
MEMORY PROFILING FOR DIRECTING DATA SPECULATIVE
OPTIMIZATIONS AND SCHEDULING

BY

DANIEL ALEXANDER CONNORS

B.S., Purdue University, 1994

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1997

Urbana, Illinois



iii

ACKNOWLEDGEMENTS

I would �rst like to thank my advisor, Professor Wen-mei Hwu, for giving me the

opportunity to pursue my goals in computer architecture research. His integrity as an

outstanding teacher has inuenced my graduate career more than any other teacher.

My appreciation and thanks extend to many of the members of the IMPACT group.

Among them, I would like to thank Rick Hank, my mentor, for giving me valuable advice

concerning many things. For their help in the development of my thesis and my research,

I would like to thank John Gyllenhaal, Dan Lavery, Scott Mahlke, and Teresa Johnson.

In addition, David August was instrumental to the writing and development of this thesis.

I am especially grateful for my family and all my friends. Jaymie Braun's enthusiasm

made my life in graduate school more enjoyable, while Margaret Carns' southern charm

brightened my outlook on life. My brother Mel's sense of humor and caring nature helped

me more than anyone on Earth. Also I would like to thank my sister Melody for being

my biggest fan and giving me all of her attention. Finally and most importantly, I extend

my love and appreciation to my mother. She is by far the most supportive person in my

life.



iv

TABLE OF CONTENTS

Page

1. INTRODUCTION : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

2. BACKGROUND : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5
2.1 Overview of the IMPACT Compiler : : : : : : : : : : : : : : : : : : : 5
2.2 Overview of the IMPACT Simulation Environment : : : : : : : : : : 8
2.3 Dependence Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

2.3.1 The IMPACT Memory Dependence Tracking System : : : : : 12
2.4 The MCB Data Speculation Approach : : : : : : : : : : : : : : : : : 13

3. DATA SPECULATIVE OPTIMIZATIONS : : : : : : : : : : : : : : : : : : 17
3.1 Preload and Verify : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

3.1.1 Loop invariant data speculative optimizations : : : : : : : : : 19
3.1.2 Load-subroutine advancement optimization : : : : : : : : : : : 26

3.2 Compiler Issues : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28
3.2.1 Compiler di�culties : : : : : : : : : : : : : : : : : : : : : : : 32

4. MEMORY DEPENDENCE PROFILING : : : : : : : : : : : : : : : : : : : 34
4.1 Pro�le Data Conict (PDC) Rate and Data Speculation : : : : : : : 35
4.2 Address-Based Conict Rate Pro�ling : : : : : : : : : : : : : : : : : : 37
4.3 Index-Based Conict Rate Pro�ling : : : : : : : : : : : : : : : : : : : 38
4.4 Program Instrumentation : : : : : : : : : : : : : : : : : : : : : : : : 42
4.5 Sync Arc Companion Pro�ling : : : : : : : : : : : : : : : : : : : : : : 47

4.5.1 Pro�ling statistics : : : : : : : : : : : : : : : : : : : : : : : : : 50

5. EXPERIMENTAL PERFORMANCE EVALUATION : : : : : : : : : : : : 55
5.1 Data Speculative Scheduling Performance Results : : : : : : : : : : : 57
5.2 Data Speculative Optimization and Scheduling Performance Results : 63



v

6. CONCLUSIONS AND FUTURE WORK : : : : : : : : : : : : : : : : : : : 65

REFERENCES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67



1

1. INTRODUCTION

Speculative execution is a powerful technique for exploring the full potential of wide-

issue superscalar and very long instruction word (VLIW) processors. There are two

classes of speculative execution, control speculation and data speculation. Control spec-

ulation refers to the execution of operations before it has been determined that they

would be executed in the normal control ow of execution. The concept of control spec-

ulation has long been recognized for its ability to improve code performance [1]. Data

speculation involves executing load instructions before possibly aliased operations such as

stores. Although similar in nature to control speculation, the concepts concerning data

speculation are just now maturing. In this thesis, a research infrastructure is presented

for supporting data speculative optimizations and scheduling.

Data speculation attempts to overcome the existence of ambiguous memory depen-

dences which research [1] has indicated as being a major impediment to exploiting

instruction-level parallelism (ILP). Ambiguous memory dependences occur when instruc-

tions may possibly, but not certainly, reference the same memory location. Both the loss
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of source-level information and naturally occurring program aliases can create these de-

pendences within a compiler's internal representation of a program.

One approach to overcoming the e�ect of memory aliasing within a program is to

perform memory dependence analysis on the source-level code. The resulting analysis

information can then be transferred to the intermediate representation and used to con-

struct the true dependences. This approach is referred to as a Memory Dependence

Tracking System (MDTS). The Illinois Microarchitecture Project Utilizing Advanced

Compiler Technology (IMPACT) compiler uses a MDTS system known as Sync Arcs [2].

The purpose of such systems is to provide additional information to optimization and

scheduling routines. However, an MDTS alone does not facilitate data speculation within

a program.

A second approach to solving the memory aliasing problem evaluates dependences

at run time, thus allowing data speculative execution. The most common method uses

an architectural structure called the Memory Conict Bu�er (MCB) [3]. This method

uses a bu�er to record the speculative load address and its register destination. When

subsequent store operations occur, the store address is compared with the load address

entries within the conict bu�er. A conict between addresses is caught by the MCB

and signaled by a check operation placed at the original location of the load operation.

When speculative loads conict frequently, data speculation will result in costly cor-

rection code, e�ectively degrading performance. As such, it is important for a compiler
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to have the ability to determine when data speculation is pro�table. In fact, opportu-

nities for data speculation within traditional optimizations such as loop invariant code

removal further strengthen the need for such capabilities. Likewise, advanced instruction

scheduling schemes such as superblocks [4] and hyperblocks [1] would de�nitely bene�t

from productive data speculation. Pro�ling is one method for estimating optimization

pro�tability. The use of pro�le information in relation to control ow based optimiza-

tion has been studied previously [5]. These results illustrate the bene�t of using pro�le

information within compiler optimizations. Similarly, memory pro�ling can provide a

method of triggering data speculation in both the compiler's optimization and schedul-

ing domains.

This thesis will illustrate how memory reference information is used within the IM-

PACT compiler to initiate data speculation. Then several approaches for collecting

conict information between memory operations are identi�ed. Finally, the bene�t of

memory pro�ling within data speculative algorithms will be compared with existing al-

gorithms.

Chapter 2 describes the memory aliasing and analysis problem, while also providing

background to the Memory Conict Bu�er (MCB) data speculation approach. This

chapter also presents an overview of the IMPACT compiler used throughout this thesis.

Chapter 3 provides a detailed discussion of several data speculative optimizations and

their associated algorithms. Chapter 4 introduces the problem of gathering e�ective

conict information and presents several di�erent memory pro�ling approaches. Next,
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Chapter 5 illustrates the resulting performance of combined data speculation and memory

dependence pro�ling. Finally, Chapter 6 contains conclusions and a discussion of future

work.
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2. BACKGROUND

Memory-dependence pro�ling interacts with several key phases of an advanced com-

piler, and thus warrants some background information. For instance, the accuracy of

any existing dependence analysis framework directly relates to the function that memory

pro�ling can perform within the compiler. Likewise, it is important to understand how

memory dependence pro�ling intends to aid the data speculation model or the instruction

scheduling method. For these reasons, an overview of the IMPACT research framework

will be discussed. The framework consists of two separate parts, the IMPACT compiler

and the IMPACT simulator. In addition to the overview of IMPACT, the necessary

background on the MCB approach to data speculation is presented.

2.1 Overview of the IMPACT Compiler

The IMPACT compiler has been recognized for its ability to e�ectively utilize pro-

�le information within speculative and predicated execution compilation techniques. As
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such, it provides an excellent framework for investigating memory pro�ling and its ap-

plication to data speculation. A block diagram of the IMPACT compiler is presented

in Figure 2.1. The compiler is divided into two parts, Pcode and Lcode. Pcode is at

the level closest to source code. Within Pcode, the IMPACT compiler performs loop

transformations [6], function inlinning [7], pro�ling, and dependence analysis [2],[8]. The

Pcode techniques for performing memory dependence analysis will be explained further

in Section 2.3 of this chapter.

Lcode is the lower level of program representation, which can be viewed as an instruc-

tion set for a virtual load/store architecture. All machine independent optimizations [9]

are applied at this level. Likewise, advanced compilation techniques such as superblock

and hyperblock formation are also performed on the Lcode representation of programs.

The machine independent nature of the Lcode format has facilitated the creation of

several code generators for di�erent architectures. The most actively supported archi-

tectures are the Sun SPARC, the HP PA-RISC, and the Intel X86. The two main com-

ponents of code generation are the instruction scheduler and the register allocator [10].

Several scheduling models exist, including acyclic global scheduling [11],[12], sentinel

scheduling [13], and software pipelining using modulo scheduling [14]. In addition, a

scheduling technique capable of exploiting architectural support for MCB data specula-

tion exists [2],[3],[15]. The focus of this thesis is to obtain memory pro�le information

for developing a more aggressive MCB data speculative scheduling model.
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The IMPACT and HPL Playdoh [16] architectures are two experimental ILP archi-

tectures that are also supported. These experimental architectures provide the necessary

framework for advanced compiler and architecture research. In fact, the speci�cations for

these architectures are based on parameterizable resources which allow a wide variety of

machines to be explored. The IMPACT compiler is able to meet these speci�cations by

using the technology of a machine description database, Mdes [17]. The Mdes contains a

large set of information to assist with optimization, scheduling, register allocation, and

code generation. Information such as the number and type of available function units,

size and width of register �les, instruction latencies, instruction operand constraints, ad-

dressing modes, and pipeline constraints, is provided by the Mdes. In addition, both

architectures support forms of speculative and predicated execution. For this thesis, all

experiments utilize the IMPACT architecture with MCB support and various machine

formations.

2.2 Overview of the IMPACT Simulation Environment

The IMPACT simulation environment provides the necessary facility to evaluate the

e�ects of compiler techniques on various research architectures. Figure 2.2 presents a

block diagram of this environment. The simulation environment involves three important

technologies: emulation, probe insertion, and the performance simulator.

Emulation provides a program with the appearance of architectural functions which

are not directly implemented by the target machine. For instance, predicated execution
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must be emulated for IMPACT Lcode because current processor technology does not

include predication support. Other examples of emulated features are speculative execu-

tion, VLIW semantics, rotating registers, MCB functionality, or even entire instruction

set architectures. Details on IMPACT's MCB emulation support are given in previous

work [2].

Probe insertion into program code allows trace information to be generated while the

executable is running. Trace information consists of memory target addresses, branch di-

rections, predicate value generations, and jump target addresses. The IMPACT simulator

Lsim is a trace-driven framework which is capable of cycle-by-cycle simulation of cache

memories, branch prediction hardware, instruction pipelines, superscalar and VLIW pro-

cessors, and MCB hardware. Lsim processes trace information and coordinates it with

an encoded version of the Lcode �les to determine executed instructions and accessed

memory addresses, in order to properly update the simulated machine structures. For

instance, trace information containing branch directions is used by Lsim to update simu-

lated BTB structures as well as to follow the proper path of execution. This coordination

allows Lsim to attribute variable machine cycles to the operations implied by the trace

information. In short, the probed executable provides the functionality of the program

being simulated, while Lsim estimates the target machine cycles. The experimental per-

formance results in this thesis are generated using the IMPACT simulator environment.
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2.3 Dependence Analysis

Ambiguous memory dependences can restrict ILP optimizations and scheduling strate-

gies similar to the way that control ow operations deter some transformations. To over-

come the problem of ambiguous memory dependences, compilers can perform memory

disambiguation, also referred to as dependence analysis. Studies concerning the e�ect of

dependence analysis on performance demonstrate that such practices can result in two

to three times performance speedup [2].

Dependence analysis attempts to determine the relationship between memory refer-

ences at compile time. When successful, the compiler then uses this information to direct

code transformations. However, there are many occasions within programs that analysis

techniques cannot accurately determine the dependence relationships. Examples include

indirect references, non-linear references, or pointer references. Likewise, static analysis

of a program is not able to accurately relate dependences to the dynamic control ow of

a program, which results in occasional dependences. For example, in Figure 2.3 there are

two control ow paths within a section of a program. Each path assigns the address of a

variable to the pointer p. These assignments e�ectively alias p with the accesses of vari-

ables x and y. In control block D, the pointer p is deferenced, resulting in an ambiguous

dependence with the addition operation. If the control path ABD is taken, then a true

memory ow dependence exists through variable x between the addition operation and

the deferenced pointer p. However, path ACD would assign the pointer p to variable y,

and thus the addition operation would not have a dependence.
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p = &y

a = x+1

B

A

D

C

*p = 23

p = &x

Figure 2.3: Analysis Resulting in Conservative Dependences

In such cases, the results of analysis are conservative, which may cause performance

loss in optimizations and scheduling. One appealing aspect of data speculation based on

memory dependence pro�ling is that it can direct optimizations to ignore this conservative

analysis. In the same respect, this thesis advocates that dependence analysis can direct

memory pro�ling techniques to the areas of analysis which are known to be inadequate.

2.3.1 The IMPACT Memory Dependence Tracking System

The MDTS (Memory Dependence Tracking System) which the IMPACT compiler

uses is commonly referred to as Sync Arcs [2]. Dependence analysis is performed once

at the Pcode level, where source information required for some dependence analysis tech-

niques exists. The result of this analysis is then passed down to the Lcode representation.
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The term Sync Arc derives its name because it maintains the analysis information

in the form of synchronizations arcs between Lcode memory operations. The scope of

this thesis does not permit adequate explanation of Sync Arcs. However, it is important

to note that Sync Arcs possess two characteristics that relate to memory dependence

pro�ling. First, Sync Arcs represent all possible memory dependences, and thus are

conservative. The second important characteristic of Sync Arcs is that Lcode modules

accurately maintain their information through all compiler transformations. This thesis

will illustrate how these characteristics encourage the use of memory dependence pro�ling

within a compiler's infrastructure.

2.4 The MCB Data Speculation Approach

Dynamic memory disambiguation is one potential approach to overcoming aliased

memory dependences and increasing ILP for a given schedule. The Memory Conict

Bu�er (MCB), proposed in Chen's thesis [15], is one such method. In short, the MCB

approach uses hardware bu�ers to capture run-time conicts between load and store

memory addresses. Additionally, the MCB approach involves the introduction of two

new instructions: a data speculative preload, which executes as a normal load and ad-

ditionally signals the hardware that a potential dependence conict may exist for this

load; and a check, which scans the hardware bu�ers to determine if a violation has oc-

curred. Any violations require the check to function as a conditional branch, retargeting

the program execution stream to the speci�ed correction code. Figure 2.4 illustrates an
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1 MEM[r35+r37] = r23 3r11 = MEM[r33]   (DS)
2 MEM[r19+r20] = r17 4r34 = r11 + 4
3 r11 = MEM[r33] 1MEM[r35+r37] = r23
4 r34 = r11 + 4 2MEM[r19+r20] = r17

CHECK r11, correction
return:

correction:r11 = MEM[r33]
r34 = r11 + 4
jump return

(a) (b)

Figure 2.4: Memory Conict Bu�er Example

MCB code example. Upon scheduling the original code 2.4(a), the load operation, op 3,

has two ambiguous dependences with the store operations op 1 and op 2. These depen-

dences must be obeyed when scheduling the operations for execution, even though a true

memory ow dependence may not exist. However, with MCB support, the compiler can

perform operation reordering of the load operation and the ambiguous store operations as

demonstrated in Figure 2.4(b). Note that the load has been changed to a data speculative

preload, and that a check has been inserted in the original location of the load.

The MCB architectural support of a data speculative preload and a check allows the

compiler to schedule loads above ambiguous stores, thus performing data speculation.

This method gives the MCB hardware the responsibility of detecting reference conicts

and invoking correction code. In order to detect conicts, the MCB hardware records

address information for each data speculative preload. The memory target of every sub-

sequent store operation is then compared to address information within the MCB to

determine whether a conict has occurred. The hardware records the occurrence of
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conict. When a conict entry is accessed by a check instruction, the instruction will

execute as a branch to the correction code, the purpose of which is to obey ambiguous

store dependences, hence executing the original program order.

The MCB hardware is similar to a small cache, and thus there exist many design

alternatives, mostly dealing with address associativity. The simplest of MCB designs is

presented in Figure 2.5. The hardware consists of two primary structures, the preload

array and the conict vector, which correspond to the memory address information and

the conict determination, respectively.

The preload array is a set-associative cache structure with entries that contain four

�elds: (1) the preload destination register number; (2) the preload access width; (3)

an address signature or tag; and 4) a valid bit indicating whether the entry currently

contains valid data. The preload register �eld identi�es the register number of the preload
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destination. The access width �eld indicates the size of memory access of the preload

instruction. The address signature is a hashed version of the preload address. Di�erent

hashing methods and signature sizes have been explored [2],[3],[15]. The valid bits are

reset upon execution of the corresponding check instruction, using the pointer within the

conict vector. Accesses to the preload array are performed using the virtual address of

store and preload memory targets.

The conict vector is equal in length to the number of physical registers, having one

entry corresponding to each machine register. Each entry contains two �elds, the conict

bit and the preload pointer. The conict bit is used to record that a conict to the

register of a preload has occurred. The preload pointer speci�es which preload array line

currently holds the preload associated with this register and allows the preload entries to

be invalidated by the check instruction. There are two types of conicts with the MCB

approach: true and false. True conicts occur as a result of a store target matching the

memory address of an advanced load. On the other hand, false conicts can be the result

of insu�cient MCB resources that fail to provide unique entries for each data speculative

preload operation.

There are numerous design alternatives for lowering the number of false conicts

within an MCB system; however, true conicts typically result from a compiler's un-

knowing creation of unpro�table data speculative instances. This thesis will explore

using memory pro�ling to lower the occurrence of true conicts within schedules that

utilize MCB data speculation, thus improving performance.



17

3. DATA SPECULATIVE OPTIMIZATIONS

There are many opportunities to apply data speculative optimizations in addition

to using data speculation during scheduling. Section 3.1 presents the data speculative

optimizations of loop invariant code removal and load-subroutine advancement, as related

to the preload-verify model. Section 3.2 then describes some of the compiler issues

involved with data speculation.

3.1 Preload and Verify

A memory load operation may take several CPU cycles to complete, and is often on

the critical path of a body of code. In fact, when a load incurs a cache memory miss, the

latency may be even greater. For these reasons it is important to utilize optimizations

that hide the latency of load operations. One such optimization is the use of a pair

of operations, preload and verify. Previous work [15] has already investigated preload

operations and cache performance; however, bene�ts exist in using preload and verify

operations in data speculation instances.
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ST (a1),r1

r1 = LD(a2)

(a)

r2 = LDS(a2)

ST (a1),r1

r2 = LDV(a2)

(b)

Figure 3.1: Preload-Verify Operations: (a) Original Code, (b) After Use

The HPL Playdoh [16] architecture provides runtime memory disambiguation support

with three operations: the data speculative load (LDS), the data verify load (LDV), and

the data verify branch (BRDV). The Playdoh LDS is similar to the MCB preload, and the

Playdoh BRDV is analogous to the MCB check. However, the LDV operation behaves

like a conditional load operation predicated on whether a data speculative conict has

occurred, similar to the preload-update operation in previous work [18].

The LDS-LDV pair is an e�cient mechanism for supporting data speculative instances

in which dependent operations of the data speculative load are not scheduled before the

veri�cation operation. This use di�erentiates itself from the LDS-BRDV pair and the

traditional MCB approach because of its lack of correction code. All that is necessary for

correction is that the LDV behave as a load operation. When no correction is necessary,

the LDV does not need to perform any function.

Figure 3.1 illustrates the use of the preload-verify pair. The primary advantage is

that the LDS operation is now scheduled before the store operation (ST) and the load's

subsequent dependent operations are scheduled to get their source operands from the

LDV operation. As such, the compiler schedules these dependent operations at the cycle

in which the LDV veri�es the data speculative load. In most models, this veri�cation
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requires a single cycle, which is much less than normal load operation latencies. When no

conict occurs, the overall e�ect is that the critical path has been reduced. However, when

veri�cation signals a conict, the LDV functions di�erently. First the processor pipeline

is ushed and then the LDV is reissued as an actual load operation. The subsequent

dependent operations must wait until this load operation completes before executing. The

performance degradation due to conicts illustrates the need for an accurate mechanism

for directing the use of data speculation, which is the subject of this thesis.

The following two subsections will explore using the preload-verify mechanism as the

basis for creating more advanced data speculative optimizations.

3.1.1 Loop invariant data speculative optimizations

The goal of the traditional loop invariant code removal optimization is to move oper-

ations which compute invariant results from the loop body to the loop header. It is often

the case that a load operation within a loop is invariant. However, optimizing compilers

may not know that such loads are invariant due to ambiguous store operations present

within the loop. Consequently, the e�ciency of the loop invariant optimization depends

partially on the accuracy of a compiler's memory disambiguation scheme or its MDTS.

For loop instances which contain potentially invariant loads, the preload-verify data

speculation approach can be applied to facilitate the removal of such load operations

from the loop body. Figure 3.2(a) illustrates a general loop with this behavior. The

basic meaning of a load operation requires that, at that point in the loop, the value held
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for(i = 0; i < 100; i = i + 1)

{

ST (a1),r1

r2 = LD(a2)

}

(a)

r2 = LDS(a2)

for(i = 0; i < 100; i = i + 1)

{

ST (a1),r1

r2 = LDV(a2)

}

(b)

Figure 3.2: Data Speculative Loop Invariant Optimization (a) Original Code, (b) After
Optimization

by the load destination register must contain the data at the load address in memory.

Therefore, the load can be safely removed as long as the meaning of the load is preserved

for that point in the loop.

Figure 3.2(b) shows the load operation advanced to the header of the loop, while a

verify operation has been placed at the load's original position. The verify operation is

used to check whether the load value has changed as a result of the ambiguous stores.

In order for the data speculative loop invariant optimization to be applied for any

general loop, several conditions must �rst be satis�ed by the potentially invariant load.

� Condition 1: The load's address must be loop invariant in the traditional sense.

� Condition 2: The loaded value must only be used in blocks dominated by the load.

� Condition 3: The load must be the only load within the loop to de�ne the desti-

nation register.

Together, these conditions ensure that this data speculative optimization can be ap-

plied without changing the original behavior of the loop. Condition 1 is necessary for the
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MCB hardware to track a data speculated load address with store operations throughout

the loop execution. Condition 2 must be satis�ed so the preload operation does not

disrupt the original use-def dataow chain of the program. For instance, when the desti-

nation register of a preload is already holding a value to be used within the loop, further

code transformations are required for the data speculative optimization to work properly.

Thus, Condition 2 is a conservative condition that selects only opportunities within loops

that do not require further transformations. Lastly, Condition 3 is necessary so that the

MCB conict vector is not incorrectly cleared by other load operations within the loop.

The use of the data speculative verify operation within a loop requires additional

support than when speculatively executing within acyclic code. For the case when the

verify does not determine that a conict occurred, its corresponding MCB entry must

remain active to perform veri�cations for future iterations of the loop. Upon recognizing

a conict, cyclic veri�cations need to perform the necessary reloads and also renew the

validity of their MCB entry. This functionality can easily be supported as a separate

data speculative operation, referred to as a verify loop load [15].

It is important to note that the data speculative loop invariant optimization can be

applied more aggressively by allowing the operations dependent on the data speculative

load to also advance to the preheader of the loop. This action requires the use of an MCB

check operation at the veri�cation point, and the generation of a correction control block.

Such an optimization has the potential for greater performance since more operations

are removed from the body of the loop. However, the correction process for conicts
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is clearly more involved. The overall e�ect is that the optimization's pro�tability has a

greater dependence on the conict rate of the data speculative load.

Figure 3.3 describes an algorithm for applying simple, data speculative loop invariant

code removal. There are two components of the algorithm, one providing the three condi-

tions described earlier and one analyzing the potential bene�ts and penalties of applying

the optimization. The second component of the algorithm assumes accurate knowledge

of the outcome of data speculative veri�cations. In reality these outcomes cannot be

determined until run time. Nevertheless, the algorithm illustrates the di�culty of using

data speculation prosperously, and helps demonstrate the usefulness of memory pro�ling

presented in the next chapter. Examples of bene�t and penalty estimation functions for

data speculation within loops are:

Benefit = E � (1� C) � Save

Penalty = E � C � Cost

Both functions include estimates of the loop execution frequency E and the conict

rate C. In this instance, the conict rate is de�ned as the percentage of time that the

load verify must reload data due to an ambiguous store operation conicting with the

presumed invariant load.

In addition, the functions employ approximations for the height reduction bene�t

Save when no conict occurs, and the cycle loss Cost attributed to ushing the pipeline
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data speculative loop invariant code removal(function)
f

candidate ops = NULL
for each loop in function, loopi f

for each control block in loopi, cbj f
for each op in cbj, opk f

/* Functionality Conditions
if !Loop invariant operands (opk) then

continue
if !Unique de�nition in loop (opk) then

continue
if !Def reaches all operations out of loop (opk) then

continue

/* Bene�t and Penalty Comparison */
if (Advancement bene�t < Call Conict penalty)

continue
if (Advancement bene�t < Store Conict penalty)

continue

candidate ops = candidate ops + opk
g

g
g
/* Optimal ordering of candidates by bene�t */
sort candidate ops by bene�t

num advanced = 0
for each op in candidate ops, opi f

if (num advanced > MAX ADVANCEMENT) then
break

if (maximum possible loop PDC(opi) > MAX LOOP PDC) then
break

Copy opi to new opi in loop preheader
Change new opi to PRELOAD
Change opi to LOAD VERIFY
num advanced = num advanced + 1

g
g

Figure 3.3: Algorithm for Data Speculative Loop Invariant Removal
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when a conict occurs. The value of Cost can be adjusted to reect the target machine's

handling of conicts. In the same manner, the Save value is an estimation of the savings

achieved by scheduling LDV operations, which have a smaller latency when no conict

occurs, in place of normal LD operations.

The second half of the loop invariant algorithm is used to consider all individual con-

ict information as a single conict. Individual pro�le information for the loop invariant

optimization can be misleading. For example, pro�le information could indicate that a

load operation within a loop has conicts with three stores, with respective conict rates

of 5%, 10%, and 15%. However, it cannot always be determined from the control ow

of the loop whether these conicts occur during the same iteration. Therefore, from this

information, two estimates can be made for the overall loop conict rate:

OptimisticEstimate = max(PDC1; � � � ; PDCn)

= max(5; 10; 15) = 15

PessimisticEstimate =
nX

i=1

PDCi

=
X

(5; 10; 15) = 30

The optimistic estimate corresponds to the case in which the conicts of the three

ambiguous stores overlap. For instance, all three store operations may invalidate the load

during the same iteration. In this case, only one conict occurs, thus the overall conict

rate estimate is the maximum of the individual conict rates. Accordingly, the pessimistic
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buffer_ptr = buffer[ci][yindex+yoffset] + start_col;

for (xindex = 0; xindex < compptr->MCU_width; xindex++) {

coef->MCU_buffer[blkn++] = buffer_ptr++;

}

Figure 3.4: Loop Invariant Code Removal Optimization Example in compress output of
132.ijpeg

estimate corresponds to the case in which the conicts of the three store operations are

exclusive, thus a conict occurs for each individual conict. In this case, the conict rate

estimate is the sum of all individual conict rates. This example illustrates that pro�le

information must be used with care in compiler optimizations.

There exist many opportunities for using the loop invariant code removal optimization

within the SPEC92 and SPEC95 benchmark suites. For example, Figure 3.4 shows

a loop within the function compress output of the benchmark 132.ijpeg that contains

loop invariant code. In this case, the load of compptr->MCU width for the loop exit

condition must be performed for each loop iteration because of an ambiguous store to

coef->MCU bu�er[blkn++]. It is important to note that with aggressive pointer analysis,

the load would be determined as loop invariant. Without such analysis, the use of data

speculation could be used to treat the load as loop invariant, thereby generating more

e�cient code. Overall, the example of Figure 3.4 illustrates the ability of data speculation

to provide performance improvements in commonly occurring loops.
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CALL function()

r1 = LD(a1)

(a)

r1 = LDS(a1)

CALL function()

r1 = LDV(a1)

(b)

Figure 3.5: Load-Subroutine Advancement Optimization (a) Original Code, (b) After
Optimization

3.1.2 Load-subroutine advancement optimization

In addition to store operations, subroutine calls can cause ambiguous memory de-

pendences which limit ILP. Some of these dependences can be removed by performing

interprocedural analysis [2]. Consequently, the implementation of conservative analysis

techniques will result in the loss of potential performance. Additionally, in many compila-

tion environments, subroutine code may not be available for global program analysis. In

such cases there exists an opportunity to speculatively execute a load before a potentially

aliased subroutine call. The load-subroutine advancement data speculative optimization

is illustrated in Figure 3.5.

There are two major components in the algorithm of Figure 3.6 for e�ectively utiliz-

ing the load-subroutine advancement optimizations. First, similar to all data speculative

optimizations, it is important to initiate the optimization when the probability of con-

ict is low. This involves weighing bene�ts and penalties in a similar manner to the

previously discussed algorithms. Unlike traditional optimizations which attempt to re-

move unnecessary operations, ILP and speculative optimizations can often increase the

operation count and register lifetimes in a region of code. The advancement of a load
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data speculative load subroutine advancement(function)
f

for each loop in function, loopi f
for each control block in loopi, cbj f

for each op in cbj with subroutine control dependence, opk f
if Data ow from subroutine to (opk) then

continue
if (Advancement bene�t < Call Conict penalty)

continue
if (Advancing opk increases register pressure)

continue

/* Apply Data Speculation */
Copy opk to new opk above subroutine
Change new opk to PRELOAD
Change opk to LOAD VERIFY

g
g

g
g

Figure 3.6: Algorithm for Data Speculative Load Subroutine Advancement

operation above a subroutine call increases register lifetimes and could result in register

spilling, thus lowering performance. As such, the algorithm in Figure 3.6 attempts also

to weigh the bene�t of this data speculative optimization by using an estimation of the

added register pressure.

Several opportunities for using the load subroutine advancement optimization ex-

ist within the SPEC95 benchmark suite. For example, Figure 3.7 shows a section of

frequently executed source code from function lupdate of the benchmark 099.go, which

illustrates a load operation being executed below a subroutine call. The subroutine
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++numnodes;

c = mvcolor[upptr];

l = 0;

m = 0;

nlist = EOL;

i = fdir[s];

for(ldtmp = ldir[i]; i < ldtmp; ++i){

sn = s + nbr[i];

++lnbf[sn][c];

--lnbn[sn];

dellist(s,&nblbp[sn]); /* SUBROUTINE */

g = board[sn]; /* LOAD-ADVANCEMENT */

if(g == NOGROUP){

lnew[m++] = sn;

}

}

Figure 3.7: Load Subroutine Advancement Optimization Example in lupdate of 099.go

call dellist causes a false memory dependence with the access of the global array board.

Without interprocedural analysis, the compiler must assume that any element of the

array board could be de�ned in dellist. In this case, data speculation support would

allow the load to be executed earlier, thus improving performance since the array is not

changed within the dellist function.

3.2 Compiler Issues

The IMPACT compiler's scheduling techniques are currently capable of exploiting

architectural support for MCB data speculation [3]. However, the methodology does

not support the advanced data speculative optimizations described in Sections 3.1.1 and
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3.1.2. Furthermore, the existing MCB scheduling methodology has several drawbacks

which are easily observed from the algorithm shown in Figure 3.8.

The �rst drawback within the algorithm is that all ambiguous memory dependences

are removed and MCB check operations are applied. This illustrates the simplicity of

the current scheduling methodology, because there is no mechanism which evaluates

individual dependences. Without question, only the ambiguous memory dependences

with low probabilities of conict should be removed when performing optimal MCB

scheduling. Another inherit problem with the current methodology is that it schedules

two versions of each selected control block and then selects the schedule with the best

performance estimate. This action drastically increases compilation time. Finally, the

algorithm has only the ability to use check operations, not LDV operations. In the

scheduling instance when only a load is advanced above an ambiguous store operation,

the use of a check instead of an LDV operation to perform conict detection can degrade

performance.

This thesis advocates replacing the current scheduling methodology with an algorithm

that removes dependences using a pro�le-based conict probability. The new algorithm is

illustrated in Figure 3.9 and will be evaluated in Chapter 5 of this thesis. The algorithm

has the ability to initiate data speculation in the presence of dependences with low

conict rates. In this thesis this rate is set to 15% as a general starting point to allow

an aggressive, optimistic use of data speculation support. Future work will experiment
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schedule cb(cb)
f

initialize priority ready queue(cb)
while(ops in cb are unscheduled) f

for each in priority queue, opi f
if (can schedule op(opi) f

schedule op(opi)
remove op dependences(opi)

if (opi is DATA SPECULATIVE LOAD) and
(opi is scheduled below all ops in store list of opi) then f

remove check op from scheduling queues for load(opi)
remove check op dependences(opi)

g
g

g
/* Move candidate ops from ready queue to priority queue */
update priority queue()
/* Move candidate ops from not ready queue to ready queue */
update ready queue()

g
g
old MCB scheduling algorithm(function)
f

for each loop in function, loopi
for each control block in loopi, cbj

build operation dependences(cbj)
scheduled cbj = schedule cb(cbj)
if pro�le execution weight(cbj) > MCB MIN WEIGHT then f

mcb cb = cbj
remove all ambiguous dependences(mcb)
maintain store list for each load(mcb)
add mcb code(mcb)
scheduled mcb cb = schedule cb(mcb)
perf mcb = estimate performance(scheduled mcb cb)
perf cb = estimate performance(scheduled cb)
if (perf mcb - perf cb) > MCB MIN SPEEDUP then

scheduled cbj = scheduled mcb cb

g
g

Figure 3.8: Existing Algorithm for MCB Scheduling
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new MCB scheduling algorithm(function)
f

for each loop in function, loopi f
for each control block in loopi, cbj f

if pro�le execution weight(cbj) > MCB MIN WEIGHT then f
build operation dependences(cbj)
remove dependences with low conict rates(cb)
maintain store list for each load(cb)
add mcb code(cb)
scheduled cbj = schedule cb(cb)

g
else f

build operation dependences(cbj)
scheduled cbj = schedule cb(cbj)

g
g

g
g

Figure 3.9: Algorithm for Scheduling
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r1 = LD(a1)

r3 = LDS(a1)

ST (a2),r2

r3 = LDV(a1)

(a)

r1 = LD(a1)

ST (a2),r2

r3 = LDV(a1)

(b)

Figure 3.10: Redundant Load Elimination after Data Speculation: (a) Original Code,
(b) After Optimization

with the value of this rate to investigate the construction of optimal data speculative

schedules.

3.2.1 Compiler di�culties

The initiation of data speculative optimizations complicates several areas of a com-

piler's infrastructure. First, data speculative operations a�ect the concepts of dataow

and control ow, two fundamental parts of compiler technology. Likewise even the sim-

plest transformations within a compiler must maintain the properties of data speculative

operations. For instance, Figure 3.10 demonstrates how the traditional, redundant load

elimination optimization may unknowingly destroy the meaning of a data speculative

optimization. In this case, a preload operation and a load operation are transformed

through redundant load elimination into a single load operation. However, this destroys

the data speculative optimization. Instead, the elimination optimization should trans-

form the pair of operations into a preload operation.

Another complication of data speculative optimizations is the generation of correction

control blocks. The formation of any new control block changes the original control
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ow of a program. Likewise, new dataow analysis must be performed to include these

created blocks. In addition, correction blocks give the compiler the added responsibility

of tracking the data speculative dependent operations of a data speculative load through

all compilation phases.

Data speculation also disrupts the traditional dependence graph generation for op-

erations within a control block. Data speculative loads di�er from their original load

operations in that certain memory dependences have been removed. These dependences

are e�ectively transferred to the verify operations of the data speculative load. Like-

wise, the control dependences of the original load must also be transferred. Traditional

scheduling algorithms generate all dependences before scheduling. However both data

speculative scheduling algorithms described in Section 3.2 insert and remove data spec-

ulative operations and their dependences during scheduling. Hence, such algorithms

present di�culties in maintaining valid dependences between operations. For all of these

reasons, data speculation is viewed as a set of complex transformations which require an

advanced compiler infrastructure. Due to the limited scope of this thesis, innovations on

the infrastructure of such transformations are left as the topic of further work.
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4. MEMORY DEPENDENCE PROFILING

As explained in the previous chapter, data speculation is a powerful technique for

exploring the full potential of ILP processors by speculatively executing a load before

potentially conicting stores. However, frequent conicts between advanced load and

store operations will result in a performance loss attributed to the overhead of executing

correction code. Memory dependence pro�ling is one approach for �nding pro�table data

speculation opportunities within a program.

The objective of memory dependence pro�ling can be accomplished in many ways with

di�ering accuracy and di�culty. This chapter identi�es three classes of memory reference

pro�ling: address-based, index-based, and collection using program instrumentation. The

aspects which distinguish the pro�ling classes are pro�ling time, accuracy, and the scope

of the pro�ling information. This chapter begins by illustrating the relationship between

the potential data conict rate and data speculation. Then the three classes of pro�ling

are described. Finally, the actual implementation of the pro�le technique of this thesis

is explained.
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4.1 Pro�le Data Conict (PDC) Rate and Data Speculation

The Pro�le Data Conict (PDC) rate is de�ned here to be the number of times for a

given pro�le that a store operation conicts with a load operation relative to the number

of times the load operation executes. The term \conicted" describes an instance in

which a particular store operation provides the result for a subsequent load operation.

The algorithms presented in Section 3.2 utilized bene�t estimation functions for initiating

data speculation based on estimates of load-store conict rates. Although compilers can

e�ectively approximate the cost and savings within these bene�t functions, accurate

estimation of conict rate is di�cult.

One possible bene�t function [19] for estimating the pro�tability of data speculation is

derived below, where CC is the correction cost overhead, and DS is the data speculative

bene�t assuming zero conicts.

DSProfit = DS � CC � PDC (4.1)

DS � CC � PDC � 0 (4.2)

PDC �
DS

CC
(4.3)

In Figure 4.1, this pro�t function is graphed with respect to values of the PDC rate

and the CC

DS
ratio. The curve establishes two distinct regions representing pro�table and

unpro�table data speculative execution. The pro�t curve itself identi�es the PDC rate
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Figure 4.1: Pro�tability Curve Using the PDC Rate

for a particular CC
DS

setting that results in zero pro�t. The general relation of PDC

and CC

DS
is that high PDC rates require low CC

DS
ratios for bene�cial data speculation.

The inverse relation is also true. For example, when a PDC rate is less than 10%, the

corresponding cost-to-bene�t ratio (CC
DS

) of the data speculative instance could be as high

as 10 without penalty.

As mentioned, an advanced compiler may be able to estimate the values of CC and

DS, however it is the estimate of the PDC which cannot easily be predicted. Neverthe-

less, by performing memory pro�ling, a compiler can establish PDC rates that estimate
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Last Store ID
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Figure 4.2: The Address-Based Memory Reference Collection Approach

the conict rates for data speculation. Thus, bene�t functions similar to Equation 4.3

can be included within a compiler's data speculative algorithms. The overall result is

better selection of data speculative instances within program code, as will be illustrated

in the next chapter. The remaining sections of this chapter describe di�erent methods

for collecting the PDC rate information.

4.2 Address-Based Conict Rate Pro�ling

Conceptually, the address-based memory reference pro�ling approach is based on the

relatively simple hash table principle. The memory addresses of load and store operations

in a program's probed executable are extracted and used as the hash keys for a single

global hash table. Figure 4.2 represents an overall view of this approach.

The addresses of the hash table entries correspond to speci�c data items, such as

variables or array elements, in the executing program. Since the goal of memory pro�ling
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is to associate conicts between load and store operations, it is necessary for each hash

entry to maintain the unique id for the last store operation that modi�ed the respective

program address. When load operations execute, their memory addresses access the

hash table and �nd the respective hash entry. This entry contains the store id of the last

conicting store operation, and is used to construct a conict between the load and store

operations. Conicts between operations are maintained in a separate structure and are

updated for each occurring conict. Previous work [20] has developed a similar address

hash structure for evaluating the locality of memory accesses.

Many research facilities only have access to program traces and do not possess the ca-

pability to instrument-program code. Therefore, the address-based collection approach

provides an e�ective way to gather memory conict information in any environment.

However, there are several disadvantages to this approach of pro�ling. The most im-

portant disadvantage is that the approach requires an excessive amount of memory for

catching all conicts. Likewise, the process of pro�ling is extremely time consuming. For

these reasons, memory reference pro�ling environments based solely on the address-based

approach are rarely constructed.

4.3 Index-Based Conict Rate Pro�ling

The address-based collection method discussed previously performs conict detection

uniformly on all memory operations. Such handling does not have the ability to focus its

attention on particular operation pairs, and this causes the excessive pro�le time. The
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most important aspect of the index-based pro�ling approach is the facility to use a list

of program operations to guide the pro�le collection, thus reducing pro�le time.

The premise for this method is that for each load operation there typically exists a set

of interesting stores which cause ambiguous memory dependences. It is often the sched-

uler which exposes such ambiguous references as problematic; however, any optimization

within a compiler is capable of generating lists of operation pairs with ambiguous de-

pendences that deter performance. In fact, a user investigating the performance of a

program benchmark may also determine a set of load-store operation pairs for which

conict information would help recognize ine�ciencies or bottlenecks. At the same time,

some dependences between load and store operations are known to exist statically, and

there is no reason for memory pro�ling to examine such references for conicts. The

index-based pro�le method can be directed to e�ciently ignore these conicts.

Figure 4.3 illustrates the index-based memory pro�ling approach. This approach

allocates a single conict entry for each load-store pair selected prior to pro�ling. Hence,

a global hash table structure does not exist. Instead, each memory operation has a

list of the conict entries which must be updated by its execution. For instance, in

Figure 4.3, the store operation ST1 must update the conict entries for loads LD1 and

LD2. Similarly, store ST2 only updates the conict entry for load LD1. Each conict

entry consists of two �elds, the memory address of the store operation and a conict

count. When a load operation executes, the memory address of the store is compared to

the load address, and matches result in incrementing the conict count �eld.



40

ST3
Addresses ST2

Probed ST1
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LD2: ST1,ST2,ST3 Store Target
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Figure 4.3: The Index-Based Memory Reference Collection Approach

The obvious advantage of this approach is that it o�ers more directed collection of

ambiguous references, ignoring memory conict information that will not be utilized in

optimizations. As such, the method allows users to de�ne which loads are interesting in

terms of the compiler's scheduling and optimization scope.

However, the index-based approach has a de�nite disadvantage. Memory conict

detection takes place on two planes, time and space. Figure 4.4 illustrates an example of

the temporal disadvantage of the index-based memory reference collection approach. In

this case, there exists one load operation (LD) and one store operation (ST) executing

under di�erent conditions within a loop. If the LD and ST cannot be disambiguated, then

the ST prevents the LD operation from being loop invariant. In an environment where

a compiler was closely integrated with a pro�ler, the compiler would elect to pro�le the

LD-ST pair in order to provide PDC information for the loop invariant data speculative
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optimization. Using the index-based approach causes the ST operation to write its target

address to the conict entry of the LD operation. However, several iterations of the loop

may execute the ST operation several times before the �rst LD operation. In this case,

the index-based approach only saves the last target address of the store. Thus, the load

operation would not be able to collect conicts that occurred with the store operation

several iterations earlier. The overall result is lower PDC accuracy compared to the

address-based method. Although the index-based approach could be constructed to save

a �xed amount of the last store addresses, the additional pro�le accuracy gained would

come with the cost of increased pro�le time. This problem is eliminated with the region-

based approach that will be discussed in Section 4.4.

for (i=0; i < 100; i++) {

if (condition)

ST (a1),r1

else

r2 = LD(a2)

}

Figure 4.4: Index-Based Approach Example

Although the loss of conict information between iterations is a disadvantage, the

index-based approach can be used for collecting pro�le information within the operation

scheduling scope. In the scheduling scope, the conict collection between operations
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executing within the same control block are not a�ected by the temporal conict collec-

tion problem. Therefore, the primary advantage of the index-based approach is accurate

and e�cient PDC collection within the operation scheduling scope. However, in the

case of scheduling a loop block that has been unrolled, the temporal problem of pro�le

information still exists. Thus, the use of index-based pro�le method requires certain

transformations in a compiler to be performed before pro�ling.

4.4 Program Instrumentation

In this approach, the user de�nes regions within program code that contain important

areas for data speculation. The regions represent the di�erent sections of code which may

de�ne new values for load operations and thus can be used to generate PDC rate infor-

mation. The regions consist of three components, a start point, a set of load invalidate

operations, and a load operation or an ending point. The start point of a region indicates

the location within a program where a load operation may potentially be relocated. The

start point is instrumented by the function call CONFLICT REGION START, which is

responsible for performing a preload, saving the loaded data, and initializing the region

conict count to zero. The set of load invalidate operations consists of any operation that

modi�es memory. Finally, a region is ended with the load operation and is instrumented

by the function call CONFLICT REGION END. This function performs the load oper-

ation, and compares the loaded data to the pre-loaded data. The region conict count

is incremented when the two data values are di�erent.
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The pro�le regions can directly correspond to potential uses of MCB data speculation.

For instance, the start of a pro�le region may be the point within code that a compiler

would insert preload operations. Other work [15] has advocated a similar approach that

pro�les MCB uses, but does not use the region de�nition. However, the region de�nition

improves the usefulness of performing memory pro�ling and is best observed with an

example.

Figure 4.5 illustrates one use of program instrumentation. In this example, the LD

operation is ordered below several ST operations. If the compiler cannot statically dis-

ambiguate the LD with the ST operations, memory dependence pro�ling may be able

to direct data speculative scheduling techniques. Figures 4.5(b)-(c) illustrate two pos-

sible region de�nitions for the LD operation. Figure 4.5(b) shows a single region and

Figure 4.5(c) demonstrates multiple overlapping regions within the original code.

The single region de�nition will basically return the conict rate for an instance

of data speculation where the preload operation is placed at the region start location

CONFLICT REGION1 START. The conict rate obtained at that point will involve all

four store operations. Although this information is accurate for this particular instance

of data speculation, it does not provide precise conict information between the load and

any single store operation.

By de�ning multiple regions for a load operation, more detailed pro�le information

can be obtained, which is the bene�t of using this region de�nition. Clearly, the number

of possible regions for some load operations can be large, and the use of all possible regions
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ST (a1),r1

ST (a2),r2

ST (a3),r3

ST (a4),r4

r5 = LD(a5)

(a)

CONFLICT_REGION1_START(a5)

ST (a1),r1

ST (a2),r2

ST (a3),r3

ST (a4),r4

CONFLICT_REGION1_END(a5)

r5 = LD(a5)

(b)

CONFLICT_REGION1_START(a5)

ST (a1),r1

ST (a2),r2

CONFLICT_REGION2_START(a5)

ST (a3),r3

ST (a4),r4

CONFLICT_REGION1_END(a5)

CONFLICT_REGION2_END(a5)

r5 = LD(a5)

(c)

Figure 4.5: The Use of Conict Regions (a) Original Code, (b) One Conict Region, (c)
Multiple Conict Regions

would increase the overall pro�ling time. Obviously, when pro�ling to determine loop

invariance there is little loss of pro�ling precision if a store operation that rarely produces

a conict is included in a region with several store operations that consistently produce

conicts. However, when pro�ling for the scheduling scope, this is not the case. This

raises the issue of whether an optimal set of regions exist for collecting PDC information

for a particular load, which is the focus of previous work [19]. Clearly there is a tradeo�

between collection time and the precision of the collected information. Likewise, the the

precision of information depends on whether the pro�le system is being used to guide

data speculative algorithms or to judge the bene�t of an already initiated data speculative

code.
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Region identi�cation and pro�le collection are not limited to the scheduling scope.

Figure 4.6 illustrates examples of region de�nitions for the data speculative optimizations

of loop invariant code removal and load-subroutine advancement. Figure 4.6(b) represents

another approach that uses the CONFLICT REGION END to simply track whether a

conict occurred and not keep track of the conict count. This approach would be able

to place the region end marker outside the loop, resulting in more e�cient pro�ling.

However the pro�le information would not designate the number of conicts as could

the approach in Figure 4.6(a). The di�erence between the approaches is related to the

function supported by instrumentation of the region end.

For several reasons, the region information is more helpful for optimization algorithms

than scheduling algorithms. For instance, the program instrumentation approach is an

e�ective mechanism for retrieving interprocedural PDC information because it does not

process memory addresses to determine conicts. Trace-based pro�le methods process

the list of addresses and assign conicts between pairs of operations. However, in the

load-subroutine optimization, all that matters is whether the subroutine causes conicts;

more speci�c information is not necessary. Another advantage of the region pro�ling

approach is that the problem with individual pro�le information and the loop invariant

optimization presented in Chapter 3 does not occur. It is important to note that the

CONFLICT REGION1 END instrumentation in Figure 4.6(a) also behaves as a CON-

FLICT REGION1 START, since it is included inside a loop. This is necessary for the

instrumentation to determine conicts throughout all iterations of the loop.
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CONFLICT_REGION1_START(a2)

for(i = 0; i < 100; i++ )

{

ST (a1),r1

CONFLICT_REGION1_END(a2)

r2 = LD(a2)

}

(a)

CONFLICT_REGION1_START(a2)

for(i = 0; i < 100; i++ )

{

ST (a1),r1

r2 = LD(a2)

}

CONFLICT_REGION1_END(a2)

(b)

CONFLICT_REGION1_START(a1)

CALL function()

CONFLICT_REGION1_END(a1)

r1 = LD(a1)

(c)

Figure 4.6: Examples of Regions for Optimizations (a) Loop Invariant, (b) Load-
Subroutine Advancement

The primary advantage of this approach is that the pro�ling time is much shorter

compared to the trace driven approaches. However, there is one obvious disadvantage:

the technology is more complex because it involves altering the original program code

and determining regions.
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4.5 Sync Arc Companion Pro�ling

Each of the memory reference pro�ling approaches described previously provides a

di�erent amount of accuracy, based on the characteristics of its design. Table 4.1 lists

the primary advantage of each pro�ling approach.

Table 4.1: Summary of Advantages of Memory Collection Approaches

Pro�ling Method Primary Advantage
Address Accurate Collection
Index E�cient Collection

Region Oriented E�ective Pro�ling for Data Speculative Optimizations

This thesis develops a combined memory reference infrastructure from the investi-

gation of each of the pro�ling approaches previously presented. The purpose of the

infrastructure is to gather memory reference information for improving all data specula-

tive algorithms within the IMPACT compiler. Several elements are necessary to achieve

this goal. First, the pro�ling information must be maintained throughout all compiler

transformations. This is an important requirement for the infrastructure, because it is

desirable to have correct pro�le information through several phases of a compiler, without

needing to repeat the pro�ling process. Another requirement is that the user must be

able to con�ne the pro�le collection to interesting operations. This is particularly useful,

because a compiler could then only pro�le the ambiguous memory dependences.

All of these requirements contributed to the construction of the pro�le system illus-

trated in Figure 4.7, called Sync Arc Companion Pro�ling. This approach uses the Sync
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Unlisted ST

ST3
ST2

Probed HASH ST1
Executable Addresses

LD1

LD2

Index or Guide 
Information:
LD1: ST1 LD2 Conflict Info ST1 ST2 ST3 Interprocedural
LD2: ST1.ST2,ST3 Store Target Conflict Count

Conflict Count

Figure 4.7: The Sync Arc Companion Approach

Arcs discussed in Chapter 2 in several ways. First, the Sync Arcs within a program are

used as the set of interesting load-store pairs to pro�le, using a mechanism similar to

index-based approach. By pro�ling Sync Arcs, information can be gathered to distin-

guish the arcs that exist due to conservative memory analysis from true dependences.

Sync Arcs are also used because the resulting pro�le information can be embedded within

the arc information in the intermediate representation of programs. Furthermore, Sync

Arcs are already maintained throughout transformations in the IMPACT compiler, and

thus pro�le information is preserved.

The Sync Arc Companion pro�le facility uses a combination of the index and address-

based pro�ling approaches. It is still necessary for the addresses of all store operations to

be entered into the global hash table. However, only the addresses of load operations se-

lected prior to pro�ling are entered into the global hash table. The hash table entries are

identical to the address-based approach, with the addition of a �eld indicating the unique
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function id of the last store operation that modi�ed the data. When load operations oc-

cur, their target addresses traverse the hash table and �nd a matching entry. Then a

comparison is made between the current function id and the function id within the entry.

When the ids do not match, an interprocedural conict has occurred, and is recorded.

Interprocedural conicts are counted so that information for the data speculative opti-

mizations can be generated. This mechanism attempts to emulate the e�ectiveness of

the region instrumentation approach for gathering interprocedural conicts. However,

the region instrumentation approach requires that the regions be determined prior to

pro�ling, while the approach of this thesis attempts to provide the pro�le information

without such additional processing. In order to track the interprocedural conicts, the

conict structure for each selected load operation includes a count of interprocedural

conicts as well as counts of each individual store operation conict.

Another bene�t of pro�ling Sync Arcs within the IMPACT compiler is that it provides

veri�cation of the static memory dependence analysis and Sync Arc compiler support.

In essence, Sync Arcs should represent all possible pairs of load and stores which may

conict. Thus, if memory pro�ling information exposes a conict between a pair of

load-store operations not represented by an arc, then potentially there is a missing Sync

Arc. This bene�cial side e�ect is another reason for integrating an e�ective memory

dependence collection infrastructure into the compiler's environment.

A ow diagram of the related tools within the IMPACT compiler is shown in Fig-

ure 4.8. The module Lguide processes the Sync Arcs of a program and generates a guide
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Lsim
Memory
Profiling

Probing

Lguide
guide file

Impact Code
(.lc,.O,.H,.HS)

Lget

profile 
database

Profiled Code
(.lcm,.Om,.Hm,.HSm)

Figure 4.8: The Sync Arc Companion Pro�ling Path

�le, which is the set of interesting load-store pairs to pro�le. The module Lget reads the

pro�le information in the pro�le database generated during pro�ling, and annotates the

information to the respective program operation. Overall, this �gure illustrates how a

program is �rst pro�led and then annotated with PDC conict information.

4.5.1 Pro�ling statistics

Several types of pro�ling statistics were generated for SPEC integer benchmarks and

UNIX utilities using the Sync Arc Companion implementation. These statistics con-

tribute insight into how each benchmark behaves in terms of memory dependences. For

instance, Figure 4.9 illustrates the percentage of static and dynamic interprocedural

memory conicts, where the y-axis shows the percentage of conicts that occur when one

subroutine de�nes data at a memory location and a di�erent subroutine subsequently uses

the data from that memory location. Interprocedural memory conicts mostly correspond

to global variables and dynamically allocated memory. The benchmarks 026.compress
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benchmarks. The statistic of zero-conict Sync Arcs can be misleading, since the mem-

ory reference pro�le information is limited to sections of the program exercised by the

chosen pro�ling input set. Nevertheless, this information provides valuable feedback on

the state of static memory disambiguation analysis, and on where to direct further anal-

ysis work. One interesting use of pro�le information is to remove zero-conict rate arcs

from a program, recompile, and then run the program again with the identical pro�le

input. Without the zero-conict arcs, a compiler's optimization and scheduling functions

may be able to improve the program performance. This action is not a feasible compiler

optimization, since other inputs could result in incorrect execution of the program. How-

ever, it would provide insight into the upper bound of performance achievable for certain

programs.

One �nal statistic is the distribution of non-zero conict rates within Sync Arcs dis-

played in Figure 4.11. The y-axis in Figure 4.11 represents the distribution of �ve non-zero

conict ranges (1-20%, 21-40%, 41-60%, 61-80%, and 81-100%) relative to all non-zero

conicts. Thus, long segments indicate a high occurrence of that conict rate range

within the program. Benchmarks such as wc and cmp are characterized by dependence

arcs which have either high or low conict rates. However, 099.go behaves much di�er-

ently, since 30% of its arcs have conict rates between 20% and 80%. Overall, this �gure

illustrates that there are distinct classes of dependences that should be removed by using

data speculation.
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5. EXPERIMENTAL PERFORMANCE EVALUATION

In this chapter, experimental results are presented from applying the previously dis-

cussed data speculative algorithms to a set of integer benchmarks consisting of the

SPEC92, SPEC95, and common Unix benchmarks.

As mentioned in Chapter 2, the IMPACT simulator models an architecture's pipeline

con�guration, instruction and data caches, branch target bu�er (BTB), and resource con-

straints. This allows the simulator to accurately compute the number of cycles required

to execute a program for a simulated processor. Table 5.1 describes the architecture

modeled for the data speculation experiments, and Table 5.2 shows the operation la-

tencies used. The MCB model parameters used for the experiments were based on the

best physical con�guration presented in previous work [2]. Table 5.3 describes these

parameters.
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Table 5.1: Description of Simulated Architecture

Architecture Description
8-issue in-order execution superscalar processor
Extended version of HP PA-RISC instruction set

- Extensions for MCB
- Silent versions of all trapping instructions

64 integer, 64 oating-point registers
Dcache: 64k, direct mapped, non-blocking, 64 byte
blocks,

8 cycle miss penalty, write-thru, no write allocate
Icache: 64k, direct mapped, non-blocking, 64 byte
blocks,

8 cycle miss penalty
BTB: 1k entries, direct mapped, 2-bit counter,

2 cycle misprediction penalty

Table 5.2: Description of Simulated Architecture Latencies

Function Lat Function Lat
Int ALU 1 FP ALU 2
(pre)load 2 FP multiply 2
store 1 FP div(SGL) 8
branch (check) 1 FP div(DBL) 15

Table 5.3: Description of Simulated MCB Model

MCB Description
64 entries, 8-way associative
5 address checksum width
2 cycle conict penalty
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5.1 Data Speculative Scheduling Performance Results

Based on the eight-issue architecture model speci�ed in Table 5.1, scheduling esti-

mates were made on three scheduling methods, superblock (BASE), MCB, and advanced

MCB (AMCB). The MCB scheduling model uses the existing IMPACT data speculative

scheduling algorithm described in Section 3.2, while the advanced MCB model uses the

pro�le-driven techniques introduced in this thesis. Figure 5.1 illustrates the estimated

speedup of the MCB and AMCB scheduling models relative to the BASE scheduling

model. These estimates do not include approximations for the conict rate of data spec-

ulative operations, and thus simply indicate an upper bound on the performance of each

approach. It is clear from Figure 5.1 that the AMCB model uses more e�ective data

speculative operations because it has signi�cantly better estimated performance speedup

than the MCB model.

Figure 5.2 shows simulation results for the MCB and AMCB models. Unlike the es-

timated schedule performance in Figure 5.1, the results of Figure 5.2 include the perfor-

mance penalties associated with data speculative conicts and correction code. Tables 5.4

and 5.5 list the conict statistics for the MCB and AMCB experiments respectively. Al-

though Figure 5.2 shows that the MCB scheduled benchmarks provide modest speedup

for many benchmarks, the conict statistics of Table 5.4 illustrate that the percentage of

time that correction code is executed can be as high as 6%-12%. The performance loss

due to the execution of correction code is part of the di�erence between the estimated

performance speedup of Figure 5.1 and simulated performance of Figure 5.2.
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Table 5.4: MCB Conict Statistics (Old MCB Scheduling Approach)

%
Static Dynamic Total True Checks

Benchmark Checks Checks Conicts Conicts Taken
008.espresso 335 5111K 281K 252K 5.55

022.li 31 273K 3.1K 2.7K 1.12
023.eqntott 47 70K 812 0 1.16
026.compress 44 494K 2.4K 2.04K .49

072.sc 71 158K 1.7K 395 1.1
129.compress 39 499K 26.5K 1.5K 5.3
147.vortex 990 8600K 576K 312K 6.7

cccp 11 8K 16 0 .20
cmp 241 526K 21.6K 212 4.1
eqn 8 911K 3K 0 .32
grep 9 96K 499 0 .52
lex 31 81K 786 0 .97
tbl 4 5K 180 0 3.6
wc 71 125K 125 0 .10

Table 5.6 includes four columns not included in Table 5.4, Static Load Veri�es, Dy-

namic Load Veri�es,Load Verify Conicts, and % Reloads. These columns present the

conict statistics for load verify (LDV) operations in the AMCB model, which are not

generated in the MCB model.

Together Table 5.5 and Figure 5.2 illustrate several interesting results for the pro�le-

driven data speculative algorithm approach. First, the percentage of checks taken has

decreased signi�cantly. In fact, the percentage of checks taken could be reduced to

zero if the original algorithm only removed zero-conict dependences during scheduling.

In addition to the performance gained by reducing the number of conicts, Table 5.5

shows that both the static and dynamic number of data speculative checks for several
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Table 5.5: MCB Conict Statistics (Advanced MCB Scheduling Approach)

%
Static Dynamic Total True Checks

Benchmark Checks Checks Conicts Conicts Taken
008.espresso 519 6690K 85.6K 11K 1.28

022.li 19 209K 585 112 .28
023.eqntott 44 125K 725 0 .58
026.compress 14 235K 540 213 .23

072.sc 14 25K 63 0 .25
129.compress 13 131K 1703 156 1.3
147.vortex 398 6490K 142K 78K 2.2

cccp 4 5K 22 0 .44
cmp 99 640K 22.1K 0 3.43
eqn 3 1268K 4.2K 0 .033
grep 0 0K 0 0 0
lex 13 61K 802 0 1.31
tbl 3 3K 119 0 3.97
wc 34 215K 234 0 .01

benchmarks are dramatically higher compared to the results of Table 5.4. This is a

result of the AMCB model including data speculative instances that the MCB model

had statically estimated as not worth using.

Another interesting point displayed in Table 5.4 and 5.5 is that the MCB schedul-

ing model uses more data speculative checks than the AMCB scheduling model in the

129.compress and 147.vortex benchmarks. Nevertheless, the AMCB scheduling model

performs better since fewer checks are taken. The MCB scheduling model for these

benchmarks experiences signi�cant performance loss due to correction code being fre-

quently executed. This loss indicates the importance of making intelligent decisions
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Table 5.6: Load Verify Conict Statistics (Advanced MCB Scheduling Approach)

Static Dynamic Load
Load Load Verify %

Benchmark Veri�es Veri�es Conicts Reloads
008.espresso 90 852K 1618 .19

022.li 19 230K 966 .42
023.eqntott 9 42K 151 .36
026.compress 0 0K 0 0

072.sc 42 449K 1526 .34
129.compress 0 0K 0 0
147.vortex 829 4457K 5.8K .13

cccp 6 8K 0 0
cmp 0 0K 0 0
eqn 1 96K 8.6K .09
grep 9 55K 0 0
lex 4 2K 0 0
tbl 1 1K 0 0
wc 0 0K 0 0

when initiating data speculation. Overall, the bene�t that pro�le information can pro-

vide is illustrated by the increased use of data speculation and the reduction of checks

taken which result in improved performance speedup.

Finally, the conict statistics of Table 5.5 indicate that scheduling algorithms that

use memory reference pro�le information can virtually eliminate all of the true conicts

of data speculation. However, the pro�le information cannot eliminate false conicts

that result from the MCB implementation and design. False conicts are due in part to

overlapping uses of MCB entries during runtime. Scheduling algorithms which determine

MCB resource contention may be able to reduce these conicts.
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when using either data speculative optimizations or scheduling algorithms separately.

In many cases, data speculative optimizations may not complement the e�ects of data

speculative scheduling. For instance, a load operation may be removed from a loop by

optimization, thus removing an opportunity for the scheduler to perform data speculative

scheduling within a control block. At the same time, some cases such as cmp seem to

have results that illustrate a complementary nature between data speculative optimiza-

tion and scheduling. In general, the results of Figure 5.3 indicate that data speculative

optimizations can achieve a large performance speedup in the presence of data specu-

lative scheduling. Overall, the results indicate that pro�le information can signi�cantly

enhance the e�ectiveness of both data speculative optimization and scheduling.
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6. CONCLUSIONS AND FUTURE WORK

This thesis presents the implementation of data speculative optimizations and schedul-

ing algorithms within the framework of the IMPACT compiler based upon memory pro�le

information. In addition, it identi�es di�erent memory pro�ling techniques and demon-

strates an e�ective implementation for the collection of memory pro�le information. Re-

sults show that by using Pro�le Data Conict (PDC) rate information from memory

pro�ling within the MCB scheduling approach, it is possible to greatly improve the

performance of data speculation. Also, it has been shown that such information can

consistently direct pro�table data speculative optimizations such as loop invariant code

removal. Overall, the use of memory reference pro�le information e�ectively identi�es

regions within a program where aggressive data speculation can be applied.

Future work in using memory pro�ling for directing data speculation will involve

several areas of further investigation. The �rst part of this work will involve a comparison

of the e�ectiveness of memory pro�ling and interprocedural analysis. In addition, work

needs to be done to investigate how pro�le information can be used to create a set of
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static heuristics for applying pro�table data speculation. Finally, an interesting question

arises regarding how data pro�ling behaves compared to control pro�ling for di�erent

selections of input sets. Overall, the future work will investigate the importance of data

speculation as new techniques emerge to further eliminate the bottlenecks caused by

program control ow.
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