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1. INTRODUCTION
Superscalar and very long instruction word (VLIW) processors provide signi�cantperformance improvements over scalar processors by simultaneously executing multipleinstructions. The e�ectiveness of these processors depends on the ability of compilersto provide su�cient instruction-level parallelism (ILP) in program code. However, re-cent studies show that conventional code optimization and scheduling methods cannotprovide enough ILP to obtain a sustained speedup of more than two for nonnumericprograms [1],[2],[3]. The high frequency of conditional branch instructions in nonnumericprograms is mostly responsible for these poor results.Branch instructions impede the ability of the compiler to extract ILP in several ways.Branches impose restrictions on the ability of the compiler to move code. Moving in-structions before branches is termed speculation. Speculation is di�cult to performacross many branches. Special techniques are usually necessary to handle exceptionsthat speculated instructions may falsely introduce during execution. In addition, not allinstructions are easily speculated. Speci�cally, speculating stores to memory and branch



2instructions is particularly problematic. These code motion limitations limit the freedomof the compiler to schedule independent instructions together.Another way in which branches adversely a�ect ILP is their long latency. As ma-chines take on longer pipelines, the time between the execute stage and the fetch stageis increased. This extra time translates into large bubbles in the pipeline whenever abranch is encountered. A common technique to reduce the e�ect of branch latency isbranch prediction. Branch prediction eliminates pipeline bubbles by speculatively exe-cuting one branch destination path. However, some branches have poor predictability,thus reducing the gains obtained by branch prediction. Branch mispredictions penalizeperformance by creating many wasted cycles, which amortize away any gains obtainedthrough ILP.The �nal reason branches impede ILP so severely is that frequent branches in theinstruction stream place an upper limit on the potential ILP. A superscalar or VLIWprocessor must likely execute multiple branches per cycle to sustain the execution of mul-tiple instructions per cycle. Assuming that an instruction stream contains 25% branches,an 8-issue superscalar processor must have the capability to sustain at least two branchesper cycle. If a given 8-issue processor can only execute a single branch each cycle, itsmaximal performance would be resource limited to four instructions per cycle. Handlingmultiple branches per cycle requires additional pipeline complexity, as well as designingmultiported branch prediction structures such as the branch target bu�er (BTB). For thisreason, it is likely that most future generation ILP processors will have limited branch



3handling capabilities. In high issue rate processors, it is less expensive to duplicate arith-metic function units than to predict and execute multiple branches per cycle. Addingextra functional units to compensate for limited branch hardware, if possible, is quiteappealing.Extracting ILP in nonnumeric programs requires that their branch characteristics beimproved. One method of achieving this is a technique known as predicated execution.Predicated execution refers to the conditional execution of an instruction based on thevalue of a Boolean source operand, referred to as the predicate [4],[5]. Such architecturalsupport allows the compiler to use an if-conversion algorithm to convert undesirableconditional branches into predicate de�ne instructions and instructions along alternativepaths of each branch into predicated instructions [6],[7],[8],[9],[10].Predicated execution facilitates code motion by removing branches and forming struc-tures known as hyperblocks. A hyperblock is a structure formed by combining basicblocks from many paths of execution together. Hyperblocks are optimized and scheduledeasily as a unit [9]. The branch misprediction penalty problem can also be alleviated bypredicated execution. With predication, many hard to predict branches are eliminatedthrough if-conversion. If the remaining branches are easily predicted, near perfect branchprediction is obtained. Finally, the removal of branches improves the branch handlingcomplexity by reducing the number of branches that must be executed every cycle.In addition to improving the branch characteristics of nonnumeric programs, pred-ication enables a new class of optimizations, which previously were di�cult or even



4impossible to perform. This thesis describes a set of such optimizations and explores onesuch optimization, loop peeling, in detail.1.1 Related WorkLoop peeling, as studied in this thesis, was originally mentioned in [11]. Mahlke'sPh.D. thesis discusses the possibility of performing loop peeling automatically [12]. Infact, performance gains obtained in [12] are due in part to the automatic loop peelingheuristic and optimization developed as part of this work.The fully resolved predication techniques and other height reduction techniques arestudied in [13], and node splitting is briey mentioned in [11]. Reverse if-conversion,discussed in [14], inspired the idea of partial reverse if-conversion. Discussions that theauthor had with members of the IMPACT compiler group inspired the ideas of pro�leindependent hyperblock selection and optimization during scheduling.1.2 Organization of this WorkThe following chapter provides an overview of the IMPACT compiler used to studythe e�ectiveness of the techniques presented in this thesis. Chapter 3 provides a detaileddiscussion of loop peeling and how, together with predication, it is an e�ective techniqueto extract ILP from programs. This chapter also evaluates loop peeling on an experimen-tal level and demonstrates its e�ectiveness in real programs. A preliminary study of a



5suite of advanced predication compilation techniques is presented in Chapter 4. Finally,Chapter 5 �nishes this work with concluding remarks.



6

2. OVERVIEW OF THE IMPACT COMPILER
All of the compiler techniques necessary to e�ectively utilize speculative and pred-icated execution are implemented within the framework of the IMPACT compiler. Ablock diagram of the IMPACT compiler is presented in Figure 2.1. The compiler is di-vided into two distinct parts based on the level of intermediate representation (IR) used.The highest level IR, Pcode, is a parallel C code representation with loop constructsintact. In Pcode, memory dependence analysis [15],[16], loop-level transformations [17],and memory system optimizations [18],[19] are performed. Additionally, pro�le-guidedcode layout and function inline expansion are performed at this level [20],[21],[22].The lowest level IR in the IMPACT compiler is referred to as Lcode, which is ageneralized register transfer language similar in structure to most load/store processorassembly instruction sets. Lcode is logically subdivided into two subcomponents, themachine independent IR, Lcode, and the machine speci�c IR,Mcode. The data structuresfor both the Lcode and Mcode are identical. The di�erence is that Mcode is broken downsuch that there is a one-to-one mapping between Mcode instructions and the target
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8machine's assembly language instructions. Therefore, to convert Lcode to Mcode, thecode generator breaks up Lcode instructions into one or more instructions that directlymap to the target architecture. Lcode instructions are broken up for a variety of reasonsincluding limited addressing modes, limited opcode availability, ability to specify a literaloperand, and �eld width of literal operands.At the Lcode level, all machine independent classic optimizations are applied [23].These optimizations include constant propagation, forward copy propagation, backwardcopy propagation, common subexpression elimination, redundant load elimination, re-dundant store elimination, strength reduction, constant folding, constant combining,operation folding, operation cancelation, code reordering, dead code removal, jump opti-mization, unreachable code elimination, loop invariant code removal, loop global variablemigration, loop induction variable strength reduction, loop induction variable elimina-tion, and loop induction variable reassociation. Additionally, at the Lcode level, inter-procedural safety analysis is performed [24], including the identi�cation of safe instruc-tions for speculation and function calls that do not modify memory (side-e�ect free).Superblock and hyperblock compilation techniques are performed exclusively at theLcode level. Superblock formation using execution pro�le information, superblock clas-sical optimization, and superblock ILP optimization are all supported. When predicatedexecution support is available in the target architecture, hyperblocks, rather than su-perblocks, are used as the underlying compilation structure. All superblock optimiza-tion techniques have been extended to operate on hyperblocks. In addition, a set of



9hyperblock-speci�c optimizations is employed to further exploit predicated executionsupport. The focus of this thesis is centered around enhancing this set of hyperblock-speci�c optimizations.Code generation in the IMPACT compiler is performed at the Lcode level. The twolargest components of code generation are the instruction scheduler and register allocator.Scheduling is performed via either acyclic global scheduling [24],[25] or software pipelin-ing using modulo scheduling [26]. For the acyclic global scheduling, code scheduling isapplied both before register allocation (prepass scheduling) and after register allocation(postpass scheduling) to generate an e�cient schedule. For software pipelining, loopstargeted for pipelining are identi�ed at the Pcode level and marked for pipelining. Theseloops are then scheduled using software pipelining, and the remaining code is scheduledusing the acyclic global scheduler. In addition to control speculation, both schedulingtechniques are capable of exploiting architectural support for data speculation to achievemore aggressive schedules [16],[27],[28].Graph coloring-based register allocation is utilized for all target architectures [29].The register allocator employs execution pro�le information, if it is available, to makemore intelligent decisions. For each target architecture, a set of specially tailored peep-hole optimizations is performed. These peephole optimizations are designed to removeine�ciencies during Lcode to Mcode conversion, to take advantage of specialized op-codes available in the architecture, and to remove ine�cient code inserted by the registerallocator.



10A detailed machine description database, Mdes, for the target architecture is alsoavailable to all Lcode compilation modules [30]. The Mdes contains a large set of infor-mation to assist with optimization, scheduling, register allocation, and code generation.Information, such as the number and type of available function units, size and widthof register �les, instruction latencies, instruction input/output constraints, addressingmodes, and pipeline constraints, is provided by the Mdes. The Mdes is queried by theoptimization phases to make intelligent decisions regarding the applicability of transfor-mations. The scheduler and register allocator rely more heavily on the Mdes to generatee�cient and correct code.Seven architectures are actively supported by the IMPACT compiler. These includethe AMD 29K [31], the MIPS R3000 [32], the SPARC [33], the HP PA-RISC, and theIntel X86. The other two supported architectures, IMPACT and HPL Playdoh [34], areexperimental ILP architectures. These architectures provide an experimental frameworkfor compiler and architecture research. The IMPACT architecture is a parameterized su-perscalar processor with an extended version of the HP PA-RISC instruction set. Varyinglevels of support for speculative execution and predicated execution are available in theIMPACT architecture. For this thesis, all experiments utilize the IMPACT architecturewith varying parameters.
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3. HYPERBLOCK LOOP PEELING
Creation of a hyperblock consists of two parts: the �rst is block selection. Blockselection is the process of deciding which blocks in a region to include in a hyperblock.Conventional techniques for if-conversion predicate all blocks within a single-loop nestregion together [35]. However, for hyperblocks, a subset of these blocks is chosen in orderto achieve the best possible performance. Including too few or too many blocks reducesthe e�ectiveness of the formed hyperblock in various ways.After block selection, hyperblock formation is performed by if-converting the selectedblocks together. Before if-conversion, two conditions must be satis�ed.� Condition 1: There exist no incoming control ow arcs from blocks not selected toany selected blocks except the entry block.� Condition 2: There exist no loops inside the selected blocks that do not includethe entry block.
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Figure 3.1: Example weighted control ow graph to illustrate hyperblock loop peeling:(a) original graph, (b) graph after loop peeling, and (c) graph after looppeeling, tail duplication, and if-conversion.Together these conditions insure that the hyperblock has a single entry point and that anyinstruction in the hyperblock is fetched no more than one time before the hyperblock isexited. Condition 1 is handled routinely by tail duplication. Condition 2 can be satis�edby a transformation known as loop peeling.Loop peeling is the process of converting the �rst N iterations of a loop into acycliccode. Figure 3.1 demonstrates this process. Figure 3.1(a) shows the original control owgraph with a dotted line indicating the region chosen by block selection for inclusioninto a hyperblock. Block B is a self loop in this region. In order to satisfy Condition 2,this loop is peeled with N = 2. To peel a loop, N copies of the loop are made. Thesecopies are exactly the same as the original loop with one exception. The loop backedgedestination is changed to point to the next iteration instead of to the header of the loop.Note that the original loop remains untouched, which is necessary for the cases where



13the loop iterates more than N times. The original copy of the loop is now only executedwhen the number of iterations exceeds the number of peels. For this reason, the originalcopy is called the recovery loop. Figure 3.1(b) shows the resulting control ow graphafter loop peeling.After loop peeling, the control ow graph in Figure 3.1(b) satis�es Condition 2. Beforethe hyperblock is formed, tail duplication must be performed to eliminate the control owarc into block C. Once tail duplication is complete, if-conversion can be performed. Theresulting hyperblock is shown in Figure 3.1(c).While loop peeling itself is simple, knowing when and how much to peel is a com-plicated problem. The ability to peel makes block selection more di�cult. Determiningthe number of times to peel is crucial to obtaining good performance. Too few peelswill result in a hyperblock that seldom completes, while too many peels will result in anincreased cycle count for completion of the hyperblock. Resource utilization, dependenceheight, and the loop's behavior must all be considered. The remainder of this chapteraddresses these issues.3.1 Opportunities for Hyperblock Loop PeelingRather than peeling loops for inclusion into a hyperblock, it is possible to performblock selection so that nested loops are not selected. However, this algorithm limitsopportunities in hyperblock formation. To understand why block selection should be



14allowed to include loops for peeling, it is important to study the potential bene�ts ofloop peeling.The goal of hyperblock formation is to choose a few, very likely straight-line pathsand combine them into a single fetch stream. In general, these paths may or may nothave loops. Loop peeling allows loops to be converted into straight-line paths. In thisway, frequently executed paths are handled in a uniform manner regardless of the loopsthey may contain.When a loop is frequently invoked, yet iterated upon no more than a few times perinvocation, it may not be possible to enhance the loop's ILP with conventional tech-niques. This situation is due to the fact that many conventional ILP loop optimizations,such as software pipelining and loop unrolling, rely on loops to iterate many times uponeach invocation. These transformations also require that each iteration of the loop isnot very sequential since they overlap iterations to increase throughput. However, if theloop is sequential, the iterations cannot be overlapped. Additionally, if the loop iteratesinfrequently for each invocation, there may not be enough iterations to overlap, let aloneamortize any start-up costs involved. Loop peeling is not subject to these constraints.Loop peeling enhances the ILP of these troublesome loops by overlapping their execu-tion with the rest of the path chosen during block selection. Thus very sequential loopiterations are executed simultaneously with other code.Even when a loop is well-behaved and a good candidate for software pipelining orloop unrolling, loop peeling may have an advantage. Sometimes, the path surrounding
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Figure 3.2: Barrier to code motion.the loop has undesirable characteristics. For example, it may be very sequential or itmay not be possible to overlap it with other portions of the region. In this case, looppeeling could provide useful work for overlap with the code of the surrounding region.Loops on frequently executed paths create arti�cial barriers to code motion for practi-cal reasons. Figure 3.2 shows a hypothetical loop nest. Since scheduling and optimizationacross control blocks is di�cult, the inner loop creates an arti�cial barrier to code mo-tion. No longer can the outer loop be treated as a single unit as it has e�ectively beenconverted into two separate acyclic code regions. If any or all of these blocks are verysequential, it is necessary to overlap code from each block to create a packed path withhigh ILP and short cycle count. However, the arti�cially created barrier to code motionkeeps these blocks separate and sparse, resulting in poor performance.



16It is clear from this discussion that there are situations where loop peeling is desirableand others where it is not. Determining which loops to peel is the challenge. Thedecision to peel a loop must be made before the hyperblock is formed. At this point, itis unclear whether peeling will have the desired e�ect. Depending on the quality of thecode optimizations performed after the hyperblock is formed, the choice may be a successor failure. A good heuristic is the best that can be hoped for given this environment.Advanced techniques, such as partial reverse if-conversion and node splitting, which canpotentially reduce the dependence on heuristics, are discussed in Chapter 4.Before the algorithms used in the IMPACT hyperblock formation module are pre-sented in Section 3.4, rough guidelines for �nding good candidates for peeling will bepresented.Low iteration count loops are generally good candidates for peeling. Consider a loopthat iterates three or fewer times per invocation. Since there are only a few iterations, thenumber of peels is minimal. These peels are likely to be simultaneously executable withother code in the selected traces. Additionally, since the number of iterations is usuallyless than the number of peels, the program is unlikely to exit the hyperblock beforecompletion. As mentioned earlier, unrolling and software pipelining cannot enhance thisloop's performance because it does not have a high iteration count.A loop that has a low iteration count on some invocations and a very high iterationcount on others is also a good candidate for loop peeling. The low iteration count invo-cations have the same advantages discussed earlier. The high iteration count invocations



17will always exit to the recovery loop. Whenever the recovery loop is executed, it is likelythat the loop will still need to iterate for many iterations. For this reason, high iterationcount loop transformations are still e�ective. The high iteration count recovery loop canbe optimized while safely ignoring the low iteration count cases. Any start-up penaltywill be amortized in all cases. In e�ect, the loop is versioned. The peeled loop is theversion for low iteration counts, whereas the recovery loop is the version for high iterationcounts.Even when the loop does not have a low iteration count component or the behaviorof the loop is simply unknown, it may still be wise to peel it. If the code surroundingthe loop is sparse, peeling o� a few iterations to utilize resources will increase ILP. Inthis case, determining the number of times to peel is more di�cult. The dependenceheight and resource usage of the resulting peels must be matched carefully with thecharacteristics of the surrounding code. The process is made more di�cult since theresult of further transformations and optimizations must be considered.In all cases, the number of times to peel a loop is critical. Too few iterations resultin the recovery loop being entered too often, resulting in an ine�ective hyperblock. Toomany peels result in many useless instructions wasting fetch resources or in an unneces-sarily increased dependence height.
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p < last;
p += CC−>wsize)

LG:

LA: if (( p[0] & (0x2000) ))
{

/* INNER LOOP */

/* OUTER LOOP */

do {
if ( p[i_] & ~r[i_])  break;

}while(−−i_ > 0);
if ( i_ != 0 )

goto false1;
continue;
false1:
CC−>active_count−−,  ( p[0] &= ~(0x2000));

}

LB:

LC:
LD:

LF:

LE:

p = CC−>data, last = p + CC−>count * CC−>wsize; for (

{

register int i_ = ( p[0] & 0x03FF ); 

}Figure 3.3: Source code of a loop nest in elim lowering from 008.espresso.3.2 An Example Code SegmentIn order to gain a better understanding of how peeling works, a code example ispresented. Figure 3.3 shows the C source code to an important loop nest in elim loweringfrom the SPEC-92 benchmark 008.espresso. The inner loop in this code only iterates anaverage of 2.6 times per invocation. However, this inner loop accounts for a signi�cantportion of the entire benchmark's running time. In addition to being invoked quitefrequently, the outer loop iterates an average of 626 times per invocation causing theinner loop to be invoked frequently. The outer loop would have been ideal for loopunrolling or software pipelining if not for the inner loop.
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1 LA: r98 = MEM[R1]
2 r99 = r98 & 8192
3 branch (r99 == 0), LG
4 LB: r11 = r98 & 1023
5 r115 = r11 << 2
6 r124 = r115 + r1
7 r125 = r115 + r2
8 LC: r56 = MEM[r124]
9 r124 = r124 - 4
10 r58 = MEM[r125]
11 r125 = r125 - 4
12 r59 = -1 XOR r58
13 r60 = r56 & r59
14 branch (r60 != 0), LE
15 LD: r11 = r11 -1
16 branch (r11 > 0), LC
17 LE: branch (r11 == 0), LG
18 LF: r137 = r137 - 1
19 r64 = r98 & -8193
20 MEM[r1] = r64
21 LG: r1 = r1 + r101
22 branch (r1 < r3), LAFigure 3.4: Intermediate representation of elim lowering loop before peeling.Figure 3.4 is the IMPACT compiler generated intermediate representation of the loopnest. The inner loop is highlighted showing that the inner loop consists of nine operationsand has a dependence height of �ve cycles. Without further transformation, this innerloop would have an IPC of less than two and would be unable to fully utilize wider-issueprocessors. In addition to the serial nature of the inner loop, the inner loop contains twohard to predict branches. These branches, instructions 14 and 16, are hard to predictbecause of the low iteration count behavior of the loop. These branches are not stronglybiased in the way a frequently taken backedge would be, such as instruction 22, forexample.The outer loop is also quite serial with a total of 13 instructions; its dependence heightis seven cycles. Without loop peeling, this code segment would have been optimized and



20scheduled in three parts. In Figure 3.5, the three portions are shown. Basic blocks Aand B make up the �rst control block corresponding to the top portion of the outer loop.Basic blocks C and D form the inner loop. The bottom portion of the outer loop consistsof basic blocks E, F, and G.The characteristics of this loop nest indicate that the inner loop is a good candidatefor peeling. With an average iteration count of 2.6, the inner loop could be peeled threetimes to capture 90% of all of the loop's invocations. Its small size means that peelingthe loop three times would not oversaturate available resources in an 8-issue machine.Figures 3.6 and 3.7 show the loop nest after loop peeling. While the actual code ispeeled four times, the �gures show a version of the loop nest peeled twice for demon-stration purposes. The �rst peel, instructions 8 through 16, must always execute. Thepredicate P130 corresponds to the condition of the branch instruction 3 in Figure 3.4.When P130 is TRUE, the inner loop is not bypassed, and the �rst iteration of the in-ner loop will execute. For this reason, the �rst iteration is predicated on P130. P134corresponds to the branch condition in instruction 14 in Figure 3.4. The second peelediteration is predicated on P135 and P130. These predicates are analogous to P130 andP134 with the added backedge condition. If the two peeled loop iterations are insuf-�cient to satisfy the number of iterations, control is directed to the recovery loop bybranch instruction 25.After peeling, the control ow graph has been converted to a single loop with onebackedge and one exit edge. Certainly, this resulting loop is more conducive to further
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Figure 3.5: Control ow graph of elim lowering loop before peeling.
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1 LA: r98 = MEM[R1]
2 r99 = r98 & 8192
3 (p130) = (r99 == 0)
4 r11 = r98 & 1023 (p130)
5 r115 = r11 << 2 (p130)
6 r124 = r124 - 4 (p130)
7 r125 = r125 - 4 (p130)
8 r56 = MEM[r115 + r1] (p130)
9 r124 = r124 - r115 (p130)
10 r58 = MEM[r115 + r2] (p130)
11 r125 = r125 + r115 (p130)
12 r59 = -1 XOR r58 (p130)
13 r60 = r56 & r59 (p130)
14 (p134) = (r60 == 0) (p130)
15 (p135) = (r11 > 1) (p134)
16 r11 = r11 -1 (p134)
17 r56 = MEM[r124] (p135)
18 r124 = r124 - 4 (p135)
19 r58 = MEM[r125] (p135)
20 r125 = r125 -4 (p135)
21 r59 = -1 XOR r58 (p135)
22 r60 = r56 & r59 (p135)
23 (p136) = (r60 == 0) (p135)
24 r11 = r11 -1 (p136)
25 branch (r11 > 0), EXTRA (p136)
26 (p133) = (r11 != 0) (p130)
27 r137 = r137 - 1 (p133)
28 r64 = r98 & -8193 (p133)
29 MEM[r1] = r64 (p133)
30 r1 = r1 + r101
31 branch (r1 < r3), LAFigure 3.6: Intermediate representation of elim lowering loop after peeling.
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Figure 3.7: Control ow graph of elim lowering loop after peeling.



240 top12 top top3 top top4 peel 1 top peel 1 top5 peel 2 peel 2 peel 3 peel 3 peel 4 peel 46 peel 17 peel 1 peel 2 peel 3 peel 48 peel 1 peel 2 peel 3 peel 49 peel 1 peel 110 peel 211 peel 2 peel 212 peel 313 peel 3 peel 314 peel 415 peel 416 bottom extra17 bottom bottom bottom18 backedgeFigure 3.8: Schedule of elim lowering loop after peeling four times.optimization. However, even without further optimization, the resulting loop has moredesirable characteristics. As is shown in Figure 3.8, many peeled loop iterations areexecuted concurrently. The �rst iteration is dependence height limited and takes sixcycles. However, each additional iteration overlaps most of its previous iteration, takingonly two more cycles. Thus, four iterations take up 12 cycles, only double the cycle countof a single iteration. Additionally, the top and bottom parts of the outer loop segment dooverlap with the peels. Unfortunately, in this example the outer loop overlaps a relativelysmall amount in comparison with other loops. Even with the peeling, the loop is stilldependence height limited. Further optimizations such as unrolling will be applied toalleviate this problem.



25The �nal optimized code segment's cycle count has dropped from 6.70 million cyclesto 2.46 million cycles due to loop peeling. Loop peeling has increased the instructions percycle (IPC) by the overlapping of parts of the inner loop. However, the most interestingchange is observed when branch prediction is modeled. The number of mispredictionsis reduced from 182,000 to only 16,000. This reduction in mispredictions is the e�ectof removing the hard to predict inner loop branches. In a machine with a large branchmisprediction penalty, this reduction in mispredictions can have an even more profounde�ect on the cycle count.3.3 Loop Iteration Histogram Pro�lingAn important characteristic to consider when deciding which loops to peel and howmany times to peel them is the iteration histogram. The iteration histogram is a count ofthe number of times a loop is iterated each time it is invoked. Figure 3.9 shows an Lcodeloop header basic block with loop iteration histogram information. This basic blockcorresponds to the header of the inner loop in the 008.espresso code segment discussedpreviously. The iteration header attribute indicates that each time the loop was enteredit had only four di�erent iteration counts. It also indicates that this loop was pro�ledonly once. The four iter N attributes indicate the number of times the loop iterated Ntimes when it was invoked. In this case the loop had one iteration before exiting in 3400of its invocations. It also had two iterations in 57,481 of its invocations, three iterationsin 52,233 of its invocations, and four iterations in 13,849 of its invocations.



26(cb 11 330457.000000 [(flow 1 13 125018.000000)(flow 0 12 205439.000000)]<(iteration_header (i 4)(i 1))(iter_1 (f2 3400)(f2 3400))(iter_2 (f2 57481)(f2 57481))(iter_3 (f2 52233)(f2 52233))(iter_4 (f2 13849)(f2 13849))>)(op 77 ld_i [(r 56 i)] [(r 124 i)(i 0)])(op 177 add [(r 124 i)] [(r 124 i)(i -4)])(op 79 ld_i [(r 58 i)] [(r 125 i)(i 0)])(op 179 add [(r 125 i)] [(r 125 i)(i -4)])(op 80 xor [(r 59 i)] [(i -1)(r 58 i)])(op 81 and [(r 60 i)] [(r 56 i)(r 59 i)])(op 82 bne [] [(r 60 i)(i 0)(cb 13)])Figure 3.9: Lcode example of loop iteration count histogram pro�ling.These attribute values are obtained by dynamic pro�ling. Pro�ling is performed byrunning the benchmark with probes in the code to report its behavior. Each iter Nattribute contains at least two numbers. The �rst number is the average number ofinvocations among all pro�le runs. The subsequent numbers are the per run count. Inthis case, only one pro�le run was taken; hence, there are only two numbers, both ofwhich are equal.Once collected, this loop iteration pro�le information is used to decide when and howmuch to peel a loop. One concern over utilizing pro�le information is that it may notaccurately reect the behavior of the program with di�erent input sets. If the pro�leinformation used in loop peeling decisions does not match the behavior of the program,performance su�ers. To quantify this e�ect and justify the use of pro�ling information inloop peeling decisions, the e�ect of di�erent input sets will be studied as part of future



27research. It is suspected that, while the actual iteration count may vary by a smallamount, infrequently iterated loops will remain infrequently iterated for most input sets.The next section discusses the algorithms used in the loop peeling decisions. Thesealgorithms assume that pro�le information is a good estimate for most input sets.3.4 Loop Peeling Selection HeuristicWith loop peeling, knowing exactly when and how much to peel is impossible sinceoptimizations and scheduling performed after peeling can radically change the character-istics of the loop. For this reason, the peeling decision must be a heuristic.One way to decide when to peel is to �gure out how much peeling would make sensefor a particular loop. If the number of peels is reasonable, then peeling that loop maybe a wise decision. However, if the number of peels is zero or is very large, then peelingcould be detrimental. Deciding how much to peel involves several issues. Peeling toofew times would mean that the recovery loop would be invoked too often, making theoriginal hyperblock ine�ective. Peeling too many times may introduce many uselessinstructions into the hyperblock. These useless instructions saturate the fetch resourcesand increase the cycle count of the hyperblock. The currently implemented heuristicshown in Figure 3.10 attempts to balance these concerns to �nd the best number ofpeels. It also indirectly determines if a loop is a candidate for peeling. If a good numberof peels cannot be found, the loop is not peeled.



28�nd num peel(loop)f if(contains jsr(loop))f return 0;gtotal invocations = compute total invocations(loop);total peelable invocations = compute total peelable invocations(loop);iteration size = compute iteration size(loop);overall coverage = 0;peelable coverage = 0;for(cur num peel = 0;cur num peel < CONSIDER INFINITY ITERATIONS;cur num peel = cur num peel + 1)f overall coverage = overall coverage +(iter count[cur num peel] / total invocations);incremental peelable coverage =iter count[cur num peel] / tot peelable iter;peelable coverage = peelable coverage + incremental peelable coverage;if (overall coverage < MIN OVERALL COVERAGE)continue;if (incremental peelable coverage < MIN PEELABLE INCREMENTAL COVERAGE)continue;if (peelable coverage < MIN PEELABLE COVERAGE)continue;if ((cur num peel � iteration size) > MAX OPS IN PEELED LOOP)break;return cur num peel;greturn 0;g Figure 3.10: Heuristic to compute number of times to peel a loop.



29The current heuristic will return 0, meaning that the loop should not be peeled if itcontains a jsr. Jsr's limit code motion in hyperblocks. For this reason, it is usually notdesirable to create multiple calls to functions in a hyperblock by peeling the loop. If theloop does not contain a jsr, it still needs to be further considered.The heuristic uses �ve tunable parameters in order to �nd the best number of timesto peel. The logic behind each of these parameters is discussed in turn. The value used inthe IMPACT compiler for each of these parameters was determined by testing the codeon the SPEC-92 benchmark suite.The �rst parameter, CONSIDER INFINITY ITERATIONS, is the upper bound onthe number of peels. In e�ect, this parameter chooses a threshold at which point a highiteration count loop transformation, such as software pipelining or loop unrolling, is abetter choice. The value of this parameter is normally around six or eight. This parameteris critical since the heuristic works by considering each number of peels starting at zeroup to CONSIDER INFINITY ITERATIONS, until the �rst case is found that satis�esall of the other parameters.Another parameter is MAX OPS IN PEELED LOOP. This parameter is the maxi-mum number of operations the peeled loop code can have. The number of operations ina peeled loop code segment is considered to be the number of instructions in a loop mul-tiplied by the number of peels. If this number exceeds MAX OPS IN PEELED LOOP,the loop is considered to be a bad candidate for peeling, and the loop is not peeled.



30In actuality, a large number of operations in a peeled loop code segment are not nec-essarily detrimental. However, the number of operations is used as a rough estimateof the dependence height and resource usage a peel may consume. Future implemen-tations of the loop peeler will likely directly consider dependence height. In additionto being more representative of the actual code characteristics, considering dependenceheight would enable the use of loop peeling in a sparse outer loop case. The value ofMAX OPS IN PEELED LOOP is usually around 36.The MIN OVERALL COVERAGE is the minimum number of invocations by per-centage that a peeled loop needs to execute without needing the recovery code. Thecoverage a peeled loop has is computed by adding all of the invocation counts for eachiteration count from zero to the number of peels currently under consideration anddividing by the total number of invocations of the loop. If this number is less thanMIN OVERALL COVERAGE, the loop is not peeled, and a larger peel count is thenconsidered. This parameter is usually set to 0.75, which means that 75% of all invocationsneed to be covered.MIN PEELABLE COVERAGE andMIN PEELABLE INCREMENTAL COVERAGErelate the invocation count coverage to the total peelable invocations. The total pee-lable invocation is the number of invocations with iteration counts less than CON-SIDER INFINITY ITERATIONS. MIN PEELABLE COVERAGE is the minimum ra-tio of coverage that would be provided by the peeled loop code using the currentlyconsidered peel count and the total peelable invocations. It is usually set to 0.85 or 85%.



31MIN PEELABLE INCREMENTAL COVERAGE is the minimum amount of extra cov-erage provided solely by the currently considered peel count. It is usually set to 0.1 or10%.As mentioned earlier, the current heuristic does not consider the dependence height ofthe loop directly. It uses the operation count as a rough measure. Using the dependenceheight directly together with the operation count, the scheduling constraints on theresulting code could be estimated accurately. In addition to improved accuracy, usingdependence directly may enable peeling to be used in more situations. As was discussedin Section 3.1, it is desirable to peel a loop regardless of its iteration characteristics if thecode surrounding the loop is sparse. Future versions of the loop peeling heuristic couldcompute the dependence height of the surrounding code, as well as the loop itself, to �ndmore cases where peeling is appropriate.3.5 Peeled Loop OptimizationsClassical loop optimizations are designed to process loop structures. When a loop ispeeled, it looses its loop structure and is treated like acyclic code. In addition to acycliccode optimizations, a peeled loop should be subject to optimizations that would havebeen applied to the original loop. To get loop optimizations to operate on the peelediterations, these optimizations must be modi�ed as is done in the case of unrolled loops.Fortunately, not all loop transformations need reimplementation. Many have straight-line code equivalents that have the same e�ect. For example, invariant code removal in



32loops has the same e�ect as common subexpression elimination in acyclic code. Twoimportant optimizations, accumulator expansion and induction variable elimination, haveno acyclic equivalents in the IMPACT compiler after the loop peeling phase. Thesestraight-line equivalent optimizations have not been implemented because natural coderarely has opportunities for them. However, loop peeling creates many such opportunitiesas a side e�ect. The next two sections will discuss these optimizations in turn.3.5.1 Accumulator expansionAn accumulator is a variable that is repeatedly updated during the execution of a loop.Consider the code in Figure 3.11. The variable sum is an accumulator because its �nalvalue is the sum of all calls to the function result. Unfortunately, when an accumulatorexists in a peeled or unrolled loop, the dependence height of the loop may be unnecessarilyextended. Consider the sample loop after peeling, but before if-conversion, as shown inFigure 3.12. One reason why this peeled code segment is very serial is that each updateof sum cannot proceed until the previous update is performed. Accumulator expansionis an optimization technique that is applied in situations such as these to reduce thedependence height.Figure 3.13 shows the same peeled loop after accumulator expansion. The variablesum is replaced by three variables, one for each peeled iteration. Once this is done, no de-pendences exist between any of the accumulation statements related to the accumulationvariable. Note that extra instructions need to be added to accomplish this task. Each
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for(indx = 0; indx < max; indx++)f sum = sum + result(indx);g Figure 3.11: Loop with accumulator variable.

indx = 0;sum = sum + result(indx);indx = indx + 1;if(indx >= max) goto exit;sum = sum + result(indx);indx = indx + 1;if(indx >= max) goto exit;sum = sum + result(indx + 2);indx = indx + 1;if(indx < max) goto extra iteration loop;Figure 3.12: Loop with accumulator variable after peeling.



34sum1 = 0;sum2 = 0;sum3 = 0;indx = 0;sum1 = sum1 + result(indx);indx = indx + 1;if(indx >= max) goto exit;sum2 = sum2 + result(indx);indx = indx + 1;if(indx >= max) goto exit;sum3 = sum3 + result(indx);indx = indx + 1;if(indx < max) goto extra iteration loop;exit:sum = sum1 + sum2 + sum3;Figure 3.13: Loop with accumulator variable after accumulator expansion.of the extra accumulators must be initialized to zero. Additionally, the sum, which stillmust be computed, uses an extra statement to combine the partial sums. In optimizingthis code segment, accumulator expansion is not su�cient by itself. There still remainother properties that arti�cially increase the dependence height of the peeled loop. Theseproperties are addressed later.It is extremely di�cult to �nd all cases where accumulator expansion can be applied.However, a conservative search algorithm can extract the most important cases. Fig-ure 3.14 shows the algorithm used in the IMPACT compiler. A search for instructionsmeeting certain criteria is applied to each peeled loop in the program. Accumulator reg-isters are found by looking at each de�nition of all variables in the peeled loop. If all of
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FOR EACH peeled loop:FOR EACH register, rX, where all de�nitions are in any of the forms,f rX = rX + Y ; rX = rX � Y ; rX = rX � Y ;rX = rX=Y ; rX = Y + rX; rX = Y � rX g:Add rX to the list of accumulators.FOR EACH rX in the list of accumulators:IF rX is de�ned by only one instruction THENremove rX from the list of accumulators.IF rX is used by operations of di�erent accumulator forms THENremove rX from the list of accumulators.Accumulator Expansion Consideration:FOR EACH rX in the list of accumulators:IF rX is used in an instruction which is not of accumulator form THENGoto Induction Variable Elimination Consideration.IF Y in each instruction is the same and is a numeric constantAND each instruction is either an add or subtract THENGoto Induction Variable Elimination Consideration.Perform accumulator expansion.Continue with next peeled loop.Induction Variable Elimination Consideration:FOR EACH rX in the list of accumulators:IF Y in each accumulator instruction is the same and is a numeric constantAND each instruction is either an add or subtract THENContinue with next peeled loop.IF an accumulator instruction is conditionally executed within each iteration THENContinue with next peeled loop.Perform induction variable elimination.Figure 3.14: Algorithm for applying accumulator expansion and induction variable elim-ination.



36the de�nitions of a variable are of the forms listed in Figure 3.14, the variable is addedto the list of accumulators. At this point, the list of accumulators contains all potentialaccumulator variables. However, not all of the accumulators in this list will match theadditional criteria needed for correct application of accumulator expansion.Each accumulator in the list of accumulators must meet the following criteria. Ifan accumulator is de�ned by only one instruction, then no optimization is possible.Accumulator expansion applied to a single accumulation instruction has no e�ect. Forthis reason, all accumulator variables de�ned by only one instruction are removed fromthe list of accumulators. Another criteria for accumulator expansion is that all of thede�nitions of the accumulator variable are performed by the same operation type becauseaccumulator expansion is only applicable to one operator. For example, it is unclear howaccumulator expansion could be applied to an accumulator that had two de�nitions ofthe forms rX = rX + Y and rX = rX=Z.As will be discussed further in the next section, accumulators can be optimized inanother way known as induction variable elimination. Induction variable eliminationoptimizes some accumulators more e�ciently than accumulator expansion. To select theoptimization to which each accumulator is subjected, more criteria are applied. If the ac-cumulator is used in an instruction that does not possess one of the original forms shownin the �gure, then accumulator expansion cannot be applied safely. However, inductionvariable elimination does not su�er from this restriction, so it is considered for applica-tion. Additionally, if the accumulator instructions are addition or subtraction operations



37and all have the same numeric constant, then induction variable elimination should beused �rst since it can generate more e�cient code than the more general accumulatorvariable expansion optimization. If these two criteria do not redirect consideration foroptimization to induction variable elimination, then accumulator expansion is applied.3.5.2 Induction variable eliminationBefore the algorithm used to determine whether or not to apply induction variableelimination is considered, an example is presented to illustrate what induction variableelimination does. Figure 3.15 shows the example presented in the previous section af-ter accumulator variable expansion and further optimization. Notice that even thoughaccumulator expansion removed the output dependences among the accumulation in-structions, it did not remove the dependences among the induction variable indx. Eachincrement of indx is dependent on the previous increment instruction. However, thisdependence chain is breakable. At each increment instruction, the result of the com-putation can be computed simultaneously when it is realized that each instruction isincremented by the same numeric constant. Figure 3.16 shows the result of inductionvariable elimination on the code. Uses of indx are replaced by a new variable that con-tains the new calculated value. Notice that all uses of indx are replaced by di�erentvariables depending on their relative position to the original increment instructions. Forexample, all instructions after the �rst, but before the second, increment instruction have
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indx = 0;sum1 = result(indx);indx = indx + 1;if(indx >= max) goto exit;sum2 = result(indx);indx = indx + 1;if(indx >= max) goto exit;sum3 = result(indx);indx = indx + 1;if(indx < max) goto extra iteration loop;exit:sum = sum1 + sum2 + sum3;Figure 3.15: Loop with accumulator variable after accumulator expansion and constantpropagation.

indx0 = 0;indx1 = indx0 + 1;indx2 = indx0 + 2;indx3 = indx0 + 3;sum1 = result(indx0);if(indx1 >= max) goto exit;sum2 = result(indx1);if(indx2 >= max) goto exit;sum3 = result(indx2);if(indx3 < max) goto extra iteration loop;exit:sum = sum1 + sum2 + sum3;Figure 3.16: Loop with induction variable elimination.



39indx replaced with indx1. Similarly, all instructions after the second, but before the third,increment instruction had indx replaced with indx2.Induction variable elimination takes advantage of the fact that for each peeled loopiteration, the number of iterations preceding it is known. If an induction calculation isperformed in every iteration, this fact is used to calculate the induction variable valuefor each peeled iteration in advance. The most important application is to eliminate de-pendences between address increment, load chains because many important loops accessarrays based on an induction variable. If the address of each array access is computedearly, then all of the loads can be moved earlier. Since most loads start long dependencechains, moving the loads early can be very e�ective in removing much of the dependenceheight in a peeled loop body.Before applying induction variable elimination, the code must meet a few criteria.These criteria are shown at the bottom of Figure 3.14. Induction variable elimination ascurrently implemented only supports addition and subtraction with a uniform constant.A test in the algorithm veri�es that this condition is met by checking the form of theinduction variable instructions being considered. If a peeled loop meets this criteria,one �nal test is performed. If an induction variable is conditionally incremented ineach iteration, it cannot be safely optimized because the induction variable eliminationoptimization needs to compute the �nal expression for each induction variable at compiletime. Since the conditional execution of any induction variable instruction may makethe expression uncomputable, the optimization is not performed.



40sum1 = result(0);if(1 >= max) goto exit;sum2 = result(1);if(2 >= max) goto exit;sum3 = result(2);if(3 < max) goto extra iteration loop;exit:sum = sum1 + sum2 + sum3;Figure 3.17: Loop with induction variable elimination.Figure 3.17 shows the example after further classical optimizations are performed.Note that the only dependences in the code before exit are control dependences. Thesecontrol dependences are eliminated later by if-conversion.3.6 Advanced Hyperblock Loop PeelingWhile loop peeling as described is very e�ective in dealing with some kinds of loops,two techniques presented in this section enhance its e�ectiveness even further. The �rsttechnique, called hyperblock reentry, is a method to reduce the code expansion causedby loop peeling. The second technique, nested loop peeling, allows loop peeling to beapplied to deeply nested loops.As was mentioned in the beginning of this chapter, loop peeling usually requirestail duplication. Figure 3.18(a) shows a loop nest before loop peeling. Figure 3.18(b)shows the peeled loop nest with the tail duplicated portion of the outer loop. This tailduplicated segment of code may make the resulting code less e�ective. Tail duplication
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(a) (b) (c)Figure 3.18: Control ow graph illustrating hyperblock reentry: (a) original graph, (b)graph after loop peeling, and (c) graph after loop peeling and hyperblockreentry.causes extra code expansion, which can result in poor instruction cache performance.Also, tail duplicated code is generally less optimal than on-trace code as less overlappingis possible with other code.Hyperblock reentry controls the problems caused by tail duplication. Hyperblockreentry, as shown in Figure 3.18(c), eliminated the duplicated portion of the outer loopby jumping back into the hyperblock. Thus hyperblock reentry reduces the code expan-sion due to tail duplication by eliminating the need for it. It also provides an entry backinto the already optimized hyperblock. By jumping back into an already optimized hy-perblock, compile time is not wasted optimizing the infrequently executed tail duplicatedcode segment.While hyperblock reentry improves the situation for loops that can already be peeled,another technique, known as nested loop peeling, actually allows loop peeling to be used



42in more situations. A real example in which nested loop peeling is very e�ective is shownin Figure 3.19. This loop nest contains three loops. The outermost loop with headerblock 17 is considered to be the outer loop and the header of the formed hyperblock.Block 18 is the header of the middle loop, and it is peeled twice. However, in order for aloop to be peeled, it must be an innermost loop. To transform the middle loop into aninnermost loop, the innermost loop, blocks 19 and 20, is �rst peeled three times. Then,the new inner loop is peeled twice. The �nal peeled hyperblock is shown at the right ofthe �gure, complete with the associated recovery loop.Notice that to reduce the code expansion, a single copy of the recovery loop nestis necessary. Three exits from the hyperblock each jump to the correct portion of therecovery loop nest. In this case, the tail duplicated code consists of blocks 29 and 23.3.7 Experimental EvaluationFigure 3.20 shows the speedup obtained through the use of loop peeling for �vebenchmarks. Of these benchmarks only yacc and 008.espresso showed more than a 5%performance improvement. This result is due to the fact that the performance improve-ment obtained with loop peeling is highly dependent on the structure of the frequentlyiterated loops. In 008.espresso, for example, the most time-consuming loop is also agood candidate for peeling. However, in other benchmarks, most of the time is spent inloops that are not good candidates for loop peeling. These loops are poor candidatesbecause they may not have a nested loop structure visible to the compiler. Region-based
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Figure 3.20: Speedup obtained with the use of loop peeling.compilation may expose more opportunities for peeling as it can expose more of theseloop nests [36].The speedup numbers obtained in Figure 3.20 were generated by compiling multipletimes with di�erent sets of parameters for loop peeling selection. The best parametersetting for each function was then selected to compose the �nal result. The di�erencebetween this number and the best parameter setting for an entire benchmark is a goodmeasure for how well the selection heuristic models the resulting code. For 008.espresso,the best per function cycle count was 101 million cycles, but the best per benchmarkcycle count was 110 million cycles. Since 008.espresso without peeling is 140 millioncycles, the heuristic lost 25% of the performance due to inaccuracy. In fact, if a perloop nest number were obtained, a more optimal cycle count would have been computed,



45CONSIDER INFINITY ITERATIONS 6MAX OPS IN PEELED LOOP 36MIN OVERALL COVERAGE 0.60MIN PEELABLE COVERAGE 0.80MIN PEELABLE INCREMENTAL COVERAGE 0.20Figure 3.21: Parameter settings yielding the best overall performance.further illustrating performance loss due to the heuristic. Clearly, there is a need for amore accurate peeling selection heuristic. The heuristic discussed earlier, which takesinto account dependence height, would be able to recover some of this lost performance.In no case did the peeling heuristic take advantage of loop versioning and the sparseouter loop cases discussed in Section 3.1. A more robust peeling selection heuristic thattook these cases into account would likely realize larger performance gains.Since it is di�cult to study the characteristics of benchmarks with each functionusing di�erent parameters, a single set of parameters will be used for all benchmarks.The parameter settings used to get the best overall performance are shown in Figure 3.21.One criticism of loop peeling is that it may cause signi�cant code growth. This codegrowth originates from the multiple copies of peeled loops generated by peeling. However,measurements made on the amount of code growth show that it is very small. Figure 3.22shows the relative code size before and after peeling. For all of the benchmarks, programsize did not increase by more than 6%. In fact, for 022.li, the operation count wasactually reduced. This anomaly is due to the unrolling done after loop peeling. Looppeeling a�ects the characteristics of loops that may be unrolled. If loop peeling makes
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Figure 3.22: Loop peeling's e�ect on code size.the loop more dense, the loop unrolling heuristic will unroll that loop less. Since the codegrowth that loop unrolling creates exceeds that of loop peeling, some loops may actuallyend up smaller than without loop peeling. Another factor that keeps code growth low isthe MAX OPS IN PEELED LOOP parameter. Here it is set to 36 operations, meaningthat no peeled loop exceeds 36 operations.To better understand why benchmarks obtain di�erent speedups due to loop peeling,two representative benchmarks are studied. The characteristics of 008.espresso and cccpare shown in Figure 3.23. The benchmark 008.espresso achieves a 38.6% speedup, whilethe benchmark cccp is sped up by less than 1%. This di�erence in performance is dueto the fact that the peelable loops in 008.espresso are the most frequently executed.The execution frequency of the peeled loops is indicated by the average iteration count



47Characteristic 008.espresso cccpBenchmark Speedup 38.6% 0.4%Average Total Iteration Count 69288 178Average Size 11.27 5.68Average Coverage 0.99 0.98Average Peels 3.16 2.77Figure 3.23: Characteristics of two benchmarks.shown in Figure 3.23. The average iteration count of the peelable loops in 008.espressois hundreds of times larger than the average iteration count in cccp. The average size,coverage, and number of peels have a much smaller e�ect on the performance. Even ifthe loops in cccp could be peeled optimally, their net e�ect on performance is still limitedby the average iteration count.



48

4. ADVANCED HYPERBLOCK OPTIMIZATIONS
This chapter presents a preliminary study of some advanced hyperblock optimizationtechniques. The techniques introduced here will be quantitatively assessed by imple-menting them in the IMPACT compiler. This chapter merely presents the motivationbehind this future work.4.1 Fully Resolved PredicatesA superblock is a single-entry, multiple-exit region of code. Superblocks provide ane�cient foundation for all phases of ILP compilation, including optimization, scheduling,and register allocation. They are formed by combining the most frequently taken paththrough a trace into one block. Hyperblocks are a generalized form of superblocks thatallow multiple paths of execution through the use of predication.By their nature, typical hyperblocks and superblocks include many infrequently takenexit branches. These infrequently taken branches impede code motion, increase thedependence height of the execution path, and increase the resource height of the block by



49consuming valuable branch resources. Note that elimination of these branches by mergingin their taken paths results in a performance penalty since they are easily predicted andrarely taken. While removing these branches with if-conversion is unwise, we can stilluse predication to eliminate their negative e�ects.Traditional if-conversion uses both predicates and branches to guard execution ofoperations in the resultant hyperblock. As a result, some control dependences remain ina completely predicated hyperblock. This type of if-conversion creates partially resolvedpredicates (PRPs). PRPs need control dependences created by the remaining branchesto maintain code correctness. Alternatively, if-conversion can also be applied to createfully resolved predicates (FRPs). With FRPs, all instructions are guarded by predicateseven if they were originally guarded by branches. The end result is a hyperblock withno control dependences remaining. In e�ect, all instructions can be scheduled withoutconcern for the location of branches. Data dependences become the only concern duringoptimization and code scheduling.Figure 4.1 illustrates the di�erence between a PRP predicated block and an FRPpredicated block. The �gure shows four blocks to be included in a hyperblock. In boththe PRP and the FRP hyperblocks, both basic blocks, B and C, are predicated on thecondition of the branch in block A. Block B contains another branch that, if taken,directs the ow of control outside of the hyperblock. In the PRP case, block D neednot be predicated since its execution is guarded by the branch in B. In the FRP case, apredicate is created for block D regardless. The value of p3, the predicate for block D,
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Figure 4.1: Example of partially and fully resolved predicates.is cond1jjcond2 since D will only be executed when control enters C or control enters B,and the branch in B is not taken.Fully resolved predicates have interesting bene�ts when there is a need to speculateinstructions above branches. Most models of control speculation incur a cost of someform or another to speculate an instruction. This cost is due to the fact that a specu-lated instruction should not produce any irreversible side e�ects when it would not havenormally executed. For example, an instruction should not cause an exception when itwas not supposed to execute. Since execution of all instructions is determined solelyby predicates, instructions can be placed in any order as long as data dependence isrespected. The need for a costly speculation model is reduced.Moving instructions, which could potentially except or which could change memorystate above branches, is important for obtaining high levels of instruction-level paral-lelism. While most speculation models adequately address the speculation of potentially
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Taken

CB 6: Frequency
1 r35 = MEM[r34] branch r34 >= r37, CB 95 14
2 r34 = r34 + 1
3 branch r35 == 10, CB 11 4035
4 branch r35 == 0, CB 11 0
5 branch r33 >= r57, CB 11 0
6 MEM[r33] = r35 r33 = r33 + 1 jump CB 6 101148Figure 4.2: Original scheduled superblock code segment.excepting instructions, speculating stores requires even more hardware or cannot be per-formed at all. FRP predicated hyperblocks are not subject to this restriction. Stores,like any other instruction, can be moved freely above branches.No speculation model alone could handle the reordering of branches. Reorderingof branches requires complicated compilation techniques and costly code duplication.Branches like all other instructions can be naturally handled by an FRP predicatedhyperblock.An example of FRP predication applied to a real code segment is shown in Figure 4.2.This code segment is from the function execute in the grep benchmark. This inner loopaccounts for about 40% of the total execution of the program. A 3-issue, one branch-per-cycle machine with HP PA-7100 latencies is assumed for the schedule.One thing to notice about this code segment is that all of the branches in this codesegment are easily predicted. As indicated by the taken frequency column, the branchesare almost never taken. The backedge jump, by necessity, is always taken when reached.
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Taken

CB 6: Frequency
1 r35 = MEM[r34] (p0ut, p1uf) = (r34 >= r37)
2 r34 = r34 + 1 (p1) jump CB 95 (p0) 14
3 (p2ut, p3uf) = (r35 == 10) (p1)
4 (p4ut, p5uf) = (r35 == 0) (p3) jump CB 11 (p2) 4035
5 (p6ut, p7uf) = (r33 >= r57) (p5) jump CB 11 (p4) 0
6 MEM[r33] = r35 (p7) r33 = r33 + 1 (p7) jump CB 6 (p7) 101148
7 jump CB 11 (p6) 0Figure 4.3: Scheduled FRP predicated hyperblock.On average, six cycles are needed to complete one iteration of this loop. If the uncon-ditional backedge could be promoted above one or more of the other branches, then theaverage iteration cycle count would be reduced as well.FRP predication is applied to this code segment, which results in the schedule shownin Figure 4.3. The �rst thing to notice is the introduction of predicate de�ning instructions.1These instructions use the conditional expressions previously contained in the branch in-structions of Figure 4.2 to compute and write values into predicate registers. Thesepredicates are then used to guard the execution of instructions previously guarded bybranches. Since a predicate must be de�ned at least one cycle before it is used, the entireschedule is increased by one cycle. To o�set this performance penalty, the backedge ismoved up one cycle, to its original position. The net performance change is 0.99, a slightloss. This loss is due to the �rst and second branches moving down one cycle.If the backedge could be moved up more, the FRP predicated case would realize aperformance win. The reason that the backedge cannot be moved up further is because1The predicate de�ning instructions used here are based upon the HPL Playdoh architecture, whichis de�ned in detail in [34]. UT writes the result value of the comparison. UF writes the complement ofthe comparison's result. Both UT and UF write FALSE if the input predicate is FALSE. AC only writesFALSE if both the input predicate and result of comparison are FALSE. Otherwise, AC does nothing.



53of the dependence chain created by the predicate de�ning instructions. This dependencechain is highlighted. The value in p7 is needed by the backedge branch. To calculate p7,p5 must be calculated. In turn, to calculate p5, p3 must be computed. If p7 could becalculated more quickly, the backedge could be scheduled earlier. While there are manysimple examples that demonstrate the bene�t of FRPs directly, this example was chosenbecause it motives the discussion on height reduction contained in the next section.4.2 Height ReductionA fairly common technique to reduce dependence height is arithmetic height reduc-tion. Arithmetic height reduction takes an imbalanced tree of computation and convertsit to a minimum height tree. For example, (((a � b) � c) � d) becomes ((a � b) � (c � d)).Assuming single cycle latency for multiplication, this transformation reduces the depen-dence height from three to two cycles. A chain of predicate de�nitions can also be heightreduced. However, since multiple OR and AND type predicate de�ning instructions withthe same destination can be executed in a single cycle, the height of computation can bedramatically reduced.Figure 4.4 shows the code segment after height reduction. Since it is desirable to movethe backedge as early as possible, the compiler reduces the height of p7's computation.This height-reduced computation is shown shaded in grey. With the value of p7 calculatedin cycle 3, the backedge is scheduled in cycle 4. The net performance gain is 46% for asingle iteration. It is interesting to note that this performance gain is magni�ed by loop
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Taken

CB 6: Frequency
1 r35 = MEM[r34] (p0un, p1uc) = (r34 >= r37) (p7uc) |= (r34 >= r37)
2 r34 = r34 + 1 (p1) (p7ac) |= (r33 >= r57) jump CB 95 (p0) 14
3 (p2ut, p3uf) = (r35 == 10) (p1) (p7ac) |= (r35 == 10) (p7ac) |= (r35 == 0)
4 MEM[r33] = r35 (p7) r33 = r33 + 1 (p7) jump CB 6 (p7) 101148

5 (p4ut, p5uf) = (r35 == 0) (p3) jump CB 11 (p2) 4035
6 (p6ut) = (r33 >= r57) (p5) jump CB 11 (p4) 0
7 jump CB 11 (p6) 0Figure 4.4: Scheduled FRP predicated hyperblock with height reduction.unrolling in a wider machine. The original unpredicated code segment cannot be reducedto fewer then six cycles per iteration due to the limited branch resources. However, theheight-reduced code ultimately results in fewer than four cycles per iteration.Arithmetic height reduction is usually a win since it uses a similar amount of instruc-tion resources but reduces the dependence height. The bene�t of the height reductiontechnique shown here is not always guaranteed. This transformation and other heightreducing transformations trade dependence height for operation count. A balance mustbe made to properly apply height reduction to obtain the best performance. The planto address this problem is discussed later.4.3 Node SplittingHyperblocks are formed by taking multiple paths through the control ow graph andcombining them into a single entry block. Execution of these separate paths is thenguarded by predicates. In general, these paths do not have the same dependence heightor resource requirements. If two of these paths share a common dataow merge point,
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CFigure 4.5: Node splitting concept.then that merge point must be scheduled after the end of the longer of the two paths. Ine�ect, the compiler is penalizing the shorter path for the sake of the longer path.A typical situation is shown in the left side of Figure 4.5. There are two paths ofexecution through this loop: path ABC and path AC. Path ABC is necessarily longerthan path AC. In the �nal scheduled code, block C cannot be scheduled before the endof block B, which leaves a gap between A and C that penalizes performance every timethe program takes path AC.We can remedy the situation by node splitting. Block C is duplicated as shown inthe right side of Figure 4.5. This duplicate block is named C'. In the node split code,block C can now be scheduled immediately after block A.Figures 4.6-4.8 show an example of node splitting from a function named compress inthe benchmark compress. Note that in Figure 4.6 there are two virtual paths that existin this predicated code segment. One path includes the instruction in cycle 3; the otherdoes not. Notice that when this instruction is not executed, the instructions in cycles 4-7
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1 r9 = r9 - r12
2 (p1uf) = (r9 < 0)
3 r9 = r9 + r13 (p1)
4 r10 = r9 << 2
5 r114 = MEM[r10]
6
7 branch (r14 <> r8) CB 38Figure 4.6: Node splitting example: original code segment.

CB 38:
1 r9 = r9 - r12
2 (p1uf, p2ut) = (r9 < 0)
3 r110 = r9 << 2 (p2) r9 = r9 + r13 (p1)
4 r114 = MEM[r110] (p2) r10 = r9 << 2 (p1)
5 r14 = MEM[r10] (p1)
6 branch (r114 <> r8) CB 38 (p2)
7 branch (r14 <> r8) CB 38 (p1)Figure 4.7: Node splitting example: after node splitting.

r1312 = r13 - r12
CB 38:

1 r9 = r9 - r12 r1009 = r9 + r1312
2 r110 = r9 << 2 (p1uf, p2ut) = (r9 < 0) r10 = r1009 << 2
3 r114 = MEM[r110] (p2) r9 = r1009 (p1) r14 = MEM[r10] (p1)
4 r10 = r9 << 2 (p1)
5 branch (r114 <> r8) CB 38 (p2) branch (r14 <> r8) CB 38 (p1)Figure 4.8: Node splitting example: after node splitting and further optimization.



57were delayed a cycle for no real reason. Figure 4.7 shows the code after node splitting. Acopy of the shaded region in Figure 4.6 was made and started a cycle earlier. Notice thatthis saves one cycle every time p1 evaluates to FALSE. The resulting code has a verysmall performance gain. A code segment with more disparate path heights may seem tobe a better example of node spitting. However, this code segment was chosen because italso illustrates another secondary bene�t of node splitting.When the original code segment is optimized, it remains relatively unchanged. How-ever, when the node split code is optimized, a drastically di�erent code segment results.This resulting code segment is shown in Figure 4.8. The reason so much more optimiza-tion is performed lies in the fact that for both paths the exact expression of R9 is known.In the left path of Figure 4.7, R9 is unchanged. In the right path, R9 is incremented byR13. This information is used by the compiler to perform expression optimization thatwas not possible without node splitting. The resulting code takes only �ve cycles periteration, down from seven cycles.4.4 Partial Reverse If-ConversionHyperblock formation is done by considering each path for inclusion in the hyperblock.If the anticipated bene�t of including a path outweighs its potential harm, it is included.Unfortunately, this decision cannot possibly be based upon all of the pertinent informa-tion at hyperblock formation time. Optimizations in phases after hyperblock formationmay change the resource utilization or dependence height of the resulting code.



58If hyperblocks are aggressively formed by including extra paths, more optimizationsmay be possible. Additionally, the larger scheduling scope could expose more instruction-level parallelism. Conversely, the aggressively formed hyperblock might also result in alonger schedule length if extra optimization opportunities are unrealized. Too manypaths can saturate the processor's available resources, or the dependence height of somepaths may penalize other paths as was demonstrated in the node splitting example.The solution to this problem is to form aggressive hyperblocks for better optimizationpotential yet have a way to minimize or eliminate any performance penalties that mayresult. A study of a method called partial reverse if-conversion (PRIC) is planned.By giving the hyperblock formation heuristic the tendency to aggressively includepaths, large performance wins result when optimization potential is realized. To accountfor the cases in which optimizations are not e�ective, partial reverse if-conversion excludesthe portions of paths that are the cause of poor performance. Since the scheduler is theearliest phase of the compiler that knows exactly what the instruction schedule will looklike, partial reverse if-conversion will most likely be guided by the scheduler. Optimizationduring scheduling, including PRIC, is discussed as part of Section 4.6.The concept of partial reverse if-conversion is illustrated in Figure 4.9. The left-handside of the �gure shows a control ow graph before if-conversion. The current conservativeIMPACT hyperblock formation algorithm will form a hyperblock with only path ABD.Path C will be excluded since it has a relatively low execution frequency and its heightcould penalize path ABD. An aggressive hyperblock formation algorithm would include
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Figure 4.9: Partial reverse-if conversion concept.paths ABD and ACD. There are two scenarios for what can happen in the followingphases of the compiler. In the �rst scenario, both paths are optimized, and the resultingschedule is a win for both paths. In the second scenario, the schedule of ACD remainsrelatively large compared to ABD. In this case, path ABD is unnecessarily penalized. Toremedy this situation, PRIC is applied.The right-hand side of Figure 4.9 shows the code after PRIC. During scheduling,block A and the top portion of blocks B and C are scheduled in priority order. As the�nal instruction from block B is placed, the scheduler notices that the remaining heightof C is large. The PRIC heuristic decides to insert a branch that jumps to the portion ofC remaining, C", which is located in another part of the program. Block D may then betail duplicated, or block C" can conclude with a jump back into the original hyperblock.An inspection of the schedules for the IMPACT compiler suggests that PRIC shouldbe very e�ective. When some selected regions are formed into aggressive hyperblocks, theresulting performance of the benchmark is markedly improved. In addition, some regions



60formed with the current IMPACT compiler have poor performance due to aggressiveformation. PRIC would rectify this situation.4.5 Pro�le Independent Hyperblock SelectionThe current IMPACT compiler uses pro�ling to determine the behavior of the code itcompiles. Frequently executed regions revealed by pro�ling are given priority in the opti-mizations performed. In general, pro�les based on one input set are useful in predictingthe program's behavior with new input sets. In a research compiler such as IMPACT,pro�ling allows the researcher to e�ectively test a new optimization. If a heuristic is usedto determine the behavior of a program, then the test of the new optimization may bea�ected by the e�ectiveness of the pro�le heuristic. In e�ect, pro�ling creates one lessheuristic dimension. The IMPACT compiler framework allows the use of a static pro�lerwhen available.Despite the advantages of dynamic pro�ling, applications exist for compilers wheredynamic pro�ling is inappropriate. In fact, most commercial compilers do not supportdynamic pro�ling at all. For this reason, it is important to study ways to make IMPACT'spredicate optimizations pro�le independent.There are many ways to avoid the use of dynamic pro�le information. Static pro�ling,as applied to superblock formation, has been studied by Hank [37]. This paper showsthat static pro�ling is e�ective yet not as e�ective as dynamic pro�ling. Hyperblockformation has some interesting di�erences to superblock formation that could make it an



61interesting application of static pro�ling. Superblock formation requires that the bias ofa branch be determined by the static pro�ler. However, hyperblock formation has theoption of including multiple paths if a bias cannot be determined. This freedom reducesthe need for a highly accurate static pro�le estimate and could make static pro�ling morecompetitive to dynamic pro�ling.Execution pro�ling is not the only valuable measure in making optimization decisions.Dependence height and resource utilization can also be used to enhance the performanceof programs. For example, comparing the heights of paths considered for inclusion ina hyperblock is important. Guiding optimizations by dependence height and resourceutilization requires information about the machine being compiled for. Since good com-pilers are portable, it is wise to use a universal machine description language to detailthe target machine to the compiler. The next section details future research into drivingoptimization with machine descriptions.4.6 Optimization at Schedule TimeWhile a machine description-driven optimization can do a satisfactory job of estimat-ing the �nal schedule length of a code segment, the �nal schedule length cannot be knownbefore scheduling is performed. Since the scheduler knows exactly what resources remainavailable, it could also know which optimizations would bene�t the �nal schedule. Thisknowledge makes the scheduler ideal for directing optimizations.



62The problem with optimization at schedule time is that code already scheduled mayhave to change when an optimization is performed. In this environment, the schedulermust be able to unschedule operations and continue scheduling after a transformationwithout having to restart from the beginning. It also requires that alternatively schedul-ing and optimizing converges on a solution. Satisfying these requirements is the majorchallenge in e�ectively guiding optimizations at schedule time.While optimization during scheduling is more accurate for some optimizations, itis essential for others. Partial reverse if-conversion is basically not possible withoutguidance from the scheduler. During partial reverse if-conversion, the location at whichone path extends the length of another path must be known. This location is determinedat schedule time. Therefore, PRIC must be guided by the scheduler. It is for this reasonthat a scheduler framework that allows optimization at schedule time must be developed.
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5. CONCLUSIONS
This thesis has described advanced hyperblock optimizations. Loop peeling was cho-sen as the representative optimization for detailed study. This detailed study showedhow a concept such as loop peeling could be applied in practice. It demonstrated howan optimization applied alone may decrease performance yet expose opportunities thateventually lead to overall code speedup. The other optimizations presented in this thesiswill be analyzed through further study and implementation in a similar manner. Theend result will be an advanced second-generation compiler for machines with predicationsupport.This work, combined with the work of others in the �eld, shows that predication isan extremely valuable tool in extracting instruction-level parallelism from programs.
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