
c© 2015 Hee-Seok Kim

COMPILER AND RUNTIME TECHNIQUES FOR BULK-SYNCHRONOUS
PROGRAMMING MODELS ON CPU ARCHITECTURES

BY

HEE-SEOK KIM

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Professor Wen-Mei Hwu, Chair
Professor Stephen Boppart
Professor Deming Chen
Associate Professor Steven Lumetta

ABSTRACT

The rising pressure to simultaneously improve performance and reduce power

consumption is driving more heterogeneity into all aspects of computing de-

vices. However, wide adoption of specialized computing devices such as

GPUs and Xeon Phis comes with a programming challenge. A carefully op-

timized program that is well matched to the target hardware can run many

times faster and more energy efficiently than one that is not. Ideally, pro-

grammers should write their code using a single programming model, and

the compiler would transform the program to run optimally on the target

architecture. In practice, however, programmers have to expend great ef-

fort to translate performance enjoyed on one platform to another. As such,

single-source code-based portability has gained substantial momentum and

OpenCL, a bulk-synchronous programming language, has become a popu-

lar choice, among others, to fulfill the need for portability. The assumed

computing model of these languages is inevitably loosely coupled with an

underlying architecture, obligating a combined compiler and runtime to find

an efficient execution mapping from the input program onto the architecture

which best exploits the hardware for performance.

In this dissertation, I argue and demonstrate that obtaining high per-

formance from executing OpenCL programs on CPU is feasible. In order

to achieve the goal, I present compiler and runtime techniques to execute

OpenCL programs on CPU architectures. First, I propose a compiler tech-

nique in which the execution of fine-grained parallel threads, called work-

items, is collectively analyzed to consider the impact of scheduling them

with respect to data locality. By analyzing the memory addresses accessed

in a kernel, the technique can make better decisions on how to schedule work-

items to construct better memory access patterns, thereby improving perfor-

mance. The approach achieves geomean speedups of 3.32× over AMD’s and

1.71× over Intel’s state-of-the-art implementations on Parboil and Rodinia

ii

benchmarks. Second, I propose a runtime that allows a compiler to deposit

differently optimized kernels to mitigate the stress on the compiler in deriv-

ing the most optimal code. The runtime systematically deploys candidate

kernels on a small portion of the actual data to determine which achieves

the best performance for the hardware-data combination. It exploits the fact

that OpenCL programs typically come with a large number of independent

work-groups, a feature that amortizes the cost of profiling execution of a few

work-items, while the overhead is further reduced by retaining the profiling

execution result to constitute the final execution output. The proposed run-

time performs with an average overhead of 3% compared to an ideal/oracular

runtime in execution time.

iii

To my family.

iv

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Professor Wen-mei Hwu, for

his amazing support and guidance throughout my PhD. He has provided me

with invaluable advice, and I cannot imagine completing this work without

his patience and motivation. He is one of the smartest people I know and

a true gentleman I really want to resemble. I would also like to express

my appreciation to the rest of my committee: Professor Stephen Boppart,

Professor Deming Chen, and Professor Steven Lumetta for their insightful

comments and collaboration through my study.

During my study, I have been privileged to work with many brilliant people.

Getting to know Hong-Seok Kim was a lifetime event for me and I cannot

imagine how my life would have been without him. He is an exceptional

mentor and I am sincerely thankful to him for his help through the course

of my life. I am deeply indebted to John Stratton who opened the door to

the portable performance research in the heterogeneous era, the subject of

my work. Izzat El Hajj is an extraordinary researcher, engineer and friend,

and collaboration with him resolved many challenging problems I could not

have solved alone. Li-Wen Chang is a good classmate and office mate who

always stimulated me with a new idea and an instant solution to a research

problem.

My sincere thanks go to the IMPACT group members and colleagues,

particularly Christopher Rodrigues, I-Jui Sung, and Nasser Ansari (I miss

you a lot) for useful discussions, advice and encouragement. I am grateful to

Thomas Jablin for his sharp judgment about research ideas and tremendous

advice in paper writing. I would also like to thank Xiao-Long Wu, Steven Wu,

Simon Garcia de Gonzalo, Carl Pearson, Abdul Dakkak, Jie Lv, Sitao Hwang,

Nady Obeid and John Larson. Marie-Pierre Lassiva-Moulin has always been

helpful and friendly with my miscellaneous requests and on top of that I

cannot be more thankful that I have such a nice lady as the godmother of

v

my daughter. Jan Progen, who patiently helped me polish the thesis, is one

of the friendliest faces I met in the new ECE building. I am also deeply

thankful to Jamie Hutchinson in the ECE Editorial Services for professional

quality correction.

Friends provided me with relaxation and support, and their untarnished

friendship kept me going when I was faced with troubles during my study.

Lions Club, Outsider Club and Disciplined Life friends share a strong friend-

ship from the good old days when we were undergrad students, though we all

now live in different places around the world. I will be missing the time with

Wooil Kim, when we would sneak away from the professors and have various

discussions at a coffee shop. Dan and Xiaolin, who always welcomed me and

my family just like family with beer and ice cream, are the best neighbors I

have had.

Finally, I would like to express my sincere gratitude to my family for their

support. Hyo Hoon Jeong, my greatest lover and best friend, is probably the

only one who tolerates my quirkiness and other shortcomings. I would not

have completed this work without her love, encouragement, understanding

and support. My sisters Young-Joo and Hyun-Joo cheered me from Korea

as they always did in my life. I would also like to recognize the invaluable

contributions from my parents and parents-in-law who have provided uncon-

ditional love and support. Lastly, but not the least, I would like to thank

Angela and David, my beloved daughter and son, who are the reason for me

to open my eyes in the morning.

vi

TABLE OF CONTENTS

LIST OF ABBREVIATIONS . ix

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 3
1.2 Summary of Contributions . 5
1.3 Organization of This Dissertation 6

CHAPTER 2 BACKGROUND . 8
2.1 OpenCL Overview . 8
2.2 OpenCL Execution Model . 9
2.3 Previous Approaches . 11
2.4 Locality of Previous Approaches 13

CHAPTER 3 LOCALITY-CENTRIC SCHEDULING 17
3.1 Depth-First Order and Breadth-First Order Scheduling 17
3.2 Memory Access Classification 19
3.3 Stride Analysis . 22
3.4 Scheduling Policy Selection . 25
3.5 Scheduling Example . 26

CHAPTER 4 CODE GENERATION TECHNIQUE 28
4.1 Subregion Formation . 28
4.2 Code Generation for Convergent Control Flow 39
4.3 Code Generation for Divergent Control Flow 45
4.4 Vectorization . 48

CHAPTER 5 EVALUATION OF PROPOSED SCHEDULING . . . 49
5.1 Experimental Setup . 49
5.2 Benchmarks . 50
5.3 Impact of Scheduling on Locality 51
5.4 Locality Comparison with Industry Implementations 53
5.5 Performance Comparison with Industry Implementations . . . 55

vii

CHAPTER 6 EVALUATION WITH BLAS KERNELS 58
6.1 BLAS-1: SAXPY . 58
6.2 BLAS-2: SGEMV . 59
6.3 BLAS-3: SGEMM . 62
6.4 Summary . 69

CHAPTER 7 RUNTIME-BASED SCHEDULING SELECTION . . . 71
7.1 Motivation . 71
7.2 Design . 74
7.3 Implementation . 82
7.4 Evaluation . 86

CHAPTER 8 CONCLUSIONS AND FUTURE WORK 91

APPENDIX A CODE GENERATION EXAMPLE FOR SPMV . . . 93

REFERENCES . 97

viii

LIST OF ABBREVIATIONS

AST Abstract Syntax Tree

BLAS Basic Linear Algebra Subprograms

CPU Central Processing Unit

CSR Compressed Sparse Row

CUDA Compute Unified Device Architecture

CU Compute Unit

CG Conjugate Gradient

DSP Digital Signal Processor

DDR Double Data Rate

DRAM Dynamic Random Access Memory

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

JDS Jagged Diagonal Storage

LLVM Low Level Virtual Machine

MKL Math Kernel Library

PDE Partial Differential Equation

PMU Performance Monitoring Unit

SM Streaming Multiprocessor

TBB Thread Building Blocks

TLB Translation Lookaside Buffer

VLIW Very Long Instruction Word

ix

CHAPTER 1

INTRODUCTION

The demand for computing devices with increased performance at reduced

energy budget continues to grow. In the mobile community, such devices

enable more functionality and longer battery life. In the high-performance

computing community, such devices make exascale computing possible. As

performance improvements from the semiconductor fabrication process di-

minish, architects are compelled to introduce more diversity into all aspects

of computing devices: function units, interconnect fabrics, and memory hier-

archies. Modern computing systems are thus transitioning to heterogeneous

platforms, integrating both CPUs and other types of accelerators such as

GPUs, FPGAs, and Xeon Phis.

Programmers of these devices must understand and exploit a wider set of

architectural entities to achieve high performance, way beyond the traditional

instruction set architecture and uniform memory space. CUDA and OpenCL,

for instance, are designed for highly parallel execution based on lightweight

threads, but desirable performance often requires carefully crafted work as-

signment to threads, multi-level tiling, and scheduling of the threads [1, 2].

While obtaining high performance on one device is challenging on its own,

providing code that can achieve high performance across a diverse set of

devices is a daunting, tedious task for even the most skilled programmers.

It is therefore desirable to support performance portability [3] over differ-

ent device architectures. One fundamental challenge with targeting hetero-

geneous platforms is maintaining multiple source code versions optimized for

different platforms to achieve portable performance. Ideally, programmers

would write their code using a single programming model, and the compiler

would transform the program to run optimally on the target architecture.

Features specific to one particular architecture cannot be found and easily

exploited universally. Thus the language for performance portability must

have a common programming model which can be compiled to many archi-

1

tectures in a way that produces fast and low-power executable code. With

this approach, a set of architecture-specific compiler and runtime to run a

program written in a portable language, called stack, must be designed to

consider detailed facts about the target architecture.

Several emerging languages such as OpenCL and C++AMP are designed

for portability over heterogeneous systems. They adopt fine-grained thread-

level parallelism for the common programming model, which is a sensible de-

cision because parallelism has become the main source of performance scaling

in many emerging applications. Heavily motivated for GPU programming,

such languages are used primarily to program GPUs in which the assumed

programming model matches well with the underlying architecture. CPUs,

however, employ less a parallelism than GPUs, forcing serialization of the ex-

ecution of the independent workload. Major concerns with the serialization

are finding the right criteria for performance and implementing the serializa-

tion as efficiently as possible. The serialization criterion dictates scheduling

of instructions from many threads so as to maximize a property which has a

high impact on performance such as data locality or instruction throughput.

The implementation concern is the engineering effort to realize the serialized

execution, and as an example the execution of fine-grained threads can be

done using CPU threads or a loop that iterates through their work.

Unfortunately, techniques to achieve high performance on a CPU using

portable languages do not seem mature yet. One fundamental reason is

that the portable languages commonly lack a guide to implement portable

performance on platforms other than a GPU. For instance, AMD’s and Intel’s

OpenCL stacks for CPUs are meant to execute OpenCL programs with the

same functionality, but their performance varies significantly, mainly due to

their distinct design goals [4, 5]. Implicit assumptions for one architecture

are not transferable to others, and the expected optimization effect based

on the assumption is not universally observable in other architectures [6, 7].

As such, tuning the same program differently by programmers for individual

devices and platforms has become a norm in pursuit of performance [8, 9, 10].

In this dissertation, I argue that it is feasible to obtain high performance

from executing programs written in OpenCL, a popular portable language.

I first demonstrate that a fixed scheduling of work-items execution ingrained

by the conventional OpenCL compilers substantially contributes to low per-

formance by being oblivious to data locality and its impact on performance.

2

To overcome this problem, I propose an OpenCL compiler that performs

data-locality-centric work-item scheduling. By analyzing the memory ad-

dresses accessed within a kernel, the technique can make better decisions

on how to schedule work-items to construct better memory access patterns,

thereby improving performance. This technique is particularly useful when

the input program contains loops, which are primary sources of large working

sets posing a memory performance challenge. Also, I propose a code gen-

eration technique that implements the scheduling method. This technique

includes the creation of scheduling boundaries, transformation of a region

for preferred scheduling, and vectorization. The proposed method works in

the presence of control divergence with both types of conditional and loop.

A fully working prototype is implemented to demonstrate and evaluate the

idea and performance measurement on real hardware is conducted. The ap-

proach achieves geomean speedups of 3.32× over AMD’s and 1.71× over

Intel’s state-of-the-art implementations on Parboil and Rodinia benchmarks.

This work is done with OpenCL because of its popularity, openness, large

user bases in both the application and support from hardware vendors with

potential impact on the community. OpenCL has features making it an

eligible language to demonstrate performance portability, which is explained

more in Chapter 2. The technique presented in this dissertation can also

be applicable to other languages so long as they share programming and

execution models similar to that of OpenCL.

1.1 Motivation

1.1.1 Lack of OpenCL Performance on CPU

Presently, it is common to experience the poor performance of OpenCL pro-

grams on CPUs. Figure 1.1 compares the performance of three BLAS kernels

of saxpy, sgemv and sgemm in OpenCL. Execution time is measured on

AMD and Intel OpenCL stacks, which is normalized to the result of the func-

tionally equivalent implementation from Intel MKL library, a highly tuned

mathematical library for CPU. More details on the code, experimental setup

and analyses can be found later in Chapter 6.

One observation is that the current state-of-the-art OpenCL compilers

3

0.0

0.2

0.4

0.6

0.8

1.0

saxpy sgemv sgemmSp
ee

du
p

ov
er

 I
nt

el
 M

K
L

 AMD OpenCL Intel OpenCL Intel MKL

Figure 1.1: Performance of BLAS kernels written in OpenCL using AMD
and Intel OpenCL stacks, which is compared to the performance of
equivalent implementation in Intel MKL library. More details on the
experimental setup are described in Chapter 6.

yield far from desired performance. The performance gap is particularly large

with sgemv and sgemm, in which multidimensional data are used and a

sizable working set is thus involved. Another observation is the performance

disparity between the two CPU OpenCL stacks due to different criteria in

their design, which one must consider when arguing about the performance

portability. While Intel’s result is much more favorable than AMD’s, it is

hard to make a precise judgment on performance portability, qualitatively

and quantitatively, without a deep understanding of how these compilers are

architected.

A potentially worrisome consequence of the observations is the hardening of

a myth that portable performance based on a common language is not feasible

or reliable. Because CPUs are arguably the forefront target to demonstrate

performance portability, inability to show evidence for them could lead to

a strongly biased opinion when targeting architectures other than CPUs.

Ultimately, the low OpenCL program performance on CPUs fosters expensive

solutions by making programmers hold on to the conventional idea that each

device requires its own optimized programs with preferred languages.

1.1.2 Underutilized CPU in Heterogeneous Platforms

It is utterly wasteful not to utilize CPU for useful workload processing. How-

ever, the lack of performance in OpenCL programs on CPUs diminishes the

role of CPUs in heterogeneous systems. Modern CPUs are in fact essential

4

computing resource for performance computing, and are therefore an eligible

target for OpenCL programs as well as other portable languages. Though

the absolute performance of CPUs is overshadowed by what specialized com-

puting devices are capable of, the advantages of CPUs such as versatility,

ubiquity, and performance should not be simply overlooked. Moreover, the

performance of CPUs continues to increase by integrating more cores and

embracing wide vector execution units. For instance, Table 1.1 compares

hardware specifications of two recent generations of CPUs and GPUs from

Intel and NVIDIA, respectively. The table shows that the ratios of computa-

tion throughput and memory bandwidth between CPU and GPU are up to

2.35× and 3.67×, respectively, which are further reduced when normalized

with power consumption. Researchers have shown that a properly optimized

CPU code can effectively be used for throughput computing, closing the

performance gap between CPU and GPU [11].

Table 1.1: A brief comparison of current high-end CPUs and GPUs.

Intel Core
i7-5820K

Intel Xeon
E5-2687W v3

NVIDIA
Tesla C2050

NVIDIA
Tesla K40

Price ~$400 ~$2,000 ~$1,000 ~$3,000

GFlops
(in double precision)

317 496 515 1,170

Bandwidth
(GB/s)

68 68 144 250

Power consumption
(W)

140 160 238 225

1.2 Summary of Contributions

The following list summarizes the contributions of this disseration.

• I argue that the widespread belief that performance portability does

not exist for OpenCL programs on CPUs is in fact due to immature

compiler techniques available today. In particular, I demonstrate that

5

the lack of concern for data locality in designing OpenCL compilers

constitutes a substantial fraction of the low performance, by discovering

the relationship between the conventional schedule and its implication

for data locality and performance.

• I propose an alternative schedule that is better suited to data locality

than the conventional schedule in practice.

• An adaptive method is introduced in order to construct a data-locality-

friendly schedule by statically analyzing memory access patterns. A

code generation technique implementing the schedule is also proposed.

• A complete OpenCL compiler is implemented and its performance is

evaluated on real hardware to verify the proposed ideas.

• A runtime technique to aid a compiler is proposed so as to relieve the

burden placed on the compiler by having to pick the optimal code by

building a performance model with high accuracy. Instead, the pro-

posed technique allows a compiler to deposit several differently opti-

mized codes, each of which is individually evaluated at runtime with a

fraction of real input data to determine the optimal one for the rest of

workload processing.

1.3 Organization of This Dissertation

The rest of this dissertation is organized as follows. Chapter 2 summarizes

the OpenCL programming model and previous approaches for OpenCL com-

piler on CPUs along with their drawbacks in terms of data locality. It also

details the reason for the performance disparity between GPUs and CPUs,

along with the consequence of how people tune their programs for CPU per-

formance. Chapter 3 analyzes the drawbacks of previous approaches and

proposes a better schedule approach and a compiler technique to derive a

schedule that is data-locality aware. Chapter 4 details a code generation tech-

nique for implementation of such an OpenCL compiler. Chapter 5 evaluates

the proposed technique against the state-of-the-art implementations. The

performance of the proposed method is evaluated in the context of portable

performance using well-known algorithms from BLAS, which is discussed in

6

Chapter 6. Chapter 7 presents runtime support to aid the compiler in de-

riving the most optimal kernel variant, when the compiler cannot make an

optimal decision due to limitations of static performance modeling. Finally,

Chapter 8 summarizes this work and offers a conclusion.

7

CHAPTER 2

BACKGROUND

2.1 OpenCL Overview

OpenCL [12] is general purpose parallel programming language targeting

CPUs, GPUs and other discrete computing devices organized into a single

platform. Developed by Khronos Group, an industry consortium, it is con-

sidered one of the most prominent parallel programming languages today.

OpenCL is endorsed by both hardware vendors and application developers.

Virtually all GPUs can run OpenCL programs [13, 14, 15, 16, 17]. Also,

most CPU architectures have either vendor-provided OpenCL implementa-

tions [18, 19] or open source projects that support them [20, 21]. Recently,

support for other types of architectures such as DSPs and FPGAs has be-

come available [22, 23]. The rich foundation encourages many applications

to adopt OpenCL such as MAGMA [24] and OpenCV [25].

OpenCL provides a unified interface for diverse device architectures. The

abstract computing model of OpenCL is intended to be architecture neutral,

enabling functional equivalence across architectures. The bulk-synchronous

programming model assumes an abstract device architecture composed of

multiple compute units, each consisting of multiple computing elements. The

program is organized into multiple work-items which are grouped into work-

groups. Work-items within a work-group execute on a single compute unit

and can synchronize and share memory with each other. Work-groups exe-

cute independently on different compute units and cannot synchronize with

each other. It is largely the vendor’s responsibility to map the abstract com-

puting model to the physical execution resources.

The computing model of OpenCL can be easily mapped onto GPU execu-

tion resources. Contemporary GPUs are composed of dozens of independent

cores, each of which can run thousands of concurrent threads. The core im-

8

plements control and memory synchronizations for threads it manages. Each

core is equipped with its local memory which can be shared among threads

running within the core. Thus, it is intuitive to map computing units to

cores and computing elements to threads in a core. SM (Simultaneous Mul-

tiprocessor) in NVIDIA GPU or CU (Compute Unit) in AMD GPU are

corresponding implementations of the core.

The execution of threads in a GPU core is done using several concurrent ex-

ecution entities, called warps in NVIDIA GPU or wavefronts in AMD GPU.

Warps or wavefronts share the same instruction for all threads mapped on

them, making progress in a lock-step manner. They are subject to schedul-

ing by GPU hardware and long latency operations can be tolerated when

multiple warps or wavefronts are available. Although the OpenCL specifi-

cation does not regulate hardware implementations, OpenCL programmers

often exploit the fact that neighboring work-items run concurrently because

of warps or wavefronts. For example, a hardware support that converts mul-

tiple consecutive memory requests issued within a warp or wavefront into one

bulk request, called coalesced memory access, is a particularly useful feature

when memory bandwidth is concerned. The memory bandwidth utilization

can be high when a GPU program takes advantage of coalesced memory ac-

cess, because multiple memory accesses by work-items can be handled with

fewer outstanding memory requests, which one must consider for memory

performance.

2.2 OpenCL Execution Model

Launching an OpenCL kernel requires kernel code and index space. Kernel

code is a user-provided program that runs on each work-item. Index space of

N defines a dimension of work-items ranging from zero to N − 1. Figure 2.1

shows an example kernel code and its execution over an index space of GS

with an optional work-group size of LS. The work-items are equally divided

into work-groups such that work-items within a work-group can synchronize

using barrier instructions while work-items in different work-groups cannot.

Figure 2.1(b) depicts a dependence graph in the execution of the kernel

where each circle represents a set of closely related instructions such as basic

blocks, and arrows indicate the immediate dependencies between the circles.

9

void kernel(…)
{
 i0;
 …
 ia-1;
 barrier();
 ia;
 …
 ib-1;
}

wi0 wi1 wiLS-1 wi0 wi1 wiLS-1 wi0 wi1 wiLS-1
i0

ia-1

barrier
ia

ib-1

region0

region1

(b) Dependency graph in the execution of the kernel code. (a) Kernel code.

wg0 wg1 wgGS/LS-1

Figure 2.1: An example OpenCL kernel code and its dependence graph for
execution of the kernel. Immediate dependencies occur between dynamic
instructions or instruction blocks (i) in OpenCL kernels. Each
work-group (wg) contains local size (LS) work-items (wi). Work-items in
different work-groups execute independently until completion. Work-items
in the same work-group synchronize at barriers. Barriers divide the
program into code regions within which work-items execute independently.
Work-item independence within regions provides great flexibility for
work-item scheduling.

Note that the arrows do not represent memory dependencies. The graph

is conservative because the arrows indicate all dependencies that may exist

between instructions for some program. The absence of an arrow between

instructions indicates independence that is guaranteed by the programming

model. Crafting an OpenCL compiler therefore boils down to finding a map-

ping between the dependence graph and a set of computing resources, often

comprised of multi-cores and vector execution units in CPUs.

One observation is that work-groups are completely independent because

there is no path connecting work-items in different work-groups. This prop-

erty allows all work-groups to run concurrently, independently, and in any

order. All existing implementations as well as the implementation presented

in this dissertation handle work-groups by scheduling them in distinct CPU

threads. Thus, CPU threads do not need to synchronize until kernel comple-

tion, which is convenient because synchronization across threads on a CPU is

expensive. At this level, an important criterion in distributing work-groups

over CPU cores is load balancing. A runtime library that has a strong sup-

port for load balancing, such as Intel TBB [26], thus would be an eligible

10

platform for the execution of work-groups.

Another observation is that dependencies between work-items within a

work-group are only introduced by barrier instructions. Therefore barriers

divide the kernel into regions such that work-items within a region execute

independently. Existing approaches employ a region formation [27] algorithm

to divide up the kernel into barrier-separated regions. Regions are meant to

run one after another within a work-group, thus scheduling freedom does not

exist.

The remaining problem to be tackled is the scheduling of work-items within

a region. Given its huge degree of scheduling freedom, scheduling of work-

items within a region can have a large impact on data locality because it

directly impacts the order of memory accesses. On GPUs, scheduling is

dictated by the hardware. The GPU notion of warps in NVIDIA GPU (or

wavefronts in AMD GPU) enforces that a sub-group of work-items in a work-

group executes the same instruction before moving on to the next. Moreover,

the current warp scheduler controls the execution of warps. Since the pro-

grammer has little control over instruction scheduling, it becomes incumbent

on the programmer to adapt their code and data structures to the antici-

pated hardware scheduling policy for better data locality. Such adaptations

are the subject of many GPU optimizations such as data layout transforma-

tion, memory coalescing, and dynamic tiling [28, 29, 30].

On the other hand, the CPU hardware is not actively involved with the

scheduling of work-item instructions within a region, leaving instruction

scheduling up to the compiler and runtime. This allows the compiler to

adapt its scheduling to the code to achieve the best memory access pattern,

alleviating the programmer’s burden to optimize for data locality.

2.3 Previous Approaches

There is a wealth of literature on compiling OpenCL programs for CPUs. To

the best of my knowledge, no existing implementations [5, 13, 20, 21] consider

the impact of work-item scheduling on data locality. Prior approaches only

consider correctness and instruction throughput when scheduling work-item

instructions. The following categorizes the alternative approaches by the

implementation of work-item scheduling.

11

CPU CPU

wi0 wiLS-1

for each i in LS,
 wii

wi1

thread

(a) user-level thread (b) work-item loop

wi0

wi1
…
wiLS-1

Figure 2.2: Previous approaches in mapping execution of work-items.

User-level thread approach. User-level threads are assigned to each

work-item [13], which is shown in Figure 2.2(a). This approach has the ad-

vantage of moving work-item scheduling into the runtime instead of relying

on compiler techniques. The scheduling unconditionally executes a work-

item until the region boundary and moves on to the next, oblivious to po-

tential data locality across work-items. Additionally, this approach hinders

important performance optimizations such as vectorization and redundancy

elimination among work-items. This approach also suffers from having to

maintain many threads for work-items of fine-grained workload, a situation

where the threading overhead is not negligible.

Work-item loop approach. The compiler inserts loops around each

region that iterate over all work-items in a work-group [18, 20, 31, 32], as

shown in Figure 2.2(b). The advantage of using work-item loops as opposed

to the user-level thread approach is that it enables compiler optimizations,

which are important for performance. One such optimization is selective

replication [27]. In the presence of barriers, OpenCL variables need to be

replicated for each work-item so that all work-items can run concurrently.

However, replication is unnecessary for uniform variables (variables having

the same value for all work-items) and variables whose lifetime is confined

to a region. With work-item loops, replication is done via scalar expansion

of variables into arrays. It can therefore be selectively avoided by keeping

candidate variables scalar. With the user-level thread approach, the work-

12

item context is replicated unconditionally as a whole, and therefore cannot

be selectively avoided for individual variables.

Another important optimization is strip-mining of work-item loops to ben-

efit from SIMD vectorization for maximizing instruction throughput. One

approach [20] does so by annotating the work-item loops using LLVM paral-

lel loop annotations. Other approaches [18, 32] do so explicitly using vector

instructions. Generating a high-quality vectorized code from a region requires

sophisticated compiler analyses and transformations, particularly when con-

trol divergence is observed. The vectorization of work-items execution is a

subject of many studies [32, 33, 34].

The vectorized work-item loop approach approach, however, also results

in suboptimal data locality. Many regions contain loops, which the work-

item loop approach wraps in an outermost loop across work items. Having

the work item loop be outermost in these loop nests, however, does not al-

ways produce good memory locality. Often, OpenCL programs are written

for GPUs in the first place and their fixed scheduling policy assumes that

the work-item loop is placed at the innermost level. Although some ap-

proaches [18, 32] do benefit from vectorization for higher performance, their

scheduling is largely similar to the user-level thread approach in terms of

data locality when dealing with a large working set.

2.4 Locality of Previous Approaches

Scheduling of instructions dictates memory access pattern. When an OpenCL

kernel deals with large multidimensional data where working set management

has a substantial impact on performance, a memory access pattern generated

by a program needs to exploit memory system architecture with efficiency.

However, previous OpenCL stack implementations for CPU unconditionally

employ a fixed scheduling, regardless of scheduling concern for memory per-

formance.

Figure 2.3 compares memory access patterns of an example OpenCL code

for GPU and CPU. The code snippet is from StreamCluster in Rodinia bench-

mark suite [35], which is discussed as an exemplar to demonstrate that per-

formance is not portable on CPU in a previous work [7].

The code shown in Figure 2.3(a) is reasonably well-tuned for GPU with

13

__kernel void pgain_kernel(…) { // in OpenCL
 int thread_id = get_global_id(0);
 ...
 float x_cost = 0.0;
 for(int i = 0; i < dim; ++i) {
 x_cost += (coord_d[(i*num)+thread_id] – coord_s[i]) *
 (coord_d[(i*num)+thread_id] – coord_s[i]);
 }
 ...
}

void pgain_kernel_cpu(…) { // in C
 ...
 for thread_id in LS, // iteratively execute work-items
 float x_cost = 0.0;
 for(int i = 0; i < dim; ++i) {
 x_cost += (coord_d[(i*num)+thread_id] – coord_s[i]) *
 (coord_d[(i*num)+thread_id] – coord_s[i]);
 }
 ...
}

(a) StreamCluster code snippet.

(c) Translated code snippet using work-item loop.

coord_d[0*num + 0..NumThreadInWarp-1] coord_s[0]

coord_d[1*num + 0..NumThreadInWarp-1] coord_s[1]

coord_d[2*num + 0..NumThreadInWarp-1] coord_s[2]

... ...

coord_d[0*num + 0] coord_s[0]

coord_d[1*num + 0] coord_s[1]

coord_d[2*num + 0] coord_s[2]

... ...

(b) Memory address trace on GPU for coord_d and coord_s.

(d) Memory address trace on CPU for coord_d and coord_s from the translated code.

Figure 2.3: An example to show memory access pattern via the work-item
loop approach.

14

respect to memory performance. Many GPU-tuned programs are optimized

for coalesced memory access in GPU, which is properly exploited in load-

ing coord d in the example code. Coalesced memory access assumes that

execution across work-items has higher priority than the instructions order.

Therefore, the memory access pattern for coalesced memory access shows

consecutive address per warp or wavefront. In this particular example, the

memory address per warp or wavefront in loading coord d starts from i*num

and increases up to the number of threads packed in a warp or wavefront (de-

noted as NumThreadInWarp in the figure), which is repeated for subsequently

scheduled warps or wavefronts. Also, coord s[i] is reused for work-items

because the value of i is the same in a warp or wavefront. In other words,

spatial locality and temporal locality exist in accessing coord d and coord s,

respectively. The memory access pattern for the first few memory operations

is shown in Figure 2.3(b), which assumes only one warp or wavefront is avail-

able.

The translated code using the work-item loop approach is shown in Fig-

ure 2.3(c), which sequentially executes work-items in a work-group on a CPU

thread. With the translation, a loop is created to surround the code for se-

rializing execution of the code over work-items. Figure 2.3(d) lists the first

few memory addresses when the translated code runs. The addresses of the

consecutive memory accesses are regularly spaced by a variable called num,

which in fact is a large stride. Since i changes faster than thread id, the

memory access pattern makes a much larger stride than typical cache line

size, resulting in poor cache line utilization. It would also suffer from frequent

data TLB misses and a penalty associated with it. For example, when num

multiplied by the element size of the load operation is equal to or larger than

the page size, the memory access pattern shown in Figure 2.3(d) may cause

data TLB miss every time loading coord d gets executed. As for coord s,

sequential access occurs which exploits spatial locality; however, the GPU

execution is more efficient due to temporal locality among work-items.

The comparison shows that the memory access pattern from the trans-

lated code does not match with what a typical programmer would expect

on GPU. Moreover, the comparison reveals that a substantially suboptimal

memory access pattern takes place with the previous approach for CPU ex-

ecution. The disparity between data locality in well-tuned GPU programs

and the resulting schedule from the previous work largely explain the lack of

15

performance on CPU for programs dealing with a sizable working set.

Researchers have experienced the symptom, and data layout transforma-

tion is often suggested as an antidote to the problem in order to adapt to

the memory access pattern [4, 7]. However, data layout transformation is

an unacceptable solution in practice due to high cost and difficult deploy-

ment. Data layout transformation touches the entire memory object at least

once, which is non-trivial overhead for both execution time and power con-

sumption. Out-of-place transformation, where a separate output is allocated

for the transformation, obligates management of an additional storage. In

case of in-place transform, where the same memory object is used but mem-

ory elements are shuffled within the object, the number of movements per

element is several times higher than the out-of-place transform when a high-

performance implementation [29] is concerned. Also, data layout transfor-

mation algorithms typically assume that the dimension of the data is known.

However, retrieving the dimension of a memory object is not trivial according

to OpenCL programming interface, because it uses a C-like pointer to create,

deliver and use a memory object, but no dimension information is delivered

separately.

16

CHAPTER 3

LOCALITY-CENTRIC SCHEDULING

In the previous chapter, I demonstrated that traditional work-item scheduling

is not always good for locality. An alternative schedule is suggested that

performs better for applications having particular classes of memory accesses.

A selection algorithm is introduced that picks the schedule likely to result in

better locality based on a static analysis of the memory access patterns.

3.1 Depth-First Order and Breadth-First Order

Scheduling

The example in Figure 3.1 demonstrates the effect of work-item scheduling

on locality. Figure 3.1(b) depicts the dependence graph of the code in Fig-

ure 3.1(a), where each white circle represents a dynamic instruction block

from a single loop iteration. If the traditional work-item scheduling is used

to execute this region, each work-item executes the region to completion

before the next work-item begins, as shown in Figure 3.1(c). Such a traver-

sal is suboptimal because it results in a sequence of memory loads having

a large stride. A better traversal of loads can be achieved by scheduling

the work-items as shown in Figure 3.1(d). Such a traversal results in the

largest number of unit stride accesses. The proposed technique focuses on

regions containing loops because loops are the source of the longest running

regions having working sets large enough such that locality is a major con-

cern. Among the 30 Parboil and Rodinia benchmarks, 18 of them have loops

within kernel regions. These 18 benchmarks will be used to evaluate the

approach. The main question is whether to schedule a work-item to execute

an entire region before the next work-item begins (the approach taken by

existing compilers), or to schedule all work-items to execute the same loop

iteration before moving on to the next (the alternative approach shown in

17

wid = get_local_id(0);
for(k=0; k < N; ++k){
 foo(arr[k][wid]);
}

wi0 wi1 wiLS-2
foo(arr[0][wid])

foo(arr[N-1][wid])

wi2 wi3 wiLS-1

foo(arr[1][wid])

(a) Simple example of OpenCL code region.

(b) Region dependence graph.

(c) Depth-first order (DFO) traversal using traditional
work-item loops results in large strided accesses.

(d) Breadth-first order (BFO) traverses array elements
with stride 1, in the order stored in memory.

wi0 wi1 wiLS-2
foo(arr[0][wid])

foo(arr[N-1][wid])

wi2 wi3 wiLS-1

foo(arr[1][wid])

wi0 wi1 wiLS-2
foo(arr[0][wid])

foo(arr[N-1][wid])

wi2 wi3 wiLS-1

foo(arr[1][wid])

Figure 3.1: A motivating example demonstrating the impact of scheduling
on the memory access pattern.

Figure 3.1(d)). These two scheduling techniques are denoted as depth-first

order (DFO) and breadth-first order (BFO) respectively, based on how they

traverse the dependence graph.

There is no single approach that fits all. Chapter 5 shows that out of 18

benchmarks, DFO does better for 5 while BFO does better for 13. DFO is well

suited for capturing locality among the memory accesses within each work-

item, whereas BFO will expose collective memory locality across work-items.

18

The better schedule choice depends on the memory accesses dominating the

loop body.

3.2 Memory Access Classification

Locality-centric (LC) scheduling selects between DFO and BFO based on

which technique is predicted to have better locality. The first step is to

classify the memory operations inside the loop at compile time. The clas-

sification in use is summarized in Table 3.1. This classification is based on

two dimensions: loop iteration stride and work-item stride. For each of these

dimensions, memory accesses are classified as stride zero, stride one, or other.

Table 3.1: Classification of memory accesses and scheduling decision
preferred by each class (if any).

Work-item Stride
0 (W0) 1 (W1) Other (WX)

L
oo

p
It

er
at

io
n

St
ri

de
 0 (L0) - DFO DFO

1 (L1) BFO - DFO

Other (LX) BFO BFO -

Stride zero (i.e., invariant) means that the memory access index is the same

for all loop iterations or all work-items in a work-group, respectively. Stride

one means that the memory access index increases by one for consecutive

loop iterations or consecutive work-items respectively. Other means that

the memory access index is neither invariant nor stride one. These access

types are abbreviated as shown in Table 3.1 where ‘W’ means work-item,

‘L’ means loop iteration, ‘0’ means stride zero, ‘1’ means stride one, and ‘X’

means other.

A class of memory operations favors the schedule resulting in a smaller

memory access stride. If a memory access had a smaller stride with respect to

the loop index, then it is best traversed when a work-item runs deeply to finish

executing a loop before the next work-item begins. Therefore the memory

access prefers DFO. If a memory access had a smaller stride with respect

to the work-item id, then it is best traversed when a loop iteration executes

broadly across work-items before the next iteration begins. Therefore the

memory access prefers BFO.

19

time
M

em
or

y
 a

dd
re

ss

for(k=0; k<N; ++k) {
 foo(arr[k]);
}

(a) An example region.

for each wid in LS,
 for(k=0; k<N; ++k) {
 foo(arr[k]);
 }

(c) DFO schedule and memory access pattern.

for(k=0; k<N; ++k) {
 for each wid in LS,
 foo(arr[k]);
}

(d) BFO schedule and memory access pattern.

time

M
em

or
y

 a
dd

re
ss

Work-item stride
0 (W0) 1 (W1) Other (WX)

Loop
iteration

stride

0 (L0) - DFO DFO
1 (L1) BFO - DFO

Other (LX) BFO BFO -

(b) Schedule selection.

N

LS

Figure 3.2: Memory class example of L1W0.

time

M
em

or
y

 a
dd

re
ss

for(k=0; k<N; ++k) {
 foo(arr[f(k)]);
}

(a) An example region.

for each wid in LS,
 for(k=0; k<N; ++k) {
 foo(arr[f(k)]);
 }

(c) DFO schedule and memory access pattern.

for(k=0; k<N; ++k) {
 for each wid in LS,
 foo(arr[f(k)]);
}

(d) BFO schedule and memory access pattern.

time

M
em

or
y

 a
dd

re
ss

Work-item stride
0 (W0) 1 (W1) Other (WX)

Loop
iteration

stride

0 (L0) - DFO DFO
1 (L1) BFO - DFO

Other (LX) BFO BFO -

(b) Schedule selection.

N

LS

Figure 3.3: Memory class example of LXW0.

20

time
M

em
or

y
 a

dd
re

ss

for(k=0; k<N; ++k) {
 foo(arr[f(k)+tid]);
}

(a) An example region.

for each wid in LS,
 for(k=0; k<N; ++k) {
 foo(arr[f(k)+wid]);
 }

(c) DFO schedule and memory access pattern.

for(k=0; k<N; ++k) {
 for each wid in LS,
 foo(arr[f(k)+wid]);
}

(d) BFO schedule and memory access pattern.

time

M
em

or
y

 a
dd

re
ss

Work-item stride
0 (W0) 1 (W1) Other (WX)

Loop
iteration

stride

0 (L0) - DFO DFO
1 (L1) BFO - DFO

Other (LX) BFO BFO -

(b) Schedule selection.

N

LS

Figure 3.4: Memory class example of LXW1.

Figures 3.2, 3.3 and 3.4 show how cache utilization is maximized with the

schedule decision. Each figure shows an example code and both schedules of

DFO and BFO for the code, accompanied by the memory access pattern for

each case. DFO code can be obtained by executing the input code within

a canonical loop iterating over the work-item index space. For brevity of

explanation, BFO code is presented as if the two loops of the kernel loop

and the loop for work-items in the DFO code are interchanged. More

detail on the code generation appears later in Chapter 4. For the purpose of

the explanation, both LS and N are assumed to be much larger than cache

line size so that memory access patterns have an outstanding performance

impact. The function f(k) is assumed to return a non-linear integer number

to k with no side effect.

For L1W0, shown in Figure 3.2, memory address for DFO linearly increases

up to N and this process is repeated LS times. In conrast, the memory access

pattern for BFO remains stationary for LS times and is repeated N times,

with incrementally changing unit address. DFO exploits spatial locality while

BFO enjoys temporal locality. The overall numbers of cache misses for both

cases are LS×N/CacheLineSize and N/CacheLineSize for DFO and BFO,

21

respectively. Therefore, BFO must be selected in this case. Due to symmetry,

L0W1, which is not shown in the figure, should choose DFO for the same

reason but with the two schedules interchanged.

Figure 3.3 illustrates the LXW0 element of our schedule selection table and

shows both schedules for the region. Similarly, it shows both schedules for

the region. DFO does not expect cache memory reuse while BFO exploits

spatial locality. Their cache miss counts are LS ∗ N and N for DFO and

BFO, respectively. Similarly, BFO must be chosen in this case and L0WX

reverses the situation due to symmetry.

Figure 3.4 compares two schedules for LXW1 in the table. The cache

miss counts are LS ∗ N and N ∗ LS/CacheLineSize for DFO and BFO,

respectively. The selection logic is similar to previous cases.

Note that prefetching in some cases can reduce the performance difference

between the BFO and DFO schedules by hiding memory access latency. For

instance, L1W0 shows a sequential memory access pattern when DFO is

chosen, as shown in Figure 3.2. A good prefetcher should be able to bring

data into the cache in advance so as to minimize the latency for subsequent

memory operations. Though it may help to reduce the latency, it still suffers

from having to occupy a larger footprint in cache memory and move all the

data multiple times, wasting memory bandwidth and energy, and hurting

overall system performance.

3.3 Stride Analysis

In order to select a decision from our schedule selection table, one must iden-

tify stride values for both loop index and work-item index. In this work,

stride analysis factorizes an expression with respect to a variable of interest,

loop index variable or work-item. This work focuses on stride-zero (invariant)

and stride-one memory accesses because these are most common in practice

and sufficient for the proof of concept. However, the same approach can

be generalized to any non-unit stride value, which is left for future work.

To classify memory accesses, multiple analyses are needed such as loop-

invariance analysis, loop index analysis, work-item uniformity analysis, and

stride analysis. These analyses are individually solved problems in the liter-

ature [36, 37]. The rest of this subsection summarizes the analyses and how

22

they are used for scheduling selection.

int tid = get_local_id(0);
for (i = 0; i < N; ++i) {
 ... = A[i];
 ... = B[n*i + 12];
 ... = C[tid];
 ... = E[A[i] + 4*tid];
}

factorization for

index expr loop index (i) work-item index (tid)

i 1*i + 0 0*tid + I

n*i + 12 X*i + 12 0*tid + n*i+12

tid 0*i + tid 1*tid + 0

A[i] + 4*tid X*i + 4*tid X*tid + A[i]

(a) Example kernel loop with memory operations in it.

(b) Stride analysis result using factorization by 0, 1 and other(X).

Figure 3.5: Stride analysis example.

Loop Induction Variable and Stride Analysis

Loop induction variable detection scans recurring variables in a loop to find

induction variables, and the amount of changed value per each iteration is

determined as stride for each variable. Figure 3.5 shows an example of the

analysis where all base expressions for memory operation such as A and B

are assumed invariant to the loop index. The loop has a canonical induction

variable of i. The variable can be factorized into 1 · i + 0 and thus the stride

is determined as 1, or unit stride as shown in the table. This is because the

address is incremented by 1 when the i value is increased by 1. Next, n*i

is treated as having unknown stride because n is a variable, which is marked

as X in the classification table. When the factor of i is not involved in an

expression, it is regarded as invariant, or as zero stride as shown in the third

case. The value of A[i] has unknown stride, thus the entire expression gets

unknown stride as shown in the fourth case.

23

Work-item Stride Analysis

Work-item stride analysis can be performed via forward slicing of work-item

variables. The work-item variables have a unit stride because index values

are defined over consecutive integers (Chapter 2). All others are initialized

with zero. When no such expression is used in an expression, as shown in the

first and second cases in Figure 3.5, zero stride is given, denoting invariance

to work-item values. tid in the example is of stride one and C[tid] thus

shows a consecutive memory access pattern. However, 4*tid is treated as

having unknown stride, though the compiler can identify 4 being a constant

integer and compare it against other constant values. As mentioned before,

currently 0, 1 and other strides are only used for the stride decision, and

any constant values other than 0 and 1 are collectively identified as unknown

stride.

Approximate Stride Analysis

A precise stride analysis is not necessary for making scheduling decisions be-

cause the stride information is used to inform an optimization decision that

does not impact correctness. For this reason, an approximate stride analysis

is used when applicable to more aggressively classify the stride. Three opera-

tors of modulus, division and select are quite common in OpenCL code when

doing index calculations and boundary conditions, but they make it hard to

drive a precise stride value. Supporting these common operators with the

approximate stride analysis turns out quite useful. The approximate stride

analysis differs from the precise stride analysis in the treatment of the three

operators:

• Modulus: In the statement a = b%N where b is stride one and N is

arbitrary, a precise stride analysis labels a as unknown. However, a in

practice is stride one for the most part. Thus, the result of a modulus

on a stride one variable is approximated as stride one.

• Division: In the statement a = b/N where b is stride one and N is

arbitrary, the value of a in consecutive threads differs by either 0 or

1. Used as an array index, a will result in a memory pattern that is

at least as good as a stride one pattern. For this reason, a can be

approximated as stride one.

24

• Select/Phi functions: In the statement a = (b > 0)?b : 0 where b is

stride one, the precise stride of a is unknown. However, the footprint

created by a as an index is comparable to that of the worse of the

two select/phi parameters (in this case, b). The decision is modeled

as a semi-lattice (stride-zero → stride-one → unknown) such that the

return value of a select or phi operator is classified according to the

meet operation of its operands’ classifications.

3.4 Scheduling Policy Selection

Once the classification of each memory access is performed, the number of

memory accesses favoring each schedule is tallied, and the schedule with the

greater number of tallies is chosen. In the case of a tie, DFO is selected

to avoid the overhead of performing BFO, particularly in divergent contexts

(discussed in Section 4.3).

Subroutine 1 isBFOLoop(L)

 DFO = 0, BFO = 0
 for every memory access M in L.body do
 switch typeof M:
 case W0L1: case W0LX: case W1LX:
 ++BFO
 break
 case W1L0: case WXL0: case WXL1:
 ++DFO
 break
 if BFO > DFO then
 return true
 else if BFO < DFO then
 return false
 else // tie breaker
 return false

The decision for the preferred schedule is made on a per-loop basis. There-

fore, different loops in the same region could receive different schedules.

Moreover, in the case where decisions in loop nests cannot be simultane-

ously granted, priority is given to the inner loops. Therefore, in the case

where a DFO loop contains a BFO loop, the outer DFO loop is scheduled

25

with BFO to enable the inner BFO loop to be scheduled correctly. This is

because the inner loops have more impact on the memory access pattern than

the outer loops. The algorithm for performing this scheduling is discussed in

the next section. Subroutine 1 shows the algorithm for the decision logic.

3.5 Scheduling Example

Figure 3.6 shows an example kernel code and schedule decision for the code.

The figure shows the kernel code in spmv (Sparse Matrix-Vector Multipli-

cation) benchmark from Parboil benchmark suite. The code assumes JDS

(Jagged Diagonal Storage) format. There are four load operations within the

kernel loop and stride values of the memory address expressions are shown in

the table. The final decision is to use BFO schedule because there are more

BFO-preferred memory operations than DFO-preferred operations.

The table details the stride analysis result and the scheduling decision.

The loop index k has stride one to the loop but zero stride to the work-

item value. The expression of jds ptr int[k] only depends on loop index

of k, so the load operation prefers BFO. The value of the expression has

unknown stride with respect to loop index. Therefore, j has unknown stride

to the loop index but unit stride with respect to work-item due to addition

of ix, which has stride one to work-item. Conveniently, j falls into LXW1

in the scheduling decision table. The memory access pattern of d index[j]

falls into LXW1 as j is used for indexing, thus the expression prefers BFO.

Similarly, d data[j] adds another vote to BFO. Lastly, the algorithm cannot

decide a preferred schedule for x vec[in], because in is classified as LXWX

in the schedule decision table. The value of the variable equals the value of

d index[j], which has unknown stride for both loop index and work-item

index.

26

__kernel void spmv_jds_naive(
 __global float *dst_vector, __global float *d_data,
 __global int *d_index, __global int *d_perm,
 __global float *x_vec, const int dim,
 __constant int *jds_ptr_int,
 __constant int *sh_zcnt_int)
{
 int ix = get_global_id(0);
 if (ix < dim) {
 float sum = 0.0f;
 int bound = sh_zcnt_int[ix/32];
 for(int k = 0; k < bound; k++)
 {
 int j = jds_ptr_int[k] + ix;
 int in = d_index[j];
 float d = d_data[j];
 float t = x_vec[in];
 sum += d*t;
 }
 dst_vector[d_perm[ix]] = sum;
 }
}

(a) spmv kernel code in OpenCL.

(b) Summary of the stride analysis for the kernel loop.

Expression Loop index stride Work-item stride
Schedule
decision

k 1 0 N/A
jds_ptr_int[k] X 0 BFO

ix 0 1 N/A
j X 1 N/A

d_index[j] X X BFO
in X X N/A

d_data[j] X X BFO
x_vec[in] X X Unknown

Figure 3.6: Schedule decision example using spmv kernel. There are three
memory operations that prefer BFO and one the compiler cannot tell the
scheduling preference. The final decision is therefore BFO.

27

CHAPTER 4

CODE GENERATION TECHNIQUE

In this chapter, scheduling unit detection and code generation techniques

according to the schedule decision are presented. The technique assumes

that the input code is structured; in other words, a program is composed

of basic blocks, conditionals and loops. The structured program matches

with an AST-based representation as it can be easily decomposed in that

way. However, graph-based representations such as LLVM IR may require

a preprocessing step such as structural analysis in order to understand the

program in the structural way. For brevity, the explanation in this chapter

uses an AST-based representation and its terminology.

The grammar of the language used to describe the code generation tech-

nique is shown in Figure 4.1. The language is a subset of OpenCL language,

because dealing with the complete OpenCL language requires substantially

more details which are not essential to deliver the idea presented in this

chapter. For instance, the language omits for-loop, because its distinction

from while-loop yields only a minor difference in practice when it comes to

applying the technique.

4.1 Subregion Formation

A subregion is a list of consecutive statements that do not contain barriers.

The execution of a subregion for work-items is meant to be serialized. Subre-

gions are used in order to implement BFO schedule for a region containing a

loop. By declaring a loop body as a subregion, BFO schedule for the loop can

be implemented. On the other hand, a subregion enclosing a loop entirely

implements DFO schedule for the loop.

In order to form a subregion inside a loop, a barrier due to scheduling can

be introduced, which is called scheduling barrier or boundary. A scheduling

28

Statements → Statement | Statement Statements

Statement → StructureStmt | ExprStmt

StructureStmt → CompoundStmt | ControlStmt

CompoundStmt → { Statements }

ControlStmt → IfStmt | LoopStmt

IfStmt → if (Expr) then Statement else Statement

LoopStmt → while (Expr) Statement

ExprStmt → Expr ;

Expr → Expr binary op Expr | unary op Expr |
Expr (Expr) | Expr [Expr] |
(Expr) | literal | term

binary op → =|+|-|*|/|<<|>>|<|>|==|!=|>=|<=|,

unary op → +|-|!|~

Figure 4.1: The grammar of the language used for code generation.

barrier divides a region into subregions, and similarly a barrier instruction

divides a kernel into regions (Chapter 2). Note that unlike barrier instruc-

tions, scheduling barriers may be introduced as needed by the compiler for

scheduling flexibility, but they do not change the semantic of the region. By

adaptively introducing scheduling barriers, the compiler can selectively im-

plement DFO or BFO schedule for a loop. The proposed compiler inserts

a scheduling barrier at the beginning of a loop body when the loop prefers

BFO. No scheduling barrier is created for DFO.

Figure 4.2 shows how scheduling barriers are used to implement both DFO

and BFO schedules. An example region containing a loop is shown in Fig-

ure 4.2(a). Assuming that the loop prefers DFO, scheduling barriers are not

created and the execution of the entire region is serialized, shown in Fig-

ure 4.2(b). With BFO schedule, a scheduling barrier is introduced at the

beginning of the loop body of the loop, as shown in Figure 4.2(c). Due

to the scheduling barrier, execution of the loop body over work-items gets

29

ibefore;
while (k < N) {
 ik;
 k = k + 1;
}
iafter;

(a) An example region.

(c) BFO scheduling with
scheduling barriers.

wi0 wi1 wiLS-1

i0

iN-1

ibefore

i1

iafter

(b) DFO scheduling.

wi0 wi1 wiLS-1

i0

iN-1

ibefore

i1

iafter

scheduling
barriers

loop
execution

Figure 4.2: An example of scheduling barriers deployed to implement BFO
scheduling. Execution of k = k + 1; is not shown.

synchronized at the scheduling barrier. In contrast, DFO schedule does not

introduce the scheduling barrier at the loop body and thus the execution of

the loop for a work-item is not entirely interrupted. As a side effect of the

scheduling barrier, the execution for work-items before the loop is synchro-

nized at the loop entry as shown by a scheduling barrier between ibefore and

i0. Likewise, execution of the statements after the loop can only begin once

the entire execution of the loop terminates. As a consequence, the schedul-

ing barrier effectively creates four barriers at these locations: right before

the loop, the beginning of the loop body, the end of the loop body, and right

after the loop.

A boundary statement is a structure statement which includes a subregion.

Since the execution of the statement cannot be done as a whole iteratively

for work-items, the statement acts as a barrier so that the execution for the

enclosed subregion is available. In the example code in Figure 4.2, the while

statement is the boundary statement.

Figure 4.3 shows an example of code used throughout the code generation.

The code has a loop which runs conditionally by a conditional expression.

By the language definition, conditional expressions for IfStmt and LoopStmt

do not contain structure statements. For the purpose of explanation, early

30

1 i = get_local_id(0);
2 if (foo()) {
3 bar(i);
4 while(baz()) {
5 qux(i);
6 }
7 }

(a) Example region.

[S1,S2] (CompoundStmt)
 S1 (ExprStmt)
 S2 (IfStmt)
 [S3,S4] (CompoundStmt)
 S3 (ExprStmt)
 S4 (LoopStmt)
 [S5] (CompoundStmt)
 S5 (ExprStmt)

(b) AST structure of the region.

Figure 4.3: A running example for code generation.

exit and return are not allowed in any of bar(), baz(), foo() and qux().

The AST representation shows the hierarchy of the program. Snum indicates

a statement at line num in the code. As for CompoundStmt, the notation of

[S1,S2,...] is used to indicate that the compound statement has S1 and S2

and others for its children statement. Regions are treated as CompoundStmt

and thus share the same notation. Each statement has its type, which is

shown in parentheses.

Subroutine 2 subRegionFormation(Region as CompoundStmt)

 markBoundaries(Region)
 return createSubRegions(Region)

The subregion formation is done in two phases: (1) marking subregion

boundaries within a region, and (2) creating subregions between those bound-

aries. The pseudo-code for the overall process is shown in Subroutine 2. The

following subsections detail each phase.

31

4.1.1 Scheduling Boundary Creation

Subroutine 3 iterates statements in the region and marks scheduling bound-

aries for each statement. Scheduling boundaries for individual statements

are created differently according to the statement type. The CompoundStmt

marks boundaries for each statement individually in its children statements,

and the CompoundStmt is marked as containing a scheduling boundary if

one of its children statements is marked as a scheduling boundary. A loop is

marked as a scheduling boundary if it is selected for BFO scheduling, or if its

body contains a scheduling boundary. An IfStmt is marked as a scheduling

boundary if either its then- or else-statements contain a scheduling bound-

ary. All other statements are not scheduling boundaries. The existence

of scheduling boundaries is recorded in a field called hasBoundary for each

statement. Schedule preference decision by locality analysis is done for each

loop and isBFOLoop(S) in Subroutine 3 is available during the execution of

the algorithm. That is, a boundary is assumed to exist at the loop body of

a loop which prefers BFO scheduling.

Subroutine 3 markBoundaries(S)

 switch typeof S:
 case CompoundStmt:
 S.hasBoundary = false
 for every statement C in S.children:
 markBoundaries(C)
 S.hasBoundary |= C.hasBoundary
 case LoopStmt:
 markBoundaries(S.body)
 S.hasBoundary = hasBFOLoop(S) ˅ S.body.hasBoundary
 case IfStmt:
 markBoundaries(S.then)
 markBoundaries(S.else)
 S.hasBoundary = S.then.hasBoundary ˅S.else.hasBoundary
 default:
 S.hasBoundary = false

Figure 4.4(a) shows how subregion boundaries are created for the example

region. The procedure begins with calling markBoundaries in Subroutine 3

with [S1,S2] as the input which is the entire region. A region is treated as

CompoundStmt as mentioned previously. Thus, it matches with Compound-

32

markBoundaries([S1,S2]) {
 markBoundaries(S1) {
 S1.hasBoundary = False;
 }
 [S1,S2].hasBoundary |= S1.hasBoundary;
 markBoundaries(S2) {
 markBoundaries([S3,S4]) {
 markBoundaries(S3) {
 S3.hasBoundary = False;
 }
 [S3,S4].hasBoundary |= S3.hasBoundary;
 markBoundaries(S4) {
 markBoundaries([S5]) {
 markBoundaries(S5) {
 S5.hasBoundary = False;
 }
 [S5].hasBoundary = False;
 }
 S4.hasBoundary = [S5].hasBoundary | isBFOLoop(S4);
 }
 [S3,S4].hasBoundary |= S4.hasBoundary;
 }
 S2.hasBoundary = [S3,S4].hasBoundary;
 }
 [S1,S2].hasBoundary |= S2.hasBoundary;
}

(a) Execution trace of marking scheduling boundaries for the example region.

(b) Scheduling boundaries marked on
the AST of the region when the loop

prefers DFO scheduling(No
scheduling boundaries are marked).

 ❶

 ❷

 ❸

 ❹

 ❺

 ❻

 ❼

 ❽

 ❾

 ❿

[S1,S2]
 S1
 S2
 [S3,S4]
 S3
 S4
 [S5]
 S5

[S1,S2]
 S1
 ✓S2
 ✓[S3,S4]
 S3
 ✓S4 (BFO loop)
 [S5]
 S5

(c) Scheduling boundaries marked on
the AST of the region when the loop
prefers BFO scheduling(Checkmarks

(✓) represents scheduling boundaries).

✓

Figure 4.4: Scheduling barrier assignment example.

Stmt and the corresponding case iteratively checks scheduling boundaries

with its children statements. Since the type of S1 does not match with any

33

of CompoundStmt, IfStmt and LoopStmt, the execution falls into the default

case in which the statement is marked as not a boundary(¶). The recursion

finishes here and the control returns to where S1 is tested. The boundary

information of [S1,S2] is updated but the result remains unchanged(·).

Next, marking boundary for S2 follows by invoking markBoundaries subrou-

tine recursively. The type of S2 matches with IfStmt and its then- and else-

statements are individually tested if boundary exists. Similar to S1, S3 is not

declared as a boundary due to its type(¸). Thus, the boundary information

of [S3,S4] is not changed(¹). The following S4 is of LoopStmt type and the

execution deviates to the case with the matching type. The case for Loop-

Stmt type first tests if the body of the loop contains scheduling boundaries,

which is followed by checking the scheduling preference of the loop by the

locality analysis. In this example, the loop body does not contain schedul-

ing boundaries (º and »). Thus, whether S4 is a boundary is dependent

on the scheduling preference of the loop (¼). When the loop prefers DFO,

no boundary is marked and the recursion finishes as there are no scheduling

boundaries for the entire region. When BFO is chosen for the loop according

to the locality analysis, the loop statement(S4) and all of its parent state-

ments([S3,S4], S2 and [S1,S2]) are marked as boundaries(½¾¿). Final

assignment of subregion boundaries is shown in Figure 4.4(b) and (c) based

on the scheduling preference of the loop.

4.1.2 SubRegion Creation Using Boundaries

Subroutine 4 constructs subregions between the boundaries which are marked

by Subroutine 3. The procedure checks if the input statement is a boundary.

When a boundary is found, the execution deviates based on the type of the

statement. Processing for CompoundStmt starts with an empty subregion

and iterates through every statement, adding it to the subregion until a

boundary is reached. Once a boundary is reached, the subregion is added

to the subregion list for the input statement. The boundary is handled

by processing the child statement recursively. For IfStmt, the processing

recursively creates subregions for both then- and else- children. Handling

LoopStmt is done by creating subregions with its body. The return value is

S when a boundary exists, which indicates that S is a boundary statement

34

Subroutine 4 createSubRegion(S)

 if S.hasBoundary,
 switch type of S,
 case CompoundStmt:
 SubRegion = []
 for each C in S.children,
 if C.hasBoundary,
 if SubRegion is not empty,
 S.SubRegions += <SubRegion>
 SubRegion = []
 S.SubRegions += createSubRegion(C)
 else,
 SubRegion += C
 case IfStmt:
 S. SubRegions += createSubRegion(S.then)
 S. SubRegions += createSubRegion(S.else)
 case LoopStmt:
 S. SubRegions += createSubRegion(S.body)
 return S
 else,
 return <S>

with a subregion in its children. When the input does not have a boundary,

the execution of the input can be done iteratively for work-items. In this

case, the return value is <S>, where the notation of <S> represents that S is

declared as a subregion.

Figure 4.5 shows how subregions are created using the boundary informa-

tion for the example region. It shows a trace of running the algorithm for the

example region and boundary assignments based on the preferred scheduling

of the loop. The trace when the loop prefers DFO scheduling is shown in

Figure 4.5(a). In this case, there are no scheduling boundaries in the region.

As a result, the entire input region is declared as a subregion.

Figure 4.5(b) shows the trace of the subroutine when the loop in the exam-

ple region prefers BFO scheduling. First, the region has a boundary which

leads the execution to the statement-type-specific processing. The region is

treated as CompoundStmt and it checks if S1 is the source of the boundary.

SR1 collects S1 because S1 is not a boundary. The following S2 is a boundary,

which causes SR1 or S1 to be declared as a subregion(¶). The execution con-

35

createSubRegion([S1,S2]) {
 return <[S1,S2]>;
}

createSubRegion([S1,S2]) { // CompoundStmt
 SR1 += S1;
 [S1,S2].SubRegions += <[S1]>; // SR0
 [S1,S2].SubRegions +=
 createSubRegion(S2) { // IfStmt
 S2.SubRegions +=
 createSubRegion([S3,S4]) { // CompoundStmt
 SR2 += S3;
 [S3,S4].SubRegions += <[S3]>; // SR1
 [S3,S4].SubRegions +=
 createSubRegion(S4) { // LoopStmt
 S4.SubRegions +=
 createSubRegion([S5]) {
 return <[S5]>;
 }
 return S4;
 }
 return [S3,S4];
 }
 return S2;
 }
 return [S1,S2];
}

(a) Subregion formation algorithm trace when the loop prefers DFO.

 ❶

 ❷

 ❸

 ❹

 ❺

 ❻

 ❼

 ❽

 ❾

 ❿

(b) Subregion formation algorithm trace when the loop prefers BFO.

<[S1,S2]>

(c) The result of subregion formation
when the loop prefers DFO. Shaded
are subregion(s).

 S1
 S2
 [S3,S4]
 S3
 S4
 [S5]
 S5

[S1,S2]

 ✓S2
 ✓[S3,S4]

 ✓S4

 S5

✓

(d) The result of subregion formation
when the loop prefers BFO(Checkmarks
(✓) represent scheduling boundaries).
Shaded are subregions.

<S1>

<S3>

<[S5]>

Figure 4.5: An example demonstrating how subregions are created.

36

tinues recursively with the processing for S2(·). Since S2 is a boundary, the

execution finds a matching type, which is IfStmt in this case. Recursively,

subregion creation continues with then- part of S2, which is of Compound-

Stmt type(¸). Similarly to the region, S3 is declared as a subregion because

S3 is not a boundary and but S4 is(¹). According to the type of [S3,S4]

which is CompoundStmt, the execution recursively progresses with S4(º).

S4 is of LoopStmt type and the execution checks the loop body, [S5]. Since

[S5] is not a boundary, a subregion of <[S5]> is returned which is added

to SubRegions list for its parent statement, S4(»). The returned result of

processing S4 is S4(¼), which means that S4 is a boundary statement. The

returned result of a statement is added to SubRegions list for parent state-

ment of the statement, recursively(½¾¿). In doing so, [S3,S4], S2 and

[S1,S2] are identified as boundary statements. Figure 4.5(c) and (d) illus-

trate the result of the subregion formation for both DFO and BFO preferred

cases, respectively.

4.1.3 Subregion Refinement by Invariance

The idea of subregion refinement is to group statements in a subregion by in-

variance such that a different work-item loop can be assigned to each group

during code generation. The refinement is required because executing an

invariant expression multiple times due to work-items may result in an in-

correct behavior. Subroutine 5 shows pseudo-code for the refinement for the

identified subregion by Subroutine 4. Although not shown in Subroutine 4,

refineSubRegion can be easily integrated into the pseudo-code.

Subroutine 5 refineSubRegion(SR of type <S>)

 RefinedSubRegion = []
 R = []
 for each S in SR,
 if R is empty or invariance(SR) equals to invariance(S),
 R += S
 else,
 RefinedSubRegion += <R>
 R = [S]
 if R is not empty,
 RefinedSubRegion += <R>
 return RefinedSubRegion

37

int tx = get_local_id(0);
int base = 0;
for(k = 0; k < K; ++k) {
 ... = A[k*N + base + tx];
 base += delta;
}

(a) Example BFO loop and the subregion of interest.

for(k = 0; k < K; ++k) {
 for wid in LS {
 ... = A[k*N + base + wid];
 base += delta;
 }
}

(b) Incorrect code generation for the loop.

for(k = 0; k < K; ++k) {
 for wid in LS {
 ... = A[k*N + base + wid];
 }
 base += delta;
}

(c) Correct code generation for the loop.

subregion

Figure 4.6: Refinement of subregion according to invariance. (a) The body
of the loop is identified as a subregion, as the loop prefers BFO scheduling.
(b) Without refinement of the subregion, the value of a variable base

changes as the execution of the subregion progresses. (c) The refined
subregion excludes the invariant expression and produces the correct result.

Figure 4.6 shows the effect of the refinement. The identified region in

the example code has two statements. In the subregion, the first statement

is not invariant but the second statement is with respect to work-item val-

ues. The first statement requires to execute the subregion for all work-items

because the behavior of the statement is unique to each statement. The re-

quirement is fulfilled by putting a work-item loop over the region, as shown

in Figure 4.6(b). This approach, however, results in an incorrect behavior,

because the second statement should be executed for each iteration of the

kernel loop, not for work-item loop iteration. With the refinement, shown

in Figure 4.6(c), the subregion is divided into two, one for each statement

in the subregion. The execution of the first refined subregion is serialized

38

over work-items as required. The second refined subregion is invariant to

work-items and is left as it is, which produces the correct result.

4.2 Code Generation for Convergent Control Flow

The code generator mainly handles two cases: (1) boundary statement, and

(2) subregions. The boundary statement is regarded as a boundary and

the code generation assumes that there are two boundaries right before and

after the statement. Execution of subregions for work-items is meant to be

serialized, thus the resulting code is generated by creating loops iterating

over work-items around each subregion.

Subroutine 6 presents pseudo-code for code generation after the subregion

formation. The subroutine works with a top-down approach in which the

execution deviates based on the type of the input. In this section, the con-

trol expression for control statements (IfStmt and LoopStmt) is assumed to

be invariant or uniform to work-items, or convergent control flow. When

the control expression is not invariant to work-items, or equivalently diver-

gent control flow exists, the control expression evaluation and a condition to

execute the subregions is required, which will be explained in Section 4.3.

StructureStmt assumes a boundary exists at the statement. The assump-

tion enables execution of a subregion that belongs to the structure statement

for all work-items, because the execution of work-items is assumed to be done.

The assumption is to guarantee that the execution context for all work-items

is present before executing the subregion.

A CompoundStmt can have a mix of identified subregions and boundary

statements in its SubRegions list. All elements in SubRegions of the state-

ment are handled iteratively in order, as the structure statement assumes

linear control flow among its children. As for IfStmt, the control expression

is first evaluated. Based on the result, the execution of the resulting code

can fall into either the then- part or else- part, or both when the condition

expression is not invariant to work-items. Processing LoopStmt is similar to

IfStmt regarding the boundary behavior. The loop structure is created whose

execution is determined by the conditional expression. Similarly, convergent

control flow is assumed.

When the input is a subregion, code to execute the subregion is generated,

39

Subroutine 6 genCode(S)

 switch type of S,
 case CompoundStmt:
 for each SR in S.SubRegions,
 genCode(SR)
 case IfStmt:
 print “if (” + S.expr + “)”
 genCode(S.SubRegions[0])
 print “else”
 genCode(S.SubRegions[1])
 case LoopStmt:
 print “while(” + S.expr + “)”
 genCode(S.SubRegions[0])
 default:
 serialize(S)

Subroutine 7 serialize(<SR>)

 if SR is non-uniform w.r.t. work-items,
 print “for wid in LS {”
 print code of SR with
 for each Expr E in SR,
 if E is get_local_id(),
 replace E with wid
 if E is non-uniform w.r.t. work-items,
 if E is live-in or live-out,
 replace E with E[wid]
 print “}”
 else,
 print code of SR as it is

which is shown in Subroutine 7. First, invariance with respect to work-

item values is computed for the subregion to determine to wrap the code

with work-item loop or not. When a subregion is invariant to work-items,

serialization of execution of the subregion over work-items is not required.

In the opposite case, a work-item loop is required to serialize execution of

the enclosed code for work-items. As previously shown in Figure 4.6, each

subregion may have a work-item loop. During the code generation, resulting

code for the subregion is modified to correctly supply context for different

work-items. First, the work-item value is replaced with wid, the index of the

work-item loop for the region. Second, handling of live variables takes place,

40

which is explained in Subsection 4.2.1.

4.2.1 Live Variables and Stride-based Optimization

A live variable is defined as a variable whose definition and uses span multiple

subregions. When a live variable is used but not defined in a region, it is

called live-in for the region. When a live variable is defined in a region, it is

called live-out for the region. Because values for a live variable for all work-

items must coexist, live variables require scalar expansion by the dimension

of work-item space, LS.

Stride-based optimization replaces scalar expansion with linear extrapola-

tion for a live variable with a stationary stride. In particular, when values

of a live variable across work-items differ by a fixed amount, called stride,

one can extrapolate all of the values using the stride and the initial value,

called offset. In this case, scalar expansion is not required, but instead two

scalar variables are needed to deliver the stride and the offset. Definition of

the variable initializes the stride and the offset. Users of the variable need

to add the varying part determined by the work-item index value and the

stride.

Figure 4.7 shows how live variables are handled during code generation.

There are two live variables, VarA and VarB from the identified subregions.

After scalar expansion, each becomes an array with given size of LS, the

work-item dimension, which is shown in Figure 4.7(b). As previously men-

tioned, the value of get local id(0) is replaced with wid in both subregions.

VarB can be the target of the stride-based optimization. Stride analysis can

be used here again to extract the stride and the offset. Note that the stride

value can be any invariant value to the work-item loop, unlike the values

permitted for the schedule decision. In this particular case, VarB is replaced

with two variables for the stride and the offset to deliver the value associated

with the variable, VarB stride and VarB offset, respectively. When the

live variable is used, the treatment is to add a varying component from the

stride multiplied by the work-item loop index to the offset, which is shown

in Figure 4.7(c).

The obvious benefit of the stride-based optimization is that the compiler

has more information on the value of the variable and advanced optimiza-

41

int tid = get_local_id(0);
VarA = A[tid];
VarB = tid + offset;

... = VarA;
... = Array[VarB];

for wid in LS {
 int tid = wid;
 VarA[wid] = A[tid];
 VarB[wid] = tid + offset;
}

for wid in LS {
 ... = VarA[wid];
 ... = Array[VarB[wid]];
}

(a) Example subregions with two live variables of VarA and VarB.

SubRegion 1

SubRegion 2

(b) Code generation with scalar expansion for the two live variables.

for wid in LS {
 int tid = wid;
 VarA[wid] = A[tid];
 VarB_stride = 1;
 VarB_offset = offset;
}

for wid in LS {
 ... = VarA[wid];
 ... = Array[VarB_stride * wid +
 VarB_offset];
}

(c) Stride-based optimization applied for VarB.

Figure 4.7: An example to demonstrate scalar expansion for live variables
and stride-based optimization.

tion can take place based on the information, such as memory operation

vectorization when the value of the stride is one. In practice, a moderate

fraction of live variables can be factorized in this way, improving memory

performance noticeably. Moreover, the stride and offset assignments and as-

sociated computation are loop invariant to the work-item loop. Thus, further

optimizations can hoist the relevant expressions out of the loop for efficiency.

42

4.2.2 Code Generation Example

Figure 4.8 illustrates how the code generation is done for the example region.

The figure shows the result of subregion formation in two cases depending on

whether the loop prefers DFO and BFO. The shaded area in the final output

code represents subregions wrapped with work-item loops. Note that stride-

based optimization is not applied in this example, with which the definition

and uses of i can be optimized.

<[S1,S2]>

(a) Code generation when the loop prefers DFO scheduling.

 S1
 S2
 [S3,S4]
 S3
 S4
 [S5]
 S5

[S1,S2]

 ✓S2
 ✓[S3,S4]

 ✓S4

 S5

✓
<S1>

<S3>

<[S5]>

for wid in LS {
 i = wid;
 if(foo()) {
 bar(i);
 while(baz()) {
 qux(i);
 }
 }
}

for wid in LS {
 i[wid] = wid;
}
if(foo()) {
 for wid in LS {
 bar(i[wid]);
 }
 while(baz()) {
 for wid in LS {
 qux(i[wid]);
 }
 }
}

(b) Code generation when the loop prefers BFO scheduling.

Figure 4.8: Example of scheduling a non-divergent loop nested in a
non-divergent if-statement. Here, foo() and baz() are assumed work-item
independent. Shaded areas represent subregions. Checkmarks (3) represent
boundary statements.

Figure 4.8(a) shows the code generation example when DFO scheduling is

preferred for the loop. In this case, execution for work-items of the entire

region is serialized. The result of the subregion formation is <[S1,S2]>. In

43

this case, serialize shown in Subroutine 7 is called immediately after checking

the type of the input upon invoking genCode in Subroutine 6. The resulting

code thus has a work-item loop over the entire region.

Figure 4.8(b) shows the code generation example when BFO scheduling

is chosen for the loop. The subroutine takes [S1,S2] as the input, which

is a boundary statement. By the type of the statement, CompoundStmt,

the execution iterates element in SubRegions list for the statement. First,

<S1> is a subregion, thus serialize subroutine is called with it. Next, S2 is

identified as a boundary statement. Since the type of the statement is IfStmt,

the subroutine prints conditional structure with the conditional expression.

Then- part of the statement is recursively handled with the code generation,

which is [S3,S4] of CompoundStmt type. Upon iterating SubRegions for the

statement, processing <S3> generates code for serialized execution of S3. S4

is a boundary statement of LoopStmt type. The loop structure is generated,

followed by recursive code generation for its body. The loop body, S5, is

identified as a subregion. From the resulting code, it is obvious that the way

in which work-item loops are formed effectively changes the memory access

pattern that may appear in qux for DFO and BFO, respectively.

4.2.3 Discussion

One could interpret BFO scheduling as selectively introducing barrier syn-

chronizations inside loops to force work-items to synchronize after every iter-

ation so that they do not get ahead of each other in accessing memory. BFO

scheduling is analogous to the dynamic tiling optimization [28] on GPUs

where the programmer introduces synchronizations inside loops which are

not necessary for correctness but enhance performance by preventing work-

items from getting too far ahead of each other, thereby improving temporal

and spatial locality.

Another way one could interpret BFO scheduling is taking the traditional

DFO-scheduled code and optimizing it with a series of scalar expansions,

loop distributions, and loop interchanges. However, there are multiple rea-

sons why it is not always feasible to pass DFO-scheduled code to another

compiler for automatic transformation into BFO code. First, a traditional

compiler attempting to perform such an optimization would have to first con-

44

servatively prove that the loops are interchangeable. However, it cannot al-

ways be determined that there are no loop-carried dependencies across work-

item loop iterations, especially when indirect references obfuscate the loop-

dependence analysis. On the other hand, a compiler with direct access to the

OpenCL kernel has that guarantee from the programming model, so it can

make stronger assumptions without complicated loop-dependence analyses.

Second, the presence of control divergence makes a simple loop interchange

infeasible and requires much more complex transformations. Dependency

between the outer loop (work-item loop) and inner loop (kernel loop) does

not exist in the OpenCL program, but the formation of two nested loops

inherently brings dependency between the two loops, which hampers the

loop interchange feasibility in this case. For these reasons, BFO scheduling

can much more effectively be performed when work-item loops are inserted,

rather than being outsourced to loop-manipulating optimization passes by

an underlying compiler.

4.3 Code Generation for Divergent Control Flow

Control divergence arises when work-items in a work group take different

execution paths. In a schedule which only uses DFO, the multiple execution

paths for work-items are not an issue. Region boundaries are by definition

points of synchronization in the program. Since all work-items must be

active at synchronization points, it is safe to assume that work-items are

always convergent at the entry and exit points of a region. For this reason,

a loop over all work-items can be inserted around the entire region without

any concern about some work-items not being active.

On the other hand, not all work-items are guaranteed to be active at the

entry and exit points of a subregion because a subregion could be within

the body of a divergent conditional or loop. Therefore, wrapping subregions

with a work-item loop is not sufficient for BFO scheduling. Instead, control

divergence is handled by introducing a predicate array that tracks which

work-items are active. Before the subregion is executed for a particular

work-item, the predicate array must be checked for whether the work item

is active. The combination of the work-item loop with the predicate check

is denoted as a predicated work-item loop. A predicate array is created for

45

a divergent control flow and is used for children statements enclosed by a

control statement.

In order to support predication, the genCode subroutine shown in Sub-

routine 6 needs to be modified for control statements to generate predicate

when the conditional expression is not uniform to work-items. The generated

predicate value is propagated down to children statements of the boundary

statement. Also, the serialize subroutine shown in Subroutine 7 requires

changes to use predicate in order to selectively execute a subregion when

predicate array is applied.

For wid in LS {
 i = wid;
 if(foo(i)) {
 bar(i);
 while(baz()) {
 qux(i);
 }
 }
}

For wid in LS {
 i[wid] = wid;
 pred[wid] = foo(i[wid]) != 0;
 numActive += pred[wid];
}
if(numActive > 0) {
 for wid in LS {
 if(pred[wid]) {
 bar(i[wid]);
 }
 }
 while(baz()) {
 for wid in LS {
 if(pred[wid]) {
 qux(i[wid]);
 }
 }
 }
}

(b) DFO scheduling. (c) BFO scheduling.

 i = get_local_id(0);
 if(foo(i)) {
 bar(i);
 while(baz()) {
 qux(i);
 }
 }

(a) An example region.

Figure 4.9: Example of scheduling a non-divergent loop in a divergent
context using predicated work-item loops.

Control divergence can be introduced whenever there is work-item depen-

dent control flow due to conditionals or loops. Figure 4.9 illustrates the case

where a loop is guarded with a divergent conditional. The example region

shown in Figure 4.9(a) is the same code used as a running example, shown

in Figure 4.3, but the conditional expression, foo(i), is evaluated differently

for work-items. Subregions for the example code are the same as shown in

Figure 4.5, because control divergence of a boundary statement is not rele-

vant for subregion formation. DFO scheduling is done by simply wrapping

46

the entire region with a work-item loop as shown in Figure 4.9(b). How-

ever, to perform BFO scheduling, the condition evaluation must be stored

and used for executing the subregions inside the conditional via predicated

work-item loops, as shown in Figure 4.9(c).

for wid in LS {
 i[wid] = wid;
}
if(foo()) {
 for wid in LS {
 bar(i);
 }
 numActive = 0;
 for wid in LS {
 pred[wid] = baz(i) != 0;
 numActive += pred[wid];
 }
 while(numActive > 0) {
 numActive = 0;
 for wid in LS {
 if (pred[wid]) {
 qux(i);
 pred[wid] = baz(i) != 0;
 numActive += pred[wid];
 }
 }
 }
}

i = get_local_id(0);
if (foo()) {
 bar(i);
 while(baz(i)) {
 qux(i);
 }
}

(a) An example region.

For wid in LS {
 i = wid;
 if (foo()) {
 bar(i);
 while(baz(i)) {
 qux(i);
 }
 }
}

(b) DFO scheduling. (c) BFO scheduling.

Figure 4.10: Example of scheduling a divergent loop.

Figure 4.10(a) illustrates the case where a loop is control flow divergent be-

cause the loop condition, baz(i), is dependent on the work-item id. Again,

this code is similar to the running example shown in Figure 4.3, sharing the

same subregion formation result, but the loop condition expression is evalu-

ated differently for work-items. The DFO code still follows the same strategy

as shown in Figure 4.10(b). The BFO code is shown in Figure 4.10(c). In

addition to storing a predicate array and using predicated work-item loops

to wrap subregions, the total number of active work-items is also maintained

at all iterations to know when the loop must terminate.

47

4.4 Vectorization

for wid in LS {
 if(pred[wid]) {
 ...
 }
}

(a) Predicated work-item loop.

if(numActive == LS) {
 strip-mined work-item loop
} else {
 predicated work-item loop
}
 (b) Vectorization of predicated work-item loop.

Figure 4.11: Vectorization based on runtime convergence checking.

BFO scheduling enables vectorization opportunity via strip-mining of the

work-item loops. Work-item loops provide an ideal condition for vectoriza-

tion, as they are canonical loops by definition; at the same time they do

not have any loop-carried dependence. Canonical loops use a single primary

loop induction variable whose value is incremented by one at the end of the

loop. Work-item loops are meant to serialize originally parallel execution,

hence no loop-carried dependence. However, predicated work-item loops are

difficult to vectorize because of the loop-dependent conditional surrounding

the body of the loop. For this reason, the prototype tool statically gener-

ates two versions of the code and selects between them dynamically based

on a runtime divergence check. The first version uses a regular strip-mined

work-item loop that is selected when all work-items in the work-group are

active. The second version is a serial predicated work-item loop that the ex-

ecution falls back on when not all work-items are active. The resulting code

is shown in Figure 4.11. A similar technique was employed in [34] and [38].

In some cases, vectorization can be improved using control-flow to data-flow

conversion techniques such as those employed in [5] and [39].

48

CHAPTER 5

EVALUATION OF PROPOSED
SCHEDULING

The performance of the proposed compiler with locality-centric scheduling is

evaluated in this chapter. I demonstrate that locality-centric scheduling is

able to consistently select the schedule having fewer data cache misses. Next,

comparison of the prototype implementation with other OpenCL implemen-

tations from the industry is presented to demonstrate the overall perfor-

mance of the technique. The result shows that the proposed implementation

achieves substantial improvements on both memory hierarchy efficiency and

performance. Compared to the two state-of-the-art industry OpenCL stacks

from AMD and Intel, the prototype implementation achieves reduced num-

ber of L1 data cache misses by 9.81× and 3.35×, and speedup of 3.32× and

1.71×, respectively.

5.1 Experimental Setup

The proposed compilation approach is implemented as an extension of the

Clang compiler framework. An AST-level source-to-source translator takes

OpenCL code and emits C code. Vectorization is performed by annotat-

ing work-item loops without enclosed structured control flow with #pragma

simd pragmas. Note that the pragma is not a suggestion but a command for

vectorization. The pragma therefore must be carefully used, and thus the

pragma is applied to work-item loops without control flow inside to avoid

unwanted side effect from vectorizing code with control flow. The final ma-

chine binary is assembled using the Intel C Compiler (ICC), version 14.0.1.

The same compiler is used for building all benchmarks. For work-group dis-

tribution, Intel’s TBB [26] is used to exploit work stealing for efficient load

balancing.

The evaluation platform consists of an Intel i7-3820 processor running at

49

3.6GHz, having 4 cores with hyperthreading enabled. With the vectorization

turned on, AVX instruction which is 256-bit wide can be used and executed

on the CPU. The memory hierarchy includes 32KiB L1 private data caches,

10MiB shared last-level cache, and 16GiB of DDR3 DRAM with dual chan-

nel configuration. The system is running 64-bit Debian Jessie distribution.

A PMU-based performance monitoring library, perfmon2 [40], is used for

collecting performance counters throughout.

The industry implementations we compare against are AMD’s [13] and In-

tel’s [18] OpenCL compilers. The driver versions used are 1445.5 and 1.2.0.8,

respectively.

Throughout the experiments section, data are normalized against the ap-

proach scoring highest for the metric under study as opposed to a common

baseline. The reason for doing so is that if a single baseline is taken, the

values for locality and speedup could span three to four orders of magnitude

(0.01× to 10×) which is difficult to plot on a single axis. This normalization

methodology makes the graph more readable and makes better use of the

space than log plots.

5.2 Benchmarks

Eighteen benchmarks from the Parboil [41] and Rodinia [35] benchmark

suites were selected for evaluation. The benchmarks selected are those hav-

ing loops which are completely contained within a code region such that the

proposed technique is applicable. The remaining benchmarks are not rele-

vant because they either do not contain loops within regions, or the loops

have short constant trip counts such that they disappear after unrolling.

Table 5.1 lists the benchmarks evaluated and the abbreviations used through-

out this chapter for each. Each benchmark is executed ten times for eval-

uation of the average execution time and associated performance counters.

Three benchmarks (hst, lkct, and mrig) have device functions in the dom-

inant loops. These functions are manually inlined to focus the comparison

with AMD and Intel on locality, since their compilers seem to inline device

functions while our framework does not currently support that.

50

Table 5.1: Evaluated benchmarks from Parboil and Rodinia benchmark
suites with abbreviations used.

Benchmark Abbreviation Description
cutcp ctcp Computing short-range electrostatic potentials

heartwall hw Movement tracking of a mouse heart over a sequence ultrasound images
histo hst Histogram

kmeans kmns Clustering algorithm used extensively in data-mining

lavaMD lmd
Particle potential and relocation due to mutual forces between particles

within a large 3D space
leukocyte lkct Rolling leukocytes tracking in vivo video microscopy

lud lud LU decomposition

mri-gridding mrig
A non-uniform input data in 3-D space mapping onto a regular 3-D grid of

the same space
mri-q mriq 3D MRI reconstruction algorithm in non-Cartesian space.
nw nw Needleman-Wunsch algorithm

parboil’s bfs pbfs Queue-based breadth first search

particlefilter pf
Statistical estimator of the location of a target object given noisy

measurements of that target’s location and an idea of the object’s path
rodinia’s bfs rbfs Read-based breadth first search

sad sad Sum of absolute difference
sgemm sgm Generalized matrix-matrix multiplication in single precision
spmv spmv Sparse matrix-vector multiplication

streamcluster sc
Finding predetermined number of medians so that each point is assigned to

its nearest center
tpacf tpcf Two-point angular correlation function

5.3 Impact of Scheduling on Locality

Figure 5.1 compares the number of L1 data cache misses (lower is better)

of DFO, BFO, and LC scheduling. The values for each benchmark are nor-

malized to the policy having the highest (worst) number of misses. The

benchmarks are categorized according to the schedule (DFO or BFO) having

better performance and sorted in decreasing order of LC’s relative perfor-

mance.

The graph shows that 13 benchmarks have better locality with BFO schedul-

ing and 5 are better with DFO. Moreover, it shows that LC scheduling con-

sistently selects the correct schedule, achieving geomean reductions in L1

data cache misses of 5.72× and 1.29× over DFO and BFO respectively. Be-

cause different loops can receive different schedules, the results of adaptive

scheduling for sad and hw are better than a fixed scheduling of DFO or

BFO, because the benchmarks have multiple loops with different scheduling

preference. Nested loops can also benefit from the individual scheduling,

as depicted by tpcf which has a BFO-preferred loop at the outermost for

doubly-nested loops. Thus, neither DFO nor BFO can exploit the best data

locality for sad, hw and tpcf. In case of lmd, two loops in the kernel are ana-

51

0

0.2

0.4

0.6

0.8

1

sgm ctcp mrig tpcf sc hw kmns hst mriq nw spmv lkct ludL
1

da
ta

 c
ac

he
 lo

ad
 m

is
se

s
(n

or
m

al
iz

ed
 to

 w
or

st
)

DFO BFO LC

(a) BFO preferred benchmarks.

0

0.2

0.4

0.6

0.8

1

pf sad pbfs rbfs lmdL
1

da
ta

 c
ac

he
 lo

ad
 m

is
se

s
(n

or
m

al
iz

ed
 to

 w
or

st
)

DFO BFO LC

(b) DFO preferred benchmarks.

Figure 5.1: Locality comparison of DFO, BFO, and locality-centric (LC)
scheduling. Results are normalized to the worst performing schedule. LC
has geomean reduction in L1 data cache misses of 5.72× and 1.29× over
DFO and BFO respectively.

lyzed as BFO-preferred but the decision is worse than DFO schedule, because

the BFO schedule necessitates scalar expansion of associated variables along

with predicated work-item loop due to a control divergence, while the loop

trip count is not large enough to amortize the cost. Since the two loops are

not the most significant in execution time and data locality, the end result is

worse than DFO schedule, which is optimal but better than BFO schedule.

Table 5.2 shows the schedule decision result for the benchmarks. Interest-

ingly, most of the benchmarks have skewed statistics toward one or the other

schedule. An exception is lmd, which is equal for both schedules and DFO is

chosen as a tie-breaker (Chapter 4). It also shows that most loops have only

a few memory operations, where the median is 4.

52

Table 5.2: Relevant benchmarks from Parboil and Rodinia benchmark
suites with classification of the memory accesses in the most significant
loop.

Name Neutral DFO BFO
W0L0 W1L1 WXLX Total W1L0 WXL0 WXL1 Total W0L1 W0LX W1LX Total

cfd 15 5 20 4 4
ctcp 4 4
fft 2 2 6 6
hw 2 2
hst 4 4

kmns 2 2 4
lmd 11 11 11 11
lkct 2 2
lud 1 1 2

mrig 9 9
mriq 5 5
nw 2 2

pbfs 2 2 1 1
pf 2 3 5 2 2

rbfs 3 3 4 1 5
sad 1 1 1 1
sgm 1 1 2

spmv 1 1 1 2 3
sc 2 2 4

tpcf 3 3 3 3

The conclusions drawn from this experiment are:

• Current state-of-the-art work-item scheduling techniques (i.e., DFO)

yields suboptimal data locality behavior (Chapter 2).

• A single scheduling technique (whether DFO or BFO) will not always

result in the best locality, thereby necessitating that scheduling be

locality-aware.

• Our locality-centric scheduling is successful at choosing the schedule,

resulting in better locality in most cases.

5.4 Locality Comparison with Industry

Implementations

Figure 5.2 compares the number of L1 data cache misses (lower is better) of

AMD, Intel, and LC. The values for each benchmark are normalized to the

approach having the highest (worst) number of misses. The benchmarks are

sorted in increasing order of LC’s relative performance.

53

0

0.2

0.4

0.6

0.8

1

sgm ctcp tpcf mrig lkct sc lmd kmns hw hst

L
1

da
ta

 c
ac

he
 m

is
se

s
(n

or
m

al
iz

ed
 to

 w
or

st
)

AMD Intel LC

0

0.2

0.4

0.6

0.8

1

pf lud mriq nw spmv sad pbfs rbfs geomean

L
1

da
ta

 c
ac

he
 m

is
se

s
(n

or
m

al
iz

ed
 to

 w
or

st
)

Figure 5.2: Locality comparison of AMD, Intel, and LC compilation
approaches. Results are normalized to the worst performing tool. LC has
geomean reduction in L1 data cache misses of 9.81× and 3.35× over AMD
and Intel respectively.

The graph shows that our locality-centric scheduling achieves locality re-

sults which are consistently better than or as good as that of AMD’s and

Intel’s implementations. The missing hw datapoint for Intel is because Intel’s

compiler crashed when compiling this benchmark. LC scheduling was able

to achieve geomean reductions in L1 data cache misses of 9.81× over AMD

and 3.35× over Intel.

The conclusions drawn from this experiment are:

• Industry implementations of current state-of-the-art work-item schedul-

ing yield suboptimal data locality behavior.

• Our locality-centric scheduling achieves better data locality on average

than current industry implementations.

On a side note, we observe that AMD’s locality results are significantly

worse than Intel’s and LC’s, even for cases where DFO is better for locality,

which is demonstrated with the result of pf as a clear example. The poor

data locality of AMD is due to the overhead of replicating variables for all

work-items regardless, even when variables are uniform. The result of pf

54

reveals a fundamental limitation in AMD’s user-level threads technique in

working set management and data locality [13].

5.5 Performance Comparison with Industry

Implementations

Figure 5.3 compares the relative performance (inverse of time, higher is bet-

ter) of AMD, Intel, and LC. Since AMD does not seem to vectorize across

work-items while Intel does, the result also includes performance results for a

vectorized and non-vectorized version of LC to isolate the impact of locality

for fair comparison with both. The values for each benchmark are normal-

ized to the best performing tool. The benchmarks are sorted in alphabetical

order.

0

0.2

0.4

0.6

0.8

1

ctcp hst hw kmns lkct lmd lud mrig mriq nw

Sp
ee

du
p

(n
or

m
al

iz
ed

 to
 fa

st
es

t)

AMD Intel LC (no vec.) LC

0

0.2

0.4

0.6

0.8

1

pbfs pf rbfs sad sc sgm spmv tpcf geomean

Sp
ee

du
p

(n
or

m
al

iz
ed

 to
 fa

st
es

t)

Figure 5.3: Performance comparison with AMD and Intel. Results are
normalized to the faster tool. LC achieves a geomean speedup of 3.32× and
1.71× over AMD and Intel, respectively.

The graph shows that the proposed OpenCL implementation for CPUs

with locality-centric scheduling achieves significant speedups over AMD and

Intel. LC outperforms AMD in most benchmarks and achieves geomean

55

speedups of 2.01× and 3.32× over AMD for the non-vectorized and vectorized

versions respectively. In comparison to Intel, one factor that impacts the

performance comparison is that LC and Intel adopt different vectorization

strategies [34]. Intel’s OpenCL vectorization is left turned on, which is the

default behavior. However, LC with vectorization turned off is still able

to match Intel’s implementation with vectorization turned on, achieving a

geomean speedup of 1.04×. This reflects the importance of locality-centric

scheduling in enhancing performance. LC achieves a geomean speedup of

1.71× over Intel with vectorization.

The LC performance of lud, sad and mriq is worse than Intel though their

locality behavior is superior with LC. In particular, LC cannot determine a

better schedule for lud as the numbers of BFO and DFO preferred memory

operations are the same. Moreover, the loop trip counts for both the kernel

loop and work-item loop are small, 16 for both. In this situation, LC chooses

BFO but its overhead stands out, without definitive benefit from locality. As

for sad and mriq, the disparity is due to the difference in code generation,

particularly dealing with control divergence when BFO-preferred loops exist.

Intel’s approach would produce machine code for predication [34], while the

emitted C code from LC cannot exploit the rich feature of the native instruc-

tion set. When the inefficient code is matched with relatively low loop trip

count, the cost to implement the BFO schedule is exposed as overhead.

The conclusions drawn from this experiment are:

• Our OpenCL implementation with locality-centric scheduling meets in-

dustry performance standards and outperforms state-of-the-art indus-

try implementations in most cases.

Table 5.3 summarizes the comparison between our approach and the other

industry implementations for L1 data cache misses, speedup, and other met-

rics. The comparison shows that the locality-centric schedule brings positive

impact throughout the memory system.

Table 5.4 compares the ratio of overall speedup and number of instruction

counts for both non-vectorized and vectorized code for work-item execution.

AMD uses a user-level thread for each work-item, which serializes the exe-

cution work-item. LC without vectorized code emits scalar operations only.

Thus, the two mainly differ in the work-item loop arrangement with slight

advantage to LC due to less overhead of user-level thread management. A

56

Table 5.3: Geomeans summarizing the comparison of locality-centric
scheduling with industry implementations.

Metric LC/AMD LC/Intel

Speedup 3.32x 1.71x

L1 Data Cache Misses 0.10x 0.30x

Data TLB Misses 0.26x 0.33x

LLC Misses 0.92x 0.77x

Table 5.4: Ratio of speedup to instruction counts.

Metric
LC(no vec)/AMD
(not vectorized)

LC/Intel
(vectorized)

Speedup 2.01 1.71

Instruction counts 0.80 0.98

similar comparison can be made for the vectorized implementation pair be-

tween Intel and LC with vectorization turned on. In both cases, LC executes

a comparable number of instructions, but the speedups are far more than

the sole benefit from the reduced instruction counts. For that, data locality

must have played a critical role for the performance.

57

CHAPTER 6

EVALUATION WITH BLAS KERNELS

This chapter evaluates the performance of the proposed compiler in the con-

text of performance portability. We pick three well-understood kernels from

BLAS, one for each level. They are saxpy, sgemv and sgemm. The selected

kernels are written in OpenCL and their performance using the prototype

OpenCL compiler is compared to the highly optimized counterpart for CPU,

Intel MKL [42]. The goal of this experiment is to more rigorously evaluate

the approach. A better judgment on portable performance can be made by

comparing against well known algorithms with highly hand-optimized imple-

mentations, instead of a comparison to the performance of arbitrarily written

code for indigenous algorithms.

The proposed approach achieves 98.3%, 85.2% and 76.1% of Intel MKL

performance for saxpy, sgemv and sgemm, respectively, when combined with

tiling and work-group resizing. On top of locality-centric scheduling, re-

source management is identified as an important optimization, which can be

improved via tiling of loops and work-group size adjustment. I argue and

show that the locality-centric scheduling lays a foundation to implement the

resource management optimizations, which enables portable performance.

The rest of this chapter shows performance evaluation and analyzes how the

aforementioned techniques achieve the performance.

6.1 BLAS-1: SAXPY

Figure 6.1 shows saxpy code in OpenCL for the experiment. The code for

each work-item consumes two elements to produce one output. It has stream-

lined control flow and the vectorized work-item loop would yield good per-

formance for CPU. The work-group size is set to 512, which is borrowed from

the GPU programming which achieves 100% occupancy.

58

__kernel void saxpy(
 __global float *y, const __global float *x, float a) {
 int i = get_global_id(0);
 y[i] = a*x[i] + y[i];
}

Figure 6.1: OpenCL implementation for saxpy.

The performance result is drawn in Figure 6.2 which compares the per-

formance over exponentially increasing workload sizes. Both LC and Intel’s

OpenCL implementations show good and stable performance compared to

MKL for all inputs. This is ultimately memory bandwidth bounded and

there is not much variation in code generation. As such, all three perform

similarly with a sizable input. The performance gap between OpenCL and

Intel MKL at smaller input sizes is due to instruction overhead in order to

launch the kernel, which is amortized with larger inputs.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

16M 32M 64M 128M 256M

G
F

lo
ps

LC Intel MKL
peak

Figure 6.2: Performance of saxpy using the proposed method(LC), Intel’s
OpenCL stack and Intel MKL implementations.

6.2 BLAS-2: SGEMV

Code listing for sgemv is shown in Figure 6.3. The implementation has one

loop for dot product and the result is stored back to its own location per

work-item. The implementation assumes column-major order data layout.

The work-group size is set to 512 for this experiment. The proposed compiler

selects BFO for the kernel loop.

59

__kernel void sgemv(__global float * y,
 const __global float * A,
 const __global float * x,
 float alpha, float beta,
 int nRows, int nCols) {
 int r = get_global_id(0);
 if (r < nRows) {
 float result = 0.f;
 for (int c = 0; c < nCols; c++) {
 result += A[nRows*c+r]*x[c];
 }
 y[r] = alpha*result + beta*y[r];
 }
}

Figure 6.3: OpenCL implementation for sgemv.

The performance result is presented in Figure 6.4. Increasing sizes of

square matrices are used which are shown on the x-axis of the figure. The

performance trend of Intel MKL demonstrates stable results across the board,

while the two OpenCL stacks tend to perform better when the input size is

small, due to the fact that a large fraction of input is cached. When in-

put size gets large, the proposed approach of LC shows 85% of Intel MKL

performance. The Intel OpenCL stack only obtains 25% of Intel MKL perfor-

mance when a large input is given. The higher performance of the proposed

approach is due to the BFO schedule of the loop, which is preferred schedul-

ing for data locality. The result reaffirms the importance of locality-centric

scheduling.

6.2.1 Work-group Size Adjustment

In this subsection, the impact of work-group size adjustment is detailed using

sgemv. BFO schedule with muldimensional data can benefit from a large

work-group size due to reduced number of data TLB miss counts.

Figure 6.5 illustrates the work-group size and its impact on data TLB miss

counts in the sgemv kernel. The figure shows a mapping of work-groups to

process the input matrix for sgemv. In the figure, it is assumed that there

are four CPU cores and the tall input matrix can be processed with four

work-groups, shown in Figure 6.5(a). The dot product loop in the kernel of

60

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1K x 1K 2K x 2K 4K x 4K 8K x 8K 16K x 16K 32K x 32K

G
F

lo
ps

LC Intel MKL

Figure 6.4: Performance of sgemv using the proposed method(LC), Intel’s
OpenCL stack and Intel MKL implementations.

sgemv iterates through columns in a row, and due to BFO schedule all work-

items make similar traversal. Provided that the progress of each work-group

on each core is similar, the overall number of different data pages accessed

is four. With a fat matrix as an input, shown in Figure 6.5(b), eight work-

groups are required to process the input. Since there are four CPU cores,

the processing takes two rounds of four work-groups at a time. With this

work-group assignment, the number of different data pages accessed is double

that of the case for the tall matrix. As a consequence, the fat and wide input

occurs for as many as twice the data TLB miss counts when the input is large,

yielding lower performance although the amount of work is comparable for

both. The data TLB miss rate changes exponentially from 0.01% for the

smallest input to 4.32% for the largest input when the work-group size is

256. Other work-group sizes show similar trends.

Figure 6.6 shows the performance of the sgemv kernel for varying shapes of

input. The number of elements in the matrix is fixed with 256 Mi elements,

but the shape of the input changes from skinny tall matrix of 1 Ki × 256 Ki

to fat short matrix of 256 Ki × 1 Ki. The work-group sizes tested are 128,

256, 512 and 1024. Intel OpenCL stack results are only shown with 1024

work-items because others behave similarly and are omitted for brevity.

The performance of LC is high when the ratio of the number of work-groups

to the number of cores is close to one, which matches or outperforms the

performance of Intel MKL. In this particular example, the ratio is determined

by nCols divided by the work-group size which is further divided by the

61

WG0

WG0 WG1 WG2 WG3

Row

Row

C
ol

um
n

C
ol

um
n

(a) A tall matrix being processed with four work-groups mapped on four cores.

(b) A fat matrix being processed with eight work-groups mapped on four cores.

page

WG4 WG5 WG6 WG7 WG1 WG2 WG3

Figure 6.5: The impact of varying shape and work-group size to data TLB
miss counts. The figure assumes that there are four physical CPU cores
available. The tall matrix in (a) can be processed with four work-groups,
while the fat matrix in (b) requires eight work-groups for the same
work-group size. The number of data TLB miss counts is double with the
latter case.

number of cores. For instance, an input matrix of 1K columns has the ratio

of one when the work-group size is 256 with four cores. The high performance

achieved when the ratio is close to one can be explained by the low data TLB

miss counts as previously discussed. The performance gets saturated when

large input is used due to data TLB misses. The larger work-group size

entails fewer data TLB misses, yielding higher performance. When the ratio

is too small, CPU cores are underutilized, thus performance suffers.

6.3 BLAS-3: SGEMM

In this section, sgemm performance is measured and analyzed. Figure 6.7

lists the OpenCL code used in this experiment. The kernel loop prefers BFO

62

0
2
4
6
8

10
12
14
16

nRows 256K 128K 64K 32K 16K 8K 4K 2K 1K

nCols 1K 2K 4K 8K 16K 32K 64K 128K 256K

G
F

lo
ps

LC(128) LC(256) LC(512)
LC(1024) Intel(1024) MKL

Figure 6.6: Performance of sgemv using the proposed method (LC), Intel’s
OpenCL stack and Intel MKL implementations with varying shapes of
input. Different work-group sizes are used for OpenCL stacks.

schedule for both dimensions of x and y, which is explained later in this

section.

__kernel void sgemmNT(__global const float *A, int lda,
 __global const float *B, int ldb,
 __global float* C, int ldc,
 int k, float alpha, float beta) {
 float c = 0.0f;
 int m = get_global_id(0);
 int n = get_global_id(1);
 for (int i = 0; i < k; ++i) {
 float a = A[m + i * lda];
 float b = B[n + i * ldb];
 c += a * b;
 }
 C[m+ldc*n] = C[m+ldc*n] * beta + alpha * c;
}

Figure 6.7: OpenCL implementation for sgemm.

Figure 6.8 illustrates the performance result for sgemm. The work-group

size is 32x32. The performance trend of MKL reaches up to 70% of the peak

throughput. LC steadily achieves about 44 GFlops, or equivalently 30% of

MKL performance. Intel’s OpenCL stack shows decreasing performance from

7% down to 0.8% of MKL performance as input size grows. Again, its data-

locality-oblivious schedule hampers performance, which worses gradually as

63

0

50

100

150

200

250

1K x 1K 2K x 2K 4K x 4K

G
F

lo
ps

LC Intel MKL

peak

Figure 6.8: Performance of sgemm using the proposed method, Intel’s
OpenCL and Intel MKL implementations.

it deals with a larger working set. Though the proposed compiler yields much

higher performance compared to Intel’s OpenCL stack up to 37.5× speedup,

its relative performance to carefully crafted code is yet to be analyzed and

improved.

6.3.1 Tiling and Work-group Size Optimizations

BLAS is core computation for many mathematical libraries and its perfor-

mance is continuously monitored and upgraded due to its importance. Prod-

ucts like Intel’s MKL and open source efforts such as OpenBLAS [43] there-

fore incorporate several techniques and strategies in pursuit of ultimate per-

formance. While full details of such an implementation are beyond the scope

of this dissertation, a simplified program structure can be used to analyze

missing pieces toward desirable performance.

Figure 6.9 shows how subregions are formed for the loop in sgemm. The

kernel loop uses x and y dimensions, which are represented as 0 and 1 in call-

ing get global id index function. The loop prefers BFO schedule for both

of the dimensions, as shown in Figure 6.9(a). Since each expression in the

subregion has a distinct schedule, presented in Figure 6.9(b), refineSubRe-

gion in the code generation algorithm shown in Chapter 4 will decompose the

subregion of the loop body into three subregions. Figure 6.9(c) shows how

the subregion of the loop body is divided into multiple refined subregions by

invariance of expression statements in the subregion. The three subregions

64

Expression Statement
invariant to

x-dimension?
invariant to

y-dimension?
Work-item loop

dimension
float a = A[m + i*lda]; no yes x

float b = B[n + i*ldb]; yes no y

c += a * b; no no xy

(a) Memory access pattern classification and preferred schedule.

float a[LS_x];
float b[LS_y];

// subregion 1 - load(A, LS_x)
for wid_x in LS_x,
 a[wid_x] = A[wid_x + offset_wid_x + i*lda];

// subregion 2 – load(B, LS_y)
for wid_y in LS_y,
 b[wid_y] = B[wid_y + offset_wid_y + i*ldb];

// subregion 3 – compute(LS_x, LS_y)
for wid_y in LS_y,
 for wid_x in LS_x,
 c[wid_y][wid_x] += a[wid_x] * b[wid_y];

(c) Subregion refinement and code generation for the resulting subregions.

Expression Statement
Memory access pattern classification

x-dimension y-dimension

float a = A[m + i*lda]; W1LX(BFO) W0LX(BFO)

float b = B[n + i*ldb]; W0LX(BFO) W1LX(BFO)

(b) Invariance analysis result for the subregion.

Figure 6.9: Subregion formation for the kernel loop in sgemm after
refinement of the original subregion. After the refinement, a and b become
live variables and thus scalar expanded with their corresponding dimension
size. The code generation also reflects the invariance so that it only
subscribes relevant dimensions in generating work-item loops.

can be represented as load(A), load(B) and compute, respectively, as shown

in the comments.

Figure 6.10 illustrates a simplified program structure of high-performance

sgemm [44] and the generated code by the proposed approach. It highlights

the loop structure and tiling strategy, which are core structures for working

set control. Subroutine load performs loading a tile of a designated size

from a matrix and compute performs series of multiplication and addition,

as similarly annotated in Figure 6.9. The argument specifies dimension of

65

tile or amount of computation load.

TB

C += A

TA

+= B

parallel for each chunk of bM*K in A,
 for (ls = 0; ls < K; ls += bK) {
 load(B, N, bK); // loads TB
 for (is = 0; is < M; is += bM) {
 load(A, bM, bK); // loads TA
 compute(bM, bN, bK);
 }
 }

bK
N

bM

(a) Decomposition of sgemm in a high-performance implementation.

(b) Simplified version of high-performance sgemm code.

Figure 6.10: Analysis of high-performance sgemm.

The decomposition shows that the optimized program loads the entire tile

TB from matrix B, which is repeatedly multiplied with tiles from matrix

A, denoted as TA. The output is accumulated in matrix C. The tile sizes

are tuned to utilize cache memory at its best per the actual device the pro-

gram is running on. On the test machine environment, the tile sizes are

384x768 or 295 KiB and 4096x384 or 1.5 MiB, respectively for TA and TB.

As for compute, the implementation is hand-optimized to a great degree for

instruction throughput, although the detail is not shown. The tile sizes and

subroutine for moving data are also aligned with assumptions for compute

such as alignment requirement in order to guarantee safety of using vector

intrinsics.

Comparing the code generated by the prototype compiler to the highly

tuned code reveals three suboptimal features. First, the loop arrangement

is oblivious to cache memory hierarchy. The size of TB in Figure 6.10 is

intentionally chosen to be large so as to exploit L2 and L3 caches in the target

machine, which are 256 KiB per core and 10 MiB per chip, respectively. Such

consideration is not incorporated with the OpenCL output code. Second,

the loop arrangement results in too small working set compared to the high

performance version. Input tile sizes for both matrices are LS x and LS y,

66

which is 128 bytes for each, as both variables are set to 16, which are initially

borrowed from GPU program. Using the value as it is entails significantly

smaller working set than what its counterpart uses. The consequence of

the small working set is that the program frequently brings uncached data

from memory, and at the same time a large fraction of cache memory is left

unused. Third, the code uses a less optimized code sequence. Vectorization

in particular is not easily deployed, from having to check legality at compile

time and/or runtime such as alignment and recurrence.

for (k = 0; k < K; k+=SK) {
 load(A, LS_x, 1);
 load(B, LS_y, 1);
 compute(LS_x, LS_y, 1);
}

(a) Simplified version of the compiler generated code.

for (k = 0; k < K; k+=TK) {
 for (y = 0; y < LS_y; y+=TY) {
 for (x = 0; x < LS_x; x+=TX) {
 load(A, TX, TK);
 load(B, TY, TK);
 compute(TX, TY, TK);
 }
 }
}

(c) Tiled version of the generated code.

+= A B C

(b) Illustration of the tiling configuration for the compiler generated code.

+= A B C

(d) Illustration of the tiling configuration of the tiled code.

TK

TK

TB
TA

Figure 6.11: Tiling transformation for the proposed code.

Figure 6.11 compares the LC generated code and a tiled version of the

code to reflect the desired change with the analysis. Figure 6.11(a) shows

67

the simplified result of the generated code, where Figure 6.11(b) illustrates

the tiling configuration of the code. In Figure 6.11(c), tiling is applied for

both work-item loop and kernel loop to construct efficient instruction se-

quence and increased data reuse by exploiting larger working set. Similarly,

Figure 6.11(d) shows the tiling configuration of the code. Note that variables

of a and b in the input code need to be expanded with two dimensions of TK

and corresponding work-item dimension. Tiling factor for work-item loops,

denoted as TX and TY for x- and y- dimension respectively, can be picked

from a few candidates determined by the vector instruction data path width,

cache line size and work-group size which is often less than or equal to 512.

The difficulty with automating this transformation in the compiler should

be moderate, as work-item loop carries good properties for loop transforma-

tions (Chapter 4), though selecting a good tiling factor of TX, TY and TK

at compile time requires empirical study or a heuristic. Also note that now

the loop trip counts for the inner loops are all constant, which provides rich

information to the compiler in order to generate an optimized instruction

sequence. For the final output generation, the inner loops of the work-item

loops are annotated with #pragma ivdep to indicate no loop-carried depen-

dency exists.

0

20

40

60

80

100

120

140

160

180

32 32 32 64 64 64 128 128 128

32 64 128 32 64 128 32 64 128

G
F

lo
ps

baseline 32x32x1 32x32x2 32x32x4
32x32x8 GPU-opt. MKL

Figure 6.12: Performance of sgemm optimized with tiling over varying
work-group sizes. Two rows in the x-axis represent y and x dimensions,
respectively.

68

Figure 6.12 shows that enhanced instruction sequence and larger working

set can improve the performance. Baseline performance is obtained from

the proposed compiler generated output. TX × TY × TK in the legend

represents blocking factor for work-item loops of x-dimension, y-dimension

and kernel loop, respectively. The tiled kernel shows significant speedups

across the board, ranging from 1.22× to 2.03× for varying TK values over

the baseline. Particularly, the kernel loop tiling not only changes working

set footprint, but allows more freedom to schedule closely related instruc-

tions for instruction throughput. Tiling factor of 8 or more for the kernel

loop demonstrates saturated performance trend, potentially due to register

spilling from too many live variables during code generation. Bigger work-

group size in general yields greater performance result, which is also likely

saturated around 64x128 and higher. Changing work-group size alone does

not guarantee the speedup as witnessed from the baseline. The combined

compiler optimization and work-group resizing achieve 128 GFlops from the

best tiling combination and work-group size, achieving 76% of MKL perfor-

mance. The compiler solution alone achieves 1.8× speedup, or equivalently

50% of MKL performance.

The GPU-optimized kernel performs 53 GFlops when the work-group size

is 32x32. The fixed tiling parameters for the kernel allow little space for

optimizations. Though the performance is higher than the baseline, the

fixed tiling parameters do not allow room to change work-group sizes in both

dimensions, thus only one data point is shown.

6.4 Summary

In summary, the conclusions drawn from this chapter are:

• Processing multidimensional data commonly involves the data locality

issue, with respect to which the proposed compiler outperforms the

conventional approach.

• Work-group size can have a significant impact on data TLB miss counts

and must be incorporated into designing an OpenCL compiler for CPU.

• It is desirable to incorporate tiling optimization into the compiler frame-

work to improve working set management and instruction throughput.

69

• Combined with work-group size adjustment and tiling optimizations,

the proposed approach provides evidence for performance portability

using OpenCL programs on CPU, achieving near optimal performance

for saxpy and up to 85.2% and 76.1% of Intel MKL performance for

sgemv and sgemm, respectively.

70

CHAPTER 7

RUNTIME-BASED SCHEDULING
SELECTION

7.1 Motivation

Compilers for performance-sensitive applications are carefully designed. An

optimizing compiler must incorporate a good combination among available

analyses and transformations so as to extract the most performance out of the

target platform. Typically, transformations often involve a decision making

that can have from trivial to substantial consequences for performance. For

instance, an incorrectly picked locality-centric schedule for sgemm would yield

disastrous results of more than an order of magnitude speed difference, as

shown in Chapter 5.

When it comes to making a decision for transformations, a compiler must

choose a better option over others. This relative comparison is based on

measurable quantity on a specific property. In case of the locality-centric

schedule, the metric is strideness of memory accesses, reflecting how cache

memory works. This is an approximation of the real hardware in a very

simplified form, or modeling. The virtue of using models in the decision

making is that it usually deals with a few critical factors and quickly returns

a reasonable answer based on them. A typical optimizing compiler chain

is composed of dozens of passes, and the number of potential optimized

outcomes is exponential if each pass carries its own decision. Thus, it is

crucial to provide a precise yet simple model.

However, the heuristics are often not as accurate as desired in practice.

Figure 7.1 demonstrates how different choices of optimizations can result in

substantially disparate results of Intel OpenCL stack [5], which is the current

state-of-the-art vectorizing compiler. The figure compares the performance

of heuristically selected optimization [45] for sgemm and spmv (denoted as

spmv-jds) in Parboil [41] against that of a scalar version and two alterna-

71

0.00

0.50

1.00

1.50

2.00

2.50

sgemm spmv-jds

Sp
ee

du
p

ov
er

 h
eu

ri
st

ic

(h
ig

he
r

is
 b

et
te

r)

heuristic scalar 4-way vector 8-way vector

Figure 7.1: Performance of Intel CPU OpenCL stack with different
vectorization strategies.

tive vectorized versions. The figure shows that the heuristic has made good

but suboptimal decisions for both cases, falling short of the best achievable

performance by a factor of 2.13× and 1.24×, respectively. One observation

is that the result clearly demonstrates the importance of choosing the most

optimal code. Another observation is any single static heuristic for choos-

ing optimizations will likely fall short due to the complexity of interactions

between the device, the computation, and the data.

High-precision performance modeling has been a subject of many previous

works [5, 13, 20, 27, 30, 46, 47, 48, 49, 50, 51, 52]. Performance models are

widely used to prune the design space for autotuning [48, 51], or to guide

optimization strategies [30, 47, 49, 50, 51]. The proposed compiler technique

presented in Chapter 3 is also an example in this category which employs

a heuristic cache model for making a decision on work-item schedule [50].

PORPLE [47] relies on GPU memory or cache models to analyze work-item

access patterns of regular applications for data placement. However, these

works approach model-specific aspects of the device architecture of interest,

while other important factors are not considered or are assumed to be de-

coupled from the aspects being considered. Such assumptions considerably

reduce the accuracy of the model-based approach. Moreover, they are limited

by ignoring factors that are only known at runtime, such as the actual data

shape. As a result, accurately predicting the effect of optimizations is not

likely viable at compile time. Optimizations based on inaccurate predictions

72

can lead to disappointing performance.

Several runtime-based approaches [47, 53, 54, 55, 56] have proposed to mit-

igate the problem with the static performance prediction approach. Reactive

tiling [55] uses an online trained tiling model and chooses likely optimal tiling

parameters for the given working set size and system load. PORPLE [47]

leverages runtime micro-simulation on a CPU to refine the GPU memory or

cache models, when inputs are irregular and cannot be statically analyzed.

Although more information is accessible at runtime, model-driven approaches

at runtime can still have limitations and blind spots of unconsidered factors

of models like static model-driven approaches, resulting in suboptimal deci-

sions.

To overcome the aforementioned problem, I propose a runtime framework

that matches the best code arrangement with the actual device and data

combination, thereby improving performance. The proposed approach re-

moves the burden of determining the most optimal code from an optimizing

compiler and allows to produce several likely candidate variants from the

input code. Then the runtime performs micro-profiling, a process of de-

ploying the candidates on a small portion of the actual data on the actual

device and determining the best version to be used to process the rest of the

workload. The advantage of this approach is that it can work with virtually

any combination of compiler and device architecture as dynamic selection

could mitigate the cost of having to develop an accurate performance model.

When dealing with a large workload, the cost of micro-profiling can be easily

amortized, and the overall benefit can be much greater than unconditionally

executing a single code selected by the compiler.

The proposed runtime is implemented for work-groups execution at OpenCL

driver level. Experimental results demonstrate that the proposed approach

correctly chooses the optimal code version with less than 8% overhead in the

worst observed case compared to oracle results.

The rest of the chapter begins with design space for this approach, followed

by implementation detail and evaluation.

73

7.2 Design

This section provides a background of profiling for kernel-based data-parallel

programming, and introduces the idea of the proposed runtime.

7.2.1 Profiling for Kernel-based Data-parallel Programming

The proposed runtime evaluates different code variants at runtime in order to

determine which variant performs best. The runtime measures performance

of each variant on a small portion of the actual data and identifies the best

performing one, a process which we call micro-profiling. The chosen version

will be used to process the rest of the workload. The key ingredients of the

system are efficient profiling and accurate performance projection.

Popular kernel-based data-parallel programming models, such as OpenCL,

CUDA, OpenACC, and C++AMP, allow over-decomposition of workloads

for maximized parallelism. Work-groups in OpenCL, for example, are de-

signed to run independently of each other enabling efficient parallel exe-

cution on a variety of architectures, such as CPUs and GPUs. With these

programming models, workload processing is done via repeatedly executing

the kernel code over a small subset of the workload, which often takes place

in parallel.

The decomposition makes the number of independent kernel executions

fairly large in practice, which helps to amortize the cost of allocating a few

of them for evaluation of code variants. The overhead for evaluating code

variants can often be amortized over a large number of executions.

An individual kernel execution is assumed to have similar performance

throughout subsequent launches. This is due to the nature of data-parallel

computing where the same code is used to process large data. Thus, observed

performance from a kernel execution is likely to be indicative for others, which

helps keep the required sampling frequency, and thus the overhead, low.

These properties make work-groups an ideal granularity for micro-profiling.

Figure 7.2 shows accumulated occurrences of kernel launches in different

numbers of work-groups from all OpenCL benchmarks in Parboil [41] and

Rodinia [35] benchmark suites. The statistics support the low-cost profiling

hypothesis based on workload decomposition, as a significant number of ker-

nel launches fall into the range of 128 to 32768 work-groups. Kernel launches

74

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

128 256 512 1024 2048 4096 8192 16384 32768

N
um

be
r

of
 k

er
ne

l
la

un
ch

es

Figure 7.2: Accumulated occurrences of kernel launches categorized by the
number of work-groups from Parboil and Rodinia benchmarks.

with less than 128 work-groups are rarely observed and so are dropped from

the figure. Kernel launches with small number of work-groups can be sensi-

tive to profiling overhead, but a small number of work-groups also indicates

relatively small workloads, and performance variation from the level of op-

timization might not be critical. The proposed technique mainly targets

kernels with a large number of work-groups. The profiling-based kernel se-

lection is deactivated for small workload with merely a few work-groups.

7.2.2 Productive Micro-Profiling

The proposed runtime system employs productive micro-profiling, where ex-

ecution from profiling also participates in the workload processing. Each

kernel launch during profiling takes a different part of the workload data.

This is a departure from offline profiling, where the performance character-

istic is extracted while the result is simply discarded. This strategy reduces

the overhead of profiling, since workload processed during profiling does not

require reprocessing.

Figure 7.3 shows the three productive profiling techniques used. In this

example, we assume that the compiler produces two implementations as fol-

lows. The ratio of workload per work-group between version A and B is 3:2

as shown in Figure 7.3(a). According to safe point analysis [55], the runtime

launches two and three work-groups for version A and B, respectively, in

order to make a fair throughput comparison during profiling.

Fully productive profiling, shown in Figure 7.3(b), is the most efficient

75

Profiling phase Execution phase

∙∙∙
A B B B

Output from the profiling

Output

T(A) > T(B)

(b) Fully productive profiling.

A

B
T(A) > T(B)

∙∙∙

Output from the profiling

B B

Profiling phase Execution phase

(c) Hybrid-based partial productive profiling.

sandbox

Output

discarded

A

B
T(A) > T(B)

Output(A)

Profiling phase Execution phase

(d) Swap-based partial productive profiling.

Output(B)

discarded

B B

Output from the profiling

Output = Output(B)

∙∙∙

(a) Work assignment for two kernels of A and B per work-group.

A : B = 3 : 2

work-group

Figure 7.3: Illustration of three profiling modes with example kernels of A
and B.

76

profiling mode. Each kernel launched during profiling takes a different part

of the workload data and computes a valid contribution to the final output. In

Figure 7.3(b), both kernel versions compute and profile different parts of the

workload, and write to the final output. After profiling, version B is chosen

to compute the remaining workload, as version B turns out to run faster.

Fully productive profiling can take place as long as the individual launches

do not have overlap in the final output, which is a dominating pattern in

data-parallel programming.

Two other modes of productive profiling, called partially productive pro-

filing, are proposed to overcome the limitations of the applicability of fully

productive profiling. Hybrid-based partial productive profiling, shown in

Figure 7.3(c), is designed for irregular workload with a non-overlapping final

output. By running a set of kernels over the same workload, profiling can be

fair among different kernel launches. However, multiple kernels may write to

the same memory location, called write conflict. As a solution, both kernel

versions compute for the same portion of output, but the other kernel execu-

tions are provided with their own private output space or sandbox to avoid

the write conflict problem. In this example, version A is assigned with the

final output space while version B dumps its output to a private sandbox.

After the profiling, version B is chosen to process the remaining workload,

by writing its results in the final output, where version A wrote its results

during the profiling. The private space allocated for the purpose of profiling

is discarded. Since the final output is partially computed by both versions

of A and B, it is called hybrid-based.

Swap-based partially productive profiling, shown in Figure 7.3(d), is pro-

posed to allow overlapping outputs by running a set of kernels over the same

workload but with their own private output spaces. After profiling, the se-

lected kernel and output (version B and its output in the example shown

in Figure 7.3(d)) will remain for the rest of the execution while other ker-

nels as well as their output space are discarded. Since the final output is

swapped with output from B, this method is called swap-based. It is worth

mentioning that swap-based partial productive profiling can be considered

as a speculation approach to version selection.

The runtime can optionally adjust frequency and range of the profiling.

When the profiling execution takes place at first, code and data used repeat-

edly are not fully loaded, resulting in higher execution time due to cache

77

misses, page faults and TLB misses. Also, irregularity of input during ex-

ecution may change preferred kernel over time. In order to mitigate these

problems, the number of profiling execution and range can be introduced.

The proposed runtime system relies on compilers or programmers to specify

productive profiling mode for a kernel. Interaction between the proposed

runtime and compilers and programmers is discussed in more detail later in

this chapter.

7.2.3 Applicability

The choice of profiling mode is determined based on programming patterns

and optimizations for kernels. First, fully productive profiling is appropriate

for kernels with regular or near-regular workloads. Large workload variations

can significantly impact the fairness of comparison among kernels. Therefore,

fully productive profiling is only suitable for applications with regular work-

load, such as BLAS, or stencil. Fully productive profiling can select between

kernels with different levels of optimizations such as tiling, thread coarsening,

data layout transformation (including padding), input binning [2, 57], loop-

interchange, locality-centric scheduling [50], vectorization, software prefetch-

ing, data placement [47, 49], and input format transformation [58]. Some

optimizations require special treatment during profiling. Tiling and thread

coarsening require normalization of throughput using safe point analysis [55]

to ensure fairness. Data layout transformation, input binning, and input for-

mat transformation may require duplication of inputs to meet the assumption

of different kernel implementations.

Second, hybrid-based partially productive profiling supports all patterns

and optimizations supported by fully productive profiling. Additionally, this

profiling method is applicable to irregular workload. By profiling the same

portion of workload across different kernels, unfair throughput comparison

can be avoided. The applicable kernels typically have in-kernel loops with

varying bounds across work-groups, such as sparse BLAS. Uniform workload

analysis [20] can be used to detect such in-kernel loops with varying bounds.

Finally, swap-based partial productive profiling further supports output

overlapping across kernels, and in theory is applicable to any optimizations,

such as privatization, regularization, compaction, output binning, scatter-

78

Productive,
Micro-Profiling Ki

Assign workgroups
to each Ki

Profiling finished? Kselect = best Ki

Apply Kselect to
compute the

remaining workload

Schedule Kdefault
for a batch of
work-groups

no yes

Suggest an initial
Kdefault

K1

K2
K3

K4

K5

Kernel Version
Generator

Update Kdefault using
the best profiled

Ki so far

(a) Synchronous

(b) Asynchronous

K1

K2
K3

K4

K5

Kernel Version
Generator

Productive,
Micro- Profiling Ki

 Kselect = best Ki

Assign work-groups
to each Ki

Apply Kselect to
compute the

remaining workload

Figure 7.4: Synchronous and asynchronous method flows.

to-gather [2, 57], kernel fusion, kernel fission, optimizations using atomic

operations, and even algorithm change. Although swap-based partial pro-

ductive profiling is the most applicable profiling mode, it has less output

contribution efficiency than fully productive profiling.

7.2.4 Orchestration for Profiling and Execution

The way the proposed runtime system orchestrates micro-profiling and ex-

ecution at runtime can have significant impact on profiling overhead. We

79

present two orchestration designs in this subsection.

Figure 7.4(a) shows the overall flow of the synchronous method. The com-

piler deposits several code versions to the kernel pool in the executable binary

file. Upon execution of the kernel, the runtime dispatches code versions from

the pool and executes them (·) in one of the productive modes described in

the previous section, with a few work-groups (¶) assigned using safe point

analysis [55]. The runtime waits until all versions finish profiling execution

and compares their execution time to pick the best one. Then the rest of

the execution runs with the selected kernel. The implementation is simple.

However, this method incurs latency penalty if there is large disparity be-

tween the best and the worst versions since the latency of the profiling phase

is determined by the slowest execution (¸).

Figure 7.4(b) shows the flow for the asynchronous method. Unlike the

synchronous method, the rest of the execution can begin as soon as the first

candidate finishes its micro-profiling execution, even before the profiling is

complete. We denote this type of execution as eager execution. When the

non-profiling execution begins, the runtime launches what is known as the

best so far. To support eager execution, the compiler or programmer needs

to provide a suggestion on the initial version (¹). We will discuss more

on the initial selection and its impact on performance later. As profiling

progresses, the selection gets updated once a faster version is found (º).

The asynchronous method must be able to switch to the best kernel found

so far; therefore the eager execution is done via launching a series of chunks

(»), instead of a single batch. While the asynchronous method can better

tolerate the latency of profiling, the implementation gets more complicated

for two reasons. First, the method requires careful workload management so

that profiling can be done with a higher priority than the eager execution.

Second, the eager execution is divided into many chunks which may impose

associated kernel launch overhead.

Figure 7.5 illustrates the execution timing for both synchronous and asyn-

chronous methods. The example assumes that there are four concurrent

execution units such as CPU cores and two kernels in the kernel pool. The

lighter gray kernel runs faster than the darker one. With the synchronous

method, the runtime waits for all kernels to finish profiling execution. This

method underutilizes the execution units while waiting for the slow kernel

to complete its profiling execution. The asynchronous method overcomes

80

tim
e

workload workload profile workload

tim
e

tim
e

(a) synchronous
(b) asynchronous with
good initial selection

(c) asynchronous with
bad initial selection

profile profile

Figure 7.5: Timing illustration for synchronous and asynchronous methods.

this problem by eagerly launching useful work on the vacant execution units

with the initially selected version, which is shown Figure 7.5(b) and (c).

However, the quality of the initial selection potentially can impact overall

performance, as suboptimal code occupies execution units longer, as shown

in Figure 7.5(b). In either case, the asynchronous method yields better uti-

lization and throughput compared to the synchronous one.

Table 7.1: Summary of proposed productive profiling, where K is the
number of variants in the pool.

Profiling mode
Productive output

in profiling
Extra space
requirement

Asynchronous support

Fully productive K 0 Yes

Hybrid-based partial
productive

1 ≤ K – 1 Yes

Swap-based partial
productive

1 ≤ K No

Table 7.1 summarizes throughput, extra space requirement, and support of

the asynchronous method for the three proposed productive profiling modes.

Given K kernel variants in the kernel pool, all K profiled portions of the

workload contribute to the final workload in fully productive profiling, while

only 1 profiled portion does so in the two partial productive profiling modes.

In terms of extra space requirement, fully productive profiling directly writes

results into the original output space and needs no extra space, while the

two partial productive profiling methods require at most K − 1 or K copies

of space for either sandboxes or private outputs, respectively. It is worth

mentioning that the extra space requirement can be further reduced if the

footprint of memory accesses during profiling can be predicted so that a sub-

81

set of output is allocated for the sandbox. Last, both fully productive profil-

ing and hybrid-based partial productive profiling support the asynchronous

method, since profiling results are directly written into the distinct, final

output space, while swap-based partial productive profiling cannot support

the asynchronous method, because the final output space is not determined

until profiling is complete.

7.3 Implementation

7.3.1 Runtime Interface

Unlike traditional runtimes, the proposed runtime allows compilers or pro-

grammers to deposit multiple implementations under the same kernel func-

tion signature. Figure 7.6(a) shows the kernel implementation registration

API. The specific requirement for the runtime is to provide work assignment

factor, which is the number of workload units packed into each work-group

for accurate profiling, as shown in Figure 7.3. Figure 7.6(b) shows the kernel

launch API. The API is designed to allow the caller to specify whether pro-

filing is activated or not using a profiling activation flag along with profiling

mode.

Work Assignment Factor. Resource management is an important class

of optimizations for OpenCL programs because hardware utilization can be

improved. Among them, coarsening [9] and tiling change the amount of work

assigned to each thread and thus the work assignment per kernel launches.

The runtime needs to know the relative work assignment between variant

kernels for fair comparison. Once such workload changing optimization is

done, the compiler needs to inform the runtime about the change. When

user provided kernels are used, programmers are in charge of providing the

correct work assignment ratios.

Profiling Activation Flag. A class of applications, such as stencil oper-

ations in partial differential equation (PDE) solvers or sparse matrix-vector

multiplication (spmv) in conjugate gradient (CG) iterative solvers, launches

a kernel iteratively without changing workload or data shape between iter-

ations. In this scenario, the kernel can just be profiled in the first iteration

and the selected variant can be reused for the later iterations. The profiling

82

AddKernel(
 string kernel_sig, // kernel name
 func_ptr implementation, // kernel implementation
 dim3 wa_factor, // work assignment factor
 vector<int> sandbox_index=[] // argument offsets for
 // private outputs
);

LaunchKernel(
 string kernel_sig, // kernel name
 bool profiling=true, // profiling activation flag
 enum mode=fully_async // profiling mode
);

(a) Kernel implementation registration API

(b) Kernel launch API

Figure 7.6: Runtime interface.

activation flag allows the user to turn on profiling only for the first iteration.

When the flag is turned off, the runtime launches the default kernel without

profiling, which may have been selected from previous profiling executions.

Profiling Mode. As mentioned previously, applicability, throughput, and

cost are profiling mode specific factors. Different classes of optimizations

require their own productive profiling mode for efficient and fair profiling.

The asynchronous profiling potentially can reduce overheads of profiling.

7.3.2 Implementation for OpenCL Runtime

Work distribution and prioritized execution for profiling are two main require-

ments for CPU implementation of the proposed approach. Intel’s TBB [26]

has strong support for both and thus is used for the implementation. TBB’s

work stealing feature provides load balancing over multiple cores while its

concurrent task groups allow assigning higher scheduling priority to profiling

execution. In the profiling task group, kernel launches are wrapped by timer

calls to measure execution time of a kernel being profiled. Updating the cur-

rent best implementation is done via atomic operation when the execution

time of a variant is found to be smaller than the current minimum. The non-

profiling task group invokes the current best implementation upon launch.

When profiling is activated, the runtime first launches the profiling task group

with higher priority, which is followed by launching the non-profiling task

83

class NDRange : public tbb::task {
 tbb::task* execute() {
 if (is_profiling_on) {
 uint64_t sel = klist.getDefaultKernel();
 if (profiling_mode == SYNC) {
 ProfileTask p(klist, kargs, &sel);
 wait_for_all();
 ExecuteTask e(&sel, klist, kargs, true);
 wait_for_all();
 } else if (profiling_mode == ASYNC) {
 ProfileTask p(klist, kargs, &sel);
 ExecuteTask e(&sel, klist, kargs, true);
 enqueue(e, tbb::priority_low);
 wait_for_all();
 }
 } else {
 ExecuteTask e(&sel, klist, kargs, false);
 wait_for_all();
 }
 return NULL;
 }
};

static NDRange::run(klist, args) {
 NDRange ndrange(klist, kargs);
 wait_for_all();
}

❶

❷

❸

Figure 7.7: Top-level task management for profiling and non-profiling
work-group executions.

group. The synchronous mode puts a barrier to wait for the profiling task

group to finish its execution between the two task group launches, while the

asynchronous mode schedules both task groups concurrently. When profiling

is not activated, the runtime launches the non-profiling task group only.

Figure 7.7 depicts the simplified pseudo-code of the runtime, which imple-

ments the sketch described above. Both profiling and execution are mapped

to TBB’s task, ProfileTask and ExecuteTask, respectively. In the syn-

chronous method, the runtime launches ProfileTask first and waits the ex-

ecution to finish, which is followed by launching ExecuteTask (¶). The true

flag in instantiating ExecuteTask indicates that profiling is activated. In the

asynchronous method, ExecuteTask is enqueued with lower priority than

others, ProfileTask in this particular case. Both tasks will run together(·)

84

ProfileTask {
 tbb::task* execute() {
 for each k in klist,
 Profile p(k, kargs, p_sel);
 }
}

Profile {
 tbb::task* execute() {
 elapsed = 0;
 for (i = 0; i < Nsample; ++i) {
 begin = timer();
 k(kargs); // work-group launch
 elapsed += (timer() – begin);
 atomicUpdateIfMin(// update kernel selection
 p_sel, (elapsed / (i+1), k.index));
 }
 }
}

Figure 7.8: Profile task implementation.

as the parent task schedules them. When profiling is not activated, the run-

time launches ExecuteTask only, without the profiling task(¸). Similarly,

the last flag in instantiating ExecuteTask tells that profiling is not activated.

Figure 7.8 shows simplified code for the profiling task. In execute method,

the runtime creates a task for each and every candidate kernel, which can run

in parallel. Each task is created by instantiating Profile class with a unique

kernel to measure performance. Upon execution, the task runs the assigned

kernel for Nsample times to smooth out glitches associated with sampling.

This is necessary because the timing measurement from earlier execution may

not be accurate as hardware is not fully warmed up, due to the cold cache

miss effect. The sampling also copes with sporadic system noise. When the

averaged execution time turns out to be smaller than the current minimum,

the profiling task atomically updates the current kernel selection as well as

the new minimum execution time to a designated location, p sel in this case.

atomicUpdateIfMin is implemented using the compare-and-swap intrinsic.

The rest of the workload processing is done in parallel, as shown in Fig-

ure 7.9. As mentioned before, the task has lower priority so that profiling

can be done faster. The task skips the first Nsample × klist.size() work-

groups when profiling is activated, because the profiling will cover the area.

Dropping a fraction of workload may result in load imbalance, but TBB’s

85

ExecuteTask {
 tbb::task* execute() {
 parallel_for(range(0, numWorkGroups), *this);
 }

 void operator()(range& r) {
 if (is_profiling_on)
 if (r < klist.size() * Nsample)
 return;
 k = klist[*p_sel]; // fetch the current best
 k(kargs); // launch work-group
 }
}

Figure 7.9: Execution task implementation.

work stealing would resolve the issue over time. The task fetches the cur-

rent best kernel at the time of launching a kernel which may dynamically

change as profiling progresses. Again, p sel is used to communicate with

the profiling task about the current best kernel implementation.

7.4 Evaluation

This section evaluates the proposed runtime. The implementation is done

as part of the prototype OpenCL stack which includes the locality-centric

OpenCL compiler. The experiments are done with selected benchmarks from

Parboil, Rodinia and SHOC [59] benchmark suites. Different experiments

subscribe to their own sets of benchmarks according to their own purposes,

which are individually described for each. The system configuration and

software used are the same as detailed in Chapter 5.

7.4.1 Comparison to Static Heuristic

In this subsection, evaluation of the proposed runtime with the locality-

centric scheduling of work-item executions for CPUs is presented. There

are four benchmarks used - sgm, spmv (denoted as spmv-jds), stencil and

ctcp from Parboil, kmns from Rodinia, and another spmv using scalar dot

products on a CSR format matrix without padding (denoted as spmv-csr)

from SHOC. These benchmarks are selected because their CPU performance

is sensitive to the scheduling policy. The inputs for Parboil and Rodinia

86

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

ctcp kmns sgm spmv-jds spmv-csr
(random)

spmv-csr
(diagonal)

GeoMeanR
el

at
iv

e
ex

ec
ut

io
n

ti
m

e
ov

er
 o

ra
cl

e
(l

ow
er

 is
 th

e
be

tt
er

)

Oracle Dynamic(Sync)
Dynamic(Async-best) Dynamic(Async-worst)
Static(LC) Worst

3.7 7.3 117.7 2.9 4.6

Figure 7.10: Performance of the proposed runtime when both of DFO and
BFO kernels are used as candidates.

benchmarks are all default, while the inputs for spmv-csr include a 16K-

by-16K random sparse matrix with 1% probability of non-zeros, denoted as

random, and a 2M -by-2M diagonal matrix, denoted as diagonal. Fully pro-

ductive profiling is used for the benchmarks, except spmv-jds and spmv-csr,

both of which use hybrid-based partial productive profiling as they handle

irregular workload. The three benchmarks of ctcp, kmns and sgm are chosen

as they have increasing order of magnitude in the performance gap between

the oracle and the worst. The spmv kernels are chosen as they exhibit data-

dependent behavior, which may cause static heuristic to fail.

Figure 7.10 compares performance of the proposed runtime and compile-

time heuristic over oracle. LC indicates the locality-centric compiler pre-

sented in Chapter 3 which represents the compile-time heuristic. For this

experiment, the LC compiler generates both versions of DFO and BFO sched-

uled kernels for the most significant loop and registers them to the runtime.

Oracle represents the best selection among DFO and BFO for each bench-

mark, whereas Worst means the opposite.

The proposed runtime achieves close to optimal results with negligible over-

head. The result also reaffirms that different schedule choices can result in

substantial performance differences. A heuristic-based static selection could

have caused a large performance loss with a suboptimal decision. However,

87

the proposed approach correctly selects the optimal schedule for all given

benchmarks. In the case of spmv-csr with the diagonal input, the LC static

heuristic selected incorrectly but the mistake is avoided with the proposed

approach. When no or little performance variation due to input distribution

is expected, the runtime chooses the optimal from profiling, witnessed by

ctcp, kmns and sgm. In a situation where input distribution has a high im-

pact on data locality, such as spmv-csr, the static approach works well with

a certain input distribution, but a statically chosen kernel cannot cope with

all possible cases with equal efficiency. The proposed runtime approach, on

the other hand, adaptively chooses between two schedules, yielding close to

optimal performance for both cases of spmv-csr.

The adaptability comes at a cost. For the synchronous method, the overall

overhead becomes significant when the number of work-groups is relatively

small or the ratio of best to worst is large. For instance, sgm has the sharpest

performance gap between DFO and BFO and the synchronous method has

to tolerate executing the worst kernel. When the ratio is small, such as

ctcp, profiling only adds negligible overhead. The overall overhead for the

synchronous method is 7%.

The asynchronous method shows better performance than the synchronous

mode. This confirms that the method hides latency that yields better perfor-

mance, unlike the synchronous method. The initial selection seems relevant

and matters to some benchmarks. With correct initial selection, the average

overhead is 3% compared to the oracle. With the worst initial selection, the

overhead increases to 5%. Although the dynamic runtime selection certainly

guarantees closer to the optimal than to the worst performance, the result

implies that reasonable static performance modeling can be helpful for better

performance.

Another scenario in which the proposed approach is useful is when a com-

piler cannot foresee the impact of combined optimizations due to the limita-

tion of modeling. OpenCL programs are often optimized with multiple op-

timizations such as tiling, coarsening and data placement using scratchpad.

Figure 7.11 (a) compares the performance of the proposed approach when

differently optimized kernels are provided. Each benchmark deposits two

kernels with different optimization level from the Parboil benchmark suite,

called naive and opt. LC is used to compile these kernels but no heuristic is

provided to compare each pair, and only a random selection could be used.

88

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

ctcp sgm spmv-jds stencil GeoMean

R
el

at
iv

e
ex

ec
ut

io
n

ti
m

e
to

or

ac
le

(l
ow

er
 is

 b
et

te
r)

Oracle Sync Async(best initial selection) Async(worst initial selection) Worst

Figure 7.11: Performance comparison when differently optimized kernels
are used.

The intention of this experiment is to demonstrate the adaptability of the

runtime to the random selection.

The proposed approach achieves near optimal results for all benchmarks,

less than 2% overhead on average compared to oracle for all methods. In-

terestingly, the naive versions are always best for CPU as they allow the

greatest flexibility for the compiler in planning how to serialize execution of

work-items. GPU-specific optimizations such as data placement and data

prefetching using scoreboarding make no difference for CPU. Tiling using

scratchpad memory typically leads to negative results on CPUs because there

is no latency gain using them after they are lowered to CPU’s uniform mem-

ory space.

7.4.2 Input Adaptability

In this subsection, an input-dependent version selection scenario using spmv-

csr from the SHOC benchmark suite is tested. Two spmv-csr versions, one

using scalar dot product (denoted as scalar) and the other using vector dot

product (denoted as vector), are chosen. The optimal version of spmv on a

CSR-format matrix is highly dependent on matrix sparsity [58], which is

typically unknown at compile time. The evaluation is performed with two

matrices, the random sparse matrix and the diagonal matrix, described in

the previous experimental setup. The profiling modes are also the same as

in the previous experiment.

89

0.0

0.5

1.0

1.5

2.0

2.5

3.0

random matrix diagonal matrix

R
el

at
iv

e
ex

ec
ut

io
n

ti
m

e
to

 o
ra

cl
e

(l
ow

er
 is

 b
et

te
r)

Oracle

Sync

Async(best initial
selection)
Async(worst initial
selection)
scalar, DFO

scalar, BFO

vector, DFO

vector, BFO

8.63 8.63
8.6

Figure 7.12: Performance results on input-dependent kernels.

The purpose of this experiment is to demonstrate the adaptive selection

capability of the proposed approach when the compiler simply cannot predict

the performance due to lack of critical information, which is sparsity of the

actual matrix in this experiment.

Figure 7.12 shows performance of the proposed method compared to that of

a scalar kernel and a vector kernel on all possible combinations of work-item

scheduling for them. As for random input, the proposed runtime performs

second best to oracle with up to 19% and 12% overheads, respectively, for

the synchronous and the asynchronous methods. With diagonal input, the

runtime runs with 4% overhead to oracle for both methods. The selection

here is particularly complicated by the dimension of schedule, kernel version

and input data distribution. Here, LC chooses DFO to iterate in-kernel loops

first for both scalar and vector implementations and uses the code uncon-

ditionally. However, the static choice does not cope well with unfavorable

input distribution from the diagonal matrix, where BFO schedule is desired.

As for version selection among scalar and vector, scalar performs better when

DFO is chosen, mainly because of less overhead having to deal with control

divergence. In terms of instruction counts, the vector version is inferior be-

cause the code uses local memory which causes additional copy of data for

final reduction, an overhead in instruction throughput which LC does not

consider with its heuristic. This is a reason why BFO schedule for the vector

kernel performs similar to DFO even though BFO achieves favorable data

locality.

90

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this dissertation, I presented a compiler technique for high-performance

OpenCL programs on CPUs. The proposed technique selects a schedule for

work-items execution such that data locality is best exploited. The state-of-

the-art (depth-first) approach to scheduling work-items in existing OpenCL

compilers for CPUs can result in suboptimal memory access patterns for

certain workload classes. An alternative (breadth-first) work-item schedule

is proposed which provides scheduling similar to that expected by GPU-

optimized programs. Static analyses and transformation techniques are also

proposed in order to correctly select and generate the schedule for better data

locality. The proposed locality centric scheduling results in geomean L1 data

cache miss reductions of 9.81× over AMD and 3.35× over Intel, and geomean

speedups of 3.32× over AMD and 1.71× over Intel, based on real hardware

measurements. As the memory system becomes increasingly important for

performance and energy efficiency in future computing systems, the appro-

priate selection of work-item schedules will play an even more important role

in the future.

The importance of data locality in data parallel programs is critical and

specialized architectures such as GPUs encourage programmers to optimize

a program to accommodate good data locality. Previous OpenCL compil-

ers targeting CPUs are oblivious to how data locality is exploited in such

programs and resulted in unfavorable performance. This had contributed

to the widespread belief that portable performance is infeasible from GPU

to CPU. The observation on data locality and adaptive scheduling toward

better memory system efficiency recovers significant performance.

To that end, the compiler technique discussed in this dissertation also

opens up a new opportunity of scheduling technique in an angle of loop trans-

formations for OpenCL programs and alike. Complete independence between

execution of work-items allows GPUs and other parallel architectures to ex-

91

ploit parallelism. When serialization of work-items execution is desirable,

such as targeting CPUs, the property is translated into the work-item loop,

which is inherently a canonical loop with no loop carried dependency. This

strong assumption enables a high degree of freedom in scheduling work-items,

as discussed in this work. Combining with other types of loop transforma-

tions would further improve performance from CPUs, as exemplified in BLAS

kernels studies shown in Chapter 6.

As compilers incorporate increasing numbers of advanced optimizations,

it is unavoidable to rely on static performance modeling to guide through

the compiler phases. Data locality scheduling presents one such challenge for

which the adaptive heuristic works reasonably well. However, the inherent

limitation of modeling makes finding an optimal solution extremely challeng-

ing. To address this issue, I proposed a solution to mitigate the burden of

having to pick the best implementation by offloading the selection process to

runtime. Instead of emitting one output, the proposed runtime allows a com-

piler to deposit differently optimized programs. The runtime evaluates their

performance using a fraction of the workload and chooses the best version

for the rest of workload processing. The proposed approach is implemented

as a runtime to support the locality-centric OpenCL compiler, which shows

close to optimal results. As developing precise static performance model-

ing gets harder, the importance of adaptive runtime solution will draw more

attention.

As for future work, I believe that locality optimization can be further

improved with more accurate analyses of access patterns and improved code

generation schema. Furthermore, the runtime selection mechanism can be

further improved based on the experience in the experiments reported in this

dissertation.

92

APPENDIX A

CODE GENERATION EXAMPLE FOR
SPMV

In this chapter, a complete code generation example is presented using spmv

in Parboil benchmark suite. It has divergent IF- and LOOP- statements

with a BFO loop, making it a perfect case to demonstrate many features of

the code generation. As discussed in Chapter 3, the kernel loop prefers BFO

schedule. Subregion formation is assumed to be done, which is indicated in

comments along with the generated code. Figure A.1 shows the kernel code

in OpenCL.

int ix = get_global_id(0);
if (ix < dim) {
 float sum = 0.0f;
 int bound=sh_zcnt_int[ix/32];
 for(int k=0;k<bound;k++) {
 int j = jds_ptr_int[k] + ix;
 int in = d_index[j];
 float d = d_data[j];
 float t = x_vec[in];
 sum += d*t;
 }
 dst_vector[d_perm[ix]] = sum;
}

Figure A.1: Code listing of spmv.

The output for the input code is shown below. Note that the code is not

simplified but real output code from the prototype compiler, retouched only

with formatting and renaming variables. The output code is a legal C code.

1 #define workItemLoop for (unsigned int wid = 0 ; wid < LS ; wid++)

2

3 // SUBREGION 1 ==

4 // i n t i x = g e t g l o b a l i d (0) ; =================================

5 int i x = g e t g l o b a l i d [0] ;

6

93

7 // DIVERGENT IF ===

8 // i f (i x < dim) { ==

9 unsigned int pred0 [LS] ;

10 unsigned int numActive0 = 0 ;

11 workItemLoop {
12 i f (i x+wid < dim) {
13 pred0 [wid] = 1 ;

14 numActive0++;

15 } else {
16 pred0 [wid] = 0 ;

17 }
18 }
19 i f (numActive0 > 0) {
20

21 // SUBREGION 2 ==

22 // f l o a t sum = 0.0 f ; ======================================

23 // i n t bound=s h z c n t i n t [i x /32] ; ==========================

24 f loat sum [LS] ;

25 int bound [LS] ;

26 i f (numActive0 == LS) {
27 #pragma simd

28 workItemLoop {
29 sum [wid] = 0 ;

30 bound [wid] = s h z c n t i n t [(i x+wid) / 3 2] ;

31 }
32 } else {
33 workItemLoop {
34 i f (pred0 [wid]) {
35 sum [wid] = 0 ;

36 bound [wid] = s h z c n t i n t [(i x+wid) / 3 2] ;

37 }
38 }
39 }
40

41 // DIVERGENT LOOP ===

42 // f o r (i n t k=0;k<bound ; k++) { =============================

43 int k = 0 ;

44 unsigned int pred1 [LS] ;

45 unsigned int numActive1 = 0 ;

46 workItemLoop {
47 i f (pred0 [wid] && k<bound [wid]) {
48 pred1 [wid] = 1 ;

49 numActive1++;

94

50 } else {
51 pred1 [wid] = 0 ;

52 }
53 }
54 while (numActive1 > 0) {
55

56 // SUBREGION 3 ==

57 // i n t j = j d s p t r i n t [k] + i x ; =======================

58 // i n t in = d index [j] ; ===============================

59 // f l o a t d = d data [j] ; ===============================

60 // f l o a t t = x vec [in] ; ===============================

61 // sum += d∗ t ; ==

62 i f (numActive1 == LS) {
63 #pragma simd

64 workItemLoop {
65 int j = j d s p t r i n t [k] + ix ;

66 int in = d index [j+wid] ;

67 f loat d = d data [j+wid] ;

68 f loat t = x vec [in] ;

69 sum [wid] += d∗ t ;

70 }
71 } else {
72 workItemLoop {
73 i f (pred1 [wid]) {
74 int j = j d s p t r i n t [k] + ix ;

75 int in = d index [j+wid] ;

76 f loat d = d data [j+wid] ;

77 f loat t = x vec [in] ;

78 sum [wid] += d∗ t ;

79 }
80 }
81 }
82

83 // DIVERGENT LOOP EPILOGUE ============================

84 k++;

85 workItemLoop {
86 i f (pred1 [wid] && ! (k<bound [wid])) {
87 pred1 [wid] = 0 ;

88 numActive1−−;

89 }
90 }
91 }
92

95

93 // SUBREGION 4 ==

94 // d s t v e c t o r [d perm [i x]] = sum ; ==========================

95 i f (numActive0 == LS) {
96 #pragma simd

97 workItemLoop {
98 d s t v e c t o r [d perm [ix+wid]] = sum [wid] ;

99 }
100 } else {
101 workItemLoop {
102 i f (pred0 [wid]) {
103 d s t v e c t o r [d perm [ix+wid]] = sum [wid] ;

104 }
105 }
106 }
107 }

96

REFERENCES

[1] P. Xiang, Y. Yang, M. M. Mantor, N. Rubin, L. R. Hsu, and H. Zhou,
“Exploiting uniform vector instructions for GPGPU performance, en-
ergy efficiency, and opportunistic reliability enhancement,” Proceedings
of the 27th International ACM Conference on International Conference
on Supercomputing - ICS ’13, p. 433, 2013.

[2] J. Stratton, N. Anssari, C. Rodrigues, I. Sung, N. Obeid, L. Chang,
G. Liu, W. Hwu et al., “Optimization and architecture effects on GPU
computing workload performance,” in Innovative Parallel Computing
(InPar), 2012. IEEE, 2012, pp. 1–10.

[3] J. A. Stratton, “Performance portability of parallel kernels on
shared-memory systems,” Ph.D. dissertation, University of Illinois at
Urbana-Champaign, May 2013. [Online]. Available: http://hdl.handle.
net/2142/44383

[4] N. Farooqui, A. Kerr, G. Diamos, S. Yalamanchili, and K. Schwan, “A
framework for dynamically instrumenting GPU compute applications
within GPU Ocelot,” in Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, 2011, pp. 9:1–9:9.

[5] N. Rotem, “Intel OpenCL implicit vectorization module,” LLVM Devel-
oper Meeting, 2011.

[6] J. H. Lee, K. Patel, N. Nigania, H. Kim, and H. Kim, “OpenCL per-
formance evaluation on modern multi core CPUs,” in Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum (IPDPSW),
2013 IEEE 27th International. IEEE, 2013, pp. 1177–1185.

[7] J. Shen, J. Fang, H. Sips, and A. L. Varbanescu, “Performance traps
in OpenCL for CPUs,” in Parallel, Distributed and Network-Based Pro-
cessing, 2013 21st Euromicro International Conference on, Feb. 2013,
pp. 38–45.

[8] A. Ali, U. Dastgeer, and C. Kessler, “OpenCL for programming shared
memory multicore CPUs,” in Proceedings of the 5th Workshop on MUL-
TIPROG, in conjunction with HiPEAC, 2012.

97

[9] A. Magni, C. Dubach, and M. F. O’Boyle, “A large-scale cross-
architecture evaluation of thread-coarsening,” in Proceedings of the In-
ternational Conference on High Performance Computing, Networking,
Storage and Analysis, 2013, p. 11.

[10] S. Seo, G. Jo, and J. Lee, “Performance characterization of the NAS par-
allel benchmarks in OpenCL,” in Workload Characterization (IISWC),
2011 IEEE International Symposium on, Nov 2011, pp. 137–148.

[11] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund et al., “De-
bunking the 100x GPU vs. CPU myth: An evaluation of throughput
computing on CPU and GPU,” in ACM SIGARCH Computer Architec-
ture News, vol. 38, no. 3. ACM, 2010, pp. 451–460.

[12] Khronos OpenCL Group, The OpenCL Specification, 2008.

[13] J. Gummaraju, L. Morichetti, M. Houston, B. Sander, B. R. Gaster, and
B. Zheng, “Twin Peaks: A software platform for heterogeneous comput-
ing on general-purpose and graphics processors,” in Proceedings of the
19th International Conference on Parallel Architectures and Compila-
tion Techniques, 2010, pp. 205–216.

[14] “Beignet,” 2015. [Online]. Available: https://01.org/beignet

[15] “NVIDIA OpenCL SDK,” 2015. [Online]. Available: https://developer.
nvidia.com/opencl

[16] “Mali OpenCL SDK,” 2015. [Online]. Available: http://malideveloper.
arm.com/develop-for-mali/sdks/mali-opencl-sdk/

[17] “PowerVR SDK,” 2015. [Online]. Available: http://community.imgtec.
com/developers/powervr/

[18] “Intel SDK for OpenCL Applications,” 2015. [Online]. Available:
https://software.intel.com/en-us/intel-opencl

[19] “OpenCL Development Kit for Linux on Power,” 2015. [Online].
Available: http://www.alphaworks.ibm.com/tech/opencl

[20] P. Jääskeläinen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala,
and H. Berg, “pocl: A performance-portable OpenCL implementation,”
2014.

[21] “FreeOCL,” 2015. [Online]. Available: https://code.google.com/p/
freeocl/

[22] “MCSDK HPC 3.x OpenCL,” 2015. [Online]. Available: http:
//processors.wiki.ti.com/index.php/MCSDK\ HPC\ 3.x\ OpenCL

98

[23] “Altera SDK for OpenCL,” 2015. [Online]. Available: http:
//dl.altera.com/opencl/

[24] “MAGMA,” 2015. [Online]. Available: http://icl.cs.utk.edu/magma/
software/

[25] “OpenCV,” 2015. [Online]. Available: http://opencv.org/

[26] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-
core Processor Parallelism. O’Reilly Media, Inc., 2007.

[27] J. A. Stratton, S. S. Stone, and W. W. Hwu, “MCUDA: An efficient
implementation of CUDA kernels for multi-core CPUs,” in Languages
and Compilers for Parallel Computing, J. N. Amaral, Ed., 2008, pp.
16–30.

[28] L. Chang, J. Stratton, H. Kim, and W. Hwu, “A scalable, numerically
stable, high-performance tridiagonal solver using GPUs,” in Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, 2012, pp. 27:1–27:11.

[29] I. Sung, J. A. Stratton, and W. W. Hwu, “Data layout transformation
exploiting memory-level parallelism in structured grid many-core appli-
cations,” in Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques, 2010, pp. 513–522.

[30] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A GPGPU compiler for
memory optimization and parallelism management,” in Proceedings of
the 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2010, pp. 86–97.

[31] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “SnuCL: an OpenCL
framework for heterogeneous CPU/GPU clusters,” in Proceedings of the
26th ACM International Conference on Supercomputing, 2012, pp. 341–
352.

[32] R. Karrenberg and S. Hack, “Improving performance of OpenCL on
CPUs,” in Proceedings of the 21st International Conference on Compiler
Construction, 2012, pp. 1–20.

[33] S. Mahlke, R. Hank, J. McCormick, D. August, and W. Hwu, “A com-
parison of full and partial predicated execution support for ILP proces-
sors,” in In Proceedings of the 22th International Symposium on Com-
puter Architecture, 1995, pp. 138–150.

[34] S. Timnat, O. Shacham, and A. Zaks, “Predicate vectors if you must,”
in WPMVP ’14: Workshop on Programming Models for SIMD/Vector
Processing, 2014.

99

[35] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in Workload Characterization, 2009. IISWC 2009. IEEE Interna-
tional Symposium on, 2009, pp. 44–54.

[36] B. Coutinho, D. Sampaio, F. M. Q. Pereira, and W. Meira, “Divergence
analysis and optimizations,” in Parallel Architectures and Compilation
Techniques, 2011 International Conference on, Oct. 2011, pp. 320–329.

[37] M. W. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S.
Lam, “Interprocedural parallelization analysis in SUIF,” ACM Trans.
Program. Lang. Syst., vol. 27, no. 4, pp. 662–731, July 2005.

[38] A. Kerr, G. Diamos, and S. Yalamanchili, “Dynamic compilation of
data-parallel kernels for vector processors,” in Proceedings of the Tenth
International Symposium on Code Generation and Optimization, 2012,
pp. 23–32.

[39] R. Karrenberg and S. Hack, “Improving Performance of OpenCL on
CPUs,” in Proceedings of the 21st International Conference on Compiler
Construction, 2012, pp. 1–20.

[40] S. Eranian, “Perfmon2: A flexible performance monitoring interface for
Linux,” in Proc. of the 2006 Ottawa Linux Symposium. Citeseer, 2006,
pp. 269–288.

[41] J. A. Stratton, C. Rodrigues, I. Sung, N. Obeid, L. Chang, N. Anssari,
G. D. Liu, and W. W. Hwu, “Parboil: A revised benchmark suite for
scientific and commercial throughput computing,” Center for Reliable
and High-Performance Computing, 2012.

[42] Intel, “Intel math kernel library,” 2007.

[43] Z. Xianyi, W. Qian, and Z. Chothia, “OpenBLAS,” 2013. [Online].
Available: http://www.openblas.net/

[44] K. Goto and R. A. Geijn, “Anatomy of high-performance matrix mul-
tiplication,” ACM Transactions on Mathematical Software (TOMS),
vol. 34, no. 3, p. 12, 2008.

[45] “Vectorizer knobs,” 2015. [Online]. Available: https://software.intel.
com/en-us/node/540483

[46] S. Baghsorkhi, M. Delahaye, S. Patel, W. Gropp, and W. Hwu, “An
adaptive performance modeling tool for GPU architectures,” in ACM
Sigplan Notices, vol. 45, no. 5, 2010, pp. 105–114.

100

[47] G. Chen, B. Wu, D. Li, and X. Shen, “PORPLE: An extensible optimizer
for portable data placement on GPU,” in Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, 2014, pp.
88–100.

[48] Y. Dotsenko, S. Baghsorkhi, B. Lloyd, and N. Govindaraju, “Auto-
tuning of fast Fourier transform on graphics processors,” in ACM SIG-
PLAN Notices, vol. 46, no. 8, 2011, pp. 257–266.

[49] B. Jang, D. Schaa, P. Mistry, and D. Kaeli, “Exploiting memory ac-
cess patterns to improve memory performance in data-parallel architec-
tures,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 1, pp. 105–118,
2011.

[50] H. Kim, I. El Hajj, J. Stratton, S. Lumetta, and W. Hwu, “Locality-
centric thread scheduling for bulk-synchronous programming models on
CPU architectures,” in Proceedings of the 13th Annual IEEE/ACM In-
ternational Symposium on Code Generation and Optimization, 2015, pp.
257–268.

[51] S. Ryoo, C. Rodrigues, S. Stone, S. Baghsorkhi, S. Ueng, J. Stratton,
and W. Hwu, “Program optimization space pruning for a multithreaded
GPU,” in Proceedings of the 6th annual IEEE/ACM International Sym-
posium on Code Generation and Optimization, 2008, pp. 195–204.

[52] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “A performance analysis
framework for identifying potential benefits in GPGPU applications,”
in ACM SIGPLAN Notices, vol. 47, no. 8, 2012, pp. 11–22.

[53] J.-F. Dollinger and V. Loechner, “Adaptive runtime selection for GPU,”
in Parallel Processing, 2013 42nd International Conference on, 2013, pp.
70–79.

[54] L. Li, U. Dastgeer, and C. Kessler, “Adaptive off-line tuning for op-
timized composition of components for heterogeneous many-core sys-
tems,” in High Performance Computing for Computational Science-
VECPAR 2012, 2013, pp. 329–345.

[55] J. Srinivas, W. Ding, and M. Kandemir, “Reactive tiling,” in Code Gen-
eration and Optimization, 2015 IEEE/ACM International Symposium
on, 2015, pp. 91–102.

[56] J. R. Wernsing and G. Stitt, “Elastic computing: a framework for trans-
parent, portable, and adaptive multi-core heterogeneous computing,” in
ACM SIGPLAN Notices, vol. 45, no. 4, 2010, pp. 115–124.

101

[57] J. Stratton, C. Rodrigues, I. Sung, L. Chang, N. Anssari, G. Liu,
W. Hwu, and N. Obeid, “Algorithm and data optimization techniques
for scaling to massively threaded systems,” Computer, vol. 45, no. 8, pp.
0026–32, 2012.

[58] N. Bell and M. Garland, “Implementing sparse matrix-vector multipli-
cation on throughput-oriented processors,” in Proceedings of the Con-
ference on High Performance Computing Networking, Storage and Anal-
ysis, 2009, pp. 18:1–18:11.

[59] A. Danalis, G. Marin, C. McCurdy, J. Meredith, P. Roth, K. Spaf-
ford, V. Tipparaju, and J. Vetter, “The scalable heterogeneous comput-
ing (SHOC) benchmark suite,” in Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units, 2010, pp.
63–74.

102

