
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

INPUT	
 DIVISION	
 FOR	
 BINARY	
 TRANSLATION	

BY	

	

GENG	
 DANIEL	
 LIU	

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012	

Urbana,	
 Illinois	

Adviser:	

	

	
 Professor	
 Wen-­‐Mei	
 W.	
 Hwu	

	
 ii	

ABSTRACT	

Binary	
 translation	
 is	
 useful	
 in	
 migrating	
 binaries	
 to	
 architectures	
 different	
 from	
 the	

one	
 they	
 are	
 originally	
 compiled	
 for.	
 The	
 work	
 in	
 this	
 thesis	
 is	
 an	
 optimization	
 of	
 an	

existing	
 binary	
 translator	
 developed	
 by	
 Chen	
 et	
 al.	
 in	
 2008.	
 The	
 goal	
 of	
 the	
 binary	

translator	
 is	
 to	
 allow	
 Android	
 applications	
 with	
 native	
 code	
 compiled	
 for	
 ARM	
 architecture	

to	
 run	
 on	
 MIPS-­‐based	
 hardware.	
 The	
 ideal	
 time	
 to	
 translate	
 an	
 Android	
 application	
 is	
 when	

it	
 is	
 being	
 installed.	
 Therefore,	
 the	
 binary	
 translator	
 must	
 execute	
 on	
 a	
 mobile	
 device	
 which	

has	
 limited	
 compute	
 power.	
 The	
 original	
 binary	
 translator	
 encounters	
 a	
 severe	
 limitation	

when	
 translating	
 large	
 applications.	
 On	
 those	
 applications,	
 translation	
 takes	
 more	
 than	
 one	

hour	
 to	
 complete.	
 In	
 the	
 worst	
 case,	
 the	
 translator	
 crashes	
 due	
 to	
 insufficient	
 memory.	
 	

We	
 present	
 Input	
 Division,	
 an	
 optimization	
 technique	
 that	
 resolves	
 the	

aforementioned	
 issues.	
 Input	
 Division	
 improved	
 the	
 original	
 implementation	
 with	
 a	
 more	

advanced	
 input	
 analysis	
 technique	
 that	
 significantly	
 accelerates	
 output	
 binary	
 generation.	

As	
 a	
 result,	
 we	
 achieved	
 up	
 to	
 18.9X	
 speedup	
 in	
 translation	
 time	
 and	
 48X	
 reduction	
 in	

memory	
 usage.	

	

	

	
 iii	

	
 	

TABLE	
 OF	
 CONTENTS	

	

CHAPTER 1: INTRODUCTION ….…………………………………………………. 1

CHAPTER 2: BACKGROUND AND MOTIVATION ……………….………………. 2

CHAPTER 3: INPUT DIVISION ……………………………………..………………… 10

CHAPTER 4: OPTIMIZATION …………...…………...…………...…………...…….. 33

CHAPTER 5: EXPERIMENTAL RESULTS …………………………………………… 35

CHAPTER 6: RELATED WORK ……………………………………………………… 39

CHAPTER 7: CONCLUSION ……….………………………………………………… 41

REFERENCES ………………....….……………………………………………………. 42

	
 1	

CHAPTER	
 1	

INTRODUCTION	

Binary translation is a useful technique in many applications such as ISA migration and

legacy code migration. In the context of this thesis, the goal of binary translation is to allow

Android applications with C/C++ code compiled for ARM platform to run on MIPS platform.

When installing an Android Application Package (APK) on a MIPS-based device, the Android

application installer invokes the binary translator to convert any ARM-targeted binaries to MIPS-

targeted binaries. Since the binary translator must execute on a mobile device, it faces major

constraints on both translation time and memory usage. The LLVM-based Binary Translator

(LLBT), developed by Chen et al. [1], was originally designed to execute on x86-based servers

with abundant CPU power and memory. However, due to the lack of physical resources on

cellphones and tablets, running LLBT on mobile devices became infeasible. This thesis describes

Input Division, which is an optimization that makes LLBT practical for running on mobile

devices.

The remainder of this document will be organized as follows. Chapter 2 will provide

some background information on Android application with native code and ARM architecture. It

will also describe LLBT at a high level. Chapter 3 will describe Input Division in detail. Chapter

4 will introduce an optimization of Input Division. Chapter 5 will discuss our experimental

results. Chapter 6 will conclude the work.

	

	

	
 2	

CHAPTER	
 2	

BACKGROUND	
 AND	
 MOTIVATION	

 In this chapter, we first explain why and how an Android application developer would

use C/C++ code. Following that, we discuss some background information on ARM architecture.

Finally, we will give an overview of LLBT and discuss the motivation of Input Division.

2.1 APK with Native Code

In general, Android applications are written in Java and they execute in Dalvik, the

virtual machine in Google’s Android Operating System [2]. Android NDK provides developers

the ability to use native functions written in C/C++ as helper functions to the Java programs.

Since C/C++ inherently executes faster than Java, application developers typically implement

compute-intensive operations such as physics simulation and signal processing in native code [3].

According to a survey conducted by Shen et al., less than 10% of the APKs involve native code

[4]. Android NDK compiles native code into shared objects that are packaged into the APK,

which will be eventually downloaded by users. When users launch the application, the shared

object will be loaded on demand.

2.2 ARM Embedded Application Binary Interface (EABI)

There are many ARM-specific features that make binary translation challenging. In this

section, we will only discuss the ones that are pertinent to Input Division. For a comprehensive

review, please see the ARM Architecture Reference Manual [5].

	
 3	

2.2.1 Symbol Tables

A shared object typically contains two symbol tables: static and dynamic. The static

symbol table contains information on functions and data. The dynamic symbol table is a subset

of the static symbol table and it contains the minimum amount of symbols required for dynamic

linking. Therefore, it only holds symbols of exported functions and global data. Symbols of

internal function, or functions that are not exported, are available from the static symbol table.

However, since the static symbol tables are not necessary for program execution, they are often

removed, or stripped, in order to minimize the size of a shared object.

2.2.2 Function Call

 Although there are many ways to call a function, the most common way is by executing

the Branch and Link (BL) instruction in the form of “BL immediate_value”. In the example in

Figure 1, BL first saves 0x304, the address of the next sequential instruction, in the Link Register

(LR) which is a special register dedicated for return address. Then, it stores 0x400 in Program

Counter (PC) and the program will continue at the entry of callee_function.

2.2.3 Function Return

 There are multiple types of function return instructions and they are summarized in in

Figure 2. Type 1 is used in leaf functions, or functions that do not call other functions. In this

0x200 <caller_function>
…
0x300: bl 0x400
0x304: add r3, r0, r1
…
0x400 <callee_function>
...

Figure 1. Example of Branch and Link

	
 4	

case, the LR register holds the current function’s return address because it has not been updated

since the entry of the function. Moving the content of LR into PC causes a branch to its caller.

The BX instruction in Type 2 is a branch with an option to switch instruction mode. We will

discuss instruction modes in section 2.2.4. Type 3 is for non-leaf functions that call other

functions via BL instructions. Before calling another function, the current function must preserve

its return address by pushing LR onto stack. At the current function’s return, it will retrieve LR

from stack and store it in PC.

2.2.4 ARM Instruction Modes

 ARM ISA has two instruction modes: ARM (32-bit instruction) and Thumb (16-bit

instruction). Mode switching happens during a program’s execution via instructions such as

“BLX” and “BX”. BLX is a Branch and Link instruction with an option to switch mode. Besides

achieving the semantics of BL, BLX uses the least significant bit (LSB) in the target address to

determine the subsequent instruction mode. In the ARM ISA, all functions must start from even

byte addresses. This allows the linker to record whether a callee function is an ARM function or

a Thumb function by setting the LSB of the target address used by the BLX instruction. The

program switches to Thumb mode if the LSB of the target address is 1. Otherwise, it remains in

Return instructions Semantic

Type 1: mov pc, lr pc = lr

Type 2: bx lr pc = lr
check lr[0] for mode switch

Type 3: pop {..., pc} pop lr from stack and store it in pc

Figure 2. Three types of return instructions

	
 5	

ARM mode. Afterwards, the target address is cast to an even number by clearing its LSB and

stored in PC. In Figure 3, in order to call the Thumb function at 0x200, r0 must be the callee’s

address with its LSB set to 1.

As for return, the return address is also set in a similar way. If the calling function is in

Thumb mode, the processor sets the least significant bit of the return address to 1 before it is

moved into the LR register. Therefore, if a BX instruction sees an odd return address, the

processor switches into Thumb mode and assumes that it is returning into a Thumb function.

However, if the calling function is in ARM mode, the return address remains as an even number.

In Figure 3, at the end of the Thumb function, “BX LR” returns to 0x108. Since the value in LR

is 0x108 which is an even number, BX will switch instruction mode back to ARM. In general,

we do not know the instruction mode of a code block at translation time because we cannot

always statically determine the operands’ value for BLX and BX.

2.2.5 Special Symbols

 If a shared object is compiled with debug option, its symbol table will contain special

symbols, namely $a, $t and $d which stand for ARM code, Thumb code and Data respectively.

Each special symbol entry contains an address and its symbol type as shown in Figure 4.

ARM function Thumb function

…
0x104: blx r0 //r0 = 0x201
0x108: mov r5, r0
...

0x200 <thumb_function>
0x200: add r4, r1, r2
0x202: mov r5, r0
…
0x400: bx lr

Figure 3. Example of BLX and Bx

	
 6	

Symbol address Symbol type

0x200 $a

0x300 $d

0x308 $t
Figure 4. Example of special symbols in a symbol table

The corresponding code is shown in Figure 5. ARM code starts from 0x200 until 0x300

which is indicated by the second entry in Figure 4. There are eight bytes of data starting from

0x300. Lastly, Thumb instructions start at 0x308. Note that Thumb instruction addresses

increments by two because each instruction is two-byte long.

2.3 LLBT Overview

At a high level, LLBT consists of three phases: binary parsing (frontend), IR processing,

and code generation (backend). LLBT frontend leverages GNU binary utilities such as objdump

and readelf to disassemble the input shared object and convert it into LLBT internal

representation (IR) [6]. LLBT analyzes the IRs in several phases to extract information such as

dynamic symbols and control flow. Moreover, LLBT needs to recognize and convert the

0x200: push {r4, lr} //start of ARM code
0x204: add r4, r0, r1
…
0x2fc: pop {r4, lr}
0x300: .word 0xffff9984 //pc-rel data
0x304: .word 0xffffab68 //pc-rel data
0x308: push {lr} //start of Thumb code
0x30a: add r3, 1
0x30c: mov r4, 0
...

Figure 5. Example of a mixture of instruction modes and data

	
 7	

platform-dependent features of ARM such as shifter operands, PC-relative data and 16-bit

Thumb instructions into platform-neutral implementations [1]. As output, LLBT generates

LLVM assembly code that emulates the input shared object. As shown in Table 1, LLBT creates

a variable for every ARM register and creates a data array for ARM stack. Finally, we utilize

LLVM-MIPS backend to generate a MIPS shared object which will be packaged with the APK

[7].

During IR processing, LLBT needs to retain exported function names and global

variables from the input shared object. For instance, an exported function from the input shared

object is translated to an output function with the same name. This ensures that the Java program

from the APK can reach the expected functions at runtime. Unfortunately, as previously

mentioned, symbols on internal functions are often removed from the symbol table. In other

words, LLBT is unaware of where each internal function starts and ends. The original

implementation of LLBT consolidates internal functions to a single output function named

unexported_text_section. Although correctness can be achieved, this implementation is prone to

long translation time and high memory usage.

Table 1. Register Mapping

ARM registers LLVM variables

r0-r12 ARM_{r0-r12}

SP ARM_SP

LR ARM_LR

PC ARM_PC

	
 8	

2.4 Shortcomings of LLBT

Consolidating internal functions results in a larger output function. The effect of the

increased function sizes is insignificant for small shared objects, but becomes a major bottleneck

as the input shared object gets larger. Figure 6 shows the profiling results on 14 APKs. On

average, over 90% of the code from a shared object is from internal functions. For an APK with

1000 functions, if we combine all of its internal functions into one large function, we could

potentially have a “function” that consists of 900 original functions.

In practice, the size of unexported_text_section indeed increases dramatically with the

size of the input shared object. The most time-consuming and memory-intensive phase of the

binary translation process is LLVM backend compilation. Both LLVM optimizer and instruction

selector involve super-linear algorithms. Therefore, under the original implementation,

Figure 6. Percentage of APK functions that are internal functions

	
 9	

translation time does not scale well with input size. Table 2 shows the translation time and

memory usage of four APKs. Large shared objects took over 20 minutes on an Intel i7 processor

with 8 GB of RAM. Some APKs took even longer and eventually ran out memory. To make

matters worse, since the processor on mobile devices is less powerful than that of a server, a 3-

4X further slowdown is expected. Moreover, RAM is limited to 512 MB to 1GB. Any APKs that

require more than 1GB of RAM to translate will cause thrashing between the flash memory and

DRAM. Therefore, a user might need to wait for an hour or longer to translate an APK if it can

be translated at all.

Table 2. Translation time and memory usage of 4 APKs
APK Translation Time Memory Usage

AngryBirds 25 min 7.2 GB

Camera360 20 min 3.2 GB

FishingGame 30+ min crashed

Weather 40+ min crashed

	
 10	

CHAPTER	
 3	

INPUT	
 DIVISION	

In order to eliminate the bottleneck of compiling the large unexported_text_section, we

need to identify internal functions and translate them into independent output functions. The goal

of input division can be summarized as follows:

1. Identify as many internal function entry points as possible by static analysis of the input
 shared object.
2. Create an output function for each internal function detected in step 1.
3. Ensure the output functions are still callable by all their original callers
4. Ensure correct control flow within the output functions.
5. Ensure that an output function can return to its caller.
6. Create a mechanism to guarantee 2, 3 and 4 in the case of an incorrect input division.
7. Ensure that the output behavior does not deviate from the original semantics.

We will show later that there are many hazards that prevent Input Division from always

correctly identifying all internal functions. Therefore, it is very important to have a mechanism

(Goal 6) that allows the translated code to function correctly even if Input Division misses an

internal function or incorrectly partitions an original internal function into multiple functions.

3.1 Function Entry Discovery

Since internal function symbols are usually removed from the static symbol table, static

analysis of the instructions in the input shared object is the only reliable way to extract internal

function entry points. Input Division traverses the disassembled instructions of the input shared

object and searches for function call instructions. Whenever it reaches a BL instruction, it marks

the target address as a function entry. For example, after traversing the code in Figure 7, Input

Division returns three function entry addresses: 0x400, 0x600 and 0x800.

	
 11	

0x200 <some_function>
…
0x220: bl 0x400
…
0x334: bl 0x600
…
0x35c: bl 0x800
...

Figure 7. Entry extraction example

The major drawback of this method is that it cannot handle indirect function calls such as

the one in Figure 8. At translation time, we cannot determine the value of r3. Therefore, we

cannot always extract the target function’s address from indirect function calls. Since our

function entry point discovery method cannot provide 100% coverage, we cannot achieve a one-

to-one mapping between an input function from the ARM shared object and an output function.

It is possible for an output function to contain multiple input functions as illustrated in Figure 9.

Moreover, Input Division could incorrectly subdivide an input function. In the example from

Figure 10, Input Division breaks internal_function_1 into two functions because function entry

analysis returns a false-positive entry at 0x304. We will discuss the reasons behind false-positive

detections in section 3.4 and describe our fail-safe mechanism in section 3.5.

mov lr pc
mov pc r3

Figure 8. Indirect function call example

Input: ARM shared object Output: LLVM assembly code

0x200 <internal_function_1>
…
0x400 <internal_function_2>
…
0x800 <end of internal_function_2>

output_function_100 (...) {
//implementation for ARM code from
//0x200 to 0x800
}

Figure 9. Missed function entry

	
 12	

Input: ARM shared object Output: LLVM assembly code

0x200 <internal_function_1>
…
0x400 <end of internal_function_1>

output_function_100 (...) {
//implementation for ARM code from
//0x200 to 0x300
}
output_function_101 (...) {
//implementation for ARM code from
//0x304 to 0x400
}

Figure 10. False-positive entry detection

3.2 Entry Point Information Consolidation

After collecting function entry points from the dynamic symbol table and function call

analysis, we need to consolidate the information because the two sets of function entry points

usually overlap with each other. After consolidation, we have a list of function entry addresses,

but we are still missing function sizes. We calculate the function sizes by sorting the entry

addresses and taking the difference between adjacent addresses. The size of the last function is

calculated by the difference between its entry address and the end of text section. Since Input

Division cannot guarantee full coverage and accuracy, the list of functions and sizes is merely an

estimate.

3.3 Control Flow Handling

Control flow handling is a crucial component in LLBT because it directly affects the

runtime behavior of the translated shared object. First, we will introduce a base control flow

mechanism that handles the original control flow in the shared objects. Following that, we will

discuss the modifications and new elements needed by Input Division.

	
 13	

3.3.1 Original Control Flow

There are two categories of instructions that change control flow: direct and indirect

branch. The classification is shown in Figure 11. The target address of a direct branch is known

at translation time because it is encoded in the instruction’s literal offset field. On the other hand,

the target addresses of indirect branches are stored in registers and their values cannot always be

determined by static analysis.

To translate a direct branch to an ARM address, LLBT needs to find the corresponding

location in the output LLVM assembly code. To facilitate branches, LLBT generates a label for

every ARM instruction. As shown in Figure 12, the format of LLVM labels is “L_#” where “#”

is a unique number for every ARM address.

In the case of a direct branch, LLBT looks up the LLVM label for the target ARM

address and generates a branch to the label. In the example from Figure 13, the call to

internal_function_B is translated to a branch to L_2000, which is the LLVM label of the entry

(0x600) of internal_function_B.

Direct branch Indirect branch

b 0xADDR
bl 0xADDR
mov pc, 0xADDR

bx rx
blx rx
mov pc, rx
ldr pc, [rx]
ldm rx, {pc}
add pc, rx, #IMM
add pc, rx, ry

*rx and ry can be any user-mode register

Figure 11. Classification of branches

	
 14	

Input: ARM shared object Output: LLVM assembly

0x200 <some_function>
0x200: push {lr, r4, r5}
0x204: add r4, r0, r1
0x208: sub sp, sp, 12
…
0x220: pop {lr, r4, r5} //end of function

some_function (...) {
L_1000:
 //LLVM implementation for
 //0x200: push {lr, r4, r5}
L_1001:
 //LLVM implementation for
 //0x204: add r4, r0, r1
L_1002:
 //LLVM implementation for
 //0x208: sub sp, sp, 12
…
L_1008:
 //LLVM implementation for
 //0x220: pop {lr, r4, r5}
}

Figure 12. Example of LLVM labels

To handle indirect branches, the lookup process needs to be delayed to runtime.

Therefore, we need to create an extra data structure, i.e., Address Mapping Table (AMT), that

stores the mapping between ARM addresses and their corresponding LLVM labels. As shown in

Figure 14, an AMT is a switch table with a case for each possible branch target.

Input: ARM assembly Output: LLVM assembly

0x400 <internal_function_A>
...
0x500: bl 0x600 <internal_function_B>
…
0x600 <internal_function_B>
...

unexported_text_section(...) {
…
L_600: // entry of internal_function_A
...
L_1000: //ARM instruction: bl 0x600
 //set up LR
 branch label L_2000
…
L_2000: //internal_function_B entry
…
}

Figure 13. Example of direct branch

	
 15	

Address Mapping Table

switch target_address {
 ARM_address1: LLVM_label_1
 ARM_address2: LLVM_label_2
 ARM_address3: LLVM_label_3
 ...
}

Figure 14. Address Mapping Table

An indirect branch is achieved by first saving the target ARM address in ARM_PC then

branching to AMT instead of the actual target. At runtime, AMT uses the value in ARM_PC to

select the target LLVM label. In the example shown in Figure 15, before the branch to AMT,

0x600 is stored in ARM_PC. AMT branches to L_2000 which marks the beginning of

internal_function_B.

Similarly, function returns are achieved by updating ARM_PC with ARM_LR and

branching to AMT. In Figure 16, when internal_function_B returns, the LR holds 0x504 which is

Input: ARM shared object Output: LLVM assembly

0x400 <internal_function_A>
…
0x4fc: mov lr, pc
0x500: mov pc, r3 //r3 = 0x600
…
0x600 <internal_function_B>

unexported_text_section(...) {
…
L_600: // entry of internal_function_A
...
L_1000: //ARM instruction: mov pc, r3
 ARM_PC = ARM_r3
 branch label address_mapping_table
…
L_2000: //internal_function_B entry
…
address_mapping_table:
 switch ARM_PC {
 0x400: L_600
 0x600: L_2000
 ...
 }
}

Figure 15. Example of indirect branch

	
 16	

the address of the instruction immediately after the call to internal_function_B. Since ARM

address 0x504 is mapped to LLVM label L_1001, AMT will branch to the LLVM label of the

return address.

3.3.2 Control Flow Modifications

In the previous implementation, all internal function calls are implemented by branches.

This relies on the assumption that the caller and callee are in the same output function. Since

Input Division breaks the single output function (unexported_text_section) into multiple internal

functions, the assumption no longer holds and we run in the error shown in Figure 17.

Input: ARM shared object Output: LLVM assembly

0x400 <internal_function_A>
…
0x4fc: mov lr, pc
0x500: mov pc, r3 //r3 = 0x600
…
0x600 <internal_function_B>
…
0x700: bx lr

unexported_text_section(...) {
…
L_600: // entry of internal_function_A
...
L_1000: //ARM instruction: mov pc, r3
 ARM_PC = ARM_r3
 branch label address_mapping_table
L_1001: // ARM instruction 0x504
...
L_2000: //internal_function_B entry
…
L_3000: //0x700: bx lr
 ARM_PC = ARM_LR
 branch label address_mapping_table
...
address_mapping_table:
 switch ARM_PC {
 0x400: L_600
 0x504: L_1001
 0x600: L_2000
 ...
 }
}

Figure 16. Example of function return

	
 17	

Label L_2000 from internal_function_A is invalid because it is illegal to branch to a label

in another function [8]. Therefore, direct branches to other functions need to be achieved by

function calls. As shown in Figure 18, the branch to label L_2000 is substituted by a call to

internal_function_B. Input division causes a similar issue with indirect branches. In Figure 19,

Label L_2000 in internal_function_A’s AMT is illegal because the label is defined in another

function. To resolve this problem, we created Function Table (FT) which is essentially an

address mapping table with global visibility.

Input: ARM shared object Output: LLVM assembly

0x400 <internal_function_A>
…
0x500: bl 0x600 <internal_function_B>
…
0x600 <internal_function_B>
...

define void @internal_function_A(...) {
...
L_1000: //ARM instruction: bl 0x600
 branch label L_2000
…
}

define void @internal_function_B(...) {
L_2000: //internal_function_B entry
…
}

Figure 17. An error caused by Input Division

Input: ARM assembly Output: LLVM assembly

0x400 <internal_function_A>
…
0x500: bl 0x600 <internal_function_B>
…
0x600 <internal_function_B>
...

define void @internal_function_A(...) {
...
L_1000: //ARM instruction: bl 0x600
 call internal_function_B(...)
…
}

Figure 18. Direct branch modification

	
 18	

Input: ARM assembly Output: LLVM assembly

0x400 <internal_function_A>
…
0x4fc: mov lr, pc
0x500: mov pc, r3 //r3 = 0x600
…
0x600 <internal_function_B>
...

define void @internal_function_A(...) {
L_600: // entry of internal_function_A
...
L_1000: //ARM instruction: mov pc, r3
 ARM_PC = ARM_r3
 branch label address_mapping_table
…
address_mapping_table:
 switch ARM_PC {
 0x400: L_600
 0x600: L_2000
 //other function entries
 }
}
define void @internal_function_B(...) {
L_2000: //internal_function_B entry
…
}

Figure 19. Indirect branch error caused by Input Division

3.3.3 Function Table

Each output function has its own AMT which we will later refer to as the local address

mapping table. Each local AMT only contains addresses within its corresponding function.

Function Table is a global data structure that establishes the connection among the local AMTs.

It contains an entry for every function entry address in the input shared object. Since the purpose

of FT is purely for function calls, it does not contain any return addresses.

At runtime, when a target address is not found in the local AMT, the FT is queried. In

Figure 20, when function_A calls function_B via an indirect branch, it first checks its local AMT

(step 1). In this case, it fails because the target address is outside of the range of function_A (step

2). The address lookup process continues in function_table which contains all possible function

	
 19	

Figure 20. Function table example

entry addresses (step 4). Function_table uses ARM_PC to determine which function to call (step

4) and finally generates a call to internal_function_B (step 5).

3.3.4 Function Return

In section 2.2.3, we introduced three types of return instructions. LLBT scans the input

binary for the instructions in Figure 2. When LLBT finds a match, it updates ARM_PC and

performs a return operation in the output LLVM code to the caller. See the example in Figure 21.

Although this implementation is very intuitive, it is not robust in the case of false-positive or

false-negative function entry detections by Input Division. Therefore, we choose not to use the

	
 20	

function_2 (...) {
//0x400: add r4, r0, r1
…
//0x480: mov pc lr
ARM_PC = ARM_LR
return
...
}

Figure 21. Function return example

simple implementation in Figure 21. Rather, we use the implementation described in the

following section to address these limitations.

3.4 Fail-Safe Mechanism

The function call/return mechanism from section 3.3 relies on the following assumptions:

1. No-false negative detections: all internal function entries can be detected.
2. No false-positive detections: all function entries detected are valid function entries.

As mentioned in section 3.1, function entry analysis cannot achieve 100% coverage.

Therefore, the first assumption does not hold. Moreover, due to the uncertainty in determining

instruction mode (ARM vs Thumb), which will be discussed in detail in section 3.5, the second

assumption is also invalid. Therefore, we need a more tolerant control flow mechanism that

works on incorrectly divided functions.

3.4.1 Function Call

In general, we cannot assume program execution always starts from the beginning of an

output function because the output function could potentially contain multiple input functions. At

the entry of each output function, we artificially introduce a branch to AMT which will direct

control flow to the expected target address. In Figure 22, function_B and function_C are

	
 21	

function_A(...) {
…
// bl 0x400 <function_B>
ARM_PC = 0x400
call function_BC(...)
...
//bl 0x600 <function_C>
ARM_PC = 0x600
call function_BC(...)
…
}

function_BC(...) {
branch label address_mapping_table
L_800: //0x400 <function_B>
…
L_1200: //0x600 <function_C>
…
address_mapping_table:
switch ARM_PC {
 0x400: L_800
 0x600: L_1200
}
...
}

Figure 22. Function call modification

grouped into a single output function, i.e., function_BC, because entry analysis failed to detect

function_C. Since both calls are based on explicit target addresses, LLBT can determine that

their target addresses are within the body of function_BC. Therefore, function calls to B and C

on the left become identical. The only distinguishing factor is the value in ARM_PC. The AMT

in function_BC uses ARM_PC to determine whether function_A or function_B is called.

3.4.2 Function Return

Before we present the adopted solution, we would like to first discuss the flaws of the

simple solution where return instructions from the input ARM binary are translated into LLVM

return instructions. This will lead to the error in Figure 23 when there are multiple input

functions per output function. The problem is that the number of returns does not match the

number calls, resulting in incorrect program execution. To enforce the balance between function

calls and returns, we need to conform to the following rules.

1. If an ARM function call is translated to a LLVM function call, the corresponding ARM return
 instruction should be translated to a LLVM return statement.
2. If an ARM function call is translated to a LLVM branch, the corresponding ARM return
 instruction should be translated to a LLVM branch.

	
 22	

ARM LLVM

0x200 <function_A>
…
0x300: bl 0x400 <function_B>
…
0x400 <function_B>
…
0x500: bl 0x600 <function_C>
…
0x600 <function_C>
…
0x800: bx lr

function_A (...) {
…
//bl 0x400 <function_B>
ARM_PC = 0x400
call function_BC(...)
…
}

function_BC(...) {
//entry of function_B
…
//bl 0x600 <function_C>
branch label L_1600
…
//entry of function_C
L_1600:
…

 return
}

Expected control flow:
A--call-->B--call-->C
C--return-->B--return-->A

Actual control flow:
A--call-->B--call-->C
C--return-->A

Figure 23. A problem with function return

In Figure 23, function_B calls function_C via a LLVM branch. However, when

function_C returns, a LLVM return statement is executed. Therefore, we cannot blindly return

from a function without considering how the function is called. If the caller and callee reside in

the same output function, function call and return are achieved by LLVM branches. In this case,

the callee’s return address is in the local AMT. Therefore, the decision whether to execute a

LLVM return should be made after checking the local AMT. If AMT contains the return address,

we simply branch to the LLVM label of the return address. If not, we need to return via a LLVM

	
 23	

return instruction. Note that there are two cases when the local AMT fails to look up the address.

If the instruction prior to the branch to AMT was a function call, we need to continue the lookup

process in Function Table. If it was a return instruction, AMT lookup must have failed because

the return address is in another output function. In this case, we should execute a LLVM return.

To distinguish these cases, we created a return flag. For every return instruction, we set the

return flag before branching to the local AMT. In Figure 24, when function_C returns, the return

address(0x504) is in the same function, so it will be found in the local AMT. Before branching to

the return address(L1000), we need to reset return flag so that it will not affect future address

lookup. When function_B returns, the return address in a different output function(function_A),

we will reach lookup_failure because the address is outside of function_BC. Since return flag has

been set, function_B will return to its caller.

When an input function is incorrectly divided into two output functions, we will

encounter another error with function returns. In Figure 25, Input Division divides branch_test at

0x400 due to a false-positive entry detection. This forces LLBT to translate the branch at 0x300

to a function call to branch_test_2(...). When we reach the return instruction at 0x600, the

intended behavior is to return to the caller of branch_test. In the implementation in Figure 25,

however, we return to branch_test_1 because it is the immediate caller of branch_test_2. This is

another instance of the problem where the number of function returns does not match the number

of function calls. Since we introduced an extra function call for the branch at 0x300, we need to

generate an extra function return to compensate. We can leverage the fact that the value in

ARM_LR always stores the correct target address. The assumption is safe because LLBT only

updates ARM_LR when the original ARM instruction intends to update Link Register. The

solution is to insert an ARM_PC update and a branch to local AMT immediately after each

	
 24	

ARM LLVM

0x200 <function_A>
…
0x300: bl 0x400 <function_B>
…
0x400 <function_B>
…
0x500: bl 0x600 <function_C>
…
0x600 <function_C>
…
0x800: bx lr

function_A (...) {
…
//bl 0x400 <function_B>
ARM_LR = 0x404
ARM_PC = 0x400
call function_B(...)
…
}

function_BC(...) {
//entry of function_B
…
//bl 0x600 <function_C>
ARM_LR = 0x504
branch label L_1600
L_1000: //ARM address 0x504
...
//entry of function_C
L_1600:
…
//bx lr
ARM_PC = ARM_LR
return_flag = 1
branch label address_mapping_table
…
address_mapping_table:
switch ARM_PC {
 …
 0x504: return_flag = 0
 branch label L_1000
 …
 default: lookup_failure
}
lookup_failure:
 if (return_flag)
 return
 else
 call function_table(...)
}

Figure 24. Return flag example

	
 25	

function call statement. This way, when the function call returns, the execution will always look

up AMT. In Figure 26, we branch to AMT immediately after returning from branch_test_2.

Since the return address is in the caller of branch_test, the AMT lookup will fail and we will

execute a LLVM return and return to the caller. This also balances out the extra function call at

0x300.

Note that this process is also triggered after “regular” function returns where program

execution is supposed to continue at the instruction after the function call. In Figure 27, when

branch_test_1 returns to the caller of branch_test, the intended execution is to continue at the

next instruction at 0x114. Since ARM_LR holds 0x114 at this moment, the local AMT will

branch to L_1001 which is the LLVM label for ARM address 0x114.

ARM LLVM

0x200 <branch_test>
...
0x300: b TARGET
0x304: mov r0, r4
…
0x400: //false-positive function entry
...
0x500: add r4, r0, r1 <TARGET>
…
0x600: bx lr //return

branch_test_1(...) {
…
//0x300: b TARGET
ARM_PC = 0x500
call branch_test_2(...)
//0x304: mov r0, r4
ARM_r0 = ARM_r4
…
}
branch_test_2(...) {
…
//0x600: bx lr
ARM_PC = ARM_LR
branch label address_mapping_table
…
}

Figure 25. Function return error

	
 26	

ARM LLVM

0x200 <branch_test>
...
0x300: b TARGET
0x304: mov r0, r4
…
0x400: //false-positive function entry
...
0x500: add r4, r0, r1 <TARGET>
…
0x600: bx lr //return

branch_test_1(...) {
…
//0x300: b TARGET
ARM_PC = 0x500
call branch_test_2(...)
ARM_PC = ARM_LR
branch label address_mapping_table
//0x304: mov r0, r4
ARM_r0 = ARM_r4
…
}
branch_test_2(...) {
…
//0x600: bx lr
ARM_PC = ARM_LR
branch label address_mapping_table
…
}

Figure 26. Fix to function return error

ARM LLVM

0x100 <branch_test_caller>
…
0x110: bl 0x200 <branch_test>
0x114: mov r5, r0
...

branch_test_caller (...) {
…
L_1000: //ARM 0x110: bl 0x200
 ARM_PC = 0x200
 ARM_LR = 0x114
 call branch_test_1(...)
 ARM_PC = ARM_LR
 branch label address_mapping_table
L_1001: //ARM 0x114: mov r5, r0
 ARM_r5 = ARM_r0
…
address_mapping_table:
 switch ARM_PC {
 ...
 0x114: L_1001
 …
 }
}

Figure 27. A regular function return routine

	
 27	

3.4.3 Fall-Through Functions

In the LLVM assembly code generated by LLBT, there exist “fall-through” functions

which do not return at the end. The intended execution is to continue to the next function. There

are two possible reasons for this. First, some highly optimized assembly code has fall-through

functions. In the example from Figure 28, function_A and function_B have a large overlap, i.e.,

instructions 3 to 64. Since they only differ on instruction 1 and 2, it is more space-efficient to

make them share the same code region. Another reason for fall-through function is false-positive

entry detections from Input Division. As we will discuss in section 3.4.1, it is possible that Input

Division breaks an input function into two output functions. Therefore, there is no return

instruction at the end of function 1 because the intended execution is to continue to the first

instruction in function 2.

The solution to this problem is very straightforward. If the end of an output function does

not have a return instruction, we artificially introduce a call to the beginning of the next function.

In Figure 29, at the end of function_A, LLBT updates ARM_PC with the entry address of

function_B and generates a call to function_B. Note that there will be a new return statement

after call function_B(). The call-return sequence will be slightly different from the original code.

callees caller

0x400 <funciton_A>
0x400: instruction 1
0x404: instruction 2

0x408 <function_B>
0x408: instruction 3
0x40c: instruction 4
…
0x4fc: instruction 64
0x500: bx lr //return

0x200: bl 0x400
…
0x240: bl 0x408

Figure 28. Fall-through function example

	
 28	

function_A(..){
//instruction 1
//instruction 2
store 0x408 %ARM_PC
call function_B(...)
}

Figure 29. Fall-through function handling

Originally, the execution starts from a caller, enters function_A, continues to function_B, and

eventually returns to the caller. After the translation, the execution starts from the same caller,

enters function_A, calls function_B, returns from function_B to function_A, and returns from

function_A through the new return instruction.

3.5 Incorrect Division

Previously, we mentioned that input partitioning could generate false entry points. First,

we will talk about the cause of incorrect division as well as the performance penalty of it. Then,

we will describe how to prevent false-positive detections.

3.5.1 ARM-Thumb Ambiguity

Due to indirect branches, it is difficult to determine whether a code region is ARM or

Thumb without special symbols. Conservatively, LLBT frontend generates a set of IRs for both

ARM and Thumb. Input division traverses both ARM and Thumb IR sets to search for Branch

and Link instructions. In general, only one of them is valid and will be used at runtime. However,

since Input Division needs to scan them statically, it must assume that both are possible. When

an ARM instruction is disassembled as Thumb instruction, or vice versa, it is entirely possible

that a non-branch-and-link instruction is incorrectly generated into a Branch and Link.

	
 29	

In most cases, when an instruction is incorrectly interpreted as a BL instruction, the target

address is based on garbage bit patterns and often corresponds to an address outside the .text

section that contains all the valid target addresses for that branch. This helps us to screen away

some false-positive entries. That is, we check if the target address is valid by comparing it to the

address range of .text section. This filters out the majority of the false-positive detections, but it

cannot guarantee to eliminate all of them. It is possible that the target address from an incorrectly

disassembled instruction seems valid because it falls within the .text section. In this case, input

partition will register the address as a valid function entry point and will subdivide a function.

3.5.2 Cost of Incorrect Division

When a function is incorrectly partitioned into multiple functions, the problem becomes

similar to fall-through functions. As we described previously, the inserted function call branches

will ensure program execution continues from one function to the next. Therefore, under normal

circumstances, we can still achieve the expected runtime execution even when there are incorrect

divisions. However, a problem arises when input partition divides a function into two parts that

have frequent branches to each other.

When the thumb function on the right-hand side of Figure 30 is disassembled as ARM, it

contains a bl instruction with target address in branch_test. Therefore, input division thinks

0x380 is a valid function entry and breaks branch_test into two output functions shown in Figure

31. Since PART_ONE and PART_TWO are not in the same output function, any branches

between these regions have to be achieved by a function call. PART_ONE and PART_TWO will

keep on calling each other until we reach the return statement at the end of branch_test. During

the process, stack keeps growing. Moreover, it is likely that the program runs out of stack before

	
 30	

0x200 <branch_test>
...
0x2fc: sub r0, r1, r2 <PART_ONE>
0x300: b PART_TWO
…
0x400: add r4, r0, r1 <PART_TWO>
…
0x500: b PART_ONE
…
//return

//A Thumb function disassembled as ARM
…
bl 0x380
...

Figure 30. Example of incorrect division

branch_test_1(...) {
//starting at 0x200
...
//0x300: b PART_TWO
ARM_PC = 0x400
call branch_test_2(...)
...
}

branch_test_2(...) {
//starting at 0x380
…
//0x500: b PART_ONE
ARM_PC = 0x2fc
call branch_test_1(...)
…
}

Figure 31. Output of incorrect division

PART_TWO returns. This violates Goal 7 of input division because the input program does not

intend to recursively allocate stack frames. As a result, we decided not to allow Input Division to

subdivide functions.

3.5.3 False-Positive Prevention

To prevent function subdivision, we need to improve the quality of entry extraction. The

root cause of the problem is the ambiguity of instruction mode. We can leverage the information

held in the dynamic symbol table. Besides providing a list of function entries, the dynamic

symbol table also gives us a pool of code blocks on which we can safely conduct function entry

analysis. The addresses listed in the dynamic symbol table indirectly reflect whether a function

is ARM mode or Thumb mode. Since instruction addresses are half-word aligned, the LSB is

	
 31	

always 0. The dynamic symbol table uses the LSB to indicate the mode of a function. In Figure

32, function_2 is a Thumb function because the LSB of its address is 1. Note that the actual

address of function_2 is 0x500. The function addresses and their corresponding sizes in the

dynamic symbol table provide us a list of code blocks with their instruction modes. To prevent

false-positive entry detections, we restrict the function entry analysis to these code regions only.

This approach will extract all the internal functions that are directly called by exported functions,

but it will miss ones that are only called from internal functions.

In Figure 33, internal_function_2 will be detected when we scan external_function_1.

However, internal_function_3 will be missed if it is only called from an internal function. The

experiments in Table 3 compare the number of discovered function entries before and after the

adjustment on entry extraction. On average, the number of function entries is reduced by 9%.

Therefore, the adjustment is a reasonable compromise because it ensures correct runtime

behavior.

Address Size Name

0x400 0x100 external_function_1

0x501 0x200 external_function_2

0x700 0x250 external_function_3

Figure 32. Example of a dynamic symbol table

	
 32	

0x400 <external_function_1>
…
0x420: bl 0x400
…
0x1400 <internal_function_2>
…
0x1440: bl 0x1600
…
0x1600 <internal_function_3>
...

Figure 33. Example of restricted function entry extraction

Table 3. Effect of entry extraction adjustment

APK # of functions before # of functions after % missed entries

Kuwo 106 92 13.3

Skype 302 288 4.6

Weather 305 236 22.6

Amap 813 759 6.6

CrazyBlock 411 372 9.5

QQPhoneBook 694 678 2.3

DemonHunter 1331 1319 0.9

AngryBirds 2255 1964 12.9

	
 33	

CHAPTER	
 4	

OPTIMIZATION	

Up to this point, the output of LLBT is a single LLVM assembly file. Before Input

Division, the file contains a large output function (unexported_text_section) that holds more than

90% of the shared object. Input Division breaks the function into many output functions resulting

in a significant speedup. A further improvement is to divide the output into multiple files. As

shown in Chapter 5, dividing the output file not only improves compilation speed, but also

significantly reduces memory footprint. The output file is divided at the function level. For

example, the output from Figure 34 is divided into three files in Figure 35.

This approach would generate many output files if there are many small functions. As a

further improvement, we establish a minimum file size. The code generation phase is a while

loop that iterates over all the output functions. Instead of creating a new file per output function,

we only create a new file if the previous file has already exceeded the minimum threshold. Under

this implementation, the large functions will be isolated into different files and small ones are

still in the same file.	

	
 34	

output.ll

define void @function_1(...) {
//implementation for function_1
}
define void @function_2(...) {
//implementation for function_1
}
define void @function_3(...) {
//implementation for function_1
}

Figure 34. Single output file

output1.ll

//global declarations
define void @function_1(...) {
//implementation for function_1
}

output2.ll

//global declarations
define void @function_2(...) {
//implementation for function_2
}

output3.ll

//global declarations
define void @function_3(...) {
//implementation for function_3
}

Figure 35. Multiple output file

	
 35	

CHAPTER	
 5	

EXPERIMENTAL	
 RESULTS	

In this chapter, we evaluate Input Division and Optimized Input Division in terms of

translation time and memory usage. The benchmarks we used are chosen from the list of most

popular APKs in Android Marketplace. We selected 14 APKs that have a wide range of shared

object sizes that give us different input characteristics. We translated these 14 APKs whose

shared object sizes range from 20KB to 2MB on a machine with Intel i7 CPU at 2.0GHz and

8GB of RAM. We measured the results with three versions of LLBT. The baseline version of

LLBT consolidates all internal functions into a single output function. The Input Division

version produces multiple output functions in a single output file. The Optimized Input Division

version divides the output into multiple files.

5.1 Translation Time

Table 4 shows the translation time of 14 APKs with three versions of LLBT. Note that

Weather and FishingGame crashed during translation by Baseline LLBT because the process ran

out of memory. Figure 36 normalizes the results from Input Division and Baseline version to that

of Optimized Input Division. The speedup on shared objects over 500KB is on average over 10X.

In the best case, Input/Output Division became an enabling technique because some APKs such

as Weather and FishingGame cannot be translated by Baseline LLBT. Optimized Input Division

also achieved a slight speedup over Input Division. In summary, Optimized Input Division

achieves an average speedup of 6.9X over Baseline version and 1.4X over Input Division.

	
 36	

Table 4. Translation time of 14 APKs
APK Binary

size(KB)
Baseline
(seconds)

Input
division
(seconds)

Optimized input
division(seconds)

GoLauncher 20.5 3 6 2

AnQuanGuanJia 32 12 10 7

DriftMania 108 235 32 26

Kuwo 128 3 7 5

Skype 216 18 11 9

DopoolTV 270 857 77 65

Weather 385 N/A 135 102

Amap 532 390 176 138

CrazyBlock 536 209 33 26

Camera360 580 1173 73 62

QQPhonebook 680 104 37 30

FishingGame 801 N/A 254 187

DemonHunter 1300 771 108 87

AngryBirds 2040 1495 161 124

5.2 Memory Usage

Table 5 shows the peak memory usage of the translation process and Figure 37

normalizes the results from Input Division and Baseline to that of Optimized Input Division.

Optimized Input Division reduced memory usage by 20X on average over Baseline and 6X over

Input Division.

	
 37	

Figure 36. Speedup of Optimized Input Division

Table 5. Peak memory usage

APK Binary size(KB) Baseline
(MB)

Input division
(MB)

Optimized input division(MB)

GoLauncher 20.5 124 82 52

AnQuanGuanJia 32 254 154 88

DriftMania 108 1205 413 146

Kuwo 128 41 127 52

Skype 216 776 186 47

DopoolTV 270 2936 1301 268

Weather 385 N/A 1502 443

Amap 532 7475 2117 683

CrazyBlock 536 2232 500 56

Camera360 580 3268 1207 94

QQPhonebook 680 2228 536 80

FishingGame 801 N/A 4202 396

DemonHunter 1300 6780 1524 141

AngryBirds 2040 7263 2096 186

	
 38	

Figure 37. Memory usage reduction
	

	
 39	

CHAPTER	
 6	

RELATED	
 WORK	

Kruegel et al. encountered a similar problem in their static disassembler for obfuscated

binaries [9]. Obfuscated binaries are the ones that have been transformed to make them harder to

disassemble. These transformations make it difficult to reverse-engineer the machine code

instructions from a binary while preserving the original program’s functionality. The goal of

these transformations, a.k.a. obfuscation, is usually to protect proprietary information in software

products. It can also be used to hide malicious content in a seemingly normal program.

In their paper, Kruegel et al. described techniques they employed to efficiently

disassemble obfuscated binaries. The first step of their work is to identify function entry points.

The function entry analysis presented in this thesis is one of the methods. It would be ideal to

scan function call instructions and extract target addresses. However, the required information is

not available at this step because it is the disassembler’s job to translate bit patterns into function

call instructions. Moreover, an obfuscator can redirect calls to a central function that transfers

control flow to appropriate targets. Therefore, extracting function entries by scanning function

call instructions is not a feasible solution in their application. As a result, they used a heuristic to

locate function entries. They search the binary for typical byte sequences that implement

function prologs. For example, opcodes that allocate stack space to save callee-saved registers

are usually a good indicator of a function entry address.

The technique from this paper is useful to LLBT because it will enhance the coverage of

our function entry analysis. However, it may impose stress on compilation time, especially when

	
 40	

we are unsure of the instruction mode of a byte sequence. Without careful handling, this may

also produce false-positive detections similar to ones discussed in section 3.5.

	
 41	

CHAPTER	
 7	

CONCLUSION	

In general, Input Division reduces translation time and memory usage. The effect of Input

Division on smaller shared objects is less noticeable because small shared objects have very few

internal functions. Therefore, there is little opportunity for reduction in translation time and

memory usage. Moreover, the overhead of processing multiple function entries offsets the

improvement attained by Input Division. This results in less overall improvement. For large

shared objects, Input Division provides up to 18.9 X improvement. In two test cases, the

translation does not even work without input division. Optimized Input Division provides further

improvement in both translation time and memory usage. It appears that the backend code

generation and optimization tools have super-linear execution time and memory usage over the

size of the input files. Although we do not have access to the implementation details,

experimental results show that keeping the LLVM files small is critical in achieving fast

translation and small memory usage.

In general, larger shared objects take longer to translate. However, shared object size is

not the only factor. Translation time and memory usage are also dependent on control flow

complexity. For example, Amap is smaller than CrazyBlock, but takes longer and more memory

to translate.

In summary, Optimized Input Division achieved up to 18.9X speedup and 48X memory

usage reduction over Baseline LLBT on the 14 APKs we tested. It also made translation possible

for two APKs that previously required too much memory.

	
 42	

REFERENCES

[1] J.Y. Chen, W. Yang, J. Hung, C. Su and W.C. Hsu, “A Static Binary Translator for Efficient
Migration of ARM based Applications,” in Proceedings of the 6th Workshop on
Optimizations for DSP and Embedded System, 2008.

[2] “Dalvik Virtual Machine,” Google Inc., (accessed March 2012), [Online], Available:

http://code.google.com/p/dalvik/

[3] “Android Native Development Kit,” (2012), Google Inc., [Online], Available:

http://developer.android.com/sdk/ndk/overview.html

[4] B.Y. Shen, “Binary Translation for Native Code Inside Android Applications,” (accessed

march 2012), [Online], Available: http://people.cs.nctu.edu.tw/~byshen/

[5] “ARM Architecture Reference Manual,” (2011), ARM, [Online], Available:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html

[6] “GNU Binary Utilities,” (2011), GNU, [Online], Available:

http://www.gnu.org/software/binutils/

[7] “LLVM API Documentation”, (2012), LLVM, [Online], Available:

http://llvm.org/docs/doxygen/html/dir_98f17b3216e00ac06ad45315bb3cdc97.html

[8] “LLVM Assembly Language Reference Manual,” (2012), LLVM, [ONLINE], Available:

http://llvm.org/docs/LangRef.html

[9] C. Kruegel, W. Robertson, F. Valeur and G. Vigna, “Static Disassembly of Obfuscated

Binaries,” in Proceedings of USENIX Security, 2004.

