
	
  
	
  
	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

INPUT	
  DIVISION	
  FOR	
  BINARY	
  TRANSLATION	
  

BY	
  
	
  

GENG	
  DANIEL	
  LIU	
  

THESIS 
 

Submitted in partial fulfillment of the requirements  
for the degree of Master of Science in Electrical and Computer Engineering  

in the Graduate College of the  
University of Illinois at Urbana-Champaign, 2012	
  

Urbana,	
  Illinois	
  

Adviser:	
  
	
  
	
   Professor	
  Wen-­‐Mei	
  W.	
  Hwu	
  



	
   ii	
  

ABSTRACT	
  

Binary	
  translation	
  is	
  useful	
  in	
  migrating	
  binaries	
  to	
  architectures	
  different	
  from	
  the	
  

one	
   they	
   are	
   originally	
   compiled	
   for.	
   The	
   work	
   in	
   this	
   thesis	
   is	
   an	
   optimization	
   of	
   an	
  

existing	
   binary	
   translator	
   developed	
   by	
   Chen	
   et	
   al.	
   in	
   2008.	
   The	
   goal	
   of	
   the	
   binary	
  

translator	
  is	
  to	
  allow	
  Android	
  applications	
  with	
  native	
  code	
  compiled	
  for	
  ARM	
  architecture	
  

to	
  run	
  on	
  MIPS-­‐based	
  hardware.	
  The	
  ideal	
  time	
  to	
  translate	
  an	
  Android	
  application	
  is	
  when	
  

it	
  is	
  being	
  installed.	
  Therefore,	
  the	
  binary	
  translator	
  must	
  execute	
  on	
  a	
  mobile	
  device	
  which	
  

has	
   limited	
  compute	
  power.	
  The	
  original	
  binary	
  translator	
  encounters	
  a	
  severe	
   limitation	
  

when	
  translating	
  large	
  applications.	
  On	
  those	
  applications,	
  translation	
  takes	
  more	
  than	
  one	
  

hour	
  to	
  complete.	
  In	
  the	
  worst	
  case,	
  the	
  translator	
  crashes	
  due	
  to	
  insufficient	
  memory.	
  	
  

We	
   present	
   Input	
   Division,	
   an	
   optimization	
   technique	
   that	
   resolves	
   the	
  

aforementioned	
  issues.	
   Input	
  Division	
  improved	
  the	
  original	
   implementation	
  with	
  a	
  more	
  

advanced	
  input	
  analysis	
  technique	
  that	
  significantly	
  accelerates	
  output	
  binary	
  generation.	
  

As	
   a	
   result,	
   we	
   achieved	
   up	
   to	
   18.9X	
   speedup	
   in	
   translation	
   time	
   and	
   48X	
   reduction	
   in	
  

memory	
  usage.	
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CHAPTER	
  1	
  

INTRODUCTION	
  

Binary translation is a useful technique in many applications such as ISA migration and 

legacy code migration. In the context of this thesis, the goal of binary translation is to allow 

Android applications with C/C++ code compiled for ARM platform to run on MIPS platform. 

When installing an Android Application Package (APK) on a MIPS-based device, the Android 

application installer invokes the binary translator to convert any ARM-targeted binaries to MIPS-

targeted binaries. Since the binary translator must execute on a mobile device, it faces major 

constraints on both translation time and memory usage. The LLVM-based Binary Translator 

(LLBT), developed by Chen et al. [1], was originally designed to execute on x86-based servers 

with abundant CPU power and memory. However, due to the lack of physical resources on 

cellphones and tablets, running LLBT on mobile devices became infeasible. This thesis describes 

Input Division, which is an optimization that makes LLBT practical for running on mobile 

devices.  

The remainder of this document will be organized as follows. Chapter 2 will provide 

some background information on Android application with native code and ARM architecture. It 

will also describe LLBT at a high level. Chapter 3 will describe Input Division in detail. Chapter 

4 will introduce an optimization of Input Division. Chapter 5 will discuss our experimental 

results. Chapter 6 will conclude the work.  
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CHAPTER	
  2	
  

BACKGROUND	
  AND	
  MOTIVATION	
  

 In this chapter, we first explain why and how an Android application developer would 

use C/C++ code. Following that, we discuss some background information on ARM architecture. 

Finally, we will give an overview of LLBT and discuss the motivation of Input Division.  

2.1 APK with Native Code 

In general, Android applications are written in Java and they execute in Dalvik, the 

virtual machine in Google’s Android Operating System [2]. Android NDK provides developers 

the ability to use native functions written in C/C++ as helper functions to the Java programs. 

Since C/C++ inherently executes faster than Java, application developers typically implement 

compute-intensive operations such as physics simulation and signal processing in native code [3]. 

According to a survey conducted by Shen et al., less than 10% of the APKs involve native code 

[4]. Android NDK compiles native code into shared objects that are packaged into the APK, 

which will be eventually downloaded by users. When users launch the application, the shared 

object will be loaded on demand.  

 

2.2 ARM Embedded Application Binary Interface (EABI) 

There are many ARM-specific features that make binary translation challenging. In this 

section, we will only discuss the ones that are pertinent to Input Division. For a comprehensive 

review, please see the ARM Architecture Reference Manual [5]. 
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2.2.1 Symbol Tables 

A shared object typically contains two symbol tables: static and dynamic. The static 

symbol table contains information on functions and data. The dynamic symbol table is a subset 

of the static symbol table and it contains the minimum amount of symbols required for dynamic 

linking. Therefore, it only holds symbols of exported functions and global data. Symbols of 

internal function, or functions that are not exported, are available from the static symbol table. 

However, since the static symbol tables are not necessary for program execution, they are often 

removed, or stripped, in order to minimize the size of a shared object.  

 

2.2.2 Function Call 

 Although there are many ways to call a function, the most common way is by executing 

the Branch and Link (BL) instruction in the form of “BL immediate_value”. In the example in 

Figure 1, BL first saves 0x304, the address of the next sequential instruction, in the Link Register 

(LR) which is a special register dedicated for return address. Then, it stores 0x400 in Program 

Counter (PC) and the program will continue at the entry of callee_function.  

 

2.2.3 Function Return  

 There are multiple types of function return instructions and they are summarized in in 

Figure 2. Type 1 is used in leaf functions, or functions that do not call other functions. In this 

0x200 <caller_function> 
… 
0x300: bl 0x400 
0x304: add r3, r0, r1 
… 
0x400 <callee_function> 
... 

Figure 1. Example of Branch and Link 
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case, the LR register holds the current function’s return address because it has not been updated 

since the entry of the function. Moving the content of LR into PC causes a branch to its caller.  

The BX instruction in Type 2 is a branch with an option to switch instruction mode. We will 

discuss instruction modes in section 2.2.4.  Type 3 is for non-leaf functions that call other 

functions via BL instructions. Before calling another function, the current function must preserve 

its return address by pushing LR onto stack. At the current function’s return, it will retrieve LR 

from stack and store it in PC. 

 

2.2.4 ARM Instruction Modes 

 ARM ISA has two instruction modes: ARM (32-bit instruction) and Thumb (16-bit 

instruction). Mode switching happens during a program’s execution via instructions such as 

“BLX” and “BX”. BLX is a Branch and Link instruction with an option to switch mode. Besides 

achieving the semantics of BL, BLX uses the least significant bit (LSB) in the target address to 

determine the subsequent instruction mode. In the ARM ISA, all functions must start from even 

byte addresses. This allows the linker to record whether a callee function is an ARM function or 

a Thumb function by setting the LSB of the target address used by the BLX instruction. The 

program  switches to Thumb  mode if the LSB of the target address is 1.  Otherwise, it remains in  

Return instructions Semantic 

Type 1: mov pc, lr pc = lr 

Type 2: bx lr pc = lr  
check lr[0] for mode switch 

Type 3: pop {..., pc} pop lr from stack and store it in pc 

Figure 2. Three types of return instructions 
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ARM mode. Afterwards, the target address is cast to an even number by clearing its LSB and 

stored in PC. In Figure 3, in order to call the Thumb function at 0x200, r0 must be the callee’s 

address with its LSB set to 1. 

As for return, the return address is also set in a similar way. If the calling function is in 

Thumb mode, the processor sets the least significant bit of the return address to 1 before it is 

moved into the LR register. Therefore, if a BX instruction sees an odd return address, the 

processor switches into Thumb mode and assumes that it is returning into a Thumb function.  

However, if the calling function is in ARM mode, the return address remains as an even number. 

In Figure 3, at the end of the Thumb function, “BX LR” returns to 0x108. Since the value in LR 

is 0x108 which is an even number, BX will switch instruction mode back to ARM. In general, 

we do not know the instruction mode of a code block at translation time because we cannot 

always statically determine the operands’ value for BLX and BX.  

 

2.2.5 Special Symbols 

 If a shared object is compiled with debug option, its symbol table will contain special 

symbols, namely $a, $t and $d which stand for ARM code, Thumb code and Data respectively. 

Each special symbol entry contains an address and its symbol type as shown in Figure 4. 

ARM function  Thumb function  

… 
0x104: blx r0                 //r0 = 0x201 
0x108: mov r5, r0 
... 

0x200 <thumb_function> 
0x200: add r4, r1, r2 
0x202: mov r5, r0 
… 
0x400: bx lr 
 

Figure 3. Example of BLX and Bx 
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Symbol address Symbol type 

0x200 $a 

0x300 $d 

0x308 $t 
Figure 4. Example of special symbols in a symbol table 
 

The corresponding code is shown in Figure 5. ARM code starts from 0x200 until 0x300 

which is indicated by the second entry in Figure 4. There are eight bytes of data starting from 

0x300. Lastly, Thumb instructions start at 0x308. Note that Thumb instruction addresses 

increments by two because each instruction is two-byte long. 

 

2.3 LLBT Overview 

At a high level, LLBT consists of three phases: binary parsing (frontend), IR processing, 

and code generation (backend). LLBT frontend leverages GNU binary utilities such as objdump 

and readelf to disassemble the input shared object and convert it into LLBT internal 

representation (IR) [6]. LLBT analyzes the IRs in several phases to extract information such as 

dynamic  symbols  and  control  flow.  Moreover,  LLBT  needs  to  recognize  and  convert  the 

 

0x200: push {r4, lr} //start of ARM code 
0x204: add r4, r0, r1 
… 
0x2fc: pop {r4, lr} 
0x300: .word 0xffff9984 //pc-rel data 
0x304: .word 0xffffab68 //pc-rel data 
0x308: push {lr} //start of Thumb code 
0x30a: add r3, 1 
0x30c: mov r4, 0 
... 

 
Figure 5. Example of a mixture of instruction modes and data 
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platform-dependent features of ARM such as shifter operands, PC-relative data and 16-bit 

Thumb instructions into platform-neutral implementations [1]. As output, LLBT generates 

LLVM assembly code that emulates the input shared object. As shown in Table 1, LLBT creates 

a variable for every ARM register and creates a data array for ARM stack. Finally, we utilize 

LLVM-MIPS backend to generate a MIPS shared object which will be packaged with the APK 

[7].  

During IR processing, LLBT needs to retain exported function names and global 

variables from the input shared object. For instance, an exported function from the input shared 

object is translated to an output function with the same name. This ensures that the Java program 

from the APK can reach the expected functions at runtime. Unfortunately, as previously 

mentioned, symbols on internal functions are often removed from the symbol table. In other 

words, LLBT is unaware of where each internal function starts and ends. The original 

implementation of LLBT consolidates internal functions to a single output function named 

unexported_text_section. Although correctness can be achieved, this implementation is prone to 

long translation time and high memory usage. 

 

Table 1. Register Mapping 

ARM registers LLVM variables 

r0-r12 ARM_{r0-r12} 

SP ARM_SP 

LR ARM_LR 

PC ARM_PC 
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2.4 Shortcomings of LLBT  

Consolidating internal functions results in a larger output function. The effect of the 

increased function sizes is insignificant for small shared objects, but becomes a major bottleneck 

as the input shared object gets larger. Figure 6 shows the profiling results on 14 APKs. On 

average, over 90% of the code from a shared object is from internal functions. For an APK with 

1000 functions, if we combine all of its internal functions into one large function, we could 

potentially have a “function” that consists of 900 original functions.  

In practice, the size of unexported_text_section indeed increases dramatically with the 

size of the input shared object. The most time-consuming and memory-intensive phase of the 

binary translation process is LLVM backend compilation. Both LLVM optimizer and instruction 

selector involve super-linear algorithms. Therefore, under the original implementation, 

Figure 6. Percentage of APK functions that are internal functions 
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translation time does not scale well with input size. Table 2 shows the translation time and 

memory usage of four APKs. Large shared objects took over 20 minutes on an Intel i7 processor 

with 8 GB of RAM. Some APKs took even longer and eventually ran out memory. To make 

matters worse, since the processor on mobile devices is less powerful than that of a server, a 3-

4X further slowdown is expected. Moreover, RAM is limited to 512 MB to 1GB. Any APKs that 

require more than 1GB of RAM to translate will cause thrashing between the flash memory and 

DRAM. Therefore, a user might need to wait for an hour or longer to translate an APK if it can 

be translated at all.  

Table 2. Translation time and memory usage of 4 APKs 
APK Translation Time Memory Usage 

AngryBirds 25 min 7.2 GB 

Camera360 20 min 3.2 GB 

FishingGame 30+ min crashed 

Weather 40+ min crashed 
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CHAPTER	
  3	
  

INPUT	
  DIVISION	
  

In order to eliminate the bottleneck of compiling the large unexported_text_section, we 

need to identify internal functions and translate them into independent output functions. The goal 

of input division can be summarized as follows: 

1. Identify as many internal function entry points as possible by static analysis of the input  
    shared object.  
2. Create an output function for each internal function detected in step 1.   
3. Ensure the output functions are still callable by all their original callers 
4. Ensure correct control flow within the output functions.  
5. Ensure that an output function can return to its caller.  
6. Create a mechanism to guarantee 2, 3 and 4 in the case of an incorrect input division.  
7. Ensure that the output behavior does not deviate from the original semantics.   
 

We will show later that there are many hazards that prevent Input Division from always 

correctly identifying all internal functions. Therefore, it is very important to have a mechanism 

(Goal 6) that allows the translated code to function correctly even if Input Division misses an 

internal function or incorrectly partitions an original internal function into multiple functions.  

 
3.1 Function Entry Discovery  

Since internal function symbols are usually removed from the static symbol table, static 

analysis of the instructions in the input shared object is the only reliable way to extract internal 

function entry points. Input Division traverses the disassembled instructions of the input shared 

object and searches for function call instructions. Whenever it reaches a BL instruction, it marks 

the target address as a function entry. For example, after traversing the code in Figure 7, Input 

Division returns three function entry addresses: 0x400, 0x600 and 0x800.  
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0x200 <some_function> 
… 
0x220: bl 0x400 
… 
0x334: bl 0x600 
… 
0x35c: bl 0x800 
... 

Figure 7. Entry extraction example  
 

The major drawback of this method is that it cannot handle indirect function calls such as 

the one in Figure 8. At translation time, we cannot determine the value of r3. Therefore, we 

cannot always extract the target function’s address from indirect function calls. Since our 

function entry point discovery method cannot provide 100% coverage, we cannot achieve a one-

to-one mapping between an input function from the ARM shared object and an output function. 

It is possible for an output function to contain multiple input functions as illustrated in Figure 9. 

Moreover, Input Division could incorrectly subdivide an input function. In the example from 

Figure 10, Input Division breaks internal_function_1 into two functions because function entry 

analysis returns a false-positive entry at 0x304. We will discuss the reasons behind false-positive 

detections in section 3.4 and describe our fail-safe mechanism in section 3.5.  

 

mov lr pc 
mov pc r3 

Figure 8. Indirect function call example 
 

Input: ARM shared object  Output: LLVM assembly code 

0x200 <internal_function_1> 
… 
0x400 <internal_function_2> 
… 
0x800 <end of internal_function_2> 

output_function_100 (...) { 
//implementation for ARM code from  
//0x200 to 0x800 
} 

Figure 9. Missed function entry 
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Input: ARM shared object Output: LLVM assembly code 

0x200 <internal_function_1> 
… 
0x400 <end of internal_function_1> 

output_function_100 (...) { 
//implementation for ARM code from  
//0x200 to 0x300 
} 
output_function_101 (...) { 
//implementation for ARM code from  
//0x304 to 0x400 
} 

Figure 10. False-positive entry detection 
 
3.2 Entry Point Information Consolidation 

After collecting function entry points from the dynamic symbol table and function call 

analysis, we need to consolidate the information because the two sets of function entry points 

usually overlap with each other. After consolidation, we have a list of function entry addresses, 

but we are still missing function sizes. We calculate the function sizes by sorting the entry 

addresses and taking the difference between adjacent addresses. The size of the last function is 

calculated by the difference between its entry address and the end of text section. Since Input 

Division cannot guarantee full coverage and accuracy, the list of functions and sizes is merely an 

estimate.  

 

3.3 Control Flow Handling  

Control flow handling is a crucial component in LLBT because it directly affects the 

runtime behavior of the translated shared object. First, we will introduce a base control flow 

mechanism that handles the original control flow in the shared objects. Following that, we will 

discuss the modifications and new elements needed by Input Division.  
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3.3.1 Original Control Flow 

There are two categories of instructions that change control flow: direct and indirect 

branch. The classification is shown in Figure 11. The target address of a direct branch is known 

at translation time because it is encoded in the instruction’s literal offset field. On the other hand, 

the target addresses of indirect branches are stored in registers and their values cannot always be 

determined by static analysis.  

To translate a direct branch to an ARM address, LLBT needs to find the corresponding 

location in the output LLVM assembly code. To facilitate branches, LLBT generates a label for 

every ARM instruction. As shown in Figure 12, the format of LLVM labels is “L_#” where “#” 

is a unique number for every ARM address.  

In the case of a direct branch, LLBT looks up the LLVM label for the target ARM 

address and generates a branch to the label. In the example from Figure 13, the call to 

internal_function_B is translated to a branch to L_2000, which is the LLVM label of the entry 

(0x600) of internal_function_B.  

 

Direct branch Indirect branch 

b 0xADDR 
bl 0xADDR  
mov pc, 0xADDR 

bx rx 
blx rx 
mov pc, rx 
ldr pc, [rx] 
ldm rx, {pc}  
add pc, rx, #IMM 
add pc, rx, ry  
 
*rx and ry can be any user-mode register 

Figure 11. Classification of branches 
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Input: ARM shared object Output: LLVM assembly 

0x200 <some_function> 
0x200: push {lr, r4, r5} 
0x204: add r4, r0, r1 
0x208: sub sp, sp, 12 
… 
0x220: pop {lr, r4, r5} //end of function 

some_function (...) { 
L_1000:  
  //LLVM implementation for  
  //0x200: push {lr, r4, r5} 
L_1001:  
  //LLVM implementation for  
  //0x204: add r4, r0, r1 
L_1002:  
  //LLVM implementation for  
  //0x208: sub sp, sp, 12 
… 
L_1008: 
  //LLVM implementation for  
  //0x220: pop {lr, r4, r5}  
} 

Figure 12. Example of LLVM labels 
 

To handle indirect branches, the lookup process needs to be delayed to runtime. 

Therefore, we need to create an extra data structure, i.e., Address Mapping Table (AMT), that 

stores the mapping between ARM addresses and their corresponding LLVM labels. As shown in 

Figure 14,  an AMT is a switch table with a case for each possible branch target.  

 
 

Input: ARM assembly Output: LLVM assembly 

0x400 <internal_function_A> 
... 
0x500: bl 0x600 <internal_function_B> 
… 
0x600 <internal_function_B> 
... 

unexported_text_section(...) { 
… 
L_600: // entry of internal_function_A 
... 
L_1000: //ARM instruction: bl 0x600 
  //set up LR 
  branch label L_2000 
… 
L_2000: //internal_function_B entry 
… 
} 

Figure 13. Example of direct branch 
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Address Mapping Table 

switch target_address { 
  ARM_address1: LLVM_label_1 
  ARM_address2: LLVM_label_2 
  ARM_address3: LLVM_label_3 
  ... 
} 

Figure 14. Address Mapping Table  
 

An indirect branch is achieved by first saving the target ARM address in ARM_PC then 

branching to AMT instead of the actual target. At runtime, AMT uses the value in ARM_PC to 

select the target LLVM label. In the example shown in Figure 15, before the branch to AMT, 

0x600 is stored in ARM_PC. AMT branches to L_2000 which marks the beginning of 

internal_function_B.  

Similarly, function returns are achieved by updating ARM_PC with ARM_LR and 

branching to AMT. In Figure 16, when internal_function_B returns, the LR holds 0x504 which is 

Input: ARM shared object Output: LLVM assembly 

0x400 <internal_function_A> 
… 
0x4fc: mov lr, pc 
0x500: mov pc, r3 //r3 = 0x600 
… 
0x600 <internal_function_B> 
 

unexported_text_section(...) { 
… 
L_600: // entry of internal_function_A 
... 
L_1000: //ARM instruction: mov pc, r3 
  ARM_PC = ARM_r3 
  branch label address_mapping_table 
… 
L_2000: //internal_function_B entry 
… 
address_mapping_table: 
  switch ARM_PC { 
    0x400: L_600 
    0x600: L_2000 
    ... 
  } 
} 

Figure 15. Example of indirect branch 
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the address of the instruction immediately after the call to internal_function_B. Since ARM 

address 0x504 is mapped to LLVM label L_1001, AMT will branch to the LLVM label of the 

return address.  

 

3.3.2 Control Flow Modifications 

In the previous implementation, all internal function calls are implemented by branches. 

This relies on the assumption that the caller and callee are in the same output function. Since 

Input Division breaks the single output function (unexported_text_section) into multiple internal 

functions, the assumption no longer holds and we run in the error shown in Figure 17.   

Input: ARM shared object Output: LLVM assembly 

0x400 <internal_function_A> 
… 
0x4fc: mov lr, pc 
0x500: mov pc, r3 //r3 = 0x600 
… 
0x600 <internal_function_B> 
… 
0x700: bx lr 

unexported_text_section(...) { 
… 
L_600: // entry of internal_function_A 
... 
L_1000: //ARM instruction: mov pc, r3 
  ARM_PC = ARM_r3 
  branch label address_mapping_table 
L_1001: // ARM instruction 0x504 
... 
L_2000: //internal_function_B entry 
… 
L_3000: //0x700: bx lr 
  ARM_PC = ARM_LR 
  branch label address_mapping_table 
... 
address_mapping_table: 
  switch ARM_PC { 
    0x400: L_600 
    0x504: L_1001 
    0x600: L_2000   
    ... 
  } 
} 

Figure 16. Example of function return 
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Label L_2000 from internal_function_A is invalid because it is illegal to branch to a label 

in another function [8]. Therefore, direct branches to other functions need to be achieved by 

function calls. As shown in Figure 18, the branch to label L_2000 is substituted by a call to 

internal_function_B. Input division causes a similar issue with indirect branches. In Figure 19, 

Label L_2000 in internal_function_A’s AMT is illegal because the label is defined in another 

function. To resolve this problem, we created Function Table (FT) which is essentially an 

address mapping table with global visibility. 

 

Input: ARM shared object Output: LLVM assembly 

0x400 <internal_function_A> 
… 
0x500: bl 0x600 <internal_function_B> 
… 
0x600 <internal_function_B> 
... 

define void @internal_function_A(...) { 
... 
L_1000: //ARM instruction: bl 0x600 
  branch label L_2000 
… 
} 
 
define void @internal_function_B(...) { 
L_2000: //internal_function_B entry 
… 
} 

Figure 17. An error caused by Input Division 
 
 

Input: ARM assembly Output: LLVM assembly 

0x400 <internal_function_A> 
… 
0x500: bl 0x600 <internal_function_B> 
… 
0x600 <internal_function_B> 
... 

define void @internal_function_A(...) { 
... 
L_1000: //ARM instruction: bl 0x600 
  call internal_function_B(...) 
… 
} 

Figure 18. Direct branch modification 
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Input: ARM assembly Output: LLVM assembly 

0x400 <internal_function_A> 
… 
0x4fc: mov lr, pc 
0x500: mov pc, r3 //r3 = 0x600 
… 
0x600 <internal_function_B> 
... 

define void @internal_function_A(...) { 
L_600: // entry of internal_function_A 
... 
L_1000: //ARM instruction: mov pc, r3 
  ARM_PC = ARM_r3 
  branch label address_mapping_table 
… 
address_mapping_table: 
  switch ARM_PC { 
    0x400: L_600 
    0x600: L_2000 
    //other function entries 
  } 
} 
define void @internal_function_B(...) { 
L_2000: //internal_function_B entry 
… 
} 

Figure 19. Indirect branch error caused by Input Division 
 
 
3.3.3 Function Table 

Each output function has its own AMT which we will later refer to as the local address 

mapping table. Each local AMT only contains addresses within its corresponding function. 

Function Table is a global data structure that establishes the connection among the local AMTs. 

It contains an entry for every function entry address in the input shared object. Since the purpose 

of FT is purely for function calls, it does not contain any return addresses. 

 
At runtime, when a target address is not found in the local AMT, the FT is queried. In 

Figure 20, when function_A calls function_B via an indirect branch, it first checks its local AMT 

(step 1). In this case, it fails because the target address is outside of the range of function_A (step 

2). The address lookup process continues in function_table which contains all possible function  
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Figure 20. Function table example 
 
entry addresses (step 4). Function_table uses ARM_PC to determine which function to call (step 

4) and finally generates a call to internal_function_B (step 5). 

 

3.3.4 Function Return 

In section 2.2.3, we introduced three types of return instructions. LLBT scans the input 

binary for the instructions in Figure 2. When LLBT finds a match, it updates ARM_PC and 

performs a return operation in the output LLVM code to the caller. See the example in Figure 21. 

Although this implementation is very intuitive, it is not robust in the case of false-positive or 

false-negative function entry detections by Input Division. Therefore, we choose not to use the  
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function_2 (...) { 
//0x400: add r4, r0, r1 
… 
//0x480: mov pc lr 
ARM_PC = ARM_LR  
return 
... 
} 

Figure 21. Function return example 
 
simple implementation in Figure 21. Rather, we use the implementation described in the 

following section to address these limitations. 

 

3.4 Fail-Safe Mechanism  

The function call/return mechanism from section 3.3 relies on the following assumptions:  

1. No-false negative detections: all internal function entries can be detected.  
2. No false-positive detections: all function entries detected are valid function entries.  

As mentioned in section 3.1, function entry analysis cannot achieve 100% coverage. 

Therefore, the first assumption does not hold. Moreover, due to the uncertainty in determining 

instruction mode (ARM vs Thumb), which will be discussed in detail in section 3.5, the second 

assumption is also invalid. Therefore, we need a more tolerant control flow mechanism that 

works on incorrectly divided functions.  

 

3.4.1 Function Call 

In general, we cannot assume program execution always starts from the beginning of an 

output function because the output function could potentially contain multiple input functions. At 

the entry of each output function, we artificially introduce a branch to AMT which will direct 

control  flow  to the  expected   target  address. In  Figure 22,  function_B  and   function_C   are  
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function_A(...) { 
… 
// bl 0x400 <function_B> 
ARM_PC = 0x400 
call function_BC(...) 
... 
//bl 0x600 <function_C> 
ARM_PC = 0x600 
call function_BC(...) 
… 
} 

function_BC(...) { 
branch label address_mapping_table 
L_800: //0x400 <function_B> 
… 
L_1200: //0x600 <function_C> 
… 
address_mapping_table: 
switch ARM_PC { 
  0x400: L_800 
  0x600: L_1200 
} 
... 
} 

Figure 22. Function call modification 
 
grouped into a single output function, i.e., function_BC, because entry analysis failed to detect 

function_C. Since both calls are based on explicit target addresses, LLBT can determine that 

their target addresses are within the body of function_BC. Therefore, function calls to B and C 

on the left become identical. The only distinguishing factor is the value in ARM_PC. The AMT 

in function_BC uses ARM_PC to determine whether function_A or function_B is called. 

 

3.4.2 Function Return  

Before we present the adopted solution, we would like to first discuss the flaws of the 

simple solution where return instructions from the input ARM binary are translated into LLVM 

return instructions. This will lead to the error in Figure 23 when there are multiple input 

functions per output function.  The problem is that the number of returns does not match the 

number calls, resulting in incorrect program execution. To enforce the balance between function 

calls and returns, we need to conform to the following rules. 

1. If an ARM function call is translated to a LLVM function call, the corresponding ARM return   
    instruction should be translated to a LLVM return statement.  
2. If an ARM function call is translated to a LLVM branch, the corresponding ARM return   
    instruction should be translated to a LLVM branch.  
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ARM LLVM 

0x200 <function_A> 
… 
0x300: bl 0x400 <function_B> 
… 
0x400 <function_B> 
… 
0x500: bl 0x600 <function_C> 
… 
0x600 <function_C> 
… 
0x800: bx lr 
 

function_A (...) { 
… 
//bl 0x400 <function_B> 
ARM_PC = 0x400 
call function_BC(...) 
… 
} 
 
function_BC(...) { 
//entry of function_B 
… 
//bl 0x600 <function_C> 
branch label L_1600 
… 
//entry of function_C 
L_1600:  
… 
 
  return 
} 

Expected control flow: 
A--call-->B--call-->C 
C--return-->B--return-->A 

Actual control flow: 
A--call-->B--call-->C 
C--return-->A 

Figure 23. A problem with function return  
 
 

In Figure 23, function_B calls function_C via a LLVM branch. However, when 

function_C returns, a LLVM return statement is executed. Therefore, we cannot blindly return 

from a function without considering how the function is called. If the caller and callee reside in 

the same output function, function call and return are achieved by LLVM branches. In this case, 

the callee’s return address is in the local AMT. Therefore, the decision whether to execute a 

LLVM return should be made after checking the local AMT. If AMT contains the return address, 

we simply branch to the LLVM label of the return address. If not, we need to return via a LLVM 
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return instruction. Note that there are two cases when the local AMT fails to look up the address. 

If the instruction prior to the branch to AMT was a function call, we need to continue the lookup 

process in Function Table. If it was a return instruction, AMT lookup must have failed because 

the return address is in another output function. In this case, we should execute a LLVM return. 

To distinguish these cases, we created a return flag. For every return instruction, we set the 

return flag before branching to the local AMT. In Figure 24, when function_C returns,  the return 

address(0x504) is in the same function, so it will be found in the local AMT. Before branching to 

the return address(L1000), we need to reset return flag so that it will not affect future address 

lookup. When function_B returns, the return address in a different output function(function_A), 

we will reach lookup_failure because the address is outside of function_BC. Since return flag has 

been set, function_B will return to its caller.  

When an input function is incorrectly divided into two output functions, we will 

encounter another error with function returns. In Figure 25, Input Division divides branch_test at 

0x400 due to a false-positive entry detection. This forces LLBT to translate the branch at 0x300 

to a function call to branch_test_2(...). When we reach the return instruction at 0x600, the 

intended behavior is to return to the caller of branch_test. In the implementation in Figure 25, 

however, we return to branch_test_1 because it is the immediate caller of branch_test_2. This is 

another instance of the problem where the number of function returns does not match the number 

of function calls. Since we introduced an extra function call for the branch at 0x300, we need to 

generate an extra function return to compensate. We can leverage the fact that the value in 

ARM_LR always stores the correct target address. The assumption is safe because LLBT only 

updates ARM_LR when the original ARM instruction intends to update Link Register. The 

solution is to insert  an ARM_PC  update  and a branch to  local  AMT   immediately  after   each 
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ARM LLVM 

0x200 <function_A> 
… 
0x300: bl 0x400 <function_B> 
… 
0x400 <function_B> 
… 
0x500: bl 0x600 <function_C> 
… 
0x600 <function_C> 
… 
0x800: bx lr 
 

function_A (...) { 
… 
//bl 0x400 <function_B> 
ARM_LR = 0x404 
ARM_PC = 0x400 
call function_B(...) 
… 
} 
 
function_BC(...) { 
//entry of function_B 
… 
//bl 0x600 <function_C> 
ARM_LR = 0x504 
branch label L_1600 
L_1000: //ARM address 0x504 
... 
//entry of function_C 
L_1600:  
… 
//bx lr 
ARM_PC = ARM_LR 
return_flag = 1 
branch label address_mapping_table 
… 
address_mapping_table: 
switch ARM_PC { 
  … 
  0x504: return_flag = 0 
              branch label L_1000 
  … 
  default: lookup_failure 
} 
lookup_failure: 
  if (return_flag) 
     return 
  else  
     call function_table(...) 
} 

Figure 24. Return flag example  
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function call statement. This way, when the function call returns, the execution will always look 

up AMT. In Figure 26, we branch to AMT immediately after returning from branch_test_2. 

Since the return address is in the caller of branch_test, the AMT lookup will fail and we will 

execute a LLVM return and return to the caller. This also balances out the extra function call at 

0x300.  

Note that this process is also triggered after “regular” function returns where program 

execution is supposed to continue at the instruction after the function call. In Figure 27, when 

branch_test_1 returns to the caller of branch_test, the intended execution is to continue at the  

next instruction at 0x114. Since ARM_LR holds 0x114 at this moment, the local AMT will 

branch to L_1001 which is the LLVM label for ARM address 0x114. 

 

ARM  LLVM 

0x200 <branch_test> 
... 
0x300: b TARGET 
0x304: mov r0, r4 
… 
0x400: //false-positive function entry 
... 
0x500: add r4, r0, r1 <TARGET> 
… 
0x600: bx lr //return 

branch_test_1(...) { 
… 
//0x300: b TARGET 
ARM_PC = 0x500 
call branch_test_2(...) 
//0x304: mov r0, r4 
ARM_r0 = ARM_r4 
… 
} 
branch_test_2(...) { 
… 
//0x600: bx lr 
ARM_PC = ARM_LR 
branch label address_mapping_table 
… 
} 

Figure 25. Function return error 
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ARM  LLVM 

0x200 <branch_test> 
... 
0x300: b TARGET 
0x304: mov r0, r4 
… 
0x400: //false-positive function entry 
... 
0x500: add r4, r0, r1 <TARGET> 
… 
0x600: bx lr //return 

branch_test_1(...) { 
… 
//0x300: b TARGET 
ARM_PC = 0x500 
call branch_test_2(...) 
ARM_PC = ARM_LR 
branch label address_mapping_table 
//0x304: mov r0, r4 
ARM_r0 = ARM_r4 
… 
} 
branch_test_2(...) { 
… 
//0x600: bx lr 
ARM_PC = ARM_LR 
branch label address_mapping_table 
… 
} 

Figure 26. Fix to function return error 
 

ARM LLVM 

0x100 <branch_test_caller> 
… 
0x110: bl 0x200 <branch_test> 
0x114: mov r5, r0 
... 

branch_test_caller (...) { 
… 
L_1000: //ARM 0x110: bl 0x200 
  ARM_PC = 0x200 
  ARM_LR = 0x114 
  call branch_test_1(...) 
  ARM_PC = ARM_LR 
  branch label address_mapping_table 
L_1001: //ARM 0x114: mov r5, r0 
  ARM_r5 = ARM_r0 
… 
address_mapping_table: 
  switch ARM_PC { 
    ... 
    0x114: L_1001 
    … 
  } 
} 

Figure 27. A regular function return routine 
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3.4.3 Fall-Through Functions 

In the LLVM assembly code generated by LLBT, there exist “fall-through” functions 

which do not return at the end. The intended execution is to continue to the next function. There 

are two possible reasons for this. First, some highly optimized assembly code has fall-through 

functions. In the example from Figure 28, function_A and function_B have a large overlap, i.e., 

instructions 3 to 64. Since they only differ on instruction 1 and 2, it is more space-efficient to 

make them share the same code region. Another reason for fall-through function is false-positive 

entry detections from Input Division. As we will discuss in section 3.4.1, it is possible that Input 

Division breaks an input function into two output functions. Therefore, there is no return 

instruction at the end of function 1 because the intended execution is to continue to the first 

instruction in function 2. 

The solution to this problem is very straightforward. If the end of an output function does 

not have a return instruction, we artificially introduce a call to the beginning of the next function. 

In Figure 29, at the end of function_A, LLBT updates ARM_PC with the entry address of 

function_B and generates a call to function_B. Note that there will be a new return statement 

after call function_B(). The call-return sequence will be slightly different from the original code.   

 
callees caller 

0x400 <funciton_A> 
0x400: instruction 1 
0x404: instruction 2 
 
0x408 <function_B> 
0x408: instruction 3 
0x40c: instruction 4 
… 
0x4fc: instruction 64 
0x500: bx lr //return  

0x200: bl 0x400 
… 
0x240: bl 0x408 

Figure 28. Fall-through function example  
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function_A(..){ 
//instruction 1 
//instruction 2 
store 0x408 %ARM_PC 
call function_B(...) 
} 

Figure 29. Fall-through function handling 
 
Originally, the execution starts from a caller, enters function_A, continues to function_B, and 

eventually returns to the caller. After the translation, the execution starts from the same caller, 

enters function_A, calls function_B, returns from function_B to function_A, and returns from 

function_A through the new return instruction. 

 

3.5 Incorrect Division 

Previously, we mentioned that input partitioning could generate false entry points. First, 

we will talk about the cause of incorrect division as well as the performance penalty of it. Then, 

we will describe how to prevent false-positive detections.  

 
3.5.1 ARM-Thumb Ambiguity  

Due to indirect branches, it is difficult to determine whether a code region is ARM or 

Thumb without special symbols. Conservatively, LLBT frontend generates a set of IRs for both 

ARM and Thumb. Input division traverses both ARM and Thumb IR sets to search for Branch 

and Link instructions. In general, only one of them is valid and will be used at runtime. However, 

since Input Division needs to scan them statically, it must assume that both are possible. When 

an ARM instruction is disassembled as Thumb instruction, or vice versa, it is entirely possible 

that a non-branch-and-link instruction is incorrectly generated into a Branch and Link.  
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In most cases, when an instruction is incorrectly interpreted as a BL instruction, the target 

address is based on garbage bit patterns and often corresponds to an address outside the .text 

section that contains all the valid target addresses for that branch. This helps us to screen away 

some false-positive entries. That is, we check if the target address is valid by comparing it to the 

address range of .text section. This filters out the majority of the false-positive detections, but it 

cannot guarantee to eliminate all of them. It is possible that the target address from an incorrectly 

disassembled instruction seems valid because it falls within the .text section. In this case, input 

partition will register the address as a valid function entry point and will subdivide a function.  

 

3.5.2 Cost of Incorrect Division 

When a function is incorrectly partitioned into multiple functions, the problem becomes 

similar to fall-through functions. As we described previously, the inserted function call branches 

will ensure program execution continues from one function to the next. Therefore, under normal 

circumstances, we can still achieve the expected runtime execution even when there are incorrect 

divisions. However, a problem arises when input partition divides a function into two parts that 

have frequent branches to each other.  

When the thumb function on the right-hand side of Figure 30 is disassembled as ARM, it 

contains a bl instruction with target address in branch_test. Therefore, input division thinks 

0x380 is a valid function entry and breaks branch_test into two output functions shown in Figure 

31. Since PART_ONE and PART_TWO are not in the same output function, any branches 

between these regions have to be achieved by a function call. PART_ONE and PART_TWO will 

keep on calling each other until we reach the return statement at the end of branch_test. During 

the process, stack keeps growing.  Moreover, it is likely that the program runs out of stack before  
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0x200 <branch_test> 
... 
0x2fc: sub r0, r1, r2 <PART_ONE> 
0x300: b PART_TWO 
… 
0x400: add r4, r0, r1 <PART_TWO> 
… 
0x500: b PART_ONE 
… 
//return 

//A Thumb function disassembled as ARM 
… 
bl 0x380 
... 

Figure 30. Example of incorrect division 
 

branch_test_1(...) {  
//starting at 0x200 
... 
//0x300: b PART_TWO 
ARM_PC = 0x400 
call branch_test_2(...) 
... 
} 

branch_test_2(...) {  
//starting at 0x380 
… 
//0x500: b PART_ONE 
ARM_PC = 0x2fc 
call branch_test_1(...) 
… 
} 

Figure 31. Output of incorrect division 
 

PART_TWO returns. This violates Goal 7 of input division because the input program does not 

intend to recursively allocate stack frames. As a result, we decided not to allow Input Division to 

subdivide functions. 

 
 
3.5.3 False-Positive Prevention 

To prevent function subdivision, we need to improve the quality of entry extraction. The 

root cause of the problem is the ambiguity of instruction mode. We can leverage the information 

held in the dynamic symbol table. Besides providing a list of function entries, the dynamic 

symbol table also gives us a pool of code blocks on which we can safely conduct function entry 

analysis.  The addresses listed in the dynamic symbol table indirectly reflect whether a function 

is ARM mode or Thumb mode. Since instruction addresses are half-word aligned, the LSB is 
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always 0. The dynamic symbol table uses the LSB to indicate the mode of a function. In Figure 

32, function_2 is a Thumb function because the LSB of its address is 1. Note that the actual 

address of function_2 is 0x500.  The function addresses and their corresponding sizes in the 

dynamic symbol table provide us a list of code blocks with their instruction modes. To prevent 

false-positive entry detections, we restrict the function entry analysis to these code regions only. 

This approach will extract all the internal functions that are directly called by exported functions, 

but it will miss ones that are only called from internal functions.  

 
In Figure 33, internal_function_2 will be detected when we scan external_function_1. 

However, internal_function_3 will be missed if it is only called from an internal function. The 

experiments in Table 3 compare the number of discovered function entries before and after the 

adjustment on entry extraction. On average, the number of function entries is reduced by 9%. 

Therefore, the adjustment is a reasonable compromise because it ensures correct runtime 

behavior.  

Address Size Name 

0x400 0x100 external_function_1 

0x501 0x200 external_function_2 

0x700 0x250 external_function_3 

Figure 32. Example of a dynamic symbol table  
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0x400 <external_function_1> 
… 
0x420: bl 0x400 
… 
0x1400 <internal_function_2> 
… 
0x1440: bl 0x1600 
… 
0x1600 <internal_function_3> 
... 

Figure 33. Example of restricted function entry extraction 
 
 
Table 3. Effect of entry extraction adjustment 

APK # of functions before # of functions after % missed entries 

Kuwo 106 92 13.3 

Skype 302 288 4.6 

Weather 305 236 22.6 

Amap 813 759 6.6 

CrazyBlock 411 372 9.5 

QQPhoneBook 694 678 2.3 

DemonHunter 1331 1319 0.9 

AngryBirds 2255 1964 12.9 
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CHAPTER	
  4	
  

OPTIMIZATION	
  

Up to this point, the output of LLBT is a single LLVM assembly file. Before Input 

Division, the file contains a large output function (unexported_text_section) that holds more than 

90% of the shared object. Input Division breaks the function into many output functions resulting 

in a significant speedup. A further improvement is to divide the output into multiple files. As 

shown in Chapter 5, dividing the output file not only improves compilation speed, but also 

significantly reduces memory footprint. The output file is divided at the function level. For 

example, the output from Figure 34 is divided into three files in Figure 35.  

This approach would generate many output files if there are many small functions. As a 

further improvement, we establish a minimum file size. The code generation phase is a while 

loop that iterates over all the output functions. Instead of creating a new file per output function, 

we only create a new file if the previous file has already exceeded the minimum threshold. Under 

this implementation, the large functions will be isolated into different files and small ones are 

still in the same file.	
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output.ll 

define void @function_1(...) { 
//implementation for function_1 
} 
define void @function_2(...) { 
//implementation for function_1 
} 
define void @function_3(...) { 
//implementation for function_1 
} 

Figure 34. Single output file 
 

output1.ll 

//global declarations 
define void @function_1(...) { 
//implementation for function_1 
} 

output2.ll 

//global declarations 
define void @function_2(...) { 
//implementation for function_2 
} 

output3.ll 

//global declarations 
define void @function_3(...) { 
//implementation for function_3 
} 

Figure 35. Multiple output file 
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CHAPTER	
  5	
  

EXPERIMENTAL	
  RESULTS	
  

In this chapter, we evaluate Input Division and Optimized Input Division in terms of 

translation time and memory usage. The benchmarks we used are chosen from the list of most 

popular APKs in Android Marketplace. We selected 14 APKs that have a wide range of shared 

object sizes that give us different input characteristics. We translated these 14 APKs whose 

shared object sizes range from 20KB to 2MB on a machine with Intel i7 CPU at 2.0GHz and 

8GB of RAM. We measured the results with three versions of LLBT. The baseline version of 

LLBT consolidates all internal functions into a single output function. The Input Division 

version produces multiple output functions in a single output file. The Optimized Input Division 

version divides the output into multiple files.  

 

5.1 Translation Time 

Table 4 shows the translation time of 14 APKs with three versions of LLBT. Note that 

Weather and FishingGame crashed during translation by Baseline LLBT because the process ran 

out of memory. Figure 36 normalizes the results from Input Division and Baseline version to that 

of Optimized Input Division. The speedup on shared objects over 500KB is on average over 10X. 

In the best case, Input/Output Division became an enabling technique because some APKs such 

as Weather and FishingGame cannot be translated by Baseline LLBT. Optimized Input Division 

also achieved a slight speedup over Input Division. In summary, Optimized Input Division 

achieves an average speedup of 6.9X over Baseline version and 1.4X over Input Division.  
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Table 4. Translation time of 14 APKs 
APK Binary 

size(KB) 
Baseline  
(seconds) 

Input 
division  
(seconds) 

Optimized input 
division(seconds) 

GoLauncher 20.5 3 6 2 

AnQuanGuanJia 32 12 10 7 

DriftMania 108 235 32 26 

Kuwo 128 3 7 5 

Skype 216 18 11 9 

DopoolTV 270 857 77 65 

Weather 385 N/A 135 102 

Amap 532 390 176 138 

CrazyBlock 536 209 33 26 

Camera360 580 1173 73 62 

QQPhonebook 680 104 37 30 

FishingGame 801 N/A 254 187 

DemonHunter 1300 771 108 87 

AngryBirds 2040 1495 161 124 

 
5.2 Memory Usage 

Table 5 shows the peak memory usage of the translation process and Figure 37 

normalizes the results from Input Division and Baseline to that of Optimized Input Division. 

Optimized Input Division reduced memory usage by 20X on average over Baseline and 6X over 

Input Division.  
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Figure 36. Speedup of Optimized Input Division 
 
Table 5. Peak memory usage 

APK Binary size(KB) Baseline  
(MB) 

Input division  
(MB) 

Optimized input division(MB) 

GoLauncher 20.5 124 82 52 

AnQuanGuanJia 32 254 154 88 

DriftMania 108 1205 413 146 

Kuwo 128 41 127 52 

Skype 216 776 186 47 

DopoolTV 270 2936 1301 268 

Weather 385 N/A 1502 443 

Amap 532 7475 2117 683 

CrazyBlock 536 2232 500 56 

Camera360 580 3268 1207 94 

QQPhonebook 680 2228 536 80 

FishingGame 801 N/A 4202 396 

DemonHunter 1300 6780 1524 141 

AngryBirds 2040 7263 2096 186 
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Figure 37. Memory usage reduction 
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CHAPTER	
  6	
  

RELATED	
  WORK	
  

Kruegel et al. encountered a similar problem in their static disassembler for obfuscated 

binaries [9]. Obfuscated binaries are the ones that have been transformed to make them harder to 

disassemble. These transformations make it difficult to reverse-engineer the machine code 

instructions from a binary while preserving the original program’s functionality. The goal of 

these transformations, a.k.a. obfuscation, is usually to protect proprietary information in software 

products. It can also be used to hide malicious content in a seemingly normal program. 

 

In their paper, Kruegel et al. described techniques they employed to efficiently 

disassemble obfuscated binaries. The first step of their work is to identify function entry points. 

The function entry analysis presented in this thesis is one of the methods. It would be ideal to 

scan function call instructions and extract target addresses. However, the required information is 

not available at this step because it is the disassembler’s job to translate bit patterns into function 

call instructions.  Moreover, an obfuscator can redirect calls to a central function that transfers 

control flow to appropriate targets. Therefore, extracting function entries by scanning function 

call instructions is not a feasible solution in their application. As a result, they used a heuristic to 

locate function entries. They search the binary for typical byte sequences that implement 

function prologs. For example, opcodes that allocate stack space to save callee-saved registers 

are usually a good indicator of a function entry address.  

 

The technique from this paper is useful to LLBT because it will enhance the coverage of 

our function entry analysis. However, it may impose stress on compilation time, especially when 
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we are unsure of the instruction mode of a byte sequence. Without careful handling, this may 

also produce false-positive detections similar to ones discussed in section 3.5.   
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CHAPTER	
  7	
  

CONCLUSION	
  

In general, Input Division reduces translation time and memory usage. The effect of Input 

Division on smaller shared objects is less noticeable because small shared objects have very few 

internal functions. Therefore, there is little opportunity for reduction in translation time and 

memory usage. Moreover, the overhead of processing multiple function entries offsets the 

improvement attained by Input Division. This results in less overall improvement. For large 

shared objects, Input Division provides up to 18.9 X improvement. In two test cases, the 

translation does not even work without input division. Optimized Input Division provides further 

improvement in both translation time and memory usage. It appears that the backend code 

generation and optimization tools have super-linear execution time and memory usage over the 

size of the input files. Although we do not have access to the implementation details, 

experimental results show that keeping the LLVM files small is critical in achieving fast 

translation and small memory usage. 

 

In general, larger shared objects take longer to translate. However, shared object size is 

not the only factor. Translation time and memory usage are also dependent on control flow 

complexity. For example, Amap is smaller than CrazyBlock, but takes longer and more memory 

to translate.  

 

In summary, Optimized Input Division achieved up to 18.9X speedup and 48X memory 

usage reduction over Baseline LLBT on the 14 APKs we tested. It also made translation possible 

for two APKs that previously required too much memory.  
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