
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality o f the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA

313/761-4700 800/321-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MODULO SCHEDULING FOR CONTROL-INTENSIVE
GENERAL-PURPOSE PROGRAMS

BY

DANIEL MICHAEL LAVERY

B.S., University of Illinois, 1986
M.S., University of Illinois, 1989

THESIS

Subm itted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1997

Urbana, Illinois

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9737173

Copyright 1997 by Lavery, Daniel Michael
All rights reserved.

UMI Microform 9737173
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

NOVEMBER 1 9 9 6

W E HEREBY RECOMMEND THAT TH E THESIS BY

________________________________DANIEL MICHAEL LAVERY__

E N T I T L E D __________ MODULO SCHEDULING FOR CONTROL-INTENSIVE_____________________

_________________________GENERAL-PURPOSE PROGRAMS___

B E A C C E P T E D I N P A R T I A L F U L F I L L M E N T O F T H E R E Q U I R E M E N T S F O R

T H E D E G R E E O F _________ DOCTOR OF PHILOSOPHY

D irector of Thesis R esearch

H ead of D epartm ent

Committee on Final Examination!

f { J ' i p : T]Chair

4i/jud I ^

t Required for doctor’s degree bu t not for m aster’s.

0-517

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Copyright by Daniel Michael Lavery, 1997

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MODULO SCHEDULING FOR CONTROL-INTENSIVE
GENERAL-PURPOSE PROGRAMS

Daniel Michael Lavery, Ph.D.
Department of Electrical and Computer Engineering

University of Illinois a t Urbana-Champaign, 1997
Wen-mei W. Hwu, Advisor

It is increasingly necessary for the compiler to overlap successive loop iterations in order to

find sufficient instruction-level parallelism to effectively utilize the resources of high-performance

processors. Two competing methods have been developed for moving instructions across itera

tion boundaries: unrolling followed by global acyclic scheduling and software pipelining. This

dissertation investigates modulo scheduling, a software pipelining technique. Much of the pre

vious work on modulo scheduling has targeted the relatively well-behaved loops in numeric

programs. This dissertation develops new techniques that allow modulo scheduling to be ef

fectively applied to control-intensive non-numeric programs. These techniques overcome the

restrictions imposed by problematic control flow and loop exits.

This dissertation also demonstrates that unrolling-based optimization prior to scheduling

improves the performance of modulo scheduled loops and is, in fact, necessary to allow modulo

scheduling to surpass the performance of acyclic scheduling for control-intensive general-purpose

programs. Modulo scheduling has the following advantages over the acyclic scheduling approach

for control-intensive general-purpose programs. First, modulo scheduling increases performance

by maintaining the overlap of loop iterations throughout the execution of the loop. Second,

modulo scheduling reduces register pressure by initiating iterations a t a consistent rate that

is sustainable for the given resources and dependence structure. Third, with the appropriate

architectural support, modulo scheduling results in less code expansion because unrolling is

required only for optimization, but not to amortize the loss of overlap across the back edge.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEDICATION

To my wife, Tzuping, and my parents, Robert and Mary Lou.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Professor Wen-mei W. Hwu, for providing an excel

lent environment in which to learn and carry out research, for the opportunities for exposure to

other industry and university researchers in the field, and for his insight and guidance during

my studies. He always found the time to give me the advice I needed. My future career will

benefit greatly from the lessons I have learned.

This research would not have been possible without the support of the members of the

IMPACT research group, both past and present. The group members provided an enjoyable

work atmosphere and considerable assistance including research discussions, practice talks, and

the IMPACT compilation environment itself. Scott Mahlke, Pohua Chang, William Chen, and

Roger Bringmann answered my many questions in the early days. Rick Hank, John Gyllenhaal,

and Grant Haab filled that role more recently. Grant Haab, Teresa Johnson, and Ben-Chung

Cheng provided help with Pcode. Dave Gallagher introduced me to sync arcs and was my

role model for management of the IMPACT/x86 project. The IMPACT superblock formation

and ILP optimizations used in this thesis are the work of Scott Mahlke, John Gyllenhaal, and

David August. Thanks to Nancy W aiter for her friendship, introducing me to modulo schedul

ing and, together with Noubar Partam ian, collaborating on the support for backtracking and

hyperblock code. Rick Hank wrote the HP PA-RISC code generator and register allocator used

in this dissertation and provided needed breaks via his frequent sojourns into my office. John

Gyllenhaal and Roger Bringmann developed the machine description and acyclic scheduling

capabilities used in this work. Thanks to Sabrina Hwu for providing technical support and an

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

always smiling face in the group. Many thanks to Jim McCormick, M att Merten, Derek Cho,

Andrew Hsieh, Liang-Chuan Hsu, and Sabrina Hwu for their hard work on the IMPACT/x86

project. Special thanks to John Gyllenhaal for providing tool support and for volunteering to

write the Pentium Mdes for that project. I would like to thank Rick Hank, David August, and

John Gyllenhaal for their extensive workstation and PC administration efforts.

Thanks to Bob Rau, Mike Schlansker, Scott Mahlke, and the others at Hewlett-Packard

Laboratories for giving me the opportunity to make presentations there and for their valuable

discussions on my research work.

I would like to thank my parents, Robert and Mary Lou, for their love and encouragement

throughout my life, especially during graduate school. They provided a firm foundation for me

at home and in my early education, and have always offered assistance when I needed it. Thanks

especially for the annual family vacations tha t provide refreshing breaks, sitting through more

than one of my presentations, and their patience when I was very busy. I would also like to

thank my sister, Ann, and brother-in-law, Jim, for their love and patience during my studies.

Finally, I would especially like to thank my wife, Tzuping, for her love, caring, and com

panionship. She has been a constant source of joy in my life and has helped me though the

difficult times. While pursuing her own graduate studies, she often did much more than her

share in maintaining our household so that I could meet the various deadlines in my research.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

CH APTER PAGE

1 IN T R O D U C T IO N .. 1
1.1 C on tribu tions .. 3
1.2 Overview ... 4

2 COMPILATION ENVIRONM ENT... 6
2.1 P c o d e ... 8
2.2 L c o d e ... 9

3 OVERVIEW OF INSTRUCTION SCHEDULING FOR L O O P S12
3.1 Loop Unrolling and Superblock Scheduling ... 13
3.2 Software P ipelin ing .. 22

3.2.1 Enhanced pipeline schedu ling ...24
3.2.2 Perfect pipelining... 26
3.2.3 Petri net software pipelining.. 27
3.2.4 Modulo schedu ling .. 28

4 TH E IMPACT MODULO SCHEDULER ! .. 35
4.1 Loop Selection and P re p a ra tio n ..37
4.2 Dependence Graph C o n s tru c tio n ...39
4.3 Calculation of the M i l .. 41
4.4 Modulo Scheduling E ngine ... 42
4.5 Extended Modulo Variable E x p a n s io n ... 44

5 MODULO SCHEDULING OF LOOPS IN CONTROL-INTENSIVE NON-NUMERIC
PROGRAMS ..48
5.1 Case Study and Methods ..50

5.1.1 Overcoming control dependence using speculative code m o t i o n 54
5.1.2 Overcoming anti-dependence using modulo variable expansion....................... 57
5.1.3 Review of a code generation scheme for single exit lo o p s63
5.1.4 A code generation scheme for multiple exit l o o p s ..67
5.1.5 Insertion of moves for live-out v a lu e s ...72

5.2 Experimental R esu lts ..75
5.3 S u m m a ry ... 79

6 UNROLLING-BASED OPTIMIZATION FOR MODULO SCHEDULED LOOPS . . 80
6.1 Case S t u d y .. 81
6.2 Related Work ; .. 84
6.3 Unrolling-Based O ptim ization ..85

6.3.1 Loop u n ro ll in g ..85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.2 IMPACT unrolling-based o p tim iz a tio n s .. 88
6.4 Experimental R esu lts .. 92
6.5 S u m m a ry ..94

7 COMPARISON OF MODULO SCHEDULING AND ACYCLIC SCHEDULING . . . 96

8 CO N C LU SIO N ...107
8.1 Future Work ..108

R E FE R E N C E S.. 110

VITA .. 115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table Page

5.1 Percentage of Dynamic Instructions in Single Basic Block and Superblock Loops. . . 54
5.2 Processor Characteristics for Modulo Scheduling Experiments..76

6.1 Processor Characteristics for Unrolling Experiments... 92

7.1 Summary of Distribution Statistics.. 105

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page

2.1 The IMPACT Compiler... 7

3.1 An Example of Superblock Formation... 14
3.2 Example Optimized Vector-Matrix Product Loop.. 18
3.3 Dependence Graph for Example Loop... 19
3.4 Effect of Loop Unrolling on the Example Loop...20
3.5 Effect of Loop Unrolling on the Schedule for the Example Loop......................................21
3.6 Conceptual View of Software Pipelining..23
3.7 Derivation of the Recurrence-Constrained M il.. 31
3.8 Overlapped Iterations and Basic Code Structure.. 33
3.9 Modulo Scheduled Loop Structure with Kernel Unrolling. . . ; ...33

4.1 The IMPACT Modulo Scheduler...36

5.1 Source Code for Example Loop from lex... 50
5.2 Superblock Formation for Example Loop.. 51
5.3 Assembly Code for Superblock Loop... 53
5.4 Dependence Graph for Example Loop.. 56
5.5 Modulo Resource Table after Modulo Scheduling...57
5.6 Assembly Code with Renaming of r34.. 58
5.7 Relaxation of Cross-Iteration Anti-Dependence... 60
5.8 Relaxation of Intra-Iteration Anti-Dependence.. 61
5.9 Execution Record and Lifetimes for Two Iterations...63
5.10 Unrolled Kernel for Superscalar Processor... 64
5.11 Relationship Between Loop Back Branch Placement and Speculative Initiation of

Iterations.. 65
5.12 Code Generation Scheme for Single Exit Loops..66
5.13 Structure of a Single Iteration of a Multiple Exit Loop.. 68
5.14 Code Generation Scheme for Multiple Exit Loops... 69
5.15 Epilogue Generation Algorithm.. 71
5.16 Final Assembly Code for the Example Loop... 74
5.17 Speedup over Single-Issue Processor with and without Modulo Scheduling.......................77

6.1 Example Vector-Matrix Product Loop..82
6.2 Dependence Graph for Example Loop...83
6.3 Example Loop after Unrolling Three Times.. 87
6.4 Example Loop after Induction Variable Optimization...88
6.5 Example Loop after Accumulator Expansion and Renaming.......................................90
6.6 Speedup over Single-Issue Processor with and without Unrolling..94

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Speedup over Single-Issue Processor for Acyclic and Modulo Scheduling.......................... 98
7.2 D istribution of Per Loop Speedups over Acyclic Scheduling... 99
7.3 Improvement in Register Usage over Acyclic Scheduling... 100
7.4 Improvement in MaxLive over Acyclic Scheduling...102
7.5 Code Size Compared to Acyclic Scheduling.. 103
7.6 Improvement in Code Size with Kernel-Only Code... 104

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

Superscalar and VLIW processors achieve high performance by exploiting instruction-level

parallelism (ILP). The compiler’s responsibilities are to translate and optimize the source code

program so that the highest performance is achieved on the target processor. One of the crucial

tasks in this process is to expose sufficient ILP to keep the processor’s functional units busy.

This task of exposing parallelism requires aggressive low-level code optimization and scheduling.

I t is well-known that, for most non-numeric programs, the ILP available within individual

basic blocks is extremely limited [1], [2], [3]. An ILP compiler must be able to optimize and

schedule instructions across basic block boundaries to find sufficient parallelism. The optimiza

tion and scheduling of loops are of great interest because most programs spend the majority of

their execution time in loops. There is often insufficient ILP within a single loop iteration, even

after the parallelism across basic blocks within a single iteration has been exploited. Thus, it

is necessary for the compiler to optimize across iteration boundaries and for the scheduler to

overlap successive iterations of a loop in order to find sufficient ILP.

Two classes of loop scheduling schemes have been developed that allow the overlap of it

erations. The first approach is to unroll the loop body some number of times and then apply

a global acyclic scheduling algorithm to the unrolled loop body [4], [5], [6]. This allows the

scheduler to overlap the iterations in the unrolled loop body. An advantage of this technique is

that multiple iterations of the loop are directly exposed to the compiler, enabling optimizations

1

with permission of the copyright owner. Further reproduction prohibited without permission.

which are not possible without unrolling. The disadvantage is that all overlap is lost when the

loop-back branch is taken, leaving a long start-up penalty for each iteration of the unrolled

body. The second approach, software pipelining [7], [8], [9], generates code that maintains the

overlap of the original loop iterations throughout the execution of the loop. An advantage of

this approach is that there may be less need to unroll the loop, offering the potential for smaller

code size. This dissertation focuses on a class of software pipelining methods called modulo

scheduling [10]. These methods have been shown to be very effective for exposing the ILP in

loops to the processor.

There are a few vague myths surrounding modulo scheduling, and to a lesser extent, software

pipelining in general. These myths are due partly to the fact that while much research has been

done on software pipelining, many un-investigated avenues and open questions remain. The

first m yth is that modulo scheduling is applicable only to numeric programs. Most of the

previous work on modulo scheduling has been aimed at numeric programs, which is reflected

in production compilers. While several production compilers have targeted numeric programs

for modulo scheduling, the control-intensive integer code has been dealt with using the global

acyclic scheduling approach. This dissertation dispels this myth by developing techniques that

allow modulo scheduling to be applied to control-intensive general purpose programs and by

presenting experimental evidence th a t these programs benefit from modulo scheduling.

The second m yth is that modulo scheduling and unrolling followed by acyclic scheduling

are completely competing technologies, that is, one does not unroll the loop prior to mod

ulo scheduling. The picture is actually not quite so black and white. The unrolling done to

expose multiple iterations to the acyclic scheduler also creates new opportunities for optimiza

tion. These opportunities are missed if unrolling is not done prior to modulo scheduling. This

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dissertation investigates the benefits of unrolling prior to modulo scheduling and performing

optimizations that reduce resource usage and dependence height.

Both loop scheduling approaches have been implemented in the IMPACT compiler. They

have been designed and tuned for good performance on control-intensive code. A quantitative

analysis of both techniques is performed to better understand the advantages and disadvantages

of each technique. The results show that modulo scheduling has the following advantages over

the acyclic scheduling approach for control-intensive code. First, modulo scheduling increases

performance by maintaining the overlap of loop iterations throughout the execution of the loop.

Second, modulo scheduling reduces register pressure by initiating iterations at a consistent

rate that is sustainable for the given resources and dependence structure. Third, with the

appropriate architectural support, modulo scheduling results in less code expansion because

unrolling is required only for optimization, but not to amortize the loss of overlap across the

back edge.

1.1 Contributions

The three major contributions of this dissertation are discussed below.

• Techniques for modulo scheduling of loops in control-intensive programs are developed.

These techniques effectively overcome the restrictions imposed by problematic control

flow and loop exits. A state-of-the-art modulo scheduler incorporating these techniques

has been implemented in the IMPACT compiler and is described in detail. The benefit

of modulo scheduling for control-intensive programs is quantitatively evaluated by com

piling and executing a set of control-intensive benchmarks. These are the first reported

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performance results for modulo scheduling on control-intensive non-numeric programs,

and they demonstrate the applicability of modulo scheduling to this class of programs.

• Traditionally, loop unrolling is done prior to acyclic scheduling to allow the overlap of

iterations. However, there are also new optimization opportunities created by unrolling.

The motivations for performing loop unrolling prior to modulo scheduling are explored.

Heuristics to control the amount of unrolling have been implemented. The benefit of

unrolling prior to modulo scheduling and performing optimizations to reduce resource

usage and dependence height is quantitatively evaluated.

• Global acyclic scheduling of an unrolled loop body and modulo scheduling are alternative

technologies for instruction scheduling in loops. However, they have never been compared

within the same compiler framework. The techniques for unrolling-based optimization and

modulo scheduling of control-intensive loops explored and developed in this dissertation

are shown to be necessary to allow modulo scheduling to compete with and surpass the

performance of acyclic scheduling for control-intensive programs. The two scheduling

technologies are quantitatively compared with respect to performance, register pressure,

and code size. This is the first time that a direct quantitative comparison of the two has

been made.

1.2 Overview

This dissertation is composed of eight chapters. Chapter 2 presents an overview of the

organization and operation of the IMPACT compiler. All of the compiler techniques described

in this dissertation have been implemented within the framework of the IMPACT compiler.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An overview of instruction scheduling for loops is presented in Chapter 3. Chapter 4 de

scribes the modulo scheduler that has been implemented to support the work done for this

dissertation. The techniques for modulo scheduling of control-intensive loops are built on top

of this state-of-the-art implementation.

Chapter 5 describes the methods developed for control-intensive loops. A case study is

presented to show how these methods enable modulo scheduling to be effectively applied to

control-intensive loops. Performance results demonstrate the correctness of the methods and

the applicability of modulo scheduling to control-intensive general-purpose programs.

An overview of the optimization of loops is presented in Chapter 6, which also describes

the benefits of unrolling for modulo scheduled loops and presents a case study to illustrate

the benefits of unrolling-based optimization. Performance results are presented to quantify the

benefit.

Chapter 7 quantitatively compares modulo scheduling and acyclic scheduling within the

same framework, with full support for unrolling and optimization applied in both cases. Com

plete benchmark results are shown to compare the performance on the loops which contribute

significantly to the benchmark execution time. Results are also presented for the individual

loops across all the benchmarks to demonstrate the performance across all the various loop

types and provide more insight into the differences between the approaches. The conclusions

and directions for future work are presented in Chapter 8.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

COMPILATION ENVIRONMENT

A state-of-the-art modulo scheduler incorporating the techniques proposed in this disserta

tion has been implemented within the IMPACT compiler. The IMPACT compiler is a retar-

getable, optimizing C compiler being developed at the University of Illinois. It is used to study

compilation techniques, architecture features, and compiler/architecture tradeoffs for ILP pro

cessors. Figure 2.1 shows a block diagram of the IMPACT compiler. IMPACT is a C compiler,

bu t can accept Fortran code that is translated using f2c [11].

Two different intermediate representations (IR) are used: a high-level IR called Pcode and

a low-level IR called Lcode. Pcode is a hierarchical representation of the C source with source-

level constructs such as loops and if-statements visible. Memory dependence analysis [12], [13],

statement-level profiling, and function inline expansion [14] are performed on Pcode. Pcode is

further discussed in Section 2.1. Lcode is a generalized register transfer language that is a su

perset of most RISC processor instruction sets. Most of the machine-independent optimizations

are performed at the Lcode level. Section 2.2 describes these code transformations.

Six architectures are currently supported by the IMPACT compiler. Four of these are com

mercial: the HP PA-RISC, Sun SPARC, TI DSP, and Intel x86 [15], [16]. The other two sup

ported architectures, IMPACT and HP PlayDoh [17], are experimental ILP architectures and

provide a framework for compiler and architecture research. The IMPACT architecture speci

fies a parameterized processor tha t executes the Lcode instruction set. After machine specific

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Basic Block
Profiler

Function Inline
Expansion

Code
Layout

Classic Code
Optimization

Superblock
Formation

C I Fortran
Source

FRONT END

PCODE

Inter-procedural
Analysis

Dependence
Analysis

Loop
Transformations

Memory System
Optimization

Loop
Parallelization

Peephole
Optimization

Acyclic Code
SchedulingBACK END

Register
AllocationLCODEHyperblock

Formation Modulo
SchedulingILP Code

Optimization

NILL

SPARC T1 DSP IIP PLAYDO

F ig u re 2.1 The IMPACT Compiler.

annotation of the Lcode, the IMPACT code generator can produce code for extended versions

of the HP PA-RISC (IMPACT-HPPA) and the SPARC (IMPACT-SPARC) architectures. For

this dissertation, all experiments are based upon the IMPACT-HPPA architecture.

The remainder of this chapter describes portions of the IMPACT compiler that are relevant

to this dissertation. Sections 2.1 and 2.2 discuss the Pcode and Lcode levels of compilation,

respectively.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Pcode

High-level analyses, profiling, inlining, and other optimizations that benefit from the avail

ability of source-level information are performed at the Pcode level. In Pcode, the program is

represented as an abstract syntax tree containing hierarchical statement and expression nodes.

This hierarchical representation facilitates the manipulation of program structures such as loops

and blocks of statements.

To support optimizations, Pcode performs data dependence analysis [12], which calculates

the dependence relationships between each pair of accesses in the function. The Omega Test [18],

developed by William Pugh at the University of Maryland, is used to compute dependences be

tween array elements and generate distance and direction vectors. Inter-procedural analysis [13]

determines the alias relationships between variables that are not apparent from analysis of each

function individually, and removes the need to make conservative assumptions about aliasing

due to pointers. It also analyzes the side effects of function calls, allowing better optimization

and scheduling in the presence of function calls.

Once this memory dependence information is computed, it is propagated to the Lcode

level in the form of explicit memory dependence arcs, called sync arcs [13]. The information

is then used and maintained by the transformations a t the Lcode level. Accurate information

about memory dependences is crucial for modulo scheduling. Accurate information about cross

iteration dependences allows aggressive overlap of the loop iterations for both vectorizable

and non-vectorizable types of loops. Accurate intra-iteration dependence information allows

aggressive scheduling within an iteration, reducing the startup overhead, which is important

for short trip count loops.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Lcode

Low-level code optimization and scheduling are applied to Lcode. There are two types of

Lcode: machine-independent and machine-dependent. Although the internal and external rep

resentations of these two types of Lcode are identical, the machine-dependent version of the

Lcode is sometimes referred to as Mcode. The difference between Mcode and Lcode is that

for Mcode there is a one-to-one mapping between Mcode instructions and the target machine’s

assembly language. Lcode is converted to Mcode during the first phase of code generation by a

process called annotation. For example, when generating code for the Intel x86 architecture, the

Lcode is in three-operand format during machine-independent optimization, and is converted to

two-operand format before the machine-dependent phases. Lcode instructions are also broken

up for a variety of other reasons, including differences in addressing modes, branch instructions,

and the ability to specify a literal operand. The machine-independent optimizations are per

formed prior to code generation on Lcode and machine-dependent optimizations are performed

during code generation on Mcode.

The machine-independent optimizations consist of the classic local, global, and loop opti

mizations [19], [20], superblock formation, and ILP optimizations. The classic optimizations

include constant propagation, forward copy propagation, backward copy propagation, common

subexpression elimination, redundant load and store elimination, strength reduction, constant

folding, constant combining, operation folding, operation cancellation, code reordering, dead

code removal, jum p optimization, unreachable code elimination, loop invariant code removal,

loop global variable migration, loop induction variable strength reduction, loop induction vari

able elimination, and loop induction variable reassociation.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Following classic code optimization, superblock formation is performed. Superblocks [21]

enlarge the scope of optimization and scheduling and remove the constraints associated with

control flow paths that merge into the block. The superblock compilation structure is explained

in detail in Chapter 3. Hyper blocks [22] can also be formed to allow the simultaneous opti

mization and scheduling of multiple paths and the removal for branches for architectures that

support predicated execution. In this dissertation, only superblock formation was used for the

modulo scheduling experiments.

After superblock formation, the profile-based classic optimizations are reaccomplished in

the superblock framework to take advantage of the new opportunities created by removing

the constraints associated with the side entrances [23]. Next, optimizations are performed

th a t increase the available ILP of the intermediate code [24] including loop unrolling, register

renaming, and height reduction optimizations.

After ILP optimization, machine-dependent code generation is performed for one of the

five architectures shown in Figure 2.1. The machine-dependent optimizations include acyclic

scheduling, cyclic scheduling, register allocation, and peephole optimization. The schedulers and

register allocators are common modules shared by all code generators. Scheduling is performed

via either acyclic superblock scheduling [25], [26] or modulo scheduling. Acyclic superblock

scheduling is applied both before register allocation (prepass scheduling) and after (postpass

scheduling) to generate an efficient schedule. Loops targeted for modulo scheduling are identified

and marked prior to ILP optimization. These loops are modulo scheduled prior to register

allocation and the remaining code is scheduled using the global acyclic scheduler. Both the

cyclic and acyclic scheduling techniques are capable of exploiting architectural support for

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

control speculation to achieve more aggressive schedules. The modulo scheduler is further

described in Chapter 4.

Both schedulers are driven by a machine description system (Mdes) [27]. The Mdes is used

to obtain the latencies needed to construct the dependence graph, and the resources required

by the instructions. The machine description for a processor is w ritten a t a high level and then

compiled to a low level form for access by the compiler. The Mdes is optimized to support

efficient scheduling [28].

The IMPACT global register allocator [29] is based on the graph-coloring algorithm de

scribed in [30]. W hen possible, the register allocator tries to minimize the number of registers

used. Since register allocation is performed after scheduling, this does not affect performance,

and it reduces the number of registers that need to be saved and restored at procedure call

boundaries. At various points in the code generation process, a set of machine-dependent

peephole optimizations is performed. These peephole optimizations are designed to remove

inefficiencies introduced during Lcode to Mcode conversion, to take advantage of specialized

opcodes available in the architecture, and to exploit new optimization opportunities after spill

code has been added by the register allocator.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

OVERVIEW OF INSTRUCTION SCHEDULING FOR LOOPS

Loops are a potentially large source of instruction-level parallelism because separate itera

tions of the loop are often completely or mostly independent. Two classes of loop scheduling

methods have been developed. One approach is to unroll the loop some number of times and

then schedule the instructions from the unrolled iterations using a global acyclic scheduling

technique. In acyclic scheduling, there is no knowledge of cross-iteration dependences and no

knowledge tha t another iteration of the loop even exists. Thus the loop must be unrolled to

explicitly expose multiple iterations to the scheduler. Even with the unrolling, the instructions

a t the end of the unrolled loop body are scheduled without regard to the instructions a t the

beginning of the loop body. Thus, a t the beginning of each iteration of the unrolled loop, a

delay may occur if the results of the instructions from the previous iteration are not yet avail

able. Also at the beginning and end of the schedule for the unrolled loop body, there may be

available instruction slots, but no available instructions to fill them.

Alternatively, to avoid this delay and to more fully utilize the processor resources, cyclic

scheduling, otherwise known as software pipelining, can be applied to the loop. In software

pipelining, knowledge of cross-iteration dependences and the cyclic nature of the scheduling

region do exist. Software pipelining generates code that maintains the overlap of iterations

throughout the execution of the loop. There are no gaps in the resource utilization, and

dependences from one iteration to the next are taken into account. The following sections

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

describe the acyclic and cyclic scheduling approaches relevant to this dissertation. Section 3.1

describes superblock scheduling, the global acyclic scheduling technique implemented in the

IMPACT compiler. This is combined with superblock loop unrolling to effectively overlap loop

iterations in both numeric and control-intensive non-numeric code. Section 3.2 discusses several

software pipelining techniques including modulo scheduling.

3.1 Loop Unrolling and Superblock Scheduling

This section describes the IMPACT global acyclic code scheduler, which is based on a

variation of trace scheduling [4, 31] called superblock scheduling [26]. The idea is to select

frequently executed paths through the code and optimize them, perhaps at the expense of the

less frequently executed paths. In this approach, the optimization and scheduling region is a

block of code called a superblock [6], [22]. A superblock is a block of instructions for which the

flow of control may only enter from the top, but may leave at one or more exit points. I t is

formed by identifying sets of basic blocks which tend to execute in sequence (called a trace) [4].

These blocks are coalesced to form the superblock. Tail duplication is then performed to

eliminate any side entrances into the superblock [23]. Effective superblock formation can be

done using profile information [23] and/or static analysis of the structure and hazards in the

program [32].

The formation of superblocks is illustrated in Figure 3.1, taken from [22]. Part (a) of the

figure shows the control flow graph for an example loop. The nodes in the graph correspond

to basic blocks and the arcs represent the possible control transfers. Each node is labeled

with the execution count of the basic block and each arc is labeled with the execution count

for tha t control transfer path. The execution counts are obtained by profiling. The most

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

90
10

90 10

90

90
10

90

90

8 9 . 1

,0 . 9

9 . 9 0 . 1

10

100

90 10

90 10

90

1090

90

100

99

(a) Original weighted control graph (b) Control graph a£ter tail duplication

F ig u re 3.1 An Example of Superblock Formation.

frequently executed path is {A, B ,E , F }, and this trace is selected for superblock formation.

Tail duplication makes a copy of the tail portion of the trace from the side entrance to the end

and appends it to the end of the function. All the control transfers into the trace are then

redirected to the corresponding duplicate basic blocks. The result is the flow graph shown in

Figure 3.1(b). For a detailed description of superblock formation, see [6, 23].

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As described in Chapter 2, classic (again) and ILP optimizations are applied after superblock

formation. One of the ILP optimizations is loop unrolling. If a loop is unrolled N times, N — 1

copies of the loop body appended to the original loop. The resulting loop contains multiple

copies of the loop back branch. For all the copies except the last, the target and fall-through

path are reversed so that the loop is exited when the branch is taken rather than when it falls

through. If the iteration count is known on loop entry, it is possible to remove all the copies

except the last by using a preconditioning (postconditioning) loop to execute the first (last)

modulo N iterations. For simplicity, the loop examples used in this section assume that the

branch copies are not removed. After loop unrolling, the new loop body contains N iterations

of the loop, which can then be overlapped by the scheduler. Using the terminology of [33],

the iterations of the new unrolled loop are defined as the major iterations and each of the N

iterations of the original loop as the minor iterations. In the general case, the body of the loop

is a superblock with multiple exits; so there are additional control transfers out of the loop

beside those associated with the loop back branch. Loop unrolling and ILP optimization in the

context of modulo scheduling are described in detail in Chapter 6.

Superblock scheduling is applied to each superblock independently. The first step is to build

a dependence graph that represents all the data and control dependences between instructions

w ithin a superblock. There are three types of data dependences: flow, anti-, and output. The

d a ta dependences may exist between accesses to registers or memory. Control dependences

enforce the ordering between a branch instruction and other instructions before and after a

branch. There is a control dependence between a branch and a subsequent instruction I if the

branch must execute before instruction I. This will be described in more detail below. There is

also a control dependence between an instruction I and a subsequent branch if the branch must

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

execute after instruction I .1 The arcs in the dependence graph are annotated with the delay of

the dependence, which is the number of cycles that must separate the two instructions in the

schedule. The delay is derived from the latencies and operand read/w rite times of the target

processor.

The second step in superblock scheduling is to perform list scheduling using the dependence

graph and the resource constraints of the processor. The general idea of the list scheduling

algorithm is to pick, from the set of instructions that are ready to be scheduled, the best

combination of instructions to issue in a cycle. An instruction is ready if all of its parents have

been scheduled and the result produced by each parent is available (he., since the time that the

parent was scheduled, enough cycles have passed to cover its latency). The best combination

of instructions is determined by using heuristics to assign priorities to the ready nodes [25].

For control-intensive code, the presence of control dependences can severely restrict the

ability of the scheduler to produce efficient code. As stated earlier, the compiler must be able

to move instructions across branches (basic block boundaries) to find sufficient parallelism.

The code motion may be either upward or downward across the branch. Moving instructions

upward across branches is called speculative code motion because the instruction will be executed

before the branch that determines whether or not it should be executed. There are three major

restrictions on speculative code motion across a branch B:

(1) The instruction must not write a virtual register that is in live.out{B).

(2) The instruction must not cause an exception that terminates the program execution.

(3) The instruction must not write to memory.

l Note that this does not correspond to the traditional definition of control dependence. Rather, any contraint
associated with code motion across branches that does not involve an explicit data dependence is enforced by
inserting a control dependence arc.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The set live.out(B) is defined as as the set of virtual registers that may be used before they

are defined when B is taken. The first restriction can usually be eliminated w ith sufficient

compiler variable renaming support. The implications of this for modulo scheduling will be

discussed in Chapter 5.

As an example of the second restriction, it is not safe to move a division or floating-point

instruction above a branch because of the possibilities of a division by zero or a floating-point

exception, respectively. It is also not safe to move a memory load instruction above a branch

because of the possibility of a memory access violation. Page faults are not a problem, because

they do not cause the execution to terminate. However, moving loads from below to above

branches may increase the number of page faults.

To enable speculative code motion of loads and other instructions that can cause exceptions,

either the architecture must contain support for speculative execution [34], [35] or the compiler

must be able to prove via program analysis that the speculatively executed instruction will not

cause an exception [25]. In this dissertation, it is assumed that the instruction set architecture

contains silent (non-trapping) versions of the instructions that can cause exceptions [34].

In order to remove restriction 3, the architecture must contain support for speculative

execution of stores. This support involves modification of the store buffer to delay the write

to memory until it is confirmed that the store should execute and to nullify the store if the

superblock is exited before the store should execute. In this dissertation, it is assumed that

there is no architectural support for speculative execution of stores. It is also assumed that

branches are not reordered. Speculative code motion of an instruction is enabled by removing

the control dependence between the instruction and the preceding branches.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following is a code example to show the effect of loop unrolling and acyclic superblock

scheduling. Figure 3.2 shows the source and assembly code for the loop. The loop nest computes

the product of a vector and a matrix. The loop nest has been optimized by interchanging the

two loops. This avoids a reduction in the inner loop, making each loop iteration independent of

the others. The assembly code shown assumes that classic loop optimizations such as induction

variable elimination and global variable migration have been performed. Registers r2-r8 and

fl-f5 are integer and floating-point registers, respectively.

Source Code

initialize C to 0.0
for (j=0; j<m; j++) {

for (i=0; i<n; i++) {
C[i] = C[i] + A[j] * B[j][i]

}
1______________________________

Assembly Code for Inner Loop

Inst._________Assembly________ Register Contents
1 L1: f1 = MEM(r8+r4) fl= C [i]
2 f5 = MEM(r2+r4) f3 = AD]
3 f6 = f3 * f5 f5 = B[j][i]
4 f1 = f1 + f6 r8 = &C[0]
5 MEM(r8+r4) = f1 r2 = &B[j][0]
6 r4 = r4 + 4 r4 = 4*i
7 bgt ((—r5) 0) L1 r5 = n

F ig u re 3.2 Example Optimized Vector-Matrix Product Loop.

Figure 3.3 shows the dependence graph for the inner loop. Each node is numbered with

the ID (from Figure 3.2) of the instruction it represents. The branch nodes are shaded. The

data and control dependences are shown with solid and dashed lines, respectively. Some of the

transitive dependences are not shown.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I _ /

-► Control ------------► Data

F ig u re 3.3 Dependence Graph for Example Loop.

Each arc is labeled with two numbers. The first is the minimum delay in cycles required

between the starts of the two instructions. The second number is the distance, which is the

number of iterations between the two dependent instructions. Arcs with a distance of zero

are intra-iteration dependences and those with a distance greater than zero are cross-iteration

dependences. The instruction set assumed is similar to H P’s PA-RISC 1.1 but has no branch

delay slots. Except for the branches, the delays shown are those of the PA7100. It is assumed

th a t the instructions in the fall-through path of a branch can potentially be executed in the

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

same cycle as the branch and that instructions in the taken path are executed in the cycle

following the branch.

Assuming a realistic eight-issue processor that contains three load/store units, two floating

point units, and one branch unit, a single iteration of this loop can be executed in seven cycles.

The tim e to complete the iteration is limited by the dependences and not by the resource

constraints.

Figure 3.4 shows the effect of loop unrolling on the assembly code for the loop. The loop

has been unrolled twice. The registers for each iteration have been renamed to remove the

anti-dependences that would prohibit the scheduler from overlapping the iterations.

Original A ssem bly C ode Unrolled A ssem bly C ode

Inst. Assem bly
1i L1: f11 =M EM (r8+r41)
2 i f51 = MEM(r2+r41)

Inst. Assem bly 3! f61 = f3 * f51
1 L1: f1 = MEM(r8+r4) 4i f11 = f 11 + f61
2 f5 = MEM(r2+r4) 5i MEM(r8+r41) = f 11
3 f6 = f3 * f5 61 r42 = r41 + 4
4 f 1 = f1 + f6 7i ble ((—r5) 0) exit
5 MEM(r8+r4) = f1 I 2 f 12 = MEM(r8+r42)
6 r4 = r4 + 4 22 f52 = MEM(r2+r42)
7 bgt ((-r5) 0) L1 32 f62 = f3 * f52

42 f 12 = f 12 + f62
52 MEM(r8+r42) = f12
62 r41 = r42 + 4
72 b g t((- r5)0) L1

F ig u re 3.4 Effect of Loop Unrolling on the Example Loop.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.5(a) shows the effect of scheduling on the unrolled loop. The instructions from

the two iterations are differentiated by the subscripts. The first iteration is also shaded. The

two iterations are executed in eight cycles, almost twice the performance of the original loop.

However, it is evident that the resources of the eight-issue processor are far from fully utilized.

No more than three instructions are issued in any cycle.

(a) Two Copies

0

1
2
3
4
5
6
7

2 i 6 1m
3i

E l
4i

5i 7^

(b) Eight Copies

4 cycles per iteration

2, 6-,

•5 2s 6 5

13 l58|78

1.75 cycles per iteration

F ig u re 3.5 Effect of Loop Unrolling on the Schedule for the Example Loop.

Figure 3.5(b) shows the schedule if the loop is unrolled eight times instead of twice. The

resources are now much more fully utilized. However, a t the beginning and end of the schedule,

there are still many empty slots. In particular, the peak utilization of seven instructions per

cycle is achieved for only two cycles (cycles 6 and 7). Dependences and the limited number of

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

functional units force the scheduler to stagger the execution of the iterations in time, resulting

in a ramp-up phase at the beginning of the schedule and a ramp-down phase at the end of

every iteration of the new loop body. Performance can be improved at the cost of increased

code expansion and scheduling effort. If the loops is unrolled a very large number of times, the

performance asymptotically approaches the maximum obtainable.

3.2 Software Pipelining

Software pipelining [7, 36, 37, 38], is a loop scheduling scheme that allows motion of instruc

tions from one iteration to another and maintains the overlap of loop iterations throughout the

execution of the loop. A description of the various approaches to software pipelining is given

in [39].

Figure 3.6 illustrates the concept of software pipelining. Imagine that the loop has been

unrolled completely, exposing all of the iterations to the compiler. The scheduler initiates each

iteration at some time interval after the previous one. After a sufficient number of iterations

have been started (five in Figure 3.6), a steady state is reached. After the last iteration has

been initiated, the steady state terminates and there is a phase in which the remaining portions

of the iterations in progress are completed. The time interval between the start of successive

iterations is called the initiation interval or II. Depending on the software pipelining algorithm

used, the II can be a single fixed value, a periodic sequence of values, or a sequence of fixed

values which depend upon the control flow within the loop body. The schedule for each iteration

can be the same or can vary from iteration to iteration.

As shown in the figure, the steady-state portion of the execution can be re-rolled, producing

a new loop called the kernel. The peak processor utilization occurs during this phase. The

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Block Code Layout What's Happening

iter 1

Prologue

Kernel (3
Epilogue

Stage A iter 2
Stage B Stage A *
Ml MStage G Stage B Stage A II
Stage D Stage C Stage B Stage A
Stage E Stage D Stage C Stage B Stage A

Stage D
Stage E

Stage C
Stage D
Stage E
iter x-1

Stage B
Stage C
Stage!!

Fill Pipeline

Steady State

Drain Pipeline

iter x

F ig u re 3 .6 Conceptual View of Software Pipelining.

ram p-up phase before the kernel is called the prologue and the ramp-down phase is called the

epilogue.

If the II is a fixed value and all the iterations have identical schedules, the schedule for each

iteration of the loop can be divided into stages of II cycles each. As each new iteration is initi

ated, the previous iteration moves on to the next stage. Multiple iterations are simultaneously

in execution, each in a different stage of the schedule, hence, the term software pipelining.

In analogy to a hardware pipeline, the prologue code sequence corresponds to the filling of

the pipeline. New iterations are initiated, but none have yet completed. The epilogue code

corresponds to the the draining of the pipeline. No new iterations are started, and the ones

in progress complete. The throughput of the software pipeline is the rate a t which iterations

complete. The throughput is one iteration per II cycles. The pipeline latency is the number of

cycles required to finish the first iteration. This is equal to the II multiplied by the number of

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stages in the schedule for an iteration. Thus, like a hardware pipeline, after the initial latency,

the iterations complete at a rate of one every II cycles.

The intuition behind the benefit of software pipelining is as follows. W ith loop unrolling and

acyclic scheduling, the example loop from the last section achieved peak performance for only

a fraction of the cycles. The more the loop is unrolled, the larger th a t fraction becomes, but

a t some point the code expansion becomes prohibitive. The ramp-up and ramp-down penalties

occur for every iteration of the unrolled loop body. In contrast, software pipelining maintains

the peak steady-state utilization continuously. The ramp-up and ramp-down phase occurs once

per loop invocation. The peak performance is maintained without the need to unroll the loop

many times.

Software pipelining is a powerful scheduling technique. It can be applied to loops with cross

iteration dependences and with arbitrary control flow including loops for which the number of

iterations cannot be determined a t the time the loop is invoked (e.g., while loops). It is most

often used to schedule inner loops, but can also be hierarchically applied to outer loops [40],

[41]. The remainder of this section discusses several well-known software pipelining techniques

with their strengths and weaknesses. Modulo scheduling, which is the focus of this dissertation,

is described in more depth than the others.

3.2.1 Enhanced pipeline scheduling

Ebcioglu and Nakatani’s enhanced pipeline scheduling technique [8, 36, 41] divides the

software pipelining problem into a sequence of acyclic scheduling problems. This technique has

been implemented as part of the IBM VLIW project. At each step, a barrier is placed across

one or more control flow edges of the loop to break the cyclic nature of the scheduling region

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and define an acyclic graph for the next phase of scheduling. In the first step, the barrier is

placed prior to the first instruction in the loop. Selected instructions are moved up in the graph

to fill fence regions residing just after the barrier. A fence region can be thought of as a VLIW

instruction to be filled with operations, or a cycle in which multiple superscalar instructions

can be concurrently issued. As many instructions as possible are scheduled in the fence region.

Then the barrier is moved so tha t it follows the fence regions. This defines new fence regions

and a new acyclic graph, and scheduling begins again. If desirable, the instructions in the old

fence regions can now be moved across the back edge and into the new fence region creating

overlap of loop iterations. Instructions tha t are moved across the back edge are also inserted

into the prologue. There are no epilogues, and no pipeline code generation phase is necessary

after scheduling.

The prim ary advantage of this technique is in the handling of loops with multiple control

flow paths. There can be more than one back edge and more than one fence region. This allows

different cycles in the control flow graph to be scheduled with a different total delay, resulting in

a variable II. This can be beneficial for loops where the number of cycles to execute one path to

a back edge is much longer (due to either resource or dependence constraints) than for another.

Another advantage is the potential to handle register constraints by performing the software

pipelining after register allocation and using dynamic renaming (renaming while scheduling)

when a register is available. Finally, the recent acyclic scheduling algorithms used with the

technique replicate and unify instructions as they are moved past merge and fork points in the

control flow graph. This can reduce the amount of speculative and redundant computation

compared to methods that parallelize only selected paths.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One of the disadvantages of the technique has been that code is moved upward (perhaps

speculatively) across branches, but not downward. This eliminates the epilogues, but results

in more speculation than necessary in loops for which the condition for the loop back branch

can be computed early (a good example is counted loops). Recently, techniques have been

developed to allow upward movement of the branches [42]. O ther unresolved issues with the

method are the lack of a goal to determine when to stop scheduling and the complexity of

the recomputation of required information for the new graph of each step. Jones and Allan

empirically showed that modulo scheduling can achieve a smaller II than enhanced pipeline

scheduling [43].

3.2.2 Perfect pipelining

Aiken and Nicolau’s perfect pipelining algorithm unrolls and compacts the loop body until

a repeating pattern is formed [9, 37]. It performs software pipelining in two phases. In the first

phase, global code motion is applied to move instructions up as early as possible in the loop

body. The second phase consists of iteratively unrolling the compacted iterations, scheduling

instructions in a greedy manner, and examining the execution history for a repeating pattern.

This repeating pattern becomes the kernel.

The advantage of this technique is that there are no arbitrary barriers or constraints on

the scheduling. There are no fence regions. The II is not constrained to have any particular

properties such being an integer or representing the rate a t which an a-priori fixed group of

iterations executes. Each copy of the original loop iteration is not constrained to have the

same schedule. In summary, both the value of the II and the set of instructions comprising the

repeating pattern are determined during scheduling. In contrast, for modulo scheduling, both

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are determined prior to scheduling. In enhanced pipeline scheduling, the II is not fixed a priori,

bu t the set of instructions is.

The disadvantage of this technique is the computational complexity involved in recognizing

the repeating pattern (kernel recognition). First, the amount of information th a t must be

checked to verify a repeating pattern is very large. It includes identifying two cycles of the

execution record in which the exact same instructions are issued, the exact same resources are

committed into the future, and the exact same operands will be produced at the same time in

the future. This state of the scheduling process must be checked after each cycle is scheduled.

W ithout a target II, a large number of iterations may be scheduled before a repeating pattern

emerges, further increasing the computational complexity.

3.2.3 Petri net software pipelining

The Petri net software pipelining method [38, 44] attem pts to solve the problem of kernel

recognition. The state of the scheduling process is represented by the combination of a Petri net

and a behavior table with attached resource state. A Petri net is a graph consisting of two types

of nodes: places and transitions. The transitions represent instructions, and a combination of

arcs and places between transitions represent dependences. Associated with each transition is

a set of input (output) places, one for each incoming (outgoing) dependence. Each place has

an incoming arc from the instruction at the source of the dependence and an outgoing arc to

the instruction at the sink of the dependence. When a place contains a token, the dependence

between the two instructions is satisfied. A transition fires (instruction is issued) when all of

its input places contain tokens. Thus the Petri net represents both the dependence graph and

the current set of ready instructions. If the Petri net is cyclic, a series of firings will eventually

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

take the Petri net to a state through which it has already passed. W hen the Petri net reaches

a previously encountered state with an identical resource state, the repeating pattern has been

found.

The advantage of this approach is that it defines a systematic method for kernel recognition.

The Petri net can also be used to speed the formation of a pattern by adding arcs and places

to the graph to make it strongly connected. However, there are still several unresolved issues.

It is not clear how the previous states of the Petri net and the resources are stored, how the

current state is compared with the previous states, and what the computational complexity of

the process is. Also, there is no notion of delay for an arc in the Petri net. Thus instructions

with latencies longer than one are represented by adding dummy transitions to the graph. This

increases the size of the representation and the number of nodes that must be scheduled. Making

the graph strongly connected increases the number of recurrence circuits and the chance that

the Petri net fails to fire at the optimal rate in the presence of resource conflicts.

3.2.4 Modulo scheduling

Modulo scheduling [45], [10] was originally proposed by Rau and Glaeser [7]. It overcomes

many of the complexities and practical problems associated with the approaches described in

the earlier sections by taking a less ad hoc approach to forming a kernel. Modulo scheduling

simplifies the generation of overlapped schedules by initiating iterations at a constant rate and

by requiring all iterations of the loop to have identical schedules. A fixed II is determined prior

to scheduling based on the loop requirements and the machine constraints. Then an attem pt

is made to engineer a valid schedule a t that II. One of the advantages of modulo scheduling is

that the II gives the scheduler a goal and offers the potential for lower register pressure because

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the iterations are started at a consistent rate that is sustainable for the given resources and

dependence structure.

Modulo scheduling is the most well-developed cyclic scheduling method. I t has been im

plemented in production compilers at Cydrome [46], HP [47], and SGI [48]. It is capable

of pipelining loops for superscalar and VLIW processors, with complex resource constraints,

recurrences, and control flow. It can pipeline both loop-counter-based loops and, using the

techniques presented in this dissertation, non-loop-counter-based loops and loops with multiple

exits. For these reasons, modulo scheduling was the approach taken in the IMPACT compiler.

In modulo scheduling, it is necessary to choose an initial candidate II before scheduling the

instructions. Two lower bounds on II have been developed in the modulo scheduling theory [10].

The maximum of the two is the minimum initiation interval (Mil). Scheduling at an II below

the M il can be attempted, but will almost surely fail2 due to lack of resources or failure to

meet dependence constraints. In this case, the II is increased and scheduling is attem pted again.

Choosing the initial II equal to the M il saves scheduling effort. In the presence of recurrences

or complex resource constraints, it is possible for the modulo scheduling algorithm to fail to

schedule the loop even at the MIL

The first lower bound is derived from the resource requirements of the loop. The periodic

initiation of iterations with the same schedule results in a rule known as the modulo constraint.

If an instruction in an iteration uses a resource at time x, then the same resource is also used

a t time x + n * I I by subsequent iterations. Therefore, the schedule for a single iteration may

not use any resource more than once at the same time modulo II. This constraint is enforced

using a Modulo Resource Table (MRT) [40]. Th MRT contains II rows and one column for each

2A lm ost because in some cases one of the lower bounds is approximate rather them exact.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resource. Using this table, modulo scheduling generates a schedule for a single iteration of the

loop. If that schedule can be wrapped around the MRT without any resource conflicts, then

successive iterations of the loop can be started every II cycles without resource conflicts.

The MRT must contain a sufficient amount of each resource to support the resource require

m ents of the loop. From the resource point-of-view, the throughput of a software pipeline is

maximized when one of the processor resources is fully utilized. Thus the resource th a t is the

most heavily used by the loop body determines the resource-constrained lower bound on the

II (ResMII). ResMII is equal to the number of cycles that this resource is used. One possible

algorithm for computing the ResMII is given in [10]. This algorithm performs a bin packing of

the resources required by all the instructions in the loop. In the presence of complex resource

usage and alternative reservation tables for an instruction, the problem is NP complete. Thus,

the algorithm computes an approximate lower bound. The details of how this algorithm is

implemented in the IMPACT compiler are given in Chapter 4.

An alternative method to compute the ResMII (and the method described in most of the

early modulo scheduling papers) is to use the following equation:

R e s M II = max
t

Ni
Ri

where Ni is the number of cycles that resource i is used by a single iteration and Ri is the

number of copies of the resource. This method for the computation of the ResMII can only be

used if the functional units can be partitioned into equivalence classes and if each instruction

can be executed by only one equivalence class [10]. Unfortunately, most real processors do not

have this structure.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m2,

m„ d,

iter 0 iter d, iter d,+d2

m.

0 d,* II (d,+d2)* II

Iteration Start TimeDelay(c) = m, + m2

Distance(c) = d, + d2

Delay(c) < Distance(c) * II

F ig u re 3.7 Derivation of the Recurrence-Constrained MIL

The second constraint on the II comes from cycles in the dependence graph. Figure 3.7

shows a dependence cycle or recurrence consisting of two instructions. To the right, several

copies of the two instructions from different iterations of the loop are shown, along with the

dependence chain starting at instruction 1 of iteration 0. The first dependence has delay m i and

distance d\, so it goes from iteration 0 to iteration d\. The second dependence has distance d,2 ,

so it goes from iteration d\ to iteration di+cfo. Assuming iteration 0 starts at time 0, iteration

di+ d i s tarts at time Define Delay(c) to be the sum of the delays around the cycle,

tha t is, m i+ m 2 , and define Distance(c) to be the sum of the distances around the cycle, that

is, di+tfe. Then the difference in start time between iteration 0 and iteration d\-\-d2 becomes

Distance(c)*II. This difference in time must be at least as large as m i+ m 2 , or Delay(c), leading

to the final equation in the figure and the equation below.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Delayi
Distancei

The largest such constraint over all the dependence cycles for the loop determines the

RecMII. One approach to compute the RecMII is to enumerate all the recurrence circuits in

the dependence graph and apply the above equation [49]. An alternative method, proposed by

Huff [50], is to pose the problem as a minimum cost-to-time ratio problem, where a dependence

arc is viewed as a cost of 0 — Delay and a time of Distance. If M is the minimum cost-to-

time ratio, then R e c M II = f—M]. Using this method, the RecMII can be computed for

each strongly connected component (SCC) of the dependence graph in 0 (n 3) time [10]. The

maximum over all the SCCs is the RecMII.

The actual scheduling can be done using a variety of algorithms. Possibilities include back

tracking algorithms [10] and algorithms that attem pt to reduce the register usage of the modulo

schedule [51, 52]. Once a valid schedule is found, the code for the software pipelined loop is

generated. Figure 3.8(a) shows four overlapped loop iterations after modulo scheduling. In

this dissertation, the abstract code representation of [53] is used to reduce the complexity of

the examples. In the figure, each square represents one stage worth of instructions for a single

iteration. The number of stages in the schedule is called the stage count. Once enough itera

tions have been started, a steady state is reached. This steady state can be rolled into a loop,

producing the basic code structure in Figure 3.8(b).

Overlap of the loop iterations often results in overlap of the lifetimes of the loop variants (a

variant is a variable that may be redefined every iteration). That is, the variant may be defined

again by a subsequent iteration before the value defined in the current iteration has been used.

32

R e c M II = max
C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) O v erlap p e d Itera tions (b) B asic C o d e S tru c tu re

A
B A
C B A

C B A
C B

C

A
B A
C B A 1

F ig u re 3 .8 Overlapped Iterations and Basic Code Structure.

Overlapping lifetimes can be renamed using a technique called modulo variable expansion [40].

This technique unrolls the kernel and renames the lifetimes so that there is no overlap.

B1 A2
i—► C1 B2 A3

C2 B3 A1
C3 B1 A2

F ig u re 3.9 Modulo Scheduled Loop Structure with Kernel Unrolling.

Figure 3.9 shows the code structure with kernel unrolling for modulo variable expansion.

Each stage is now numbered to show the version of the code used. Each version uses different

register names. The figure assumes that the longest register lifetime spans three pipeline stages.

Thus the kernel is unrolled three times. This code structure is simplistic and does not allow an

arbitrary number of iterations to be correctly executed [53]. Complete code generation schemes

will be discussed in Chapter 5. Renaming can done in hardware using rotating registers [46, 53].

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This eliminates the need for kernel unrolling. If the architecture contains rotating registers and

predication, code can be generated without kernel unrolling and without a prolgue or epilogue,

resulting in no code expansion. This is referred to as kernel-only code [53].

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

THE IMPACT MODULO SCHEDULER

This chapter describes the modulo scheduler that was implemented as part of this thesis.

Figure 4.1 shows the overall structure of the modulo scheduler. The scheduler receives as

input the Mcode for the target architecture after the prepass portion of the machine-dependent

peephole optimizations. The first steps are to identify and prepare the appropriate loops for

modulo scheduling. Next, the dependence graph is built using latencies obtained from the

machine description. The initial candidate II is computed using the dependence graph and

knowledge of the resources used by each instruction. The resource information is obtained

through an interface to the resource manager.

An attem pt is then made to schedule the loop at the M il using the dependence graph and

the resource manager. If the scheduler fails to find a valid schedule a t the candidate II, the II is

incremented and scheduling is attem pted again. Scheduling is aborted if the II or the number of

tries reach predetermined values. If scheduling is aborted, the loop is scheduled by the acyclic

scheduler. Once a valid schedule is found, kernel unrolling and modulo variable expansion are

performed. Finally, the prologue and epilogues are generated.

Following the modulo scheduling phase, code that has not been software pipelined is sched

uled by the acyclic scheduler. Then global register allocation is applied to the entire function.

If spill code is introduced into the kernel of a modulo scheduled loop, the kernel with spill code

is rescheduled using postpass acyclic scheduling. This is not the optimal way to handle spill

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Loop Selection
and Preparation

 t______
Build Dependence
Graph

Y
Compute Mil

Modulo Scheduling
£ lgine

Extended Modulo
Variable Expansion

Prologue/Epilogue
Genei ition

ipelincd
cod

F ig u re 4.1 The IMPACT Modulo Scheduler.

code. To make sure that this did not affect the results of the studies done in later chapters,

the modulo scheduled loops were checked for spill code after compilation was complete. Only

a handful of infrequently executed loops contained spill code. The following sections describe

each of the steps of the implementation in detail, with the exception of the generation of the

prologue and the epilogues. This step is covered in detail in Chapter 5.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 Loop Selection and Preparation

Loops are targeted for modulo scheduling early in the compilation process. This allows

them to be appropriately optimized. During the first step of modulo scheduling, the targeted

loops are re-examined to determine if they are still eligible for modulo scheduling. This is

necessary because the translation from Lcode to Mcode could introduce hazards th a t prohibit

modulo scheduling of the loop. For example, if the target processor supports integer divides

via a function call, the Lcode divide instruction would be translated into a function call during

annotation, prohibiting modulo scheduling of the loop.

The same criteria are used to select eligible loops both early in the compilation process,

and later during the first step of modulo scheduling. The point a t which eligible loops are first

identified depends upon the compilation path used. If superblock formation and hyperblock

formation are not applied, the eligible loops are identified immediately following machine-

independent classic optimization. Otherwise, the eligible loops axe identified after superblock

formation, hyperblock formation, and optimization. Hyperblock formation and superblock for

mation can increase the number of loops eligible for modulo scheduling (see Chapter 5). In

either case, the loops are selected prior to loop unrolling so th a t the appropriate ILP optimiza

tions can be applied. The basic block, superblock, or hyperblock th a t makes up the body of

the loop is marked to indicate that the loop is eligible for modulo scheduling.

The criteria for selecting loops are as follows. The total number of executions of the loop

body and the average number of iterations per invocation must be above a pre-defined thresh

old. Modulo scheduling of loops containing function calls is currently not supported. Loops

containing floating-point to integer or integer to floating-point conversions are also not eligible,

because, in most architectures, the converted data is transferred between units via a memory

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

location on the stack. The memory reads and writes are inserted during annotation. The same

memory location is overwritten every iteration creating a recurrence. However, the sync arcs

necessary for the modulo scheduler to detect the recurrence are not added during annotation.

Finally, the loop body must end with a conditional branch back to the top of the loop rather

than a conditional branch to the exit followed by a jum p to the top of the loop. All of the

above restrictions will yield to further implementation effort.

Parameters can be set by the user to control whether or not the modulo scheduling is

performed for loops with non-trivial recurrences, while (non-counted) loops, multiple-exit su

perblock loops, and hyperblock loops. Another parameter enables the printing of statistics that

report information on which loops were pipelined, which were not, and why.

After the eligible loops have been verified, the disjoint live ranges within the loop body are

renamed. If the live range is disjoint within the loop body, but not outside, a compensation

code block is added at the exits for which the renamed register is live-out. A move is inserted in

this block if the current name for the virtual register is not the same as that expected outside

the loop. After modulo scheduling, the compensation blocks are merged with the epilogues

and copy propagation is performed to remove any unnecessary moves. Renaming the disjoint

live ranges ensures that for any elementary cycle in the dependence graph, there is only one

definition of a particular live range. This in turn ensures that any remaining anti-dependences

can be removed using modulo variable expansion, effectively allowing the loop to be put into

dynamic single assignment form [54].

A data structure is built for each instruction to hold the information needed for scheduling

and for the code generation scheme. Some of the more im portant items contained in the

structure are a pointer to the alternative chosen for the instruction (if scheduled), a pointer

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the machine description information for the instruction, the priority, the issue time, stage,

and slot in which the instruction is scheduled (if any), the copy of the kernel (due to kernel

unrolling) in which the instruction resides, the ID of the basic block in which the instruction

resided prior to scheduling, and pointers to information about the lifetimes of the source and

destination registers (for use by the modulo variable expansion algorithm).

4.2 Dependence Graph Construction

The dependence graph builder is shared with the acyclic scheduler. The graph can be built

in two modes. The acyclic mode builds a graph containing only the intra-iteration dependences

and is used by the acyclic scheduler. The modulo scheduler invokes the dependence graph

builder in cyclic mode, which adds the cross-iteration dependences. In both cases, the graph

contains register, memory, and control dependences and is built for a single superblock or

hyperblock (in cyclic mode, that block is always the body of a loop). The cyclic mode was

added to the dependence graph builder as part of the work for this thesis and supports modulo

scheduling of superblock loops. The data structure for a dependence arc contains the type

(register, memory, control, flow, anti-, output) and the delay and distance of the dependence.

The cross-iteration register dependences are added in four linear passes over the superblock.

In the first top-down pass, the lexically last definition of each register is stored in a hash

table. In the second top-down pass, the cross-iteration flow and output dependences are added,

and register definitions are removed from the table when they are killed by the lexically first

definition of the same register (i.e., the computation of dependences does not rely on the

superblock being in SSA form). In the third bottom-up pass, the lexically first definition of

each register is stored in the hash table. In the final bottom-up pass, anti-dependences are

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

added, and register definitions are removed from the table when they are killed (in the sense

th a t they cannot be anti-dependent upon any further uses in the pass) by the lexically last

definition of the same register. For general virtual registers, the extended modulo variable

expansion described in Chapter 5 allows the anti-dependences associated with overwriting the

same register every loop iteration to be removed. Thus the only register anti-dependences added

are those associated with the special-purpose non re-nameable registers.

The memory dependences are computed by examining the sync arcs between memory in

structions. If there is an inner-loop-carried dependence between two memory instructions, then

a memory dependence arc is added.

Cross-iteration control dependences are added from the loop back branch to the appropriate

instructions which precede the first exit branch in the superblock. Subsequent instructions in the

superblock (if any) are guarded by the control dependences on the first exit branch. Instructions

for which speculative execution is allowed1 do not have a control dependence added. The rules

for adding control dependences (both cross-iteration and intra-iteration) are relaxed in cyclic

mode compared to acyclic mode. For example, instructions with a destination register that

is live-out can be moved upward across the branch during modulo scheduling (because of the

extended modulo variable expansion described in Chapter 5) but not during acyclic scheduling.2

Thus in such a case, a control dependence is not added in cyclic mode. Control dependences

are also used to prevent the motion of instructions downward across a branch. In acyclic mode,

stores and instructions with a destination register that is live out cannot be moved downward

‘The set of instructions which are eligible for speculative code motion depends on the architecture. The de
pendence graph builder queries the machine description to find out if a particular instruction can be speculatively
executed.

2 For acyclic scheduling, a renaming-with-copy optimization similar to dynamic renaming [41] is performed
during ILP optimization to reduce the effect of this restriction. This optimization increases the number of
instructions in the loop and is not needed for modulo scheduling, so it is not applied to loops targeted for modulo
scheduling.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

across a branch. The IMPACT acyclic scheduler does not generate the compensation code

required to allow such motion. The epilogues in the code generation scheme for a modulo

scheduled loop provide the necessary compensation code, so this restriction does not exist

in cyclic mode. Only control and synchronization instructions are prevented from moving

downward across branches in cyclic mode.

START and STOP pseudo-instructions are added to the dependence graph to facilitate

some of the graph algorithms such as computing the height-based priority. They are made

the predecessor and successor respectively of all the nodes in the graph. All the dependences

between these pseudo-instructions and the rest of the instructions have both delay and distance

0 .

4.3 Calculation of the M il

The ResMII is computed using the bin-packing algorithm of [10]. This is done through an

interface to the resource manager. The modulo scheduler maintains an array containing the

usage count of each resource. The array and an instruction are passed to the resource manager,

which updates the array with the resource usages of the best alternative for the instruction. The

best alternative is that which yields the smallest partial ResMII. The instructions are processed

in order of the number of alternatives starting with the instruction with the fewest alternatives.

The RecMII is computed using the MinDist algorithm described in [10] and [50]. For

simplicity, the algorithm is run on the entire superblock rather than on each strongly connected

component (SCC), making the calculation more expensive. The initial trial value of II is 1

rather than the ResMII so tha t statistics can be gathered on the RecMII values.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Modulo Scheduling Engine

The modulo scheduler itself is an implementation of Rau’s iterative modulo scheduling [10].

Limited backtracking (unscheduling) is performed when the scheduler fails to meet dependence

or resource constraints. The scheduler is given a budget that is equal to some multiple of

the number of instructions in the superblock loop body. If the scheduler has not found a valid

schedule by the time that it has scheduled a number of instructions equal to the budget, it aborts

the scheduling attem pt and increments the II. The multiple is called the budget.ratio and is

a param eter. In effect, the scheduler can schedule each instruction an average of budget.ratio

times before giving up on the candidate II.

The instructions are scheduled in priority order. A simple height-based priority was shown

to work well in [10] and is used here. The loop body can be scheduled either from the top down

or from the bottom up. In the former case, the height-based priority of an instruction x is equal

to M inD ist[x , STOP], and the earliest start time of an instruction is computed based on its

scheduled predecessors. In the latter case, the height-based priority of an instruction x is equal

to M in D is t[S T A R T , x], and the latest start time of an instruction is computed based on its

scheduled successors. The scheduled instructions that are not currently scheduled are kept in

a priority queue. W hen an instruction is unscheduled, it is inserted into this queue in priority

order.

During scheduling, a special schedule cycle numbering scheme is used to keep the cycle

numbers from becoming negative during bottom-up scheduling. The initial latest start time for

the STOP node is set to a large multiple of the II minus 1 (1000 times the II in the current

implementation on the assumption that the schedule for an iteration will never be stretched

over 1000 stages). This corresponds to the last row of the MRT. For consistency, in top-down

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scheduling, the initial earliest start time for the START node is set to a large multiple of the

II, corresponding to the first row of the MRT. After scheduling, the cycle numbers are shifted

toward 0 by subtracting off the largest multiple of II such that all the instruction issue times

remain positive.

When scheduling an instruction, up to I I + 1 cycles are checked rather than II. The reason

for this is that in the first cycle checked, some of the slots may not have been tried due to a

dependence with a zero-cycle delay on an instruction already scheduled in that cycle. Examples

of zero-cycle delays depend on the machine description, but typically include a branch followed

by a control dependent instruction in the fall-through path, or a store followed by a load of the

same address.

The loop back branch is freely scheduled (subject to dependence and resource constraints)

in any cycle of the MRT. The placement of the branch determines the boundaries of the stages.

After scheduling, to form the kernel, the MRT is rotated until the loop back branch is in the

last row. In this dissertation, no branch delay slots are assumed, so the loop back branch must

be scheduled in the rightmost slot of its row in the MRT. This assumes either a superscalar

processor for which the instructions are laid out in sequential order in memory by scanning

the MRT from left to right and top to bottom or a VLIW processor for which a taken branch

operation must occupy the rightmost slot in the instruction word.

After an instruction is scheduled, the dependences going to its scheduled successors (for

top-down scheduling) or coming from its scheduled predecessors (bottom-up scheduling) are

examined. If any dependence is violated, the successor or predecessor is unscheduled and

placed back in the priority queue.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After scheduling, register lifetimes are optimized by moving instructions th a t have no pre

decessors as late as possible and instructions that have no successors as early as possible by

multiples of II cycles. This has the same effect as the Sink/Source (SS) heuristic in [51].

Scheduling from the bottom up can reduce register pressure compared to scheduling from the

top down. This is because dependence graphs often have more merge points than fork points,

especially in numeric programs.

4.5 Extended Modulo Variable Expansion

The extended modulo variable expansion (MVE) implemented for the IMPACT modulo

scheduler is capable of renaming lifetimes that cross iterations and are live out of loop exits.

The theory behind this is described in Chapter 5. This section describes the implementation.

The modulo variable expansion is broken into an analysis phase and a transformation phase.

During the analysis phase, information is collected about the lifetimes of the loop variants. For

each lifetime a structure is built that contains the length of the lifetime, the issue time of the

first definition, and a flag indicating whether or not the lifetime is live out of any exit. There

is also a flag to indicate if the last use is scheduled in a slot farther to the right than the first

definition. In some cases, for a superscalar processor model, this is needed to determine if a

lifetime with a given amount of renaming will overlap with itself or not. If the last use of

the current lifetime is in the same cycle as the first definition of a subsequent instance of the

lifetime, the ordering of the first definition and the last use in the slots determines whether or

not the two lifetimes will overlap when the instructions residing in the same cycle are placed in

sequential order.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The analysis proceeds by examining each instruction in the original program order.3 In a first

pass over the instructions, the outgoing register flow dependences are examined to find the uses

of each register defined by the current instruction. Since cross-iteration register dependences

are included in the dependence graph, cross-iteration lifetimes can be analyzed. Whenever a

new virtual register destination is encountered, a new lifetime structure is created. There is also

an MVE info structure associated with each source operand. This structure contains a pointer

to the lifetime structure associated with the source operand and the length of the lifetime from

the first definition to this use. When each flow dependence is examined, this structure is filled

in. The to ta l length of the lifetime is updated by taking the maximum of the current total

length and the length from the first definition to this use. A list of the branch instructions is

also built up during the first pass.

During a second pass over the instructions, each destination register is checked to see if it

is live out of any of the branches. For each branch for which the destination register is live

out, the lifetime length is updated by taking the maximum of the current total length and the

length from the first definition to the branch.

The amount of renaming required for each lifetime is computed in one pass over the lifetime

structures. During the same pass, the amount of kernel unrolling is computed as the maximum

amount of renaming required by any one lifetime. Define k m in as this amount of kernel

unrolling. A second pass is then made over the lifetime structures to make the amount of

renaming for each lifetime a factor of k m in and to allocate an array of register numbers for

each lifetime. One of the register numbers allocated is the original virtual register number for

3During modulo scheduling, the issue times and slots of the instructions are determined, but the instructions
are not actually reordered until after the MVE analysis phase.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the lifetime. As described later, this can reduce the number of moves inserted in the prologue

and the epilogues for live in /out variants.

After the analysis phase but before the transformation phase, the instructions in the loop

body are reordered to form the kernel. During the transformation phase, the kernel is unrolled

and the registers are renamed. The renaming is done in such a way that the first use of a live-in

variant (a variant that is used before defined in the prologue) in the prologue uses the original

virtual register number for the variant. A variant defined in the first copy of the unrolled kernel

is assigned a register number as follows. The array of allocated register numbers is indexed

starting from 0. The register number at index 0 is the original virtual register number. Assume

there are N register numbers allocated for the variant and that the first definition of the variant

occurs in stage D of the schedule for a single iteration. The live-in value can be viewed as being

defined by an imaginary iteration during stage D — 1 of the first iteration. This definition is

assigned the register number at index 0. The definition of the variant in the first copy of the

unrolled kernel occurs during stage S C — 1 of the first iteration, where SC is the stage count.

This definition is assigned the register number a t index:

(SC - 1 — (D — 1))moduloN = (SC - D)moduloN

Definitions of the variant in subsequent copies of the kernel are assigned the register number

a t index:

((SC - D) + C)moduloN,

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where C is the copy of the kernel in which the definition resides. The kernel copies are numbered

starting from 0.

Each use of a variant is renamed by finding the kernel copy in which the variant was defined

(using the stored information about the length of the lifetime from the first definition to the

current use) and then assigning the same register number that was assigned to the definition

in that copy.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

MODULO SCHEDULING OF LOOPS IN
CONTROL-INTENSIVE NON-NUMERIC PROGRAMS

Most of the previous work on modulo scheduling has targeted numeric programs, in which,

often, the m ajority of the loops are well-behaved ”DO” loops (loop-counter-based loops) without

early exits. All of the more extensive performance evaluations of modulo scheduling techniques

have been for such loops. In control-intensive non-numeric programs, the loops frequently

have characteristics that make it more difficult to apply modulo scheduling and to obtain

significant speedup. These characteristics include multiple control flow paths, loops tha t are

not based on a loop counter, and multiple exits. Several techniques have been developed to allow

modulo scheduling of loops with intra-iteration control flow, such as hierarchical reduction [40],

predicated execution [46], and reverse if-conversion [55]. The above work has assumed that all

of the paths through the loop body are included for scheduling. Unfortunately, including all of

the paths can be detrimental to overall loop performance. The presence of unim portant paths

with high resource usage or long dependence chains can result in a schedule tha t penalizes the

im portant paths. A path tha t contains a hazard, such as another nested loop or a function call,

can prohibit modulo scheduling of the loop.

Previous work has also been done on modulo scheduling of loops tha t are not based on a

loop counter [53], [56]. The key difficulty with this type of loop is tha t it may take many cycles

to determine whether or not to start the next iteration, limiting the overlap of the iterations.

This difficulty is overcome by speculatively initiating the next iteration. The work in [56]

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also mentions a source-to-source transformation to convert a loop with multiple exits into a

single-exit loop. The resulting loop contains multiple paths of control and is dealt w ith using

one of the methods for modulo scheduling of loops with intra-iteration control flow. However,

this method adds extra instructions and delays the early exits until the end of the loop body.

More work is needed to evaluate the performance of this approach, especially for architectures

w ithout predicated execution.

This chapter describes a new set of methods that allows effective modulo scheduling of loops

w ith multiple paths of control and multiple exits. Superblock [6] techniques are used to exclude

the unim portant and detrimental paths from the loop. Loops with multiple exits often occur

naturally in control-intensive programs and the beneficial exclusion of paths via the formation

of superblock loops creates many more of them. Thus, an effective method for handling multiple

exits is essential.

Rather than transform the loop into a single exit loop, the proposed methods schedule the

loop as is, with the multiple exits present. A new code generation scheme is described that

creates correct epilogues for the early exits. Speculation is used to increase both the overlap of

the basic blocks within each iteration and the overlap of successive iterations. Modulo variable

expansion is extended to allow the speculation of instructions that write to variables that are

live a t the loop exits. Altogether, the methods described in this chapter allow effective modulo

scheduling of the selected paths of loops with arbitrary control flow.

The chapter is organized as follows: Section 5.1 describes the methods developed and

presents a case study to show how these methods, when combined with superblock techniques,

enable modulo scheduling to be effectively applied to control-intensive loops. Section 5.2 re

ports speedup results for several SPEC CINT92 benchmarks and Unix utilities. These are the

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

first reported performance results for modulo scheduling on control-intensive non-numeric pro

grams, and they demonstrate the applicability of modulo scheduling to this class of programs

and validate the correctness of the proposed methods.

5.1 Case Study and Methods

A detailed example is used to illustrate the difficulties caused by control-intensive loops

and the benefits of the techniques developed. The loop chosen for this case study is one of the

frequently executed loops in lex, the lexical analyzer generator. The source code for the loop is

shown in Figure 5.1.

for (i = n; i >= 0; i--) {
j = state[i];

S 1 : if (count == *j++) {
for (k = 0; k < count; k++)

if (!temp[*j++]) break;
if (k >= count)

return (i);
}

}

F ig u re 5.1 Source Code for Example Loop from lex.

Loops in general-purpose non-numeric programs frequently have complex control flow, which

is evident in the example loop. The outer loop contains an if-statement, an inner loop, and an

early exit via a return statement. The inner loop contains an if-statement and an early exit via

a break statement.

Obviously, this loop contains a number of hazards for modulo scheduling. Modulo scheduling

would ordinarily target the inner loop. However, profile information indicates that the inner

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

loop is infrequently invoked and usually has few iterations. The condition for the if-statement

SI evaluates to false more than 90% of the time. Figure 5.2(a) shows a simplified version of the

control flow graph for the loop. Block X contains the code to load s ta te[i] and *j and do the

comparison for statement SI. Block Y consists of the post-increment of the pointer j and all

the code in the body of the if-statement SI. The control flow within block Y has been omitted

for clarity. Block Z contains the code to update i and to test the exit condition. The branch

preceding block X to test the exit condition for the initial value of j has also been om itted for

clarity.

(a) Before (b) After

F ig u re 5.2 Superblock Formation for Example Loop.

The detrim ental path containing the inner loop can be excluded from the loop via superblock

formation. A superblock loop consisting of the most frequent path through the outer loop

(blocks X and Z) is formed as shown in Figure 5.2(b). The path through block Y has been

excluded via tail duplication of block Z. A super block loop consists of a single path through a

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

loop, with a single entrance and one or more exits. The loop consisting of blocks X and Z now

appears to be an inner loop with multiple exits and can be targeted for modulo scheduling.

It has been shown that superblock optimization and acyclic scheduling techniques provide

substantial speedup [6]. For modulo scheduling, the ability of superblocks to exclude undesirable

paths of execution can provide the following benefits:

• Decrease ResMII by excluding unimportant paths with high resource usage.

• Decrease RecMII by excluding unimportant paths that contribute to long dependence

cycles.

• Increase the number of loops that can be modulo scheduled by excluding paths containing

hazards such as nested loops and function calls.

Although the modulo scheduling methods developed in this chapter are described using su

perblock examples, they are equally applicable to hyperblock code.

Figure 5.3 shows the assembly code for the example superblock loop. Each instruction

is numbered for later reference. Block X in the control flow graph consists of instructions 1

through 3. Instructions 4 through 6 are in block Z. The assembly code shown is that produced

by the IMPACT compiler after classic optimizations, such as loop invariant code removal, global

variable migration, and strength reduction, have been applied. The elements of the array state

are four bytes in size. The registers shown are virtual registers. Recall that register allocation

is done after modulo scheduling.

Control exits the superblock loop if instruction 3 is taken, or if instruction 6 is not taken.

In this dissertation, the exit associated with the fall-through path of the loop back branch is

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inst.________ Assembly________ Register Contents
1 L1: r12 = MEM(r34+r8) r8 = state
2 r13 = MEM(r12+0) r34 = i*4
3 beq (r6 r13) L2 r12 = j
4 r4 = r4 -1 r13 = *j
5 r34 = r34 - 4 r6 = count
6 ble (0 r4) L1 r4 = i

F ig u re 5.3 Assembly Code for Superblock Loop.

termed the final exit. Any other exits from a superblock loop are via taken branches and are

term ed early exits.

The virtual registers r34, r4, and r l2 are live out when the early exit to L2 (block Y) is

taken. The values in r34 and r4 are decremented in block Z '. The value in r l2 is incremented

in block Y. Note tha t there is no increment of the pointer j in the superblock loop. The

incremented value of j is dead when the condition for if-statement SI evaluates to false, so the

increment shown in the condition for the if-statement SI is done after control is transferred to

block Y. No virtual registers are live out when the loop exits via the final exit (instruction 6).

Loops with complex control flow occur frequently in general-purpose non-numeric programs.

Table 5.1 shows statistics on the percentage of dynamic instructions tha t are in single basic

block loops (Basic Block) and multiple exit superblock loops (Superblock) for the SPEC CINT92

benchmarks and several Unix utility programs. The column labeled Total is the sum of the

other two columns. The time not spent in these two types of loops is spent in the excluded

paths of inner and outer loops and in acyclic code.

For all the programs except gee and tbl, little or no time is spent in single basic block

loops. For all the programs except tbl, more time (usually much more) is spent in multiple

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T ab le 5.1 Percentage of Dynamic Instructions in Single Basic Block and Superblock Loops.

Benchmark Basic
Block

Superblock Total

008.espresso 5.6 57.8 63.4
022.li 0.7 21.4 22.1
023.eqntott 1.8 70.5 72.3
026.compress 0.6 49.8 50.4
072.sc 4.4 34.6 39.0
085.gcc 14.1 28.5 42.6
cmp 0.0 94.5 94.5
eqn 2.6 20.9 23.5
lex 2.0 86.2 88.2
tbl 17.4 9.6 27
yacc 3.2 45.5 48.7

exit superblock loops than in single basic block loops. From this table, it is clear that modulo

scheduling must be able to effectively handle loops with control flow to be applicable to these

programs. The remainder of this chapter describes how the proposed techniques overcome the

control dependences and register anti-dependences associated w ith loops that have multiple

exits and live-out virtual registers. A code generation scheme for loops with multiple exits is

also presented.

5.1.1 Overcoming control dependence using speculative code motion

Control dependences are a major impediment to the exploitation of ILP in the loops of

general-purpose non-numeric programs. Cross-iteration control dependences restrict the overlap

of loop iterations by delaying the start of subsequent iterations until all the branches from

the current iteration have been executed. Frequently the branches are dependent on earlier

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computations in the loop body and cannot be executed until late in the iteration, severely

limiting any overlap.

Intra-iteration control dependences combined with cross-iteration data dependences create

recurrences which limit the throughput of the modulo scheduled loop. They also increase the

length of the critical paths through a single iteration, resulting in a longer schedule for each

iteration, an important consideration for short trip count loops.

As described in [53] and [56], the cross-iteration control dependences from the loop back

branch to the instructions in the next iteration can be relaxed, allowing speculative code motion

and overlap of the iterations. For loops with multiple exits, this concept must be extended to

the early exit branches. It is often necessary to remove the cross-iteration control dependences

from an early exit branch to the instructions in subsequent iterations to achieve the desired

level of overlap. It is also often necessary to remove intra-iteration control dependences to allow

overlap of the blocks within an iteration and to achieve good performance for short trip count

loops.

The effect of control dependences on the example superblock loop is now shown. Fig

ure 5.4(a) shows the dependence graph. Each node is numbered with the ID (from Figure 5.3)

of the instruction it represents. The branch nodes are shaded. The data and control depen

dences are shown with solid and dashed lines, respectively. Some of the transitive dependences

are not shown. None of the register anti-dependences are shown, assuming that they can be

removed. Removal of anti-dependences is discussed in Section 5.1.2.

There are several non-trivial recurrences apparent in the graph. The longest recurrence

circuit runs through instructions 1, 2, 3, 4, 6, and back to 1. It has a to tal delay of six and

spans one iteration, resulting in a RecMII of six. If the loop is scheduled using this dependence

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- Control
2,0 > D ata

- *y

2,0 2,0

(a) RecMII = 6 (b) RecMII = 1

F ig u re 5.4 Dependence Graph for Example Loop.

graph, there is no overlap of the iterations. The loop back branch is dependent on almost all of

the instructions in the loop and the next iteration is dependent on the loop back branch. The

cross-iteration control dependences from the loop back branch to the instructions in the next

iteration (except instruction 3) can be removed, allowing speculative code motion and overlap

of the iterations. However, there are still limiting control dependences present. The recurrence

circuit consisting of instructions 1 ,2 ,3 , and 5 limits the RecMII to five. To break this recurrence,

the intra-iteration control dependence between instructions 3 and 5 must be removed, enabling

speculative execution of instruction 5. The control dependence from instruction 3 to instruction

4 must also be removed to break the remaining limiting recurrence. Figure 5.4(b) shows the

dependence graph after all of the limiting control dependences have been removed, reducing

the RecMII to one.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An instruction can legally be moved during modulo scheduling from above to below a branch

if the branch is not data dependent on the instruction. For example, instruction 5 could legally

be scheduled after instruction 6. When an instruction is moved from above to below a branch,

it is automatically moved into both paths of the branch during the generation of epilogues

following the actual modulo scheduling process. In Sections 5.1.2 and 5.1.4, it is shown that

special attention must be paid to this type of code motion for correct code generation in multiple

exit loops.

Figure 5.5 shows the modulo resource table (MRT) [10] after modulo scheduling by the

IMPACT compiler using the dependence graph of Figure 5.4(b). Assuming a four-issue proces

sor that can execute one branch per cycle, the ResMII for the example loop is two. The RecMII

was one, resulting in an II of two. This is a speedup of three over modulo scheduling using the

dependence graph of Figure 5.4(a).

Cycle
Mod II

0

1

F ig u re 5.5 Modulo Resource Table after Modulo Scheduling.

5.1.2 Overcoming anti-dependence using modulo variable expansion

Thus far, nothing has been said about anti-dependences and the constraints imposed by the

virtual registers that are live out of the loop exits. In its original form, an instruction I that

writes a virtual register that is live out of an exit branch B cannot be moved from below to above

57

Issue Slot
0 1 2 3

instr. 3
issue 4

instr. 4
issue 4

instr. 2
issue 2

instr. 1
issue 0

instr. 5
issue 1

instr. 6
issue 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B because it overwrites a value that is used when the exit is taken. This constraint on upward

code motion is exactly the same as if the virtual register were one of the operands of B (i.e.,

it is an anti-dependence constraint) but is represented differently in many compilers. Instead

of adding an explicit anti-dependence arc, many compilers, including IMPACT, overload the

control dependence arc to represent both the control dependence and the anti-dependence.

There are several examples of anti-dependence in the case study loop. Instruction 1 uses

r34, which is later defined by instruction 5. Virtual register r34 is live out when the branch to

L2 (instruction 3) is taken, so there is an anti-dependence between instruction 3 and instruction

5.

Anti-dependences can be removed by renaming [36], [57], allowing the lifetimes of two dif

ferent values, which formerly were assigned to the same virtual register, to overlap in time. For

example, the destination of instruction 5 can be locally renamed as shown in Figure 5.6. This

allows instruction 5 to be moved up in the schedule past instruction 3 and instruction 1. A

move instruction is added to preserve correctness because r34 is used outside the superblock.

Inst. Assembly
1 L1: r12 = MEM(r34+r8)
2 r13 = MEM(r12+0)
3 beq(r6r13)L2
4 £ ii £ i

5 r100 = r34 - 4
r34 = r100

6 ble (0 r4) L1

F ig u re 5.6 Assembly Code with Renaming of r34.

Unfortunately, the move is now an extra resource used in the loop, and there still exists

an anti-dependence, from instruction 3 to the move, which is on a critical recurrence circuit.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Furthermore, all the resources required by the loop must be known before modulo scheduling

begins, so that the ResMII can be computed, resulting in a phase ordering problem. The

decision to rename the destination of an instruction so that it can be speculatively executed

must be made before modulo scheduling, but a t that time it may be unclear whether the

instruction has to be speculatively executed.

Modulo variable expansion (MVE) [40], [53] unrolls the kernel and renames the successive

lifetimes corresponding to the same variant so that they no longer overlap in time. This allows

register anti-dependences to be removed before scheduling, knowing that modulo variable ex

pansion will correct the overlap of lifetimes that the lack of these dependences allows. Modulo

variable expansion does not require the addition of moves within the loop body and there

fore, does not present a phase-ordering problem. The modulo variable expansion algorithm,

as originally described [40], allows the removal of cross-iteration anti-dependences. However,

intra-iteration anti-dependences can also be removed if the lifetime analysis and the renaming

algorithms are extended to include lifetimes that cross iterations. I t is assumed that this can

be done in [53]. In this dissertation, the changes necessary are described.

Figure 5.7 illustrates the relaxation of a cross-iteration anti-dependence using modulo vari

able expansion, as described in [40]. Three iterations of an abstract loop body containing a

definition and use of a virtual register r l are shown in Figure 5.7(a). There is an intra-iteration

flow dependence (marked with an f) and a cross-iteration anti-dependence (marked with an a).

The cycle in which each instruction is issued is shown in square brackets to the right of the

abstract instruction, assuming the delay for the flow dependence is two and the anti-dependence

is zero. In its original form as shown on the left, the minimum II th a t can be achieved is two.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using modulo variable expansion, the anti-dependence can be removed prior to scheduling,

reducing the II to one. Two virtual registers are now used as shown in Figure 5.7(b).

f D ef(r2) [1]

D ef(r1) [0] Def (r1) [0]

i' 1'
U se (r1) [2] U se(r1) [2] I f D ef(r1) [2]

o » (, l) |2 1 U » M M

1'
f

U se (r1) [4]

U se (r1) [4]

= 1

a
Def (r1) [4]

II = 2

i '
f

U se (r1) [6]

(a) Without MVE (b) With MVE

F ig u re 5.7 Relaxation of Cross-Iteration Anti-Dependence.

Figure 5.8 shows the relaxation of an intra-iteration anti-dependence. In this case, the

use appears before the definition in the original iteration, and the lifetime of r l now crosses

the iterations. Removal of the intra-iteration anti-dependence prior to scheduling allows the

definition to be moved above the use as shown in Figure 5.8(b). As in the previous case, two

registers are used and the II is reduced from 2 to 1.

The lifetime of a virtual register extends from its first definition to its last use. The lifetime

of a loop-variant virtual register V from a definition D to a use U is computed using the

following equation, assuming that the lifetime starts when D is issued and ends when U is

issued.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Without MVE (b) With MVE

F ig u re 5.8 Relaxation of Intra-Iteration Anti-Dependence.

L i fe t im e (V) = Issue(U) — Issue(D) + I I * D is t(V) (5.1)

Issue(D) and Issue(U) are the issue times of the instances of D and U from the same original

iteration.1 Dist(V) is the number of iterations separating D and the instance of U that uses

the value defined by D in the original loop. The distance is either zero or one.2

Note th a t in Equation (5.1), use U could be a branch for which V is live out. For correct

renaming, the lifetime analysis must be extended to include such uses. There is an additional

consideration for live out virtual registers. Instruction D can be moved downward across the

branch B. If such code motion occurs, the definition is moved into both paths of the branch

1 Recall that modulo scheduling generates a schedule for a single iteration of the original loop. It is this
schedule that the compiler is working with when analyzing the lifetimes for modulo variable expansion.

2The distance can be greater than one if the compiler’s intermediate representation supports expanded virtual
registers (EVRs) [54].

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

during epilogue generation, V is no longer live-out, and Lifetime(V) as computed by Equation

(5.1) becomes less than or equal to 0. Thus, the lifetime of V is computed for all the uses

except those associated with the exits that D has been moved down across.

Figure 5.9 shows the execution of two iterations of the case study loop after modulo schedul

ing. The first iteration starts a t time 0 and its instructions are denoted with the subscript 1.

The second iteration starts at time 2 and its instructions are denoted with subscript 2. The

second iteration’s instructions are also shaded to further distinguish between the two iterations.

The lifetimes of all the virtual registers written in the loop are shown to the right of the execu

tion record. Each virtual register’s lifetime begins with its definition in the first iteration. Each

of the subsequent tic marks denotes either an explicit use of the virtual register as a source

operand, or a branch for which the register is live-out. The lifetime extends until the last use

of the register.

The lifetime of r l3 is entirely contained within one iteration. I t is defined by instruction

2 and used by instruction 3. Issue(2) is 2, Issue(3) is 4, Dist{r 13) is 0, and II is 2. Using

Equation (5.1), the length of the lifetime is 2. The lifetime of r34 crosses iterations. It is defined

by instruction 5, used by instructions 1 and 5 of the next iteration, and live-out of instruction

3 of the next iteration. Issue(5) is 1, Is sue (3) is 4, and Dist(r34) is 1. Using Equation (5.1),

the total length of the lifetime is 5.

The longest lifetime, tha t of r34, is five cycles so the loop must be unrolled three times for

modulo variable expansion. Figure 5.10 shows the unrolled kernel of the modulo scheduled loop

after modulo variable expansion. The instructions have been renumbered. When renaming,

one of the names used is the original virtual register name. The set of registers used for r34 is

r34, r342, and r343. The set of registers used for r l2 is rl2 , rl22, and rl23. The instructions

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Issue Slot Lifetimes

0 1 2 3 r13 r12 r34 r4

Cycle

0 1t
1 5i
2 12 I
3 52|
4 3i i l l
5
6 32 4 2v

7 N
CO

F ig u re 5.9 Execution Record and Lifetimes for Two Iterations.

have been put into sequential order, as would be done when generating code for a superscalar

processor. The target and fall-through path for the first two copies of the loop back branch

(instructions 6 and 12) have been reversed in preparation for epilogue generation. Block L3 is

the original fall-through path of the loop.

5.1.3 Review of a code generation scheme for single exit loops

This subsection reviews an existing code generation scheme for single exit loops in prepa

ration for introducing a modified scheme for multiple exit loops. For a complete discussion of

this and other possible code schemes for single exit loops, see [53].

After modulo scheduling and kernel unrolling, there are multiple copies of the loop back

branch from the original loop. For all the copies except the one that becomes the loop back

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inst.________ Assembly________ Cycle
1 L1: beq (r6 r13) L2 0
2 £ n i 0
3 r13 = MEM(r123+0) 0
4 r12 = MEM(r343+r8) 0
5 r34 = r343 - 4 1
6 bgt (0 r4) L3 1
7 beq (r6 r13) L2 2
8 r4 = r4 -1 2
9 r13 = MEM(r12+0) 2

10 r122 = MEM(r34+r8) 2
11 r342 = r34 - 4 3
12 bgt (0 r4) L3 3
13 beq (r6 r13) L2 4
14 r4 = r4 -1 4
15 r13 = MEM(r122+0) 4
16 r123 = MEM(r342+r8) 4
17 r343 = r342 - 4 5
18 ble (0 r4) L1 5

L3:

F ig u re 5.10 Unrolled Kernel for Superscalar Processor.

branch of the kernel, the target and fall-through path are reversed, as was shown in Figure 5.10,

so th a t the loop is exited when the branch is taken rather than when it falls through. Extending

the terminology of Section 5.1, all the exits associated with the copies of the loop back branch

are called final exits. When speaking of a single iteration, the exit associated with the fall

through path of the original loop back branch is still referred to as the final exit. Also in this

chapter, the last iteration refers to the last iteration that would have been executed in the

original non-pipelined loop.

A few words must be said about the effect of speculation on the basic code structure of

Figure 3.8. In the schedule for a single iteration, the final exit must be placed at the end

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of a stage (or equivalently, the placement of the final exit determines the stage boundaries),

because this branch will eventually become the loop back branch for the kernel. The chain of

dependences leading up to the final exit determines the earliest stage in which it can be placed.

The stage in which the final exit is scheduled determines the number of iterations that are

speculatively initiated.

Figure 5.11 shows the effect of placing the final exit in different stages. Figure 5.11(a) shows

the code structure for the case where the final exit is scheduled in stage A. The black horizontal

bars indicate the placement of the final exit. In this case, the final exit is executed before any

of the subsequent iterations are started. Thus, the iterations are not initiated speculatively.

The code in stages B and C was moved downward across the final exit, so when the exit is

taken, stage B and stage C for the last iteration and stage C of the second last iteration must

be executed in the epilogue. Figure 5.11(b) shows the code structure for the case where the

final exit is scheduled in stage C. Two subsequent iterations (shaded) are started speculatively

before the final exit is executed. In this case, because no code has been moved down across the

final exit, there is no epilogue. The speculatively initiated iterations are aborted.

(a) No Speculation (b) Speculation

£

A
B A
C B A

C B
C

B A
B A

F ig u re 5.11 Relationship Between Loop Back Branch Placement and Speculative Initiation
of Iterations.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Assume the stages of an iteration are numbered such that stage A corresponds to 0, stage

B corresponds to 1, and so on. Using the terminology of [53], if the final exit is scheduled in

stage 0, then there are 9 speculatively executed stages for each iteration after the first.

Figure 5.12 shows the complete structure of the code that is generated for each of the

possible stages in which the final exit branch could be placed for a three-stage schedule. In

Figures 5.12(a), (b), and (c), the final exit is scheduled at the end of stages A, B, and C,

respectively (9 = 0,1, and 2).

A1
B1
C1

A2
B2
C2

A3
B3
C3

A1
B1
C1

(a) Theta = 0

A2
B2
C2

C3 B1
C1

C2 B3
C3

B1
C1

(b) Theta = 1

A2
C1 B2

C2

C2C3

A3

C3 A2

(c) Theta = 2

A1
B1 A2

-► C1 B2 A3
C2 B3 A1

C3 B1

CM<

F ig u re 5.12 Code Generation Scheme for Single Exit Loops.

The arrows (except the back-edge) represent control transfers from the prologue and kernel

to the epilogues shown. Because the final exits are scheduled at the end of the stage, the arrows

originate very close to the bottom of each row of squares. There is now a separate epilogue for

each code version plus an epilogue reached from the prologue. The latter epilogue has fewer

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

columns because for this exit, there is no second last iteration. The epilogue for the last exit

from the prologue contains exactly the same code as the epilogue for the exit associated with

the fall-through path of the loop back branch at the end of the kernel. These two epilogues have

been merged into one. There are other examples of redundant code in the epilogues, which can

be removed in practice. This redundancy has been left in the figure for clarity. Although it is

not explicitly shown, a t the end of each epilogue there exists code to move any live-out values

to the registers in which the code outside the loop expects to find them and to jum p to the

original target block of the exit.

By comparing Figures 5.12(a) and (b), one can see how the structure of the generated code

changes when the loop back branch is scheduled at the end of stage B instead of stage A.

Because the loop back branch is executed one stage later, there are fewer stages left to execute

in the epilogues for the last iteration and its predecessors. Thus, the epilogues all have one

fewer rows. The one speculative iteration that is in progress when the loop exits is aborted;

therefore, there are fewer columns in each epilogue. The number of exits from the prologue is

reduced by one, so one of the epilogues has disappeared altogether. In general, when the loop

back branch is placed in stage 9 instead of stage 0, the 6 rightmost columns of each epilogue

are removed, corresponding to the 9 aborted speculative iterations [53]. The resulting epilogues

have SC — 9 — 1 rows where SC is the stage count.

5.1.4 A code generation scheme for multiple exit loops

Figure 5.13 shows the structure of a single iteration of a multiple exit loop before and after

modulo scheduling and illustrates the two key differences between a final exit and an early exit

w ith respect to code generation. Before modulo scheduling, the final exit is always a t the end

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the loop body and the early exit is somewhere in the middle. The grey box between the exits

represents the instructions that follow the early exit and that should not be executed when the

early exit is taken. After modulo scheduling, the final exit is always placed at the end of a

stage as described earlier. The early exit is scheduled somewhere in the middle of the stage. In

Figure 5.13(b), some grey instructions have been moved upward across the early exit and some

white instructions have been moved downward across both exits. When instructions are moved

upward across an exit, they are executed speculatively. When they are moved downward across

an exit, they are also copied to an epilogue associated with the exit.

(a) Original Iteration (b) Iteration after Scheduling

S ta g e A a m II C ycles

"'■i
^ Early Exit

S ta g e B

S ta g e C

M B

■

^ Early Exit

Final Exit

Final Exit

F ig u re 5.13 Structure of a Single Iteration of a Multiple Exit Loop.

Figure 5.14 illustrates the changes to the code generation scheme for multiple exit loops.

The figure assumes a loop with two exits, where both the early exit and the loop back branch

are scheduled in the same stage as in Figure 5.13. In Figures 5.14(a), (b), and (c), the final exit

is scheduled in stages A, B, and C, respectively. There are now more exits from the modulo

scheduled loop and thus more epilogues. The arrows associated with the early exits originate

very close to the top of each row and have dashed lines to distinguish them from the final exits.

The epilogues for the final exits are all the same as in Figure 5.12. The epilogues for the

early exits contain one more row than the epilogues for the final exits, because the early exit is

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Theta = 0

A1
B1
C1

A2
B2
C2

A3
B3
C3

A1
B1
C1

A2
B2
C2

C3 B1
C1

c3 b1 >a2
C l B2

C2

C2 B3
C3

B1
C1

bi a 2
C l B2

C2

(b) Theta = 1 (c) Theta = 2

A1
B1 A2
C1 B2 A3

C2 B3
C3

A1
B1
C1

A2
C3

t
c3 b1

,C1

C2

A1
B1 A2
C1 B2 A3

C2 B3 A1
C 3 B1 A2 : j

F ig u re 5 .14 Code Generation Scheme for Multiple Exit Loops.

from the middle of a stage, i.e., it is from the middle of a row in the kernel or prologue. When

the early exit is taken, the remaining portion of the row must be executed in the epilogue. Thus,

the remainder of the row containing the exit branch is copied to the epilogue. In Figure 5.14,

small letters are used to denote a partial stage resulting from an exit branch from the middle

of a stage.

Special consideration must be given to the last iteration. The columns of the epilogues

corresponding to the last iteration are highlighted in grey. Only the instructions from the last

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iteration that appeared before the exit branch in the original loop body should be executed.

Assume the basic blocks in a superblock are assigned numerical IDs starting sequentially from

zero. Define the home block for an instruction to be the basic block in which the instruction

resides in the original loop body. For an early exit, an instruction from the remaining stages of

the last iteration is copied to the epilogue only if the ID of its home block is less than or equal

to the home block ID of the exit branch.

Figure 5.15 shows the algorithm for generating an epilogue for an exit branch. The algorithm

starts with the instructions following the exit branch and copies rows of instructions from the

unrolled kernel to the epilogue, wrapping around the kernel until the last row of the epilogue is

complete. Instructions are not copied if they are from iterations after the last or from the last

iteration and appeared after the exit branch in the original loop body. The algorithm as shown

assumes a processor that does not have branch delay slots. The following paragraphs describe

the data structures and concepts needed to understand the algorithm. The term stage refers to

the stage in which an instruction is placed in the schedule for a single iteration.

The unrolled kernel is divided into sections of II cycles each called kernel rows. There are

k m in rows where k m in is the degree of unrolling of the kernel. Each row contains a linked

list of the instructions contained in that row. The data structure for each instruction contains

a pointer to an information structure which contains among other items: the stage in which

the instruction is scheduled, the instruction’s home block ID, and the row of the kernel that

contains the instruction.

There are SC - 6 rows in each epilogue (numbered zero to SC — 9 — 1) where 6 is the stage

in which the exit branch is scheduled. Row zero is the partial row and is empty for a final

exit (the linked list for each kernel row ends with a final exit). In row zero of the epilogue, the

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm gen_epi(exit branch) ■(

c r e a t e e p i l o g u e b lo c k
t h e t a = e x i t - > i n f o - > s t a g e
row = e x i t - > i n f o - > r o w
e x it_ h o m e _ b lo c k = e x i t - > in f o - > h o m e _ b lo c k

/ * G e n e r a te a l l ro w s o f e p i l o g u e * /
f o r (e p i_ ro w = 0 t o s t a g e c o u n t - t h e t a - 1) do {

/ * D e te rm in e w h e re t o s t a r t c o p y in g * /
i f (e p i . r o w == 0)

/ * P o t e n t i a l l y a p a r t i a l ro w . I f e x i t i s a f i n a l e x i t , e x i t - > n e x t _ o p
i s NULL an d no i n s t r u c t i o n s w i l l b e c o p ie d t o t h e p a r t i a l ro w . * /

o p e r = e x i t - > n e x t _ o p
e l s e / * F u l l row * /

o p e r = k e r n e l [r o w] - > f i r s t _ o p

/ * G e n e r a te o n e f u l l o r p a r t i a l row * /
w h i le (o p e r != NULL) {

o p e r _ s ta g e = o p e r - >in f o - > s t a g e
o p e r_ h o m e _ b lo c k = o p e r -> in fo -> h o m e _ b lo c k

/ * Copy i n s t r u c t i o n i f i t i s fro m a n i t e r a t i o n p r e v i o u s t o t h e l a s t
i t e r a t i o n , o r i f i t i s f ro m t h e l a s t i t e r a t i o n an d a p p e a r s b e f o r e
t h e e x i t b r a n c h i n t h e o r i g i n a l lo o p body * /

i f ((o p e r _ s t a g e > e p i_ ro w + t h e t a) o r
(o p e r _ s t a g e == e p i_ ro w + t h e t a and
o p e r_ h o m e _ b lo c k <= e x it_ h o m e _ b lo c k)) {

new _op = c o p y .o p e r a t i o n (o p e r)
i n s e r t . o p . a f t e r (e p i l o g u e - > l a s t _ o p , n ew .o p)

}
o p e r = o p e r - > n e x t_ o p

>
row = (row + 1) mod km in / * R o ta t e th r o u g h t h e ro w s o f t h e k e r n e l * /

}

/ * i n s e r t m oves a t e n d o f e p i l o g u e f o r v a r i a n t s t h a t a r e l i v e o u t o f e x i t * /
i n s e r t . m o v e s . f o r . l i v e . v a r i a n t s (e p i l o g u e , e x i t)

/ * L a s t e x i t b r a n c h f a l l s th r o u g h t o e p i lo g u e * /
i f (e x i t i s n o t l a s t e x i t i n u n r o l l e d k e r n e l) {

jum p = c r e a t e jum p t o t a r g e t o f e x i t b ra n c h
i n s e r t . o p . a f t e r (e p i l o g u e - > l a s t _ o p , jum p)
m ake e p i l o g u e b lo c k t h e t a r g e t o f e x i t b r a n c h

>
>

F ig u re 5.15 Epilogue Generation Algorithm.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

last iteration is executing in stage 0, since tha t is the stage containing the exit branch. In row

epi_row of the epilogue, the last iteration is executing in stage epi_row + 0. Instructions from

stages less than epi_row + 6 must be from iterations after the last, and thus are not copied.

For simplicity, the algorithm shown generates correct epilogues for exits from the kernel,

bu t not for exits from the prologue. In practice, the algorithm contains additional code to map

an exit in the prologue to the corresponding exit in the kernel. The prologue is generated in a

similar m anner to the epilogues, by copying selected instructions from the rows of the unrolled

kernel. Mapping a prologue exit to a corresponding kernel exit facilitates the copying of rows

for the epilogue. Also in practice, if the epilogue is for an exit from the prologue, the algorithm

does not copy an instruction that is from a later stage than the stage that the very first iteration

is executing. Such instructions correspond to the non-existent iterations prior to the first one.

The code generation scheme is now applied to the example loop. The schedule for a single

iteration of the example loop contains three stages. Stage A consists of instructions 1 and 5

from the original loop (see Figure 5.9). Stage B contains instruction 2. Instructions 3 (early

exit), 4, and 6 (final exit) are in stage C. The code scheme in Figure 5.14(c) is similar to what

would be generated for the example loop. Because of the dependence structure of the loop,

there is no opportunity for downward code motion across the early exit branch. Thus, when

the early exit branch is taken there are no remaining instructions from the last iteration that

appeared before the exit branch in the original loop body and the shaded epilogues are empty.

5.1.5 Insertion of moves for live-out values

As mentioned earlier, code must be appended to the end of each epilogue to move the values

that are live-out of the corresponding exit into the register in which the code outside the loop

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

expects to find them. For single exit superblock loops, without EVRs, the value used outside

the loop must have been defined in the last iteration. Thus, for each final exit, the instructions

from the last iteration are examined in the corresponding epilogue and in the kernel. If the

value produced by the instruction is live-out and the destination register is not the one expected

outside the loop, a move instruction is inserted a t the end of the epilogue.

For multiple exit loops, the procedure is the same for the final exits. However, for the

early exits there is an additional consideration. The live-out value could be defined in the last

iteration by one of the instructions tha t preceded the exit branch in the original loop body, or

it could be defined in the second-to-last iteration by one of the instructions that followed the

exit branch in the original loop body. Thus, the last iteration is examined for instructions that

originally resided in the same or earlier home block as the early exit branch, and the second-

to-last iteration is examined for instructions that originally resided in a later home block than

the exit.

In the example loop, when the early exit (instruction 3 from Figure 5.3) is taken, the live-out

values of r34 and r4 are from the second-to-last iteration and the live-out value of r l2 is from

the last iteration. There are no values live-out of the final exit. Figure 5.16 shows the code

generated for the example loop using the multiple epilogue code scheme of Figure 5.14(c). The

instructions have again been renumbered. The moves for the live-out values (instructions 25,

27, 28, and 30) are also shown.

The code is laid out as it would be by the IMPACT compiler. The blocks labeled P ro

and L I are the prologue and the unrolled kernel, respectively. The blocks labeled L E I , LE3

and L E 5 are epilogues. The block immediately following the kernel is the epilogue reached by

falling through the loop back branch. Block L3 is the original fall-through path of the loop.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inst._________ Assem bly______ Cycle
1 Pro: r122 = MEM(r34+r8) 0
2 r342 = r34 - 4 1
3 r13 = MEM(r122+0) 2
4 r123 = MEM(r342+r8) 2
5 r343 = r342 - 4 3
6 LI: beq (r6 r13) LE1 0
7 r4 = r4 -1 0
8 r13 = MEM(r123+0) 0
9 r12 = MEM(r343+r8) 0

10 r34 = r343 - 4 1
11 bgt (0 r4) L3 1
12 beq (r6 r13) LE3 2
13 r4 = r4 -1 2
14 r13 = MEM(r12+0) 2
15 r122 = MEM(r34+r8) 2
16 r342 = r34 - 4 3
17 bgt (0 r4) L3 3
18 beq (r6 r13) LE5 4
19 S. ii i 4
20 r13 = MEM(r122+0) 4
21 r123 = MEM(r342+r8) 4
22 r343 = r342 - 4 5
23 ble (0 r4) L1 5
24 jum p L3 0
25 LE1: r12 = r122 0
26 jump L2 0
27 LE3: r12 = r123 0
28 r34 = r342 0
29 jum p L2 0
30 LE5: r34 = r343 0
31 jump L2 0

L3:

F ig u re 5.16 Final Assembly Code for the Example Loop.

Label L2 is the start of block Y. The epilogues for the final exits (instructions 11, 17, and 23)

are all empty because no code was moved downward across the loop back branch and there are

no virtual registers live-out of the final exits. Rather than branching to empty epilogues, the

final exits branch directly to L3. The exception is the loop back branch, which falls through

into its epilogue and then jumps to L3.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The early exits (instructions 6, 12, and 18) all require moves for one or more of the live

virtual registers, so all branch to epilogues. As discussed in Chapter 4, when renaming, one of

the names used is the original virtual register name. Thus, if the live-out value is already in

the correct register, a move is not necessary. This is the case for r34 in epilogue L E I and rl2

in epilogue LE5. A jump is placed at the end of each early exit epilogue to transfer control to

Block Y.

Also as discussed earlier, the virtual registers are renamed during modulo variable expansion

such that the uses of a live-in virtual register in the first iteration refer to the original virtual

register name. Thus, no moves are required for live-in values. For example, virtual register r34

is live-in and the first iteration in the prologue uses r34 (instructions 1 and 2) rather than one

of the renamed versions (r342 and r343).

5.2 Experimental Results

This section reports experimental results on the applicability of modulo scheduling to

control-intensive non-numeric programs. The results were obtained using the IMPACT compiler

and the modulo scheduler implemented as part of the work for this dissertation. The modulo

scheduler has been used to pipeline loops for high issue rate versions of the PA-RISC (in this

dissertation) and SPARC architectures. Loops are eligible for modulo scheduling if they are

inner loops (outer loops may become inner loops after superblock formation), are single basic

block or superblock loops, and do not contain function calls on the included path (function calls

may be excluded from the loop by superblock formation, enabling modulo scheduling).

The target processors for these experiments are multiple issue processors with issue rates

between 4 and 8 with varying resource constraints and load latencies. Table 5.2 shows the

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

functional unit mix for each processor. All processors are assumed to have 64 integer registers

and 64 double-precision floating-point registers. The latencies used for processor A and the base

processor are those of the HP PA7100 processor. For processors B, C and D, the load latency

is increased to reflect the higher clock speeds of future high-performance designs. Processor A

is similar to the microprocessors available today. Processor B is a more aggressive version of A

with a higher clock frequency and a longer load latency. Processor C is the IMPACT group’s

projection of what a typical ILP processor might look like in the future and processor D is a

more aggressive version of that.

T ab le 5.2 Processor Characteristics for Modulo Scheduling Experiments.

Name
Number o * Load

LatencyIssue
Slots

Integer
ALUs

Memory
Ports

Branch
Units

FP
ALUs

Base 1 1 1 1 1 2
A 4 2 2 1 1 2
B 4 2 2 1 1 4
C 8 4 3 2 2 3
D 8 4 3 2 2 6

All speedups are reported over the single-issue pipelined base processor. For the base proces

sor, ILP optimizations and modulo scheduling are not applied. For the multiple issue processors,

code is generated three ways, once without modulo scheduling, once with modulo scheduling

of only the single basic block loops, and once with modulo scheduling of the superblock loops

using the techniques described in this chapter. All the code that is not software pipelined is

scheduled using acyclic superblock scheduling [6]. None of the loops axe unrolled before acyclic

scheduling or modulo scheduling. The effects of unrolling prior to scheduling and performance

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

comparisons of modulo scheduling versus acyclic scheduling of unrolled loops are the subject of

later chapters.

co

1.5

1 -

■ Superblock Modulo Scheduling
■ Basic Block Modulo Scheduling
□ No Modulo Scheduling________

I

I

I II

 11 ‘ I1 1 I ’ I |l l| 11.11 LI 11..111.1 |--) l.i | ii.l | II | LI |----|.JJ..|.,U+U4

I
I I

A B C D A B C D A B C D A B C D A B C D A B C D A B C D
espresso eqntott compress gcc cmp lex yacc

F ig u re 5 .17 Speedup over Single-Issue Processor with and without Modulo Scheduling.

The execution times of the whole programs are calculated using scheduler cycle counts for

each basic block and profile information. A 100% cache hit rate is assumed. To insure accuracy,

the benchmarks are profiled after all transformations. The profiling is done by instrumenting

the target (virtual) processor’s assembly code and then emulating it on an HP PA-RISC work

station. This execution produces benchmark output which is used to verify the correctness of

the target processor’s assembly code.

The benchmarks chosen for the experiments are the seven SPEC CINT92 and Unix programs

from Table 5.1 (espresso, eqntott, compress, gcc, cmp, lex, and yacc) that spend the most time

in basic block and superblock loops, loops to which modulo scheduling is applied. For all of

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the chosen programs, over 40% of the dynamic instructions were in such loops. A total of 368

loops were modulo scheduled.

Figure 5.17 shows the speedup results. The white part of the bars shows the speedup over the

base processor when acyclic scheduling is applied to all of the code. For all of the benchmarks,

the performance declines (in terms of cycles - when the faster clock cycle is factored in, the

performance would be higher) for the more aggressive processors because of the longer load

latency. W ithout overlapping the iterations, the ILP that can be exploited is limited. The

black part of the bars shows the slightly increased performance when modulo scheduling is

applied to the single basic block loops. For all of the benchmarks except gcc, less than 6% of

the dynamic instructions are in basic block loops. Thus only a slight performance improvement

can be expected. The benchmark gcc spends about half as much time (14%) in single basic

block loops as it does in superblock loops and shows speedups of about 5%.

The cross-hatched part of the bars shows the increased performance when superblock modulo

scheduling is applied to the eligible loops. Modulo scheduling almost doubles the performance of

lex for the four-issue processors and more than triples performance for the eight-issue processors.

As was shown in the case study, there is very limited ILP within a single iteration of the loops

in th a t program. Modulo scheduling provides good speedup across all the benchmarks and

processors. In particular, speedups of 25% or more are obtained across all the processors

for espresso, eqntott, cmp, lex, and yacc. For the most aggressive processor, performance is

improved by 30% or more for all the benchmarks except compress and gcc.

W ith superblock modulo scheduling, the performance of cmp, lex, and yacc no longer de

clines for the more aggressive processors. More ILP is being exploited by overlapping the loop

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iterations. The results clearly show that modulo scheduling, using the techniques described in

this chapter, is applicable to control-intensive, non-numeric programs.

5.3 Summary

This chapter has described a set of methods that allows effective modulo scheduling of

loops w ith multiple exits. These methods can be used to allow modulo scheduling of the

selected paths of loops with arbitrary control flow. A case study was presented to show how

these methods enable modulo scheduling to be effectively applied to control-intensive non

numeric programs. Performance results for several SPEC CINT92 benchmarks and Unix utility

programs demonstrated that modulo scheduling can significantly accelerate loops in this class

of programs.

Previous work by this author has shown that unrolling prior to modulo scheduling im

proves performance for numeric programs [58]. Unrolling enables additional optimization and

an effective II that is not an integer. The next chapter investigates the benefits of unrolling

prior to modulo scheduling and presents performance results on the benefit of unrolling for

control-intensive integer programs.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

UNROLLING-BASED OPTIMIZATION FOR MODULO
SCHEDULED LOOPS

The previous two chapters have concentrated on the design of loop scheduling algorithms

th a t produce a high quality schedule for the given input code and a target processor. In this

chapter, the characteristics of the code given to the scheduler are examined. The instruction

types, resources required, and the dependence pattern of the computation in the loop body can

all be modified by program transformations. Specifically, this chapter describes the advantages

of unrolling the loop before modulo scheduling and of performing optimizations that reduce the

resource requirements and the height of critical paths in loops.

There are two sources of motivation for this work. First, the II for the loop is restricted to

be an integer. If the lower bound on the II computed before scheduling is not an integer, the

performance degradation caused by rounding it up to an integer can be reduced by unrolling the

loop [10]. A related restriction is that the minimum possible value for II is one. This limits the

performance of a modulo scheduled loop to one iteration per cycle. By unrolling the loop and

applying optimizations, it is possible to complete multiple iterations per cycle given sufficient

execution resources. These restrictions have been known for some time, but the benefits of

unrolling prior to modulo scheduling have never been quantified.

The second source of motivation comes from comparisons of modulo scheduling with global

acyclic scheduling of an unrolled loop body. W ithout unrolling prior to modulo scheduling, it

is possible for the modulo scheduled loop to perform worse than the acyclicly scheduled loop.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The acyclic scheduler is not required to initiate the iterations within the unrolled body at a

constant rate nor to generate the same schedule for each of those iterations. Thus, it can achieve

an effective II which is not an integer. Additionally, unrolling exposes new opportunities for

optimizations that reduce the resource requirements and dependence height. The benefits of un

rolling and these unrolling-based optimizations have been quantified for acyclic scheduling [24],

bu t have not been measured for modulo scheduling.

This chapter describes the benefits of unrolling and a set of optimizations for unrolled

loops th a t have been implemented in the IMPACT compiler. Unrolling and unrolling-based

optimizations are applied to the loops in seven SPEC CINT92 and Unix and the achieved

speedup is measured.

This chapter is organized as follows: Section 6.1 introduces the case study that is used

in this chapter and Section 6.2 reviews the related work. Section 6.3 describes the benefits

of unrolling and the unrolling-based optimizations. The performance results are reported in

Section 6.4.

6.1 Case Study

There is another im portant use for the lower bounds on the II that was not described in

Chapter 3. They can be used to guide the optimization process [49]. Optimizations change the

bounds and can target the bound tha t represents the performance bottleneck. For example,

there is no point in doing optimizations to reduce dependence constraints if that bound is

already lower than the resource-constrained lower bound. The bounds can be used to estimate

what the final performance of the software pipeline will be after an optimization.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.1 shows the source and assembly code to compute a vector-matrix product. The

inner loop produces one element of the result vector C and is used as an example throughout this

chapter. The assembly code shown assumes that classic loop optimizations, such as induction

variable elimination and global variable migration, have been performed. Registers r4-r7 and

fl-f6 are integer and floating-point registers, respectively. For this example, an eight-issue

processor is assumed with no restrictions on the combination of instructions that may be issued.

The issue slots are thus the most heavily used resources resulting in a ResMII of one.

(a) Original Loop

e n d do
e n d do

(b) Assembly Code
For Inner Loop

I n s t r . A sse m b ly R e g i s t e r C o n t e n t s :

1 f 3 = M EM (r8+r4) f l = C (i)
2 f 5 = M EM (r2+r4) f3 = A (j)
3 f 6 = f3 * £5 £5 = B (j , i)

4 f l = £1 + £6 r 8 = &A(1)
5 +UitU r 2 = &B(1 , i)

6 b l e (r 4 r 7) L I r 4 = 4 * j

r 7 = 4*m
r 9 = 4 * i

F ig u re 6.1 Example Vector-Matrix Product Loop.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.2 shows the dependence graph for the example loop. The data and control depen

dences are shown with solid and dashed lines, respectively. All anti- and output dependences

have been removed assuming that modulo variable expansion will be performed after schedul

ing. Each node is numbered with the id (from Figure 6.1(b)) of the instruction it represents.

Each arc is labeled delay and distance of the dependence, respectively. The delays shown are

those of the HP PA-RISC PA7100.

.2 , 0
2 , 0

2 , 0

’‘d o 2'1

‘*Vv / - V i , !

1 ,

 » D a ta ► C o n t r o l

F ig u re 6.2 Dependence Graph for Example Loop.

The longest cycle in the example graph is from instruction 4 to itself. The cycle has a delay

of 2 and spans from one iteration to the next, resulting in a RecMII of 2. It may appear that

there is another recurrence with a delay of two involving instructions 5 and 6, the update of

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the loop counter and the loop back branch. Such a recurrence would create a RecMII of 2 for

every DO loop. As described in the last chapter, the cross-iteration control dependence from

instruction 6 to instruction 5 is removed, allowing instruction 5 to be speculatively executed.

6.2 Related Work

There has been extensive prior work on the optimization of loops, some of it targeted

directly a t software pipelined loops. The work has focused either on reducing the number of

instructions (the resource requirement) in the loop body or on changing the dependence pattern

to create more ILP. Traditional loop optimizations try to reduce the number and complexity of

the instructions in the loop body [19]. These optimizations indirectly reduce the dependence

height of a critical path by reducing the number of instructions along the path.

The compiler for the Cydra-5 performed redundant load and store elimination across loop

iterations [49]. This optimization reduces the number of memory ports used and reduces the

dependence height when a load is on a critical recurrence path. The Cydra-5 compiler also

performed symmetric back-substitution of data recurrences to reduce dependence height [49].

The compiler for the RS/6000 architecture performs an optimization called predictive common-

ing [59]. This optimization achieves an effect similar to redundant load elimination and common

subexpression elimination across loop iterations for loops in which a sequence of values is com

puted and the value of each member of the sequence, except the first, is computed again in the

next iteration. Unrolling is not required for this optimization but can be used to eliminate the

copy instructions inserted by the optimization.

Recently, transformations have been proposed which require tha t the loop be unrolled.

Blocked back-substitution [60] unrolls the loop b times and reduces the RecMII by a factor of

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b. Control recurrences within loops can also be accelerated by a factor of b by unrolling the

loop b times and applying techniques similar to blocked back-substitution [33]. Loop unrolling

is required for these techniques because the code is optimized asymmetrically such that all

iterations in the unrolled loop body do not execute the same code.

Optimizations that unroll loops and then reduce the height of dependence chains associated

w ith induction and accumulator variables have been implemented in the IMPACT compiler [24].

These can be viewed as special cases of symmetric back-substitution. These techniques have

been evaluated in the context of global acyclic scheduling of the unrolled loop body, but not

modulo scheduling.

Unrolling can also enable optimizations that reduce the number of instructions executed

per iteration. Compilers that unroll loops before applying a global acyclic scheduling algorithm

take advantage of these optimization opportunities [5, 24]. However, the potential benefits of

these optimizations for loops that are modulo scheduled have not been fully explored.

6.3 Unrolling-Based Optimization

6.3.1 Loop unrolling

The requirement that the II be an integer can result in less than full utilization of processor

resources, or the allowance of more cycles than necessary for the completion of a recurrence.

For example, in Figure 6.1(b), there are six instructions in the loop body and it was assumed

th a t the processor has eight issue slots. The ResMII is one (rounded up from 0.75) and two

issue slots are wasted every cycle. Unrolling allows a smaller non-integral effective ResMII to

be achieved. For example, if the loop in Figure 6.1(b) is unrolled four times, the ResMII for

the unrolled loop body is three and the effective ResMII for each iteration within the loop body

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is 0.75. Unrolling helps to reduce the degradation by creating larger loop bodies that require

more resources and a larger ResMII. The larger the ResMII, the smaller the degradation caused

by rounding it up to the next integer.

The RecMII will not be an integer if the delay of the limiting cycle is not a multiple of

the distance of the cycle. Unrolling helps because it reduces the distance of the recurrence.

This makes the RecMII larger, decreasing the degradation caused by rounding it up to the next

integer. If the distance of the cycle becomes one, the RecMII becomes an integer. For example,

a recurrence with a distance of three becomes a recurrence with a distance of one if the loop is

unrolled three or more times.

Figure 6.3 shows the way the IMPACT compiler unrolls Fortran-style DO-loops. The exam

ple loop of Figure 6.1 has been unrolled three times. Using the terminology of [33], iterations

of the unrolled loop are defined as the major iterations and the iterations of the original loop

as the minor iterations.

An optimization has already been applied to remove the loop exit branches from the unrolled

loop body. A simple check is done before the loop (and for each major iteration) to ensure that

there are at least three more minor iterations to be executed. Two extra copies of the original

loop body are inserted after the loop at label L2. These copies are executed when the trip count

is not a multiple of three. If the loop is unrolled u times, there are u — 1 copies of the original

loop body inserted after the unrolled loop. If the code expansion is too great, the remaining

iterations can be re-rolled into a loop at the cost of lower performance for those iterations.

This type of unrolling has two benefits. First, the number of branch unit resources required

for each major iteration is reduced from three to one. Second, the control dependences associ

ated w ith the exit branches are removed, allowing the possibility of executing more than one

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r 3 = r 7 - 8
bcjt r 4 r 3) L2
f 3 = MEM(r8+r4)
f 5 = MEM(r2+r4)
£6 = f 3 * f 5
f l = f l + f 6
r 4 = r 4 + 4
f 3 = MEM(r8+r4)
f 5 = MEM(r2+r4)
£6 = f 3 * f 5
f l = f l + £6

.£4 = r 4 + 4
f 3 = MEM(r8+r4)
£5 = MEM(r2+r4)
£6 = £3 * £5
£1 = f l + f 6
r 4 = r 4 + 4
b l e (r 4 r 3) LI
b q t (r 4 r 7) L3
£3 = MEM(r8+r4)
f 5 = MEM(r2+r4)
f 6 = f 3 * f 5
f l = f l + £6
r 4 = r 4 + 4

_bgt (r 4 r 7) L3
£3 = MEM(r8+r4)
f 5 = MEM(r2+r4)
f 6 = f 3 * £5
f l = f l + £6
r 4 = r 4 + 4

F ig u re 6.3 Example Loop after Unrolling Three Times.

minor iteration per cycle (resource permitting) without speculation. This can also be viewed

as control height reduction [33] where the conditions under which the minor iterations execute

have been collapsed into the single check to see if there are a t least u minor iterations remaining.

II now refers to the initiation interval for the major iterations. Define I I ef f , the effective

initiation interval for the minor iterations, to be I I /u . For the example loop, the R e s M IIej f

falls from 1 to 0.66 as a result of unrolling and exit branch removal.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.2 IMPACT unrolling-based optimizations

This section describes the remaining unrolling-based optimizations done by the IMPACT

compiler [24] and their effect on the MIL Figure 6.4 shows the effect of induction variable

optimizations applied to the unrolled loop body. In Figure 6.4(a), the unrolled loop body

without exit branches has been extracted from the code in Figure 6.3. The induction variable

increment instructions have been highlighted.

(a) Unrollad Loop Body (b) Attar Induction
Rewriting

(c) Aftar Induction
Expansion

r 6 1 a r 8

r 8 2 a r 8 + 4

r 8 3 a r 8 + 8

r 2 1 a r 2

r 2 2 a r 2 + 4

r 2 3 a r 2 + 6
r 8 0 a r 8

r 2 0 = r 2

£3 = M E M (r8 + r4) L I : £3 » M E M (r80+0) L I : £3 a M E M (r81+0)

£5 = M E M (r2 + r4) £5 = M E M (r20+0) £5 a M E M (r21+0)

£6 = f 3 * f 5 f 6 » £3 * £5 £6 a f 3 * f 5

f l a f l + £6 f l = f l + £6 _£1 = £1 + £6

_r4 • r 4 + 4 r80 • r 8 0 + 4 £3 a M E M (r82+0)

£3 a M E M (r8 + r4) r2 0 ■ r 2 0 ♦ 4 £ 5 a M E M (r22+0)

£5 a M E M (r2 + r4) £3 = M E M (r80+ 0) £ 6 » f 3 * f 5

£ 6 = £ 3 * f 5 £5 = M E M (r20+ 0)
_£1 = f l + £6

f l a f l + £6 f 6 = f 3 * £5 £3 a M E M (r83+0)

_j4 ■ r 4 + 4 f l a f l + £6 £5 a M E M (r23+0)

£3 a M E M {r8+ r4) r80 - r8 0 + 4 £6 = £3 * f 5

£5 a M E M (r2 + r4) r20 ■ r2 0 + 4
J 1 a f l + f 6

f 6 a f 3 * f 5 — E01 a r f i l ♦ 12

f l a f l + f 6
£3 a M E M (r80+ 0) r8 2 - r8 2 + 12

r4 • r 4 + 4
£5 a M E M (r20+ 0) *8 3 a r 8 3 + 12

b l e (r 4 r 3) L I
£6 a f 3 * £5 r 2 1 - r 2 1 + 12
£1 a f l + f 6 r2 2 - r2 2 ♦ 12
r8 0 - t 8 0 ♦ 4 r2 3 - r2 3 ♦ 12
x 2 0 » r 2 0 ♦ 4 b l e (r 8 3 r 3 3) L I

- b l e —L rf l0 _ .r3 1 1 L I r 4 a r 8 1 - r 8
r 4 a r 8 0 - r 8

(d) Aftar Induction
Elimination

r 8 3 « r 8 +■ 8

r 2 3 = r 2 + 8

£3 a M E M (r8 3 -8)

£5 a M E M (r2 3 -8)

£6 a £3 * £5
_£1 a f l + £6

£3 = M E M (r8 3 -4)

£5 = M E M (r2 3 -4)

£6 a £3 * £5

i 1 * £1 + £6
£3 a M EM {r83+0)

£5 a M E M (r23+ 0)

£6 a £3 * £5
£1 a £1 + £6

r83 - r8 3 ♦ 12
r23 ■ r2 3 + 12
b l e (r 8 3 r 3 3) L I

r 4 a r 8 3

001COu

F ig u re 6 .4 Example Loop after Induction Variable Optimization.

In the original loop body, the vector and m atrix are addressed using two different bases

(r8 and r2, respectively) and a common offset (r4). This reduces the number of induction

instructions for good performance in the original loop. In Figure 6.4(b), the address calculations

have been rewritten in preparation for later induction variable elimination (described below).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T he objective of the rewriting is to specify each memory address using only one operand. This

frees up the other address source operand in each load for use by induction variable elimination.

In the unrolled loop, after the rewriting, the vector and the m atrix are each addressed using a

separate induction variable (r80 and r20 respectively).

In Figure 6.4(c), induction variable expansion [24] has been applied to the loop. For the

each induction variable (r80 and r20), three temporary induction variables have been created,

one for each definition of the original induction variables. The new induction variables are now

incremented by three times the original increment. They are initialized to the initial series of

values in the preheader.

In the example, induction variable expansion reduces the delay for the cycle involving the

three increments of r80 from three to one. Induction variable expansion is a special case of

symmetric back-substitution [60] where the reduction is a simple addition of a loop invariant.

Figure 6.4(d) shows the loop after the application of induction variable elimination. Elimi

nation of induction variable r22 is done as follows. First, r22 is rewritten in terms of r23: r22

= r23 - 4. Then this definition of r22 is combined with the load which uses r22 in the next

iteration [61]. After combining, there are no further uses of r22 and its defining instruction can

be removed.

Induction variable elimination significantly reduces the number of integer ALU and issue

slot resources required by making use of the separate effective address addition available in most

load/store units and the two address operands of the load/store instructions. For the example

loop, the number of induction instructions has been reduced from three (in Figure 6.4(a)) to

two (in Figure 6.4(d)). If the loop is unrolled eight times, the number of induction instructions

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is reduced from eight to two. Loop unrolling is required for this type of induction variable

elimination because the minor loop iterations are no longer identical.

Figure 6.5 shows the effect of two more optimizations. In Figure 6.5(b), accumulator variable

expansion has been applied [24]. In the original loop, fl is an accumulator variable. Three

tem porary accumulators (f ll, fl2, fl3) have been created, one for each definition of the original

accumulator. The temporary accumulators are summed after the loop.

(a) Aftar Induction (b) After Accumulator (c) Aftar Renaming
Optimization Expansion

£11 = 0.0 fll = 0.0
£12 = 0.0 £12 = 0.0
£13 = 0.0 £13 = 0.0

r83 = r8 + 8 r83 = r8 + 8 r83 00+00Ull

r23 = r2 + 8 r23 = r2 + 8 r23 II n to + GO

£3 = MEM(r83-8) LI: £3 = MEM(r83-8) LI: 1 f31 = MEM(r83-8)
f5 = MEM(r23-8) £5 = MEM(r23-8) 2 £51 = MEM(r23-8)
f6 = f3 * £5 £6 = f3 * £5 3 £61 = f31 * f51
_ £ 1 « f l + £ 6 f l l - f l l + £ 6 4 fll = fll + f61
f3 = MEM(r83-4) £3 = MEM(r83-4) 5 £32 = MEM(r83-4)
£5 = MEM(r23-4) f5 = MEM(r23-4) 6 £52 = MEM(r23-4)
f6 = f3 * £5 £6 = £3 * £5 7 £62 = f32 * f52

J C l - f l + £ 6 £ 1 2 - £ 1 2 + £ 6 8 £12 = £12 + £62
f3 = MEM(r83+0) £3 = MEM(r83+0) 9 £33 = MEM(r83+0)
f5 = MEM(r23+0) £5 = MEM(r23+0) 10 £53 = MEM (f23+0)

f6 = £3 * £5 £6 = f3 * £5 11 £63 = f33 * £53
f l ■ f l + £ 6 £ 1 3 - £ 1 3 + £ 6 12 £13 = £13 + f 63
r83 = r83 + 12 r83 = r83 + 12 13 r83 = r83 + 12
r23 = r23 + 12 r23 = r23 + 12 14 r23 = r23 + 12
ble (r83 r33) LI ble (r83 r33) LI 15 ble (r83 r33) Ll

r4 = r83 - r8 - 8 fl = fll + fl2 fl = £11 + £12

fl = fl + f 13 fl = fl + £13
r4 = r83 - r8 - 8 r4 = r83 - r8 - 8

F ig u re 6.5 Example Loop after Accumulator Expansion and Renaming.

In the example, accumulator variable expansion reduces the delay for the cycles involving fl

by a factor of three. Accumulator variable expansion is also called interleaved reduction [5] and

riffling of reductions [49]. Since accumulator variable expansion reassociates the terms in the

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

accumulation, which may change the results of floating-point accumulations, its use is under

user control.

In Figure 6.5(c), variable renaming has been applied to produce the final optimized version

of the loop. The three iterations of the loop are now independent. Overall, the R e c M I I ef f for

the example loop was reduced by a factor of three: from 2 to 0.66 for the eight-issue processor.

The R e s M I I ef f was reduced from 1 to 0.66 due to the removal of the loop exit branches

described earlier. Removal of both data and control dependences and reduction of resources

were all necessary to achieve these improvements in the M I I ef f . For example, without the

removal of control dependences and the reduction in resources, the M I I ef f is limited to 1 for

this loop. If this example loop is unrolled eight times, an M I I ef f of 0.25 can be achieved given

sufficient resources. This is eight times the performance of the original loop in Figure 6.1!

Although not shown in the running example, unrolling also allows redundant load and

store elimination, common subexpression elimination, and copy propagation across minor iter

ations. These optimizations, along with accumulator and induction variable expansion, can be

done without unrolling if the compiler representation has support for expanded virtual registers

(EVRs) [54]. If the compiler supports EVRs, but the architecture does not have support for

rotating registers [46], the loop must still be unrolled to allow modulo variable expansion. Even

in this case, EVRs allow the optimizations to be performed without having to first decide how

much to unroll the loop. For compilers that do not support EVRs, unrolling is the only way

to perform load and store elimination and common subexpression elimination across iterations

without introducing copy instructions and to perform accumulator and induction variable ex

pansion. However, for any compiler, the exit branch removal and induction variable elimination

described in this chapter require unrolling, as does blocked back-substitution.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Experimental Results

In this section, experimental results are reported on the importance of the unrolling-based

optimizations for modulo scheduled loops. The results are obtained using the IMPACT compiler

and the seven SPEC CINT92 and Unix benchmarks described earlier. Heuristics are used to

guide the amount of unrolling. Loops are categorized into one of four classes based on the size

of the loop body, the total execution count for the loop body, and the average iterations per

invocation. For example, small loops with a large number of average iterations are unrolled the

most.

The target processors for these experiments are multiple issue processors with issue rates

between four and eight with varying resource constraints and load latencies. The functional

unit mix for each processor is the same as for the earlier experiments. The table is shown here

again (Table 6.1) for ease of reference. All processors are assumed to have 64 integer registers

and 64 double-precision floating-point registers. The latencies used for processor A and the

base processor are those of the HP PA7100 processor. For processors B, C and D, the load

latency is increased to reflect the higher clock speeds of future high-performance designs.

Table 6.1 Processor Characteristics for Unrolling Experiments.

Name
Number o Load

LatencyIssue
Slots

Integer
ALUs

Memory
Ports

Branch
Units

FP
ALUs

Base 1 1 1 1 1 2
A 4 2 2 1 1 2
B 4 2 2 1 1 4
C 8 4 3 2 2 3
D 8 4 3 2 2 6

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

All speedups are reported relative to the single-issue base processor. For the base processor,

ILP optimizations and modulo scheduling are not applied. For the multiple issue processors,

code is generated two ways, once with and once without the unrolling-based optimizations for

the software pipelined loops.

The execution time of the programs is calculated using scheduler cycle counts for each basic

block and profile information. The benchmarks are profiled after all transformations to insure

accuracy. The profiling is done by instrumenting the target (virtual) processor’s assembly code

and then emulating it on an HP PA-RISC workstation. This execution produces benchmark

output which is used to verify the correctness of the code transformations.

Figure 6.6 shows the speedup for each target processor with and without the unrolling-based

optimizations for software pipelined loops over the single-issue base processor. The unrolling-

based optimizations produce excellent performance improvement for eqntott, cmp, and lex and

m oderate improvement for yacc, especially for the eight-issue processors. The speedups for

eqntott, cmp, and lex range from 15-22% for processor C. The loops in cmp contain many

induction instructions. The number of dynamic induction instructions is decreased when the

loop is unrolled. For the four-issue processors, the performance is limited by the lack of branch

resources. The eight-issue processors are less limited by branch resources and show the benefit

of eliminating induction instructions. For lex and yacc the reduction in resources and the

achievement of an effective II th a t is not an integer are important for all of the processors.

Unrolling has little effect on the performance of espresso, compress, and gcc. Unrolling does

improve the performance of many individual loops in these benchmarks, but unfortunately,

these loops do not account for a significant fraction of the execution time. Also many of the

loops have a short trip count and the unrolling simply allows overlap, within a major iteration,

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W

4.5 -

4

3.5 -

3 -

2.5

2

1.5

1

0.5

□ Without Unrolling

□ With Unrolling

r l

0 - |U fl|u a |u a |u a j— |u a |u a ju a |u a i— |U 2 i|u a |u a |u a |— I3|i U |U3|Ua|— |U a |U a tu a |m (— |LU|U3|Ua|i.ia|— |LU|LU|i,Li|,

A B C D A B C D A B C D A B C D A B C D A B C D A B C D
espresso eqntott compress gcc cmp lex yacc

F ig u re 6.6 Speedup over Single-Issue Processor with and without Unrolling.

of minor iterations which would have been overlapped by modulo scheduling without unrolling

anyway.

6.5 Summary

This chapter described a set of unrolling-based optimizations which reduce resource require

ments and the height of critical paths in software pipelined loops. Unrolling is the only way

to reduce the the effective number of loop-back branches executed per iteration and to allow

optimizations which asymmetrically optimize the loop iterations. Unrolling also helps to reduce

the degradation caused by rounding the M il up to the nearest integer. Experimental results

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

showed th a t unrolling prior to modulo scheduling improves the performance of the benchmarks

used in this dissertation.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

COMPARISON OF MODULO SCHEDULING AND
ACYCLIC SCHEDULING

This chapter compares modulo scheduling using the techniques developed in this th e s is

w ith the global acyclic scheduling approach with full support for unrolling-based op tim ization

in both cases. This is the first such comparison of the two techniques within the same co m p ile r

framework.

Heuristics are used to guide the amount of unrolling. The modulo scheduled loops a r e

usually unrolled half as much as the acyclicly scheduled loops. The rationale for this is t h a t

for modulo scheduling, unrolling is required only for optimization, but not to amortize th e lo ss

of overlap across the back edge. There are two exceptions to this. First, the modulo schedu led

loops are unrolled the same amount as for acyclic scheduling for very small, very critical lo o p s

with high optimization potential. Second, the loops are unrolled one less time if the u n ro l l

amount is equal to the issue rate and doing so improves resource utilization. In a loop, th e r e

are some number x of instructions tha t are duplicated when the loop is unrolled and a few t h a t

are not (typically a few induction instructions and the loop back branch). When the u n ro l l

amount is equal to the issue rate, the duplicated instructions completely fill x cycles w o rth o f

issue slots. Then one cycle is filled with the few instructions that are not duplicated. For a w id e

issue processor, many slots in that cycle may be wasted. When x is less than the issue r a t e

bu t greater than or equal to the number of non-duplicated instructions, higher perform ance

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be achieved by reducing the unroll amount by one and using the extra x issue slots to

accommodate the instructions that are not duplicated. The result is less wasted issue slots.

For the experiments in this chapter, the benchmark set is compiled three different times.

The first time, the loops are unrolled and superblock scheduling is applied. None of the loops

are modulo scheduled. The second time, the eligible loops are modulo scheduled without prior

unrolling. All the other loops are unrolled and acyclicly scheduled. The third time, the modulo

scheduled loops are also unrolled prior to scheduling to gain the benefits of unrolling-based

optimization. The four processor models are the same as those used for the results in the

earlier chapters (see Table 6.1).

Figure 7.1 compares the results of these three compilations. Each bar shows the speedup

over the base single-issue processor. The results show that for five of the seven benchmarks,

eqntott, compress, cmp, lex and yacc, modulo scheduling achieves significantly higher perfor

mance than acyclic scheduling. For cmp, lex, and yacc, prior unrolling is necessary to allow

modulo scheduling to surpass the performance of acyclic scheduling.

For espresso and gcc, acyclic scheduling and modulo scheduling provide equivalent perfor

mance (although modulo scheduling provides other benefits as will be shown shortly). The

performance of many loops in these two benchmarks was improved by modulo scheduling, but

these loops were not executed frequently enough to affect the overall benchmark execution time.

Also, many of the loops in these two benchmarks have a small number of iterations on average,

lim iting the benefit of modulo scheduling.

Figure 7.2 shows the distribution of the per loop speedups for the 368 loops that were

modulo scheduled. The results in Figure 7.2 and the rest of the individual loop results in this

chapter are based on processor C (see Table 6.1). Loops for which the two techniques produced

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a
3

<o

5

4.5

4

3.5 -

3 -

2.5 --

2 Irfi

1.5

1

0.5 ll!

□ Acyclic Scheduling with Unrolling
□ Modulo Scheduling
■ Modulo Scheduling with Unrolling

0 F-. . . .-. I------------- |I«|1I3|U3|IM|--|U»|U»|U«|U«| , , , , - , ,
A B C D A B C D A B C D A B C D A B C D A B C D A B C D
espresso eqntott compress gcc cmp lex yacc

F ig u re 7.1 Speedup over Single-Issue Processor for Acyclic and Modulo Scheduling.

the same performance are not shown. The speedups are computed using the actual execution

time for the individual loop. This takes into account the startup overhead in the prologue and

the execution time of the epilogues. This provides an accurate execution time measurement

even for short trip count loops. A loop that originally had a moderate to long trip count prior

to optimization and scheduling may have a short to moderate trip count after unrolling for

optimization and modulo variable expansion. Almost all previous studies of modulo scheduling

and other software pipelining techniques have reported the speedup in terms of only the achieved

II for the loop. This assumes th a t the trip count will be very long and is not appropriate for

control-intensive non-numeric programs.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

88

8

88

Each bar shows the number of loops that achieved the corresponding percentage speedup.

The range of percentages is divided into segments of 5% each. For example, the bar labeled 30

corresponds to the loops which achieved between a 25 and 30% speedup over acyclic scheduling.

A negative number means that the acyclic approach performed better than modulo scheduling

by the corresponding percentage.

Speedup Percentage

F ig u re 7.2 Distribution of Per Loop Speedups over Acyclic Scheduling.

Almost twice as many loops performed better with modulo scheduling than performed

better with acyclic scheduling. Furthermore, the average percentage gain is higher for modulo

scheduling. Most of the wins for acyclic scheduling are in the 5 to 15% range. For modulo

scheduling there are also many gains in that range. In addition, there are a large number of

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

wins in the 20 to 30% range. The maximum loss is limited to less than 40%. By contrast, there

are 19 loops for which modulo scheduling wins by 40% or more.

Figure 7.3 shows the distribution of the percentage of fewer registers used per loop. Each

bar shows the number of loops for which the corresponding percent fewer registers were used.

The range of percentages is again divided into segments of 5% each. Almost twice as many loops

use fewer registers with modulo scheduling than use fewer registers with acyclic scheduling and

the average decrease is more than the average increase.

Percent Fewer Registers

F ig u re 7.3 Improvement in Register Usage over Acyclic Scheduling.

Modulo scheduling decreases register usage for two partially overlapping reasons. First,

the loops are unrolled only about one half as much. Thus the scheduler is working with a

smaller number of instructions. W ithin the schedule for a single major iteration, an instruction

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can only be moved among the minor iterations. For modulo scheduling, the number of minor

iterations is smaller than for acyclic scheduling. Less code motion reduces the amount that a

register lifetime can be stretched. Second, although modulo scheduling also overlaps the major

iterations it cannot start a major iteration any sooner than II cycles after the previous one.

The intuition behind this can be seen in the following example. Assume a loop is unrolled

eight times for acyclic scheduling, but only four times for modulo scheduling. If the computation

chain for each minor iteration begins with a load, and each minor iteration is independent, the

acyclic scheduler could start eight loads in the first cycle for a machine that could issue eight

loads per cycle. Starting all eight iterations at once increases the register pressure, but may not

yield any performance gain if the execution time of the major iteration is limited by a factor

other than the issue time of the loads. For example, if each minor iteration also contains a

branch and the machine can only execute two branches per cycle, a bottleneck exists through

which only two iterations per cycle can pass. Under these circumstances, starting all eight

iterations in the same cycle is pointless.

In contrast, the modulo scheduler would only start a t most four loads in the first cycle. The

next four loads would have to be scheduled II cycles later. In modulo scheduling, the maximum

rate a t which iterations can be executed (one per M il cycles) is computed up front. Iterations

are scheduled at a consistent rate that is sustainable for the given resources and dependence

structure.

For the results in Figure 7.3, the number of registers used is computed as follows. First,

global register allocation is applied to the entire function assuming a very large set of physical

registers so tha t there is no spilling. Then the set of registers actually referenced (read or

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

written) is computed. This represents an upper bound on the register pressure, since it is the

actual number of registers that would be allocated for the variables in the loop.

This measurement is affected by the register reuse policy of the allocator and other influences

on the allocation within the function but outside the loop. In the IMPACT compiler, the register

allocator tries to reuse physical registers that it has already assigned to another lifetime. This

reduces the to tal number of registers used, and can decrease the amount to code required

for saving and restoring the registers. This tends to make the measurement more accurate.

However, two lifetimes that do not interfere inside the loop may interfere outside the loop,

requiring two separate registers to be used.

Figure 7.4 shows the result of another measurement of register pressure. To measure the

60

50

40

&o
3
° 30
ii
E3
z

20

10

0

F ig u re 7.4 Improvement in MaxLive over Acyclic Scheduling.

Percent Smaller MaxLive

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

register pressure within the loop alone, without any external influences, MaxLive, the maximum

number of registers live at any cycle during the loop is computed. This is a lower bound on

the number of registers that would be needed for the loop in the absence of external influences.

The distribution for the percentage improvement in MaxLive is shown in Figure 7.4. The

difference between modulo scheduling and acyclic scheduling is now more pronounced. Modulo

scheduling produces a smaller MaxLive for 73% of the loops. I t is expected that MaxLive is a

more favorable measurement for modulo scheduling. It is possible for live ranges to interfere

with each other in a cyclic manner such that the MaxLive lower bound is not achievable by

any register allocator. Modulo scheduling increases the number of registers live across the back
s .

edge, increasing the chance of cyclic interference.

Figure 7.5 shows the distribution of the code size compared to that for acyclic scheduling.

30 ---

25--------------------------------- --

20 -

Percent Smaller Code Size

F ig u re 7.5 Code Size Compared to Acyclic Scheduling.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Modulo scheduling increases the code size for 59% of the loops. This is due to the kernel

unrolling needed for modulo variable expansion, the prologue, and the multiple epilogues that

are created for the code generation scheme used in the IMPACT compiler. Even though the

loop body given to the modulo scheduler is usually smaller than that given to the acyclic

scheduler, the code expansion due to the code generation scheme often (but not always) more

than mitigates th a t advantage. However, for 40% of the loops this advantage is not mitigated

and the code size is smaller with modulo scheduling.

Fortunately, hardware techniques have been developed that allow the creation of more space-

efficient code generation schemes for modulo scheduled loops [53]. Figure 7.6 shows the dis

tribution of the code size assuming that the processor contains hardware support to allow the

180

160

140

120
(A

f too
O
| 80
3Z

60

40

20

0

F ig u re 7.6 Improvement in Code Size with Kernel-Only Code.

I f iw v .j

Percent Smaller Code Size

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generation of kernel-only code (see Chapter 3). In this case only the (non-unrolled) kernel

contributes to the code size. W ith this support, the code size with modulo scheduling is always

smaller. Note the very large number of loops where the code size is one-half that of acyclic

scheduling. This occurs because loops are usually unrolled for modulo scheduling one-half the

amount that they are for acyclic scheduling. The bars slightly greater than 50% represent the

loops th a t are unrolled fewer times to allow better resource utilization.

Table 7.1 summarizes the statistics for the distributions presented in this chapter. The

column labeled Number Win is the number of loops for which modulo scheduling performed

better than acyclic scheduling for the metric of interest. For Speedup, this means a higher

speedup. For the other metrics, it means reduced register pressure or code size. Number

Loss means the number of loops for which modulo scheduling performed worse than acyclic

scheduling. Number Tie means the two scheduling methods produced the same results. Percent

Win is the percentage of loops for which modulo scheduling performed better than acyclic

scheduling. Max Win is the maximum percentage by which modulo scheduling performed better

than acyclic scheduling. Max Loss is the maximum percentage by which acyclic scheduling

performed better than modulo scheduling. Note that the worst-case performance of modulo

scheduling is always better than the worst-case performance for acyclic scheduling, indicating

T ab le 7.1 Summary of Distribution Statistics.

Metric Number
W in

Number
Lose

Number
Tie

Percent
W in

Max
Win

Max
Loss

Average
W in

Average
Loss

Speedup 200 119 49 54% 196% 38% 23% 13%
Registers 206 116 46 56% 75% 62% 30% 19%
MaxLive 272 65 31 74% 84% 69% 31% 25%
Code Size 146 217 5 40% 95% 86% 35% 39%
KO Size 359 0 9 98% 95% 6% 51% 0%

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a more stable performing loop scheduling method. For example, the maximum speedup with

modulo scheduling is 196% while the maximum loss is only 38%. Average Win and Average

Loss are the average gain (loss) for the loops for which modulo scheduling performed better

(worse), respectively.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8

CONCLUSION

This dissertation has proposed a set of methods that allow effective modulo scheduling

of loops with multiple exits. These methods can be used to allow modulo scheduling of the

selected paths of loops with arbitrary control flow. A case study was presented to show how

these methods enable modulo scheduling to be effectively applied, to control-intensive non

numeric programs. Performance results for several SPEC CINT92 benchmarks and Unix utility

programs demonstrated that modulo scheduling can significantly accelerate loops in this class

of programs.

This dissertation also described a set of unrolling-based optimizations which reduce resource

requirements and the height of critical paths in software pipelined loops. Unrolling is the only

way to reduce the the effective number of loop-back branches executed per iteration and to allow

optimizations which asymmetrically optimize the loop iterations. Unrolling also helps to reduce

the degradation caused by rounding the M il up to the nearest integer. Experimental results

showed th a t unrolling improves the performance of the benchmarks used in this dissertation.

Acyclic scheduling and modulo scheduling were also compared within in the same compiler

framework, the first time that this has been done. The results show that modulo scheduling

provides increased performance over acyclic scheduling with a reduction in register pressure.

The code size with modulo scheduling is often, but not always, larger than for acyclic scheduling.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, with appropriate hardware support, the code size is always less than with acyclic

scheduling.

8.1 Future Work

There are four areas of potential future work on this topic. The first is modulo scheduling of

short trip count loops. There are two steps that can be taken to attack this problem. First, the

speculation should be controlled so that only the speculation necessary to achieve good long-

trip count performance is done. Second, the number of iterations overlapped can be limited

to trade off long-trip count performance for short-trip count performance. If there are still

cases where acyclic scheduling performs better than modulo scheduling, work will be needed

on sophisticated ways to combine or choose between the two techniques. For example, loop

iterations could be peeled off to handle the short trip count cases and the software pipeline

could be entered when the trip count is large enough.

The second area of future work is to make improvements in the methods used to determine

the best number of times to unroll. Currently, the unroller uses heuristics and a very limited

amount of information such as the number of instructions in the loop and the issue rate of

the processor. This could be improved if the unroller used the detailed machine description

information on the available resources and had knowledge of the effect of optimizations. Ac

curate decisions require th a t the loop body be in the form that the scheduler would see. This

requires generation of the machine dependent code prior to loop unrolling. Also, the unrolling

and optimization should take the ResMII and RecMII into account so that the correct tradeoff

can be made between resource reducing and dependence height reducing optimizations.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, modulo scheduling of hyperblock loops would allow the inclusion of more than one

path for scheduling, bu t retain the ability to exclude undesirable paths. Inclusion of more paths

would increase the trip count for loops which frequently exit the software pipeline at a branch

to an excluded path.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[1] E. M. Riseman and C. C. Foster, “The inhibition of potential parallelism by conditional
jum ps,” IEEE Transactions on Computers, vol. C-21, pp. 1405-1411, December 1972.

[2] M. D. Smith, M. Johnson, and M. A. Horowitz, “Limits on multiple instruction issue,” in
Proceedings of the 3rd International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 290-302, April 1989.

[3] N. P. Jouppi and D. W. Wall, “Available instruction-level parallelism for superscalar and
superpipelined machines,” in Proceedings of the 3rd International Conference on Archi
tectural Support for Programming Languages and Operating Systems, pp. 272-282, April
1989.

[4] J. A. Fisher, “Trace scheduling: A technique for global microcode compaction,” IEEE
Transactions on Computers, vol. C-30, pp. 478-490, July 1981.

[5] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix, J. S.
O’Donnell, and J. C. Ruttenberg, “The Multiflow Trace scheduling compiler,” The Journal
of Supercomputing, vol. 7, pp. 51-142, January 1993.

[6] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. W arter, R. A. Bringmann,
R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery, “The
Superblock: An effective technique for VLIW and superscalar compilation,” The Journal
of Supercomputing, vol. 7, pp. 229-248, January 1993.

[7] B. R. Rau and C. D. Glaeser, “Some scheduling techniques and an easily schedulable
horizontal architecture for high performance scientific computing,” in Proceedings of the
20th Annual Workshop on Microprogramming and Microarchitecture, pp. 183-198, October
1981.

[8] K. Ebcioglu, “A compilation technique for software pipelining of loops with conditional
jumps,” in Proceedings of the 20th Annual Workshop on Microprogramming and Microar
chitecture, pp. 69-79, December 1987.

[9] A. Aiken and A. Nicolau, “Optimal loop parallelization,” in Proceedings of the AC M SIG-
P LA N 1988 Conference on Programming Language Design and Implementation, pp. SOS-
317, June 1988.

[10] B. R. Rau, “Iterative modulo scheduling: An algorithm for software pipelining loops,” in
Proceedings of the 27th International Symposium on Microarchitecture, pp. 63-74, Decem
ber 1994.

[11] S. I. Feldman, D. M. Gray, M. W. Maimore, and N. L. Schryer, “A Fortran-to-C converter,”
Computing Science Tech. Rep. 149, AT&T Bell Laboratories, Murray Hill, NJ, June 1990.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[12] G. E. Haab, “Data dependence analysis for Fortran programs in the IMPACT compiler,”
M.S. thesis, Department of Electrical and Computer Engineering, University of Illinois,
Urbana, IL, 1995.

[13] D. M. Gallagher, “Memory disambiguation to facilitate instruction-level parallelism com
pilation,” Ph.D. dissertation, Department of Electrical and Computer Engineering, Uni
versity of Illinois, Urbana, IL, 1995.

[14] B.-C. Cheng, “Pinline: A profile-driven automatic inliner for the IMPACT compiler,” M.S.
thesis, Department of Computer Science, University of Illinois, Urbana, IL, 1997.

[15] B. T. Sander, “Performance optimization and evaluation for the IMPACT X86 compiler,”
M.S. thesis, Department of Electrical and Computer Engineering, University of Illinois,
Urbana, IL, 1995.

[16] W. F. Dugal, “Code scheduling and optimization for a superscalar x86 microprocessor,”
M.S. thesis, Department of Electrical and Computer Engineering, University of Illinois,
Urbana, IL, 1995.

[17] V. Kathail, M. S. Schlansker, and B. R. Rau, “HPL PlayDoh architecture specification:
Version 1.0,” Tech. Rep. HPL-93-80, Hewlett-Packard Laboratories, Palo Alto, CA, Febru
ary 1994.

[18] W. Pugh, “A practical algorithm for exact array dependence analysis,” Communications
of the ACM, vol. 35, pp. 102-114, August 1992.

[19] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools. Reading,
MA: Addison-Wesley, 1986.

[20] S. A. Mahlke, “Design and implementation of a portable global code optimizer,” M.S.
thesis, Department of Electrical and Computer Engineering, University of Illinois, Urbana,
IL, 1991.

[21] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. W arter, R. A. Bringmann,
R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery,
“The superblock: An effective structure for VLIW and superscalar compilation,” tech.
rep., Center for Reliable and High-Performance Computing, University of Illinois, Urbana,
IL, February 1992.

[22] S. A. Mahlke, “Exploiting instruction level parallelism in the presence of conditional
branches,” Ph.D. dissertation, Department of Electrical and Computer Engineering, Uni
versity of Illinois, Urbana, IL, 1996.

[23] P. P. Chang, S. A. Mahlke, and W. W. Hwu, “Using profile information to assist classic
code optimizations,” Software Practice and Experience, vol. 21, pp. 1301-1321, December
1991.

[24] S. A. Mahlke, W. Y. Chen, J. C. Gyllenhaal, W. W. Hwu, P. P. Chang, and T. Kiy
ohara, “Compiler code transformations for superscalar-based high-performance systems,”
in Proceedings of Supercomputing ’92, pp. 808-817, November 1992.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[25] R. A. Bringmann, “Compiler-controlled speculation,” Ph.D. dissertation, Department of
Computer Science, University of Illinois, Urbana, IL, 1995.

[26] P. P. Chang, D. M. Lavery, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, “The importance of
prepass code scheduling for superscalar and superpipelined processors,” IEEE Transactions
on Computers, vol. 44, pp. 353-370, March 1995.

[27] J. C. Gyllenhaal, “A machine description language for compilation,” M.S. thesis, Depart
ment of Electrical and Computer Engineering, University of Illinois, Urbana, IL, 1994.

[28] J. C. Gyllenhaal, W. W. Hwu, and B. R. Rau, “Optimization of machine descriptions for
efficient use,” in Proc. 29th Annual Conference on Microprogramming and Microarchitec
tures, (Paris, France), pp. 349-358, Dec. 1996.

[29] R. E. Hank, “Machine independent register allocation for the IM PACT-IC compiler,” M.S.
thesis, Department of Electrical and Computer Engineering, University of Illinois, Urbana,
IL, 1993.

[30] G. J. Chaitin, “Register allocation and spilling via graph coloring,” in Proceedings of the
A C M SIG P LA N 82 Symposium on Compiler Construction, pp. 98-105, June 1982.

[31] J. Ellis, Bulldog: A Compiler for VLIW Architectures. Cambridge, MA: The MIT Press,
1985.

[32] R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C. Gyllenhaal, and W. W. Hwu, “Su
perblock formation using static program analysis,” in Proceedings of the 26th Annual In
ternational Symposium on Microarchitecture, December 1993.

[33] M. Schlansker, V. Kathail, and S. Anik, “Height reduction of control recurrences for ILP
processors,” in Proceedings of the 27th International Symposium on Microarchitecture,
pp. 40-51, December 1994.

[34] P. P. Chang, N. W arter, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, “Three architectural
models for compiler-controlled speculative execution,” IEEE Transactions on Computers,
vol. 44, pp. 481-494, April 1995.

[35] S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank, W. W. Hwu, B. R. Rau,
and M. S. Schlansker, “Sentinel scheduling: A model for compiler-controlled speculative
execution,” Transactions on Computer Systems, vol. 11, November 1993.

[36] K. Ebcioglu and T. Nakatani, “A new compilation technique for parallelizing loops with
unpredictable branches on a VLIW architecture,” in Languages and Compilers for Parallel
Computing, pp. 213-229, 1989.

[37] A. Aiken and A. Nicolau, “A realistic resource-constrained software pipelining algorithm,”
in Advances in Languages and Compilers for Parallel Processing, A. Nicolau, D. Galernter,
T. Gross, and D. Padua, Eds., London: P itm an/The MIT Press, 1991, pp. 274-290.

[38] M. Rajagopalan and V. H. Allan, “Efficient scheduling of fine grain parallelism in loops,” in
Proceedings o f the 26th International Symposium on Microarchitecture, pp. 2-11, December
1993.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[39] B. R. Rau and J. A. Fisher, “Instruction-level parallel processing: History, overview, and
perspective,” The Journal of Supercomputing, vol. 7, pp. 9-50, January 1993.

[40] M. S. Lam, “Software pipelining: An effective scheduling technique for VLIW machines,”
in Proceedings of the AC M SIG PLAN 1988 Conference on Programming Language Design
and Implementation, pp. 318-328, June 1988.

[41] S.-M. Moon and K. Ebcioglu, “An efficient resource-constrained global scheduling tech
nique for superscalar and VLIW processors,” in Proceedings of the 25th International
Symposium on Microarchitecture, pp. 55-71, December 1992.

[42] K. Ebcioglu, R. D. Groves, K. Kim, G. M. Silberman, and I. Ziv, “VLIW compilation tech
niques in a superscalar environment,” in Proceedings of the AC M SIG PLAN ’94 Conference
on Programming Language Design and Implementation, pp. 36-48, June 1994.

[43] R. B. Jones and V. H. Allan, “Software pipelining: An evaluation of enhanced pipelining,”
in Proceedings of the 24th International Workshop on Microprogramming and Microarchi
tecture, pp. 82-92, November 1991.

[44] V. H. Allan, U. R. Shah, and K. M. Reddy, “Petri net versus modulo scheduling for soft
ware pipelining,” in Proceedings of the 28th International Symposium on Microarchitecture,
pp. 105-110, December 1995.

[45] M. Lam, “A systolic array optimizing compiler,” Ph.D. dissertation, Carnegie Mellon Uni
versity, Pittsburg, PA, 1987.

[46] J. C. Dehnert, P. Y. Hsu, and J. P. Bratt, “Overlapped loop support in the Cydra 5,” in
Proceedings of the Third International Conference on Architectural Support for Program
ming Languages and Operating Systems, pp. 26-38, April 1989.

[47] S. Ramakrishnan, “Software pipelining in PA-RlSC compilers,” Hewlett-Packard Journal,
pp. 39-45, June 1992.

[48] J. Ruttenberg, G. R. Gao, A. Stoutchinin, and W. Lichtenstein, “Software pipelining
showdown: Optimal vs. heuristic methods in a production compiler,” in Proceedings of the
A C M SIG PLA N 96 Conference on Programming Language Design and Implementation,
pp. 1-11, May 1996.

[49] J. C. Dehnert and R. A. Towle, “Compiling for the Cydra 5,” The Journal of Supercom
puting, vol. 7, pp. 181-227, January 1993.

[50] R. A. Huff, “Lifetime-sensitive modulo scheduling," in Proceedings of the A CM -SIGPLAN
Conference on Programming Language Design and Implementation, pp. 258-267, June
1993.

[51] A. E. Eichenberger and E. S. Davidson, “Stage scheduling: A technique to reduce the reg
ister requirements of a modulo schedule,” in Proceedings of the 28th Annual International
Symposium on Microarchitecture, pp. 338-349, December 1995.

[52] J. Llosa, M. Valero, E. Ayguade, and A. Gonzalez, “Hypernode reduction modulo schedul
ing,” in Proceedings of the 28th International Symposium on Microarchitecture, pp. 350-
360, Nov. 1995.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[53] B. R. Rau, M. S. Schlansker, and P. P. Tirumalai, “Code generation schema for modulo
scheduled loops,” in Proceedings of the 25th Annual International Symposium on Microar
chitecture,i pp. 158-169, December 1992.

[54] B. R. Rau, “D ata flow and dependence analysis for instruction-level parallelism,” in Pro
ceedings o f the Fourth International Workshop on Languages and Compilers for Parallel
Computing, pp. 236-250, 1992.

[55] N. J. W arter, G. E. Haab, K. Subramanian, and J. W. Bockhaus, “Enhanced modulo
scheduling for loops w ith conditional branches,” in Proceedings of the 25th Annual Inter
national Symposium on Microarchitecture, pp. 170-179, December 1992.

[56] P. Tirumalai, M. Lee, and M. Schlansker, “Parallelization of loops with exits on pipelined
architectures,” in Supercomputing, November 1990.

[57] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe, “Dependence graphs
and compiler optimizations,” in Proceedings of the 8th AC M Symposium on Principles of
Programming Languages, pp. 207-218, January 1981.

[58] D. M. Lavery and W. W. Hwu, “Unrolling-based optimizations for modulo scheduling,” in
Proceedings o f the 28th International Symposium on Microarchitecture, pp. 327-337, Nov.
1995.

[59] K. O’Brien, B. Hay, J. Minish, H. Schaffer, B. Schloss, A. Shepherd, and M. Zaleski,
“Advanced compiler technology for the RISC System/6000 architecture,” in IB M RISC
System/6000 Technology, 1990.

[60] M. Schlansker and V. Kathail, “Acceleration of first and higher order recurrences on pro
cessors with instruction level parallelism,” in Proceedings of Languages and Compilers for
Parallel Computing, 6th International Workshop, August 1993.

[61] T. Nakatani and K. Ebcioglu, “Combining as a compilation technique for VLIW archi
tectures,” in Proceedings of the 22nd International Workshop on Microprogramming and
Microarchitecture, pp. 43-55, September 1989.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Daniel Michael Lavery was born in Evanston, Illinois, in 1963. He grew u p in Chicago,

Illinois, and attended Notre Dame High School in Niles, Illinois. He pursued his undergraduate

studies a t the University of Illinois a t Urbana-Champaign, where he received th e Bachelor of

Science degree in Electrical Engineering in 1986. From 1982 to 1985, h e was a cooperative

engineering student at IBM in Burlington, Vermont. In 1986, he began his graduate studies

a t the University of Illinois at Urbana-Cham paign and received the M aste r of Science degree

in Electrical Engineering in 1989. While pursuing the M.S. degree, he w a s a research assistant

a t the Center for Supercomputing Research and Development. From 1988 to 1991, he held

the position of computer systems engineer a t the Center for Supercomputing Research and

Development, where he worked on the development of the Cedar multiprocessor. In 1991, he

joined the Center for Reliable and High-Performance Computing as a m em ber o f the IMPACT

group to pursue the Ph.D. degree a t the University of Illinois at Urbana-Champaign. He spent

the summer of 1992 at Cray Research, Inc., in Chippewa Falls, Wisconsin. A fter completing

his Ph.D. work, he will join Intel Corporation in Santa Clara, California, as a microprocessor

architect.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

