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To expose sufficient instruction-level parallelism (ILP) to make effective use of wide-issue 

superscalar and VLIW processor resources, the compiler must perform aggressive low-level 

code optimization and scheduling. However, ambiguous memory dependences can significantly 

limit the compiler's ability to expose ILP. To overcome the problem of ambiguous memory 

dependences, optimizing compilers perform memory disambiguation. 

Both dynamic and static approaches to memory disambiguation have been proposed. Dy

namic memory disambiguation approaches resolve the dependence ambiguity at run-time. Com

piler transformations are performed which provide alternate paths of control to be followed 

based upon the results of this run-time ambiguity check. In contrast, static memory disam

biguation attempts to resolve ambiguities during compilation. Compiler transformations can be 

performed based upon the results of this disambiguation, with no run-time checking required. 

This dissertation investigates the application of both dynamic and static memory disam

biguation approaches to support low-level optimization and scheduling. A dynamic approach, 

the memory conflict buffer, originally proposed by Chen [1], is analyzed across a large suite of 

integer and floating-point benchmarks. A new static approach, termed sync arcs, involving the 

passing of explicit dependence arcs from the source-level code down to the low-level code, is 

proposed and evaluated. This investigation of both dynamic and static memory disambiguation 

allows a quantitative analysis of the tradeoffs between the two approaches. 

iii 



DEDICATION 

To my wife, Kathy, and my children, Jonathan and Daniel. 

Thank you for your love, support and longsuffering! 



ACKNOWLEDGMENTS 

First and foremost, I would like to thank God for the opportunity, ability, and strength to 

complete a doctoral program. To Him be all the glory! 

I would like to thank my advisor, Professor Wen-mei W. Hwu, for his insight and guidance 

throughout my studies. Not only was it an honor to work with someone of his caliber, but it 

was also a pleasure. He truly cares about the needs of his students. 

This research would not have been possible without the support of the IMPACT research 

group. Their efforts provided a unique compilation environment in which to conduct my re

search. The group also provided a very enjoyable work atmosphere. Members of the group 

were always willing to provide any help required - from research discussions to practice talks 

to listening to my frustrations. I deeply appreciate the willingness of Scott Mahlke and Rick 

Hank to answer my innumerable questions about Lcode and to act as a sounding board for my 

ideas. Grant Haab spent a great deal of time introducing me to the Pcode environment; he was 

also responsible for the Pcode data dependence which laid the foundation for much of my work. 

John Gyllenhaal was responsible for much of the simulation environment used in this thesis. 

William Chen provided me with my first introduction to IMPACT and to dynamic memory 

disambiguation. Many thanks to Dan Lavery, Ben Sander, Wayne Dugal, Cheng-Hsueh Hsieh, 

Derek Cho, and others who worked hard on the IMPACT X86 project. 

Thanks to Bob Rau, Mike Schlansker, Vinod Kathail, and Sadun Anik of HP Laboratory 

for their valuable discussions about static memory disambiguation. Their technical ability and 

insight across the entire spectrum of computer architecture are remarkable. 

v 



I would like to thank my parents, Gilbert and Billye, for their continued love and encour

agement. They provided a firm foundation for me both spiritually and emotionally as a child; 

as an adult, they continue to act as a source of strength and stability in my life. I also thank 

my brother, Steven, for his love and patience with his little brother. 

Finally, I must thank my wife, Kathy, and my children, Jonathan and Daniel, for their love 

and support during this difficult time in graduate school. They are the ones who truly sacrificed 

to make my graduate studies possible. Kathy single-handedly maintained our household, chas

ing the boys from one activity to another, so that I could spend time on my research. Jonathan 

and Daniel have been very understanding during the many times Dad couldn't be there for a 

school or sports activity. Thanks, and I plan to do better in the future! 

vi 



TABLE OF CONTENTS 

CHAPTER PAGE 

1 INTRODUCTION 1 
1.1 Contributions 3 
1.2 Overview 4 

2 COMPILATION AND SIMULATION ENVIRONMENT 6 
2.1 Pcode 8 
2.2 Lcode 10 
2.3 Superblocks 13 
2.4 IMPACT Simulation Environment 15 

3 OVERVIEW OF MEMORY DISAMBIGUATION 18 
3.1 Tradeoffs Between Dynamic and Static Approaches 21 
3.2 Dynamic Memory Disambiguation Approaches 26 

3.2.1 Run-time disambiguation 27 
3.2.2 Preload register update 29 
3.2.3 HP smart load 30 
3.2.4 Speculative disambiguation 31 
3.2.5 Unsafe loads 33 
3.2.6 Hardware-only disambiguation 34 

3.3 Static Memory Disambiguation Approaches 35 

4 DYNAMIC MEMORY DISAMBIGUATION USING THE MEMORY CONFLICT 
BUFFER 38 
4.1 Architectural Support 40 

4.1.1 MCB design 40 
4.1.2 MCB address hashing 45 
4.1.3 Handling variable access sizes 47 
4.1.4 Handling context switches 48 
4.1.5 Speculative execution 49 
4.1.6 Discussion of hardware requirements 50 

4.2 Compiler Support 51 
4.2.1 Basic MCB scheduling algorithm 51 
4.2.2 Inserting correction code 55 

4.3 Experimental Evaluation 56 
4.3.1 MCB emulation 57 
4.3.2 MCB size and associativity 59 
4.3.3 Signature field size 60 
4.3.4 MCB performance 61 
4.3.5 Reducing MCB conflicts 71 

4.4 MCB Summary 74 

vn 



5 STATIC MEMORY DISAMBIGUATION USING SYNC ARCS 75 
5.1 Providing Source Information to the Intermediate Code 76 

5.1.1 Performing static analysis on low-level code 77 
5.1.2 Performing static analysis on source-level code 78 

5.2 Sync Arcs 79 
5.2.1 Desired dependence information 79 
5.2.2 Extracting sync arcs 86 
5.2.3 Maintaining sync arcs 88 
5.2.4 Limiting the number of sync arcs 93 
5.2.5 Using sync arcs 96 

5.3 Sync Arc Summary 97 

6 C DEPENDENCE ANALYSIS TO GENERATE SYNC ARCS 99 
6.1 Dependence Analysis for C Programs 99 

6.1.1 Semantic differences 100 
6.1.2 Required modifications to existing dependence analysis 103 

6.2 Interprocedural Analysis for C Programs 113 
6.2.1 Granularity of analysis 115 
6.2.2 Building the program call graph 118 
6.2.3 Implementation 121 

6.3 Dependence Analysis Summary 132 

7 EXPERIMENTAL RESULTS 134 
7.1 Sync Arcs 134 

7.1.1 Integer benchmarks 135 
7.1.2 Floating-point benchmarks 147 

7.2 Comparison of Static and Dynamic Approaches 154 
7.2.1 Performance comparison 155 
7.2.2 Synergy of the approaches 159 

7.3 Summary of Results 160 

8 CONCLUSIONS 162 
8.1 Summary 162 
8.2 Future Work 164 

REFERENCES 166 

VITA 171 

viii 



LIST OF TABLES 

Table Page 

3.1 Tradeoffs of Dynamic and Static Memory Disambiguation 22 

4.1 Simulated Architecture 57 
4.2 Instruction Latencies 57 
4.3 MCB Conflict Statistics (8-issue architecture, 64 entries, 8-way set associative, 5 

signature bits) 68 
4.4 MCB Static and Dynamic Code Size (8-issue architecture, 64 entries, 8-way set 

associative, 5 signature bits) 70 

5.1 Desired Dependence Information 86 

6.1 Access Table Names 106 
6.2 Rules for Determining if an Operator Corresponds to an Access I l l 

7.1 Number of Functional Units 135 

IX 



LIST OF FIGURES 

Figure Page 

1.1 Importance of Memory Disambiguation 2 

2.1 The IMPACT Compiler 7 
2.2 An Example of Superblock Formation 14 
2.3 MCB Compilation Path for Simulation 16 

3.1 Effect of Memory Disambiguation on Performance 21 
3.2 Limitations of Static Memory Disambiguation 23 
3.3 Run-time Memory Disambiguation Example 27 
3.4 Preload Register Update Example 30 
3.5 Speculative Disambiguation Example 32 

4.1 Memory Conflict Buffer Example 39 
4.2 Set Associative MCB Design 42 
4.3 Hashing MCB Array Entry. 48 
4.4 Speculative Execution of Excepting Instructions 50 
4.5 MCB Code Compilation 53 
4.6 MCB Emulation Code 58 
4.7 MCB Size Evaluation. Speedup of an 8-issue architecture for various size MCBs vs. 

an 8-issue architecture without MCB (8-way set associative, 5 signature bits). . . . 60 
4.8 MCB Signature Size. Speedup of an 8-issue architecture with various size address 

signature fields vs. an 8-issue architecture without MCB (8-way set associative, 5 
signature bits) 61 

4.9 Unix MCB 8-Issue Results. Speedup of code compiled with and without MCB over 
a baseline single-issue architecture 62 

4.10 SPEC-CINT92 MCB 8-Issue Results. Speedup of code compiled with and without 
MCB over a baseline single-issue architecture 63 

4.11 Unix MCB 8-Issue Results. Speedup of code compiled with MCB over an 8-issue 
architecture without MCB 64 

4.12 SPEC-CINT92 MCB 8-Issue Results. Speedup of code compiled with MCB over an 
8-issue architecture without MCB 64 

4.13 SPEC-CFP92 MCB 8-Issue Results. Speedup of code compiled with and without 
MCB over a baseline single-issue architecture 66 

4.14 SPEC-CFP92 MCB 8-Issue Results. Speedup of code compiled with MCB over an 
8-issue architecture without MCB 66 

4.15 Floating-Point MCB Size Evaluation. Speedup of an 8-issue architecture for vari
ous size MCBs vs. an 8-issue architecture without MCB (8-way set associative, 5 
signature bits) 72 

4.16 8-Issue Results for Different MCB Models 73 

x 



5.1 Difficulty of Memory Disambiguation for Low-Level Code 76 
5.2 Dependence Information to Support Loop Unrolling 82 
5.3 Dependence Information to Support Loop Invariant Code Removal 83 
5.4 Dependence Information to Support Redundant Load Elimination 84 
5.5 Single Iteration Dependence Example 85 
5.6 Threshold Dependence Distance Example 85 
5.7 Sync Arc Format 87 
5.8 Mining Code with Sync Arcs 90 
5.9 Updating Sync Arcs for Code Motion 91 
5.10 Updating Sync Arcs for Loop Unrolling 92 
5.11 Address-Based Versus Flow-Based Analysis 95 

6.1 Finding Memory References 108 
6.2 Different Structures Based Upon Data Declaration 110 
6.3 Accuracy Loss of Low-Granularity Interprocedural Analysis 116 
6.4 Interprocedural Function Pointers 119 
6.5 Indirect Function Calls Through Library Functions 120 
6.6 Phases of Interprocedural Analysis 122 
6.7 Aliases Created by Binding 128 
6.8 Side effects on Function Pointer Arguments 129 
6.9 Propagation of Side effects on Formal Parameters 131 

7.1 Sync Arc 8-Issue Unix Results 136 
7.2 Sync Arc 8-Issue SPEC-CINT92 Results 137 
7.3 Sync Arc 8-Issue Unix Ratios 137 
7.4 Sync Arc 8-Issue SPEC-CINT92 Ratios 138 
7.5 Source Code for Inner Loop of cmp 140 
7.6 Lcode for Inner Loop of cmp 141 
7.7 Sync Arc 8-Issue Unix Optimization Versus Scheduling 142 
7.8 Sync Arc 8-Issue SPEC-CINT92 Optimization Versus Scheduling 142 
7.9 Sync Arc Unix Results for Different Issue Rates 144 
7.10 Sync Arc SPEC-CINT92 Results for Different Issue Rates 145 
7.11 Effect of Interprocedural Analysis- Unix 147 
7.12 Effect of Interprocedural Analysis- SPEC-CINT92 148 
7.13 Sync Arc 8-Issue SPEC-CFP92 Results 149 
7.14 Sync Arc 8-Issue SPEC-CFP92 Ratios 149 
7.15 Source Code for Inner Loop Nest of 078.swm256. 150 
7.16 Source Code from 056.ear. 151 
7.17 Source Code from 013.spice2g6. 152 
7.18 Sync Arc 8-Issue SPEC-CFP92 Optimization Versus Scheduling 153 
7.19 Sync Arc SPEC-CFP92 Results for Different Issue Rates 154 
7.20 Unix Comparison of Sync Arcs to MCB - 8-Issue 156 
7.21 SPEC-CINT92 Comparison of Sync Arcs to MCB - 8-Issue 157 
7.22 SPEC-CFP92 Comparison of Sync Arcs to MCB - 8-Issue 157 
7.23 Source Code from 052.alvinn 158 

xi 



CHAPTER 1 

INTRODUCTION 

Superscalar and VLIW processors attempt to achieve high performance by exploiting avail

able instruction-level parallelism (ILP). The compiler is responsible for transforming the original 

program to expose sufficient ILP to keep the processor's functional units busy. This task of 

exposing parallelism requires aggressive low-level code optimization and scheduling. 

A major impediment to exploiting ILP is ambiguous memory dependences. When two 

memory instructions (e.g., a load and a store) may possibly reference the same memory location, 

the two instructions have an ambiguous memory dependence between them. As a result of this 

dependence, the compiler must ensure that the memory operations are executed in the original 

program order. Any code transformation that would alter the order of execution is prevented. 

Figure 1.1 shows two examples of how ILP compilation is hindered by ambiguous memory 

references. In Figure 1.1(a), the load address is assumed to be loop invariant (it references the 

same address during all iterations of the loop). However, loop invariant code removal cannot 

be performed to move the load out of the loop unless it can be determined the store instruction 

never writes to the same memory location as the load. The ambiguous memory dependence thus 

inhibits an important code optimization. In Figure 1.1(b), a simple loop, assumed to consist 

of a load instruction, several arithmetic instructions, and a store instruction, has been unrolled 

in an attempt to expose greater ILP to the scheduler. Again, if it cannot be determined that 

the store in the first iteration always references a different memory location than the load in 

second iteration, the two iterations cannot be overlapped and no additional ILP is achieved. 
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Loop: 

Load ""; 
Operations ! iler' 

/Store . ' 
?-^Load ""; 

Operations ! '^2 
Store .1 

(a) Loop invariant code removal example (b) Unrolling and scheduling example 

Figure 1.1 Importance of Memory Disambiguation. 

To overcome the problem of ambiguous memory dependences, optimizing compilers perform 

memory disambiguation, the process of determining whether two memory instructions might 

ever access the same location. Techniques for performing memory disambiguation generally are 

classified as either dynamic or static. Dynamic memory disambiguation determines at run-time 

whether two memory instructions ever reference the same location. To facilitate optimization 

or scheduling, the compiler provides different execution paths for the code depending upon 

whether the instructions are independent; at run-time, the dynamic memory disambiguation 

will determine which execution path is followed. In contrast, static memory disambiguation 

attempts to determine at compile-time the correct dependence relationship between memory 

instructions, using information available within the program's source code. If static memory 

disambiguation is successful in proving two memory instructions are independent, the compiler 

is able to perform optimization/scheduling at compile-time, and no run-time checking is required 

to ensure correct execution. 

The potential benefit of dynamic and static memory disambiguation applied to low-level 

code optimization and scheduling has not been well-understood. Most existing dynamic mem

ory disambiguation approaches are best suited for narrow-issue processors, and the benefit of 
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dynamic approaches for wide-issue superscalar or VLIW processors has not previously been 

demonstrated. Static memory disambiguation is most frequently applied to source-level code 

transformations, and its potential benefit for low-level code transformations has also not been 

demonstrated. Ideas for improved static disambiguation have been postulated, but few have 

actually been implemented in a working superscalar/VLIW compiler. 

This dissertation examines both dynamic and static memory disambiguation approaches 

within the context of the IMPACT compiler project. Dynamic and static approaches have 

been implemented within the IMPACT compiler, targeted toward facilitating low-level code 

optimization and scheduling. Through detailed simulation, a quantitative analysis of both 

techniques is performed to better understand the merits of and tradeoffs between dynamic and 

static disambiguation. 

1.1 Contributions 

The four major contributions of this dissertation are discussed below. 

• A dynamic memory disambiguation approach, the memory conflict buffer, is examined 

and developed. The memory conflict buffer is shown to be an effective means of over

coming the problem of ambiguous memory dependences, particularly for applications for 

which static analysis is not available. Contributions specific to this thesis include a new 

hardware design, development of an effective simulation environment, full integration into 

the IMPACT compiler, and a detailed quantitative evaluation of the benefit of the memory 

conflict buffer for ILP processors. 
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• The sync arc technique proposed in this thesis provides an effective framework for provid

ing source-level dependence information for use by low-level optimization and scheduling. 

The technique is described in detail, defining the type of information to be carried by 

the sync arc, how the information is maintained through aggressive code transformations, 

and how the dependence information is used by low-level transformations. A quantitative 

analysis of the effectiveness of sync arcs demonstrates their potential benefit. 

• The source-level dependence analysis required to support sync arcs is studied. The chal

lenges for dependence analysis posed by the C language are discussed. In particular, the 

need for interprocedural analysis of C programs to support effective memory disambigua

tion for low-level code, and the required granularity of this analysis, is quantitatively 

investigated. 

• The tradeoffs involved in selecting a static or dynamic memory disambiguation approach 

are explored. This analysis is unique in that an example of each approach has been 

implemented within a single compiler environment, enabling a fair comparison of the 

relative merits. Both approaches are shown to provide good memory disambiguation and 

to have applicability in different problem domains. 

1.2 Overview 

This dissertation is composed of eight chapters. Chapter 2 presents an overview of the 

organization of the IMPACT compiler. All compiler techniques discussed in this thesis are 

implemented within the framework of the IMPACT compiler. The simulation methodology 

employed in the thesis is also described. Chapter 3 discusses two approaches to deal with 
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ambiguous memory dependences: dynamic memory disambiguation and static memory disam

biguation. The two approaches are reviewed and the tradeoffs between them are discussed. 

A general technique for dynamic memory disambiguation, the memory conflict buffer, is 

presented in Chapter 4. This technique, which combines both hardware and compiler support, 

allows memory operations to be reordered during low-level code scheduling despite the presence 

of ambiguous memory dependences. The hardware support is responsible for detecting when 

truly dependent memory operations have been reordered. In the event this occurs, the compiler 

provides code to correct program execution. 

Chapter 5 introduces sync arcs, a technique for maintaining explicit dependence information 

within the intermediate code. Static memory disambiguation is used to extract this dependence 

information from source-level code and to generate the sync arcs. A detailed discussion of how 

the sync arcs are preserved through and used by code transformations is presented. 

Chapter 6 discusses the C dependence analysis used to provide the static memory disam

biguation required for sync arcs. The interprocedural alias and side-effect analysis that supports 

this analysis is also presented. The experimental results using this dependence analysis and 

sync arcs are then presented in Chapter 7. A quantitative analysis of the benefit of improved 

memory disambiguation is given. This is followed by a comparative analysis of the relative 

benefit of the dynamic and static disambiguation approaches presented in this dissertation. 

Finally, Chapter 8 presents conclusions and suggests directions for future research. 
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CHAPTER 2 

COMPILATION AND SIMULATION ENVIRONMENT 

The compiler techniques necessary to investigate dynamic and static memory disambigua

tion approaches for this thesis are implemented within the framework of the IMPACT compiler 

project. The IMPACT compiler is a retargetable, optimizing C compiler being developed at 

the University of Illinois to investigate architectural and compilation techniques to support ILP 

processors. A block diagram of the IMPACT compiler is presented in Figure 2.1. The compiler 

accepts source code written in C, as well as Fortran code translated using the f2c translation 

tool [2]. The compiler can be divided into three distinct sections, each based upon a different 

intermediate representation (IR). 

The highest level IR, Pcode, is a parallel C code representation with loop constructs intact. 

At the Pcode level, source-level techniques such as memory dependence analysis [3], loop-level 

transformations [4], and memory system optimizations [5], [6] are performed. Pcode is further 

described in Section 2.1. The middle-level IR is referred to as Hcode. In Hcode, the control 

structure of the code has been flattened into a basic block structure with simple if-then-else 

and go-to control flow constructs, but expressions are still maintained hierarchically. During 

this phase of compilation, basic-block-level profiling, as well as profile-guided code layout and 

function inline expansion [7], [8], [9], are performed. 

The lowest level of IR in the IMPACT compiler is referred to as Lcode. Lcode is a gen

eralized register transfer language similar in structure to most load/store processor assembly 

instruction sets. The majority of ILP code transformations within the IMPACT compiler are 
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Figure 2.1 The IMPACT Compiler. 
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performed at the Lcode level. Section 2.2 details these code transformations. A detailed ma

chine description database, Mdes, for each target architecture is available for use by all Lcode 

compilation modules [10]. 

Seven architectures are currently supported by the IMPACT compiler. These include the 

AMD 29K [11], MIPS R3000 [12], SPARC [13], HP PA-RISC, 1 and Intel X86 [14], [15]. The 

other two supported architectures, IMPACT and HP Playdoh [16], are experimental ILP ar

chitectures, which provide a framework for compiler and architectural research. The IMPACT 

architecture models a generic superscalar processor which executes the Lcode instruction set. 

After machine specific annotation of the Lcode, the IMPACT code generator can produce 

code for extended versions of the HP PA-RISC (IMPACT-HPPA) and the SPARC (IMPACT-

SPARC) architectures. For this thesis, all experiments are based upon the IMPACT-HPPA 

architecture. 

The remainder of this chapter details portions of the IMPACT compiler project especially 

important to this thesis. Sections 2.1 and 2.2 discuss the Pcode and Lcode levels of compilation. 

The superblock technique, which is foundational to much of IMPACT'S ILP compilation, is 

presented in Section 2.3. Finally, the simulation environment used in this thesis is presented in 

Section 2.4. 

2.1 Pcode 

High-level analyses, transformations, and optimizations which benefit from the availability 

of explicit source-level information are performed at the Pcode level. Within the Pcode IR, 

program code is represented in an abstract syntax tree containing hierarchical statement and 

'The HP PA-RISC code generator was developed by Richard E. Hank. 
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expression nodes. This hierarchical intermediate representation facilitates the manipulation of 

program structures such as loops and blocks of statements. 

The Pcode module contains several code restructuring transformations and optimizations. 

General purpose loop transformations currently implemented include loop distribution or loop 

fission, rectangular loop interchange, loop skewing, and loop reversal [4]. These loop transfor

mations are usually exploited as tools to improve the applicability of other transformations and 

optimizations. In addition, conversion of while-type loops into /or-type loops to facilitate data 

dependence analysis is also supported. Loop parallelization is currently limited to identifica

tion of loops which can be software pipelined. Loops that are identified as good candidates for 

software pipelining are marked at the Pcode level, but the software pipelining transformation 

is actually accomplished at the Lcode level during code generation [17], [18]. 

Memory system optimizations include loop blocking (also called iteration space tiling) to 

improve cache access locality [5], software prefetching, and data relocation and prefetching [6], 

a hardware-assisted form of software prefetching which simultaneously relocates array data to 

reduce cache mapping conflicts. 

To support these transformations and optimizations, Pcode performs several types of anal

ysis. Control-flow analysis provides the structural framework upon which many of the trans

formations and other analyses are built. It consists of control-flow graph construction, loop 

detection and nesting determination (used mostly for unstructured loops), support for data 

dependence analysis, and unreachable code removal. Data-flow analysis determines the flow of 

program values, variables, and expressions through the control-flow graph. Traditional types 

of data-flow information are computed including sets of reaching definitions and uses, available 

definitions and uses, and live variables [19]. In addition, an extended type of data-flow analysis 
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called loop-carried data-flow analysis is used to calculate loop-carried reaching definitions and 

uses, which are useful for determining accurate dependence direction vectors for scalar variables. 

Data dependence analysis [3] calculates the dependence relationship between each access 

pair in the function. It consists of several steps. First, a variable access table containing 

information for each distinct variable reference in the function is built. Next, aliases are added 

between accesses in the access table as necessary. These aliases may stem from several sources, 

such as aliases between elements of a union, pointer aliasing caused by assignment expressions, 

or aliases determined during interprocedural analysis. Finally, the dependence relationship 

between pairs of accesses is determined. The Omega Test [20], developed by William Pugh 

at the University of Maryland, is employed to produce the data dependence equations and 

inequalities used to generate distance and direction vectors for pairs of variable references. 

Pcode's existing data dependence analysis lays the foundation for the dependence analysis 

used to support the sync arc research presented in this thesis. Chapter 6 further discusses 

Pcode data dependence analysis and the enhancements made to it as part of this thesis. 

2.2 Lcode 

The Lcode level performs low-level code optimization and scheduling to expose and exploit 

a program's inherent ILP. Lcode is logically subdivided into two subcomponents: machine-

independent optimizations performed prior to code generation and machine-dependent opti

mizations performed during code generation. Although the internal data structures used dur

ing these two components of Lcode are identical, the machine-dependent portion of the Lcode 

is sometimes referred to as Mcode. The difference between Mcode and Lcode is that Mcode 

is broken down such that there is a one-to-one mapping between Mcode instructions and the 
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target machines' assembly languages. For example, when generating code for the X86 archi

tecture, the Lcode will be in 3-operand format during machine-independent optimization, and 

then is converted to 2-operand format during the machine-dependent phases; once in 2-operand 

format, the code would be referred to as Mcode. Lcode instructions are broken up for a variety 

of reasons, such as limited addressing modes, limited opcode availability (e.g., no floating-point 

branch), ability to specify a literal operand, and field width of literal operands. 

During the first step of Lcode compilation, all machine-independent classic optimizations 

are applied [21]. These include constant propagation, forward copy propagation, backward copy 

propagation, common subexpression elimination, redundant load elimination, redundant store 

elimination, strength reduction, constant folding, constant combining, operation folding, oper

ation cancellation, code reordering, dead code removal, jump optimization, unreachable code 

elimination, loop invariant code removal, loop global variable migration, loop induction variable 

strength reduction, loop induction variable elimination, and loop induction variable reassocia-

tion. Additionally, analysis is performed to identify safe instructions for speculation [22]. 

The next step in Lcode compilation is to perform superblock code transformation and 

optimization. The superblock compilation structure is explained in detail in Section 2.3. When 

predicated execution support is available in the target architecture, hyperblocks [23] rather 

than superblocks are used as the underlying compilation structure. All superblock optimization 

techniques have also been extended to operate on hyperblocks. In addition, a set of hyperblock-

specific optimizations to further exploit predicated execution support are available. For this 

thesis, the superblock was the primary compilation structure used for memory disambiguation 

experiments. 
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Following superblock transformations, machine-specific code generation is performed for one 

of the seven architectures shown in Figure 2.1. Code generation within the IMPACT compiler 

consists of three phases. During Phase I, Lcode to Mcode conversion is performed to transform 

the Lcode into a one-to-one correspondence to target machine assembly. During Phase II of 

code generation, machine-specific optimizations, code scheduling, and register allocation are 

performed. Finally, during Phase III of code generation, Mcode is translated into the target 

architecture's assembly language. 

Two of the most significant components of code generation are the instruction scheduler and 

register allocator, both of which are common modules shared by all code generators. Scheduling 

is performed via either global acyclic scheduling [22], [24] or software pipelining [17], [18]. 

Global acyclic scheduling is applied both before register allocation (prepass scheduling) and 

after register allocation (postpass scheduling) to generate an efficient schedule. Loops targeted 

for software pipelining are identified and marked at the Pcode level. These loops are pipelined 

using modulo scheduling and the remaining code is scheduled using the global acyclic scheduler. 

Additionally, code transformations to support the memory conflict buffer technique described 

in Chapter 4 are applied during code scheduling. 

Register allocation is performed using a graph-coloring-based scheme [25]. The register allo

cator employs profile information, if available, to better prioritize virtual registers for allocation 

to physical registers. 

For each target architecture, a set of specially tailored peephole optimizations is performed. 

These peephole optimizations are designed to remove inefficiencies introduced during Lcode to 

Mcode conversion, to take advantage of specialized opcodes available in the architecture, and 
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to take advantage of new optimization opportunities after spill code has been added by the 

register allocator. 

2.3 Superblocks 

For most non-numeric programs, the ILP available within individual basic blocks is ex

tremely limited [26], [27], [28]. An ILP compiler must be able to optimize and schedule in

structions across basic block boundaries to find sufficient parallelism. An effective structure 

for ILP compilation is the superblock [23], [29]. The formation and optimization of superblocks 

increases the ILP available to the scheduler along important execution paths by systematically 

removing constraints due to the unimportant paths. Superblock scheduling is then applied to 

exploit ILP by mapping it to the available processor resources. 

A superblock is a block of instructions for which the flow of control may only enter from 

the top, but may leave at one or more exit points. It is formed by identifying sets of basic 

blocks which tend to execute in sequence (called a trace) [30]. These blocks are coalesced to 

form the superblock. Tail duplication is then performed to eliminate any side entrances into 

the superblock [31]. 

The formation of superblocks is illustrated in Figure 2.2, taken from [23]. Figure 2.2(a) 

shows a weighted flow graph which represents a loop code segment. The nodes in the graph 

correspond to basic blocks and the arcs represent the possible control transfers. The number in 

each node represents the execution frequency of the basic block (as determined by profiling). 

Likewise, the number associated with each arc represents the number of times that particular 

control transfer path is followed. Because the most frequent control flow is along the path 

{A, B,E, F}, this trace is selected for superblock formation. To eliminate side entrances to this 
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(a) Original weighted control graph (b) Control graph after tail duplication 

Figure 2.2 An Example of Superblock Formation. 
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superblock, tail duplication replicates basic block F, and control flow from blocks C and D is 

redirected to this duplicated block. The result is the flow graph shown in Figure 2.2(b). 

Following superblock formation, ILP is further exposed through superblock optimizations. 

Classic optimizations are reaccomplished within the scope of the superblock. Superblock en

larging optimizations such as loop unrolling and loop peeling are employed to increase the size 

of superblocks, providing more visible instructions to the scheduler. Dependence-removing op

timizations such as register renaming, induction variable expansion, and accumulator expansion 

are performed to remove data dependences, increasing available ILP. For a detailed explanation 

of the superblock optimizations, see [23]. 

The superblock compilation framework can be viewed as an attempt to reduce the impact 

of control transfer instructions on ILP. For an architecture that supports control speculation, 

the greater optimization and scheduling freedom afforded by superblocks significantly reduces 

the negative impact of branches on ILP. The importance of this result to this thesis is that 

reducing the impact of branches on ILP has exposed ambiguous memory dependences as a 

secondary impediment to ILP. The potential ILP exposed by superblock formation cannot be 

fully exploited unless effective methods are developed to overcome the restrictions imposed by 

memory dependences. 

2.4 IMPACT Simulation Environment 

All experiments performed for this thesis were done using the IMPACT simulation envi

ronment. The IMPACT simulator models in detail the target architecture's prefetch and issue 

unit, instruction and data caches, branch prediction mechanism, and hardware interlocks. This 

allows the simulator to accurately model the number of cycles required to execute a program, 
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Figure 2.3 MCB Compilation Path for Simulation. 

as well as provide detailed analysis such as cache hit rates or branch prediction performance. 

The simulator also allows proposed new hardware, such as the memory conflict buffer, to be 

accurately modeled and analyzed. Supported architecture types include in-order superscalar 

and very long instruction word (VLIW) architectures. 

The IMPACT simulation approach is referred to as emulation-driven simulation. Figure 2.3 

shows the compilation path for the simulation used throughout this thesis. The figure assumes 

the Lcode has already been compiled through classic and ILP code optimizations, including 

superblock formation. Because the simulation performed for this thesis assumes an instruction 

set architecture which is an extension of the HP PA-RISC 1.1 instruction set, the optimized code 

is first run through the initial phase of the HP PA-RISC code generator, which transforms the 

code into HP Mcode. The code is then passed through pre-pass scheduling, register allocation, 

and post-pass scheduling for the target architecture, using the generic IMPACT code generator. 

During this stage, architectural features of the simulated architecture are assumed. For example, 

if the architecture being simulated can issue eight instructions per cycle, the scheduler reorders 

the code based upon this model. For the MCB experiments detailed in Chapter 4, the MCB 

code transformations are performed during pre-pass scheduling. 
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Following this stage of compilation, the intermediate code is in a form which could be 

executed by the simulated architecture. However, to create an executable file to drive the sim

ulation, any unsupported architectural features of the simulated architecture must be emulated 

to allow the code to execute on the host architecture, an HP PA-RISC 7100-based workstation. 

For example, if the simulated architecture contains hardware support for MCB, emulation code 

must be added to allow the code to execute properly on the host architecture. Following inser

tion of required emulation code, a second phase of register allocation, assuming host architecture 

register file constraints, is performed. The code is then instrumented to gather address and 

branch direction data for the simulation, and then the final phases of the code generation are 

performed to create an executable file. This executable file serves two purposes. First, because 

the executable can be run to provide correct program results, it verifies that code transforma

tions have been performed correctly. Second, it generates the trace information required to 

drive the simulation. 

Simulation is performed on the modeled architecture's code, using address and branch di

rection data from the emulation path. The result is a highly accurate measure of the number of 

cycles required to execute the program on the simulated architecture. Due to the complexity of 

simulation, sampling [32] is used to reduce simulation time for large benchmarks. For sampled 

benchmarks, a minimum of 10 million instructions are simulated, with at least 50 uniformly 

distributed samples of 200,000 instructions each. Testing has shown sampling error to be less 

than 1% for all benchmarks. 

Further details of the architecture being modeled for various experiments is provided within 

the experimental sections of this thesis. 
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CHAPTER 3 

OVERVIEW OF MEMORY DISAMBIGUATION 

Control flow instructions (e.g., branches and function calls) have been widely recognized as 

the major impediment to exposing ILP. Because such a high percentage of instructions (20-

30%) in typical C programs are control flow instructions, the compiler must be able to search 

beyond the individual basic block for parallelism. Techniques such as trace scheduling [30], 

superblocks [29], and hyperblocks [23] have been developed to expand the size of blocks in 

which the compiler performs optimization and scheduling. Speculative execution techniques 

have been developed to allow code motion between basic blocks [33], [34], [35]. As a result of 

these techniques, the impact of control flow instructions on ILP can be significantly reduced. 

However, this reduction of the impact of control flow instructions on ILP has exposed a 

secondary impediment to ILP: ambiguous memory dependences [1]. In much the same way 

that branches can restrict code optimization and scheduling, ambiguous memory dependences 

also prohibit these important transformations. In particular, dependences between loads and 

stores result in the greatest restriction to ILP. 

Dependences between two loads (referred to as an input dependence) usually have little or no 

impact on ILP. Dependences between two store operations (referred to as an output dependence) 

rarely restrict optimization, and there tends to be limited benefit from reordering stores during 

code scheduling. However, dependences between load and store operations are a much more 

serious problem for the compiler. During code scheduling, flow dependences (the situation 

when a load operation sequentially follows a dependent store operation) often severely restrict 
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code reordering. Anti dependences (when a load sequentially precedes a dependent store) tend 

to be a minor problem during scheduling because load operations tend to move upward and 

stores tend to move downward during code scheduling. During optimization, both flow and anti 

dependences severely restrict transformations. 

To overcome the problem of ambiguous memory dependences, optimizing compilers perform 

memory disambiguation. To illustrate the potential benefit of memory disambiguation, an 

experiment was conducted using a suite of twelve benchmarks, including five unix benchmarks, 

five SPEC-CINT92 benchmarks, and two SPEC-CFP92 benchmarks. The benchmarks were 

scheduled using the three different models of disambiguation. In the first model, no memory 

disambiguation was performed, i.e., all memory operations were assumed to be dependent 

on all other memory operations. The second model used the existing (prior to this thesis) 

IMPACT low-level memory disambiguation. This disambiguation model is typical of the static 

analysis performed on low-level code by current commercial compilers. The analysis is strictly 

intraprocedural and uses only information available within the low-level code for its analysis, 

i.e., no source-level information is used to aid the analysis. It is designed to be fast and 

fully safe, but is limited in its effectiveness. The final model used in this experiment is ideal 

disambiguation, where all memory operations are considered to be independent unless the static 

analysis proves them to be dependent. Note that this disambiguation model makes unsafe 

assumptions and may result in incorrect code if truly dependent operations are reordered. 

However, this model provides an upper bound on the performance which could potentially be 

achieved from scheduling with improved memory disambiguation. 

For this experiment, an 8-issue architecture with 64 integer and 64 floating-point registers 

is assumed. No restrictions are placed on the combination of instructions that may be issued 
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in a cycle. Instructions latencies of the HP PA-7100 are also assumed. Because the executable 

generated from the ideal disambiguation model could execute incorrectly, the experiment was 

performed using cycle count estimates provided by the scheduler rather than the full simulation 

approach described in Section 2.4. To estimate the number of cycles required for execution, 

the code was profiled prior to scheduling to determine the execution frequency of each control 

block. The code was then scheduled, using the various levels of disambiguation, to determine 

the number of cycles each block would take to execute. From this, an accurate estimate of 

required execution cycles can be determined, excluding cache effects and branch-misprediction 

penalties. 

Figure 3.1 presents the results of this experiment. The vertical bars on the graph reflect 

the relative speedup of the current static and ideal disambiguation models over the baseline no-

disambiguation case. Thus, a speedup of 1.0 indicates equivalent performance to the baseline 

case. Several items should be noted from this figure. First, the ideal disambiguation results 

indicate that by eliminating memory dependences a significant amount of potential ILP can be 

exposed. For six of the twelve benchmarks tested, more than 50% speedup could be achieved 

if all ambiguous memory dependences could be eliminated. A second point to note is that 

IMPACT'S current low-level memory disambiguation is in large part ineffective at removing 

ambiguous memory dependences and exposing parallelism. It appears that a significantly more 

powerful disambiguation technique is required to eliminate ambiguous dependences and provide 

performance closer to the ideal disambiguation case. Finally, the experiment demonstrates that 

although improved memory disambiguation can significantly increase performance, it is not a 

panacea which can increase performance on all benchmarks. For example, in the benchmark 

O23.eqntott, over 80% of the execution time is spent in an inner loop which contains no store 
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4 

Figure 3.1 Effect of Memory Disambiguation on Performance. 

operations; thus, improved memory disambiguation has little effect on performance. Note 

that this experiment only measures the potential benefit of improved memory disambiguation 

during scheduling; one would also expect a significant benefit for optimization. This benefit is 

quantified in Chapter 6. 

The remainder of this chapter examines two general memory disambiguation approaches: 

dynamic and static. Tradeoffs between these two approaches are examined, followed by a review 

of related work for each of the two approaches. 

3.1 Tradeoffs Between Dynamic and Static Approaches 

Various solutions have been proposed to provide improved memory disambiguation. In 

general, these solutions can be categorized as either dynamic or static. Static memory dis

ambiguation, also referred to as dependence analysis, attempts to determine the relationship 

between pairs of memory references at compile time. Once the compiler has determined the 

21 



Table 3.1 Tradeoffs of Dynamic and Static Memory Disambiguation. 

Dynamic 

Static 

Less compile-time investment 
More accurate 
Compiler support confined to backend 
Useful when source not available 
Requires no hardware support 
Requires no instruction overhead 
May be nearly as accurate in practice 

dependence relationship for memory references, this information can be used to safely direct 

subsequent code transformations. In contrast, dynamic memory disambiguation attempts to de

termine at run-time whether two references could possibly reference the same memory location. 

The compiler may speculatively perform a code transformation based upon an assumed depen

dence relationship between memory references, and then provide some means of dynamically 

determining at run-time if the assumed relationship was correct. In the event of an incorrect 

assumption, the dynamic approach must provide a mechanism to ensure correct execution. 

Both dynamic and static memory disambiguation approaches are targeted toward increasing 

processor performance. Tradeoffs exist between the approaches; a particular implementation 

may employ static techniques, dynamic techniques, or some combination of both. Table 3.1 

highlights some of the relative advantages of the two approaches. 

Dynamic approaches usually require significantly less compile-time investment than static 

approaches. In general, the compiler algorithms to support most currently proposed dynamic 

approaches do not significantly impact the overall compilation time. In contrast, static memory 

disambiguation requires an in-depth analysis which can dominate the time required for compi

lation. Languages such as C, which require interprocedural analysis to provide high accuracy, 

require an even greater investment in compilation time. For applications requiring extremely 
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for (i = 0; i < M; i++) for(i = 0;i<M;i++) 
for (j = 0; j < N; j++) A[i] = A[M-i]; 

A[j] = A[B[i]]; 

(a) indirect references (b) occasional dependence 

for(i = 0;i<M;i++) while (ptr != 0) 

A[i] = A[i*i + 3]; ptr = ptr->next; 

(c) non-linear references (d) pointer references 

Figure 3.2 Limitations of Static Memory Disambiguation. 

fast compilation, a dynamic memory disambiguation technique may prove to be a better ap

proach. 

Because dynamic approaches do not attempt to determine the dependence relationship be

tween two operations until run-time, they are inherently more accurate than static approaches. 

During program execution, the dynamic approach knows the exact memory address being ac

cessed by each reference and, thus, can determine dependence relationships with complete 

accuracy. Although static memory disambiguation approaches can be highly accurate for many 

applications, current techniques are unable to accurately determine dependence relationships 

in certain circumstances. Figure 3.2 highlights code segments for which static memory disam

biguation is less effective. In Figure 3.2(a), the reference to -A[B[z]] is an indirect reference 

through a second array. Because the static analysis cannot determine the value stored in the 

location B[i], it is unable to accurately determine the dependence relationship of this reference 

of the array A to other references to the same array. 
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Figure 3.2(b) illustrates the problem that occasional dependences cause for static memory 

disambiguation. In this example, a loop-carried dependence exists between the two references 

to the array A. However, the dependence distance (the number of loop iterations from the 

iteration in which one reference accesses a certain memory location until the other reference 

accesses the same address) is not constant between loop iterations. Thus, the static dependence 

analysis cannot accurately determine the dependence relationship. If the value for M cannot be 

determined by the compiler, the static analysis also cannot determine when and if a zero distance 

(non-loop carried) dependence exist between the two references. In Figure 3.2(c), the problem 

of non-linear references is shown. Because most static memory disambiguation approaches 

cannot handle non-linear array indices, the reference to A[i * i + 3] cannot be disambiguated 

from other references to the same array. Finally, Figure 3.2(d) shows an example of the problem 

with performing static analysis for languages which support pointers. In this example, a simple 

loop that walks a linked list data structure is shown. Unless the dependence analysis is able to 

somehow determine that the list in acyclic, the dependence relationship between the references 

to ptr and ptr-ynext cannot be accurately determined. 

Supporters of static memory disambiguation would likely contend that the array examples 

shown in Figure 3.2 do not occur frequently enough in most applications to result in significant 

loss of accuracy for static analysis. Little or no data exist to quantify how often these situations 

occur on real applications. Static analysis of pointers has improved greatly in recent years, 

reducing this accuracy advantage of dynamic approaches. Thus, although dynamic approaches 

are inherently more accurate, static approaches may prove to be nearly as accurate for most 

applications. 
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Another advantage of dynamic memory disambiguation approaches is that their compiler 

support is usually confined to the back end of the compiler. Code transformations to support 

dynamic approaches are normally performed on the low-level form of the code being compiled. 

Thus, a single implementation of a dynamic approach can provide memory disambiguation for 

an application that supports numerous front-end source languages. The transformations are 

independent of the source language. Static approaches, on the other hand, are normally per

formed on high-level source code. If an application that must support multiple source languages 

employs static memory disambiguation, a unique implementation will likely be required for each 

of the supported languages. 

The primary advantage of static memory disambiguation is that it requires no support be

yond the analysis performed by the compiler. In contrast, dynamic approaches can require 

several types of overhead. First, dynamic approaches usually require the insertion of extra 

instructions into the code stream to provide the run-time checking. Even for wide-issue archi

tectures, these additional instructions may result in a performance penalty. Thus, for a static 

approach and a dynamic approach that provide comparable accuracy, the static approach will 

likely have better performance due to the instruction overhead of the dynamic approach. Sec

ond, dynamic approaches often require instruction-set architecture (ISA) support, in the form 

of new instructions. This requirement limits the application of some dynamic approaches for 

existing architecture families. Also, the addition of new instructions to the ISA which require 

additional bits may be very difficult and require extensive redesign. Finally, some dynamic 

approaches require significant hardware support. The hardware cost of the approach must 

be considered along with the potential performance improvements from the improved memory 

disambiguation, i.e., does the performance improvement provided by the dynamic technique 
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outweigh the potential improvement if the same amount of chip area was applied to some 

alternate hardware feature (e.g., a larger cache)? 

It should not be construed that the tradeoffs discussed above, or the performance compar

isons provided later in this thesis, are intended to imply that either static or dynamic memory 

disambiguation is a better approach for all applications. The strengths and weaknesses of the 

approaches may make either, or possibly a combination of both, the best solution for a par

ticular application. In fact, certain applications force the use of one approach or the other. 

For example, a static memory disambiguation approach that relies on use of source-level infor

mation is not possible for an application such as binary translation, in which no source-level 

information is available. For applications that must be compatible across an architecture family, 

such as the X86 family, a dynamic approach requiring changes to the ISA would not be useful. 

3.2 Dynamic Memory Disambiguation Approaches 

Dynamic memory disambiguation attempts to determine at run-time whether two references 

could possibly reference the same memory location. Most dynamic approaches deal specifically 

with memory flow dependences, attempting to remove these dependences and allow loads to 

execute before ambiguous stores. When a load operation, and possibly the load's dependent 

operations (flow dependences associated with the destination register of the load), bypass an 

ambiguous store operation, the operations that pass the store are being executed speculatively 

before it is determined that the value the load accesses is valid. This is termed data speculation. 

In contrast to control speculation, in which operations are executed before it is determined that 

they should have been executed according to original program control flow, data speculation 

executes instructions before it is determined that the data being used are valid. 
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R1 = R2*R3 R1=R2*R3 
M(R9+R10) = RU R4 = M(R5+R8) 

M(R3+R7) = R1 M(R9+R10) = R11 
R4 = M(R5+R8) If (R5+R8= R9 +RIO) 

If(R5+R8 = R3 + R7) 

R4 = R1 
R6 = R4+1 

a) Original Code b) Runtime Code 

Figure 3.3 Run-time Memory Disambiguation Example. 

In this section, several models of data speculation are discussed, requiring varying degrees 

of architectural support. These models also vary in what instructions can be speculated, i.e., 

whether only load instructions, or both the load and its dependent operations, are allowed to 

bypass stores. First, a compiler-only model known as run-time disambiguation is presented. 

As presented, this model allows only load instructions to be speculated, but it could easily be 

extended to also allow dependent operations to be speculated. Next, five models that use a 

combination of architectural and compiler support are examined. Two of these allow only loads 

to be speculated, and the remainder allow dependent operations to be speculated also. Finally, 

the hardware-only model of dynamic memory disambiguation is reviewed. 

3.2.1 Run- t ime disambiguat ion 

Nicolau has proposed a software-only data speculation technique known as run-time disam

biguation [36]. Run-time disambiguation inserts explicit address comparisons and conditional 

branch instructions into the code which allow memory flow dependences to safely be removed, 

enabling load instructions to percolate upward past ambiguous stores during code scheduling. 

Figure 3.3 illustrates the application of run-time disambiguation. The original code segment in 
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Figure 3.3(a) has two store operations followed by an ambiguous load. Figure 3.3(b) reflects 

the application of run-time disambiguation to the code: the load has been moved above both 

stores, and explicit address comparison code has been added. When the address comparison 

code determines that the addresses of the load and the store were identical, the value being 

stored is simply moved into the destination register of the load. In the example shown, if the 

address of the load operation (Rb + R8) is the same as the store address (J?9 + #10), then the 

subsequent move operation places the value from Rll in the load's destination (i?4). Similar 

code is also added following the second store operation. 

The major advantage of run-time disambiguation is that it requires no ISA or hardware sup

port, and thus could be applied to existing architectures or families of architectures. However, 

it has several major limitations, particularly when applied to ILP processing. First, the tech

nique can result in an extremely large amount of code growth when used with ILP compilation 

techniques. The number of address comparison and conditional branch instructions inserted 

can be prohibitive as a result of aggressive code reordering: if m loads bypass n stores, mxn 

comparisons and branches are required. Second, the technique adds branch instructions to the 

code. Although superscalar and VLIW processors can issue and execute many operations each 

cycle, they are typically very limited in the number of branch operations they can execute (usu

ally only one branch per cycle). These added branches are usually highly predictable, but they 

may impact performance in branch intensive code. A third limitation of run-time disambigua

tion is that it does not readily address the access width problem. Simple address comparison 

is insufficient to detect ambiguity in the presence of memory instructions of different size (e.g., 

an integer store followed by a character load). To ensure correct execution, a number of the 

least-significant-bits of the addresses must be ignored during address comparison, requiring 
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further instruction overhead. Finally, the technique as proposed allows only load operations, 

and not their dependent operations, to bypass stores. This significantly limits the scheduling 

freedom necessary for exploiting ILP. Run-time disambiguation could be extended to allow the 

load's dependent operations to bypass the store, using the compilation techniques described in 

Chapter 4. 

3.2.2 Pre load register upda te 

A major limitation of run-time disambiguation discussed above is the requirement that 

explicit address comparisons be added to the code. The preload register update technique 

proposed by Chen et al. [37] attempts to relieve this problem by using hardware to perform 

the address comparisons and move operations. A preload instruction informs the hardware 

that a load is being speculated above ambiguous stores, and therefore requires its address be 

saved and checked against subsequent store addresses. If a match occurs between a store and 

load address, the hardware "updates" the destination register of the load with the store value. 

Address comparisons for the preload continue until a commit instruction is executed. A commit 

instruction is needed so that the coherence mechanism (the checking of store and load addresses 

and execution of potential updates) can be turned off for this particular load. This ensures that 

only stores that were originally located before a speculated load are allowed to update the load's 

destination register. The compiler must ensure that a commit instruction is not moved above 

or below a store instruction during code transformations. 

Figure 3.4 demonstrates the preload register technique using the previous code example. 

Note in Figure 3.4(b) that the load has again bypassed the stores, and has been marked as a 

preload. Following the last store, a commit instruction has been added. Note also that, like 
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M(R9+R 10) = R11 R4 = M(R5+R8) (preload) 

M(R3+R7) = R1 M(R9+R10) = R11 

R4 = M(R5+R8) M(R3+R7) = R1 

R6 = R4+1 commit (R4) 

R6 = R4 + 1 

a) Original Code b) Preload Register Update Code 

Figure 3.4 Preload Register Update Example. 

run-time disambiguation, the dependent operation (i?6 = RA + 1) is not allowed to bypass the 

stores. 

Preload register update successfully eliminates the code growth problem of run-time disam

biguation, and it does not require the addition of branches. Hardware mechanisms could also 

be provided to overcome the access width problem. The major limitations of the technique are 

that it requires both ISA and hardware support and that it does not allow the load's dependent 

operations to bypass stores. 

3.2.3 H P smar t load 

Hewlett Packard has developed a scheme, similar to preload register update, which also 

allows load instructions to be moved above ambiguous stores [38]. Every speculated load defines 

a watch window which indicates how many instructions above its original position the load has 

been speculated. The register file is modified to store the address of the preload in addition 

to the data, and includes counters used to determine when the preload's watch window is no 

longer active. Additionally, a 2-bit flag records whether the register contains an active (being 

watched) load value and whether a subsequent store has matched the speculated load's address. 
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If an incoming instruction is a load and it has been speculated, its destination register has 

to be initialized. This initialization includes setting the counter to the number of instructions 

above its original position that a load has been speculated and setting the flag to indicate 

the register contains an active load. When a store instruction is issued, its address must be 

checked against all the active load addresses found in the register file. If a match is found, the 

corresponding bit in the register file is set to record the match. When the original position of 

a speculated load instruction is reached, a new load is generated if the flag state indicates that 

a store address match has occurred. 

The compiler support required for this technique is also very similar to preload register 

update. Rather than marking the load as a preload as shown in Figure 3.4(b), the smart 

load technique would mark it as being speculated two instructions. Thus, after the two store 

operations it bypassed have been executed, the counter associated with RA would have the 

value zero and the load would be committed. No explicit commit instruction is required. 

One variation on this scheme utilizes forwarding. If a store address conflicts with a spec

ulative load address, the data contained in the store are used instead of the data obtained by 

the load. This method is very similar to preload register updating, and makes generation of 

the extra load instruction unnecessary. 

3.2.4 Speculative disambiguation 

Huang et al. have proposed speculative disambiguation [39], a combined hardware and 

compiler technique to allow aggressive code reordering using predicated instructions. It is 

similar to run-time disambiguation, but employs compiler techniques that allow both a load 

and its dependent instructions to bypass an ambiguous store. The method also allows two 
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R4 = M(R5+R8) p = (R5+R8=R9+R 10) q = (R5+R8=R3+R7) 

R6 = R4+1 

R1 = R2*R3 R6 = Rll + l(pq') 

M(R9+R10) = R11 R6 = Rl + l(q) 

M(R3+R7) = R1 

a) Original Code b ) speculative Disambiguation Code 

Figure 3.5 Speculative Disambiguation Example. 

ambiguous stores to be reordered. This is accomplished by generating code for both the case 

when the two instructions are independent and for when they are dependent. The two versions 

of the code are conditioned by opposite predicates, so that only one version of the code is 

actually executed. 

Figure 3.5 illustrates this technique using the running code example. In Figure 3.5(b), the 

predicated code is shown in several columns, corresponding to different predicate cases. The 

first column shows the case in which the load is independent of the stores, and it can be freely 

scheduled past the stores. The second column handles the case in which the first store conflicts 

with the load, but not the second. This is indicated by predicate p being true and predicate q 

being false. In this case, the add instruction which originally used RA now uses the store value, 

Rll, as its input. Note that the load is not re-executed in the case of a conflict, but all uses 

of the load's destination register are re-executed using the alternate value. The third column 

shows the case when the load conflicts with the second store, indicated by predicate q being 

true. Here, the add instruction is re-executed using the value stored in Rl. 

Note the code growth from a single load with only one dependent operation bypassing 

two stores. In the presence of aggressive code reordering, code growth would be prohibitive. 

R1=R2*R3 

M(R9+R10) = R11 

M(R3+R7) = R1 

R4 = M(R5+R8) 

R6 = R4+1 
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Additionally, the issue bandwidth of the ILP processor would quickly be saturated. Thus, 

the technique cannot be generally applied to support ILP compilation, and is more suitable 

for narrow-issue processors requiring only minimal code reordering. The primary advantages 

of the technique are that it requires no additional hardware overhead (for processors already 

supporting predication) and that it does allow the load's dependent operations to bypass stores 

to a limited extent. 

3.2.5 Unsafe loads 

Silberman and Ebcioglu presented a dynamic memory disambiguation scheme as part of 

their framework for supporting heterogeneous instruction set architectures [40]. This framework 

was developed to allow applications written for one instruction set to be migrated to a higher 

performance architecture without a significant investment by the user or developer. 

They use both a base machine engine which executes the original instruction set architecture 

and a native machine engine with a higher performance architecture (e.g., a RISC engine) to 

implement their scheme. Two versions of the code are generated, one for each engine. For 

best performance, the goal is to execute the native version of the code as much as possible, 

periodically updating the base machine state at predetermined checkpoints. The approach 

employs the concept of both architected registers (registers present in original instruction set) 

and nonarchitected registers (extra registers present in the native engine). 

In the native version of the code, they allow loads whose destination is a nonarchitected 

register to be speculated above ambiguous stores. The nonarchitected registers have additional 

fields which store the memory address of the load, its length, and an extension tag which 

indicates whether an address conflict has occurred. 
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At each checkpoint, the nonarchitected registers are copied into the architected registers to 

update state. If the extension flag of the nonarchitected register is set, an address conflict has 

occurred since the previous checkpoint and the native machine state may not be valid. In this 

case, the processor re-executes the section of code containing the speculated load in the base 

machine engine and re-enters the native engine at the next opportunity. 

Although applied within the context of the heterogeneous instruction set architectures, this 

approach to dynamic disambiguation has general application. The hardware requirements are 

very similar to the hardware requirements for the memory conflict buffer approach presented 

in Chapter 4. Although requiring extensive hardware support, the technique allows both loads 

and their dependent instructions to bypass stores. 

3.2.6 Hardware-only disambiguation 

Hardware-only dynamic memory disambiguation techniques have been widely used for archi

tectures which employ dynamic instruction scheduling. Early dynamic architectures such as the 

IBM 360/91 [41] and the CDC 6600 [42] employed simple store queues which allowed subsequent 

loads to execute out-of-order. The HPS architecture [43] proposed node tables which buffered 

memory operations awaiting operands, allowing subsequent memory operations to execute. A 

store queue was also employed to allow loads to bypass stores. Franklin and Sohi proposed the 

address resolution buffer [44], which also allows dynamic reordering of memory operations. It 

provides special support allowing subsequent memory operations to execute even if the address 

of an earlier store operation has not been resolved. For wide-issue ILP architectures, each 

of these dynamic scheduling techniques is limited by the size of the visible instruction win-
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dow, restricting the aggressive code reordering necessary to obtain high utilization of multiple 

functional units. 

3.3 Static Memory Disambiguation Approaches 

Static memory disambiguation, or dependence analysis, attempts to determine the relation

ship between two references at compile-time. Most frequently, dependence analysis has been 

applied at the source code level, and is used to facilitate source-to-source code transformations. 

In-depth static analysis has seldom been applied to assist compilation of low-level code; in 

most commercial compilers, memory disambiguation for low-level code is performed using only 

information available within the low-level code (i.e., no source-level information). A few of the 

newest optimizing compilers attempt to pass some limited source information to the interme

diate code, but this information is usually limited to array references. Because so little work 

has previously been done on performing dependence analysis to facilitate low-level code opti

mization and scheduling, the discussion in this section focuses on techniques which are being 

developed primarily to support source-level transformations. This related work is presented in 

the context of the several complications to dependence analysis which must be addressed to 

provide accuracy. 

The first complication to dependence analysis is disambiguating array references, partic

ularly in the context of loops. To test for dependence between array references, compilers 

have traditionally relied on several well-known algorithms based on a set of Diophantine equa

tions [45], [46]. More recently, techniques have been developed which are able to handle multi

dimensional arrays and more complex array subscripts [47], [48], [49], [50]. Although array 

dependence analysis has reached a fair level of maturity, current techniques may achieve inex-
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act results due to complicated reference patterns or occasional dependence, as was illustrated 

in Figure 3.2. 

A second complication to dependence analysis is the presence of aliasing, the situation 

when two or more distinct variables simultaneously refer to the same memory location. In 

languages without pointers, such as Fortran, aliasing occurs most frequently due to the binding 

of formal parameters upon subroutine entry. Alias analysis for such languages is well under

stood [51], [52]. However, languages which allow pointers (e.g., C) severely complicate depen

dence analysis. Numerous interprocedural analysis techniques have been proposed to resolve 

pointer aliasing [53], [54], [55]. These techniques can provide good pointer disambiguation, 

but may be limited in application due to their compilation time and memory requirements. 

Dependence analysis for C will be discussed further in Chapter 6. 

A third complication of dependence analysis is the presence of recursive data structures. 

As discussed earlier, it may be difficult to disambiguate between different elements of a linked 

list unless the analysis can prove the list is not circular. Much of the research in this area has 

been focused on automatically identifying the nature of abstract data structures (i.e., is the 

structure cyclic, a directed acyclic graph, or a tree) [56], [57]. Hendren has proposed augmenting 

the source language to allow the user to describe data structures, providing the compiler with 

additional information for disambiguating these structures [58]. Hummel et al. have proposed 

an axiom-based dependence test for references to recursive data structures, using the principles 

of theorem proving [59]. 

Much progress has been made toward overcoming these complications. However, little work 

has been done to apply this type of source-level analysis to aid low-level optimization and 
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scheduling. In Chapter 5, a technique to propagate the results of a source-level analysis down 

to the low-level code is proposed. 
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CHAPTER 4 

DYNAMIC MEMORY DISAMBIGUATION USING THE 
MEMORY CONFLICT BUFFER 

Dynamic memory disambiguation may be a good choice for resolving dependences for many 

applications, including those requiring rapid compilation and those for which static analysis is 

otherwise not practical. However, the solutions examined in Section 3.2 have limited application 

to ILP compilation. These solutions either suffer from prohibitive code growth when applied 

during ILP compilation, or fail to expose sufficient ILP because they do not allow a load's 

dependent operations to bypass stores. Testing performed as part of this thesis indicates that 

scheduling without allowing the load's dependent operations to percolate past stores provides 

only about 20% of the potential performance benefit as compared to allowing both the load 

and its dependent operations to bypass stores. 

The memory conflict buffer (MCB) scheme, first proposed in Chen's thesis [1], provides 

a good solution to both of these problems. Code growth is bounded, and full scheduling 

freedom is allowed. The MCB approach extends the idea of run-time memory disambiguation 

by introducing a set of hardware features to eliminate the need for explicit address comparison 

instructions. The MCB approach involves the introduction of two new instructions: 1) preload, 

which performs a normal load operation, but signals the hardware that a possible dependence 

violation exists for this load; and 2) check, which directs the hardware to determine if a violation 

has occurred and to branch to conflict correction code if required. Figure 4.1 demonstrates 

the MCB approach using the code example from Chapter 3. In the original code prior to 
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Rl = R2 * R3 
R4=M(R5+R8) (preload) 

R6=R4+1 

M(R9+R10) = R11 

M(R3+R7)=R1 

Check R4, Correction 

Back: 

Correction: R4 = M(R5+R8) 

R6 = R4+1 

Jmp Back 

a) Original Code b) MCB Code 

Figure 4.1 Memory Conflict Buffer Example. 

scheduling (Figure 4.1(a)), the load operation (RA = M(R5 + R8)) and its register dependent 

operation (R6 = RA + 1) follow two ambiguous stores. In Figure 4.1(b), both the load and 

its dependent operation have bypassed these stores. Note the load has been changed to a 

preload, and a check instruction has been inserted at the original location of the load. If 

the hardware determines an address conflict has occurred, the check instruction will branch 

to correction code, which re-executes the load and any dependent instructions. In contrast 

to run-time memory disambiguation, only one check operation is required regardless of the 

number of store instructions bypassed by the preload. As a result, the MCB scheme allows 

the compiler to perform aggressive code reordering with significantly less code expansion and 

execution overhead than other dynamic memory disambiguation techniques. The drawback of 

the approach is that it requires a significant ISA and hardware investment. 

Rl = R2 * R3 

M(R9+R10) = R11 

M(R3+R7) = R1 

R4 = M(R5+R8) 

R6 = R4+1 
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4.1 Architectural Support 

With the introduction of the preload and check opcodes, the compiler is free to move 

load instructions and their dependent operations past ambiguous stores. The MCB hardware 

supports such code reordering by 1) detecting the situation in which the ambiguous reference 

pair each access the same location and 2) invoking a correction code sequence supplied by the 

compiler to restore the correctness of program execution. The situation in which a preload 

and an ambiguous store access the same location will be referred to as a conflict between the 

two instructions. When this occurs, the reordered load and any dependent instructions which 

bypassed the store must be re-executed. 

In order to detect conflicts as they occur, the MCB hardware records address information 

for each preload instruction when it is issued. The addresses of subsequent store instructions 

are then compared to this address information to determine whether a conflict has occurred. 

The hardware records the occurrence of the conflict; when the corresponding check instruction 

is encountered, the hardware performs a conditional branch to correction code if a conflict 

has been recorded. The correction code re-executes necessary instructions and then returns to 

normal program execution. In this section, the MCB hardware to detect and record load-store 

conflicts is presented and other issues affecting the hardware are discussed. 

4.1.1 M C B design 

The MCB hardware is responsible for storing preload address information for comparison 

to subsequent store addresses. In his thesis, Chen [1] discusses three possible hardware designs 

for the MCB: 1) fully associative, 2) set associative, and 3) hashing. Perhaps the most direct 

approach of the three is to store all address bits in some form of fully associative structure. 

40 



However, a fully associative search of any reasonably-sized MCB implementation would likely 

impose constraints upon processor pipeline timing. Additionally, the hardware costs to record 

32 or more bits of address information for each preload would be expensive. Chen's fully 

associative design required one MCB entry corresponding to each architectural register. Thus, 

the design does scale well as the number of architectural registers increases. As an alternative, 

Chen proposed a set associative MCB design, similar in concept to a set associative cache. The 

preload address is used to select a set in the MCB array, and both the preload address and 

the destination register number are then stored in an available entry. Although this approach 

eliminates the requirement for a fully associative search of the MCB, it still suffers from large 

storage requirements. Also, neither the fully associative nor the set associative design addresses 

the access width problem, which occurs when accesses of different sizes conflict even though 

their addresses are not identical. Thus, Chen proposed the hashing MCB design, which uses 

a direct-mapped approach. Unlike the other two approaches, the load address is not explicitly 

stored within the MCB array. Only the destination register number is stored. The size of the 

MCB is significantly smaller, but false conflicts arise when two different addresses map to the 

same MCB location. To minimize these false conflicts, a hashing scheme is used to map the 

incoming preload or store address to a particular MCB array location. The hashing scheme 

was primarily developed to address the access width problem; this will be explored further in 

Section 4.1.3. Only the fully associative and hashing schemes were evaluated in Chen's thesis. 

This thesis proposes an MCB hardware design which combines the best features of Chen's 

set associative and hashing schemes. This design, shown in Figure 4.2, was developed with 

scalability, access time, and physical size constraints in mind. The MCB hardware consists of 
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Preload/ 
Store 
Address 

Figure 4.2 Set Associative MCB Design. 

two primary structures, corresponding to the needs to store address information and to record 

conflicts which occur: 1) the preload array; and 2) the conflict vector. 

The preload array is a set associative structure similar in design to a cache. Each entry in 

the preload array contains four fields: 1) the preload destination register number; 2) the preload 

access width; 3) an address signature or tag; and 4) a valid bit indicating whether the entry 

currently contains valid data. The preload register field simply contains the register number 

of the preload destination. The address signature contains bits which contain a hashed version 

of the preload address. Rather than storing the entire address as in Chen's set associative 

scheme, only a few bits are stored to reduce false conflicts. The access width field contains two 

bits to indicate whether the preload was of type character, half-word, word, or double word; 

additionally, this field contains the three least significant bits of the preload address. The use 

of the access width field will be discussed in Section 4.1.3. 

The conflict vector is equal in length to the number of physical registers, with one entry 

corresponding to each register. Each entry contains two fields: the conflict bit and the preload 
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pointer. The conflict bit is used to record that a conflict has occurred for a preload to this 

register. The preload pointer specifies which preload array line currently holds the preload 

associated with this register and allows the preload entries to be invalidated by the check 

instruction. 

When a preload instruction is executed, the address of the preload is hashed to select which 

set in the preload array will store the preload. (The hardware to perform this hashing, as 

well as address signature generation, is detailed in the next section.) The preload array is set 

associative; selecting an entry in which to store the preload information is identical to selecting 

an entry in a set associative cache. If there is an entry within the set which does not have its 

valid bit set, the preload information can be placed in this entry. When no invalid entry exists, 

a random replacement algorithm is used to select which entry to replace. If a valid entry is 

replaced, a load-load conflict has occurred; in this situation safe disambiguation can no longer be 

provided for the preload which is being removed from the array. It must therefore be assumed 

a conflict has occurred for this entry and the conflict bit corresponding to the register number 

being removed must be set. Note that for processors which support the execution of multiple 

preload instructions per cycle, the preload array must be multiported to allow simultaneous 

insertion of multiple preloads. 

Having determined which entry in the preload array will be used for the current preload 

instruction, the destination register number and access width information are stored in the 

array. A second, independent hash of the preload address is performed to create the preload's 

address signature, which is stored in the signature field of the array. Unlike the tag field of a 

cache which must provide exact matching, this signature field can be hashed to reduce its size; 

the MCB can tolerate the occasional false conflicts which result from hashing. Simultaneously 
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with storing the preload in the preload array, the conflict vector associated with the load's 

destination register is updated, resetting the conflict bit and establishing the pointer back to 

the preload array. 

When a store instruction is executed, its address is hashed identically to the preload to 

determine the corresponding set in the preload array and to determine the store's address 

signature. The store's access width data (2 size bits and 3 LSBs) are also presented to the 

array. To determine whether a conflict has occurred, the store's signature and access width 

information are compared with the data stored within each entry of the selected set. For each 

entry in the set which is determined to conflict with the store, the conflict bit corresponding 

to the preload register is set; this requires that the conflict array be multiported to a degree 

equivalent to the associativity of the preload array. Two types of conflicts can arise when a store 

instruction is executed. If the load address and store address were identical or overlap, a true 

conflict has occurred. However, if the two addresses were different, and the conflict resulted 

from the hashing scheme used, this is termed a false load-store conflict. 

Thus, bits within the conflict vector can be set in one of three ways: 1) a true conflict; 

2) a false load-store conflict resulting from the hashing scheme; or 3) a false load-load conflict 

resulting from exceeding the set associativity of the preload array. Regardless of the source 

of the conflict, the hardware must assume it is valid and execute correction code to ensure 

program correctness. This is accomplished using the check instruction. The format for the 

check instruction is check Reg, Label, where Reg is a general purpose register, and Label specifies 

the starting address of the correction code supplied by the compiler. When a check instruction 

is executed, the conflict bit corresponding to Reg is examined. If the conflict bit is set, the 

processor performs a branch to the correction code marked by Label. The correction code 
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provides for re-execution of the preload and its dependent instructions. A branch instruction 

at the end of the correction code brings the execution back to the instruction immediately after 

the check, and normal execution resumes from this point. 

The conflict bits are reset in two ways. First, a check instruction resets the conflict bit for 

register Reg as a side effect. Second, any preload that deposits a value into a general purpose 

register also resets the corresponding conflict bit. The valid bits within the preload array 

are reset upon execution of the corresponding check instruction, using the pointer within the 

conflict vector. Note that in the event the flow of control causes the check instruction not to be 

executed, the preload valid bits will remain set. However, this causes no performance impact 

because another preload of the destination register must occur before another check instruction 

can occur, resetting any spurious conflict. 

Note that only preloads, stores, and checks have to access the address registers and the 

conflict vector. Accesses to the preload array are performed using the virtual address to avoid 

address translation delay. For store instructions, these accesses can be performed as soon 

as the store address is calculated; it is not necessary to wait until the store data have been 

computed. For load instructions, MCB accesses are performed in parallel with the data cache 

access. Because the MCB is very similar to a cache in design and smaller than most caches, it 

is unlikely that the MCB will affect the processor pipeline timing. However, further study of 

MCB timing is required within the context of a specific pipeline architecture. 

4.1.2 M C B address hashing 

Incoming preload and store addresses are used to select a corresponding set in the preload 

array. The most direct method to select one of n MCB lines is to simply decode log2n bits of 
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the address. However, testing revealed that this approach resulted in a higher rate of load-load 

conflicts than a baseline software hashing approach, most likely due to strided array access 

patterns causing additional conflicts. As a result, the MCB employs the permutation-based 

hardware hashing scheme proposed by Chen [1]. 

Mathematically, the hardware hashing approach can be represented as a binary matrix mul

tiplication problem, where matrix A is a non-singular matrix and hash-address = load-address* 

A. For example, consider the following 4x4 A matrix, used to hash 4-bit addresses: 

1001 
0010 
1110 
0101 

To mathematically compute the hash address for incoming address 1011, the address is simply 

multiplied by the matrix, obtaining hash address 0010. If matrix A is non-singular, an effective 

hash of the incoming address is assured [60]. When mapping this scheme to hardware, each 

bit in the hash address is simply computed by XORing several of the incoming address bits, 

corresponding to the l's in each column of the matrix. Thus /i3, the most significant bit of the 

hash address, is the XOR of aZ and ol of the incoming address; h2 is the XOR of al and aO, 

etc. This simple hardware scheme provides excellent hashing with only a small cost in time and 

hardware. 

This same hashing approach is used to generate the address signature for incoming preload 

and store instructions. The signature is hashed in order to reduce the size of the MCB and 

to speed signature comparison. The signature is stored in the MCB for each preload, and is 

compared to the signature for incoming store instructions to determine if a conflict has occurred. 
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4.1.3 Handling variable access sizes 

Many instruction set architectures allow memory references to have byte addressability and 

variable access sizes. Thus, there arises the possibility that two memory references could access 

slightly different addresses, yet actually conflict. For example, the references: 

load_char Rl, 0x40000001 

store_int 0x40000000, Rl 

represent a true load-store conflict. Although conflicts such as this are rare, they can occur 

in real code. An example where this might occur is the union construct in C. To provide 

correctness, any code reordering scheme based upon memory disambiguation must account for 

the possibility of conflicts by memory operations with different access widths. One solution to 

this problem is to legislate it away; hardware designers can simply declare that accessing the 

same location with different width instructions is a poor programming practice and decide their 

hardware will not support it. A more general solution would require that any disambiguation 

technique provide adequate checks to ensure program correctness in the presence of variable 

width accesses. 

The hashing MCB design proposed by Chen addressed the access width problem by removing 

the two least significant bits (LSBs) from the address hash and allowing four register numbers to 

be stored in each location in MCB array. The four register locations in each entry correspond 

to the different values of the two LSBs. Figure 4.3 shows how this concept is used to solve 

the access width problem. In Figure 4.3(a), an incoming byte load deposits its destination 

register, Rl, in the appropriate slot in the MCB based upon its size and the LSB values of 

its address. When the subsequent word-size store, shown in Figure 4.3(b), occurs, the store 

47 



11 10 01 00 

Rl ld.char Rl, 0x40000001 
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Figure 4.3 Hashing MCB Array Entry. 

essentially conflicts with any register in any of the four locations, and the conflict bit associated 

with Rl must be set. 

For the set associative design proposed in this thesis, the MCB does not use the three LSBs 

of preload and store instructions when hashing to select the preload array line corresponding 

to the memory reference. Instead, these three bits, as well as two bits indicating the access 

size, are stored within the array for preload instructions. When a store occurs, its five bits are 

evaluated with the five bits stored for the preload to determine whether a conflict has truly 

occurred. A simple design for determining conflicts for these two five-bit vectors requires only 

seven gates and two levels of logic, assuming the architecture enforces aligned memory accesses. 

Thus, the proposed design provides accurate disambiguation for variable access sizes with a 

straightforward and less costly approach than Chen's hashing MCB design. 

4.1.4 Handl ing context switches 

Whenever a general purpose register must be saved to memory due to context switches, 

neither the MCB conflict vector nor the preload array must be saved. The only requirement is 
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for the hardware to set all the conflict bits when the register contents are restored from memory. 

This simple scheme causes performance penalty only when the context switch occurs after a 

preload instruction has been executed but prior to the corresponding check instruction. Setting 

all conflict bits ensures all conflicts that were interrupted by the context switch are honored, but 

may cause some unnecessary invocations of correction code. The scheme also handles virtual 

address aliasing across multiple contexts. 

4.1.5 Speculative execution 

Executing an instruction before knowing that its execution will be effective is termed spec

ulative execution. If an instruction is moved above preceding conditional branches prior to 

resolving their direction, control speculation has been performed. The MCB approach applies 

data speculation, in which instructions are executed before knowing whether the data are valid. 

In particular, a preload and its dependent instructions are executed before knowing if the value 

loaded by the preload is valid. The execution of these speculative instructions must be corrected 

if a conflict occurs. 

There are two aspects of correcting the execution of speculative instructions. First, the 

values generated by these instructions must be corrected. The compiler algorithm described in 

Section 4.2 is responsible for ensuring these values are corrected. Second, the program state 

must be correctly maintained in the event an exception occurs. Because the value preloaded 

into the register may not be correct, there is a chance that a flow dependent instruction that 

uses the preload result may cause an exception which otherwise would not have occurred. In 

the example in Figure 4.4, taken from [1], if Rl equals R2, the value 7 is loaded into R3 in 

the original code segment. However, the value 0 may be preloaded into i?3, in which case the 
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M(R1) = 7 R3 = M(R2) 

R3 = M(R2) R4 = R4/R3 

R4 = R4/R3 M(R1) = 7 
Check R3, Correction 

a) Original Code b) MCB Code 

Figure 4.4 Speculative Execution of Excepting Instructions. 

divide instruction will cause an exception. Since the exception is due to an incorrect execution 

sequence, it must be ignored. 

One solution is to provide architectural support to suppress the exceptions for speculative 

instructions [61]. A potential trap-causing instruction executed speculatively should be con

verted into the non-trapping version of the instruction. Therefore, the exception caused by the 

divide instruction in the example above would be ignored. However, the exception should be 

reported if there is no conflict between the preload and the store. Several schemes for precise 

exception detection and recovery have been proposed [34], [35], [62]. 

4.1.6 Discussion of hardware requirements 

Chen estimated the hardware requirements for a 2-way set associative MCB with 32 sets 

in CMOS technology to be 60,100 transistors [1]. He also estimated the critical path through 

the MCB to be 13 gate delays, for both preload and store instructions. The set associative 

design employed for this thesis would have similar hardware requirements. However, because 

this design stores only an address signature rather than the entire address, the main MCB 

array size would be significantly smaller (17 bits per MCB entry versus 35 bits with Chen's 

design). Scaling Chen's estimates to account for the smaller MCB array, the proposed design 

would require less than 40,000 transistors. 
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Because of the similarity of the MCB design to a cache, the MCB size can be estimated 

in terms of number of cache bytes it is equivalent to. This comparison may be particularly 

meaningful because the inclusion of MCB hardware into a design could potentially require a 

corresponding reduction in the size of the on-chip cache. Using this comparison, the main 

MCB array of a 64-entry MCB (8 sets of 8 entries each) requiring 17 bits per entry would have 

approximately the same storage requirement as 128 bytes of cache. Although this comparison 

does not take into account the overhead support logic for the MCB design, Chen's estimates 

indicate that most of the MCB hardware cost is in the main array. 

4.2 Compiler Support 

To take full advantage of the MCB hardware support, the compiler must remove ambiguous 

memory dependences, allowing store/load pairs to be reordered, and insert code to ensure cor

rect execution in the event truly dependent instructions are reordered. The compiler must also 

take into account the side effects of aggressive code reordering. For example, over-speculating 

preload instructions can significantly increase register pressure and could result in a loss of 

performance due to spilling. In this section, the algorithms implemented in the IMPACT C 

compiler for exploiting the MCB hardware support are discussed. 

4.2.1 Basic M C B scheduling a lgor i thm 

To expose sufficient instruction-level parallelism to allow effective code scheduling, the com

piler must be able to look beyond basic block boundaries. In the IMPACT compiler, basic blocks 

are coalesced to form superblocks, which reflect the most frequently executed paths through the 
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code (see Section 2.3). The superblock is the basic structure for scheduling in the IMPACT 

compiler. 

The basic MCB scheduling algorithm involves the following steps for each frequently exe

cuted superblock: 

(1) Build the dependence graph. 

(2) Add a check instruction immediately following each load instruction, inserting necessary 
dependences. 

(3) For each load, remove dependences to preceding stores. 

(4) Schedule the superblock, removing any unnecessary check instructions. 

(5) Insert required correction code. 

The initial preparations for code scheduling, including building the dependence graph, are un

changed by the MCB algorithm. After the dependence graph has been built, a check instruction 

is added after each load instruction in the superblock. The destination register of the load be

comes the source operand of the check, making the check instruction flow dependent upon the 

load. Initially, the correction block of the check is not defined. During code scheduling, the 

check instruction must maintain correct dependences; thus, it must be dependent upon the 

load and also inherit some of the load's dependences. Because we want flow dependent instruc

tions of the load to be able to bypass the check, the check inherits only memory and control 

dependences from the load. Dependences to the previous and subsequent branch instructions 

are also added to the check instruction to ensure it remains within the load's original basic 

block. Figures 4.5(a) and 4.5(b) show unscheduled code from the earlier example (with two 

instructions added to highlight dependences) and the code after the check instruction and its 

dependences are inserted. 
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Rl = R2 * R3 

R1=R2*R3 

M(R9+R10) = RU 

M(R3+R7) = Rl 

R4 = M(R5+R8) 

R6 = R4+1 

M(R9) = 0 

R20 = R10+1 

a) Original Code 

^ - M ( R 9 + R 1 0 ) = R11 

/ ^-M(R3+R7) = R1 

W^.R4=M(R5+R8) 

:R4+1 

Check R4, -

f R6 = l 

M(R9) = 0 

R20 = R10+1 

b) Dependences to Check 

Rl = R2 * R3 

R4 = M(R5+R8) (preload) 

R6 = R4+1 

M(R9+R10) = Rl 1 

M(R3+R7) = Rl 

Check R4, Correction 

M(R9) = 0 

R20 = RIO + 1 
Back: 

Rl = R2 * R3 

R4 = M(R5+R8) (preload) 

R6 = R4+1 

M(R9+R10) = R11 

M(R3+R7) = R1 

Check R4, Correction 

M(R9) = 0 

R20 = R10+1 

Correction: R4 = M(R5+R8) 

R6 = R4+1 

JmpTail_Dup 

Correction: R4 = M(R5+R8) 

R6 = R4+1 

Jmp Back 

Tail_Dup: M(R9) = 0 

R20 = RIO + 1 

c) Tail Duplication Code d) Tail Duplication Deleted 

Figure 4.5 MCB Code Compilation. 
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The next step in MCB scheduling is to remove ambiguous store/load dependences. For each 

load, the algorithm searches upward, removing any dependence arcs to store instructions not 

determined to have a definite dependence. Associated with each load, the algorithm maintains 

a list of store instructions whose dependence has been removed. The algorithm currently only 

removes dependences to stores which precede the load, i.e., only removes flow dependences. 

Although nothing prevents dependences to subsequent stores (anti-dependences) from being 

removed, experience has shown there is little or no benefit from removing these dependences. 

To limit over-speculation of loads, the algorithm limits the number of store/load dependences 

which can be removed for each load. If too many dependence arcs are removed, a greedy 

scheduling algorithm is likely to move the load far ahead of its initial position, needlessly 

increasing register pressure and the probability of false conflicts in the MCB. Additionally, the 

algorithm ensures dependences are formed between the load instruction and any subroutine call 

in the superblock, preventing loads from bypassing subroutine calls. Thus, no MCB information 

is valid across subroutine calls. 

Next, the superblock is scheduled. Each time a load instruction is scheduled, the list of stores 

associated with the load is examined. If all stores on the list have already been scheduled, the 

load did not bypass any stores during scheduling, and the associated check instruction can be 

deleted. The flow dependence between the load and the check ensures the check cannot be 

scheduled prior to the load; thus deletion of the check (and removal of its dependences) does 

not impact instructions already scheduled. If it is determined the load has bypassed a store 

during scheduling, the load is converted to its preload form. In our current implementation, one 

check instruction is required for each preload instruction. However, multiple check instructions 

could potentially be coalesced to reduce the execution overhead and code expansion incurred by 
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the potentially large number of checks. Because the check is a single-operand instruction, extra 

bits should be available to accommodate a mask field to specify a set of registers which are to 

be checked by this instruction. For example, if a register bank with 64 registers is partitioned 

into eight sets of eight registers each, the check instruction would use three bits to specify which 

bank was being checked and eight bits to specify the register mask. The coalesced check would 

branch to correction code, which would have to provide correct execution regardless of which 

preload instruction experienced a conflict. Further research is required to assess the usefulness 

of coalescing check instructions. 

4.2.2 Inser t ing correction code 

The compiler provides correction code for each preload instruction. When a check instruc

tion determines that a conflict has occurred, it branches to the correction code. The correction 

code re-executes the preload instruction and all dependent instructions up to the point of the 

check. (In the infrequent case that the load has bypassed a single store, the correction code 

can replace the re-execution of the preload with a simple move from the store's source register. 

In fact, the move itself may become unnecessary via forward copy propagation.) The original 

load instruction will not be a preload within correction code (because its check has already 

occurred), but any dependent instructions which are preloads must be re-executed as preloads. 

During insertion of correction code, the compiler must check for any anti-dependences which 

would overwrite source operands, such that these operands would not be available for execu

tion within the correction code. If anti-dependences are detected, they are removed by virtual 

register renaming. 
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Because scheduling is performed on superblocks that do not allow side entrances, the cor

rection code cannot jump back into the superblock after re-executing the required instructions. 

Instead, the correction code jumps to tail duplication code, which is simply a duplicate copy 

of all superblock instructions subsequent to the check instruction. This tail duplication code 

(Figure 4.5(c)) ensures all dependences and register live ranges are calculated correctly during 

register allocation and post-pass scheduling. Following post-pass scheduling, however, the su

perblock structure is no longer necessary to the compiler and the code can be restructured to 

allow jumps back into the superblock. At this point, all jumps within the correction code are 

redirected to jump back into the superblock immediately following the check instruction, and 

all tail duplication code can be deleted. Thus, the tail duplication code is only a temporary tool 

used by the compiler to maintain correct dependences and live ranges during register allocation 

and post-pass scheduling, and is removed prior to final code generation (Figure 4.5(d)). 

4.3 Experimental Evaluation 

To evaluate the MCB approach, experiments were conducted on a set of twenty-nine bench

mark programs, including nine common Unix utility programs, six programs from 8PEC-

CINT92, and fourteen programs from SPEC-CFP92. Experimental results were obtained using 

the detailed emulation-driven simulation described in Section 2.4. 

Table 4.1 outlines the architecture modeled for these experiments (the target architecture) 

and Table 4.2 shows the instruction latencies used. The instruction latencies used were those 

of the HP PA-RISC™ 7100. The IMPACT simulator models in detail the architecture's 

prefetch and issue unit, instruction and data caches, branch target buffer (BTB), and hardware 

interlocks. This allows the simulator to accurately measure the number of cycles required to 
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Table 4.1 Simulated Architecture. 

Architectural Features 
8-issue in-order execution superscalar processor 
Extended version of HP PA-RISC instruction set 

- Extensions for MCB 
- Silent versions of all trapping instructions 

64 integer, 64 floating-point registers 
Dcache: 64k, direct mapped, non-blocking, 64 byte blocks, 

8 cycle miss penalty, write-thru, no write allocate 
Icache: 64k, direct mapped, non-blocking, 64 byte blocks, 

8 cycle miss penalty 
BTB: Ik entries, direct mapped, 2-bit counter, 

2 cycle misprediction penalty 
MCB support 

Table 4.2 Instruction Latencies. 

Function 
Int ALU 
(pre)load 
store 
branch (check) 

Lat 
1 
2 
1 
1 

Function 
FP ALU 
FP multiply 
FP div(SGL) 
FP div(DBL) 

Lat 
2 
2 
8 
15 

execute a program, as well as to provide detailed analysis such as cache hit rates, BTB prediction 

accuracy, and total MCB true/false conflicts. 

4.3.1 M C B emulat ion 

To create an executable file to drive the simulation, the functionality of the MCB must 

be emulated to allow the code to execute on the host architecture, an HP PA-RISC 7100 

workstation. Following code scheduling, the code contains preload and check instructions, 

which are not executable by the host architecture. Thus, the code must be transformed to 

accurately emulate the MCB code. To accomplish this, the MCB code is modified with explicit 
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address comparisons similar to that for Nicolau's run-time memory disambiguation. Figure 4.6 

illustrates the code changes required to emulate the MCB. Figure 4.6(a) shows the target 

architecture code which would be simulated, and Figure 4.6(b) shows the code after emulation 

code has been added. In the emulation code, register #30 holds the address of the preload, 

and #40 and #50 hold the addresses of the stores. Registers #45 and #55 are set by explicit 

comparisons of the load address to the two store addresses. Because the preload instruction has 

bypassed numerous store instructions, #35 is used to record whether any of the stores caused a 

conflict. Thus, #35 is initially zeroed and is subsequently ORed with the results of the address 

comparisons. The check instruction is emulated with a conditional branch instruction, whose 

direction is based upon the value of #35. 

Rl = R2*R3 
R30 = R5 + R8 
R4 = M(R5+R8) 
R35 = 0 
R6 = R4+1 
R40 = R9 + R10 
M(R9+R10)=R11 
R45 = (R30eqR40) 
R35 = R3S or R45 
R50=R3 + R7 
M(R3+R7) = R1 
R55 = (R30eqR50) 
R35 = R35 or R55 
Beq (R35,1), Correction 

R1=R2*R3 

R4 = M(R5+R8) (preload) 

R6 = R4+1 

M(R9+R10) = R11 

M(R3+R7) = R1 

Check R4, Correction 
Back: 

Correction: R4 = M(R5+R8) 

R6 = R4+1 

Jmp Back 

Back: 

Correction: R4 = M(R5+R8) 
R6 = R4+1 
Jmp Back 

a) Target Architecture Code b) Emulation Code 

Figure 4.6 MCB Emulation Code. 
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Note the code growth required in this trivial example to correctly emulate the MCB scheme. 

In real benchmark code where numerous loads have bypassed numerous stores, overall code 

growth of 1000% was not uncommon. This clearly indicates the problems that schemes such as 

run-time disambiguation will have in the presence of aggressive code scheduling and optimiza

tion. 

4.3.2 M C B size and associativity 

The first MCB experiment was to measure MCB performance for various size MCB preload 

arrays. For this experiment, set associativity and signature field size were held constant (8-way 

set associativity and five signature bits) while the MCB size was varied from 16 to 128 entries, 

i.e., 2 to 16 sets. Additionally, performance for the perfect MCB case (i.e., false conflicts never 

occur) was measured to show asymptotic performance. Figure 4.7 shows the results from the 

six benchmarks evaluated. These six benchmarks were selected for this experiment because 

ambiguous memory dependences were shown to be major performance impediments for them 

in Figure 3.1. Speedup is shown for the MCB 8-issue architecture, relative to a baseline 8-

issue architecture with no MCB. For several benchmarks, an MCB size of 32 or 64 entries was 

sufficient to approach perfect performance. The performance for 056. ear dropped significantly 

for sizes below 64 entries, and the performance for 052.alvinn and cmp did not reach asymptotic 

performance even for a size 128 MCB. This was the result of excessive load-load conflicts caused 

by multiple variables hashing to the same MCB location. 

The results of MCB associativity testing are somewhat compiler-specific and are not shown. 

For most benchmarks, 8-way set associativity is required to achieve best MCB performance. 

Two factors heavily influence this need: 1) the IMPACT compiler often unrolls loops up to 8 
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Benchmark 

Figure 4.7 MCB Size Evaluation. Speedup of an 8-issue architecture for various size MCBs 
vs. an 8-issue architecture without MCB (8-way set associative, 5 signature bits). 

times; and 2) because the 3 LSBs of the load address are not used during hashing, up to 8 

sequential single-byte loads will hash to the same MCB location. Thus, 8-way set associativity 

is necessary to reduce the number of false load-load conflicts. Even at this associativity, the 

performance of cmp was impacted as a result of load-load conflicts caused by sequential loads 

and by independent variables hashing to the same location. 

4.3.3 Signature field size 

To reduce the number of false load-store conflicts, the MCB contains a hashed signature 

field. The required width of this signature field was evaluated, holding MCB size constant at 

64 entries, 8-way set associative. Performance was measured for field sizes of 0, 3, 5, and 7 

bits, and performance for a full 32-bit signature is shown for comparison. MCB 8-issue speedup 

is again shown relative to the baseline architecture. Figure 4.8 shows the results; a signature 

size of 5 bits approached asymptotic performance of the full signature for all benchmarks. The 
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Figure 4.8 MCB Signature Size. Speedup of an 8-issue architecture with various size address 
signature fields vs. an 8-issue architecture without MCB (8-way set associative, 5 signature 
bits). 

performance for several benchmarks suffered for signature sizes below 5 bits as a result of false 

load-store conflicts. 

4.3.4 M C B performance 

In the previous two sections, MCB parameters were varied to determine the best physical 

configuration. Experiments in this section are measured using a 64 entry, 8-way set associative 

MCB with 5 signature bits. Results are shown for the suite of 29 integer and floating-point 

benchmarks. 

Integer performance 

Figures 4.9 and 4.10 show results for the integer benchmarks. These figures reflect the 

performance for an 8-issue architecture without MCB (using the existing IMPACT low-level 

static disambiguation) and for an 8-issue MCB architecture, both relative to a baseline single-
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Benchmark 

Figure 4.9 Unix MCB 8-Issue Results. Speedup of code compiled with and without MCB 
over a baseline single-issue architecture. 

issue architecture. Figures 4.11 and 4.12 show the performance of the 8-issue MCB architecture 

relative to the 8-issue architecture without MCB. The MCB architecture showed good ILP for 

most benchmarks; note that although an 8-issue architecture is being modeled, only 4 integer 

ALUs are available per cycle. Speedups of more than 2.5 times over the single-issue processor 

are achieved for 8 of 9 Unix benchmarks and 4 of 6 SPEC-CINT92 benchmarks. 

In comparison to the 8-issue architecture without MCB, the MCB architecture provides 

modest speedup for many of the benchmarks. Note that not all benchmarks are limited in 

performance by memory dependences, and thus not all benefit from improved memory disam

biguation. However, there is a direct correspondence between the benchmarks improved by 

MCB and those from Figure 3.1; MCB achieved speedup for all benchmarks for which mem

ory disambiguation was a significant impediment to ILP. The benchmark cmp achieved the 

most significant speedup. This is the result of being able to overlap iterations of the unrolled 

inner loop because of the dependences removed by the MCB approach. Benchmarks such as 
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Figure 4.10 SPEC-CINT92 MCB 8-Issue Results. Speedup of code compiled with and with
out MCB over a baseline single-issue architecture. 

tbl, 022.U, O26.eqntott, and 072.sc essentially achieved no speedup because the important in

ner loops contain no store operations. Other benchmarks, such as cccp and lex, achieved no 

speedup over the baseline architecture because the existing low-level memory disambiguation 

already provided good disambiguation. Note that cccp and lex showed good ILP in Figure 4.9 

even for the non-MCB architecture. For several other benchmarks, including 026.compress and 

O08.espresso, MCB performance gains were somewhat masked by cache effects. MCB code 

suffers slightly more from cache effects because it experiences a greater overall number of cache 

misses. This increase in cache misses results because MCB's greater scheduling freedom allows 

more speculative execution of loads above branches; load misses from these speculative loads 

would not be experienced in less aggressively scheduled code. 
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Figure 4.11 Unix MCB 8-Issue Results. Speedup of code compiled with MCB over an 8-issue 
architecture without MCB. 

Benchmark 

Figure 4.12 SPEC-CINT92 MCB 8-Issue Results. Speedup of code compiled with MCB over 
an 8-issue architecture without MCB. 
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Floating-point performance 

Figures 4.13 and 4.14 show results for the floating-point benchmarks. Figure 4.13 shows 

the performance of 8-issue architectures with and without MCB compared to a single-issue 

architecture. Figure 4.14 presents the speedup of the 8-issue MCB architecture over the 8-issue 

architecture without MCB. There are several interesting points to note about these floating

point results. First, the performance of the 8-issue architecture without MCB is in general poor. 

This result is not surprising since floating-point benchmarks are usually dominated by array 

accesses that are relatively difficult to disambiguate using only information available within 

the low-level code (i.e., without interprocedural analysis or source-level information). Second, 

note that the performance with MCB is significantly improved compared to that for the 8-issue 

without MCB. The results indicate that memory disambiguation is a more severe impediment 

to ILP for floating-point code, which tends to have larger basic blocks and highly predictable 

branches. For most benchmarks, the MCB technique provides significant speedup. Exceptions 

are O15.doduc and O89.su2cor. The heavily executed blocks of O15.doduc are not significantly 

hindered by ambiguous memory dependences; either they do not contain store operations or 

the existing stores do not significantly limit ILP. The performance of O89.su2cor was severely 

degraded due to false load-load conflicts. 

A third item to note is that the overall ILP achieved for the MCB architecture is relatively 

low, exceeding 2.5 times speedup over that for the single-issue architecture for only 4 of the 14 

benchmarks. This is less speedup than was achieved for the integer benchmarks, even though 

the floating point benchmarks would be expected to be more amenable to ILP transformations 

due to their larger basic blocks and predictable branches. The conflict statistics presented in the 

next section demonstrate that this poor speedup is the result of excessive conflicts experienced 
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Figure 4.13 SPEC-CFP92 MCB 8-Issue Results. Speedup of code compiled with and without 
MCB over a baseline single-issue architecture. 

Benchmark 

Figure 4.14 SPEC-CFP92 MCB 8-Issue Results. Speedup of code compiled with MCB over 
an 8-issue architecture without MCB. 
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by the MCB. (A later section will address reducing these conflicts.) A final item to note is 

the large slowdown experienced by 094-fpppp using MCB. This is also the result of conflicts 

experienced by the MCB code. 

MCB statistics 

Table 4.3 shows the conflict statistics for the 8-issue MCB architecture, using the MCB 

configuration from the previous section. The second column shows the total dynamic check 

instructions executed, followed by the number of true conflicts, false load-load conflicts, and 

false load-store conflicts. The final column shows the percentage of dynamic check instructions 

which branched to correction code. For most integer benchmarks, the percentage of time the 

correction code is executed is very low; the exceptions were cmp yacc, 008.espresso, and 085.ccl. 

With the exception of cmp, performance degradation due to the execution of correction code was 

only about 2%-3% for these benchmarks, compared to a perfect MCB without false conflicts. 

Note that for all benchmarks except 008.espresso and 085.ccl, false conflicts were the primary 

cause of taken checks. These false conflicts were primarily false load-load conflicts. False load-

store conflicts posed no significant problem for the integer benchmarks, indicating that the 5-bit 

signature field used was successful at limiting these conflicts. 

The conflict statistics for floating-point benchmarks were significantly worse, with several of 

the benchmarks experiencing over 10% taken check instructions. This high level of taken checks 

corresponds to significant performance degradation. For many of the benchmarks (013.spice2g6, 

O15.doduc, 034-mdljdp2, 039.wave5, 077.mdljsp2, and 093.nasa7) true conflicts were a primary 

factor in the high number of taken checks. This points to the need for better static disambigua

tion to detect store/load pairs which are likely to conflict, so the compiler can avoid reordering 
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Table 4.3 MCB Conflict Statistics (8-issue architecture, 64 entries, 8-way set associative, 5 
signature bits). 

Benchmark 
cccp 
cmp 
eqn 
grep 
lex 

qsort 
tbl 
wc 

yacc 
008.espresso 

022.1i 
O23.eqntott 

O26.compress 
072.sc 
085.ccl 

013.spice2g6 
OlS.doduc 

034.mdljdp2 
039.wave5 

O47.tomcatv 
O48.ora 

052.alvinn 
056.ear 

077.mdljsp2 
078.swm256 
089.su2cor 

090.hydro2d 
093.nasa7 
094.fpppp 

Total 
Checks 
23.5K 
1087K 
793K 
96.3K 
47.3K 
785K 
7203 
306K 
211K 
324K 
224K 
32.1K 
160K 
216K 
705K 
4312K 
336K 
3230K 
6178K 
639K 
3534K 
10.8M 
23.1M 
3080K 
39.8M 
13.2M 
9334K 
21.3M 
4516K 

True 
Confs 

0 
0 
0 
0 
0 
0 
0 
0 
56 

5262 
0 
0 
0 
0 

24.4K 
128K 
8166 
74.6K 
212K 

0 
0 
0 
0 

73.5K 
0 
0 
0 

1130K 
1104 

False 
Ld-Ld 
Confs 

0 
55.1K 

0 
0 
0 
0 
0 
0 

15.8K 
8779 

0 
7 
0 
0 

14.9K 
187 
1182 
3218 
167K 

0 
0 

178K 
119.8K 
5367 

6210K 
2086K 
727K 
717K 
726K 

False 
Ld-St 
Confs 

42 
605 
667 
395 
16 

1586 
9 

406 
403 
735 
422 
33 
817 
364 
4182 
24.3K 
10693 
43.6K 
43.0K 
24.7K 
133K 
44.0K 
74.6K 
31.1K 
497K 
187K 
209K 
629K 
18.5K 

% 
Checks 
Taken 
0.18 
5.12 
0.08 
0.41 
0.03 
0.20 
0.12 
0.13 
7.52 
4.56 
0.19 
0.12 
0.51 
0.17 
6.16 
3.53 
5.96 
3.76 
6.14 
3.87 
3.76 
2.05 
0.84 
3.57 
16.85 
17.22 
10.03 
11.63 
16.51 
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them. Both load-load and load-store false conflicts also contributed significantly to the high 

number of total conflicts. This high number of false conflicts indicates the size of the MCB 

preload array may have to be reconsidered for floating-point benchmarks; this will be explored 

further in the next section. 

Table 4.4 shows the effect of the MCB compiler techniques on the static and dynamic code 

size, again using an 8-issue architecture with a 64-entry, 8-way set associative, 5 signature-bit 

configuration. The addition of MCB code increased the static code size an average of 8.6% 

across the integer benchmarks. The integer benchmarks that showed the worst static code 

expansion were the very small benchmarks (cmp and wc), in which the addition of a small 

number of check instructions and correction code to the most-frequently executed blocks made 

a significant change in the static code size. For the floating-point benchmarks, average static 

code growth was 12.7%. This indicates the MCB transformation was applied more frequently 

to the floating-point benchmarks than to the integer benchmarks, due to larger superblocks and 

the greater percentage of loads in floating-point code (integer code typically has more scalar 

variables which reside in register and do not require load instructions). 

Note that the MCB code transformations resulted in a significant increase in the dynamic 

number of instructions executed for most benchmarks, particularly the floating-point bench

marks. This increase in dynamic instructions is primarily the result of greater speculation 

freedom afforded by the improved memory disambiguation and by the additional code which 

must be executed when conflicts occur. However, the greater scheduling freedom allowed by 

MCB was in general able to pack this increased number of instructions into a tighter schedule 

and achieve speedup for many of the benchmarks. 
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Table 4.4 MCB Static and Dynamic Code Size (8-issue architecture, 64 entries, 8-way set 
associative, 5 signature bits). 

Benchmark 
cccp 
cmp 
eqn 
grep 
lex 

qsort 
tbl 
wc 

yacc 
O08.espresso 

022.11 
O23.eqntott 

O26.compress 
072.sc 

085.ccl 
013.spice2g6 
OlS.doduc 

034.mdljdp2 
039.wave5 

O47.tomcatv 
O48.ora 

052.alvinn 
056.ear 

077.mdljsp2 
078.swm256 
089.su2cor 

O90.hydro2d 
093.nasa7 
094.fpppp 

% Static 
Instruction 

Increase 
0.7 
47.2 
2.2 
4.3 
0.7 
14.7 
0.3 
23.5 
5.3 
3.8 
1.3 
8.6 
13.1 
1.5 
1.8 
3.0 
6.9 
11.1 
10.4 
5.8 
3.9 
22.0 
11.4 
9.5 
21.2 
15.5 
12.2 
22.3 
22.0 

% Dynamic 
Instruction 

Increase 
0.0 
40.5 
5.7 
9.9 
0.4 
13.3 
0.2 
21.5 
2.3 
8.3 
3.6 
0.2 
11.3 
1.4 
7.4 
3.7 
1.6 
20.1 
21.5 
8.5 
16.7 
30.5 
16.5 
18.8 
35.9 
31.8 
21.4 
34.6 
9.7 
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4.3.5 Reducing M C B conflicts 

In the previous section, conflict statistics indicate the set associative MCB design results 

in a relatively higher number of both false and true conflicts for floating-point code than for 

integer code. This higher number of conflicts can result in significant performance degradation. 

To reduce the number of true conflicts, better static memory disambiguation is needed to detect 

store/load pairs which are likely to conflict. Another possible technique to reduce the number 

of true conflicts is to use memory profiling to dynamically determine instructions which are 

likely to conflict. 

The high number of false conflicts indicates the size of the MCB preload array chosen for 

the earlier experiments, although good for integer code, may not have been optimal for floating

point code. Although a 64-entry MCB appears to work well for integer code, a larger MCB may 

be required to reduce false conflicts for floating-point code. 1 The MCB size experiment (shown 

in Figure 4.7) was repeated using four of the floating-point benchmarks which experienced a 

high number of false conflicts in the previous experiment. Figure 4.15 shows the results of 

this experiment. For each benchmark, the different bars on the graph reflect the performance 

improvement for various size MCB architectures over a baseline 8-issue architecture without 

MCB. 

For two of the benchmarks (O47.tomcatv and 093.nasa7), varying the size of the MCB 

resulted in only minor variations in performance. For these benchmarks, the 64-entry MCB 

used for earlier experiments provides nearly the same performance as for the perfect MCB. 

1 Increasing the size of the preload array will reduce the frequency of both false load-load and load-store 
conflicts. Although the number of false load-store conflicts is primarily affected by the size of the signature 
field, increasing the size of the preload array also reduces these conflicts because fewer signature comparisons are 
required. 

71 



• 32 • 64 • 128 0 256 • Perfect 

O47.tomcatv 078.swm256 O89.su2cor 093.nasa7 

Benchmark 

Figure 4.15 Floating-Point MCB Size Evaluation. Speedup of an 8-issue architecture for 
various size MCBs vs. an 8-issue architecture without MCB (8-way set associative, 5 signature 
bits). 

However, for the other two benchmarks (078.swm256 and O89.su2cor), varying the size of the 

MCB resulted in dramatic changes in performance. For both of these benchmarks, even a 

256-entry MCB provided significantly less performance than for the perfect MCB. 

An experiment was performed to quantify the effect on performance of varying MCB size, 

using all 14 floating-point benchmarks. Figure 4.16 shows the results of this experiment. The 

leftmost bar for each benchmark represents the results for the 64-entry set associative design 

presented previously. The middle bar shows the results for a 256-entry set associative MCB 

design. The rightmost bar represents a perfect MCB, which experiences no false conflicts. 

For several benchmarks, the 256-entry MCB performed significantly better than the 64-

entry MCB. Additionally, it provided comparable performance to that for the perfect MCB 

for the majority of benchmarks. However, as seen in Figure 4.15, even a 256-entry MCB 

was not large enough to provide performance comparable to that for the perfect MCB for 
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Figure 4.16 8-Issue Results for Different MCB Models. 

benchmarks such as 078.swm256 and O89.su2cor. Rather than reflecting a problem in the 

set associative design, this performance degradation is the result of limitations in the current 

compiler technology being used to support MCB. In particular, the list scheduling algorithm 

being used is "greedy," and tends to overschedule the code. When the scheduler is used to 

produce MCB code, no cost is assigned to moving a load above an ambiguous store; rather, the 

dependence is simply removed and the scheduler is free to schedule the memory operations in 

any order. Because the scheduler is greedy, load operations tend to move unnecessarily early in 

the schedule and unnecessary preloads/checks are generated. Because floating-point code has 

a high percentage of load operations, the number of preloads generated tends to overwhelm 

MCB hardware resources, causing a high number of false conflicts. Scheduling techniques are 

being investigated to reduce this overscheduling of load operations. It is believed that improved 

scheduling with a 256-entry set associative MCB will provide comparable performance to the 

perfect MCB. 
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4.4 MCB Summary 

In this chapter, a combined hardware and compiler approach for dynamic memory disam

biguation has been evaluated. Using detailed simulation, MCB is shown to obtain substantial 

speedup for many of the integer benchmarks evaluated. Results for the floating-point bench

marks demonstrated significantly greater performance benefit, despite limitations in the current 

compiler technology. 

The MCB, or any other memory disambiguation approach, is not a panacea that will provide 

speedup for all programs. For some programs, control transfer instructions remain the primary 

bottleneck, and ambiguous dependences are not a significant problem. However, test results 

demonstrate that MCB provides substantial speedup for those programs whose ILP is limited 

by ambiguous memory dependences. 
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CHAPTER 5 

STATIC MEMORY DISAMBIGUATION USING SYNC 
ARCS 

In the previous chapter, a dynamic memory disambiguation approach was investigated and 

found to provide good performance improvement. In this chapter, a new technique to provide 

improved static memory disambiguation for low-level optimization and scheduling is explored. 

In most compilers, static memory disambiguation for low-level code uses only information 

available within the low-level code (i.e., no source-level information), and is able to achieve lim

ited success. Although it may be clear within the source code that two memory accesses cannot 

access the same location, this information is often lost when the code is converted to low-level 

form. Figure 5.1 shows an example of this problem, from the inner loop of the benchmark 

wc. In Figure 5.1(a), the code to get a character from the file buffer and increment a global 

variable is shown. Using typing information, it can be determined that the various memory 

references are to different fields of the fp structure, and to a buffer pointed to by the ptr field of 

the structure. (The variables charct and c are scalar and will reside in register.) Each of these 

memory references are clearly disambiguous with other references. However, the dependence 

relationship between these references is less clear in the low-level code in Figure 5.1(b). In 

particular, the pointer dereference in op69 (corresponding to {fp)-*ptr) cannot easily be dis

ambiguated from the stores in the block. As a result, important optimizations are prevented. 

Thus, improved static memory disambiguation for low-level code is much easier to accomplish 

with some visibility to source-level information. 
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for(;;) cb 12 
{ op591d_i rl01,r3+0 
c = (-(fp)->cnt < 0 ? filbuf(fp) : op60 add rl02, rlOl, 1 

(int) *(fp)->_ptr++); °P61 s t- ! r 3 + °- r 1 0 2 

if(c = -l) 0p64 bit rlOl.i, cb48 
break; op65 IdJ rl03,r3 + 4 

charct++; op67 add_u rl04, rl03,1 
j op68 st_i r3+4,rl04 

op69 ld_uc r4,rl03+0 
op71 beq r4,-l,cb24 
op721d_i rl05,r74 + 0 
op74 add rl06, rl05,1 
op75 st_i r74 + O,rl06 

(a) Original source code segment (b) Lcode segment 

F igu re 5.1 Difficulty of Memory Disambiguation for Low-Level Code. 

In the next section, the relative merits of different approaches for providing source-level 

information to the low-level code are discussed. This is followed by a detailed explanation 

of the proposed technique. Experimental results for the proposed technique are provided in 

Chapter 7. 

5.1 Providing Source Information to the Intermediate Code 

In general, source-level information can be passed to the low-level code in two ways: (1) 

maintain some source code information within the low-level IR, and perform dependence analy

sis on the low-level code; or (2) perform dependence analysis at the source code level, and pass 

explicit dependence information to the low-level code. Each of these approaches has advantages 

and disadvantages. 
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5.1.1 Performing stat ic analysis on low-level code 

Passing raw source information to the low-level code, either embedded within the low-level 

code or through an external file, would allow accurate dependence analysis to be performed 

on the low-level code. The primary advantage of this approach is that dependence analysis 

can be re-accomplished at any point during compilation. If code transformations invalidate the 

dependence analysis, the availability of the source information allows the dependence analysis 

to be re-performed after the transformations for use by later stages of compilation. If desired, 

the results of dependence analysis can be discarded after use, and re-generated when needed 

again. 

However, this approach has several drawbacks. First, the magnitude of the raw source infor

mation which must be maintained is unclear. To perform dependence analysis for scientific code 

which relies heavily on arrays, perhaps simply maintaining source-level array index information 

would be sufficient to provide good static disambiguation. It is likely, however, that accurate 

dependence analysis for pointers would require much more source information. To allow an 

in-depth interprocedural alias analysis would essentially require visibility to the entire source 

code. Maintaining the complete source information within the low-level IR would be extremely 

expensive in terms of memory requirements. 

A second drawback of maintaining source information within the low-level form is the dif

ficulty of maintaining that information through code transformations. For example, if a loop 

is unrolled to expose ILP, the source code for this loop would also have to be transformed to 

maintain an accurate representation for performing dependence analysis. 

A third argument against performing dependence analysis on the low-level code is the ex

pense. Although having the source information within the low-level code makes re-analysis 
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possible, the time required for this analysis probably makes repeated analyses impractical. Al

though interprocedural techniques for pointer analysis are becoming more and more powerful, 

they require an extremely high compile-time investment. Finally, performing the analysis on 

the low-level IR does not remove the need to perform an incremental update of the dependence 

information. Because it is impractical to re-perform dependence analysis after each transfor

mation, the dependence information will have to be maintained through most transformations, 

requiring at least the same level of effort as the alternate approach discussed in the next section. 

5.1.2 Performing stat ic analysis on source-level code 

The second approach for providing source-level help to support low-level memory disam

biguation is to perform an in-depth analysis once at the source level and then to maintain 

this dependence information throughout subsequent compilation. The primary advantage of 

this approach is that the analysis is performed when the required information is most avail

able. The analysis must only be done once, and its results are available for use by later stages 

of compilation. There is no requirement to maintain any source-level information within the 

low-level IR. 

This approach also has several potential difficulties. First, the amount of dependence in

formation which must be maintained can be extremely large. Techniques would be needed to 

limit the number of explicit dependence arcs being maintained. Second, because the analysis 

cannot be re-accomplished, the dependence information must be maintained through all code 

transformations. It has not previously been shown that this can be done without significant 

loss of accuracy. It is important to note, however, that although maintaining the dependence 

information may prove quite difficult, the approach described in Section 5.1.1 faces the same 
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problem. Regardless of the approach used, some incremental analysis will have to be performed 

due to the expense of dependence analysis. 

5.2 Sync Arcs 

After extensive discussions within the IMPACT research group and with industry, the second 

approach described above was chosen for this thesis. The proposed approach is to perform 

dependence analysis once at the source code level, to accurately maintain this information 

throughout subsequent compilation, and then to use this information to facilitate low-level 

optimization and scheduling. The explicit dependence information being passed down is called 

synchronization arcs or sync arcs. Although currently only memory dependence information is 

being propagated to the low-level code, sync arcs could also be used to represent any required 

ordering or "synchronization" between operations. For the sync arc approach to be successfully 

applied, the following issues must be addressed: 

• The necessary dependence information must be identified. 

• The dependence information must be extracted from the source level and propagated to 
the low-level code. 

• The dependence information must be maintained through low-level code transformations. 

• The amount of dependence data being maintained must be controlled 

• A mechanism for using the dependence information within the low-level code must be 
developed 

These issues are discussed in subsequent sections. 

5.2.1 Desired dependence information 

Static memory disambiguation has most often been applied to source-level loop transfor

mations. These transformations typically are inhibited by any type of memory dependence 
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within the loop. Thus, very accurate dependence analysis is required; even a single ambiguous 

dependence can prevent an important transformation. However, when applying static memory 

dependence to low-level code optimization and scheduling, the uses of the disambiguation in

formation are different, and may require a different degree of accuracy. It is enlightening to 

understand how improved memory disambiguation would be used during the low-level stages 

of ILP compilation. 

Because the IMPACT compiler employs aggressive ILP compilation techniques, its use of 

memory disambiguation for low-level code should be representative. In general, IMPACT em

ploys memory disambiguation to support three areas of compilation: acyclic scheduling, cyclic 

scheduling (software pipelining), and optimization. 

During acyclic scheduling, the ability to reorder two memory operations is based upon 

whether a dependence exists between the two operations during a single execution of the block 

being scheduled. For example, if the superblock being scheduled consists of a single iteration of 

a loop, then two memory operations can be reordered if they never reference the same memory 

location during any single iteration of the loop. The array references 

A[i] = x 

y = A[i+1] 

can be freely reordered because they never reference the same element of the array during any 

single iteration. Thus, during acyclic scheduling, operations can be reordered unless a non-loop 

carried or intra-iteration dependence exists between them. 

For cyclic scheduling, more accurate dependence information is required. In addition to 

knowing whether a non-loop carried dependence exists between memory operations, cyclic 

scheduling has to know whether a loop carried or inter-iteration dependence exists. In the 
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example above, the read of A[i + 1] will reference the same location as the store to A[i] which 

will occur during the next iteration (assuming i is the loop induction variable). Further, cyclic 

scheduling has to know the dependence distance between two memory operations, which is the 

number of iterations from when one memory operation references a particular location until 

when the other operation references the same location. Therefore, in the above example, an 

anti dependence of distance 1 exists from the load to the store. Non-loop carried dependences 

are sometimes referred to as distance 0 dependences. 

Thus, from looking at the requirements of acyclic and cyclic scheduling, it can be seen that 

sync arcs should represent whether the dependence is non-loop carried and/or loop carried, 

and what the dependence distance is. However, as discussed in Chapter 3, in some cases array 

dependence analysis may fail to clearly establish the dependence relationship between memory 

operations. When this occurs, the sync arc must be able to specify that the dependence distance 

is unknown. 

Memory disambiguation is also critical for supporting ILP optimizations. Perhaps the most 

important optimizations requiring disambiguation are loop unrolling, loop invariant code re

moval, and redundant load/store removal. 

The loop unrolling optimization requires similar dependence information to cyclic schedul

ing. Figure 5.2 illustrates the dependence information required for loop unrolling. The source 

code and low-level code for a simple pair of array references are shown in Figures 5.2(a) and 

(b). Assuming this code is in a loop whose induction variable is i, there is a distance 2 flow 

dependence from the store to the load. To allow unrolling, no special dependence information is 

required. However, to accurately preserve the correct dependences (as shown in Figure 5.2(c)) 

the optimizer has to properly understand the dependence distance. Without understanding of 
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(b) Low-level code (c) Unrolled code 

F igu re 5.2 Dependence Information to Support Loop Unrolling. 

dependence distance, the optimizer would have to assume dependences between all load/store 

pairs in the loop, severely restricting subsequent code scheduling. 

Another characteristic of the dependence relationship between two memory operations which 

must be understood is which loop carries the dependence. Figure 5.3 illustrates this charac

teristic, as applied to the loop invariant code removal optimization. There is a distance 2 flow 

dependence from the store to the load; however, note that the inner loop induction variable is k 

and that the array references are based upon the outer loop variable i. Thus, for all iterations 

of both the j and k loops, the load and store operations reference invariant locations and can 

legally be moved outside these loops as shown in Figure 5.3(b). However, this optimization can 

only be performed if the dependence information contains information indicating which loop 

carries the dependence. 
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(a) Loop nests prior to optimization (b) Loop nests after optimization 

Figure 5.3 Dependence Information to Support Loop Invariant Code Removal. 

Two other characteristics of dependence that a static analysis might have to determine 

are frequency and certainty. Figure 5.4 illustrates the need for these characteristics, using 

the example of redundant load elimination. The redundant load elimination optimization will 

attempt to delete the second load, if it is truly redundant. For the optimization to be valid, the 

second load must always reference the same memory locations as the first load every time this 

section of code is executed. Thus, the certainty of the dependence between the loads must be 

definite (i.e., the static analysis did not conservatively add this dependence because it could not 

ascertain the true dependence relationship) and the frequency must be always. Additionally, for 

the optimization to be valid, there can be no intervening store operations which might possibly 

reference the same address as the loads. Even a possible dependence between the store and 

either load, which holds for even one execution, is sufficient to prevent the optimization. Sync 

arcs, then, need some mechanism for recording how sure the dependence is, and how frequently 

during execution it might occur. Another possible use of the dependence frequency information 
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Figure 5.4 Dependence Information to Support Redundant Load Elimination. 

would be the MCB technique examined in the previous chapter. Although it is a dynamic 

technique, it relies on some basic level of static analysis to prevent reordering operations which 

are frequently dependent. If the static analysis could determine that a possible dependence 

occurs between two memory operations, but that this dependence occurs only infrequently, a 

dynamic technique such as MCB might be able to exploit this to reorder instructions which are 

infrequently dependent. 

One other item to note from this redundant load elimination example is that the dependence 

between the two loads is an input dependence. Although it is obvious that sync arcs would want 

to carry dependence information for flow, anti, and output dependences, this demonstrates a 

need to maintain input dependences as well. 

A final type of dependence information which might be useful (although not exploited in 

the current implementation) is the concept of how dependence varies from iteration to itera

tion. In a previous example, the references A[i] and A[i + 1] were said to have a distance 1 

dependence, which holds for all iterations of the loop. For other code, however, the dependence 

distance may vary between different loop iterations. For example, consider the code example in 

Figure 5.5. The references A[i) and A[N — i] have a dependence distance which varies between 

loop iterations. However, note that for this reference pair there will be a distance 0 (non-loop 
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for (i=o; i<N; i++) { 

A[i] = A[N-i]; 

} 

Figure 5.5 Single Iteration Dependence Example. 

for(i=o;i<SIZE;i++) { 
if(flags[i]){ 

prime = i + i + 3; 
for (k=i +prime; k<=SIZE; k+=prime) 

flags[k] = FALSE; 
count++; 

1 
} 

Figure 5.6 Threshold Dependence Distance Example. 

carried) dependence for at most one iteration of the loop. If this iteration can be identified to 

the low-level code, then potentially the low-level stages of the compiler could take advantage of 

this knowledge to perform code transformations such as loop splitting to further expose ILP. 

Another situation in which information on how the dependence varies might be useful is if 

the dependence distance varies, but is always greater than some threshold. Figure 5.6 shows 

an example of this from the siev benchmark. The references to flags[i] and flags[k] have a 

definite dependence between them; during the first iteration of the outer loop the dependence 

distance is 3, and then is greater than 3 for all subsequent iterations. The capability to indicate 

a dependence threshold such as this within the sync arc structure would allow subsequent 

optimizations such as unrolling to more accurately represent the true dependence. 

Table 5.1 summarizes the dependence information which would be useful for the sync arc 

data structure to maintain. 
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Table 5.1 Desired Dependence Information. 

Dependence type (flow, anti, output, input) 
Dependence distance (known/unknown) 
Whether dependence is non-loop, inner loop, or outer loop carried 
Certainty of dependence (definite, maybe) 
Frequency of dependence (always, sometimes, rarely) 
How dependence varies (constant, single iteration, threshold) 

5.2.2 Ext rac t ing sync arcs 

The IMPACT compiler performs its source-level analysis within the Pcode module. To 

support the high-level analyses, transformations, and optimizations performed within the Pcode 

intermediate representation, detailed data dependence analysis is done. Prior to the work in this 

thesis, the data dependence analysis within Pcode was limited to analysis of Fortran programs 

which have been translated from Fortran to C using the f2c tool. Because the programs being 

analyzed were originally Fortran code, the data dependence analysis was able to make numerous 

simplifying assumptions, particularly in regard to aliasing and the use of pointers. Extensions to 

the existing dependence analysis allowing it to analyze C programs are presented in Chapter 6. 

With the availability of accurate source-level dependence arcs, extracting sync arcs is a 

relatively simple task. The dependence information must be associated with the corresponding 

expression within the IR which will eventually be translated into a load or store operation. 

When the Pcode module produces output code in the next IR representation (Hcode), it in

corporates the dependence information into the output file associated with the appropriate 

expression. In the IMPACT compiler, the next lower IR is Hcode, which also represents ex

pressions hierarchically. To pass the dependence information through Hcode, it is attached to 

the expressions using expression pragmas, a comment-like structure employed by the IMPACT 
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Pointer to dependent oper - 32 bits 
Dependence distance -16 bits 
Dependence info -16 bits 

- Certainty of dependence -1 bit 
- Frequency of dependence - 2 bits 
-Flags-13 bits 

- Outer, inner, non-loop carried 
- distance know/unknown 
- threshold dependence 
- single iteration dependence 

Figure 5.7 Sync Arc Format. 

compiler. When Hcode is translated into the low-level (Lcode) data structure, the expression 

pragmas are converted into Lcode's sync arc representation. 

Within Lcode, sync arcs are maintained as fields within the internal structure of individual 

instructions. Each instruction has pointers both to the sync arcs for which it is the source 

(head) of the dependence and to the arcs for which it is the destination (tail). In the current 

implementation, each sync arc requires two words of data. Figure 5.7 illustrates the internal 

Lcode format for sync arcs. One word contains a pointer to the dependent instruction, i.e., the 

instruction at the other end of the sync arc. The second word is divided into bit fields storing 

the dependence distance and various characteristics of the arc. 

Note that the current implementation uses only three single-bit flags to indicate whether 

the dependence is outer, inner, or non-loop carried. This simple representation can result in 

some minor loss of accuracy when memory operations are moved into an outer loop nest. Using 

the current implementation, when a memory operation whose dependence is outer loop carried 

is moved into an outer loop nest, the dependence must conservatively be considered inner loop 

carried. Loss of accuracy results because the dependence information does not record which 

loop nest actually carries the dependence, but rather merely records whether it is an inner 
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or outer loop. Although this loss of accuracy is considered minor because the two dependent 

operations probably are now in different blocks of the code (and thus an overly conservative 

dependence between them is not likely to result in performance loss), this accuracy loss could 

be avoided by maintaining information in the sync arc structure that records which loop carries 

the dependence. This could be done by maintaining a distance vector such as is used in source-

level dependence analysis, or by simply recording the nesting level of the loop which actually 

carries the dependence. 

5.2.3 Mainta ining sync arcs 

Two concerns with passing explicit dependence arcs from the source level to the low-level 

code are: 1) can the information be maintained as the code is transformed by optimizations; 

and 2) can the amount of data being passed down to the low-level code be limited so that the 

approach is feasible. In this section, the first issue is discussed; the second issue is presented in 

the following section. 

One limitation of the sync arc approach is that dependence analysis cannot be re-accomplished 

if the dependence information is lost or becomes less accurate as the result of code transforma

tions. For the approach to be viable, then, sync arcs must be able to be accurately maintained 

through transformations. As part of this thesis, changes were made throughout the backend of 

the IMPACT compiler to ensure that all ILP transformations properly maintain the sync arcs. 

With the exception of inlining, discussed below, none of IMPACT'S current suite of optimiza

tions posed a significant problem for maintaining the sync arcs, and the results published in 

Chapter 7 reflect compilation using all optimizations. In the remainder of this section, some of 

the interesting issues in maintaining sync arcs are discussed. 
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The first code optimization which poses difficulty for sync arcs is inlining, which is currently 

performed on the Hcode IR. Because the Hcode stage of compilation is subsequent to Pcode, 

sync arcs are already in the IR when inlining would normally be performed. Figure 5.8 illustrates 

the problem presented by inlining. The pseudo-code on the left side of the figure represents a 

function which contains a call to Function A. The arcs between loads and stores represent the 

memory dependence information. If we wish to inline Function A into this function, we are not 

able to determine the dependence relationship between memory operations from the original 

function and operations from Function A. The sync arcs accurately represent the dependences 

within each of the individual functions, but do not provide information between operations that 

were originally in different functions. 

One solution to this problem is to assume that all inlined memory operations are implicitly 

dependent on all memory operations in the calling function. However, this solution to a great 

degree defeats the purpose of the inlining. These conservative dependences would restrict much 

of the ability to execute instructions from the inlined function in parallel with instructions from 

the calling function. Another potential solution would be to perform some limited dependence 

analysis as part of the inlining, to reduce the unnecessary dependences which must be added. 

However, this is counter to the purpose of sync arcs, which was to make source-level analysis 

available to low-level code; this solution would attempt analysis on critical sections of code 

without the benefit of the source information. The chosen solution was to alter the phase 

ordering of IMPACT compilation, so that inlining is accomplished prior to Pcode dependence 

analysis. This solution entails a complete re-implementation of IMPACT'S inliner at the Pcode 

level, and was beyond the scope of this thesis. Results reported in this thesis were obtained 

without the benefit of inlining. 

89 



Function A 

Another important issue regarding sync arcs is whether the dependences can be maintained 

when the memory operations are moved around, either within the same loop nest or outside the 

loop nest. Maintaining dependence information for code motion within a loop is trivial. If two 

memory operations are legally reordered by a code transformation such as acyclic scheduling, 

no characteristic of the dependence is altered. For example, if a loop-carried flow dependence 

exists from a store operation to a subsequent load, and scheduling reorders the operations, the 

dependence will still be a flow dependence with the same dependence distance. 

Code motion across loop boundaries is a slightly more complicated transformation for sync 

arcs. Figure 5.9 shows an example of code motion across loop boundaries as the result of the loop 

invariant code removal optimization. In this example, the dependence from the load to Store2 

is assumed to be carried by an outer loop, allowing the load to be moved outside of LoopC. 

The sync arcs must then be updated based upon this code motion. The basic rule employed for 

determining whether the sync arc must be updated is whether the nearest common enclosing 
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(a) Original code (b) Code after loop invariant code removal 

Figure 5.9 Updating Sync Arcs for Code Motion. 

loop for the two operations has changed. In the case of the dependence between the load and 

Storel, the nearest common enclosing loop before and after the code motion is LoopB. Because 

the enclosing loop has not changed, the characteristics of the dependence haven't changed, and 

the sync arc requires no update. However, for the dependence between the load and Store2, the 

nearest common enclosing loop has changed from LoopC to LoopB. In this case, a dependence 

that was previously outer loop carried is now inner loop carried and the sync arc data structure 

must be updated to reflect this. Note that the loop which carries the dependence has not 

changed, but this loop is now the inner loop rather than the outer loop with respect to the 

dependence pair. The loop which carries the dependence is not changed by any IMPACT 

low-level optimizations. 

Perhaps the most interesting optimization requiring sync arcs to be updated is loop un

rolling. As discussed above, one of the strengths of sync arcs is that the dependence distance 

information allows loops to be unrolled so as to accurately maintain only necessary depen

dences. If this can be done without loss of accuracy, it can significantly increase available ILP. 
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Figure 5.10 Updating Sync Arcs for Loop Unrolling. 

A simple method of updating sync arcs for unrolling has been developed which provides full 

accuracy. Figure 5.10 demonstrates this technique. 

In Figure 5.10(a), a loop body is shown, with arcs which represent the memory dependences 

and dependence distances between the operations. Figure 5.10(b) shows the same body and 

a numeric representation of the sync arc information for this loop for the dependences. This 

numeric representation reflects the arcs which go from the operation; the destination operation 

number and the distance are shown. For example, the first operation has a sync arc to operation 

2, of distance 2, and a sync arc to operation 3 of distance 1. 

To update sync arcs for unrolling, the two formulas shown in Figure 5.10(c) are used. To 

calculate what operation should be the destination of the updated arc, we simply use modulo 
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arithmetic based upon which copy of the loop contains the head of the arc and the original 

dependence distance. The new distance is calculated using integer division on the same two 

values. 

Figure 5.10(d) shows the loop body after being unrolled. The updated dependence arcs 

and sync arcs are also shown. To illustrate how the formulas are applied, consider the original 

sync arcs for the first operation, which is now in CopyO of the body. The original arc went to 

Operation 2, with distance two. Applying the formulas results in 

New_dist = ( 0 + 2 ) / 2 = 1 

Dest.copy = ( 0 + 2 ) 7. 2 = 0. 

Thus, the arc is now a distance 1 arc, going to the copy of Operation 2 located in CopyO of the 

loop. Likewise, applying the formulas to the arc from Operation 1 to Operation 3, of distance 

1, results in a new arc to Copyl of distance 0. Because the copy of Operation 3 located in 

Copyl is Operation 6, an arc is placed from Operation 1 to Operation 6 of distance 0. Using 

the formulas to update all the arcs in the unrolled loop body results in an accurate update of 

the sync arcs, adding only the required arcs. 

5.2.4 Limiting t h e number of sync arcs 

The second issue which affects sync arc viability is whether the number of explicit depen

dences which must be represented by sync arcs restricts application of the technique. Certain 

ILP optimizations such as superblock formation and loop unrolling, which create multiple ver

sions of the same operation, exacerbate the potential problem. If the number of sync arcs is 

a problem, what techniques can be developed to reduce the number of sync arcs down to a 

"reasonable" level? 
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A suite of 29 benchmarks was compiled using sync arcs, and subjected to IMPACT'S most 

aggressive ILP optimizations. Although the size of the files which store the intermediate form 

between compilation stages grew significantly and the compilation was slowed to a limited extent 

due to the presence of sync arcs, all benchmarks compiled without extreme difficulty. Results 

indicate, however, that techniques to limit the number of explicit sync arcs being represented 

would be desirable. In the remainder of this section, several techniques for limiting the number 

of sync arcs are proposed. 

The first technique for limiting sync arcs is to eliminate unnecessary dependences. The 

current sync arc implementation is address based, such that two memory references will have 

a dependence placed between them regardless of the flow of control. This approach requires 

a simple dependence analysis to generate the sync arcs and produces sync arcs in a format to 

easily interface to low-level dependence routines. However, it results in unnecessary transitive 

dependences. The alternate approach is to perform a flow-based analysis, so that an arc is 

only placed between two memory references if the value accessed in one could be the same 

value accessed by the other. This approach increases the complexity of dependence analysis, 

but reduces the number of arcs which must be maintained. Figure 5.11 illustrates the two 

approaches. In Figure 5.11(a), the dependences for simple scalar variables are shown. The 

address-based approach would require a transitive sync arc from the first store to the load 

to be present in the code, while the flow-based approach would remove this arc. The flow-

based approach would also remove non-loop based dependences between memory references 

on opposite paths of control, such as in an if-then-else statement. However, in the case of 

array dependences, which are not inherently transitive, the flow-based approach may be no 

more effective than the address-based approach. In Figure 5.11(b), the transitive arc cannot 
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(a) Scalar dependences (b) Array dependences 

Figure 5.11 Address-Based Versus Flow-Based Analysis. 

be removed without loss of accuracy. For non-scientific code not dominated by array variables, 

the number of sync arcs could be significantly reduced by eliminating the scalar transitive 

dependences. 

A second possibility for limiting the number of sync arcs is to mark certain references as 

having implicit dependences. References for which the dependence analysis is unable to provide 

any reasonable disambiguation could be marked syncall to indicate that implicit dependences 

exist to all other memory operations in the function. However, it is unlikely that this approach 

can be used widely without significant loss of accuracy. Even very difficult references to analyze 

(e.g., pointers to dynamically allocated memory) can usually be disambiguated to some extent 

(e.g., the pointer could be disambiguated from a statically declared variable). As a result, this 

technique for limiting sync arcs may not be appropriate for general use, but may be useful in 

conjunction with one of the following approaches. 

Another approach to limiting the number of required sync arcs is to mark explicit regions 

within the code, indicating a barrier across which all memory references are assumed to have 

an implicit dependence. Most low-level code transformations which use memory dependence 

information operate on some limited region of the code (e.g., a loop nest). While it is critical 

to have accurate disambiguation between operations within the region being optimized, depen-
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deuces across region boundaries may be of little importance. Thus, by inserting explicit barriers 

around important regions and assuming implicit dependences across these barriers, many sync 

arcs could be eliminated. During low-level code transformations, any code motion across a 

barrier would require either additional barriers to be inserted to protect the moved operations 

or the moved operations to be marked as sync-dll. 

A final approach to limiting the number of arcs is to assume barriers across which all 

dependences are implicit. Rather than inserting explicit barriers, the code structure would 

imply the barriers. For example, loop nests could be assumed as an implicit dependence region. 

Again, code motion across these implicit barriers would require the moved operations to be 

marked as sync-all. 

For the IMPACT compiler, the most promising of these approaches is to specify explicit 

dependence regions. A new region-based compilation paradigm is being explored [63], in which 

strongly connected sections of the code (e.g., loops) are grouped into compilation regions. Each 

region is then processed through various stages of compilation as a separate compilation unit. 

Because code transformations are localized within each region, it is of low importance to have 

accurate disambiguation for memory reference pairs which are located in separate regions. 

Therefore, assuming implicit dependences across region boundaries would have little effect on 

performance, but would significantly reduce the number of sync arcs. 

5.2.5 Using sync arcs 

Because sync arcs represent memory dependences explicitly, applying them to optimization 

and scheduling is straightforward. Lcode modules use sync arcs in one of two ways. The first way 

to use sync arcs is to answer explicit queries regarding the dependence relationship between two 
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operations. The query specifies what type of dependence relationship is of interest to the caller 

(i.e., non-loop carried, inner-loop carried, etc.). For example, the loop invariant code removal 

optimization, which requires no inner-loop or non-loop carried dependences, provides a mask 

field specifying these particular dependence characteristics as part of the dependence query. 

The second way sync arcs are used is for building Lcode's internal dependence graph, which 

is used primarily by code scheduling. The dependence graph maintains arcs corresponding 

to register, control, and memory dependences. To obtain the memory dependences for this 

graph, the sync arc data structures are queried, using a mask specifying only non-loop carried 

dependences. 

5.3 Sync Arc Summary 

In this chapter, a method for providing improved static memory disambiguation to support 

low-level code optimization and scheduling has been proposed. After an analysis of possible 

methods for providing improved memory disambiguation, the sync arc approach was chosen. 

This approach performs static dependence analysis on the source-level intermediate represen

tation and then preserves the results of this analysis in the form of explicit dependence arcs 

which are passed to the low-level code. The data requirements for sync arcs were discussed, 

and two issues regarding the viability of sync arcs were explored. Successful implementation of 

sync arcs demonstrates that sync arcs can indeed be accurately preserved through aggressive 

code transformations. Several methods were proposed for limiting the number of sync arcs 

which must be maintained. The sync arc approach was tested and shown to be viable across a 

diverse benchmark suite. The results of this testing, provided in Chapter 7, demonstrate that 
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the sync arc approach is successful in significantly improving the existing low-level memory 

disambiguation. 
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CHAPTER 6 

C DEPENDENCE ANALYSIS TO GENERATE SYNC ARCS 

In the previous chapter, the sync arc approach was proposed for providing explicit depen

dence information to support low-level optimization and scheduling. For Fortran programs, 

strong source-level dependence analysis was available prior to the work in this thesis within 

the IMPACT compiler to provide the dependence information required to support sync arcs. 

However, dependence analysis for C programs was not supported. 

The C language provides interesting dependence analysis challenges not present in Fortran. 

The biggest challenge is posed by the availability of pointers within C, which exacerbate the 

aliasing problem. Aliasing occurs as the result of pointer assignments, when the same memory 

location can be accessed using different access names. To provide reasonable accuracy for 

aliasing, interprocedural alias and side effect analysis is required. In this chapter, the support 

added to the IMPACT compiler to allow accurate source-level C dependence analysis to support 

sync arcs is discussed. First, the changes to the existing dependence analysis required to support 

C semantics are presented. This is followed by a description of the interprocedural analysis 

proposed and implemented for this thesis. 

6.1 Dependence Analysis for C Programs 

Although the IMPACT compiler is primarily a C compiler, it is also able to handle programs 

originally written in Fortran by using the f2c translation tool. Because most of the scientific 

99 



benchmarks used for testing source-level transformations are written in Fortran, IMPACT'S 

source-level dependence analysis was developed to analyze only Fortran benchmarks. Although 

the existing analysis understood most C syntax, it assumed that the code being compiled con

tained only Fortran semantics. For example, the analysis did not consider the possibility of 

aliases between global variables. In this section, the modifications to the existing analysis re

quired to handle C semantics are described. An overview of the interesting semantic differences 

between C and Fortran are presented, followed by a discussion of some of the implementation 

details. 

6.1.1 Semantic differences 

Aliasing 

The most obvious difference between Fortran and C semantics is the availability of pointers 

in C. Pointers pose numerous challenges to static dependence analysis. Certainly the biggest 

challenge is to accurately and efficiently deal with the aliasing problem. 

In C, the pointer assignment, ptr = fkA, forms an alias between ptr and the variable A. 

Additionally, dereferences of the two variables are also aliased. For example, if A is a structure, 

the two references: 

ptr->field = y; 

A.field = z; 

store to the same location. To ensure correctness, the dependence analysis must be able to 

accurately handle these aliases. 

In the case of global pointer variables, it is possible for an alias to be created in one function, 

and to hold (i.e., remain valid) in another function. In the example above, if both ptr and A are 
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global variables, the alias created by the assignment ptr = &.A would hold in other functions 

executed subsequent to the assignment. Thus, without interprocedural analysis, any global 

pointer referenced in a function must be assumed to be aliased to all other global variables 

within the function. 

Another difficulty of pointers is that they facilitate the use of dynamically allocated data 

structures, such as linked lists. Dependence analysis for statically allocated data structures, 

sometimes referred to as named objects, is somewhat easier than for dynamically allocated 

structures (unnamed objects), because when aliases to static objects are formed, the name of 

the object is often visible. In contrast, dynamically allocated objects have no name, and are 

only accessed through dereferences of a pointer. Researchers have found disambiguation of 

recursively defined structures (e.g., linked lists and binary trees) particularly difficult due to 

the problem of determining whether these structures contain cycles [56], [57], [58]. For example, 

in the following code segment: 

while (ptr != NULL) { 
ptr->count = ptr->next->count + 4; 
p t r = ptr->next; 

} 

it is difficult to disambiguate the references to ptr-^count and ptr-^next-^count without knowl

edge of whether the data structure being accessed contains cycles. 

Pointer arithmetic 

Another challenge resulting from pointers is dealing with pointer arithmetic, and its duality 

with array accesses. In Fortran semantics, it is relatively straightforward to determine the 

relationship of two array accesses such as 
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A[i] = y; 

A[i+1] = z; . 

Because the location of the array is static, the dependence relationship of these two accesses is 

fixed unless the array index i is changed between the accesses. However, using C pointers the 

dependence relationship is also dependent upon the pointer not being modified. Consider the 

following C version of the above array accesses. 

p = &A[0]; 

p [ i ] = y; 

pCi+1] = z; 

In this code, the functionality is the same as for the previous code segment, but the dependence 

analysis is more complex. Not only must the analysis determine if the index variable i has 

changed between the accesses, but it must also detect if the pointer itself has been modified. 

The dependence analysis must also be able to deal with the duality between pointer arithmetic 

and array accesses. For example, the following three accesses refer to the same location in 

memory. 

*(p+i+l) = x; 

p[ i+l] = y; 

++p[i] = z; 

Function call semantics 

In Fortran, function calls pass arguments by-reference. Rather than passing the value of a 

variable to the called function, the address of the variable is passed. Thus, procedure binding 
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creates aliases between the function call arguments and the called function formal parameters. 

In contrast, C passes scalar variables by-value, and no aliases are formed for scalars. However, 

for non-scalars such as arrays and structures, C passes by-reference, and binding creates aliases. 

Dependence analysis for C must be able to distinguish between these cases and correctly create 

procedure binding aliases. 

Additionally, the semantics of standard Fortran do not allow aliases between function argu

ments. Thus, the dependence analysis can make the assumption that no aliases exist between 

the formal parameters to a function. For C, however, language semantics enforce no such re

striction, and interprocedural analysis is required to determine the dependence relationship 

between formal parameters. 

Unions 

Another source of aliasing within C is the union data structure. Unions allow different 

names and types to be assigned to the same memory location. Unlike structures, in which 

different fields are independent, aliases exist between all fields within a union. Unions can be 

particularly problematic to low-level dependence analyses, which often assume that memory 

references of different types or sizes are independent. 

6.1.2 Required modifications to existing dependence analysis 

In the previous section, some of the important semantic differences between C and Fortran 

which impact dependence analysis were discussed. In this section, the modifications to IM

PACT'S existing dependence analysis (which previously assumed Fortran semantics) required 

for C dependence analysis are overviewed. The intent is to examine a few of the interesting 
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issues involved in the modifications rather than to provide full implementation details. Those 

interested in details of the implementation should refer to [3]. 

Access table structure 

Pcode dependence analysis is performed intraprocedurally on each function. The first step 

in the analysis is to build an access table, containing all of the variable references within the 

function, indexed by the variable name. Within each entry in the table, a linked list of the 

individual references based upon the variable name is maintained. For programs compiled from 

Fortran, this approach worked well for two reasons. First, references based on a particular 

variable in general referred to the same data structure. Whether an array was referenced as 

the entire array (e.g., A) or as a particular element of the array (e.g., A[i]), the same data 

structure is being referenced. Therefore, it was convenient to group both references under the 

same access table entry. A second reason that indexing the access table by variable worked well 

is that Fortran-semantic access expressions contain only a single access. Whether the expression 

is A, A[i]\j], or A.B.C, only one memory reference is involved. 

In contrast, C dependence analysis requires analysis of arbitrarily complex access expres

sions. For example, the following is a single access expression from the benchmark 085.gcc. 

( ( ( ( ( insn)->f ld[3] . r tx))->f ld[0] . r tvec->elem[i] . r tx))->f ld[0] . r tx 

The expression contains numerous separate accesses (i.e., will generate numerous memory ref

erences) to several different data structures. To efficiently represent complex expressions such 

as this, the access table format required modification. 

Consider a simpler expression containing several accesses, such as **ptr. If ptr is assumed 

to be a global variable (i.e., its value does not reside in a register), this expression contains 
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three separate accesses: ptr, *ptr, and **ptr, each of which references a different location. 

Grouping these three accesses into the same entry in the access table is inefficient, because 

they reference totally separate structures. Instead, the Pcode access table was modified so that 

separate entries exist for expressions which access different locations. Therefore, ptr, *ptr, and 

**ptr are each placed in separate entries in the access table. 

Entries in the access table are indexed by a unique name derived from the access expression. 

In general, access expressions are connected by either the star (*), arrow (->), dot (.), or index 

([ ]) operators. Because the pointer deference such as ptr-tfield is equivalent to (*ptr).field, 

the arrow operator can be represented as a combined star and dot. Also, because of the duality 

of pointer and array references, the index expression can also be represented with the star. 

Table 6.1 shows a list of some C expressions and the corresponding access table entry name 

by which the expression is indexed. Note that operators are placed in the entry name according 

to the order in which the expression is evaluated, e.g., the expression **p requires p to be 

accessed prior to dereferencing it. This also corresponds to the bottom-up order in which the 

operators would appear in a parse-tree representation of the corresponding expression. This 

ordering ensures expressions such as A[i].B and AJ3[i], which reference different structures, are 

placed in separate access table entries. Note also that the access A[i]\j] could receive different 

entry names, based upon how it was declared. If declared as a 2-dimensional array, then the 

expression corresponds to a single dereference of the variable A (A*). However, if the variable 

were declared as a pointer or array of pointers, the expression indicates two dereferences of A 

(A**). 

This naming convention is also useful for identifying aliases between entries in the access 

table. Consider the statement 
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Table 6.1 Access Table Names. 

C Expressions 

P 
*P 
**p 
p-»field 
A[i] 

A[#] 
A.B 
A[i].B 
A.B[i] 

Access Name 

P 
P* 
p** 
p*.field 
A* 
A* or A** 
A.B 
A*.B 
A.B* 

p = &A; 

which forms an alias between p and A. An alias is also created for other expression pairs such 

p-^field and A.field. The access table naming makes the addition of these aliases straightfor

ward. Additional aliases can be added by looking for names with common suffixes appended 

to the originally aliased pair. Therefore, aliasing the access table names p* and A implies that 

names p*.field and A.field also alias. 

Duality of pointer and array references 

As discussed above, elements of an array can accessed using array notation or pointer 

arithmetic. To facilitate symbolic analysis of the access expressions, the two forms are treated 

uniformly by dependence analysis. Each access in the access table maintains an index expression 

field. The expression A[i] is maintained in the access table under the name A*, with the index 

expression i. Likewise, the expression *(p+i) is stored under the name p* with index expression 

i. A simple pointer expression *p is assumed to have an index expression of 0. This uniform 

treatment of pointers and arrays allows existing array disambiguation techniques to be applied 
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to C code. The Omega test used for Fortran dependence analysis can therefore also be applied 

to C dependence analysis. 

Identifying memory references 

The complex access expression from 085.gcc presented earlier contains several accesses, and 

will correspond to several load operations in the low-level IR. Dependence analysis has to 

identify each of the individual accesses in the expression which will correspond to an actual 

load or store operation in the low-level IR, and place this access in the access table. Once the 

access table correctly reflects all memory accesses in the program, existing tools from Fortran 

dependence analysis (e.g., Omega test and scalar dependence analysis) can be used to determine 

the dependence relationship between the individual accesses. Identifying individual accesses is 

performed by evaluating the hierarchical (parse-tree) representation of the expression from 

the bottom up, starting with the variable expression. A trivial example of this is shown in 

Figure 6.1(a). The expression tree is evaluated, starting with the variable A. To decide if A 

represents an access, both A and its parent expression (arrow) must be examined. Because the 

parent expression represents a dereference, A is determined to be an access and is added to 

the access table. Analysis continues by walking up the tree to the arrow expression. It too is 

determined to be an access. Finally, the top-level arrow expression is evaluated. Because its 

parent expression is not one of the access operators, it is also an access. Thus, the expression 

A-±B-*C contains three accesses. 

However, identifying the memory references is not always as straightforward as shown in the 

previous example. Consider the expression A[z].l? whose parse tree is shown in Figure 6.1(b). 

Again, analysis starts with the variable expression A. Because its parent is an index expression 
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Figure 6.1 Finding Memory References. 

(and the data structure is declared as an array), no explicit load of the variable A is required 

and it is therefore not an access. Analysis continues on the index expression; because its parent 

is a dot expression, the index also does not generate an access. Finally, the dot expression is 

determined to be an access. Thus, the entire expression only generates a single access in the 

access table. Figure 6.1(c) illustrates why this occurs. The data structure implied by the access 

expression, again assuming A was declared as an array, is an array of structures, laid out in 

consecutive memory locations. To access a particular element of one of the arrays, in this case 

i4[i].B, the compiler will make the address calculation: 
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address offset = i * s izeof(s truct) + (offset of B in s t ruct ) 

A single load will be generated for this expression, from the address of A plus the calculated 

address offset. 

A complication in determining what expressions correspond to memory accesses is that how 

the variables are declared determines whether the expression corresponds to an access. In the 

previous example, it was assumed that the variable A was declared as an array. Instead, let's 

assume the variable was declared as "int *A." In this case, the expression shown in Figure 6.1(b) 

corresponds to the physical memory layout depicted in Figure 6.1(d). The variable A is now a 

pointer, containing the address of the array of structures. To access a field in one element of 

the array, first A must be loaded to get the address of the array. Then the calculated offset is 

added to this address to determine the address for the second access. Thus, the entire expression 

requires two accesses instead of one because variable A was declared differently. 

Another example of this complication is for the expression A[i][j], which can correspond to 

either one, two, or three memory references depending on how the variable was declared. Fig

ure 6.2(a) illustrates the physical data structure for the access expression, assuming A is declared 

as a two-dimensional array. Simple arithmetic operations calculate the offset of the required 

element, and a single memory reference is required to fetch the desired value. Figure 6.2(b) 

and (c) show the alternate data structures for different variable declarations, requiring 2 or 3 

memory references. Thus, identifying those expressions which correspond to accesses requires 

knowledge of the variable declarations. 

Another complication in determining those expressions which correspond to memory ac

cesses is the address operator (&). This operator essentially acts to cancel out what would oth

erwise be an access. Using the example from Figure 6.2, consider now the expression &j4[i][j]. 

109 



A10]|0| 

A|3||3] 

(a) Layout if declared "int A[3][3] (b) Layout if declared "int *A[3]" (c) Layout if declared "int **A" 

Figure 6.2 Different Structures Based Upon Data Declaration. 

Instead of corresponding to either 1, 2, or 3 accesses as before, now the expression only corre

sponds to 0, 1, or 2 accesses. For example if the variable was declared as "int *;4[3]" as shown 

in Figure 6.2(b), the first access to A[i] would still be required, but from the value stored there 

the address of A[i]\j] can be calculated using arithmetic expressions and no further loads are 

required. Thus, when determining whether an expression is an access, the operators above the 

current operator in the expression tree must be checked for the address operator. 

Table 6.2 summarizes the rules for determining whether an operator corresponds to an 

access. For each operator in the left column, the entry in the table indicates whether the 

combination of the operator and a particular parent operator will result in a memory reference. 

The entries in the table with question marks indicate situations in which the variable declaration 

determines whether the expression corresponds to a memory reference. One entry which perhaps 

is non-intuitive is a star operator whose parent is an index operator. Normally, one would 

expect this type of expression to always correspond to an access. However, it is possible to 

declare a two-dimension array, and access it using an expression such as (*A)[j], which would 

A[0] A[0] 
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Table 6.2 Rules for Determining if an Operator Corresponds to an Access. 

Operator 
Index 
Dot 

Arrow 
Star 
Var 

Parent Operator 
Addr 

N 
N 
N 
N 
N 

Index 
1 
N 
N 
? 

? 

Dot 
N 
N 
N 
N 
N 

Arrow 
Y 
Y 
Y 
Y 
Y 

Star 
? 

Y 
Y 
? 
? 

Other 
Y 
Y 
Y 
Y 
Y 

be equivalent to A[0][j]. (Although legal code, one might question this type of coding style.) 

In this case, the star operator would not generate an access. 

Intraprocedural alias analysis 

Whether or not interprocedural alias analysis is performed, C dependence analysis must 

determine what aliases are formed within each function. Aliases created interprocedurally 

within other functions or by procedure binding will be discussed in the next section. Here, two 

types of aliases which are created strictly within the individual function are discussed: aliases 

which are implicit to the data types of the accesses and aliases which are explicitly formed by 

assignments within the function body. 

Aliases are implicit in the data type for the case of structures and unions. Because accesses 

to different fields of these types will be placed in different entries in the access table, explicit 

aliases are assigned between the entries to aid dependence analysis. In the case of structures, an 

alias is created between references to the entire structure and to a single field, but not between 

two fields. In the code segment, 

A = B; 

B.x = x; 
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B.y = y; 

dependences are required between the first and second statements, and between the first and 

third statements; no dependence is required between the second and third statements. In the 

case of unions, aliases are assigned between references to the entire union and and its fields, 

and also between field references. 

The other source of aliases with the function is explicit pointer assignments, which can occur 

in two formats. The first format is the assignment x = y, in which the value of one pointer is 

assigned to another pointer. In this case, the variables x and y are aliased. The second format 

is the form z = ScA, in which an alias is formed between *z and A. 

After assignment aliases are formed between entries in the access table, other names in the 

access table must be searched to perform a closure on the new alias. There are two general 

types of closure required: common suffix closure and transitive closure. Both will be examined, 

assuming a new alias between the names x* and y has just been formed. 

Common suffix aliases are those which must hold, given the newly created alias holds. They 

can be derived by symbolic manipulation of the access table names for the newly aliased accesses, 

looking for pairs of access table entries with names which have a common suffix appended to 

the original pair. For example, given the alias above, a common suffix alias would be added 

between access table entries with the names x * * and y*, if they exist. 

Simple transitive closure must also be performed after a new alias is formed. It looks for 

other aliases of x* and y and forms the transitive alias. For example, if y were previously 

aliased to z, a new alias between x* and z must be created. A more complex transitive closure 

is required for the new alias if an alias between w and x existed when the new alias involving 
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x* is created. In this case, an alias between the names w* and y must be added. Note that the 

creation of new aliases through closure requires, in turn, closure analysis on these aliases. 

6.2 Interprocedural Analysis for C Programs 

The existence of pointers in C provides great flexibility to the programmer, but results 

in a greater challenge to the dependence analysis. Through the use of pointer assignment, 

the programmer can reference a particular location in memory using different names, thereby 

creating an alias between the two names. The problem is exacerbated by the fact that an alias 

formed between two global variables in one function may remain valid within other functions 

executed after the alias is formed. When performing only intraprocedural dependence analysis, 

it must be assumed that any global pointer variable could have been aliased to any other global 

variable by a previously executed function. Additionally, if an alias is formed from a global 

pointer to a local pointer within the function, the local pointer must also be assumed to alias 

to all other global variables. These conservative assumptions required to ensure correctness are 

likely to seriously inhibit the effectiveness of dependence analysis. 

An additional aliasing problem is created by procedure binding. If a pointer or array 

variable is passed as an argument to a function, C passes the variable by reference, and an 

alias is created between the function's formal parameter and the incoming variable. When 

doing strictly intraprocedural analysis within a function, the arguments which are used to 

call the function are not visible to the function. Again, to ensure correctness, the dependence 

analysis must assume that any global variable could be passed as an argument. Thus, all formal 

parameters to the function must be conservatively assumed to be aliased to all global variables. 

Likewise, it is possible that the calling function could pass the same pointer as arguments to 
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two different formal parameters. Without interprocedural analysis, it must be assumed that 

any formal parameters used as pointers are aliased. 

Though not unique to C, a final dependence analysis problem which occurs when inter

procedural information is not available is the presence of function calls within the function 

being analyzed. Without visibility to other functions, the dependence analysis is unable to 

determine what global variables the called function may reference or modify. Therefore, the 

dependence analysis must conservatively assume that all global variables are modified by the 

called function and must add appropriate dependences between the function call and these vari

ables. Additionally, any arguments passed by reference to the other function could potentially 

be modified. These arguments, as well as any other variables aliased to the arguments, must 

also be dependent upon the function call. 

Each of these problems requires the intraprocedural dependence analysis to make very con

servative assumptions. As a result, the dependence analysis is likely to generate numerous false 

dependences between independent variables. When these false dependences are passed to the 

low-level code, important optimization and scheduling opportunities may be missed. Thus, lim

iting the dependence analysis to a single function at a time, with no visibility to other functions, 

can result in significantly degraded performance. Considerable compile-time overhead can also 

result from the maintenance of these false dependence arcs. 

Interprocedural analysis can be employed to overcome these problems. By providing visibil

ity to surrounding functions during dependence analysis, overly conservative assumptions can 

be avoided. To provide strong dependence analysis to support sync arcs, interprocedural analy

sis was implemented in the Pcode environment as part of this thesis effort. This interprocedural 
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analysis gathers alias and side effect information and identifies targets of indirect function calls. 

This information is merged back into the code to support later stages of compilation. 

In the remainder of this section, the implementation of this interprocedural analysis is 

presented. First, the required granularity of the analysis is discussed. This is followed by a 

discussion of how the program call graph is built, a task complicated by indirect function calls. 

Finally, some details of the implementation are examined. 

6.2.1 Granula r i ty of analysis 

Early work in interprocedural analysis [51], [53], [64] employed a rather coarse-grain anal

ysis. Most of the proposed methods examined each function individually, deriving summary 

information from the function. The program call graph was then built, and a data-flow analysis 

was performed by iterating over the call graph. This approach produces fairly good results, but 

is not fully accurate due to the granularity used. Figure 6.3(a) illustrates why accuracy is lost 

using this approach. Within function main, an alias is formed between the variables x and y. 

Note that this alias is not formed until after the call to fund and does not hold within that 

function. However, each function is treated as a single node by the interprocedural analysis, 

the flow information within main is lost and the alias would have to be considered valid within 

fund. As a result, a false dependence would be created between the references to *x and *y 

in fund. 

More recent work in interprocedural analysis of pointer aliasing [54], [65] performs the 

analysis at a significantly finer granularity. Landi and Ryder perform interprocedural analysis 

on a interprocedural control flow graph (ICFG), which is essentially the union of the program 

call graph and the individual functions' control flow graphs, augmented by entry, exit, and 
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funclQ 

{ 

int a; 

a = *x; 
*y = 5; 

func2 () 

{ 
intb; 
b = 0; 

} 

main () 

{ 
int *x, *y; 

*x = 4; 
funclO; 
x = y; 
func2(); 

(a) Sample program (b) Interprocedural control flow graph 

Figure 6.3 Accuracy Loss of Low-Granularity Interprocedural Analysis. 

return nodes. Figure 6.3(b) illustrates the ICFG for the program from Figure 6.3(a). Just 

as traditional data-flow analysis iterates over a function's control flow graph, interprocedural 

analysis iterates over this ICFG. Due to this finer granularity, the accuracy of the analysis is 

increased. 

Although the finer-granularity approach provides an increase in the precision of the analysis, 

it pays for this precision with added complexity. Note that with the ICFG, the entire program 

must essentially be loaded into memory simultaneously. In contrast, the coarser granularity 
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approach examines one function at a time, and must only process the summary information for 

the entire program. Much of the research using this finer granularity has dealt with relatively 

small programs. It remains to be seen whether this approach is practical on large C programs 

in terms of both the time required for analysis and the memory requirements. 

In determining the granularity of analysis to be used for the interprocedural analysis to 

support sync arcs, therefore, the tradeoffs between precision and complexity must be consid

ered. The essential question is whether the added precision of the finer-granularity approach 

will make a significant difference in the performance of low-level optimization and scheduling. 

Traditionally, source-level dependence analysis has been applied to source-to-source transfor

mations, requiring very precise analysis. For many loop transformations, a single ambiguous 

dependence is sufficient to prevent the transformation. In contrast, low-level transformations 

may be much less sensitive to slight imprecisions in the analysis. For example, if the majority 

of the ambiguous dependences are resolved during code scheduling, a single unnecessary depen

dence may not result in significant performance degradation. Therefore, dependence analysis 

to support low-level transformations, although requiring good precision, may be more tolerant 

of slight imprecisions than dependence analysis for source-level transformations. 

The interprocedural analysis chosen to support sync arcs for this thesis uses the coarser-

grain approach of iterating over the program call graph rather than the ICFG. It is believed 

this analysis will provide sufficient precision to allow aggressive low-level code optimization and 

scheduling. The results presented in Chapter 7 support this supposition. 
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6.2.2 Building t h e program call graph 

For languages which do not support indirect function calls, a single pass through each of 

the functions is sufficient to resolve the program call graph. However, indirect function calls 

(sometimes referred to as function or procedure variables) significantly complicate the problem 

of building the call graph. Because the actual function being called by an indirect function 

call may be stored in a global variable or passed into the function via the formal parameters, a 

simple intraprocedural analysis of the function may be insufficient to determine the target, or 

targets, of an indirect function call. 

Figure 6.4 illustrates this problem, using code segments from the SPEC-CINT92 benchmark 

O23.eqntott. Portions of the two functions which perform quicksort are shown. The top-level 

function, qsort, receives the function variable compar as a formal parameter. The function 

assigns the variable to a global variable qcmp, and then calls the low-level routine qst, which 

actually performs the recursive sort. The compare function pointer is passed to qst via the 

global variable qcmp. Thus, the indirect function call within qst is performed using a value 

which was first passed through a procedure binding, and then through a global variable. An 

intraprocedural analysis of these functions would be unable to resolve the indirect function call 

and the program call graph could not accurately be built. 

One approach to this problem is to simply search the program for all function names which 

are ever assigned to function variables. All indirect function calls could then be assumed 

to potentially call all of these functions. A possible refinement of this approach would be 

to examine the function arguments of the indirect function call and to assume an indirect 

function call only calls those functions which match its parameter list. Unfortunately, this 

simple approach results in many incorrect edges in the call graph. For interprocedural data-
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qsort (base, n, size, compar) 
char *base; 
intn; 
int size; 

int (*compar)(); 

{ 
qcmp= compar; 

qst (base, max); 

if((*qcmp)(j,lo)>0) 
j = lo; 

} 

qst (base, max) 

char *base, *max; 

( 

((*qcmp)(jj=base,i) > 0) 

} 

Figure 6.4 Interprocedural Function Pointers. 

flow analysis, these extra edges will lengthen the analysis and reduce its precision. Additionally, 

the imprecision may inhibit important transformations which rely upon the call graph (e.g., 

inlining). 

An adequate solution to this problem requires interprocedural data-flow analysis. As seen 

in Figure 6.4, the possible values of the function variable must be propagated through several 

functions from where they are defined to where they are used. Unfortunately, interprocedural 

data-flow analysis requires the presence of a program call graph. Thus, the program call graph 

and the interprocedural analysis are mutually dependent. One solution is to do both simulta-
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signals () 
{ 

signal (SIGQUH, quit); 
signal (SIGPIPE, quit); 
signal (SIGTERM, quit); 
signal (SIGALRM, time.out); 
signal (SIGFPE, quit); 

signal (SIGBUS, quit); 

} 

Figure 6.5 Indirect Function Calls Through Library Functions. 

neously, iteratively building the call graph as data-flow is being performed. Wiehl discusses an 

approach similar to this [53]; however, actual details to his approach are sketchy. 

The approach used for this thesis builds the control flow graph while performing data-flow 

analysis. The data-flow analysis is performed iteratively, initially starting with only the function 

main. As call targets are resolved during the iterative analysis, new functions are added to both 

the flow analysis and to the call graph. Further details of the iterative analysis are provided in 

the next section. 

This approach has been tested across the fifteen C benchmarks from the benchmark suite, 

of which six had indirect function calls. All function calls for all benchmarks were successfully 

resolved and accurate call graphs were generated, with one exception. The technique has 

difficulty with indirect calls made within library functions. In particular, this occurs with the 

library function signal. Figure 6.5 illustrates this problem, using the signal handling routine 

from the benchmark 072.sc. This routine defines user handlers (quit and time-out) to be invoked 

in the case of errors. These two routines are never directly called within the user code, but are 

only provided as function pointers to the signal library. Because they are not called by user 

code, they cannot accurately be attached to the call graph. 
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6.2.3 Implementa t ion 

The first step in implementing interprocedural analysis is to understand the desired output. 

To support dependence analysis, the output of the interprocedural analysis should produce 

accurate alias and side effect information. For each function, the analysis should identify the 

aliases between pairs of global variables, the aliases between global variables and the function's 

formal parameters, and the aliases between the formal parameters. Aliases involving local 

variables can then be resolved for each function using intraprocedural analysis. The side effect 

information required for each function is simply a list of the global variables defined and used 

by the function, or by any functions reachable through calls made by this function. Also, side 

effect information regarding passed arguments is necessary and is used to accurately define the 

memory dependence between memory operations and subroutine calls. 

To provide this desired information, interprocedural analysis is performed in three phases 

(Figure 6.6). During the first phase, data required to support the interprocedural analysis are 

extracted from each function in the program. The second phase of interprocedural analysis 

then performs an iterative data-flow analysis on this summary information from each function. 

Finally, the results of the interprocedural analysis are used to perform accurate dependence 

analysis for each function. 

Extracting summary data 

Rather than attempting to bring the entire program into the compiler at one time and 

performing data-flow over the entire program, this thesis employs an approach which makes a 

pass over each function individually in the program. During this pass, summary information 

for each function is extracted and stored in an interprocedural data file. Thus, the interproce-
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Phase I 

Extract required 
data from functions 

\ 
Phase II 

Perform iterative 

. data flow analysis . 

' 
Phase III 

Merge interprocedural 
data into functions 

Figure 6.6 Phases of Interprocedural Analysis. 

dural analysis must only perform data-flow using the summary information rather than holding 

the entire program in memory. During the first phase of interprocedural analysis, the sum

mary information is extracted. The following data are included in each function's summary 

information: 

(1) list of formal parameters 

(2) list of function calls, including parameters 

(3) global variables defined 

(4) global variables referenced 

(5) aliases created 

(6) formal parameters defined 

(7) assignments of function names to pointers 

(8) variables returned. 

122 



The list of a function's formal parameters is included in the summary information to support 

procedure binding. When the function is called with a global variable which is passed by 

reference, an alias is formed between the global variable and the function's corresponding formal 

parameter. To allow creation of this alias, the names of the formal parameters are included in 

the summary information. Because aliases can only be created if the argument is passed by 

reference, only the names of formal parameters which are used as pointers will be listed. 

The summary information also maintains a list of the function calls made from within the 

function. Information on function calls is used to build the call graph and to aid in procedure 

binding during data-flow analysis. For each function call, several pieces of information are 

recorded in the summary information. First, the call mode, whether direct or indirect, is 

specified. For direct calls, the name of the called function is specified. For indirect calls, the 

function variable is specified. Additionally, all variables which alias (intraprocedurally) with the 

function variable are listed as variables which could contain the function name. The second type 

of information maintained for each call is the call arguments. As with the function variables, 

any aliases of the argument variables are also listed. The final information extracted for each 

call is the return variable for the call. This is maintained to allow binding of the return variable, 

which can also create aliases. 

Because the aim of the interprocedural analysis is to provide accurate aliasing and side effect 

information, this type of information must obviously be included in each function's summary 

information. Therefore, the summary contains a list of the global variables defined and refer

enced by the function. Through data-flow analysis, this list of global variables can be updated 

to reflect the side effects of the function and any functions reachable through calls from this 

function. Central to the interprocedural alias analysis is the list of intraprocedural aliases cre-
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ated by each function. The summary information stores only aliases created within the function 

involving global variables or formal parameters. No aliases involving local variables are stored 

here, because they do not contribute to the interprocedural data-flow analysis. The only local 

aliases which might affect the analysis are those which alias either formal parameters or call 

arguments. These aliases have already been recorded in the call section of the summary, and are 

not necessary here. Another item included in the summary information is a list of the formal 

parameters which are defined within the function. This is provided to allow the interprocedural 

analysis to determine whether the function causes side effects on its incoming arguments. 

To support building the call graph in the presence of function pointers, the summary infor

mation also contains assignment of function names to pointer variables within the function. For 

function names which appear directly as a call argument, the name is stored in the call section. 

The final piece of information recorded for each function is a list of the variables returned by 

the function. During binding for a function return, these variables can be aliased to the variable 

in the calling function which stores the return value. 

Iterative analysis 

The second phase of interprocedural analysis performs an iterative data flow analysis of the 

summary information collected during the previous phase. This phase does not examine the 

individual functions again; instead only the summary information is used as input. The output 

of this phase of the analysis is a call graph of the program and updated summary information 

for each of the functions. This updated summary information provides interprocedural side 

effect and alias information and lists the actual targets of indirect function calls. 
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During this phase of the analysis, data-flow analysis is performed on the program call graph, 

with individual functions as the nodes in the graph. The efficiency of the data-flow algorithm 

is dependent upon the order in which nodes in the graph are visited. For example, for an 

acyclic graph in which information flows only from the parent function to the child function, 

the data-flow requires only a single pass over the graph if performed as a pre-order traversal 

of the call graph. However, for programs whose call graph contains cycles, the analysis must 

be performed iteratively until no further changes in the data occur. Therefore, the type and 

direction of the data flow during the analysis need to be examined. 

Building the call graph, which is performed iteratively using the function main as a seed, is 

a top-down type of data-flow. As new functions are added to the graph, they in turn add more 

children below them in the graph. The direction of data flow for alias information is less clear. 

Because of the granularity of the analysis, global aliases propagate both up and down through 

the graph. Local aliases formed through procedure binding are passed downward in the graph; 

however, the aliases formed by return binding tend to flow upward. Likewise, possible values 

which can be assigned to function pointers can be propagated up and down through the graph 

by calls and returns. 

Side effect analysis is clearly a bottom-up type of analysis. For each function, the set of 

global variables modified is simply the union of the variables modified by the function itself, and 

the variables modified by each of its children. Thus, the global side effect data is propagated 

upward through the call graph from the leaves, and a bottom-up analysis is most effective. 

Likewise, argument side effects are most efficiently found through a bottom-up analysis. Because 

a function's formal parameters may be passed as an argument, determining whether the formal 

parameter is modified is again a union of whether the function itself modifies the variable and 
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whether any function to which the variable is passed modifies it. Therefore, side effect data for 

formal parameters also flow upward through the graph. 

For this implementation, the data-flow was divided into two passes, each of which is per

formed iteratively. First, a top-down data-flow is performed, flowing alias and function pointer 

information through the graph. The call graph is fully resolved during this pass. Following 

this pass, a bottom-up data-flow is performed to obtain global variable side effect and function 

argument side effect data. The top-down and bottom-up passes are detailed in the following 

sections. 

Top-down pass. The top-down data-flow is initiated by adding the function main to the 

call graph. When a new function is added to the call graph, several steps are performed. First, 

the function is appended to the list of functions being analyzed. The function is then analyzed 

for direct function calls; any functions called through direct function calls are recursively added 

to the call graph. Because of the recursive nature of adding arcs to the call graph during 

function initialization and because most function calls are direct, the majority of the call graph 

is generally built during function initialization, before any data-flow is actually performed. 

Finally, the summary information within the function is examined and any information global 

in scope, such as assignments to global function pointers made within the function, are added 

to global data structures. 

During top-down data-flow analysis, each node is visited in the order it was initialized. This 

in general equates to a depth-first search of the call graph. During each visit of a node, the 

following tasks are performed: 

(1) Bind incoming arguments. 

(2) Bind return variables. 
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(3) Bind incoming function pointer values. 

(4) Bind return function pointer values. 

(5) Update side effected function pointer arguments. 

(6) Check global function pointer values. 

The first two tasks update the alias information flowing through the graph. To bind incoming 

arguments, the function follows all incoming arcs (to parent nodes) and determines if the aliases 

for any incoming arguments have changed. If any incoming argument is now aliased to a new 

global variable, binding requires that the global variable be aliased to the corresponding formal 

parameter within the function. The creation of this new alias between the global and formal, 

in turn, may require other data structures within the function to be updated. For example, if 

the formal is an argument (or alias of an argument) to a function call, then the global variable 

must now be added to the possible argument list for that function call. 

Binding of return variables is similar to binding incoming arguments. All outgoing arcs 

in the call graph to child functions are followed to determine if the list of variables possibly 

returned has changed. If so, the variable within the caller which receives the return value must 

be aliased to the new return variable. 

Figure 6.7 illustrates how aliases propagate due to binding of incoming arguments and 

return variables. During a visit of fund, a search of its parent functions will find that the 

global variable g is passed as an argument and will create an alias between g and fl. Because 

/ l also appears as an argument in the call to func2, this alias is recorded at the call site. When 

func2 is visited, its search of incoming arguments will find g as a possible alias to its incoming 

parameter, and an alias of g and /2 is created within fundi. Thus, the alias due to binding 

has been propagated through multiple function calls. Note also that func2 returns a global 

variable h. During the visit to fund, binding of return variables will form an alias of h to I. 
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int*g,*h; 

fund (int *fl) 

{ 
int *1; 

l = func2(fl); 

} 

func2 (int *f2) 

{ 
int *k; 
*h = *f2+l; 

return (h); 

1 

main () 

{ 
int a; 
a = 4; 
g = &a; 

funcl(g); 

} 

Figure 6.7 Aliases Created by Binding. 

To facilitate building the call graph when indirect function calls are present, the other four 

tasks in top-down data-flow deal with updating possible values for function pointers. The first 

two of these, binding incoming function pointer values and binding return function pointer 

values, correspond directly to the binding steps discussed above. Rather than creating aliases 

during the binding, function pointers are assigned possible values. In the same way that aliases 

flow through the call graph, possible function pointer values also propagate. If a function 

pointer which has been updated with a new possible value is used within the function in an 

indirect function call, a new target of the call has been defined and the call graph is updated 

with this new arc. 
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fund (int *fl) 
{ 

int(fptr*)(); 

func2(fptr); 

} 

func2(int(*f2)()) 

{ 

f2 = func3; 

} 

func3 () 

{ 

1 

Figure 6.8 Side effects on Function Pointer Arguments. 

Updating side effected function pointer arguments involved the flow of data from the child to 

the parent function via the function arguments being modified. This is illustrated in Figure 6.8. 

The function fund passes its local function pointer fptr to /unc2 as an argument. The variable 

is modified by func2, giving the pointer the address oifuncS as its value. The data-flow analysis 

must handle value side effects to successfully propagate function pointer values and accurately 

build the call graph. The final task done when visiting a node is to check for global function 

pointers with new possible values. If the global function pointer is used in the function, the call 

graph is updated appropriately. 

Bottom-up pass. Following the top-down pass, a bottom-up data-flow analysis is per

formed to resolve side effects. This analysis is much simpler and tends to iterate less than the 

top-down analysis. The work performed during this pass also more closely resembles a classic 

data-flow task. The bottom-up analysis is performed by iteratively visiting each function in the 
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call graph, in the reverse order to which the functions were added to the graph. Two tasks are 

performed each time a function node is visited. 

The first task performed during the visit of a node is to propagate global defines and uses up 

the call graph. The set of global variables defined or used by a function is simply the union of 

the set of variables defined or used by all child nodes, plus the global variables actually defined 

or used within the function. The second task is to propagate definitions of formal parameters 

up the call graph. In Figure 6.9, to determine whether a side effect is caused on the variable g 

by the call to fund inside main, the side effect of the formal parameter /2 in /tmc2 must be 

propagated up to fund. In fund, this creates a side effect o n / 1 , which is then propagated to 

main to indicate a side effect on g. For this task, then, when a node is visited, all function calls 

within the node are examined to determine whether they pass formal parameters as arguments 

to the callee. If so, the callee is examined to determine whether it modifies that particular 

argument. If the parameter is modified, then the formal parameter within the node being 

visited is marked as having been modified. 

Merging interprocedural data 

The final phase of interprocedural analysis entails merging the results back into the depen

dence analysis for each function. Each function is re-examined individually, and dependence 

analysis is performed. This time, however, the results of the interprocedural analysis are avail

able to provide increased accuracy. The interprocedural information is used in various ways. 

The interprocedural analysis determined the possible targets of all indirect function calls. 

This list of possible targets is merged into the Pcode data structure as an expression pragma as

sociated with the indirect function call. The information can then be used during dependence 
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int *g; 

fund (int *fl) 
I 

int *1; 

l=func2(fl); 

} 

func2(int*f2) 

( 
*f2=l; 

> 

main () 

{ 
int a; 
a = 4; 
g = &a; 

funcl(g); 

} 

Figure 6.9 Propagation of Side effects on Formal Parameters. 

analysis: knowing what functions are potentially called by an indirect function call allows 

accurate dependences to be added between function calls and memory references, using inter

procedural side effect information. During subsequent compilation down to low-level IR, this 

list of targets is preserved and made available for use by other modules. 

The interprocedural data also provide an updated list of aliases which hold within each 

function. During dependence analysis of the individual functions, these aliases are simply 

used to create additional aliases between entries in the access table, which will in turn create 

dependences between appropriate memory references. 
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The final information provided by interprocedural analysis is the global variable and for

mal parameter side effect information, which is used to provide accurate memory dependences 

between function calls and memory operations within the function being analyzed. To deter

mine whether a read of a global variable is memory dependent on a function call, the set of 

global variables defined by the target function is examined. (Although only the function being 

compiled is visible to the compiler, the interprocedural summary information for all functions 

is available.) Similarly, to determine whether a write of a global variable is dependent on a 

function call, both the set of globals defined and the set of globals used must be examined, 

and the appropriate dependence added. To determine whether a variable which appears as an 

argument to a function call should be dependent upon the function call, the callee summary 

information must be examined to determine if the callee modifies the corresponding formal 

parameter. 

6.3 Dependence Analysis Summary 

In this chapter, the C dependence analysis implemented within the IMPACT compiler to 

support sync arcs has been presented. Prior to this thesis, IMPACT supported dependence 

analysis only for programs originally compiled from Fortran. The required modifications to 

this dependence analysis to support C semantics, including support for pointer aliasing, is 

presented. The need for interprocedural dependence analysis, and its required granularity, is 

also discussed. A coarse-grain interprocedural analysis, which iterates on the program call 

graph rather than an interprocedural control flow graph, is proposed and implemented. The 

difficulty of building the call graph in the presence of indirect function calls is also discussed and 

a solution provided. The interprocedural analysis was tested on a suite of 15 benchmarks and 
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shown effective at providing accurate dependence information to support sync arcs. Results of 

this testing is presented in Chapter 7. 
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CHAPTER 7 

EXPERIMENTAL RESULTS 

In previous chapters, the sync arc technique for improving static memory disambiguation for 

low-level code was proposed, and the implementation of source-level interprocedural dependence 

analysis to support sync arcs was described. In this chapter, the potential impact of sync 

arcs on performance is quantitatively studied. A suite of 29 benchmarks, including 15 integer 

and 14 floating-point programs, is evaluated to better understand the ability of sync arcs to 

provide improved memory disambiguation. Following the analysis of the sync arc technique, a 

comparison of the static and dynamic techniques proposed in this thesis is performed. 

7.1 Sync Arcs 

To measure the performance of the sync arc technique, the suite of benchmarks was com

piled, with sync arcs added during the Pcode phase. Each benchmark was compiled in several 

different ways, varying the modules which used the sync arc information to aid memory disam

biguation. The different versions of the low-level code were then simulated using the method

ology described in Section 2.4. Simulations were performed for architectures with issue width 

ranging from 4-issue to 12-issue, using the functional unit configurations shown in Table 7.1. 

The results obtained for the 15 integer benchmarks are presented, followed by the results for 

the 14 floating-point benchmarks. 
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Table 7.1 Number of Functional Units. 

Functional 
Units 
Int ALU 
FPALU 
Memory 
Branch 

4 
Issue 

2 
2 
2 
2 

6 
Issue 

3 
3 
2 
2 

8 
Issue 

4 
4 
4 
4 

12 
Issue 

6 
6 
6 
4 

7.1.1 Integer benchmarks 

The 15 integer benchmarks were all originally written in C and are compiled using the C 

interprocedural dependence analysis developed for this thesis. Programs written in C tend 

to be very control-intensive, resulting in small basic blocks. Although techniques such as the 

superblock reduce the impact of these branches on scheduling and optimization, processor 

performance may be highly dependent upon the ability to predict and execute multiple branches 

per cycle. 

The integer benchmarks evaluated include nine common Unix benchmarks and the six 

SPEC-CINT92 benchmarks. For each experiment, separate graphs showing Unix and SPEC-

CINT92 results are provided. 

Speedup on 8-issue architecture 

Figures 7.1 and 7.2 show the speedup of code compiled with and without sync arcs over a 

baseline single-issue architecture. The bar on the left for each benchmark reflects the speedup 

of an 8-issue architecture for code compiled without using sync arcs, relative to the baseline 

single-issue architecture. The right-hand bar shows the speedup for the same 8-issue architec

ture using the identical compilation path, except that sync arcs are employed to aid memory 
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6 " • » I No Sync I Sync 

Figure 7.1 Sync Arc 8-Issue Unix Results. 

disambiguation. Figures 7.3 and 7.4 show similar information, except that here the ratio of 

performance between the sync arc and non-sync arc cases is shown. For example, for the 

benchmark grep in Figure 7.1, the non-sync arc code provided a 3.2 times speedup over the 

base case and the sync arc code provided a 4.3 times speedup. This ratio of these two speedups 

is reflected as a 1.34 times speedup in Figure 7.3. 

The data demonstrate that the sync arc technique is successful at removing ambiguous 

memory dependences which the existing low-level memory disambiguation was unable to elim

inate. Sync arcs resulted in more than 20% speedup over the same architecture without sync 

arcs for six of the benchmarks, and significantly greater speedup than this in a few cases. The 

improved memory disambiguation significantly impacted overall ILP; for most benchmarks, 

the code compiled with sync arcs provided greater than 2.5 times speedup over the baseline 

single-issue architecture. 
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1.5 nun 
Benchmark 

Figure 7.2 Sync Arc 8-Issue SPEC-CINT92 Results. 

1.6 

1.5 

1.4 

1.2 

Benchmark 

Figure 7.3 Sync Arc 8-Issue Unix Ratios. 

137 



Benchmark 

Figure 7.4 Sync Arc 8-Issue SPEC-CINT92 Ratios. 

At first glance, an overall speedup of 2.5 may appear somewhat low for an 8-issue processor. 

However, the potential speedup available as the number of issue positions and functional units 

is increased is limited by several factors (other than memory and control dependences). First, 

although an 8-issue architecture is being modeled, only 4 ALUs were available per cycle. Second, 

because inlining has not been implemented at the Pcode level, it was not performed for this 

code, limiting the ILP which was exposed. Also, performance improvements are somewhat 

hidden by the cache and branch prediction effects being simulated. For example, if 30% of the 

execution cycles are lost in the single-issue architecture due to cache and branch prediction 

misses, the 8-issue architecture would have to provide much greater than 2.5 times speedup 

during effective cycles to achieve an overall 2.5 times speedup on the program. This effect is 

especially evident in the benchmark 026.compress, whose cache hit rate during simulation was 

only 77%. Although cycle estimates provided by the IMPACT scheduler indicated a potential 
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24% speedup due to sync arcs, only about 12% speedup was obtained from simulation results 

due to the cache effects. 

One particularly interesting result was for the benchmark cmp, which obtained a 17.8 times 

speedup over the single-issue processor and an 11.8 times speedup over the 8-issue processor 

without sync arcs. This extreme effect results because cmp is a very small benchmark whose 

execution is dominated by a single inner loop. Figure 7.5 shows source code for this inner 

loop, pruned to show the main trace through the loop. Figure 7.6(a) shows the Lcode for one 

iteration of the loop after optimization, without the benefit of sync arcs. The loop contains 

26 instructions, including several stores. Figure 7.6(b) shows the inner loop for the sync arc 

code. The inner loop contains only 7 instructions, with no stores. Because of the improved 

memory disambiguation, the remainder of the instructions was able to be removed from the 

loop. As a result, the non-sync arc code executes more than 3 times the number of dynamic 

instructions as the sync arc code. Additionally, the store instructions in the non-sync arc code 

inhibit subsequent code scheduling; the sync arc code is able to obtain an overall instructions 

per cycle (IPC) value of 4.82 for the program, compared with 1.21 IPC for the non-sync arc 

code. The combination of these two factors results in an overall 11.8 times speedup for the sync 

arc code. 

Improved memory disambiguation is not able to increase performance for all benchmarks. A 

notable case is the benchmark O23.eqntott, from SPEC-CINT92. This benchmark is dominated 

by a single loop which accounts for over 80% of the execution time. This loop contains no 

store operations, and memory disambiguation is not a factor in exposing ILP. Note that in Fig

ure 7.2 the non-sync arc code for O23.eqntott already performs well, showing the best of speedup 

compared to the single-issue architecture of any of the SPEC-CINT92 benchmarks. Another 
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while(1) { 
chr++; 
cl = (—(filel)->__cnt < 0 ? __fi lbuf(f i lel) : ( int) *(filel)->__ptr++); 
c2 = (—(file2)->__cnt < 0 ? __filbuf(file2) : ( int) *(file2)->__ptr++); 

i f ( c l == c2) { 
if (cl == ' \ n ' ) line++; 
continue; 

} 
} 

Figure 7.5 Source Code for Inner Loop of cmp. 

benchmark which showed little benefit from sync arcs was 022.U, because 022.U contains many 

heavily executed functions which contain a single acyclic basic block. For this benchmark, in-

lining is required to expose available ILP, and better results for sync arc code are anticipated 

after Pcode inlining is available. 

Relative benefit of optimization and scheduling 

For the benchmark cmp, large performance benefits were obtained by both optimization, 

which reduced the number of dynamic instructions, and scheduling, which exposed the available 

parallelism to the hardware. An experiment was performed to measure the relative benefit 

of sync arcs to optimization and scheduling. Figures 7.7 and 7.8 show the results of this 

experiment, which again assumed an 8-issue architecture. For each benchmark, three bars are 

shown, each reflecting speedup over code compiled without sync arcs. The leftmost bar reflects 

the speedup if sync arcs are used to aid classic and ILP optimizations, but not code scheduling. 

The middle bar shows the speedup achieved when sync arcs are used to aid scheduling, but 

not optimization. The right bar shows the overall speedup when sync arcs are applied to both 

optimization and scheduling. 
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(op 158 ld_i <LF> [(r 179 i)] [(r 157 i)(i 0)] 
(op 160 add [(r 180 i)] [(r 179 i)(i 1)] 
(op 161 st_i <LF> [] [(r 157 i) (i 0)(r 180 i)] 
(op 162 ld_i <LF> [(r 181 i)] [(r 158 i)(i 0)] 
(op 163 ld_i [(r 182 i)] [(r 181 i)(i 0)] 
(op 164 add [(r 183 i)] C(r 182 i)(i -1)] 
(op 165 st_i [] [(r 181 i)(i 0)(r 183 i)] 
(op 168 bit [] [(r 182 i) (i 1) (cb 73)] 
(op 169 ld_i <LF> [(r 184 i)] [(r 158 i)(i 0)] 
(op 170 ld_i [(r 185 i)] [(r 184 i)(i 4)] 
(op 172 add.u [(r 186 i)] [(r 185 i)(i 1)] 
(op 173 st_i [] [(r 184 i)(i 4)(r 186 i)] 
(op 174 ld.uc [(r 1 i)] [(r 185 i)(i 0)] 
(op 176 ld_i <LF> [(r 187 i)] [(r 160 i)(i 0)] 
(op 177 ld_i [(r 188 i)] [(r 187 i)(i 0)] 
(op 178 add [(r 189 i)] [(r 188 i)(i -1)] 
(op 179 st_i [] [(r 187 i)(i 0)(r 189 i)3 
(op 182 bit [] [(r 188 i)(i l)(cb 49)] 
(op 183 ld_i <LF> [(r 190 i)] [(r 160 i)(i 0)] 
(op 184 ld_i [(r 191 i)] [(r 190 i)(i 4)] 
(op 186 add_u [(r 192 i)] [(r 191 i)(i 1)] 
(op 187 st_i [] C(r 190 i)(i 4)(r 192 i)] 
(op 188 ld.uc [(r 2 i)] [(r 191 i)(i 0)] 
(op 190 bne [] [(r 1 i)(r 2 i)(cb 54)] 
(op 191 beq [] [(r 1 i)(i 10) (cb 50)] 
(op 192 beq [] [(r 1 i) (i -l)(cb 52)] 

(a) Non-sync arc code 

(op 168 bit [] [(r 219 i)(i -7) (cb 82)] 
(op 174 ld.uc [(r 1 i)] [(r 210 i)(i -8)] 
(op 182 bit [] [(r 201 i)(i -7) (cb 83)] 
(op 188 ld.uc [(r 2 i)] [(r 192 i)(i -8)] 
(op 190 bne [] [(r 1 i)(r 2 i)(cb 84)] 
(op 191 beq [] [(r 1 i)(i 10) (cb 85)] 
(op 192 beq [] [(r 1 i) (i -l)(cb 86)] 

(b) Sync arc code 

Figure 7.6 Lcode for Inner Loop of cmp. 
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Figure 7.7 Sync Arc 8-Issue Unix Optimization Versus Scheduling. 

Figure 7.8 Sync Arc 8-Issue SPEC-CINT92 Optimization Versus Scheduling. 
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Note that the combined effect of using sync arcs for both optimization and scheduling is 

less than the product of the speedup when using sync arcs individually for either optimization 

or scheduling, because there is overlap in how the speedup is achieved. For example, if a load 

can be moved outside a loop during optimization, speedup is achieved because fewer operations 

must be executed. If the load is not removed by optimization, scheduling may be able to hide 

the cost of the load by scheduling it in an otherwise empty slot. However, if both optimization 

and scheduling use sync arcs, the optimization will remove the load and the scheduler will be 

less able to obtain speedup. Thus, the benefit is achieved by either optimization or scheduling, 

but not both. However, in some cases, there is a complementary effect, such as the cmp example 

in Figure 7.6. In this example, optimization removed stores from the loop, which resulted in 

added freedom to the scheduler. 

Examining the data in Figures 7.7 and 7.8, no clear pattern emerges as to whether improved 

disambiguation is more important to optimization or scheduling. Benchmarks such as cmp, lex, 

and wc achieve most of their speedup due to improved optimization. Others, such as eqn and 

grep, achieve speedup primarily as the result of scheduling. In general, results indicate that im

proved memory disambiguation can significantly enhance the capabilities of both optimization 

and scheduling. 

Varying the number of functional units 

For narrow-issue architectures, it may be less critical for the compiler to expose instruction-

level parallelism. However, as architectures employ more functional units and issue multiple 

instructions per cycle, the compiler must attempt to expose sufficient parallelism to make 

effective use of available resources. An experiment was performed using architectures with 
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Figure 7.9 Sync Arc Unix Results for Different Issue Rates. 

various amounts of resources to determine how effectively IMPACT compilation with sync arcs 

makes use of increased or decreased resources. Figures 7.9 and 7.10 show the results of this 

experiment for integer benchmarks. These figures show the speedup which the 4, 6, 8, or 12 

issue architecture would achieve using code compiled with sync arcs over the baseline single-issue 

architecture. 

The desired outcome is to see increasing speedup as more function units are made available. 

For the majority of benchmarks tested, additional processor resources do provide a significant 

performance increase. This indicates that sufficient ILP is being exposed to the hardware in 

many important sections of the code. However, for several of the benchmarks, only modest 

improvements are achieved by the wider issue architectures. For example, although processor 

resources are increased threefold (from 4- to 12-issue), the benchmarks tbl and 022.U achieve only 

minor performance benefit, indicating ILP is not being adequately exposed to the hardware. 
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Figure 7.10 Sync Arc SPEC-CINT92 Results for Different Issue Rates. 

The lack of inlining during these experiments was a major factor in the inability to expose ILP, 

particularly for these two benchmarks. 

An interesting result seen particularly in the Unix benchmarks is the stairstep effect, in 

which the results for 8- and 12-issue architectures are similar, but significantly increased over 

the 4- and 6-issue architectures. Notice in cmp, grep, lex, and wc in particular that the results for 

4- and 6-issue architectures are nearly equivalent, yet significantly less than the performance 

for 8- or 12-issue. This stairstep effect is the result of the number of branches the different 

architectures can issue per cycle. The 4- and 6-issue architectures can execute only 2 branches 

per cycle, while the 8- and 12-issue architectures can execute 4 branches per cycle. This indicates 

that the performance for benchmarks which exhibit this stairstep is being directly limited by 

the ability to execute branches. For example, the code for cmp in Figure 7.6(b) shows that the 

inner loop has been reduced to 8 instructions, 6 of which are branches. Thus, the ability to 

effectively execute multiple branches per cycle drives processor performance. 
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Effectiveness of coarse-grain interprocedural analysis 

To provide interprocedural aliasing and side-effect information, the dependence analysis 

implemented for this thesis employs a low-granularity interprocedural analysis. (For further 

details on this analysis, which iterates on the program call graph, see Section 6.2.) To measure 

the accuracy of this analysis, the performance of sync arc code generated by the interprocedural 

analysis was compared to "ideal" sync arc code obtained without interprocedural analysis. This 

sync arc code without interprocedural analysis makes the unsafe assumption that no aliases 

hold in a function except those created within the function. Surprisingly, all fifteen Unix and 

SPEC-CINT92 benchmarks successfully compiled and executed despite this unsafe assumption. 

Because of this, the effectiveness of the interprocedural analysis at limiting unnecessary aliasing 

can be measured against an "ideal" analysis which has no interprocedural aliasing. 

Figures 7.11 and 7.12 show the results of this analysis. In these figures, the performance 

of the code using the implemented interprocedural analysis is shown relative to the perfor

mance for the "ideal" analysis. A positive performance difference for a benchmark indicates 

that the interprocedural code performed better, while a negative difference indicates the ideal 

code compiled without interprocedural analysis performed better. A large negative number 

(>10%) would indicate that the interprocedural analysis added aliases (possibly correct and 

necessary) which slowed performance compared to the non-interprocedural code. Note that for 

all 15 integer benchmarks, no significant performance difference was seen between the inter

procedural and non-interprocedural cases. This indicates that the coarse-grain interprocedural 

analysis employed to support low-level code transformations provided sufficient accuracy. The 

minor variations seen (±3%) can be attributed to the typical variations obtained from detailed 

146 



2% 

I" 
a 0% 

L 
- 2 % 

Figure 7.11 Effect of Interprocedural Analysis - Unix. 

simulation (e.g., deleting an instruction changes the addresses of branches and may change the 

effectiveness of the branch prediction scheme). 

7.1.2 Floating-point benchmarks 

The benchmarks from SPEC-CFP92 were also evaluated to measure sync arc performance. 

Of the 14 floating-point programs, 12 are Fortran programs which were translated to C using 

the f2c tool. Floating-point programs generally display significantly different characteristics 

than integer programs. Floating-point programs are usually much less control intensive: they 

tend to have larger basic blocks than integer C programs. They also tend to have regular loop 

structures, which perform more average iterations than integer code, and make frequent use 

of array data structures. These factors would tend to make ILP compilation for floating-point 

code an easier task, assuming good memory disambiguation is available for array references. 
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Figure 7.12 Effect of Interprocedural Analysis - SPEC-CINT92. 

The following sections present the experimental results for floating-point benchmarks. The 

methodology and graph format are identical to the results presented in the integer section. 

Speedup on 8-issue architecture 

Figure 7.13 presents the speedup results for floating-point code compiled with and without 

sync arcs on an 8-issue processor, baselined to the single-issue processor. Because the existing 

Lcode memory disambiguation has limited effectiveness for array references, the results for 

the non-sync arc code are relatively poor. A speedup of less than 2 is achieved for most 

programs, despite the ability to issue 8 instructions per cycle. With the benefit of improved 

memory disambiguation, the sync arc code provides substantially better performance for most 

benchmarks. Figure 7.14, which shows the speedup of sync arc code relative to non-sync arc 

code, indicates that the benefit of improved memory disambiguation is more pronounced for 

floating-point code than for integer code (Figures 7.3 and 7.4). 
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Figure 7.13 Sync Arc 8-Issue SPEC-CFP92 Results. 

Figure 7.14 Sync Arc 8-Issue SPEC-CFP92 Ratios. 
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for (j 

} 

Figure 7.15 Source Code for Inner Loop Nest of 078.swm256. 

The benchmark 078.swm256 obtained the most dramatic speedup of 4.6 times over code 

compiled without sync arcs. Figure 7.15 shows the inner loop nest of this benchmark, respon

sible for 99% of the execution time. The inner loop is a do.all loop, with no cross-iteration 

dependences. With the benefit of sync arcs, the low-level scheduler is able to determine that 

all load operations are independent of all stores. The scheduler is able to overlap operations 

from different iterations of the unrolled loop and, thus, obtain large speedup. Note that the 

array-type structure fields would be extremely difficult for low-level memory disambiguation to 

handle without the use of source-level information. 

For most floating-point benchmarks, the sync arc code achieves greater than 2.5 times 

speedup over the single-issue processor. Although this speedup is much better than that 
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for (i=0;i<n;i++){ 
tempin = input[ i ] j 
output[i] = aO[i] * tempin + s t a t e l [ i ] ; 

} 

Figure 7.16 Source Code from 056.ear. 

achieved by the non-sync arc code, one would expect more parallelism to be available. In fact, 

the ILP achieved for the floating-point code was not significantly different than that achieved 

for the control-intensive integer code. This is the result of several factors. 

As discussed above, the effects of detailed simulation hide some of the ILP which has been 

exposed. For the benchmark 093.nasa7, scheduler cycle estimates indicated a 5 times speedup 

was achieved for the sync arc code, but due to a 77% cache hit rate, the actual speedup obtained 

was only about 3.1. 

Limitations in the current Pcode dependence analysis inhibits the ILP achieved for several 

benchmarks. A good example of this is found in the C benchmark 056. ear. Figure 7.16 shows 

source code which is representative of code found in several critical functions in 056. ear. The 

arrays input, output, and statel are all formal parameters to the function. Interprocedural 

analysis correctly aliases the arrays input and output, because the same array is passed to 

both variables. The third array, statel, is independent of the other two. The problem arises 

is that Pcode dependence analysis currently does not have a concept of "exact aliasing," such 

that an alias exists and the arrays begin at the same location. Without this concept, the 

Pcode dependence analysis must assume loop carried dependences from the store of output to 

loads of input in subsequent iterations. After loop unrolling, this dependence severely restricts 

scheduling in a loop which actually has no loop carried dependences. 
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L150: 

locij = nodplc[tabinf_1.jcpt + locij - 1] ; 
if (nodplc[tabinf.l.jcolno + locij - 1] == j) { 

goto L155; 

} 

goto L150; 

L155: 

Figure 7.17 Source Code from 013.spice2g6. 

In some cases, parallelism cannot easily be exposed by current ILP techniques. For the 

benchmark 013.spice2g6, there is little available parallelism within several of the important 

inner loops. Figure 7.17 shows an example from its most important inner loop. The variable 

locij is loaded each cycle, and then used in the subsequent iteration to compute the address 

of its next load. This creates a dependence cycle of length four, which limits the initiation of 

iterations in the unrolled loop to one every four cycles. Because the low-level code contains 

only seven operations, initiating a new loop iteration every four cycles allows little overlap of 

iterations. ILP is potentially available within the outer loop, but exposing it would require 

extremely sophisticated compilation techniques. 

Another factor impacting the ILP that IMPACT achieves for floating-point benchmarks is 

that IMPACT ILP research in the past has emphasized optimizing C code, and techniques may 

not be optimized for exposing ILP in floating-point programs. In several benchmarks, overly 

aggressive scheduling of large superblocks resulted in long register lifetimes and performance was 

lost due to register spill code. For other benchmarks, the superblock was not the ideal structure 

for exposing parallelism because of heavy control flow in the inner loops. For architectures 

which support predication, a technique such as the hyperblock may have been more successful 

at exposing available ILP. 
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Figure 7.18 Sync Arc 8-Issue SPEC-CFP92 Optimization Versus Scheduling. 

Relative benefit of optimization and scheduling 

Figure 7.18 shows the relative impact of optimization and scheduling on floating-point code. 

Similar to the results for integer code, both optimization and scheduling appear to benefit 

from improved memory disambiguation. For floating-point code, it appears that the benefit of 

sync arcs may be more important for scheduling than for optimization. Benchmarks such as 

O47.tomcatv, 052.alvinn, 056.ear, and 078.swm256 achieved the same speedup when sync arcs 

were used only for scheduling as when they were used for optimization. 

Varying the number of functional units 

To measure the effectiveness of compilation at exposing ILP for floating-point benchmarks, 

an experiment was performed using architectures with various amounts of resources. Figure 7.19 

shows the result of this experiment. Again, the desired outcome is to see increasing speedup 

as more function units are made available, as was observed for the benchmarks 039.wave5 and 
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Figure 7.19 Sync Arc SPEC-CFP92 Results for Different Issue Rates. 

078.swm256. Unlike the integer benchmarks, however, additional resources had little impact on 

many of the floating-point benchmarks. Programs such as 013.spice2g6, 048. ora, and 052.alvinn 

showed little or no performance improvement as the number of resources was increased. This 

indicates that the compiler, despite improved memory disambiguation, has been unsuccessful 

at exposing ILP to the hardware. 

7.2 Comparison of Static and Dynamic Approaches 

Static and dynamic memory disambiguation approaches are best targeted for different ap

plications. Static memory disambiguation is useful for applications for which source code is 

available, for which dependence analysis techniques have been developed, and which can af

ford the extra compilation time. Dynamic memory disambiguation is useful for applications 

for which source code is not available, but which allow modifications to the ISA. However, for 

applications in which potentially both static and dynamic memory disambiguation could be 
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applied, it is useful to understand the relative capabilities of the two approaches for improving 

memory disambiguation. In this section, the MCB results presented in Chapter 4 are compared 

with the results presented for sync arcs earlier in this chapter. 

. 7.2.1 Performance comparison 

To provide a "level playing ground" to compare the two approaches, two minor changes were 

made to the experiments presented earlier. First, the sync arc results used for comparison here 

were obtained using sync arc information only to aid code scheduling, and not optimization. 

This is because the MCB technique has currently been applied only to scheduling and a fair 

comparison requires comparison of the effect only on scheduling. The second change made for 

this experiment is to increase the number of floating-point registers in the sync arc model to 

128 single-precision and 64 double-precision registers. The MCB results from Chapter 4 were 

obtained using this number of registers; thus, the sync arc architecture was modified so that 

both approaches used the same architecture. 

Figures 7.20, 7.21, and 7.22 show the comparison between the sync arc approach and the 

MCB approach for the Unix, SPEC-CINT92, and SPEC-CFP92 benchmarks, respectively. Re

sults are shown for an 8-issue architecture, using the same functional unit mix as in previous 

experiments. The speedups shown are all relative to a baseline single-issue architecture without 

improved memory disambiguation. Three bars are presented for each benchmark. The leftmost 

bar reflects the speedup obtained using the sync arc approach. The center bar reflects the 

results obtained using the set associative MCB design developed in this thesis. As discussed in 

Chapter 4, this approach suffered from conflicts for floating-point code, and significant perfor-
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Figure 7.20 Unix Comparison of Sync Arcs to MCB - 8-Issue. 

mance was lost. To compare sync arcs with optimal MCB hardware, the rightmost bar reflects 

the perfect MCB case, in which false conflicts do not occur. 

For the 15 integer benchmarks, the sync arc and MCB approaches provided almost identical 

performance benefit, with the sync arc approach fractionally better. The one exception was 

cmp, which will be discussed later. The set associative and perfect MCB designs in general 

provided nearly equivalent performance, indicating that conflicts were not a major problem for 

the integer benchmarks. The significance of sync arcs providing comparable performance to the 

MCB approach is that this indicates the memory disambiguation provided by sync arcs is very 

accurate. The perfect MCB case essentially has perfect disambiguation, because it was allowed 

to reorder all load/store pairs for which a definite dependence could not be proved. For the 

sync arcs to achieve comparable performance to this perfect disambiguation requires that the 

sync arc information be very accurate. 
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Figure 7.21 SPEC-CINT92 Comparison of Sync Arcs to MCB - 8-Issue. 
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Figure 7.22 SPEC-CFP92 Comparison of Sync Arcs to MCB - 8-Issue. 
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sender = &input_act[0]j 
end_sender= fcinput.act[NIU]; 

for (; sender <= end.sender; ) 
(*w_ch++) += (*delta) * (*sender++); 

Figure 7.23 Source Code from 052.alvinn. 

For the floating-point benchmarks, the sync arc code again compared well with the MCB 

approach. In many cases, the sync arc code outperformed the ideal MCB by a significant margin. 

The primary exception to this is 052.alvinn. For this benchmark, the sync arc performance was 

hindered by a limitation in the current Pcode C dependence analysis. Figure 7.23 illustrates 

the reason for this result, showing a loop representative of the two most important inner loops 

of 052.alvinn. These loops use a for-loop structure in which the loop induction variable and the 

upper bound are not readily obvious. The loop bodies contain no cross-iteration dependences. 

Pcode dependence analysis is currently unable to cast this loop into a format which can be 

interfaced to the Omega Test and is, thus, unable to provide accurate dependences for the array 

accesses in these loops. As a result, cross-iteration dependences are conservatively assumed, 

and sync arc performance is degraded. Improved dependence analysis would be expected to 

improve the relative sync arc performance for other benchmarks as well (e.g., 013.spice2g6 and 

056. ear). 

The primary reason the sync arc approach performs better for many benchmarks is that 

the MCB approach is hindered by the instruction overhead of the additional check instructions. 

Although in some cases the wide-issue architecture may be able to "hide" the effect of these extra 

instructions, they often result in some loss of performance. In many cases, this performance 

loss is minor. The one exception from the integer benchmark suite is cmp, which performed 
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significantly worse for the MCB code. This can be understood by referring to Figure 7.6(a), 

which shows the non-optimized inner loop of cmp. The loop, which contains 26 instructions (11 

of which are loads), is unrolled 8 times prior to scheduling. During scheduling, almost all loads 

were speculated above stores, requiring the insertion of 83 check instructions, increasing the 

instruction count of the unrolled loop from 206 instructions to 291. Not only was the overall 

instruction count increased, but the number of branches was increased from 40 to 123 by the 

checks. The code scheduler was limited by the available branch resources, and the length of 

the schedule was increased over the sync arc case. For the floating-point code, the performance 

loss due to the additional check instructions was much more pronounced. This result points to 

the need for improved MCB heuristics which trade off the relative cost and potential benefit 

for allowing loads to bypass ambiguous stores during MCB scheduling. 

Another reason the sync arc approach performs better than the MCB approach is the 

increased register pressure incurred by the MCB approach. This register pressure increase 

is the result of the lengthening of register live ranges. The destination register of a preload 

instruction cannot be used again by another preload until after the check instruction for the 

first preload has been executed. This requirement essentially lengthens the live range of preload 

instructions to include the associated check, increasing register pressure. 

7.2.2 Synergy of t h e approaches 

Although static and dynamic memory disambiguation are targeted for different applications, 

the approaches should not be viewed as mutually exclusive. Sync arcs provide a means of bet

ter disambiguation with no instruction overhead, but may be ineffective at providing accurate 

disambiguation in some cases (e.g., sparse matrices and complex pointer accesses). Dynamic 
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approaches such as MCB require instruction overhead and code growth, but provide perfect 

disambiguation. A combination of the two approaches, which uses static disambiguation infor

mation when it is accurate and applies a dynamic technique where the static is limited, might 

provide an optimal approach. Because the dynamic technique would only be applied in limited 

areas of the code, the instruction overhead and code growth would be greatly reduced. 

To apply the combined approach, the static dependence analysis would have to specify 

the accuracy of individual sync arcs. Dependences for which the static analysis is accurate 

would have to be differentiated from those when the analysis failed and the arc was added 

conservatively. Additionally, if the dependence analysis is able to determine how frequently the 

dependence holds, this information should be made available within the sync arc. Within the 

low-level code, sync arcs which reflect low accuracy or infrequent dependence can be removed 

by applying the dynamic technique. 

Although this combined approach is viable, it is questionable how often the inaccurate or 

infrequent dependences would occur in actual code. The sync arc results presented earlier in 

this chapter indicate the dependence information is sufficiently accurate to allow aggressive 

optimization and scheduling for the benchmarks tested. 

7.3 Summary of Results 

In this chapter, the potential benefit of the sync arc approach to low-level optimization and 

scheduling has been measured across a suite of 29 integer and floating-point benchmarks. The 

sync arc technique is shown to significantly improve the compiler's ability to enhance and exploit 

ILP. Good performance improvements are seen for those benchmarks for which ambiguous 

memory dependences were a significant impediment. As expected, the sync arc technique 

160 



provides little benefit to programs such as O23.eqntott for which memory dependences are not 

a problem. Evaluation of the importance of improved memory disambiguation to optimization 

and scheduling individually indicated that both benefit significantly from sync arcs. Although 

sync arcs increased ILP for many of the benchmarks tested, the compiler was still limited in 

its ability to expose sufficient parallelism to the hardware to make efficient use of available 

resources. Techniques to further reduce the impact of control flow instructions on parallelism, 

such as predicated execution, are required to further expose ILP. 

Sync arcs are a viable technique for improving memory disambiguation and facilitating low-

level optimization and scheduling. In Chapter 4, the MCB technique was also shown to be an 

effective dynamic approach. In this chapter, the two techniques were quantitatively compared 

and found to provide nearly equivalent performance improvement for most benchmarks. The 

advantage the sync arc technique had over MCB for several of the floating-point benchmarks 

was the result of limitations in the MCB scheduling algorithm. Thus, both approaches provide 

excellent disambiguation, and the most appropriate technique can be applied to a particular 

application. Because the MCB technique requires special hardware support and incurs instruc

tion overhead, the sync arc technique may be a good choice when both approaches are equally 

viable. The two approaches could potentially be combined to provide even better memory 

disambiguation for certain applications. 
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CHAPTER 8 

CONCLUSIONS 

8.1 Summary 

Ambiguous memory dependences can significantly impact the compiler's ability to expose 

instruction-level parallelism by preventing important optimization and scheduling opportuni

ties. This dissertation has explored two approaches for overcoming the problems posed by 

ambiguous memory dependences: dynamic memory disambiguation and static memory disam

biguation. Selected techniques from the two approaches were analyzed individually. To perform 

these analyses, the techniques were fully implemented within the IMPACT compiler environ

ment and detailed simulation was performed. Additionally, a quantitative comparison of the 

relative merits of the two approaches has been provided. 

This dissertation has explored a previously proposed dynamic technique, the memory con

flict buffer. The MCB technique employs a set of hardware features to perform explicit com

parisons between load and store addresses. The compiler takes advantage of this hardware to 

speculatively reorder load and store operations during code scheduling. In this dissertation, 

a new hardware design is proposed and a detailed evaluation of the potential performance 

benefits is performed. Results indicate that MCB is effective at removing ambiguous memory 

dependences as an impediment to ILP. 

This dissertation has proposed a technique for providing improved static memory disam

biguation to support ILP compilation. The technique, sync arcs, uses detailed source-level 
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dependence analysis to generate explicit dependence arcs, which are maintained through sub

sequent compilation. The dependence information required to support ILP compilation is in

vestigated, as well as the difficulty of maintaining sync arcs through code transformations. 

Several methods of limiting the number of explicit sync arcs which must be maintained are also 

proposed. The sync arc technique is evaluated using a suite of 29 integer and floating-point 

benchmarks. Results indicate the approach is highly effective at increasing performance where 

ambiguous memory dependences previously inhibited ILP. 

In order to apply the sync arc technique to C programs, the existing IMPACT dependence 

analysis has been modified to handle C semantics. The challenges the C language poses to 

dependence analysis and some of the interesting implementation details for supporting sync 

arcs are discussed. Because the C language allows pointer aliasing, interprocedural analysis 

is necessary to avoid overly conservative analysis. A coarse-grain interprocedural analysis is 

proposed and shown to be effective for supporting ILP compilation. For the suite of 15 integer 

benchmarks, it is shown that a coarse-grain analysis provides comparable performance to that 

for an ideal analysis. 

Finally, the tradeoffs between dynamic and static memory disambiguation approaches have 

been examined. The simulation results from the MCB technique and the sync arc technique 

revealed both techniques provided effective disambiguation. Interestingly, the static sync arc 

technique provided results which were as good or better than the dynamic technique for most 

benchmarks. For applications for which source-level information is available during compilation, 

the sync arc technique may be a good choice for providing improved memory disambiguation to 

low-level optimization and scheduling. However, dynamic techniques remain a viable alternative 
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for applications which require extremely fast compilation or when source-level information is 

unavailable. 

8.2 Future Work 

The results shown in this dissertation indicate that both static and dynamic approaches 

warrant further study. The dynamic technique explored in this dissertation, the memory conflict 

buffer, supports ILP compilation well: it performs well in the presence of aggressive code 

reordering and allows a load's dependent operations to bypass store operations. However, the 

current MCB design still suffers from both true and false conflicts, limiting performance gains. 

Memory dependence profiling could potentially overcome the problem of true conflicts. Further 

work is needed to develop a hardware design which avoids false conflicts, yet is practical in size 

and timing. A promising area of research is a fully associative design whose size is independent 

of the number of architectural registers. The compiler would have to be responsible for limiting 

the number of preloads which were simultaneously "live" to the size of the MCB array. An 

additional limitation of the MCB technique as employed in this dissertation is that the technique 

was only applied to low-level code scheduling. The potential benefit of the MCB technique to 

low-level optimization also needs to be quantified. 

The sync arc technique also shows great promise as a means of improving memory disam

biguation for low-level code. This dissertation demonstrates sync arcs can be accurately main

tained through aggressive code transformations and that the availability of sync arcs provides 

significant performance improvement. However, further work is needed to better understand 

how to control the number of explicit dependence arcs which must be maintained. Several 
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techniques are proposed, but the relative benefits of these techniques for reducing explicit arcs 

have not been quantified. 

The importance of disambiguating memory dependences to ILP compilation increases as 

the impact of control instructions is reduced. This dissertation studied ILP compilation in the 

context of the superblock, which coalesces instructions from a single control flow path. For 

architectures which support predicated execution, techniques are being studied for coalescing 

multiple paths of control into a single compilation unit [23], effectively removing many control 

flow instructions. This reduction in the number of control instructions should make memory 

disambiguation even more critical. Further research is required to understand the importance 

of both static and dynamic disambiguation approaches when compiling using predication. 

The static memory disambiguation techniques employed in this dissertation rely on the use 

of source-level information to aid dependence analysis. Although dependence analysis is some

what easier when source-level information is available, it may be possible to perform relatively 

accurate dependence analysis on the low-level code without help from the source level. If analy

sis can be accurately performed on low-level code, then the same disambiguation technique used 

during compilation of source code could also be applied to applications for which the source is 

not available, such as binary translation. While it appears that some accuracy may be lost in 

this type of analysis (as compared with using source-level information), it would be important 

to better understand and quantify the impact of this accuracy loss for ILP compilation. 
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