verification, the memory data-flow visualization system can potentially

be enhanced for other software engineering purposes.

• Experiment results show that the prototype memory data-flow system performs

reasonably well for the tested C programs. However, the in-lining based proto­

type memory data-flow analysis system may not be efficient for larger programs.

Also, we can still improve the prototype to obtain more accurate memory data-flow

analysis results. Root cause analysis of the memory data-flow analysis inaccura­

cies shows that the memory data-flow analysis can potentially be more accurate by

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

improving the symbolic scalar variable evaluation, the memory access descriptor

and the associated operations used by the memory data-flow analysis. However,

some of the inaccuracies are due to the application characteristics, and cannot be

eliminated by improving the memory data-flow analysis.

This study shows that it is possible to build a program analysis system to extract

coarse-grained data-flow from C programs. However, we found it is difficult to extract

accurate coarse-grained data-flow from ’’spaghetti” code or programs with complicated

control flow and extensive accesses of dynamically allocated memory objects. Program­

mers can improve the effectiveness of the memory data-flow analysis by writing more

structured code, grouping related code into functions, and using statically allocated vari­

ables as much as possible.

In my opinion, reasoning about complicated control flow and dynamically allocated

memory objects will remain the two main challenges of memory data-flow analysis. On

the other hand, it is also not clear how successful the programming model of data-flow

or streaming languages will be in handling complicated control flow and dynamically

allocated memory objects. Unfortunately, as the applications become more and more

complicated, it is very unlikely that we can avoid complicated control flow and dynami­

cally allocated memory objects will be .

I believe, most likely, we can partition any application into a data-flow part and a von

Neumann part which is either impossible or inefficient to fit into the data-flow model.

The data-flow part will be implemented in ASICs, accelerators, or other unconventional

architectures, while the von Neumann part will still be executed in von Neumann archi-

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tectures. Hopefully, the ”80-20” rule will put most of the computation in the data-flow

part for efficient execution. Indeed, this is how people design their systems today, but in

an ad hoc way. The question is ’’Can we do this partition systematically and automati­

cally ?”.

We can re-phrase this question as ”Is it necessary to extend imperative languages

with data-flow or streaming language constructs?” . Of course, to reply ” no” , we need a

compiler to demonstrate the following.

• For any imperative program that the compiler cannot sort out its data-flow, it is

also difficult, if not impossible, to re-write the program in data-flow or streaming

language constructs.

• For any imperative program that can be re-written in data-flow or streaming lan­

guage constructs, the compiler can also extract its data-flow.

For extracting scalar data-flow from imperative programs, researchers have already de­

veloped the needed compiler techniques. For extracting coarse-grained data-flow from

imperative programs, this work has made an attempt. Although I cannot say I have

solved this problem in this work, I think it is an interesting problem for intellectual chal­

lenge, and an important problem for practical purposes, worthy of further investigation.

Next, I will sketch some future works.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int A [10] ;
foo() bar (int *x, int *y)
{ {pi = A ; *x = . . . ;

<3l = A + 1; *y . . . ;
bar(pl, ql); /* callsite 1 */ }
p2 = A + 2;
q2 = A + 4 ;
bar(p2, q2); /* callsite 2 */

F igu re 9.1 Example of function with the same summary at two call-sites

9.2 Future Work

There is always more works to be done than has been done. This section will outline

some future works on improving the efficiency and effectiveness, and on the evaluation,

of our memory data-flow analysis system.

9.2.1 Inter-procedural M em ory D ata-flow A nalysis

For large applications, we need to develop an inter-procedural memory data-flow anal­

ysis. By avoiding re-analyzing the same function at different call-sites, inter-procedural

memory data-flow analysis can be more efficient than in-lining based approach. The

question is how to determine whether we should re-analyze a function or not.

Figure 9.1 shows the example code segment, where the function b ar is called twice by

the function foo. To summarize the exposed memory accesses of bar, we need to know

the relation between its pointers x and y. If x has the same value as y, the memory read

*y will be covered by the memory write *x, and thus bar will have no exposed read. If

the value of x is different from the value of y, then b ar will have exposed read *y.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(< x=y?, no >)

=> ({*ylread. {*x }wrile

/* added at callsite 1 */

<x=y/, no>

({*y}read> { * x) w r i t e)

<x=y?, no> ?

(P y lr e a d - f * x l w r i t e)

memo o f bar

• at callsite 1
- analyze bar

. ask foo “x=y?”

. foo reply “no”

. memorize
< x=y?, no >

. get summary o f bar
((* y f r e a d ’ { * x l w r i c e)

. associate the summary
with < x=y?, no >

- translate the summary to
({A[l] Iread, {A[0]}write)

• at callsite 2
- ask foo “x=y?”
- get answer “no”
- search < x=y?, no >

in the memo; found
- retrieve the summary

associated with
< x=y?, no >

- translate the summary to
({A[4]}read, {A[2] }wrile)

pl=ql?

p2=q2 ?

value flow graph o f foo

bottom-up process

F ig u re 9.2 Illustration of function calls with isomorphic memory data-flow analysis
results

The relation of x and y may be different at different call-sites of bar. If b ar has

the same relation between x and y at two call-sites, bar will have the same summary

of exposed reads and exposed writes at these two call-sites. The The exposed reads

(exposed writes) of these In other words, if we can know a function will have the same

summary of exposed reads and exposed writes at two call-sites, we only need to analyze

the function once. The exposed reads (and writes)

Figure 9.2 illustrates memoization based approach to determine whether a function

will have the same summary of exposed reads and exposed writes at different call-sites.

When the memory data-flow analysis reaches call-site 1, because this is the first call-site

of bar, we go analyze the exposed reads and exposed writes of bar. During the analysis

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int A [10] ;
foo2() bar (int *x, int *y)
{ {pi = A ; *x = . . . ;

ql = A + 1; *y . . . ;
bar(pl, ql); /* callsite 1 */ }
p2 = A + 2;
q2 = A + 2;
bar(p2, q2); /* callsite 2 */

}

Figure 9.3 Example of function with different summaries at two call-sites

of bar, we need to know whether x has the same value as y. This depends on the calling

context and cannot be resolved by only looking at the code bar. So, we query the value

flow graph of foo, the caller of bar, ”x = y ?” . After translating the formal parameters,

x and y, to the corresponding actual arguments, p i and q l, we can infer from the value

flow graph of foo that p i 7 ̂ q l, and the answer to the query is ”no” . The tuple of query

and answer, (x = y ?, no), is then recorded in a memo for bar.

After resolving the relation between x and y, we continue the analysis of the exposed

reads and exposed writes of bar, and eventually obtain the summary of exposed reads

and exposed writes of bar at call-site 1, (*y, *x). In the memo for bar, we then associate

this summary of expose reads and exposed writes with the corresponding list of query-

answer tuples, shown as (*y,*y) —»• ((x = y ?,no)) in Figure 9.2. After substituting p i

with A, and q l with A+ 1, the exposed memory reads and memory writes of the function

call to bar at call-site 1 are A[0] and A[l] respectively.

When the memory data-flow analysis reaches call-site 2, if we re-analyze b a r again,

we will again ask the same question ”x = y ?” . Instead of blindly re-analyzing bar, we

first evaluate the query ”x = y ?” at call-site 2. After translating x and y to p 2 and q2 ,

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(< x=y?, no >)
=>(f*y}read. {*x)wri.e)

/* added at callsite 1 */

(< x=y?, yes >)
= > ({ Iread’ {*x lwrite)

/* added at callsite 2 */

< x=y?, no >

({*y)read> (* x) w r , t e)

< x=y?, yes > ?
not found

d Iread’ 1 X1 write)

memo o f bar

• at callsite 1
- analyze bar

. ask foo “x=y?”

. foo reply “no”

. memorize < x=y?, no>

. get summary o f bar
U * y } read. {*x}wrile)

. associate the summary
with < x=y?, no >

- translate the summary to
((A [l] } read, { A t O] } ^)

• at callsite 2
- ask foo “x=y?”
- get answer “yes”
- search < x=y?, yes >

in the memo; not found
- memorize < x=y?, yes >
- analyze bar

. get summary o f bar

({ 1 read’ 1 x 1 write)
. associate the summary

with < x=y?, yes >
- translate the summary to

((1read’ {A [2]}write)

pl=ql?

p2=q2?
yes

value flow graph of foo2

bottom-up process

Figure 9.4 Illustration of function calls without isomorphic memory data-flow analysis
results

we can infer from the value flow graph of foo that p2 ^ q2 , and the answer to query

is ”no”. Then, in the memo for bar, we search the query-answer tuple (x = y ?,no)

generated at call-site 2 , and will find that it has already been associated with a summary

of exposed reads and exposed writes. This means that we have analyzed bar at other

call-sites, call-site 1 in this case, and bar will have the same summary of exposed reads

and exposed writes at call-site 1 and call-site 2. Therefore, without re-analyzing bar, we

can obtain the pair of exposed reads and exposed writes of bar at call-site 2 by retrieving

the associated (*y, *y) from the memo for bar.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(< y-x=?, 1 >)

= > ({ *yIread’ {*X}write)

/* added at callsite 1 */

(< y-x=?, 2 >)

= > ({ * y W 1 * x 1 w r i t e)

/* added at callsite 2 */

< y-x=7, 1 >

({ * y } Kad> { * x } w r i t e)

< y-x=?, 2 > ?

not found

(f * y } read> {*x }write)

■ at callsite 1
- analyze bar

. ask foo “y-x=?”

. foo reply “1”

. memorize < y-x=?, 1 >

. get summary of bar

((* y }read’ { * x }write)
. associate the summary

with < y-x=?, 1>
- translate the summary to
({Am h^fA fO]}^)

• at callsite 2
- ask foo “y-x=?”
- get answer “2”
- search < y-x=?, 2 >

in the memo; not found
- memorize < y-x=?, 2 >
- analyze bar

. get summary o f bar

({*y)read> {*x)wri.e)
. associate the summary

with < y-x=?, 2 >
- translate the summary to

({A [4]}read, {A [2]}wrile)

ql-pl=

q2-p2=?

value flow graph of foo

memo o f bar bottom-up process

Figure 9.5 Illustration of inefficient queries to value flow graph

After substituting x with p2 (= A + 2), and y with q2 (= A + 4), we can obtained

the exposed reads and exposed writes of the function call to bar at call-site 2, A [2] and

A [4],

Figure 9.3 shows an example that a function has different summaries of exposed reads

and exposed writes at two call-sites. Figure 9.3 is different from Figure 9.1 only in the

value of q2. In Figure 9.3 q2 is equal to A + 2, while in Figure 9.3 q2 is equal to A + 4.

When we reach the call-site 2 in Figure 9.3, we will ask the query ”x = y ?” . After

translating x to p2, and y to q2, we can infer from the value flow graph in Figure 9.3

that p2 = q2 = A + 2. Therefore, the answer to the query ”x = y ?” is ”yes” at call-site

2 in Figure 9.3.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Figure 9.3, we cannot find the query-answer tuple (x = y ?,yes) in the memo

for bar. This means tha t the summary of exposed reads and exposed writes of bar at

call-site 2 may1 be different from the summaries at previous call-sites. Therefore, we

must re-analyze bar at call-site 2, and eventually find the summary of exposed reads and

exposed writes to be ({}, *x)2, which is indeed different from (*y, *x), the summary of

exposed reads and exposed writes of foo at call-site 1.

The efficiency of this memoization based inter-procedural memory data-flow analysis

will be affected by the queries we ask. If we do not design the queries carefully, we

may have the situation that a function has different list of query-answer tuples at two

call-sites, even though the function has the same summary of exposed reads and exposed

writes at these two call-sites. For example, if the queries we ask in Figure 9.2 were ” y

- x = ?”, instead of ”x = y ?”, we will have the situation shown in Figure 9.5. Note

that bar still has the same summary of exposed reads and exposed writes at call-site 1

and call-site 2 in Figure 9.5. However, the answer to the query ”y - x = ?” at call-site

1 is ”1”, while the answer to the same query at call-site 2 is ”2”. This will mislead us

to assume bar has different summary of exposed reads and exposed writes at call-site 1

and call-site2, and result in re-analyzing bar at call-site 2.

Like the in-lining based approach, the effectiveness of this inter-procedural memory

data-flow analysis is also affected by the accuracy of the symbolic evaluation of queries.

If the queries generated when analyzing a function can always be resolved at the value

xNext paragraph will explain why it is may’’, instead of ” m ust" . It depends on the query.
2Note that, if x and y in bar are equal, *y will be covered by *x. Therefore, the exposed reads of

bar will be empty.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

flow graphs of its ancestor functions, inter-procedural symbolic query evaluation is not

difficult. Inter-procedural symbolic query evaluation will become difficult if the resolution

of the queries generated for analyzing a function cannot be done at its ancestors, but

also need information from its child, sibling, or any other functions.

For this kind of queries, a quick and dirty solution is just to say ”1 don’t know”,

and have a conservative summary for the querying function. Although this may affect

the effectiveness of the memory data-flow analysis, it could work very efficiently, and

reasonably well if this kind of queries are rare. Just like other program analysis problems,

we often need to make a trade-off between efficiency and effectiveness.

9.2.2 Im proving V ersatility and Effectiveness

We can improve the versatility and effectiveness of the memory data-flow analysis in

the following fronts.

• The memory data-flow analysis would be more versatile, if we can eliminate the

limitations discussed in Section 5.2. Among these limitations, indirect function

calls, recursive functions, and functions with variable number of arguments are

common in ordinary programs, and should be considered along with the design of

inter-procedural memory data-flow analysis.

• For the current prototype, we partition a C program into functions and other prede­

fined program regions. We could try more sophisticated approaches to partitioning

a C program. For example, we can try some iterative partitioning method, which

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

starts from some fixed partition, and then iteratively refines the partitioning to

minimize the communication between program regions.

• We can potentially improve the accuracy of the memory data-flow analysis by

improving the symbolic evaluation of scalar variables, as shown in Section 8.4, For

example, we can implement full-fledged gated SSA for more accurate evaluation

of scalar variables by taking predicates into consideration. Another direction is to

perform symbolic evaluation beyond scalar variables. Programmers also use array

elements or structure fields to index another array. W ithout knowing the relation

between the values stored in arbitrary memory locations, we cannot have accurate

memory data-flow analysis results for general applications.

• We can also potentially improve the operations used in memory data-flow analysis.

For example, in Section 6.2.4.4, the current implementation will down grade an

exposed read of a loop to a less accurate memory access descriptor, if the exposed

read has inter-iteration dependence. Potentially, for some special cases, we can

use the dependence distance information to refine the exposed read of the loop, by

excluding those memory accesses which are generated inside the loop.

9.2.3 Evaluation

To evaluate the effectiveness, and to show the real benefit, of memory data-flow

analysis, we need to connect the memory data-flow analysis to the back-end of the tool

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

chain in order to form a complete compilation path from C program to hardware, as

illustrated in Figure 3.1.

One possibility is to connect the memory data-flow analysis to a high-level synthesis

tool. Given the memory data-flow analysis result, we can select a set of program regions

for synthesis, based on some cost mode. We can then do source-to-source translation

of these program regions using the native language of the high-level synthesis tool. For

example, we can translate the selected program regions into concurrent tasks, and specify

the communication between these tasks based on the producer-consumer relation between

the corresponding program regions.

For each program region, we also need to specify an inter-process communication

interface for each of its exposed memory accesses. For a Seq-type exposed memory

access, we can specify a FIFO interface for streaming data access. For a Must-type or

May-type exposed memory access, we can allocate a memory buffer, or even use double

buffering, to store the accessed data. For a Doomed-type memory access, we need to

allocate enough memory to hold all the possibly accessed memory objects. This may be

inefficient, which should be reflected in the cost model. If a task accesses the system

memory, we can specify an address generator, or instantiate a DMA, which uses the

base and offset of the corresponding memory access descriptor to determine the starting

address, and the displace to determine the access stride and access count.

This ends the documentation of my works and my thoughts on extracting coarse­

grained data-flow from C programs for the exploitation of coarse-grained function paral­

lelism. Looking back, it is really fascinating to me that researchers have made so much

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

effort and so many innovations to map applications onto parallel architectures. We have

come a long way. Looking forward, I believe there is still a long way to go, but, no matter

which road we will take, I believe the journey will be interesting and we will eventually

reach our destination.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[1] G. Moore, “Cramming more components onto integrated circuits,” Electronics
Magazine, Apr. 1965.

[2] “International Technology Roadmap for Semiconductors.” h ttp://public.itrs.net.

[3] R. Wilson and B. Fuller, “Soaring mask costs roil fine-geometry asics,” EE Times,
03/26/1999.

[4] D. Lammers, “Shift to 65 nm has its costs,” EE Times, 07/11/2005.

[5] D. Lammers, “Guide to success: fear and loathing at next node,” EE Times,
11/14/2005.

[6] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,” Proceedings of the
IEEE, pp. 490-504, Apr. 2001.

[7] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger, “Clock rate versus IPC:
The end of the road for conventional microarchitectures,” in Proceedings of Annual
International Symposium on Computer Architecture, 2000.

[8] P.E.Gronowski, W.J.Bowhill, R. Preston, M. K. Gowan, and R. L. Allmon, “High-
performance microprocessor design,” IEEE Journal of Solid-state Circuits, vol. 33,
pp. 676-686, May 1998.

[9] T. Mudge, “Power: A first-class architectural design constraint,” IEEE Computer,
Apr. 2001.

[10] N. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. Hu, M.J.Irwin, M. Kan-
demir, and V. Narayanan, “Leakage current: Moore’s law meets static power,”
IEEE Computer, pp. 68-75, Dec. 2003.

[11] M. Horowitz and W. Dally, “How scaling will change processor architecture,” in
International Solid-State Circuits Conference, 2004.

[12] C. Maxfield, “Asics find new ’structure’,” EE Times, 09/03/2003.

[13] F. McMillan, “Best practices for structured-asic design,” EE Times, 10/17/2005.

[14] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff­
man, P. Johnson, J. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, “The RAW micropro­
cessor: A computational fabric for software circuits and general-purpose programs,”
IEEE Micro, Mar. 2002.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://public.itrs.net

[15] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson, and J. D.
Owens, “Programmable stream processors,” IEEE Computer, Aug. 2003.

[16] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labonte, J.-H. Ahn,
N. Jayasena, U. J. Kapasi, A. Das, J. Gummaraju, and I. Buck, “Merrimac: Su­
percomputing with streams,” in Proceedings of International Conference on Super­
computing, 2003.

[17] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keck-
ler, and C. R. Moore, “Exploiting ILP, TLP, and DLP with the polymorphous
TRIPS architecture,” in Proceedings of Annual International Symposium on Com­
puter Architecture, 2003.

[18] D. Burger and J. R. Goodman, “Billion-transistor architectures: There and back
again,” IEEE Computer, Mar. 2004.

[19] E. F. Moltzen, “Barrett: Intel to migrate to dual-core platforms by year-end,” EE
Times, 03/01/2005.

[20] R. Merritt, “Path holes seen in latest Intel road map,” EE Times, 03/07/2005.

[21] D. Dunn, “AMD debutes dual-core Opteron,” EE Times, 04/21/2005.

[22] H. P. Hofstee, “Power efficient processor architecture and the Cell processor,” in
Proceedings of International Symposium on High-Performance Computer Architec­
ture, 2005.

[23] B. Flachs, S. Asano, S. Dhong, H. Hofstee, G. Gervais, R. Kim, T. Le, P. Liu,
J. Leenstra, J. Liberty, B. Michael, H.-J. Oh, S. M. Mueller, O. Takahashi,
A. Hatakeyama, Y. Watanabe, and N. Yano, “The microarchitecture of the stream­
ing processor for a cell processor,” in International Solid-State Circuits Conference,
2005.

[24] ETSI TC-SMG, “Digital cellular communications system; Enhanced Full Rate
(EFR) speech transcoding (GSM 06.60),” European Telecommunications Standards
Institute, Tech. Rep. ETS 300 726, Mar. 1997.

[25] A. Peleg, S. Wilkie, and U. Weiser, “Intel mmx for multimedia pcs,” Communica­
tions of the ACM, no. 1, pp. 24-38, 1997.

[26] A. Bik, The Software Vectorization Handbook - applying multimedia extensions for
maximum performance. Intel Press, 2004.

[27] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of AFIPS Spring Joint Computer Confer­
ence, 1967.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[28] M. Wolfe, High Performance Compilers for Parallel Computing. Addison-Wesley,
1996.

[29] K. Kennedy and R. Allen, Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann, 2001.

[30] W.-M. Hwu, R. E. Hank, D. M. Gallagher, S. A. Mahlke, D. M. Lavery, G. E.
Haab, J. C. Gyllenhall, and D. I. August, “Compiler technology for future micro­
processors,” Proceedings of the IEEE, vol. 83, pp. 1625-1640, Dec. 1995.

[31] S. Muchnick, Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

[32] D. J. Kuck, Y. Muraoka, and S. Chen, “On the number of operations simulta­
neously executable in fortran-like programs and their resulting speedup,” IEEE
Transactions on Computers, pp. 1293-1310, Dec. 1972.

[33] U. Banerjee, “Data dependence in ordinary programs,” M.S. thesis, University of
Illinois at Urbana-Champaign, 1976.

[34] U. Banerjee, “Speedup of ordinary programs,” Ph.D. dissertation, University of
Illinois at Urbana-Champaign, 1979.

[35] D. J. Kuck, The Structure o f Computers and Computations, Volume 1. Wiley and
Sons, 1978.

[36] J. R. Allen and K. Kennedy, “Automatic translation of fortran programs to vector
form,” ACM Transactions on Programming Languages and Systems, pp. 491-542,
Oct. 1987.

[37] D. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe, “The structure of an advanced
vectorizer for pipelined processors,” in International Computer Software and Ap­
plications Conference, 1980.

[381 L. Lamport, “The parallel execution of do loops,” Communications of the ACM,
pp. 83-93, Feb. 1974.

[39] D. J. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe, “Dependence graphs
and compiler optimizations,” in Proceedings of the ACM Symposium on Principles
of Programming Languages, 1981.

[40] D. A. Padua and M. J. Wolfe, “Advanced compiler optimizations for supercomput­
ers,” Communications of the ACM, pp. 1184-1201, Dec. 1986.

[41] J. R. Allen and K. Kennedy, “Automatic loop interchange,” in Proceedings o f the
SIGPLAN Symposium on Compiler Construction, 1984.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[42] M. J. Wolfe, “Advanced loop interchanging,” in Proceedings of International Con­
ference on Parallel Processing, 1986.

[43] M. J. Wolfe, “Loop skewing: The wavefront method revisited,” International Jour­
nal of Parallel Programming, pp. 279-293, Aug. 1986.

[44] D. A. Padua, “Multiprocessors: Discussion of some theoretical and practical prob­
lems,” Ph.D. dissertation, University of Illinois at Urbana-Champaign, 1979.

[45] R. Allen and K. Kennedy, “Vector register allocation,” IEEE Transactions on Com­
puters, vol. 41, Oct. 1992.

[46] J. R. Allen, D. Callahan, and K. Kennedy, “Automatic decomposition of scien­
tific programs for parallel execution,” in Proceedings of the ACM Symposium on
Principles of Programming Languages, 1987.

[47] C. D. Polychronopoulos, “Compiler optimizations for enhancing parallelism and
their impact on architecture design,” IEEE Transactions on Computers, pp. 991-
1004, Aug. 1988.

[48] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferreant, “An overview for
the ptran analysis system for multiprocessing,” Journal of Parallel and Distributed
Computing, pp. 617-640, Oct. 1988.

[49] A. Rogers and K. Pingali, “Compiling for distributed memory architectures,” IEEE
Transactions on Parallel and Distributed Systems, vol. 5, Mar. 1994.

[50] P. Banerjee, J. A. Chandy, M. Gupta, E. W. Hodges, J. G. Holm, A. Lain, D. J.
Palermo, S. Ramaswamy, and E. Su, “The Paradigm compiler for distributed-
memory multicomputers,” IEEE Computer, vol. 28, Oct. 1995.

[51] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee,
D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu, “Parallel program­
ming with polaris,” IEEE Computer, vol. 29, Dec. 1996.

[52] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and
E. Bu, “Maximizing multiprocessor performance with the SUIF compiler,” IEEE
Computer, vol. 29, Dec. 1996.

[53] G. Gao, R. Olsen, V. Sarkar, and R. Thekkath, “Collective loop fusion for array
contraction,” in Workshop on Languages and Compilers for Parallel Computing,
1992.

[54] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Imple­
mentation, 1991.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[55] M. E. Wolf and M. S. Lam, “A loop transformation theory and an algorithm to
maximize parallelism,” IEEE Transactions on Parallel and Distributed Systems,
vol. 2, Oct. 1991.

[56] T. Gross and P. Steenkiste, “Structured dataflow analysis for arrays and its use in
an optimizing compiler,” Software-Practice and Experience, vol. 20, pp. 133-155,
Feb. 1990.

[57] P. Feautrier, “Dataflow analysis of scalar and array references,” International Jour­
nal of Parallel Programming, vol. 20, pp. 23-53, Feb. 1991.

[58] J. Gu, Z. Li, and G. Lee, “Symbolic array dataflow analysis for array privatiza­
tion and program parallelization,” in Proceedings of International Conference on
Supercomputing, 1995.

[59] J. Gu, Z. Li, and G. Lee, “Experience with efficient array data flow analysis for array
privatization,” in Proceedings of the ACM SIGPLAN Symposium on Principles &
Practice of Parallel Programming, 1997.

[60] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam, “Array data-flow analysis and
its use in array privatization,” in Proceedings of the ACM Symposium on Principles
of Programming Languages, 1993.

[61] Z. Li, “Array privatization for parallel execution of loops,” in Proceedings of Inter­
national Conference on Supercomputing, 1992.

[62] P. Tu and D. Padua, “Automatic array privatization,” Languages and Compilers
for Parallel Computing. Lecture Notes in Computer Science 768, U. Banerjee, D.
Gelemter, A. Nicolau and D. Padua (Eds.), 1994.

[63] D. J. Palermo, E. Su, E. W. H. IV, and P. Banerjee, “Compiler support for priva­
tization on distributed-memory machines,” in Proceedings of International Confer­
ence on Parallel Processing, 1995.

[64] M. Burke and R. Cytron, “Interprocedural dependence analysis and paralleliza­
tion,” in Proceedings of the SIGPLAN Symposium on Compiler Construction, 1986.

[65] Z. Li and P.-C. Yew, “Efficient interprocedural analysis for program parallelization
and restructuring,” in Proceedings of the ACM /SIG PLAN conference on Parallel
programming: experience with applications, languages and systems, 1988.

[66] F. Irigoin, P. Jouvelot, and R. Triolet, “Semantical interprocedural parallelization:
An overview of the pips project,” in Proceedings of International Conference on
Supercomputing, 1991.

[67] M. W. Hall, K. Kennedy, and K. S. McKinley, “Interprocedural transformations
for parallel code generation,” in Proceedings of International Conference on Super­
computing, 1991.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[68] M. W. Hall, S. Hiranandani, K. Kennedy, and C.-W. Tseng, “Interprocedural com­
pilation of fortran d for mimd distributed-memory machines,” in Proceedings of
International Conference on Supercomputing, 1992.

[69] A. Carle, M. Hall, J. Mellor-Crummey, and R. Rodriguez, “Fiat: A framework for
interprocedural analysis and transformation,” Rice University, tech. rep., march
1995. CRPC-TR95522-S.

[70] M. W. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S. Lam, “De­
tecting coarse-grain parallelism using an interprocedural parallelizing compiler,” in
Proceedings of International Conference on Supercomputing, 1995.

[71] B. Creusillet and F. Irigoin, “Interprocedural array region analyses,” in Workshop
on Languages and Compilers for Parallel Computing, 1995.

[72] J. Subhlok, J. M. Stichnoth, D. R. O ’Hallaron, and T. Gross, “Exploiting task
and data parallelism on a multicomputer,” in Proceedings of the ACM SIGPLAN
Symposium on Principles & Practice of Parallel Programming, 1993.

[73] T. Gross, D. R. O ’Hallaron, and J. Subhlok, “Task parallelism in a high perfor­
mance fortran framework,” IEEE Parallel & Distributed Technology, vol. 2, no. 3,
1994.

[74] S. Ramaswamy, S. Sapatnekar, and P. Banerjee, “A convex programming approach
for exploiting data and functional parallelism on distributed memory multcomput-
ers,” in Proceedings of International Conference on Parallel Processing, 1994.

[75] S. Ramaswamy and P. Banerjee, “Processor allocation and scheduling of macro
dataflow graphs on distributed memory multicomputers by the paradigm compiler,”
in Proceedings of International Conference on Parallel Processing, 1993.

[76] S. Ramaswamy and P. Banerjee, “Simultaneous allocation and scheduling using
convex programming techniques,” Parallel Processing Letters, Dec. 1995.

[77] R. M. Tomasulo, “An efficient algorithm for exploiting multiple arithmetic units,”
IBM J. Research and Development, no. 1, pp. 25-33, 1967.

[78] W.-M. Hwu and Y. Patt, “HPSm, a high performance restricted data flow ar­
chitecture having minimum functionality,” in Proceedings of Annual International
Symposium on Computer Architecture, 1986.

[79] J. E. Smith and G. S. Sohi, “The microarchitecture of superscalar processors,”
Proceedings of the IEEE, pp. 1609-1624, Dec. 1995.

[80] J. E. Smith, “A study of branch prediction strategies,” in Proceedings of Annual
International Symposium on Computer Architecture, 1981.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[81] A. Smith and J. Lee, “Branch prediction strategies and branch-target buffer de­
sign,” IEEE Computer, pp. 6-22, Jan. 1984.

[82] T. Yeh and Y. N. Patt, “A comparison of dynamic branch predictors that use two
levels of branch history,” in Proceedings of Annual International Symposium on
Computer Architecture, 1993.

[83] S. MacFarling, “Combining branch predictors,” WRL Technical Note, Digital West­
ern Research Laboratory, 1993.

[84] E. Rotenberg, J. Smith, and S. Bennett, “Trace cache: a low latency approach to
high bandwidth instruction fetching,” in Proceedings of International Symposium
on Microarchitecture, 1996.

[85] D. H. Friendly, S. J. Patel, and Y. N. Patt, “Alternative fetch and issue policies
for the trace cache fetch mechanism,” in Proceedings of International Symposium
on Microarchitecture, 1997.

[86] P. Y. Hsu and E. S. Davidson, “Highly concurrent scalar processing,” in Proceedings
of Annual International Symposium on Computer Architecture, 1986.

[87] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, “The Cydra 5 departmental
supercomputer,” IEEE Computer, pp. 12-35, Jan. 1989.

[88] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W.-M. Hwu, “A
comparison of full and partial predicated execution support for ILP processors,” in
Proceedings of Annual International Symposium on Computer Architecture, 1995.

[89] W.-M. Hwu and Y. N. Patt, “Checkpoint repair for high-performance out-of-order
execution machines,” IEEE Transactions on Computers, pp. 1496-1514, Dec. 1987.

[90] J. E. Smith and A. R. Pleszkun, “Implementing precise interrupts in pipelined
processors,” IEEE Transactions on Computers, pp. 562-573, May 1988.

[91] G. S. Sohi, “Instruction issue logic for high-performance, interruptible, multiple
functional unit, pipelined computers,” IEEE Transactions on Computers, pp. 349-
359, Mar. 1990.

[92] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W.-M. Hwu,
“Dynamic memory disambiguation using the memory conflict buffer,” 1994.

[93] J. A. Fisher, “Trace scheduling: A technique for global microcode compaction,”
IEEE Transactions on Computers, no. 7, pp. 478-490, 1981.

[94] W.-M. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bring-
mann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and
D. M. Lavery, “The super block: an effective technique for VLIW and superscalar
compilation,” The Journal of Supercomputing, no. 1, pp. 229-248, 1993.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[95] M. Lam, “Software pipelining: An effective scheduling technique for VLIW proces­
sors,” in Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, 1988.

[96] B. Rau, M. Schlansker, and P. Tirumalai, “Code generation schema for modulo
scheduled loops,” in Proceedings of International Symposium on Microarchitecture,
1992.

[97] B. Rau, “Iterative modulo scheduling,” International Journal o f Parallel Program­
ming, Feb. 1996.

[98] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, “Effective
compiler support for predicated execution using the hyperblock,” in Proceedings of
International Symposium on Microarchitecture, 1992.

[99] W.-M. Hwu, D. I. August, and J. W. Sias, “Program decision logic optimization
using predication and control speculation,” Proceedings of the IEEE, pp. 1660-1675,
Nov. 2001.

[100] S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank, W.-M. Hwu, B. R.
Rau, and M. S. Schlansker, “Sentinel scheduling: a model for compiler-controlled
speculative execution,” ACM Transactions on Computer Systems, pp. 376-408,
Nov. 1993.

[101] W. Pugh, “The Omega test: a fast and practical integer programming algorithm
for dependence analysis,” Communications of the ACM, Aug. 1992.

[102] B.-C. Cheng and W.-M. Hwu, “Modular interprocedural pointer analysis using ac­
cess paths: design, implementation, and evaluation,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation,
2000 .

[103] E. M. Nystrom, H.-S. Kim, and W.-M. Hwu, “Bottom-up and top-down context-
sensitive summary-based pointer analysis,” in Proceedings of the Static Analysis
Symposium, 2004.

[104] M. J. S. Smith, Application-Specific Integrated Circuits. Addison-Wesley Publishing
Company, 1998.

[105] K. Wakabayashi and T. Okamoto, “C-based SoC design flow and EDA tools: An
ASIC and system vendor perspective,” IEEE Transactions on Computer-Aided De­
sign of Integrated Circuits and Systems, vol. 19, pp. 1507-1522, Dec. 2000.

[106] R. Domer, “The SpecC system-level design language and methodology, part 1,” in
Embedded Systems Conference, 2002.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[107] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: A high-level synthesis
framework for applying parallelizing compiler transformations,” in Proceedings of
the International Conference on VLSI Design, 2003.

1081 G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

1091 “CoCentric SystemC Compiler.” Synopsys Inc.

1101 “Catapult C.” Mentor Graphics Corporation.

1111 Impulse Accelerated Technologies. http://www.impulseC.com.

1121 Celoxica Limited, http://www.celoxica.com.

1131 S. Hiranandani, K. Kennedy, and C.-W. Tseng, “Compiling Fortran D for MIMD
distributed-memory machines,” Communications of the ACM, vol. 35, Aug. 1992.

1141 C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. S. Jr., and M. E. Zosel, The
High Performance Fortran Handbook. The MIT Press, 1994.

115] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra, MPI, the
complete reference. The MIT Press, 1994.

116] J. B. Dennis, “Data flow supercomputers,” IEEE Computer, pp. 48-56, Nov. 1980.

1171 A. H. Veen, “Data flow machine architecture,” ACM Computing Surveys, no. 4,
pp. 365-396, 1986.

1181 Arvind and R. S. Nikhil, “Executing a program on the mit tagged-token dataflow
architecture,” IEEE Transactions on Computers, no. 3, pp. 300-318, 1990.

1191 P. G. Whiting and R. S. V. Pascoe, “A history of data-flow languages,” IEEE
Annals of the History of Computing, no. 4, pp. 38-59, 1994.

1201 W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in dataflow program­
ming languages,” ACM Computing Surveys, no. 1, pp. 1-34, 2004.

121] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck, “Efficiently com­
puting static single assignment form and the control dependence graph,” ACM
Transactions on Programming Languages and Systems, vol. 13, pp. 451-490, Oct.
1991.

[122] P. Tu and D. Padua, “Gated-ssa based demand-driven symbolic analysis for paral­
lelizing compilers,” in Proceedings of International Conference on Supercomputing,
1995.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.impulseC.com
http://www.celoxica.com

[123] R. Ballance, A. Maccabe, and K. Ottenstein, “The program dependence web: a
representation supporting control-, data-, and demand-driven interpretation of im­
perative languages,” in Proceedings of the ACM SIGPLAN Conference on Pro­
gramming Language Design and Implementation, 1990.

124] D. D. Gajski, D. A. Padua, D. J. Kucle, and R. H. Kuh, “A second opinion on
data-flow machines and languages,” IEEE Computer, no. 2, pp. 58-69, 1982.

1251 E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings o f the
IEEE, vol. 75, Sept. 1987.

1261 E. A. Lee and T. Parks, “Data-flow process networks,” Proceedings o f the IEEE,
vol. 83, pp. 773-799, May 1995.

127] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous data flow
programs for digital signal processing,” IEEE Transactions on Computers, vol. C-
36, Jan. 1987.

1281 J- L. Pino, S. S. Bhattacharyya, and E. A. Lee, “A hierarchical multiprocessor
scheduling system for dsp applications,” in Proceedings of the IEEE Asilomar Con­
ference on Signals, Systems, and Computers, 1995.

1291 S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Optimizing synchronization in
multiprocessor dsp systems,” IEEE Transactions on Signal Processing, June 1997.

1301 S. S. Bhattacharyya, R. Leupers, and P. Marwedel, “Software synthesis and code
generation for signal processing systems,” IEEE Transactions on Circuits and
Systems-II: Analog and Digital Signal Processing, vol. 47, Sept. 2000.

1311 S. S. Bhattacharyya, N. Bambha, M. Khandelia, and V. Kianzad, “Mapping dsp
applications onto self-timed multiprocessors,” in Proceedings of the IEEE Asilomar
Conference on Signals, Systems, and Computers, 2001.

132] W. Thies, M. Karczmarek, and S. Amarasinghe, “Streamlt: A language for stream­
ing applications,” in Proceedings of the International Conference on Compiler Con­
struction, 2002.

133] “Brook project web page.” http://brook.sourceforge.net.

134] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanra-
han, “Brook for GPUs: Stream computing on graphics hardware,” in International
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), 2004.

[135] C. Moore, “Cmps: Now and into the future.” Keynote Presentation, Workshop on
Design, Architecture and Simulation of Chip Multi-Processors 2005.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://brook.sourceforge.net

[136] W. Pugh and D. Wonnacott, “Eliminating false data dependences using the Omega
test,” in Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, 1992.

[137] K. K. Parhi, VLSI Digital Signal Processing Systems, design and implementation.
John Wiley and Sons, 1999.

[138] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependency graph
and its uses in optimization,” ACM Transactions on Programming Languages and
Systems, vol. 9, pp. 319-349, June 1987.

[139] P. Tu and D. Padua, “Efficient building and placing of gating functions,” in Pro­
ceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, 1995.

[140] B. Steensgaard, “Points-to analysis in almost linear time,” in Proceedings of the
ACM Symposium on Principles o f Programming Languages, 1996.

[141] B.-C. Cheng, “Compile-time memory disambiguation for c programs,” Ph.D. dis­
sertation, University of Illinois, 2000.

[142] M. Das, “Unification-based pointer analysis with directional assignment,” in Pro­
ceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2001.

[143] M. P. Gerlek, E. Stoltz, and M. Wolfe, “Beyond induction variables: Detecting
and classifying sequences using a demand-driven ssa form,” ACM Transactions on
Programming Languages and Systems, vol. 17, pp. 85-122, Jan. 1995.

[144] M. Wolfe, “Beyond induction variables,” in Proceedings o f the ACM SIGPLAN
Conference on Programming Language Design and Implementation, 1992.

[145] R. Sedgewick, Algorithms. Addison-Wesley.

[146] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools.
Addison-Wesley Publishing Company.

[147] S.P.Amarasinghe, “Parallelizing compiler techniques based on linear inequalities,”
Ph.D. dissertation, Stanford University, 1997.

[148] V. Balasundaram and K. Kennedy, “A technique for summarizing data access and
its use in parallelism-enhancing transformations,” in Proceedings of the ACM SIG­
PLAN Conference on Programming Language Design and Implementation, 1989.

[149] P. Havlak and K. Kennedy, “An implementation of interprocedural bounded regular
section analysis,” IEEE Transactions on Parallel and Distributed Systems, pp. 350-
360, July 1991.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150] Y. Paek, J. Hoeflinger, and D. Padua, “Simplification of array access patterns
for compiler optimizations,” in Proceedings o f the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 1998.

151] S. Moon and M. W. Hall, “Evaluation of predicated array data-flow analysis for
automatic parallelization,” in Proceedings of the ACM SIGPLAN Symposium on
Principles & Practice o f Parallel Programming, 1999.

152] W. Pugh and D. Wonnacott, “Constraint-based array dependence analysis,” ACM
Transactions on Programming Languages and Systems, pp. 635-678, May 1998.

153] D. Wonnacott, “Constraint-based array dependence analysis,” Ph.D. dissertation,
University of Maryland, 1995.

154] D. Callahan, “The program summary graph and flow-sensitive interprocedural data
flow analysis,” in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, 1988.

155] K. D. Cooper and K. Kennedy, “Interprocedural side-effect analysis in linear time,”
in Proceedings of the ACM SIGPLAN Conference on Programming Language De­
sign and Implementation, 1988.

156] T. Brandes, “The importance of direct dependences for automatic parallelism,” in
Proceedings of International Conference on Supercomputing, 1988.

157] P. Feautrier, “Parametric integer programming,” RAIRO Recherche
Operationnelle, vol. 22, pp. 243-268, Sept. 1988.

158] S. Moon, M. W. Hall, and B. R. Murphy, “Predicated array data-flow analysis for
run-time parallelization,” in Proceedings o f International Conference on Supercom­
puting, 1998.

159] P. Tu, “Automatic array privatization and demand-driven symbolic analysis,”
Ph.D. dissertation, University of Illinois, 1995.

160] “Impact web page.” http://www.crhc.uiuc.edu/impact.

161] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A tool for eval­
uating and synthesizing multimedia and communications systems,” in Proceedings
of International Symposium on Microarchitecture, 1997.

162] “uDraw(graph) web page.” http://www.informatik.uni-
bremen.de/uDrawGraph/en/home.html.

163] J. K. Ousterhout, Tel and the Tk Toolkit. Addison-Wesley, 1994.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.crhc.uiuc.edu/impact
http://www.informatik.uni-

A U T H O R ’S BIO G R A PH Y

Chien-Wei Li was born in Kaohsiung, Taiwan, on April 24, 1968, to a military family.

His grandparents and parents migrated from Shandong, China to Taiwan in 1949. He

grew up in Taipei, and attended the National Taiwan University, where he obtained the

B.S. degree in 1990, and the M.S. degree in 1992, both in computer science. His M.S.

thesis work is the design and implementation of a distributed file system which essentially

implemented a disk array using commodity personal computer hard disks and token ring

networks. After serving in the Navy from 1992 to 1994, he was enrolled in the computer

science PhD program at the University of Illinois at Urbana-Champaign, and worked as a

research assistant at the Coordinated Science Laboratory, doing researches on the design

of processor array and coprocessor for computing recurrence.

In 1996, he worked as a summer intern at Rockwell Semiconductor Inc., Newport

Beach, California. For the functional verification of the instruction pipeline control of

a digital signal processor, he designed and implemented a test vector generator, which

surprised the designers by catching several obscure bugs. During his second summer

intern, in 1997, he synthesized the instruction pipeline control to investigate the feasibility

of a synthesis based approach for Rockwell’s next generation digital signal processor.

From 1998 to 2001, he worked as a full-time design engineer at Conexant Inc., formerly

Rockwell Semiconductor Inc., doing performance evaluation, micro-architecture design,

functional verification, and RTL design and synthesis of the instruction pipeline control

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of Conexant’s next generation digital signal processor. In November, 2001, he returned

to school to resume his PhD research.

After defending his PhD thesis, he joined the platform ingredient architecture group

of Intel, at Hillsboro, Oregon, in August, 2005. His general interests are general-purposed

or special-purposed processor design and implementation, compilers, operating systems,

and digital signal processing, digital communication and computer graphics applications.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

