
c© 2005 by Ian Steiner. All rights reserved.

FUTURE COMPILATION REQUIREMENTS FOR
EMERGING DRIVING GENERAL PURPOSE APPLICATIONS

BY

IAN STEINER

B.S., University of Illinois at Urbana-Champaign, 2003

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2005

Urbana, Illinois

ABSTRACT

As industry moves from single processor systems to chip multiprocessors in the general
purpose community, it is becoming increasingly important for research to help enable this
transition by developing tools that assist programmers in developing applications for these sys-
tems. Compilers will play an important role in this transition. There has been a wealth of
past research developing compilation tools to enable high-performance computing, which has
utilized multiprocessor systems for years. However, there is a gap between these applications
and the general purpose “driving” applications of the future. This thesis will provide an evalu-
ation of four representative benchmarks and provide insights into what new research needs to
be completed in order to extend past work to these future applications.

Much of the research in parallelizing compilers has focused on scientific applications that
are rich in scalable inner loop parallelism. Many of these applications are written using Fortran
and perform repetitive calculations on large arrays of data. While C implementations exist,
these applications do not take advantage of many of the features available in C. They are similar
in structure to their Fortran counterparts and therefore do not suffer the same complications as
general purpose applications.

Future general purpose applications exhibit some of the characteristics of scientific appli-
cations. This thesis contends that these applications will generally model the physical world,
which naturally contains large amounts of inherent parallelism. However, unlike past scientific
applications, these applications commonly take advantage of the additional features provided
by C, including complicated memory usage patterns and large code bases that perform a bulk of
similar tasks. By evaluating the transformation and analysis requirements for attaining parallel
implementations of four representative benchmarks, this thesis motivates important research
problems for the IMPACT compiler for enabling this important transition in general purpose
computing.

iii

ACKNOWLEDGMENTS

I would first like to thank Wen-mei Hwu for guiding me through my final three years at the
University of Illinois. He provided me with excellent insights into both research and the world
in general.

I would like to thank all of the past members of IMPACT for their tireless work building the
compiler infrastructure that I used on a daily basis. I would especially like to thank John Sias
for mentoring me in both research and life through the years; Hillery Hunter and Erik Nystrom
for their additional guidance and support; Sain-Zee Ueng and Jame Player for their friendship
and collaboration; and Shane Ryoo, Bob Kidd, and Chris Rodrigues for their collaboration.
This thesis incorporates the hard work of many people. I would in particular like to thank Chris
Kung for his help on jpegdec, Sara Sadeghi for her help on mpg123, and John Stratton for his
help on LAME. Steve Lumetta and Matt Frank (UIUC) supported my research by providing me
with guidance and insight into my work. I also learned much from Yefim Shuf (IBM) during
our collaborations on performance analysis.

Thanks to the Gigascale Systems Research Center and the Department of Electrical and
Computer Engineering for their support, both monetary and otherwise, over the years.

Finally, thanks to my parents, my sister, and my fiance for their support and love. Without
them I never would have made it this far.

iv

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 3
2.1 Preliminary Terminology . 3
2.2 Figure Conventions . 3
2.3 Parallel Compilation . 4

2.3.1 Loop transformations . 4
2.3.2 Privatization . 7
2.3.3 Analysis . 7

2.3.3.1 Single Static Assignment . 7
2.3.3.2 Array disambiguation - Omega Test 8

CHAPTER 3 IMPACT COMPILER OVERVIEW . 10
3.1 High-Level IMPACT Overview . 10
3.2 Pcode . 10

3.2.1 Pinline . 10
3.2.2 Pointer analysis . 11

3.2.2.1 Context sensitivity . 12
3.2.2.2 Heap cloning . 12
3.2.2.3 Field sensitivity . 12
3.2.2.4 Partial flow sensitivity . 13

3.3 Lcode . 14
3.3.1 Lcode SSA . 14
3.3.2 Lcode transformation . 15

3.3.2.1 IMPACT threads . 15
3.3.3 Lemulate: Lcode to C . 15

CHAPTER 4 BENCHMARKS . 16
4.1 jpegdec - Image Decoder . 16

4.1.1 JPEG terminology . 18
4.1.2 Front-end parallelism . 21

4.1.2.1 iDCT - Fine-grain parallelism . 21
4.1.2.2 iDCT - Block-level parallelism . 21
4.1.2.3 Full front-end course-grain parallelism 24

4.1.3 Front-end transformations and analysis . 25

v

4.1.3.1 iDCT analysis - Fine-grain analysis and transformation 25
4.1.3.2 Output buffer . 26
4.1.3.3 iDCT - Block level analysis and transformation 29
4.1.3.4 Full front-end course-grain analysis and transformation 29

4.1.4 Back-end parallelism . 30
4.1.4.1 Fine-grain upsample parallelism 30
4.1.4.2 Fine-grain color convert parallelism 34
4.1.4.3 Course-grain back-end parallelism 34

4.1.5 Back-end transformation and analysis . 35
4.1.5.1 Fine-grain upsample analysis and transformation 35
4.1.5.2 Fine-grain color convert analysis and transformation 37
4.1.5.3 Course-grain back-end analysis and transformation 38

4.1.6 Pointer multidimensional arrays . 39
4.1.7 jpegdec summary . 39

4.2 LAME - MP3 Encoder . 41
4.2.1 Noise analysis parallelism . 44

4.2.1.1 FFT interprocedural parallelism . 45
4.2.1.2 Streams of computation: Extending the parallelism 45

4.2.2 Noise analysis and transformation . 46
4.2.2.1 FFT: Considerations for enterprocedural analysis and trans-

formation . 46
4.2.2.2 Streams of computation: Analysis and transformation 47

4.2.3 Compression parallelism, analysis, and transformation 47
4.2.4 LAME summary . 50

4.2.4.1 LAME transformations . 50
4.2.4.2 LAME analysis . 51

4.3 mpg123 - MP3 Decoder . 51
4.3.1 mpg123 parallelism . 53
4.3.2 mpg123 transformation and analysis . 57
4.3.3 mpg123 summary . 60

4.4 MPEG-4 - Video Decoder . 60
4.5 179.art - Image Recognition . 60

4.5.1 match() overview and parallelism . 61
4.5.2 match() analysis and transformations . 63

4.5.2.1 Inner loop fine-grain analysis and transformation 63
4.5.2.2 Outer loop course-grain analysis and transformation 66

4.5.3 179.art summary . 68
4.5.3.1 179.art transformations . 68
4.5.3.2 179.art analysis . 68

vi

CHAPTER 5 IMPACT ROADMAP . 69
5.1 Low-Hanging Fruit: Analysis and Transformations 69

5.1.1 Parallel IMPACT using pragmas . 69
5.1.1.1 Basic thread extraction . 70
5.1.1.2 Accumulator expansion and loop fusion 70
5.1.1.3 Removal of scalar loop-carry dependences 70

5.1.2 Memory allocation . 71
5.1.3 Analysis evaluation . 72

5.2 Interprocedural Framework . 72
5.2.1 Interprocedural analysis framework . 72
5.2.2 Interprocedural transformation framework . 73

5.3 Transformation . 73
5.4 Analysis . 75

REFERENCES . 77

vii

LIST OF TABLES

Table Page

4.1 jpegdec Runtime Parameters . 17

viii

LIST OF FIGURES

Figure Page

2.1 Application Parallelism Figure Conventions . 4
2.2 Loop Transformations . 6

3.1 Field Sensitivity Example Code . 13

4.1 jpegdec Callgraph with Runtime Weights . 17
4.2 jpegdec High-Level Flows and Select Parallel Opportunities 18
4.3 jpegdec Front-End High-Level Algorithm . 19
4.4 jpegdec Back-End High-Level Algorithm . 19
4.5 jpegdec iDCT - jidctint.c:jpeg idct islow() . 22
4.6 jpegdec Front-End - jdcoefct.c:decompress onepass() 23
4.7 jpegdec Front-End Parallelism . 24
4.8 jpegdec Front-End Output Buffer Memory Layout . 26
4.9 jpegdec Front-End xbuffer . 27
4.10 jpegdec Backend - jdsample.c:sep upsample() . 31
4.11 jpegdec Upsampling - jdsample.c:h2v2 fancy upsample() 32
4.12 jpegdec:h2v2 fancy upsample() - Sequential Implementaion 33
4.13 jpegdec Color Convert - jdcolor.c:ycc rgb convert() . 34
4.14 Two-Dimensional Array Allocation . 39
4.15 LAME (VBR) Callgraph . 43
4.16 Interprocedural Loop Distribution . 44
4.17 Noise Analysis Transformation after Dependence Removal 45
4.18 LAME Program Flow: Extracting Compression Parallelism 48
4.19 mpg123 Callgraph with Runtime Weights . 52
4.20 mpg123:synth 1to1() Code - Part 1 . 53
4.21 mpg123:synth 1to1() Code - Part 2 . 54
4.22 mpg123 Program Flow - Part 1 . 55
4.23 mpg123 Program Flow - Part 2 . 56
4.24 mpg123:do layer3() Code - synth 1to1() Call Site . 58
4.25 179.art Callgraph with Runtime Weights . 61
4.26 179.art:match()- High-Level Flow . 62
4.27 179.art - Normalization Loop . 64
4.28 179.art - Single-Loop Computation Loop . 64
4.29 179.art - Doubly-Nested Computation Loops . 64
4.30 179.art - match() Call Site . 66

5.1 Loop Allocation . 71

ix

CHAPTER 1
INTRODUCTION

Since its creation in 1988, the IMPACT compiler has focused primarily on Explicitly Par-
allel Intstruction Computing (EPIC) compilation through the extraction of Instruction Level
Parallelism (ILP). Many of the compilation and architectural techniques developed with this
infrastructure have had a significant impact on industry architecture, recently culminating in
the creation of the Itanium 2 processor. In [1], Sias et al. evaluated many of the techniques de-
veloped over the years, including superblocks, hyperblocks, and other predication techniques,
and summarized much of the IMPACT EPIC ILP research.

This past work focused on improving sequential application performance on single proces-
sor systems. For years, much of the improvement in processor performance has been driven
by transistor sizing, which has allowed for faster clock rates and more complicated designs.
While scaling down the technology size has always been a challenging task, the International
Technology Roadmap for Semiconductors [2] predicts that it will not be possible to continue
to follow Moore’s Law.

As transistor sizes have shrunk in recent years, architects have had a difficult time making
use of the additional resources because of the physical limitations of silicon. Power density,
heat, and leakage have become major roadblocks preventing more complicated monolithic core
developments. As such, industry has started to return to simpler designs; Intel for example is
basing their latest chips off of the Pentium 3 architecture and not their more recent Pentium 4.

So where should industry go from here? When designing processors, and products in gen-
eral, it is important to understand what needs they are intended to fulfill. With processors, one
must understand the characteristics of the software that will drive innovation in the future. This
thesis contends that software that models the physical world will be the “driving applications.”
The physical world, and the applications that model it, is rich with inherent parallelism. This is
convenient, as industry is in the process of developing chip multiprocessor (CMP) solutions. It
was difficult, if not impossible, to take advantage of multiprocessor systems with the sequential
applications that have driven innovation over the past decade. However, as these new driving
applications begin to step into the spotlight, there will be a wealth of opportunities for CMP
systems. There are many difficult research problems involved in developing both the hardware

1

and software infrastructure that will be used as industry moves away from single processor
systems.

This thesis investigates the characteristics of four applications that reflect future driving
applications. It will provide overviews of the applications at an algorithmic level in addition to
their sequential implementations. It will investigate possible parallel implementations, while
evaluating the necessary transformations and analysis for extracting parallelism from the orig-
inal sequential versions. Finally, it will provide a general road map for future developments
of the IMPACT compiler. Chapters 2 and 3 provide background information and an overview
of the IMPACT compiler. Chapter 4 evaluates four benchmarks: jpegdec, LAME, mpg123,
and 179.art. The thesis concludes with a summary of the findings and a roadmap for future
development in Chapter 5.

2

CHAPTER 2
BACKGROUND

Before investigating some future driving applications, this chapter provides some necessary
background and terminology that will be used throughout the remainder of this work. One of
the major goals of this thesis is to provide new students with the necessary background to make
contributions as quickly as possible; as such, this section is targeted at those individuals who
are new to the compiler and parallelization communities. Chapter 3 will provide an overview
of the IMPACT compiler as it pertains to parallel compilation.

2.1 Preliminary Terminology

Two instructions that write to the same memory location or register are said to have an
output dependence between them. Additional common dependence terminology is defined
in [3]. In addition to these common dependences, compilers contain dependences that do not
actually exist in the application. Compilers must guarantee correctness, and this results in
conservative analysis frameworks that are unable to generate perfect dependence information
– especially in complicated applications. This thesis will use spurious dependence to refer
to those dependences that the compiler identifies that do not actually exist in the application.
Parrallelizing compilers must reduce the set of spurious dependences in order to be successful,
and this will be the target of much future research.

Applications tend to have multiple possible parallel implementations. This thesis will refer
to parallelism that encompasses relatively small amounts of computation as “fine-grain,” and
that which encompasses large amounts as “coarse-grain.” Course-grain parallelism is more
desirable for extracting thread-level parallelism because such implementations better amortize
the costs of extracting threads. In the applications studied, it is generally not possible to extract
course-grain parallelism from the inner loops of applications.

2.2 Figure Conventions

Figure 2.1 is an example of the figures that will be used in Chapter 4 to illustrate the
important data and control flow in sections of code. It also presents five conventions that will
be followed in these figures. These conventions are not restated in the text. In this example,

3

loop(o%t'()

*oo()

+loc- /

+loc- 0

loop(1nn'()

+loc- +

+loc- 3

4oop +loc- 3o5p%t6t1on +loc-

7%nct1on +loc- 06t6
0'p'n8'nc'

Conventions
(1) 4oop:c6((y 86t6 8'p'n8'nc's 6(' 8(6=n th(o%?h th' loops th6t th'
8'p'n8'nc' '@1sts 6(o%n8
(A) 3ont(ol:!o= 6(cs 6(' h188'n 6n8 c6n B' 8't'(51n'8 By th' oth'(
st(%ct%('s 1n th' "?%('
(C) 71?%('s t'n8 to B' s15pl1"c6t1ons o* =h6t 6ct%6lly '@1sts 1n th' co8'
(D) E*:Fh'n:Gls' Bloc-s 6(' ?'n'(6lly not sho=n
(H) 3olo(s 6(' 1nt'n8'8 to 'nh6nc' ('686B1l1ty 6n8 ?'n'(6lly h6I' no
sp'c1"c 5'6n1n?

Figure 2.1 Application Parallelism Figure Conventions

Block A is inside of the outer loop. The function foo() is called from the outer loop and this call
follows the execution of A and precedes the execution of Block D. Block A has no loop-carried
dependences or input dependences in this scope. Block D contains an input dependence from
Block A along with a loop-carried dependence from itself around the outer loop. Inside of the
function call is an inner loop that contains two blocks of computation, B and C. Block B has a
loop-carried dependence around the outer loop, while C has one around the inner loop. Some
figures will not exactly follow this convention, and will be labeled accordingly.

2.3 Parallel Compilation

Scientific computing has been making use of multiprocessor systems for many years. There
has been extensive research into automatic parallelization techniques in the High Performance
Computing (HPC) community that have targeted these scientific applications. Computationally
intensive inner loops that process large arrays of data with a substantial inherent parallelism
are common in these applications. Scientific applications are commonly written in High Per-
formance Fortran (HPF) [4], which does not have the notion of pointers like C and C++. Many
powerful transformation and analysis techniques were developed for this paradigm [5], and
provide the foundation for the ongoing work in the IMPACT compiler. It is imperative for
developing parallel compilation infrastructures to understand, incorporate, and build upon this
extensive past work. In Chapter 4, 179.art, a C benchmark from SPECfp2000 [6] that falls into
this category of applications, will be evaluated.

2.3.1 Loop transformations

In order to extract high-performance parallel code from HPC applications, much work was
done on loop transformations that reordered code execution. Banerjee’s book [7] provides a

4

reference for many of these transformations as well as the mathematics behind them.1 This
section provides an overview of three important types of loop transformations that will be
encountered in Chapter 4. While this thesis will focus on extracting thread-level parallelism,
these transformations are useful for instruction and vector level parallelism as well.

Figure 2.2 illustrates three important loop transformations: (a) loop fusion, (b) loop fission
(or loop distribution), and (c) loop interchange. The first takes two (or more) loops and “fuses”
them into one, the second takes a single loop and reconstructs it into two (or more) separate
loops, and the third “interchanges” different loops in a loop nest.

Loop fusion, which combines two or more loops into a single larger loop, is used to increase
the size of parallel blocks of code. Figure 2.2(a) illustrates this transformation. In any parallel
paradigm, there is generally overhead to performing parallel execution of loops which can be
better amortized by increasing the granularity. The figure also shows that loop fusion can be
used in conjunction with register promotion to reduce memory traffic. If A[] is not live out the
bottom of the second loop, and only is used to communicate between the two loops, then both
a load and a store can be removed. If A[] is potentially live out, then the store must remain but
the load can still be removed.

Loop fission, also commonly called loop distribution, takes a single loop and splits it into
two (or more) loops over the same iteration space. This is the opposite of loop fusion. In
the left diagram of (b), there is a loop-carried dependence that serializes the computation.
By splitting the loop into two separate loops (as shown on the right), the A block can be
executed in parallel by performing scalar expansion and creating an array for each iteration’s
value of r1. Increased memory traffic is traded for increased parallelism. Loop fission is
useful for removing recurrences or dataflow strongly connected components (SCC) from loops,
particularly in cases where the majority of the computation is parallel and outside the SCCs,
allowing for additional parallelism to be extracted. In the example, accesses to B[] in each
iteration depend on the previous iteration because of the i-1 index. The multiplication operation
is independent from iteration to iteration. By separating the loop on the left into two separate
loops, the multiplication iterations can be performed in parallel.

Finally, loop interchange exchanges the order of nested loops. This can be used to move
the location of loop-carried dependences.2 In the left diagram in (c), there exists a loop-carried
dependence in the inner loop (because of the j-1) and no dependence around the outer loop.

1A large portion of this work was led by Prof. David Kuck at the University of Illinois as well as Prof. Ken
Kennedy at Rice University.

2It can be used for other optimizations as well, including memory-locality optimizations.

5

for (i = 0 to 10)
 A[i] = X
for (i = 0 to 10)
 Y = A[i]

for (i = 0 to 10)
 r1 = X
 Y = r1

(") %oop ()s+on con$e&ts t*o sepa&ate loops into a sin/le loop0 This can 3e used to6
789 imp&o$e the memo&; cha&acte&istics 7!"# can 3e &emo$ed i< it is not li$e out o< -9
7=9 inc&ease pa&allelism /&anula⁢

for (i = 0 to 10)
 r1 = A[i] * 2
 B[i] = B[i-1] + r1

for (i = 0 to 10)
 foo[i] = A[i] * 2
for (i = 0 to 10)
 B[i] = B[i-1] + foo[i]

.

/

(0) %oop (+ss+on (o1 %oop 2+st1+0)t+on) con$e&ts a sin/le loop into t*o 7o& mo&e9 sepa&ate
loops *ith the same ite&ation count0 This /ene&all; t&ades o<< inc&easin/ the memo&; usa/e
7note that the <oo a&&a; has 3een added9 <o& inc&eased pa&allelism0 The . 3loc> o< code has
no loop ca&&; dependences? and the&e<o&e can 3e e@ecuted *ith a hi/h de/&ee o< pa&allelism0

for (i = 0 to 100)
 for (j = 0 to 20)
 A[i][j] = A[i][j-1]

%454n6

7
for (j = 0 to 100)
 for (i = 0 to 20)
 A[i][j] = A[i][j-1] 7

(c) %oop 9nt41ch"n54 chan/es the o&de& o< loop nests in an attempt to mo$e the loopAca&&;
dependence0 Bn the e@ample? the&e e@ists a loopAca&&; dependence th&ou/h the inne& loop that
p&e$ents e@t&action o< inne& loop pa&allelism0 C; inte&chan/in/ the loops? the inne& no lon/e&
contains a loopAca&&; dependence0 Dne can e@chan/e loops in eithe& di&ection dependin/ on
the t;pe o< pa&allelism that is desi&ed0

.

/

7

-

7

-

Eoop Data
Dependence Code Cloc>

Figure 2.2 Loop Transformations

6

This is illustrated in the figure with the dependence being drawn through only the first loop
block. By interchanging the two loops, the loop-carried dependence is moved to the outer loop,
resulting in inner loop iterations that can be executed in parallel. If outer-loop parallelism is
desired, then opposite interchange could be performed on loop nests with parallel inner loops.

2.3.2 Privatization

In order for threads to be extracted from sequential code, certain variables must be priva-
tized in order for the computation to work. For example, if variables are declared at the top
of a function, and are used in loop nests inside that function that are transformed into threads,
those variables must be replicated for each of the threads for proper execution. This situation
extends beyond scalars allocated on the stack to all types of data.

Privatization will be an essential component of the future IMPACT work. It has been
studied extensively in the past [8], and many of these techniques will have to be utilized in
order complete parallel versions of these applications.

2.3.3 Analysis

There are two significant types of analysis that currently exist in the IMPACT framework.
Pointer analysis, which is used to disambiguate different memory objects, will be covered in
detail in Section 3.2.2. After pointer analysis is performed, additional array disambiguation
analysis can be performed to improve the dependence resolution on array objects. These analy-
ses are commonly built using Single Static Assignment (SSA) representations (Section 2.3.3.1).
One example of such an analyses is the Omega Test [9] (Section 2.3.3.2). While these two
types of analysis generally focus on reducing the set of spurious dependences, this thesis will
demonstrate the need for other analysis techniques that are not directly related to dependencies.

2.3.3.1 Single Static Assignment

In superscalar processors, register renaming is used to dynamically rename different ver-
sions of registers in the dynamic instruction stream. It is useful for compilers to perform a
similar renaming process when performing analysis. SSA [10] provides a representation of an
application’s dataflow that renames different versions of variables (or registers in the case of
Lcode or assembly). In addition to creating different versions for variable from code like a = a
+ 1, SSA also inserts φ-nodes at control flow points where different versions of variables join.
For example, if there is an if block in code that contains an assignment, a φ-node would be

7

inserted below the block. This would signify that the version of the variable below that point
could either come from the definition within if block, or the previous definition. Similar cases
exist at the top of loops and other control-flow join points.

There exist other more detailed extensions to SSA. SSA itself is not an “executable” rep-
resentation as it does not maintain all of the control flow information that is necessary for
the proper execution of an application. Program Dependence Graphs (PDG) [11] and Value
Dependence Graphs (VDG) [12] both are extensions of SSA that incorporate the remaining
control flow information and result in an executable form. These extensions are useful be-
cause transforming them handles both the necessary data and control considerations. IMPACT
currently contains SSA implementations in both Pcode and Lcode (Chapter 3) that, when com-
bined with the control flow graphs (CFG), provide all the information contained in a PDG or
VDG, but not in a single executable form. Gated Static Assignment (GSA) [13] is another
extension of SSA that contains different types of nodes for different types of control-flow join
points. These nodes also contain additional information about their control flow. GSA cur-
rently is not implemented in IMPACT, but extending the existing infrastructure would not be
difficult if it was determined to be necessary.

2.3.3.2 Array disambiguation - Omega Test

While pointer analysis is able to distinguish different memory operations that refer to dif-
ferent memory objects (Section 3.2.2), dependencies between accesses to arrays can be broken
if it can be proved that they are to distinct indices. For example, in the loop for (i = 1 to 10)
{a[i] = a[i] * 2;}, although each iteration accesses the same array, each iteration is independent
because the indices i are always distinct. Omega Test [9] is a tool that is capable of distinguish-
ing between different array memory accesses in loops. Loops contain induction variables that
change in a predictable manner for each loop iteration. For example, in the above loop, i is an
induction variable. The fundamental induction variable in a loop refers to a conceptual induc-
tion variable that starts at 0 and increments by 1 for each loop iteration. The other induction
variables in loops can be expressed as a function of the fundamental induction variable. Equa-
tions that express array reads and writes in loops as functions of the fundamental induction
variable (or variables in the case of multidimensional loops) are called induction expressions.

After calculating induction expressions for the different array accesses in a loop, a set of
linear equations can be generated based on these induction expressions and the loop bounds.
Solving these linear equations not only removes some dependences, but can also provide more
detailed information about dependences that may exist. For example, it may be possible to

8

determine the dependence distance, or number of iterations between which loop-back depen-
dences do not manifest themselves. For example, in for (i = 0 to 10) {a[i] = a[i - 2] * 2;}, there is
a dependence distance of 2 because loop iteration n depends on the result of iteration n − 2.

Additional work has been done to extend the concept of Omega Test to handle certain
special cases. Omega Test did not originally support affine expressions that incorporated unde-
fined invariants. Many of the induction expressions contain constants (integers) multiplied by
an induction variable. I-Test [14] extends Omega Test by allowing for loop-invariant variables
to be used in addition to integer constants.

Shape Analysis [15, 16] is a technique that attempts to identify other types of data struc-
tures in applications, and then applies the semantics of those structures to reduce the spurious
dependencies. This type of analysis will be necessary when working with applications that are
not limited to array-based structures.

9

CHAPTER 3
IMPACT COMPILER OVERVIEW

While Chapter 2 provided an overview of parallel applications and compilation, this chapter
will provide details about the existing IMPACT features. It will not present the ILP compilation
optimizations that have been implemented in past work [17], but focus on the components
that are relevant to thread-level parallel compilation. Basic compiler knowledge, as presented
in [8, 18], is assumed.

3.1 High-Level IMPACT Overview

The IMPACT compiler has two internal representations, Pcode and Lcode. EDG, a com-
mercial parser and lexer, processes the input C, C++, or Fortran code, and this is then translated
into Pcode, an Abstract Syntax Tree (AST) representation. After several analysis and transfor-
mation steps, Pcode is translated into Lcode, a register transfer level representation that is
similar to assembly code. The majority of past analysis and optimization research was per-
formed here. IA-64 assembly code can be generated from Lcode, or it can be converted back
into C for compilation to different architectures.1

3.2 Pcode

Pcode performs three important tasks: profiling, inlining, and pointer analysis. Pinline uses
the profile information and heuristics based on profile weights, function sizes, and code growth,
to decide which function calls to inline, and is capable of inlining direct, indirect, and recursive
function calls. Pcode also incorporates a scalable context sensitive, partial flow sensitive, field
sensitive pointer analysis based on Erik Nystrom’s [19] and Jame Player’s [20] theses.

3.2.1 Pinline

Extending past HPC analysis and transformation techniques to loop nests that contain pro-
cedure calls is nontrivial. Because IMPACT does not currently have an interprocedural analysis

1Other code generators existed in the past, but were retired from lack of use. There also exists a code generator
for the IMPACT ISA that is used in the internal Linterpret simulator.

10

and transformation framework, it is necessary to use Pinline to selectively inline the necessary
functions. IMPACT contains a runtime compilation parameter (PARM) that inlines all function
calls (with the exception of recursive calls2). Pinline also obeys the inline function directive.
Functions that are declared with the inline directive, including, to a limited extent, those that
are called indirectly, will be inlined at all call sites. In gcc, the inline directive traditionally
was only obeyed for functions declared statically in the same file. Pinline can and will inline
functions across files. Pinline handles indirect function calls by inserting control flow to check
for a specific case and then inlining that case within the control flow. Indirect calls are never
removed, but one or more special cases can be executed instead.

Inlining is performed at the beginning of the compilation process. As a result, any analysis
that is developed can take advantage of the inlined code. However, Pinline is also forced to
base its decisions on profile data and not analysis results. For example, pointer analysis will
determine the set of potential callees for indirect function calls. Because Pinline is run first, it
is not possible to use this information, and only callees that are exposed during profiling can
be inlined.

3.2.2 Pointer analysis

One of the major differences between HPC and general purpose applications is the usage of
heap-allocated objects. Pointer analysis is the first step in disambiguating memory accesses to
these objects. Traditionally, pointer analysis in IMPACT has been used to disambiguate stores
and loads and to perform optimizations inside small regions of code. Successfully removing as
many spurious dependences as possible to reduce the problem set is important and necessary
in bridging the gap between scientific and general purpose applications. Inaccurate pointer
analysis results may either result in suboptimal parallel compilations or, potentially, prevent
parallel extraction altogether.

IMPACT’s FULCRA framework for pointer analysis uses the notion of points-to sets to
present its results. Different pointer analysis objects are created, and each memory operation
is tagged with the objects that it may access using access specifiers or accspecs. Two different
memory operations are said to alias if there exists an intersection in their points-to sets. FUL-
CRA incorporates scalable context and field sensitive pointer analysis with heap cloning [19].
Support for partial flow sensitivity using SSA [20] can be enabled for the input to FULCRA,

2Recursive calls can and will, to a limited extent, be inlined as well. For example, if it can be determined that
a certain recursive call is almost always performed n times, then it may be inlined up to that point.

11

but the results are not currently annotated onto the resultant Pcode. High-level descriptions of
these features follow.

3.2.2.1 Context sensitivity

Context sensitive pointer analysis distinguishes between call paths when determining how
callees affect callers. For example, if functions A and B both call X, a context insensitive
analysis may show data flow from A to B through X. This is because the summary of X that
is used will merge information from each call site. Context sensitivity avoids merging by
separating different call sites. While it is possible to achieve context sensitivity by simply
inlining everything, that is not a scalable solution. FULCRA provides a more scalable context
sensitive framework [19].

3.2.2.2 Heap cloning

Heap cloning is a feature that allows the compiler to version heap objects based on the call
stack that they are allocated from. For example, it is common to create allocation routines
for different objects in C. In basic pointer analysis, pointers that are allocated from the same
malloc call are assigned to the same initial pointer-analysis object; consequently any objects
allocated by the same allocation routine will alias. By considering the call stack, heap cloning
emulates the inlining of the different allocation routines to disambiguate the different objects.

Version information is stored along with each object ID in the accspecs of each memory
operation. Accesses where heap cloning was not used will be marked as such, and cannot be
disambiguated using version information. Accesses to different versions of the same object
do not alias. Currently, the versioning system is exclusively used for heap cloning, but it is
possible to use it for other future analysis results.

3.2.2.3 Field sensitivity

In C applications, it is not uncommon to malloc structures that contain pointers to other
objects. In these situations, the pointer to the outer structure contains at least two levels of
indirection to the actual data. Field sensitive analysis distinguishes between the objects pointed
to from different fields inside structures, while basic pointer analysis will merge these accesses.
It is important to note that field sensitivity does not refer to the case of distinguishing between
accesses to different fields of a structure which are always independent.

12

1 typedef struct
2 {
3 int *ptr1;
4 int *ptr2;
5 } structure;
6
7 void main()
8 {
9 structure *A;

10 int *p1, *p2;
11
12 /* allocate data on heap */
13 A = (*structure) malloc (sizeof(structure));
14 A->ptr1 = (int*) malloc (10 * sizeof(int));
15 A->ptr2 = (int*) malloc (10 * sizeof(int));
16
17 /* retrieve pointers from structure fields */
18 p1 = A->ptr1; p2 = A->ptr2;
19
20 /* dereference pointers from structure fields */
21 *(a->ptr1) = 1; *(a->ptr2) = 2;
22 }

Figure 3.1 Field Sensitivity Example Code

Figure 3.1 presents example code for where field sensitivity is useful. In this example, A is
a pointer to a structure in memory that contains two integer pointers. The two integer pointers
are allocated at separate malloc sites, and do not alias. At line 18, the two loads can never
alias because they are to different offsets in structure,3 and field sensitivity is not necessary to
handle this case. It does handle the stores at line 21. A field sensitive pointer analysis will keep
the objects pointed to by ptr1 and ptr2 distinct, and will determine that these stores will never
be to the same memory location. Field sensitive analysis removes the assumption that pointers
contained in different fields of a struct may alias.

3.2.2.4 Partial flow sensitivity

Basic pointer analysis does not take into account the execution order of an application.
All instructions are thought to execute simultaneously. In some situations, pointer variables
have disjoint lifetimes that exhibit different points-to sets, and other situations where the flow
through an application may prevent different pointers from aliasing. Flow sensitivity [21] tar-
gets these problems and attempts to incorporate execution order into pointer analysis. Tra-
ditional flow sensitivity tends to be expensive. IMPACT contains a partial flow sensitivity
framework [20] that addresses the disjoint lifetime situations by using SSA (Section 2.3.3.1).

3Determining that loads do not alias is generally not useful. They are used in this example for simplicity.

13

By renaming variable lifetimes, it is possible to achieve higher resolution on variables that have
disjoint lifetimes. As reported in [22], full flow sensitivity may not always be useful, as many
of the important cases are handled by context sensitivity.

3.3 Lcode

Lcode has traditionally been the part of the compiler where, with the exception of the
pointer analysis work, the IMPACT group’s research has focused. It performs the traditional
optimizations that one would read about in the Dragon Book4 [18]. It also incorporates the
many ILP transformations that were developed over the years for EPIC compilation [17].

After the Pcode to Lcode conversion, the traditional optimizations are performed in Lopti,
followed by Lcode profiling. Traditionally this was followed by the EPIC optimizations (su-
perblock (Lsuperscalar) and hyperblock (Lblock) formation) and then scheduling and code
generation (in the Schedule Manager (SM) [23] and Ltahoe). C code can be generated at any
time using the Lemulate module.

3.3.1 Lcode SSA

Lcode’s core infrastructure contains support to build an SSA graph [10] off of the default
internal representation (IR). In addition to this, it contains a module, Lssaopti, that performs
optimizations and analysis based on this SSA graph. This is currently the site of many of
the array disambiguation analysis techniques that are under development for the parallelization
effort, including Omega Test [9] (Section 2.3.3.2) and I-Test [14]. While SSA provides a useful
structure for performing analysis, transformations made on the SSA graph are not reflected in
the Lcode IR. Therefore, transformations should generally be written for the standard IR based
on the information provided by SSA-based analysis.

A previous version of pointer analysis used sync arcs instead of the points-to sets and
accspecs that are used today. These arcs existed between different memory operations to mark
dependences. The functionality for these arcs still exists today, and they are used to provide
additional information to the accspecs. For example, Omega Test uses sync arcs to mark the
dependence distance between different array accesses. This is a useful technique for the near
term, but may need to be re-evaluated for future scalable solutions.

4There is a picture of a dragon on the front of [18], and it is commonly referred to by this name.

14

3.3.2 Lcode transformation

Two new Lcode modules, Lpar and Ltrans, have recently been added to support thread-level
parallel transformations. This will be the site of many of the loop transformations explored in
Section 2.3.1. Lpar contains support to transform loops with independent iterations into loops
that spawn threads to perform the iterations in parallel. Loop Blocking, which transforms
singly nested loops into multidimensional loops, was recently implemented in Ltrans. This
transforms a single loop that iterates n-times into two nested loops that iterate m and n

m times
each. The order of execution is not modified in this transformation. Loop fission is currently
under development in Ltrans.

3.3.2.1 IMPACT threads

Lpar spawns threads using the IMPACT thread library, ithreads. The ithreads library con-
tains features similar to pthreads, but leaves some control over the implementation to IMPACT.
The Liberty Simulator Framework (LSE) [24], developed by David August’s group at Prince-
ton, is one target for future studies. Pthreads requires the support of the operating system’s
scheduler. Because LSE is not a full-system simulator, the system calls that pthreads utilizes
are not supported. However, it is possible to use cloned threads, which are based on the sup-
ported clone system call. Depending on the target system, ithreads allows the use of either
pthreads or cloned threads without changing the compilation parameters.

3.3.3 Lemulate: Lcode to C

Lcode can be translated into C code for compilation by gcc (or other compilers) for dif-
ferent architectures. Each Lcode statement is translated into a corresponding C statement.
Traditionally, particularly for the EPIC compilation work that depends on strong analysis and
scheduling algorithms, this was not a high-performance solution. When converted to C, all
memory dependence information is lost. The bulk of the benefit from thread-level compilation
is derived from coarse-grained transformations. Converting such transformed code to C for
compilation on different architectures provides an acceptable means for evaluation. This path
can also be leveraged for collaboration efforts with other research groups that already use C.

15

CHAPTER 4
BENCHMARKS

This chapter will investigate the opportunities for future research in parallelizing compilers us-
ing the jpegdec image decoder, the LAMEmp3 encoder, thempg123mp3 decoder, and 179.art,
a tool for identifying thermal images inside of other thermal images. Each section will contain
an overview of the benchmark, followed by an evaluation of some different opportunities for
parallelism, and finish with a detailed study of some of the analysis and transformation tech-
niques that will be necessary for future compilation frameworks in order to extract the different
granularities of parallelism.

4.1 jpegdec - Image Decoder

The jpegdec application performs compressed image decoding on all types of JPEG images.
There is no single standard for how JPEG images are compressed, and many different options
must be supported by a decoder. At a high level, jpegdec first performs decompression, then
inverse discrete cosine transform (iDCT), upsampling, and finally color conversion. Because
there are a variety of techniques for performing each of these steps, jpegdec is implemented
with a series of indirect function calls that are configured once at the beginning of the execution
based on both the command-line parameters (for the output image type) and the image header
(for the input image type). This application is similar to the jpegenc application, as it performs
the inverse operations and exhibits similar characteristics.

This study will focus on a single popular runtime flow for decoding JPEG images (Ta-
ble 4.1). This will motivate the need for path-specialized analysis and transformation, and
demonstrate how runtime dead code makes automatic parallelization difficult for both analysis
and transformation.

In general, the JPEG decompressing algorithm is highly parallel in some areas and less so
in others. In this configuration, the input image has been compressed using Huffman encoding.
Huffman decoding is inherently sequential – one needs to decode each key before it is possible
to decode the rest of the string. The other portions of the decoding process are all parallel at
different levels. For example, YCC to RGB color conversion is done independently for each
pixel in the image, while the iDCT works on 8x8 blocks of samples (subcomponent of a pixel).

16

Table 4.1 jpegdec Runtime Parameters

Component Mode Function
Decompression Huffman Decode decode mcu()
iDCT Slow but Accurate Integer iDCT jpeg idct islow()
Upsample - Y Fullsize fullsize upsample()
Upsample - Cr, Cb H2V2 Fancy h2v2 fancy upsample()
Color Convert YCC to RGB ycc rgb convert()

Back-End Front-End

jpeg_read_scanlines
100.0% -- 1200

process_data_context_main
100.0% -- 1200

sep_upsample
48.2% -- 1200

decompress_onepass
51.8% -- 75

main
100.0% -- 1

h2v2_fancy_upsample
24.8% -- 1200

ycc_rgb_convert
23.4% -- 1200

jpeg_idct_islow
39.0% -- 90000

decode_mcu
11.3% -- 15000

Figure 4.1 jpegdec Callgraph with Runtime Weights

Figure 4.1 shows the pruned callgraph of jpegdec with runtime weights for all functions
with more than 10% of the runtime.1 As shown, there are essentially four major components
to this application (the four bottom boxes), and there is no single component that contributes
to the majority of the runtime. As such, Amdahl’s law prevents significant performance im-
provements from being gained without targeting the entire application. Each of these com-
ponents demonstrates different parallelization opportunities, each with different characteristics
and benefits.

1Profile information was collected using gprof on an AMD 2800+ x86 64 system.

17

!b#
!!!!!!"#"#"#i%i%i%

& i% "# !! '(i%& !! '("# !! '(i%& !! '()))))))))

i
%

i
%

& & i
%

& "
#

!
!

'(!
!

'("
#

!
!

'())))))))) !
!

'(

& & & & i%))) "# !! !!!!!!!! '('())) "#"#"#"#))) '(

$riginal ,ynamic Program 2lo3

2ine-6rain ,ynamic Program 2lo3

Coarse-6rain ,ynamic Program 2lo3

!a#

*ac-./0d2ro0t./0d

& i% "# !! '(

Control 2lo3

)))

))) & 67 &9::ma0 %ecode

i% =7 i%!>

"# ?7 &?@?A 6729llsiDe

!! 67 !olor !o0@ert

'(67 2ile (9tp9t

Figure 4.2 jpegdec High-Level Flows and Select Parallel Opportunities

Figure 4.2(a) shows the high-level control flow of the benchmark and the dynamic pro-
gram flow (b) for the original implementation, fine-grain parallel implementation, and a coarse-
grain implementation. The parallel implementations will be discussed in more detail in Sec-
tions 4.1.2 and 4.1.4. Each block in the lower portion of the diagram corresponds to a compo-
nent of the decoding algorithm. To simplify the picture, components that are executed in inner
loops have been merged into a single block and labeled (in the legend) with the iteration count
of the inner loop. For example, in this configuration, iDCT is always called in groups of 6.

The front- and back-end processing are illustrated at a high level in Figures 4.3 and 4.4,
respectively. The left sides show the different data representations, while the right sides show
the control flow for the processing. These are intended not to illustrate exactly how data is
maintained in memory, but to provide an algorithmic view. The different data representations
are labeled on the left, and these labels are shown on the arcs in the control flow graphs to
illustrate the inputs and outputs of the different stages of processing.

4.1.1 JPEG terminology

A sample is a single data point (generally one byte) for a single color component. A group
of samples (in the case of this study, three samples) make up a pixel, which contains all of the
information for that portion of an image. Rows and columns of pixels make up the resultant

18

Control (low *raph

!a# %u''man *n+oded /tream

!2# %u''man 3e+oded /tream

!+# 4CC *n+oded 676 8lo+:s

!+<=# >? RoAs 4 3ataB 6 RoAs Cr and C2 3ata

%u''man 3e+ode

CnDerse 3CE

AidtG H >?

7?

76I

NoteJ tGis loop is
a+tually +omposed o'
tGree inner loops tGat
+om2ine to +all i3CE
a total o' ? times<

NoteJ tGere is no a+tual data trans'ormation
tGat ta:es pla+e 2etAeen tGe 676 2lo+:s and
tGese roAs< tGe pointer stru+tures
automati+ally +reate tGis representation<

NoteJ tGis loop
pro+esses a+ross tGe
AidtG o' tGe imaMe to
Menerate entire roAs as
sGoAn 2eloA<

!a#

!2#

!+#

Figure 4.3 jpegdec Front-End High-Level Algorithm

!ontrol'(lo)'*rap-

!"#$%$&'()$*$+","-$.$&'($/0$"12$/3$+","

4%5%$6"178$
9:)";:<=

*//$,'$&>?
/'<'0$/'1@=0,

A%

4="2=0

BCD$!"#

BCD

60';$60'1,EF12

.G$&'()$/';:<=,=

!3#$%$&'()$*-$/0-$"12$/3$+","

!7#$%$&'()$&-$?-$"12$?$+","
A.G

.ot/0$$HI=$2","$J0';$,I=$J0'1,E=12$K17<L2=)$7'1,=A,
0'()$,I",$"0=$L)=2$J'0$:=0J'0;K1M$4%5%$9:)";:<=N

.ot/0O)=7'12$7"<<$,'$,I=$3"7P=12$K)$
0=QLK0=2$,'$7'<'0$7'1@=0,$,I=$)=7'12$0'($,I",$38:"))=)$L:)";:<K1MN

!3#

!7#

!3#

Figure 4.4 jpegdec Back-End High-Level Algorithm

19

image. Images are encoded into different color components. In this study, we will focus on the
YCC and RGB color component schemes, but others do exist and are supported by jpegdec.
The RGB scheme contains red, green, and blue components. It is commonly used as the output
color scheme because RGB is used to display images on monitors. YCC is a color space
made up of luminance (Y) and red and blue chrominance (Cr, Cb) samples, and is commonly
used by JPEG encoding because the chrominance components can be downsampled without
loss of perceptible image quality. These components tend to vary less than Y, and the human
eye is also less sensitive to them. Downsampling refers to the lossy process of shrinking the
uncompressed data set by averaging groups of samples into smaller sets (this is performed in
jpegenc). Upsampling is the reverse process that is performed in jpegdec. In this study, H2V2
Fancy Upsample is used on the Cr and Cb components (no upsampling is necessary on the Y
component). It takes the downsampled component frames and doubles their size in both the
horizontal and vertical dimensions. It is “fancy” because it does not simply take each input
sample and replicate it into three additional copies, but generates the new samples by taking a
weighted average of surrounding downsampled samples.

An MCU row corresponds to a Minimum Coded Unit of data, which consists of the data
necessary to generate a group of rows in the output image. When images are encoded in the
JPEG format, DCT is performed separately on 8x8 blocks of samples. Groups of these 8x8
blocks for the different color components that correspond to a region in the original uncom-
pressed image make up an MCU block. This study focuses on the 4:1:1 YCC compression
scheme, in which for every four blocks of 8x8 Y samples, there exists one block of Cr and one
of Cb. In this case, each MCU block is made up of 4 Y, 1 Cr, and 1 Cb block. An MCU row is
a series of these blocks that stretch across the width of an image. Upsampling is performed on
the Cr and Cb blocks so that there are equal numbers of Y, Cr, and Cb samples. These groups
of three samples can then be color converted into RGB pixels.

This thesis will refer to the functions called from decompress onepass() as the front-end
and those called from sep upsample() as the back-end processing (Figure 4.1). Unlike the
terminology presented in the previous paragraphs, this is not standard terminology. The front-
end performs Huffman decoding and iDCT, and then passes rows of YCC data to the back-end
for upsampling and conversion to the RGB color scheme. The front-end processes 8x8 blocks
of samples while the back-end processes rows of samples.

Due to the length of this section, the jpegdec evaluation is broken into separate sections on
the front- and back-ends. Each section will provide an overview of the different granularities
of parallelism followed by an evaluation of the necessary analysis and transformations.

20

4.1.2 Front-end parallelism

The front-end of jpegdec performs Huffman Decoding and iDCT. Huffman Decoding is in-
herently sequential. Without modifications to the encoding scheme, it is not possible to extract
any meaningful parallelism from this task, and it is the critical recurrence in the application
that is the fundamental limiting factor to the overall performance benefit that one can extract
through parallel transformations. Each iDCT that is performed on each component of an MCU
block is completely independent from all other blocks and all other components. As such, there
are a variety of options for where to parallelize this stage.

4.1.2.1 iDCT - Fine-grain parallelism

First, we will examine the iDCT code for fine-grain parallelism. Figure 4.5 shows a selec-
tion of the iDCT code (many of the 200 lines have been removed for simplicity). There are
two phases to an iDCT calculation (the loops at lines 171 and 276). The first phase generates a
“workspace” of data from the input buffer, which is then processes by the second phase. Each
iteration of phase 1 generates a column of the workspace, while each iteration of phase 2 pro-
cesses a row from this workspace. Therefore, it is necessary to calculate the entire workspace
before performing phase 2, and loop fusion is not possible. However, both of the two phase
loops are entirely parallel. DCTSIZE is defined as 8, and therefore it is possible to spawn eight
independent threads from the different loops iterations. In both phases, there exists a special
case for each iteration that checks if the input data is all zero, and continue is used to skip the
computation in this case. It is not uncommon for this case to be used, and therefore it may be
useful to spawn threads after performing this check.

4.1.2.2 iDCT - Block-level parallelism

Having explored the fine-grain parallelism available in iDCT, we will evaluate more coarse-
grain opportunities one function up in the call stack. Figure 4.6 presents the code for de-
compress onepass(), which calls both Huffman Decoding and iDCT. Figure 4.7(a) provides
a high-level view of the initial front-end sequential implementation. The two outer loops at
lines 160 and 162 have been merged into a single outer loop in this figure for simplicity. In the
current runtime configuration, the outer loop (line 160) always iterates exactly one time.2

2This study focusses on noninterleaved images. This loop iterates over MCU rows that make up an iMCU row
in interleaved images, and can iterate as many as four times in those images.

21

147 GLOBAL(void)
148 jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
149 JCOEFPTR coef_block,
150 JSAMPARRAY output_buf, JDIMENSION output_col)
151 {
...
161 int workspace[DCTSIZE2]; /* buffers data between passes */
163
164 /* Pass 1: process columns from input, store into work array. */
...
168 inptr = coef_block;
170 wsptr = workspace;
171 for (ctr = DCTSIZE; ctr > 0; ctr--) {
...
... ==== COMPUTATION HIDDEN FOR SIMPLICITY ===
257 wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
258 wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
259 wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
260 wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
261 wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
262 wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
263 wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
264 wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
...
268 wsptr++;
...
269 }
270
271 /* Pass 2: process rows from work array, store into output array. */
...
275 wsptr = workspace;
276 for (ctr = 0; ctr < DCTSIZE; ctr++) {
277 outptr = output_buf[ctr] + output_col;
...
287 if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] |
288 wsptr[7]) == 0) {
...
... ==== SET outptr[0 to 7] ====
301
302 wsptr += DCTSIZE; /* advance pointer to next row */
303 continue;
304 }
...
... ==== HEAVY CALCULATION - input: wsptr[0 to 7] ====
357 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
358
359 outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3, ...
362 outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3, ...
365 outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2, ...
368 outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2, ...
371 outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1, ...
374 outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1, ...
377 outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0, ...
380 outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0, ...
...
384 wsptr += DCTSIZE; /* advance pointer to next row */
385 }
386 }

Figure 4.5 jpegdec iDCT - jidctint.c:jpeg idct islow()

22

146 METHODDEF(int)
147 decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
148 {
...
159 /* Loop to process as much as one whole iMCU row */
160 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
161 yoffset++) {
162 for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
163 MCU_col_num++) {
164 /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
165 jzero_far((void FAR *) coef->MCU_buffer[0],
166 (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
167 if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
168 /* Suspension forced; update state counters and exit */
169 coef->MCU_vert_offset = yoffset;
170 coef->MCU_ctr = MCU_col_num;
171 return JPEG_SUSPENDED;
172 }
...
178 blkn = 0; /* index of current DCT block within MCU */
179 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
180 compptr = cinfo->cur_comp_info[ci];
181 /* Don’t bother to IDCT an uninteresting component. */
182 if (! compptr->component_needed) {
183 blkn += compptr->MCU_blocks;
184 continue;
185 }
186 inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
187 useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
188 : compptr->last_col_width;
189 output_ptr = output_buf[ci] + yoffset * compptr->DCT_scaled_size;
190 start_col = MCU_col_num * compptr->MCU_sample_width;
191 for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
192 if (cinfo->input_iMCU_row < last_iMCU_row ||
193 yoffset+yindex < compptr->last_row_height) {
194 output_col = start_col;
195 for (xindex = 0; xindex < useful_width; xindex++) {
196 (*inverse_DCT) (cinfo, compptr,
197 (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
198 output_ptr, output_col);
199 output_col += compptr->DCT_scaled_size;
200 }
201 }
202 blkn += compptr->MCU_width;
203 output_ptr += compptr->DCT_scaled_size;
204 }
205 }
206 }
207 /* Completed an MCU row, but perhaps not an iMCU row */
208 coef->MCU_ctr = 0;
209 }
...
219 }

Figure 4.6 jpegdec Front-End - jdcoefct.c:decompress onepass()

23

loop (&C(blocks)

loop (components)

loop (blocks)

iDCT

%uffman

loop (&C(blocks)

loop (components)

loop (blocks)

+pawn iDCT

%uffman

loop (components)

loop (blocks)

/oin iDCT

loop (&C(blocks)

%uffman
+ave +tate

loop (threads)

+pawn Thread

loop (threads)

 /oin Thread

 Thread
loop (&C(blocks in
 thread)
loop (components)

loop (blocks)

iDCT

!e#en%
Loop

Data
Dependence

Code Block

&'()*+i#in'-).e/0enti'-
234-e3ent'tion

&6().i34-e)7'+'--e-)
234-e3ent'tion

&8()Co0+se;<+'in)7'+'--e-
234-e3ent'tion

<edium-grain parallelism
useful but limited scalability.

Course-grain parallelism
scalable and high-performanceC

but difcult to achieve.

Fine-grain parallelism
available inside iDCT

exploitable largely with ILG.

Figure 4.7 jpegdec Front-End Parallelism

The first simple technique (Figure 4.7(b)) for parallelizing this block of code performs each
iDCT call in a separate thread. Because each MCU block contains six different blocks (4 Y, 1
Cr, 1 Cb), this will create six independent threads.

4.1.2.3 Full front-end course-grain parallelism

In order to achieve more scalable and coarser-grain parallelism, it is necessary to perform
multiple iDCTs for multiple MCU blocks in each thread. One technique for achieving coarse-
grain parallelism spawns one thread for each MCU block. Another technique (Figure 4.7(c))
performs loop distribution and converts the outer loop into two separate loops, one to perform
the sequential Huffman decoding and one the parallel iDCT. This implementation provides
better control over the number of threads and scales the computation size accordingly. For
example, if 60 MCU blocks were to be processed, 5 threads would process 12 blocks each
while 10 threads would process 6 blocks each.

24

4.1.3 Front-end transformations and analysis

Having provided an overview of the different opportunities for parallel execution of the
front-end of jpegdec, this section will detail some of the analysis and transformation require-
ments for extracting the different parallel implementations. It will start with the fine-grain
opportunities and build up to the more complicated coarse-grain versions.

4.1.3.1 iDCT analysis - Fine-grain analysis and transformation

Parallelizing the two inner phase loops of iDCT is the finest-granularity of thread-level par-
allelism explored here. This only requires intraprocedural analysis and trivial transformations,
and, to the best of our knowledge, will be handled by the existing infrastructure once limi-
tations in FULCRA with allocation pools and multidimensional pointer arrays are addressed
(Section 5.1.2).

In phase 1 of iDCT, it is necessary to determine that there are no true scalar dependences
around the loop-back edge for the various temporary variables. This is necessary because the
temporary variables are declared at the top of the function rather than inside the loop scope
(like they should be). The existing SSA can remove these loop-carried dependences. Once this
is complete, the only other requirement is that the sections of the workspace that are modified
in each iteration are disjoint. Each iteration modifies wsptr[DCTSIZE*(0 to 7)], and after each
iteration wsptr is incremented. In other words, the first iteration modifies indices 0, 8, 16,
..., the second 1, 9, 17, ..., and so on. Equation (4.1) shows the induction summary for each
iteration for workspace where ctr is the induction variable.

workspace[ctr + 8 ∗ (0 to 7)] (4.1)

Because the loop iterates eight times, and the dependence distance can be shown to be
eight, there are no loop-carried dependences. Basic Omega Test can determine this because the
for loop has a compile-time static constant range and simple induction expressions.

The analysis of phase 2 is similar to that of phase 1, but is complicated by the fact that the
memory that it writes to is based on the output buf JSAMPARRAY. For now, let us assume that
this array has the same semantics as a two dimensional array (this will be explored in greater
detail in Section 4.1.3.2). With this assumption, the existing Omega Test should create the
induction expression shown in Equation (4.2) and determine that the iterations are independent.

output buf [ctr][0 to 7] (4.2)

25

1 #o% &'A)*+,
1)-. #o% &'A)*+,

#o% *oi0t2r4

Y - -

&'A)*A##AY

&'A)*6)A7,

&'A)*#89

Figure 4.8 jpegdec Front-End Output Buffer Memory Layout

There are no major transformations that are necessary to parallelize these inner loops. Turn-
ing loops into thread spawn points has already been implemented in IMPACT. If it was not
possible to perform the analysis to prove that the data written by phase 2 never overlapped, one
could insert test code that determined whether it would be legal to assume that those compo-
nents were all independent.

4.1.3.2 Output buffer

In general, when parallelizing loops, it is necessary to perform analysis to understand the
nature of the data that each iteration of the loop writes. For each level of parallelism expressed
in Section 4.1.2, it is necessary for an analysis to disambiguate references to the output buffer.
Therefore, we will first provide an overview of how the output buffer is maintained. Then we
will evaluate how an analysis would identify the independence of writes to this structure.

Figure 4.8 presents a high-level picture of how the front-end’s output buffer is maintained
in memory. It is essentially a three-dimensional array allocated as pointers in memory. The
row buffers at the bottom of the figure are shown as a single contiguous memory space because
they are allocated in that manner (Section 4.1.6). Moving forward, we will assume that the out-
put buffer structure maintains the semantics of a multidimensional array, although the current
infrastructure does not have the ability to determine this.

Figure 4.9 shows a more detailed picture of how the output buffer is maintained. In order
to handle the need for context data in upsampling,3 and to remove the need for memcpy calls,
two separate sets of row pointer arrays are maintained. Every time the front-end processes
a single MCU row, it switches between one of the two possible xbuffer sets. This compli-
cates analysis by making it difficult to generate an accurate set of dependence information for

3H2V2 fancy upsampling requires context data from the surrounding samples.

26

!!!

!!!

"#$ff&r

ro)*#$ff&r+ro)*,oi./&r+0o1,o.&./*,oi./&r+

2"/r3*ro)*#$ff&r+*3r&*
344o03/&5*/o*13i./3i.*/6&*
0o./&"/*53/3*for*$,+31,4i.7!**
8o*r&1o9&*/6&*.&&5*/o*0o,:*
#$ff&r+;*/)o*+&/+*of*ro)*
,oi./&r+*3r&*13i./3i.&5!**
2306*,oi./+*/o*/6&*30/$34*ro)*
#$ff&r+*i.*5iff&r&./*)3:+*<.o/&*
/63/*/6o+&*3r0+*5r3).*3r&*j$+/*
3*r&,r&+&./3/io.>!**86&r&*3r&*
34+o*+,&0i34*03+&+*/o*63.54&*
/6&*/o,*3.5*#o//o1*of*
i137&+!**86i+*0o1,4i03/&+*
3.34:+i+*/63/*5&/&r1i.&+*
)6&.*/6&*fro./-&.5*o$/,$/*
ro)*#$ff&r+*3r&*i.5&,&.5&./!

Figure 4.9 jpegdec Front-End xbuffer

the different output row buffers. While the row pointers within the same invocation of de-
compress onepass() will always point to disjoint arrays, this is not the case between different
invocations. For example, row pointer r from iteration i could be the same as row pointer r +1

for iteration i + 1.
Now that we have an understanding of how the output buffers are maintained in memory,

we will evaluate what needs to be done to disambiguate different output buffer accesses. It is
generally necessary to start at the inner loops and generate summaries of the accesses while
moving outwards. Therefore, the first step is to evaluate the loops in iDCT.

The phase 1 loop (jidctint.c:171) modifies data on the local stack, and therefore can be
ignored. The phase 2 loop (jidctint.c:276) modifies data from the output buf pointer parameter.
The output location is determined at line 277. For each iteration of the loop (line 276), a row
pointer is selected from the output buf two dimensional array. Once this is complete, output col
is used to jump to the correct position inside of the row array. From this point, 8 samples are
written. Therefore, each iteration modifies 8 samples from the same column in 8 different rows.
If it were possible to determine that the output buf structure always maintained array semantics,
and that each row pointer was distinct and pointed to disjoint objects, then one could prove that
there was no loop-carried output-dependence due to output buf in iDCT. To summarize, each
iDCT call modifies:

output buf [0 to 7][output col to output col + 7] (4.3)

Before investigating the characteristics of decompress onepass(), it is important to note
that the output buf in this context is a three dimensional array (JSAMPIMAGE). This is different

27

from iDCT, where it is a two-dimensional array (JSAMPARRAY). decompress onepass() cal-
culates output ptr and output col, which are passed into iDCT. output ptr is passed into the
output buf iDCT parameter.

Having summarized iDCT, it is now possible to evaluate the characteristics of the loops
in decompress onepass() that iterate through the 8x8 blocks in a single component of an
MCU block. These loops are active for the Y component, which contains four blocks in each
MCU block. Line 189 sets the initial output ptr. Value flow information can show that yoff-
set is 0. This sets the base address to output buf[ci]. The output ptr is then incremented by
DCT scaled size on line 203 for every iteration through the yindex loop at line 191. Value flow
shows that this value is 8. Combining these results in the following induction expression:

output ptr = output buf [ci] + 8 ∗ yindex (4.4)

The output col also determines which section of output buf is modified by each iDCT call (as
shown in Equation (4.3)). Using value flow information for DCT scaled size, along with lines
194 an 199, it can be shown to be:

output col = start col + 8 ∗ xindex (4.5)

Equations (4.4) and (4.5) can be substituted into (4.3) to prove that the iDCT calls in this
context access disjoint regions of output buf. Each call modifies:

output buf [ci][8 ∗ yindex + (0 to 7)][start col + 8 ∗ xindex + (0 to 7)] (4.6)

Having summarized the region of output buf that is modified in the loops that iterate through
the blocks for a single component, we can now examine the loop at 179 that iterates through
the three image components. This context does not contain any additional information, except
that ci iterates from 0 to comps in scan-1. Value flow will show that this from 0 to 2.

In context of the outer loops at lines 160 and 162, an induction expression for start col is
necessary. Its induction expression is exclusively based on the calculation at line 190. In order
for the regions of output buf to be disjoint at this scope, it must be possible to determine:

MCU sample width ≥ 8 ∗ MCU width (4.7)

28

Value-flow can be used to verify the relationship described above is always true. This will
show that each iDCT call inside each decompress onepass() call will modify disjoint regions
of output buf.

4.1.3.3 iDCT - Block level analysis and transformation

Having evaluated the characteristics of output buf at different loop nests, we can now in-
vestigate more coarse-grain parallel implementations than the one presented in Section 4.1.3.1.
Beyond the inner-loop parallelism within iDCT, one can perform the six iDCT calls in parallel
based on the loops at jdsample.c:179 and 191 (Figure 4.7(b)). Note that for simplicity the two
inner loops in the figure have been merged into a single loop in the figure. The only necessary
transformation here is the addition of two new loops to perform the thread join and convert
the iDCT calls into thread spawn calls. This transformation will not require any modification
inside of the iDCT function. The only analysis that is necessary to parallelize at this scope is
to prove that the sections of output buf are disjoint (Section 4.1.3.2).

IMPACT currently contains a transformation that allows threads to be spawned off of an
inner loop. In order to extract parallelism at this scope, one would need to extend this existing
transformation to handle multiple nested loops.

4.1.3.4 Full front-end course-grain analysis and transformation

The final level of parallelism creates threads for multiple calls to iDCT across multiple
MCU blocks through the loop at jdcoefct.c:162. This is more complicated than the prior tech-
niques, but also provides more scalable and coarse-grain parallelism. Loop distribution is
required to separate Huffman decoding and iDCT into separate loops. Figure 4.7(b) illustrates
this transformation, which not only requires loop distribution to handle multiple loop nests, but
also a side exit (the return at line 171). While profiling will show that this side-exit is never
triggered, it must still be handled in the transformation. Array expansion [25] is also neces-
sary to perform this distribution because there exists array dataflow from Huffman to iDCT. It
will be necessary to store the different MCU buffer states after each decoding, and then process
them in the new iDCT loops.

Additional analysis beyond those described in Section 4.1.3.2 will be necessary for attain-
ing this level of parallelism. By analyzing decompress onepass(), it is not possible to deter-
mine whether there is a loop-carried dependence around the loop at line 162 for MCU buffer.
The Huffman decoding function is quite complicated, and generating a realistic summary of it

29

would be quite difficult. However, jzero far() (line 165) initializes the MCU buffer to zero be-
fore Huffman decoding. By proving that this function initializes all data that is used by iDCT,
there are no true loop-carried dependences due to MCU buffer. It overwrites blocks in MCU *
64 shorts of data (sizeof(JBLOCK) is the size of a 64 elemenent array of shorts). Now it must
be shown that this covers the data read by iDCT.

An analysis of iDCT shows that 64 elements of data after the pointer parameter coef block
are used by phase 1 of the processing. MCU buffer[blkn+xindex] is passed to this parameter,
which can be simplified to MCU buffer[(0 to 5)] using linear equations (this is nontrivial, and
will be left as an excersie to the reader). Because blocks in MCU is six, the data that is used
by the iDCT calls is covered by the jzero far call, and therefore the MCU buffer data that exists
from previous iterations is not relevant.

4.1.4 Back-end parallelism

As shown Figure 4.4, the back-end processes rows of data (unlike iDCT which works with
8x8 blocks). The back-end begins with 8 rows of downsampled data for the Cr and Cb com-
ponents, and 16 rows for the Y component (which was not downsampled during encoding).4

Upsampling is performed on the Cr and Cb components, one row at a time to generate two
complete rows of data. This data is then combined with the Y row data and converted into the
RGB color space 1 row at a time. The upsampling and color conversion routines have func-
tionality to process multiple input rows for a single invocation, but are always used to process
exactly one row of data in this configuration. Each call to sep upsample() (the function that
calls both h2v2 fancy upsample() and ycc rgb convert()) will generate exactly one row of the
output image. Figure 4.2(b) shows that upsampling is performed for every other color conver-
sion. It is necessary to skip upsampling every other call because color conversion must process
the second upsampled row. Figure 4.10 presents the high-level function that performs the back-
end processing. The fine-grain parallelism will be explored first, followed by the more scalable
coarse-grain parallelism.

4.1.4.1 Fine-grain upsample parallelism

The h2v2 fancy upsample() function is implemented as a series of three nested loops, and
is called indirectly from sep upsample(). Figures 4.11 and 4.12 present the code and a diagram

4Different encoding schemes result in different row counts for each component. For example, if no downsam-
pling was performed by the encoding process, there would be eight rows of Y, Cr, and Cb data.

30

88 METHODDEF(void)
89 sep_upsample (j_decompress_ptr cinfo,
90 JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
91 JDIMENSION in_row_groups_avail,
92 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
93 JDIMENSION out_rows_avail)
94 {
95 my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
96 int ci;
97 jpeg_component_info * compptr;
98 JDIMENSION num_rows;
99

100 /* Fill the conversion buffer, if it’s empty */
101 if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
102 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
103 ci++, compptr++) {
104 /* Invoke per-component upsample method. Notice we pass a POINTER
105 * to color_buf[ci], so that fullsize_upsample can change it.
106 */
107 (*upsample->methods[ci]) (cinfo, compptr,
108 input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
109 upsample->color_buf + ci);
110 }
111 upsample->next_row_out = 0;
112 }
113
114 /* Color-convert and emit rows */
115
116 /* How many we have in the buffer: */
117 num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
118 /* Not more than the distance to the end of the image. Need this test
119 * in case the image height is not a multiple of max_v_samp_factor:
120 */
121 if (num_rows > upsample->rows_to_go)
122 num_rows = upsample->rows_to_go;
123 /* And not more than what the client can accept: */
124 out_rows_avail -= *out_row_ctr;
125 if (num_rows > out_rows_avail)
126 num_rows = out_rows_avail;
127
128 (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
129 (JDIMENSION) upsample->next_row_out,
130 output_buf + *out_row_ctr,
131 (int) num_rows);
132
133 /* Adjust counts */
134 *out_row_ctr += num_rows;
135 upsample->rows_to_go -= num_rows;
136 upsample->next_row_out += num_rows;
137 /* When the buffer is emptied, declare this input row group consumed */
138 if (upsample->next_row_out >= cinfo->max_v_samp_factor)
139 (*in_row_group_ctr)++;
140 }

Figure 4.10 jpegdec Backend - jdsample.c:sep upsample()

31

344 METHODDEF(void)
345 h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
346 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
347 {
348 JSAMPARRAY output_data = *output_data_ptr;
349 register JSAMPROW inptr0, inptr1, outptr;
350 #if BITS_IN_JSAMPLE == 8
351 register int thiscolsum, lastcolsum, nextcolsum;
352 #else
353 register INT32 thiscolsum, lastcolsum, nextcolsum;
354 #endif
355 register JDIMENSION colctr;
356 int inrow, outrow, v;
357
358 inrow = outrow = 0;
359 while (outrow < cinfo->max_v_samp_factor) {
360 for (v = 0; v < 2; v++) {
361 /* inptr0 points to nearest input row, inptr1 points to next nearest */
362 inptr0 = input_data[inrow];
363 if (v == 0) /* next nearest is row above */
364 inptr1 = input_data[inrow-1];
365 else /* next nearest is row below */
366 inptr1 = input_data[inrow+1];
367 outptr = output_data[outrow++];
368
369 /* Special case for first column */
370 thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
371 nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
372 *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4);
373 *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
374 lastcolsum = thiscolsum; thiscolsum = nextcolsum;
375
376 for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
377 /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
378 /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
379 nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
380 *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
381 *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
382 lastcolsum = thiscolsum; thiscolsum = nextcolsum;
383 }
384
385 /* Special case for last column */
386 *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
387 *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4);
388 }
389 inrow++;
390 }
391 }

Figure 4.11 jpegdec Upsampling - jdsample.c:h2v2 fancy upsample()

32

!oop(co&ponents)
h-.-/0anc2/upsa&p!e()
!oop(- ro6s)

!reprocessing

!ostprocessing

!oop(pi8e!s in ro6)

Computation

The h-.-/0anc2/upsa&p!e() call is performed
through an indirect function call, inhibiting
transformations at this layer.

Inner loop parallelism is blocked by a loop-carry
dependence, but can be removed using
induction expression analysis and code
expansion.

The medium-grain loops have limited scalability,
as they iterate only 2 times each.

Figure 4.12 jpegdec:h2v2 fancy upsample() - Sequential Implementaion

for this function, respectively. In the diagram, the outermost loop in h2v2 fancy upsample() has
been removed for simplicity because it only iterates a single time. A single component of the
image is processed by each h2v2 fancy upsample() call, and a fourth loop loop (the outermost
loop in the diagram) in sep upsample() (line 102 in Figure 4.10) iterates through the compo-
nents. The middle loop (line 360) iterates two times (as shown in the diagram), once for each
of the two resultant rows that will be generated from the upsample. The inner loop (line 376)
iterates across all of the samples in an input row, with the exception of the first and last which
are handled outside of the loop.

In h2v2 fancy upsample(), the calculations necessary to upsample a pixel can be reused
when upsampling surround pixels. For each iteration of the inner loop, two output samples in
a row are generated. The values of these samples are generated from three calculations that are
based on the input samples – lastcolsum, thiscolsum, and nextcolsum. For each iteration of the
inner loop, a new value for nextcolsum is calculated. At the end of each inner loop iteration,
thiscolsum is moved to lastcolsum and nextcolsum into thiscolsum, and a new nextcolsum is
calculated at the beginning of each loop iteration. This creates a loop-carried dependence that
must be removed in order to extract inner-loop thread-level parallelism. It is important to not
that the loop-carried dependence need not be broken between every iteration, but only iterations
that will be executed in different threads.

h2v2 fancy upsample() generates two rows per invocation. These are generated by the loop
at line 360. A simple but limited medium-grain parallelism could be extracted by performing
the two iterations of this loop in parallel. The fourth outer loop (in sep upsample()) calls

33

119 METHODDEF(void)
120 ycc_rgb_convert (j_decompress_ptr cinfo,
121 JSAMPIMAGE input_buf, JDIMENSION input_row,
122 JSAMPARRAY output_buf, int num_rows)
123 {
...
138 while (--num_rows >= 0) {
139 inptr0 = input_buf[0][input_row];
140 inptr1 = input_buf[1][input_row];
141 inptr2 = input_buf[2][input_row];
142 input_row++;
143 outptr = *output_buf++;
144 for (col = 0; col < num_cols; col++) {
145 y = GETJSAMPLE(inptr0[col]);
146 cb = GETJSAMPLE(inptr1[col]);
147 cr = GETJSAMPLE(inptr2[col]);
148 /* Range-limiting is essential due to noise introduced by DCT losses. */
149 outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
150 outptr[RGB_GREEN] = range_limit[y +
151 ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
152 SCALEBITS))];
153 outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
154 outptr += RGB_PIXELSIZE;
155 }
156 }
157 }

Figure 4.13 jpegdec Color Convert - jdcolor.c:ycc rgb convert()

h2v2 fancy upsample() twice (once for both the Cr and Cb components). Using these two
separate loops, four medium-grain parallel threads can be extracted.

4.1.4.2 Fine-grain color convert parallelism

Figure 4.13 presents the code for ycc rgb convert(), which performs color conversion from
the YCC to RGB color scheme for num rows rows. In the configuration studied, this is always
a single row, and the outer loop (line 138) only iterates one time. The inner loop (line 144)
iterates through all the YCC pixels in a row and converts them to RGB pixels. To extract fine-
grain parallelism, one must create threads from this inner loop. It is possible to extract separate
threads for each RGB component, but this would likely result in poor cache performance in a
coherent shared memory system. Loop blocking, on the other hand, would perform well.

4.1.4.3 Course-grain back-end parallelism

The back-end also contains coarse-grain parallelism. Each row that is upsampled and color
converted is independent of previous rows. At an algorithmic level, this is not difficult, but
analyzing and transforming the existing implementation is nontrivial.

34

The control- and data-flow in the back-end of jpegdec is more complicated than the front-
end. Figure 4.4 presents the high-level data formats and control flow, and Figure 4.10 presents
code from sep upsample(). Recall that because upsampling generates two rows of data and
color conversion processes only a single row at a time. As a result, upsampling is only per-
formed in every other call to sep upsample(). Every call to sep upsample() generates a single
row of RGB data which is then written to file after returning up the call stack. While it might
be possible to take advantage of the pattern illustrated in the bottom of Figure 4.2, the identifi-
cation would be difficult and a more general solution is desirable. Also, the pattern is not the
same for all YCC encoding schemes.

Because the jpegdec back-end does not contain any true data recurrences, it is possible to
reorder the execution of different blocks of independent processing. As stated above, upsam-
pling is performed followed by two data dependent calls to color convert. Because each row’s
upsampling calls are independent, one can achieve coarse-grain parallelism by delaying execu-
tion of the color convert (and the successive file output), and performing a series of upsamples
for different rows in parallel.

The same technique can be applied to ycc rgb convert() and file output. Because the sizes
and locations of the file writes are deterministic, it would even be possible to perform the file
accesses in parallel. The performance benefit of this would be limited in this case – but in
high-performance systems utilizing RAID disk systems performance improvements could be
extracted.

4.1.5 Back-end transformation and analysis

4.1.5.1 Fine-grain upsample analysis and transformation

There are two different fine-grain parallel implementations of h2v2 fancy upsample(). The
first extracts parallelism from the inner loop (jdsample.c:376) while the second extracts limited
parallelism from the two outer loop contexts (jdsample.c:360 (h2v2 fancy upsample()) and
jdsample.c:102 (sep upsample())).

The inner loop can be parallelized by removing the loop-carried dependence for the colsum
scalars, and extracting threads as presented in Section 4.1.4.1. To perform such a transforma-
tion, one must first identify the scalar loop-carried dependences and the induction expressions
for generating those scalars. Once the expressions are identified, code expansion can be used
to remove the loop-carried dependence between iterations in different threads. For each thread

35

that is spawned, initial values (that were originally defined around the back-edge) can be com-
puted prior to entering the inner loop.

In the inner loop, there are four iterators – colcrtr (the loop counter) as well as *inptr0,
*inptr1, and *outptr. Induction expressions can be calculated for each array access based on
these pointers. The input pointer induction expressions may be useful for generating the initial
colsum values for each thread. The output pointer induction expression proves that succes-
sive iterations are independent. These expressions can be calculated with the existing Lcode
induction expression analysis.

It is also necessary to prove that the objects pointed to by outptr cannot intersect with
those pointed to by inptr. Because these objects are allocated using a pool allocation5 routine,
Pcode and FULCRA cannot disambiguate the objects. A future research topic may be the
identification of allocation pools, but in the near-term pragmas can be used to identify these
routines.6 This problem exists throughout the functions in jpegdec, and it will be necessary to
add this functionality to IMPACT to extract any level of parallelism from many of the functions
presented here.

Another roadblock to disambiguating the outptr and inptr accesses is caused by the Y com-
ponent’s upsample function, fullsize upsample(). Because Y does not need to be upsampled,
this function creates outptr by simply copying inptr. This operation will merge the objects in
FULCRA. Without new analysis, it may not be possible to prove that these objects are disjoint
in the context of h2v2 fancy upsample(). Code can be inserted to verify that the objects are
disjoint when performing h2v2 fancy upsample().

The second parallel implementation of h2v2 fancy upsample() extracts four threads using
the loops at jdsample.c:360 (Figure 4.11) and jdsample.c:102 (Figure 4.10). Interprocedural
analysis and transformation will be necessary to perform this unless h2v2 fancy upsample() is
inlined in Pcode. Performing an interprocedural analysis around the indirect function call will
not be covered in this section – it will be assumed that either the function has been inlined into
sep upsample() or that an interprocedural framework is developed that allows the same type of
analysis to be performed. These two loops will need to be replicated – the original will spawn
threads that perform the block of code between lines 361 and 387 in h2v2 fancy upsample(),
while the new loops will join those threads. In addition to proving that the input and output

5Memory allocation using malloc is generally inefficient, particularly when allocating many small pieces of
data. Pool allocation uses malloc to allocate a large chunk of memory, and then provides pieces of this chunk as
they are requested by the application, reducing the overhead of performing heap allocations.

6FULCRA contains support for marking different function calls as having the semantics of malloc, but this
functionality is currently not utilized by IMPACT.

36

pointers access distinct objects, it is now necessary to prove that the different iterations modify
different sections of the outptr data. In order to prove this, the output characteristics will be
evaluated from the inner loops out.

For each upsampled row that is generated (based on the loop at jdsample.c:360), data is
written to output data[outrow++] (line 367). output data is allocated as an array of pointers to
arrays of a row of sample components (JSAMPLE). As in the front-end of jpegdec, it will be
necessary to add support for analysis that can prove (or a transformation that can check) that
such structures have the semantics of true multidimensional arrays. These arrays are allocated
using the alloc sarray subroutine (called from jinit upsampler()) which allocates an array of
pointers to arrays of data with as few malloc calls as possible (Section 4.1.6). This information
is sufficient to prove that different iterations of loop 360 modify different output data. Assum-
ing that the loop at line 359 iterates only a single time (based on profiling data), each call to
h2v2 fancy upsample() modifies the following:

output data[0 to 1][0 to downsampled width ∗ 2] (4.8)

In the next loop-nest out (sep upsample() at jdsample.c:102), analysis must determine that
the output data for different iterations is disjoint. upsample→color buf + ci is passed into
h2v2 fancy upsample() where it is dereferenced at line 348 to get the output data pointer in
the paragraph above. This reduces to the following where ci ranges from 0 to 2 (using value-
flow and profiling):

color buf [ci][0 to 1][0 to downsampled width ∗ 2] (4.9)

The values of the pointers in the component array are set only one time (jinit upsampler()),
so it should be possible to prove that they point to distinct objects, and therefore the different
calls to h2v2 fancy upsample() modify different sections of the output buffer inside of the
scope of the loop at jdsample.c:102.

4.1.5.2 Fine-grain color convert analysis and transformation

The ycc rgb convert() function can be transformed by spawning threads to color convert
different ranges of pixels in a row. Loop blocking can be performed to extract such an imple-
mentation, and is currently under development in IMPACT. Basic induction expression analysis
shows that there are no loop-carried dependences for outptr. The scalars used are generated at

37

the beginning of each loop iteration and used at the end. The only complicated analysis in-
volves proving that outptr does not overlap inptr0, inptr1, inptr2, or the tables used to simplify
the calculation. Existing pointer analysis handles the tables, but currently, because both the
input and output buffers are allocated with alloc sarry, does not handle the input and output
pointers. As in the analysis of h2v2 fancy upsample(), it will be necessary for the compiler
to know that the alloc sarray has malloc semantics. Once this is complete, fine-grain parallel
compilation of ycc rgb convert() will be possible.

4.1.5.3 Course-grain back-end analysis and transformation

In order to extract coarse-grain parallelism in the back-end of jpegdec, it is necessary to
substantially reorder the execution as described in Section 4.1.4.3. The problem space for
this particular transformation is very large as the outermost loop involved also contains the
front-end execution. It therefore is necessary to consider all of the dependence information
throughout both the front- and back-ends of the application. This thesis will not evaluate the
necessary analysis for such a transformation. However, the concept of transforming code to
delay execution of certain sections is an interesting and powerful one.

In order to delay execution of sections of code, it is necessary to maintain only the relevant
system state. How this is performed largely affects the possible performance that one can
gain from such a transformation. The delayed execution of ycc rgb convert() demonstrates this
point. Every other time that sep upsample() is called, upsampling is not performed, and the
state of the upsample output buffer is not modified. As such, creating a copy of the upsample
buffers for every skipped call of upsampling is not necessary.

Intelligently delaying execution is also important for reducing the overhead of this type of
transformation. ycc rgb convert() uses data for the Y component directly from the front-end
output. Therefore, delaying execution across instantiations of the front-end processing is pos-
sible if the front-end data is further buffered. This is possible, but would cause more substantial
program transformations and greater analysis scope. An easier solution would detect situations
when the application was going to enter potentially dangerous (or unanalyzable code), and
drain the delayed execution at that point. For example, ycc rgb convert() invocations could be
delayed until it was determined that the front-end was going to execute, and then be executed.
Such techniques can help to reduce the strain on the analysis, and more importantly will help
to enable this type of transformation in cases that otherwise would have been prevented.

38

1: procedure SIMPLE 2D ARRAY ALLOCATION
2: RowArray ← malloc(NumRows)
3: for all row in NumRows do
4: RowArray[row] ← malloc(NumCols)
5: end for
6: end procedure

1: procedure OPTIMIZED 2D ARRAY ALLOCATION
2: RowArray ← malloc(NumRows)
3: for all row in NumRows do
4: if Need to Allocate then " On modern machines this generally fires one time
5: size ← MIN(space left, max malloc size)
6: buffer ← malloc(size)
7: count ← 0
8: end if
9: RowArray[row] ← buffer[count]

10: count ← count + 1
11: end for
12: end procedure

Figure 4.14 Two-Dimensional Array Allocation

4.1.6 Pointer multidimensional arrays

As shown in Figure 4.14, there are (at least) two different techniques for allocating two
dimensional arrays as an array of pointers to arrays. The top “simple” algorithm first allocates
an array for the pointers and then calls malloc for each row that is allocated. This function can
be optimized by using an internal allocation pool. The bottom “optimized” algorithm allocates
an array of pointers (like in the simple case), but calls malloc with a size larger than the size
of a single row and then increments pointers into this buffer for successive rows. This is the
technique that is used in alloc sarray() in jpegdec. Both of these allocations result in a structure
that has the same semantics as a standard array allocation in C assuming the pointer array is
never modified.

4.1.7 jpegdec summary

The jpegdec benchmark contains many useful granularities of parallelism, and the variety
of analysis and transformation techniques make it an excellent benchmark to target for both
near- and long-term studies. The inner loops of the benchmark, including those in iDCT, up-
sampling, and color conversion, are excellent metrics for near-term work. The coarse-grain

39

transformations in the front-end provide a good midterm goal, while the transformations in the
back-end are more long-term. The analysis requirements build upon each other as the gran-
ularity of parallelism increases. This benchmark also motivates the many analysis challenges
that we face for performing coarse-grain interprocedural work.

In jpegdec, fine-grain parallelism requires simple transformations, including trivial ones
to allow nested loops to spawn threads, and slightly more complicated ones to remove loop-
carried dependences (h2v2 fancy upsample()). Transforming these loops should be a priority
in near-term work. Not only are the transformations necessary, but the existing IMPACT anal-
ysis infrastructure is capable of removing the majority of the spurious dependences. Extending
FULCRA to deal with allocation pools (through pragmas) will be necessary to remove some
of the remaining spurious dependences at this granularity. This application also uses arrays
of pointers to implement multidimensional arrays. Analysis or programmer pragmas will be
necessary for the compiler to be able to understand that certain accesses have the semantics of
multidimensional arrays.

Developing transformations to extract parallel execution in the front-end is another near-
term target. There are a variety of levels of parallel execution available in the front-end, each
of which has different requirements. Loop distribution that supports multiple loop nests with
side exits will be necessary to extract the highest granularity of parallelism.

The front-end also motivates how the analysis performed at one level of granularity is
leveraged for higher levels of parallelism. Similar to what is done currently in FULCRA,
it will be useful to develop a framework that summarizes only the necessary information to
higher levels of analysis – particularly for interprocedural cases. For example, loop-carried
dependences inside of inner loops of a block may not be important, while information about
the data spaces that are accessed and written to by these blocks may be.

Creation of array gen-kill data will be necessary for removing dependences in certain
loops. This data commonly depends on execution-constant loop bounds that are stored in heap-
allocated structures. The ability to identify these constants, or at least potential relationships
between different constants, will be necessary to properly summarize the data that different
loops access. Without such accurate summaries, performing certain disambiguations will not
be possible. Value-flow information will not only be important for loop bounds, but is also
necessary for simplifying other aspects of induction expressions.

Transforming the back-end for coarse-grain parallel execution requires a delayed execution
model. While such a model will be applicable in a variety of different situations, creating such
a generalized transformation in IMPACT will be quite challenging.

40

4.2 LAME - MP3 Encoder

LAME7 is an open-source mp3 encoder application that incorporates various audio com-
pression techniques. Each of these techniques exhibits different characteristics – both in output
files and the parallelism that is inherent to their algorithms.

In general, mp3 encoding contains two major high-level steps. The first step takes a section,
or frame, of uncompressed audio and performs an analysis on it to determine how it should be
encoded. We will call this noise analysis. This process not only considers the audio that it is
currently encoding, but also the results of past analysis. This is necessary to avoid decisions
that would result in audible artifacts in the output stream, and therefore successive invocations
cannot be performed in parallel. The second step of the encoding process is the compression,
which uses the noise analysis calculations to determine how the frame should be encoded.

While the high-level mp3 encoding algorithm is relatively simple and constant, there are
three different techniques for performing the encoding: Constant Bit Rate (CBR), Average
Bit Rate (ABR), and Variable Bit Rate (VBR). CBR is generally the most common encoding
technique despite the fact that it generally provides the worst ratio of audio quality to file
size. In this mode, the user chooses a compression bitrate, and that is used throughout the
encoding process. Other than having a predictable file size, there is no good reason to use
this compression technique.8 ABR is similar to CBR in that the user provides a bitrate to
the application. Unlike CBR, this bitrate is not fixed for each frame, and more complicated
portions of the audio stream can be encoded at a higher bitrate. VBR takes the concept of
allowing variations in the bitrate one step farther; the encoder has full control over the bitrates
for different sections of the audio stream. The user can specify a “quality setting,” which is
an integer from 0 to 9 where the larger integers result in larger and higher-quality files. VBR
generally produces the highest ratio of audio quality to file size, and is the mode that is used in
this study.

There are many encoding settings that the user can specify, but there is one specific setting
that is important to this thesis. LAME incorporates a bit reservoir that allows for leftover
space from prior frames to be used for frames that may need more accuracy. As we will show
later, this feature is important because it has a strong effect on the parallelism inherent to the
compression component of the encoding process. While each of the techniques can make use

7“LAME” is a recursive acronym that stands for LAME is not AnMP3 Encoder.
8Traditionally, the other encoding techniques, VBR in particular, were less stable and occasionally resulted in

poor audio quality. There has been extensive work on these encoding algorithms over the years, and this is no
longer the case.

41

of this feature, the output quality of audio encoded with CBR can be heavily affected by the
additional accuracy afforded by the bit reservoir. In ABR, disabling this feature may have some
effect on the quality of the output audio, as some of the bitrates may have to be scaled back to
maintain the average bitrate. In VBR, because the output file size is not considered in making
compression decisions, it is only the size of the file that is affected by disabling this feature.
Because VBR is able to pick from a variety of bitrates, this does not have a substantial effect
on the output file size. We have seen increases on the order of 10%.

Figure 4.15 shows the pruned9 callgraph for VBR LAME. The noise analysis and com-
pression components of the code have been boxed out. From this picture, we can see that the
majority of the runtime is spent performing compression. However, parallelizing this section of
the code is not sufficient for attaining high performance. The sequential noise analysis section
contributes to about one sixth of the runtime, and therefore Amdahl’s law prevents performance
benefits of more than 6x without targeting this code as well.

LAME requires coarse-grained parallelism in order to achieve a high-performance parallel
implementation. Complicated interprocedural analysis and transformations are necessary in
order for a compiler to attain such an implementation. There are some simpler and less scalable
opportunities (encoding the left and right channels in parallel for example), and these will be
evaluated in the context of noise analysis. Because of the complicated nature of LAME, this
section will focus more on transformations and less on the analysis. Specific considerations for
the interprocedural analysis framework will be motivated.

One important take-away from LAME is the concept of the critical recurrence. When par-
allelizing applications, it is not uncommon to encounter dataflow SCCs in loops that must be
transformed out in order to leverage the parallel components. The SCC that exists through the
most runtime intensive loop is termed the “critical recurrence.” Transformations and analysis
can be broken into two separate categories – those that target the critical recurrence in an appli-
cation and those that do not. Using analysis and transformation, one can either entirely remove
the critical recurrence, or move the recurrence so that it is no longer critical. We will see both
of these cases in LAME.

A hand analysis shows that the first critical recurrence in the loop in lame encoder() results
from the calculations outside of the compression stage (VBR iteration loop()). Noise analysis
(L3psycho anal ms()) is one of these calculations. The noise analysis sequence cannot be re-
moved, but the code can be transformed so that the iteration-independent compression code
exists in its own loop. After performing loop distribution to separate the sequential code from

9Functions with less than 2% of the overall runtime are not shown.

42

Compression Noise Analysis

main
99.8% -- 1

lame_encoder
99.1% -- 1

VBR_iteration_loop
66.2% -- 129

outer_loop
56.6% -- 2262

best_huffman_divide
7.1% -- 516

calc_noise
7.8% -- 27788

bin_search_StepSize
11.9% -- 2262

count_bits
28.5% -- 46230

noquant_count_bits
18.4% -- 46230

choose_table_nonMMX
19.8% -- 196791

L3psycho_anal_ns
17.7% -- 258

compute_ffts
5.5% -- 1032

fft_short
2.8% -- 516

fht
3.4% -- 2064

lame_encode_buffer_int
96.6% -- 128

lame_encode_flush
2.3% -- 1

lame_encode_buffer_sample_t
98.6% -- 130

lame_encode_mp3_frame
88.5% -- 129

AnalyzeSamples
9.2% -- 130

mdct_sub48
3.7% -- 130

window_subband
2.8% -- 9360

lame_encode_buffer
2.3% -- 3

Figure 4.15 LAME (VBR) Callgraph

43

!"#$%&'())*+$,$-$."$/0

&"123.*4!!.5%0

Com$%tation +

Com$%tation ,

!"#$%&'())*+$,$-$."$/0

!a# Ori(inal Dependence 0rap1 !2# Transformed Dependence 0rap1

-oo$-carry Data De$en4enceData De$en4ence

!"#$%&'())*+$,$-$."$/0

&"123.*4!!.5%0

Com$%te FF6

Com$%te 7nergies

Com$%tation +

Com$%tation ,

!c# Ori(inal Dependence 0rap1

Com$%te 7nergies

Com$%tation +

Com$%tation ,

!"#$%&'())*+$,$-$."$/0

Com$%te FF6

!d# Transformed Dependence 0rap1

Com$%tation +

&"123.*4!!.5%0

81ite-Box Interprocedural ?nal@sis and TransformationBlack-Box Interprocedural ?nal@sis and Transformation

Com$%tation ,

Figure 4.16 Interprocedural Loop Distribution

the parallel compression code, a different recurrence due to the bit reservoir inside of the com-
pression sections becomes critical. Disabling this feature breaks the dependence, and moves
the critical recurrence to noise analysis. As stated before, this section of the code is algorith-
mically sequential at the high-level. Some parallelization techniques can be used inside of
different noise analysis instantiations to further improve the overall performance of the appli-
cation. Both the compression and noise analysis components will be studied in the rest of this
section on LAME.

4.2.1 Noise analysis parallelism

The noise analysis code is complicated and heavily hand optimized for performance, and
therefore is difficult to analyze and transform. In L3psycho anal ns(), the outer noise analysis
loop (psymodel.c:1337)10 processes through the audio channels – four of them in the case of a
joint stereo encoding.11 Intuitively, the noise analysis of each channel should be independent.
However, as a result of optimizations, there exist some loop-carry dependences that must be
transformed out of the loop before parallelization can take place.

10This study uses LAME 3.96.1.
11Stereo audio is generally stored as two streams of data – one for the left channel and one for the right. It is

possible to perform a loss-less translation of this type of data into a format that stores the average data for the
two channels (Mid channel) as well as difference data (Side channel). In some situations, this type of data is
more suitable for compression, and therefore lower bitrates can be used to encode audio with the same final sound
quality. Picking between L/R and M/S for different sections of an audio stream is known as Joint Stereo.

44

loop

!

B

C

D

E

&

'rogram
 .

rder

!

B

C

D

E

&

!

C

E

loop

&

!

B

D

.riginal &low 5 I7'
'arallelism

.uter5loop
'arallelism

.uter5loop < Data Stream
'arallelism

Data Dependency

Figure 4.17 Noise Analysis Transformation after Dependence Removal

4.2.1.1 FFT interprocedural parallelism

Figure 4.16 illustrates the data dependences for an FFT calculation performed through a
subroutine call. The left two diagrams show the analysis and transformation using a black-box
summary of compute ffts(), while the right two diagrams show a more detailed summary and
interprocedural infrastructure.

Because the FFT data for the M/S channels can be calculated quickly by transforming the
results from the R/L calculations, there exists a dependence between calls to the compute ffts()
function (the R/L loop iterations are performed first). One could change the algorithm so that
the FFTs were calculated from scratch for the M/S channels – but this is outside the scope
of our compiler research. The second option is to generate the FFT data before spawning the
loops, and then use this data as necessary (Figure 4.16(d)). The interprocedural nature of this
problem makes the necessary analysis and transformation more challenging, and this will be
investigated further in Section 4.2.2.1.

There are some additional loop-carried dependences at end of the channel loop (in Compu-
tation B) that must also be removed using loop distribution in order to extract parallelism from
the channel loop. These dependences are not shown in Figure 4.16, and will be ignored for
simplicity in this study.

4.2.1.2 Streams of computation: Extending the parallelism

After transforming out loop-carried dependences like those in the FFT function, there is
some additional coarse-grain parallelism that can be extracted from this loop. There are essen-
tially two different strands of calculation that progress through each iteration of the loop that
are independent until the end of the loop. Figure 4.17 shows a simplified example of this. The

45

diagram on the left shows the state of the code after the recurrences have been removed for the
FFT. Two separate streams of calculation are interleaved through the code, and finally come
together at the end of the processing for some final calculations. The middle diagram shows
the initial implementation that takes advantage of the independent channel loop iterations. The
final diagram on the right shows a different technique – one that breaks the loop into three
separate components – two of which can run in parallel. There is some limited processing in
block A that is shared by both streams of processing. It would have been possible to compute
this a single time (similar to block F) – but because this computation is relatively simple and
fast, it is better to replicate the computation than package and pass the resultant data to each
thread.

While the transformations on the noise analysis fail to extract substantially scalable parallel
blocks of code, they compliment the scalable transformations that can be done in compression,
and therefore further improve performance. As Amdahl’s law prevents the performance benefit
from parallelizing the compression to about 6x, performing these transformations allows for
much greater benefit out of those scalable compression transformations, decreasing the effects
of Amdahl’s law. Assuming that the noise analysis performance can be improved by 4x, this
ultimately improves the overall performance benefit from 6x to 24x.

4.2.2 Noise analysis and transformation

As stated before, LAME is a very complicated application, and its analysis requirements are
not near- or medium- term targets. There are, however, some important lessons that it motivates
for both near- and long- term analysis and transformation developments.

4.2.2.1 FFT: Considerations for enterprocedural analysis and transformation

compute ffts() and Figure 4.16 illustrate some transformation and analysis considerations
for future interprocedural frameworks. One could conceive of building an interprocedural
framework by summarizing the characteristics of different functions (Figure 4.16(a)). Using
such a summary in this situation would yield analysis results that showed that it was only pos-
sible to parallelize the channel loop in two separate parallel blocks as shown in (b). One can-
not hoist the entire compute ffts() function, as this would break the dependence coming from
Computation Block A. On the other hand, if the interprocedural framework enabled for more
detailed block level analysis as shown in (c), it would be possible to show that the Compute
FFT block could be hoisted (using loop distribution), removing the loop-carried dependence

46

and respecting all of the input and output dependences as shown in (d). Not only would this
implementation exhibit better performance because of the reduction in thread spawn overhead
and synchronization, but (b) would also require additional scalar and array expansion to handle
the dependence from Computation A to Computation B.

4.2.2.2 Streams of computation: Analysis and transformation

Streams of computation (Figure 4.17) require two significant transformations. First of
all, code replication is necessary for Block A. This can be performed when teasing apart the
dataflow graph if Block A is small and it can be determined that precomputation and passing of
the results would be as expensive as performing the code replication. Secondly, it is necessary
to transform the single loop into three separate loops – one to perform each of the two streams,
and one to perform the join point. Such a transformation could be performed by performing
two loop distributions on the initial loop.

There are two types of analysis that one may need to perform to use streams of computa-
tion. The first type is a capability study that evaluates the dataflow and identifies the different
streams as well as the join point. The second type is a study that evaluates the benefit of the
transformation. While streams of computation enables additional threads to be spawned, it
also decreases the amount of work that each thread performs. It will be important for the future
compiler to model the different execution times of blocks of code in addition to the overhead for
running them in threads. Such models will make it possible to determine the relative benefits
of different transformations.

4.2.3 Compression parallelism, analysis, and transformation

Before compression, and outside of noise analysis, calculations are performed to help tar-
get the compression characteristics of different frames of audio. In VBR, these calculations
incorporate the current amount of free space in the bit reservoir. For example, if noise analysis
determines a certain bitrate, and there is a large amount of free space in the bit reservoir, this
calculation may decide to allocate a smaller frame and use the bit reservoir to compensate.
This induces a dependence between instantiations of the compression component that cannot
be precomputed to allow for parallel execution. Unlike the noise analysis SCC, this SCC in-
corporates a large percentage of the computation performed. While it may be possible to adjust
the encoding algorithm to remove the dependency and still avoid wasting space, such changes
are outside the scope of our work. Instead, the compiler can create a specialized version that

47

la#e%en'o)er+,la#e%en'o)er+,
loop+.a#ple., loop+.a#ple. 01 threa).,

loop+threa).,

loop+threa).,

la#e%en'o)e%#p4%5ra#e+,

6r7te to F7le

la#e%en'o)e%#p4%5ra#e+,

la#e%en'o)e%#p4%5ra#e+,

la#e%en'o)e%#p4%5ra#e+,

6r7te to F7le

9ata
9epen)en'e

Co#p;tat7on <lo'= 7. parallel 7n o;ter loop
'onte>t o5 la#e%en'o)er+,? @;lt7ple other
0lo'=. o5 'o)e 7n)755erent 5;n't7on. 'onta7n
loopA'arr1)epen)en'e. at th7. 'onte>t?
<e'a;.e o5 l7#7te) !neABra7n parallel7.#
7n.7)e the Co#p;tat7on 0lo'= +not .hown,D 7t
7. ne'e..ar1 to e>tra't 'o;r.eABra7n
parallel7.# 01 per5or#7nB loop)7.tr70;t7on
to 'reate three .eparate reB7on. o5 'o)e?

(a) %nitial *ro-ram /lo0
0ith 2ata 2ependences

(b) 9rans:ormed *ro-ram /lo0
0itho;t 2ata 2ependences

No7.e Fnal1.7.

G<H%7terat7on%loop+,

Io.t Iro'e..7nB

Irepro'e..7nB

No7.e Fnal1.7.

Irepro'e..7nB

G<H%7terat7on%loop+,

G<H%7terat7on%loop+,

Io.t Iro'e..7nB

7terat7on%!n7.h%one+,

He.JFra#eKn)+,

Co#p;tat7on

Co#p;tat7on

7terat7on%!n7.h%one+,

He.JFra#eKn)+,

Figure 4.18 LAME Program Flow: Extracting Compression Parallelism

will execute when the bit reservoir is disabled. Such an implementation would allow for par-
allel execution of the compression blocks. It was a nontrivial task to identify this loop-carried
dependence. It is possible that the analysis techniques, if they could identify this dependence
with good resolution, could be used in programmer tools.

While thus far the compression block (VBR iteration loop) has been treated as parallel after
removing the bit reservoir dependence, this is not completely true. Figure 4.18(a) presents the
simplified call stack with dataflow dependence arcs drawn in. In this diagram, the Computation
block, which has a white border, does not contain any loop-carried dependences around the
outer loop in lame encode() (unlike all the other blocks). A transformed version for parallel
execution of the compression block is presented in (b) (data dependences are not shown to
simplify the image). As we see in other benchmarks, it is necessary to perform loop distribution
to hoist sequential execution prior to the parallel component into a pre-execution loop, and
delay sequential execution that is after Computation to a post-execution loop. This is only
possible because there are no SCCs that incorporate a large percentage of the computation.
For example, if the next iteration’s Noise Analysis depended on the previous iteration’s Post
Processing, this transformation would not be possible.

48

The sequential components that succeed the Computation block are at multiple call-stack
depths.12 It is unlikely that the code could be fully inlined, as there are hundreds of lines
of code in many of these blocks, so IMPACT’s future interprocedural framework will either
have to support transformations that use specific blocks of code from different functions (like
in Figure 4.16(d)), or create multiple postprocessing loops. Because the different blocks in
different function calls are not dependent on each other around the back edge, it may be pos-
sible in this example to generate three separate postprocessing loops – one for each function
that contains sequential code. This would require the compiler to perform additional array and
scalar expansion, complicate analysis, and perform poorly in comparison to the interprocedural
version.

LAME executes by passing two large structures from function to function, each of which
contains pointers to large amounts of data. Determining which data to save for each thread
(prior to parallel execution) and which data to retrieve from each thread (after the execution is
complete) for executing the Computation block is nontrivial. In this case, it may actually be
more tractable to ask the question, “Is there data that I cannot save and/or retrieve?” This is
most easily motivated with an example. Let us assume that each parallel Computation block
in (b) contains its own copy of these global structures and the data that they point to. After
threaded execution, the successive sequential component of the loops can either copy this data
into the original memory space, or access the relevant data directly. However, the loop-carried
data dependence that forced these blocks to be executed sequentially is contained in data that is
also stored in these large structures. As such, it is necessary to use the data generated from the
sequential component and not the data saved for the threads. This situation does not manifest
itself in the pre-execution loops, because the loop-carried data is never overwritten by retrieves
from the thread data. In general, it is best to reduce the set of data that is saved and retrieved
for the parallel components of applications. However, unlike the data that is saved, properly
handling the retrieve process is necessary for correctness – simply being “conservative” and
retrieving everything may result in an illegal transformation. One must be careful not to break
loop-carried dependences by retrieving data from the threads. It is also important to note that
determining the superset of data that must be maintained for each thread, particularly in the
case of heap-allocated objects, is a nontrivial task and is left as an exercise for the reader.

12There are additional blocks before Computation that also are at different call-stack depths, but they are not
shown in the figure for simplicity.

49

4.2.4 LAME summary

LAME does not contain substantial low-hanging fruit, but is an important benchmark for
near-term development as it provides insights into some of the problems that IMPACT will face
in the future. As development proceeds, these situations should be considered and planned for
so that re-engineering is not necessary in the future.

LAME presents the concept of the critical recurrence. The majority of the execution time in
this benchmark is spent performing the compression, but a nonnegligible time is spent perform-
ing other tasks like noise analysis. Evaluating the different loop scopes within the compression
of a single frame of audio generally does not provide significant thread-level parallel oppor-
tunities, and moving out to the audio frame scope does not even suffice under many runtime
conditions. After disabling the bit reservoir which removes a compression dependence, it is
possible to parallelize the compression block across frames of audio. Once this is complete,
the critical dependence moves to the noise analysis, which severely limits the benefits of paral-
lelizing the compression block. Noise analysis must then be targeted to take advantage of the
scalable compression parallelism.

LAME also demonstrates how programs can be used in different ways that have different
runtime characteristics. Using the bit reservoir results in extremely limited coarse-grain parallel
opportunities. This presents two opportunities for future research: (1) Computer Aided Design
(CAD) tools for software developers to help identify potential bottlenecks in their designs and
(2) compiler transformations and analysis that can optimize for a specific type of program flow.

4.2.4.1 LAME transformations

There are three important transformation concepts exhibited by LAME. First, the interpro-
cedural framework must provide not only for analysis but also for transformations that can
move specific blocks out of their original codes.13 Second, streams of computation can be
identified and extracted for additional benefit, but these generally will not produce scalable
benefits. Finally, conservatively saving and restoring data for parallel execution must be per-
formed carefully to maintain correctness.

It is not uncommon to contain function calls within loops where certain components of the
function call are parallel while others are sequential. This is the case in both noise analysis
with the compute ffts() function as well as in compression in the VBR iteration loop(). In both

13The “blocks” that are refered to here do not correspond to control or basic blocks, but larger language blocks
such as loops.

50

cases, the sequential component of the callee can be performed with the sequential components
of the caller.

Streams of computation can be identified to extract additional parallelism from critical
blocks of parallel code. When extracting parallelism from loops, it may be possible to identify
two (or more) sets of independent work, like in noise analysis. These streams can be pulled into
separate threads (sometimes with limited code replication). Despite this optimization’s lack of
scalability, it can be useful in cases where other techniques are not possible. It is not useful
in the case of compression, as sufficiently scalable parallelism could be extracted to move the
critical recurrence to noise analysis.

Finally, it is generally beneficial to identify exactly what data needs to be saved for and
retrieved from parallel blocks of code. However, at times it will be difficult or impossible for
analysis to provide an exact picture of what is necessary, and it is important for transformations
to be conservative so that all of the input and output data of threads are transferred. One must
be careful when conservatively retrieving data from threads, especially in the case of sequential
postprocessing loops, as one must be careful not to retrieve data that overwrites correct data
with incorrect data.

4.2.4.2 LAME analysis

Because of the complicated nature of LAME, limited time was spent exploring and pre-
senting its analysis requirements. In general, it will be important to have a strong scalable
interprocedural framework that is capable of performing field-sensitive pointer and array dis-
ambiguation analysis. Providing simple function-level summaries for interprocedural analysis
about the input and output dependences will not be sufficient for extracting the best parallel
implementations from applications.

4.3 mpg123 - MP3 Decoder

The mpg123mp3 decoder application is generally somewhat simpler than its counterpart
LAME, but it is still a relatively complicated application that demonstrates some interesting
transforming and analysis problems. It can output directly to the audio system on a computer
for the user to listen to the mp3. It can also output to a wave file, which is the mode that this
study is based on. However, the transformations and analysis that we will present maintain the
sequential file output, and therefore are compatible with other output formats.

51

main
100.0% -- 1

play_frame
99.8% -- 4162

do_layer3
99.8% -- 4162

synth_1to1
67.6% -- 299664

III_dequantize_sample
18.5% -- 16648

dct36
7.4% -- 399332

dct64
12.4% -- 299664

Figure 4.19 mpg123 Callgraph with Runtime Weights

Figure 4.19 shows a pruned callgraph of mpg123.14 Compared to LAME (Figure 4.15), this
callgraph is quite simple. In this study we will focus on the synth 1to1() and dct64() function
calls, which make up about two thirds of the execution time. An actual parallel implementation
would have to improve the performance of the other components of do layer3() to achieve
speedups of more than 3x, but we will not investigate those other functions here.

This application works by processing through the input mp3, which is generally com-
pressed using Huffman. After decoding the Huffman stream, a series of relatively low-runtime
steps are performed, and eventually the synth 1to1() function is called. Figures 4.20 and 4.21
show the code for synth 1to1(). The first part of the function (Figure 4.20) determines the data
that will be processed in the second part and calls dct64() on the input data. The second section
(Figure 4.21) processes the output data from dct64(), and writes to the output buffer.

The call site of synth 1to1(), which is in do layer3(), is wrapped in a counted loop that
iterates 18 times and calls synth 1to1() 36 times (once for each of two channels in each itera-
tion). This loop is further surrounded by another loop that iterates two times (layer3.c:1744)
for every call to do layer3. It might be possible (after some substantial transformations) to
parallelize at this scope, or potentially at outermost loop in main(), but we will not investigate
such implementations in this thesis.

14A 1 min 48 s mp3 encoded at 128 kbps is decoded by mpg123, a process that takes a few seconds on the
x86 64 AMD Athlon 2800+ that this profile is taken on.

52

116 int synth_1to1(real *bandPtr,int channel,unsigned char *out,int *pnt)
117 {
118 static real buffs[2][2][0x110];
119 static const int step = 2;
120 static int bo = 1;
121 short *samples = (short *) (out+*pnt);
122
123 real *b0,(*buf)[0x110];
124 int clip = 0;
125 int bo1;
...
130 if(!channel) {
131 bo--;
132 bo &= 0xf;
133 buf = buffs[0];
134 }
135 else {
136 samples++;
137 buf = buffs[1];
138 }
139
140 if(bo & 0x1) {
141 b0 = buf[0];
142 bo1 = bo;
143 dct64(buf[1]+((bo+1)&0xf),buf[0]+bo,bandPtr);
144 }
145 else {
146 b0 = buf[1];
147 bo1 = bo+1;
148 dct64(buf[0]+bo,buf[1]+bo+1,bandPtr);
149 }
150
151
... <Continued in Part 2>
221 }

Figure 4.20 mpg123:synth 1to1() Code - Part 1

4.3.1 mpg123 parallelism

As stated above, this section will focus on the parallelism that one can extract from the
synth 1to1() function call. Unlike jpegdec, synth 1to1() does not contain any useful inner-loop
parallelism. There are a few loops in the second part (Figure 4.21) that one could parallelize,
but such transformations would have limited performance benefit. While we will not go into
specifics about these loops, it will be necessary to be able to summarize their access patterns
for higher granularities of parallelism.

Figure 4.22 shows two possible flows for the execution of synth 1to1(). Figure 4.22(a)
shows the original flow, and (b) shows a transformed version. As shown, there are no loop-
carried dependences for the Computation blocks of this diagram. As such, one can execute
these blocks in parallel (as shown in (b)). The outer loop calls synth 1to1() two times, once

53

15 #define WRITE_SAMPLE(samples,sum,clip) \
16 if((sum) > 32767.0) { *(samples) = 0x7fff; (clip)++; } \
17 else if((sum) < -32768.0) { *(samples) = -0x8000; (clip)++; } \
18 else { *(samples) = sum; }

...
116 int synth_1to1(real *bandPtr,int channel,unsigned char *out,int *pnt)
117 {
... <Starts in Part 1>
152 {
153 register int j;
154 real *window = decwin + 16 - bo1;
155
156 for (j=16;j;j--,window+=0x10,samples+=step)
157 {
158 real sum;
159 sum = *window++ * *b0++;
160 sum -= *window++ * *b0++;
161 sum += *window++ * *b0++;
... <repeats>
174 sum -= *window++ * *b0++;
175
176 WRITE_SAMPLE(samples,sum,clip);
177 }
178
179 {
180 real sum;
181 sum = window[0x0] * b0[0x0];
182 sum += window[0x2] * b0[0x2];
183 sum += window[0x4] * b0[0x4];
184 sum += window[0x6] * b0[0x6];
185 sum += window[0x8] * b0[0x8];
186 sum += window[0xA] * b0[0xA];
187 sum += window[0xC] * b0[0xC];
188 sum += window[0xE] * b0[0xE];
189 WRITE_SAMPLE(samples,sum,clip);
190 b0-=0x10,window-=0x20,samples+=step;
191 }
192 window += bo1<<1;
193
194 for (j=15;j;j--,b0-=0x20,window-=0x10,samples+=step)
195 {
196 real sum;
197 sum = -*(--window) * *b0++;
198 sum -= *(--window) * *b0++;
... <repeats>
212 sum -= *(--window) * *b0++;
213
214 WRITE_SAMPLE(samples,sum,clip);
215 }
216 }
217
218 *pnt += 128;
219
220 return clip;
221 }

Figure 4.21 mpg123:synth 1to1() Code - Part 2

54

 synth'(to(*chn (,

Computation

loop */ to (0,

*udio -lus0

 synth'(to(*chn (,

Calculate 3ata Set

3C567

Computation

 synth'(to(*chn /,

Calculate 3ata Set

3C567

Computation

loop */ to (0,

 synth'(to(*chn /,

Calculate 3ata Set
3C567

 synth'(to(*chn (,

Calculate 3ata Set
3C567

 synth'(to(*chn /,

Computation

loop */ to (0,

*udio -lus0

!"#$%&'(')"*$+&,(&"-$.*,/ !0#$1"2'3$4&")25,&-67$+&,(&"-$.*,/

3ata
3ependence

Figure 4.22 mpg123 Program Flow - Part 1

for each channel. Because the computation for the different channels is also independent, it is
possible to execute the Computation blocks for the different channels in parallel as well. The
DCT64 portion updates a static array (buffs) in synth 1to1(), and the values from one iteration
are used in successive executions of the Computation block. Specifically, the Computation
block utilizes data generated by the most recent 16 DCT64 instantiations for each channel.
Because of this, it is necessary to create a copy of the buffs array for each delayed execution of
the Computation block. The buffer is relatively large (2x2x272 reals15), but only a portion of
the buffer is necessary for each Computation block.

The Computation block contains the majority of the runtime of synth 1to1(). It is also
possible to parallelize the calls to dct64(). While the benefit of performing this transformation
is limited, the analysis necessary to extract the parallelism is interesting and therefore will be
covered. Figure 4.23 presents such an implementation. An analysis of dct64() and the calling
context will show that groups of 32 calls to the synth 1to1() function (16 for each channel) do
not exhibit true memory output-dependences with respect to dct64(). Because of this, these
32 calls can be performed in parallel, while the last four for the outer loop must be done
sequentially. The figure shows a slightly different implementation where each thread contains
a call to synth 1to1() for each channel. Such an implementation would result in fewer threads
that each performs more coarse-grained parallelism.

15reals are defined as either floats or doubles at compile time.

55

 synth'(to((chn ()

!omputation

loop (/ to (0)

 synth'(to((chn /)

!alculate .ata /et

 synth'(to((chn ()

!alculate .ata /et

 synth'(to((chn /)

!omputation

loop (/ to (0)

0udio 2lush

 synth'(to((chn /)

 synth'(to((chn ()

/ave .ata

.!T78

.!T78

loop ((1 to (0)

 synth'(to((chn /)

 synth'(to((chn ()

/ave buffs /tate

.!T78

.!T78

!
em

ain'er *
+

,-. /oop
iterations 4- an' 45

6arallel *
+

,-. /oop
iterations 8 to 49

;uild buffs for
!omputation

:ote; =t is possible to extract further
parallelism from the .!T78 bloc?s
by performing the calls for the
different channels in parallel as well.

:ote; Dsing a more complicated
E;uild buffs for !omputationE it
would be possible to perform the
!nal two iterations in parallel with the
!rst F7. This is possible because the
state of the buffs array after every
iteration is based exclusively on the
most recent F7 iterations, and not on
the initial two iterations.

:ote; This bloc? of code is
computationally insigni!cant, so
performing it seHuentially is not
signi!cant.

Figure 4.23 mpg123 Program Flow - Part 2

56

4.3.2 mpg123 transformation and analysis

There are two parallel implementations that we will explore in this section – the first is
represented in Figure 4.22(b), and the second is shown in Figure 4.23. While the second
requires substantially more challenging work for minimal performance benefit, it also provides
an example for some useful analysis and transformation concepts.

The first implementation, which performs the Computation block in parallel, requires loop
distribution to remove the sequential blocks of code from synth 1to1() along with the file I/O.
One must also precompute the value of pnt for each call, which is based on a simple in-
duction expression. Because the values generated by the dct64() calls in successive calls to
synth 1to1() do not kill each other, and because the data used in the Computation blocks of
different calls to synth 1to1() uses data generated by previous iteration’s dct64() calls, it is
necessary to copy the state of the buffs array for the parallel invocations of the Computation
block. Only a subset of the buffs array is used for each iteration of the Computation block. This
subset can be calculated by the compiler, and therefore it is only necessary to save the required
subset of buffs after every dct64(). These are the only significant transformations necessary to
parallelize the Computation block.

While some calls to the dct64() are actually parallel, it is only necessary to disambiguate
accesses to the different Computation blocks to perform the first implementation. There are two
objects that are live out of the synth 1to1() call: out, which is accessed through the samples
pointer in the Computation block (line 121), and the pnt integer value, which is incremented
by 128 at the end of every synth 1to1() call. It can be shown that each call to synth 1to1() will
write to the space shown in Equation (4.10) (this will be left as an excersize for the reader):

out + (∗pnt) + channel + 2 ∗ (0 to 31) (4.10)

The out base pointer is constant and shared for the two channels. The +channel and the
2∗ are used so that samples for each channel come one after each other. It can be shown that
*pnt is always even. This is sufficient for proving that the data written for different channels is
always distinct. 32 real values are written for each instantiation. By showing that *pnt selects
a different region of the out object in successive calls, they can be disambiguated.

Figure 4.24 shows the call sites of synth 1to1() (through the fr→synth indirect function
calls). The pnt value modified for channel 0 is dead, while value modified for channel 1 is used
in successive iterations of the loop at line 1823. Therefore, every pair of synth 1to1() calls
will have a value of *pnt that is 128 larger than the previous pair. This, combined with

57

1823 for(ss=0;ss<SSLIMIT;ss++) {
1824 if(single >= 0) {
1825 clip += (fr->synth_mono)(hybridOut[0][ss],pcm_sample,&pcm_point);
1826 }
1827 else {
1828 int p1 = pcm_point;
1829 clip += (fr->synth)(hybridOut[0][ss],0,pcm_sample,&p1);
1830 clip += (fr->synth)(hybridOut[1][ss],1,pcm_sample,&pcm_point);
1831 }
...
1842 if(pcm_point >= audiobufsize)
1843 audio_flush(outmode,ai);
1844 }

Figure 4.24 mpg123:do layer3() Code - synth 1to1() Call Site

Equation (4.10), is almost sufficient to show that there is no dependence between calls to
synth 1to1() through the data written to the output array.16 It is also necessary for pointer
analysis to be able to distinguish between the samples, window (through the decwin global
pointer), and buffs objects. The existing FULCRA pointer analysis will handle these cases.

The second implementation, as shown in Figure 4.23, extends the first implementation
by also parallelizing the calls to DCT64. As shown in the figure, it is not possible to fully
parallelize the DCT64 calls for the outer loop, as there is an output dependence with a distance
of 16 iterations for each channel. Therefore, one can perform the 16 iterations in parallel
followed by the final two iterations. Because the data utilized by each Computation block is
not directly produced exclusively by the most recent DCT64 call, but also include data from
previous invocations, performing the array expansion is nontrivial. Each thread must write to
an array, and after the parallel portion of the loop, the state of the array after each iteration
must be built and saved in a sequential manner. After this is complete, the final two iterations
can be executed, and their resultant states saved as well for future threaded Computation block
threads.

Performing an analysis of the different dct64() calls is a challenging but tractable problem.
A function-level analysis of dct64() would show two sets of output data:

16The object that pnt points to is global, and is modified elsewhere in the application. Specifically, the au-
dio flush() function at line 1843 in Figure 4.24 will reset this value to 0. This situation will not be addressed in
this thesis, and is left as an open problem for the reader.

58

out0[0, 16, ...256] (4.11)

out1[0, 16, ...256] (4.12)

Every other call to this function is for a different channel. Lines 133 and 137 select the
input buffer for both out0 and out1 based on the channel, and therefore each call of dct64() for
the different functions is independent.

Lines 131 and 132 perform a wrap-around 15 to 0 down counter for bo for every call to
synth 1to1() for channel 0 (every other call). The value of bo is used both to pick the destination
location in the buffs second and third dimensions, and also to pick the b0 (not to be confused
with bo). b0 is used in the second part of synth 1to1() and is not relevant for this example.
There are two dct64() call sites, one where bo is even and one where it is odd. It can be shown
that the odd case calls dct64() so that it modifies:

buffs[channel][1][(bo + 1)&(15) + (0 to 256 by 16)] (for out0) (4.13)

buffs[channel][0][(bo) + (0 to 256 by 16)] (for out1) (4.14)

The even case is (almost) the exact opposite, except that it does not contain the &(15)
because the wrap-around case does not exist with even numbers:

buffs[channel][0][(bo) + (0 to 256 by 16)] (for out0) (4.15)

buffs[channel][1][(bo + 1) + (0 to 256 by 16)] (for out1) (4.16)

This is convenient, as the actual set of data that is modified by the two different call sites is
essentially identical.

Because bo can be shown to iterate down from 15 to 0, induction analysis with the above
equations will show a dependence distance of 16. Therefore, 16 successive calls for each chan-
nel to the synth 1to1() function will result in different data being modified by the dct64() call.
Because the call site of synth 1to1() is in a loop that iterates 18 times, there does exist a loop-
carried dependence within this context, forcing the final two iterations for each channel to be
performed sequentially.

59

4.3.3 mpg123 summary

Very little useful inner-loop parallelism is available in the hot synth 1to1() function in
mpg123. This function is called numerous times, and it is possible to perform transformations
and analysis that allow for two different parallel implementations (Figures 4.22 and 4.23).

First of all, interprocedural loop distribution is necessary to extract a parallel implementa-
tion. Secondly, parallelizing the dct64() calls, despite not having a large effect on performance,
is interesting because it is only possible to perform a subset of the iterations in parallel. Fi-
nally, synth 1to1() demonstrates how it is important to perform a demand-driven analysis and
transformation for determining the data that should be saved for parallel invocations rather than
saving entire objects.

The synth 1to1() function provides an interesting case study for a variety of reasons. First,
a static buffer (which would be seen as a global object in Lcode) is used to communicate data
from iteration to iteration, inserting dependences that must be dealt with in order to create a
parallel implementation. Secondly, control flow provides information for the induction expres-
sion analysis, and must be considered in order to extract the dct64() calls. Finally, because it is
possible to only save a subset of buffs for parallelizing the Computation block in synth 1to1(), it
provides a case study for developing an analysis framework for allowing such transformations.

4.4 MPEG-4 - Video Decoder

The MPEG-4 video decoder application has also been studied by the IMPACT group re-
cently. This work has been submitted for publication in [26], and will not be described in
detail here. In addition to presenting details on the IMPACT compilation infrastructure, it
demonstrates how context sensitivity, field sensitivity, and heap specialization must be com-
bined together in order to disambiguate certain crucial memory accesses. It also evaluates the
success of Omega Test and other array disambiguation techniques in further disambiguating
critical dependences in MPEG-4.

4.5 179.art - Image Recognition

Past HPC transformations and analysis targeted benchmarks similar to those found in the
SPEC floating point suites. In order to perform parallelizing compilation on pointer-rich appli-
cations like those explored previously in this chapter, it is important to build upon the wealth
of past research that has gone into this class of applications.

60

main
100.0% -- 1

scan_recognize
84.4% -- 1

train_match
15.6% -- 554

match
84.3% -- 500

Figure 4.25 179.art Callgraph with Runtime Weights

179.art is an Adaptive Resonance Theory 2 (ART 2) neural network that recognized objects
in a thermal image based on training data. Figure 4.25 shows the high-level pruned callgraph
of the application with execution times.17 As the figure shows, the majority of the runtime is
spent in the match() function.

4.5.1 match() overview and parallelism

179.art executes by first performing training with match train(), and then attempts to find
an object in a search image by iterating through regions of it and calling the match(). The
majority of the runtime is spent performing the actual search, and in general the characteristics
of match train() and match() are very similar. Therefore, we will focus on the match() function
and its call site in this section.

Figure 4.26 provides an algorithmic view of the match() function and its calling context in
main(). Central to the processing within match() are a series of blocks of computation, each of
which is either 1 or 2 loop nests. Almost all of these blocks are dependent upon the previous
block (in program execution order). Outside of these blocks are a series of additional loops in
the calling context.

The inner loops are all high-iteration count loops with a large amount of parallelism. The
computation loops each contain an accumulator that is used in the successive normalization
loops, but these can easily be removed with accumulator expansion. Because of the normaliza-
tions, it is not possible to perform large-scale loop fusion despite the fact that the loops share

17This was collected on an x86 64 AMD 2800+ system compiled with gcc (3.4.2) using -pg -O2. This shows
the profile for input3.

61

loop (s'()ch ,-(.'s)

loop (0-(tch'2)

loop 0 to 4

Compute
(

Compute
)

Compute
*

Compute
+

Compute
U

Compute
y

.oad Image

Compute
4

Detect 7atch

9eset Arrays
=(,),*,U,+,4,y?

@valuate

Computation .oop Eest

EormaliFation Data
Dependence

!ine%&rain Parallelism
@ach !"#$%&'&(") or)"*#'+(,'&(") block represents
1JK loop nests with high iteration counts that contain
no loop carry dependences Min the case of the
normaliFation blocksO or accumulators that can be
fused out Min the case of the computation blocksO in
order to achieve !neJgrain parallelism.

.edi0m%&rain Parallelism
The loopJback dependences that are drawn show
the loops that the dependence carries between. As
shown, the 0 to 4 loop is heavily dependent upon
past iterations, and therefore cannot be transformed
for parallel execution. The -(tch'2 loop, on the
other hand, is only contains a dependency for the
!nal computation block, and therefore can be made
parallel. This is not a counted loop, and tends to
iterate a limited number of times, and therefore is a
poor opportunity for paralleliFation.

Limitted Loop !ission
Because of the accumulators that are calculated for
normaliFation, it is not possible to fuse all of the
inner loops. Towever, the normaliFation loops can
be fused with the successive computation loops.

Co0rse%&rain 60ter%Loop Parallelism
There are some sequentialiFing dependences in for
the outer loop. Transforming these out and
performing privatiFation of the inner loop arrays, one
can perform the outer loop in parallel.

Reset 8rra9s
Before performing computations, the various global
arrays are reset to Fero, effectively killing all past
iteration computation. This is useful, as it removes
many dependences for the outer two loops.

Figure 4.26 179.art:match()- High-Level Flow

62

the same loop bounds. However, it is possible to fuse each normalization loop with the com-
putation loop that follows it. Performing this transformation slightly increases the granularity
of the parallelism, and may improve performance.

The first loop outside of the inner computation loops, shown as loop 0 to 9, is a convergence
loop that is limited to 10 iterations (there is an additional loop-bound condition that is not
shown). It can break out prior to the 10th iteration if the resulting P array is the same as the
previous iteration. This loop contains numerous loop-carried data dependences, and is not a
strong candidate for parallel execution.

The !matched loop iterates until it is confident that it has converged to the likelihood that the
current search space contains the search object. This loop contains only a single loop-carried
dependence, and therefore could be transformed to execute in parallel. However, the number
of loop iterations is dependent upon the calculations that are performed in each iteration of the
loop. Because of this characteristic, this loop is not a strong candidate for parallelization.

The outer loop that calls thematch() function (which is actually two nested loops) processes
through the entire search space and selects subregions to search for the image within. Each
of the calls to match() is independent (after some minor transformation that we will explore
in Section 4.5.2.2), and because of the high iteration count of these loops, they present an
excellent opportunity for scalable coarse-grain parallelism.

179.art is a strong test benchmark for future developments. It contains simple fine-grain
parallelism that will provide a useful method for future developments, as well as simple coarse-
grain parallelism that is far more scalable than simple inner loop parallelizing techniques.

4.5.2 match() analysis and transformations

4.5.2.1 Inner loop fine-grain analysis and transformation

There are generally three types of parallelizable inner loop nests. First, there are normal-
ization loops (Figure 4.27), which consist of a single loop nest and simple code. Next, there are
computation loops (Figure 4.28) that consist of a single loop. Finally, there are doubly-nested
computation loops (Figure 4.29).

The normalization loops (X, U, and Q from Figure 4.26) do not require any substantial
transformation or analysis. Figure 4.27 shows one of the normalization loops. f1 layer[tj].X and
f1 layer[tj].W can be disambiguated using struct offsets in the existing pointer analysis. Once
this is complete, it is trivial to prove that each iteration is independent.

63

551 /* Compute F1 layer - X values */
552
553 for (tj=0;tj<numf1s;tj++)
554 f1_layer[tj].X = f1_layer[tj].W/tnorm;

Figure 4.27 179.art - Normalization Loop

543 /* Compute F1 layer - W values */
544 tnorm = 0;
545 for (ti=0;ti<numf1s;ti++)
546 {
547 f1_layer[ti].W = f1_layer[ti].I[cp] + a*(f1_layer[ti].U);
548 tnorm += f1_layer[ti].W * f1_layer[ti].W;
549 }
550 tnorm = sqrt((double)tnorm);

Figure 4.28 179.art - Single-Loop Computation Loop

580 /* Compute F1 layer - P values */ ***** P COMPUTATION *****
581 tnorm =0;
582 tsum=0;
583 tresult = 1;
584 for (ti=0;ti<numf1s;ti++)
585 {
586 tsum = 0;
587 ttemp = f1_layer[ti].P;
588
589 for (tj=0;tj<numf2s;tj++)
590 {
591 if ((tj == winner)&&(Y[tj].y > 0))
592 tsum += tds[ti][tj] * d;
593 }
594
595 f1_layer[ti].P = f1_layer[ti].U + tsum;
596
597 tnorm += f1_layer[ti].P * f1_layer[ti].P;
598
599 if (ttemp != f1_layer[ti].P)
600 tresult=0;
601 }
602 f1res = tresult;
...
610 /* Compute F2 - y values */ ****** Y COMPUTATION *****
611 for (tj=0;tj<numf2s;tj++)
612 {
613 Y[tj].y = 0;
614 if (!Y[tj].reset)
615 for (ti=0;ti<numf1s;ti++)
616 Y[tj].y += f1_layer[ti].P * bus[ti][tj];
617 }

Figure 4.29 179.art - Doubly-Nested Computation Loops

64

The singly nested iteration computation loops (W and V from Figure 4.26) are similar to
the normalization loops, in that only existing pointer analysis and basic array disambiguation
is necessary, except that these loops accumulate a normalization constant for their successive
normalization loops. Figure 4.28 shows an example of this. Basic accumulator expansion can
be used to remove these dependences from the loop.

The doubly nested computation loops (P and y from Figure 4.26) are an extension to the
singly nested loops and are not much more complicated. In each case, the outer loops iterate the
same number of times as both the singly nested computation loops and the normalization loops.
In P (Figure 4.29), the inner loop calculates tsum based on the tds global array. Once the inner
loop has finished iterating, P is calculated based on tsum and the previously computed U array.
The inner loop is an accumulation loop, and therefore could be parallelized using accumulator
expansion. It is not necessary to extract parallelism from this inner loop, but the loop does
provide a useful test case for accumulator expansion. After performing accumulator expansion
on the tnorm calculation in the outer loop, the outer loop can be shown to be completely parallel
after the f1 layer and tds global arrays are shown to be disjoint.

The y computation loop (Figure 4.29) is slightly different from the P computation. In it, the
y is actually accumulated in the inner sequential loop from f1 layer and bus (all global arrays).
After these arrays have been disambiguated, it is trivial to show that all outer loop iterations
are independent. No transformations like accumulator expansion are necessary.

Simple loop distribution is possible between the normalization loops and their successive
computation loops. With SSA that supports globals (numfls1), it is possible to show that all
of the loops have the same bounds. Once this is complete, induction expression analysis can
show that the array element generated by the ith iteration of the normalization is used in the
ith iteration of the following computation loop. After performing distribution, it is possible to
remove the store instructions for the normalization arrays, as the results of the computation are
dead after their use in the computation loops. This would be a complicated optimization, as it
would be difficult to prove because the arrays are global. Register promotion would decrease
the critical path of the computation. One problem with register promotion in a multithreaded
environment is that it becomes more difficult to prove that no other memory operations will
modify a value between a load and a store (because another thread could modify it). Because
our compiler is performing the parallelization, it is possible to make assumptions about the
memory characteristics of different threads. In general, parallel threads that are created by
the IMPACT framework (and parallel programs in general) should never modify shared data

65

1010 for (j=starty;j<endy;j=j+stride)
1011 for (i=startx;i<endx;i=i+stride)
1012 {
1013 k=0;
1014 for (m=j;m<(lheight+j);m++)
1015 for (n=i;n<(lwidth+i);n++)
1016 f1_layer[k++].I[0] = cimage[m][n];
1017 pass_flag =0;
1018 match();
1019 if (pass_flag==1)
1020 {
...
1024 if (set_high[0]==TRUE)
1025 {
1026 highx[0] = i;
1027 highy[0] = j;
1028 set_high[0] = FALSE;
1029 }
1030 if (set_high[1]==TRUE)
1031 {
1032 highx[1] = i;
1033 highy[1] = j;
1034 set_high[1] = FALSE;
1035 }
1036 }
...
1041 }

Figure 4.30 179.art - match() Call Site

outside of critical regions, with the exception of lock acquisition and release. Unless specula-
tion capabilities that support detection and roll-back are implemented, future transformations
should never be made unless this characteristic can be proved and maintained.

4.5.2.2 Outer loop course-grain analysis and transformation

Figure 4.30 shows the code that calls match(). As an aside, this code is broken. The code
assumes that set high, highx, and highy are only two elements (as they are declared). However,
the code inmatch() modifies set high as if its size is numf2s - 1 - 1, where numf2s is calculated
by objects + 1, where objects is based on the user input. If the user input was verified, this
code would be valid.

The match() call site works by calling the match() function for different regions of the
search image and calculates a confidence of a match for each section. If the confidence of the
current section is higher than past confidence values, then the code marks to save that location
in the image by setting the set high flag, which is later processed by the calling function. After
performing one of thematch() calls, the set high flags are checked and then reset. The problem

66

here is in the reset. Rather than performing the reset inside of the match() call, or potentially
above the match() call, a conditional loop-carried dependence is created. This problem can be
solved by removing the conditional for the flag sets and pushing them around the back-edge
above the match() call.

The next loop-carried dependence that must be handled also involves the set high flags.
The code that conditionally sets these flags (lines 644 to 648) must be sequentialized. This
code is inside a series of if nests inside match() that are also used to determine if the loop at
line 536 is complete. By saving the match confidence value for successive traces through this
code, one can move this code outside of the line 536 loop. It can be placed above the code that
checks the flags at line 1024 (after the match() call site). This transformation accumulates all
of the sequential code to the end of the loop 1010/1012 nests, and can then be removed from
those loops using loop distribution.

There are two types of analysis that are necessary for performing the parallelization de-
scribed above – those that disambiguate the truly independent sections of match(), and those
that identify the loop-carried dependences that must be sequentialized. There is a true loop-
carried dependence for the highx and highy values at the end of the call site loops. These are
easy to identify. The next loop-carried dependence exists with the highest confidence array at
line 646. Because of the way the application has been coded, there also exists a dependence
through set high for lines 647, 1024, 1028, 1030, and 1034. In general, it is not a problem for
compilers to identify dependences because of the conservative nature of their analysis frame-
works. As such, these dependences already exist in IMPACT.

Disambiguating the parallel components of match() is slightly more difficult (as one would
expect). 179.art uses global arrays and scalars to maintain the state of the system – and this
may make analysis challenging, as many analysis techniques do not work well with global
values. At the beginning of the match() call, all of the array values are reset with a call to
reset nodes(). This call loops through numf1s elements of each of the arrays that are gener-
ated during the processing. Each processing block iterates the same number of times, so an
induction analysis that incorporates SSA on global variables will show that the values that are
generated by each call to match() are killed at the beginning of successive calls, and therefore
no true dependence exists between iterations. The identified output-dependence between pre-
vious iterations and the call to reset nodes() must be removed by using array expansion on the
global arrays. Because the array is global, it is necessary to guarantee that the correct array is
live out of match(), as it could be access later in the application (this is not the case in 179.art).

67

4.5.3 179.art summary

179.art is generally a great application for near-term benchmarking of both transformation
and analysis developments. It contains opportunities for both simple fine-grain parallel exe-
cution and relatively simple coarse-grain extraction. However, while working with IMPACT
to develop transformations and analysis, one must be careful not to develop solutions that are
restricted to the simple cases presented in 179.art. Unlike many of the other benchmarks,
179.art uses global data for much of its communication between functions. As such, it is a
good benchmark for testing IMPACT’s ability to deal with global structures and pointers.

4.5.3.1 179.art transformations

Simple inner-loop parallel execution requires accumulator expansion and can benefit from
simple loop distribution. These transformations should be implemented in the near future.
Moving out to the coarse-grain parallelism will require loop distribution. These transforma-
tions must be performed across function boundaries, so it will ultimately be a good benchmark
of interprocedural transformations. Unlike in other benchmarks like LAME, it will be possible
to work with an inlined version when performing transformations (and analysis). This will be
useful as it will allow both for near term development in coarse-grain transformations (without
the interprocedural framework) and for a comparison between the results of the interprocedural
framework and those of an inlined version.

4.5.3.2 179.art analysis

Many of the analyses that are necessary for identifying opportunities for parallel execution
in 179.art have already been implemented in IMPACT. Because 179.art largely works with
global structures, it will be a good test of existing analyses, including SSA and induction
expression analysis, to determine if they work properly with globals. This work is currently
underway. In addition to this, the coarse-grain parallel extraction will require gen-kill on arrays
that take into account loop bounds on global variables that are constant at run-time.

68

CHAPTER 5
IMPACT ROADMAP

This chapter presents a roadmap for future IMPACT development. It is broken into four sec-
tions. Section 5.1 presents some “low-hanging fruit” for both analysis and transformation.
These are techniques that should be worked on in the near term. Section 5.2 provides an
overview of some of the requirements and considerations for the interprocedural analysis and
transformation framework that will be developed. Finally, Sections 5.3 and 5.4 identify tasks
for medium-term transformations and analysis (respectively).

5.1 Low-Hanging Fruit: Analysis and Transformations

This section will identify some near-term tasks for both analysis and transformations that
should be developed in parallel with the interprocedural framework (Section 5.2). It will be im-
portant to complete many or all of these tasks prior to moving on to the more complicated ones
presented in the Sections 5.3 and 5.4. This section will begin with some basic transformations
that are driven by pragmas. These subsections will also contain comments on developing and
evaluating the analysis framework with respect to the transformations. Next, it will motivate
some enhancements that can be made to FULCRA. It will conclude with a discussion on how
the analysis framework can be evaluated beyond what was discussed with the transformations.

5.1.1 Parallel IMPACT using pragmas

Automatic identification of locations to perform parallel execution is very difficult, and
is not a task that will be completed in the near term. As such, this section will assume that
the code (whether C or Lcode) has pragmas to identify locations where parallelism should be
extracted. This instrumentation will essentially be an extension similar to OpenMP. The user
will identify code to parallelize and the compiler will analyze this code and transform it for
legal parallel execution. This is different from OpenMP, which assumes that identified loops
do not contain loop-carried dependences. We will focus on jpegdec, mpg123, and 179.art.
MPEG-4 will likely also benefit from these transformations. LAME is more complicated than
these other benchmarks, and in general will be ignored in this section.

69

5.1.1.1 Basic thread extraction

There is currently work underway to perform loop blocking to convert single loops into
multiple loops. Recall that this transformation can convert a loop that, for example, iterates
60 times and transform it into a doubly-nested loop that iterates 6 times (outer loop) and 10
times (inner loop). The outer loop can then be used to spawn 10 independent threads, each of
which executes the inner loop. This transformation is one of the most basic transformations,
and will be used frequently (commonly after other transformations have removed any pre-
existing SCCs from the dataflow graph). Loops without loop-carried dependences exist in
both ycc rgb convert() in jpegdec and match() in 179.art, and these should be used to test this
transformation. This transformation should also be tested with the Lpar transformation that
spawns threads off of a single loop nest.

5.1.1.2 Accumulator expansion and loop fusion

The match() function in 179.art contains multiple loops with simple accumulators. An
analysis to identify these cases and perform accumulator expansion on them should be imple-
mented. Once this is complete, these same loops (which become parallel) can have loop fusion
performed on them as described in Section 4.5.2.1. There are two steps to implementing the
loop fusion transformation. The first step should utilize pragmas to identify two loops that can
be combined. From this, a transformation can be built alongside an analysis that verifies that
it is legal. This can then be extended so that the programmer marks a function to search for
loop fusion opportunities. Loop nests can then be pair-wise compared and evaluated (using the
analysis from the first step) for loop fusion.

5.1.1.3 Removal of scalar loop-carry dependences

The h2v2 fancy upsample() function in jpegdec contains scalar loop-carried dependences
in its innermost loop (Section 4.1.4.1). In order to perform the transformation described in
Section 5.1.1.1, it is necessary to remove this dependence. Because the dependence is based
on a calculation that can be pulled around the edge of the loop, code expansion can be applied
to remove the loop-carried dependence from some iterations.

70

1: procedure LOOP ALLOCATION EXAMPLE
2: for all i in elements do
3: Object[i] ← malloc(sizeof(Object))
4: end for
5: end procedure

Figure 5.1 Loop Allocation

5.1.2 Memory allocation

It is generally good practice to use allocation pools to replace malloc in applications, as it
tends to improve performance. Allocation pools malloc large chunks of memory and provide
pieces of it to the application as is necessary. As a result, all objects that are allocated with
a specific allocation pool will all be assigned to the same initial points-to set. Heap cloning
will not be able to disambiguate these allocations even though the allocation pools may have
different call chains because malloc is not invoked separately for each call. It is possible to
mark functions other than malloc as allocation routines when providing the input to FULCRA.
By using pragmas to mark pool allocation functions as “malloc-like,” and adding support to
FULCRA to use these pragmas, additional spurious dependences will be removed. It may later
be possible to build an analysis in Pcode that identifies these pools, but in the short-term user
annotations should be an acceptable solution.

In C, multidimensional arrays are compiled as single dimensional arrays that cover a large
block of memory. These semantics guarantee that the data with different dimensions never
overlaps. As described in Section 4.1.6, multidimensional arrays in jpegdecare allocated as
arrays of pointers to arrays instead of as a single block of memory.1 Functionality should be
added to mark the functions that allocate these multidimensional pointer arrays. Later it may
be possible to create an analysis that can identify them, but this should be sufficient for the
short-term.

Support also needs to be added that can disambiguate objects that are allocated inside of a
loop as shown in Figure 5.1. In this case, we have a singlemalloc call site that allocates a series
of distinct objects. This is very similar to the case above. At the time of allocation, it is easy to
see that each of the objects pointed to in the “Object” array are independent. If it can be proved
that these pointers are never modified, then the objects pointed to by different indexes must be
independent.

1Although it is not covered in this thesis, this situation manifests itself in MPEG-4 as well.

71

5.1.3 Analysis evaluation

In addition to creating analysis to support the transformations identified above, it is im-
portant to evaluate the performance of existing pointer and array disambiguation analysis be-
fore moving on to coarse-grain parallelism. The iDCT function in jpegdec and dct64() in
mpg123 should be evaluated because they modify noncontiguous parts of their output buffers
(i.e., every 16th entry). match() in 179.art should be evaluated for the summary information
across the different loop bodies.

5.2 Interprocedural Framework

As people begin to develop the necessary infrastructure described in Section 5.1, others
should begin to develop the interprocedural framework. The majority of the topics that we
will be addressing in the previous section are not new or novel ideas. Although it may be pos-
sible to publish them in the context of the more realistic benchmark suite, having a scalable
and effective interprocedural analysis and transformation system will be an important contri-
bution. Most past parallelizing work has dealt with simple kernels of computation and toy
benchmarks. Extending these ideas to function under the constraints of large and complicated
software codebases is an important contribution to the field.

The “interprocedural framework” will likely consist of two separate and distinct frame-
works – one for analysis and one for transformation. This section provides benchmark-driven
insights into some of the requirements of both of these infrastructures as design commences.

5.2.1 Interprocedural analysis framework

It will not be sufficient to provide function-level summaries to extract high-performance.
There are a variety of options for performing a more accurate analysis. The first option, which
is less scalable but the most accurate, would be to emulate inlining the function(s) and then
perform the analysis. This would provide accurate results, but likely would run into the same
scalability problems that full program inlining hits. The second option is to provide region-
based summary information for each function. While it may be possible to provide summary
information of all of the loop-nests and sequential blocks of code, it may be difficult to work
with. The compute ffts() function from LAME requires summary information of the outermost
loop nests. This is the case for match() in 179.art as well. If possible, it may be interesting
to develop a framework that can provide varying levels of summary information. It may also

72

be useful to provide detailed summary information, but tailor the analysis to use subsets of the
summary information to enhance scalability.

In LAME parallelizing the compression requires the identification of the parallel “Compu-
tation Block” (Figure 4.18) many function calls down from the actual loop through which it is
parallel. This demonstrates how it will not be sufficient to limit the number of function calls
that the interprocedural framework can process through.

Another consideration for any function summary information that is generated will be how
to work with the function parameters. FULCRA may have decided that two of the parame-
ters access the same object. There may be cases where array disambiguation that utilizes caller
loops is able to determine that the uses of the two parameters will never overlap in the function.
If the summary information merges these parameters in the summary before array disambigua-
tion is applied from the calling context, then it may never be possible to disambiguate the
different objects. At the same time, FULCRA may have determined that the parameters to a
function alias because of operations within that function and not because of the characteristics
of the callee. If this is the case, then losing this information in the summaries, and potentially
allowing array disambiguation to determine that the two parameters do not alias, would also be
incorrect. Developing a system that handles these two cases is an interesting research topic.

5.2.2 Interprocedural transformation framework

Transformation opportunities exist that call for the movement of specific blocks of code
across procedural boundaries. As described in an example in Section 4.2.1.1, it is sometimes
necessary to move specific sections of a function into another function, leaving others intact.
Not only will it be necessary for the interprocedural framework to maintain the information
necessary for such transformations, but it will also need to support transformations that move
specific blocks of code from different functions.

5.3 Transformation

While Section 5.1 provided some transformations for short-term development, this section
will summarize some of the medium- and long-term transformations that will be necessary to
extract more coarse-grained parallelism from some of the applications. We will start with some
of the medium-term targets, and finish with more complicated long-term tasks.

One task will be to extend the traditional transformation techniques to support nested loops,
as well as those with more complicated control flow. In jpegdec, iDCT is called from nested

73

loops (3 deep) that iterate a total of six times. Parallelizing at any of these levels alone will
result in limited performance benefit. In 179.art, match() is called from a set of doubly nested
loops that iterate through the dimensions of the search image. In this case, the coarse-grained
parallelism that can be extracted from either loop alone is sufficiently scalable. However,
parallelizing the outer loops means that the sequential component, which is contained inside
both of the loops, must be pushed down below both loop nests rather than just the one (see
Section 4.5.2.2 for more details). In the h2v2 fancy upsample() function in jpegdec, extract-
ing medium-grain parallelism that crosses the call-site requires extracting threads from nested
loops where the outer loop exists in the caller and the inner in the callee. In the front-end of
jpegdec, when extracting coarse-grained parallelism, loop distribution must be performed on a
set of nested loops that contain a return statement that breaks out of the loops (Section 4.1.3.4).

Many of the medium-grain transformations require loop distribution across function bound-
aries. There are cases of this in the front- and back-end of jpegdec, in match() in 179.art, and
in synth 1to1() in mpg123. In many of these cases, it is feasible to inline the functions and
develop the transformations to handle them before the interprocedural framework is complete.
As the framework begins to come online, it will then be possible to adapt the existing trans-
formations to work with the framework and necessary to evaluate the results with and without
inlining.

The existing inlining infrastructure can inline through indirect function calls. Because of
the heavy use of indirect function calls in these applications, it will be necessary for the trans-
formations to function in a manner similar to what is done in Pinline. The characteristics of an
indirect function call must be conservative for all possible called functions. Converting an in-
direct call into control flow with a direct call (like in Pinline) may also allow for less restrictive
analysis results. By using code expansion, this control flow can be pushed above loops (assum-
ing it is not dependent on the loop iteration) and the entire loop nests can be specialized. In
the back-end of jpegdec, the indirect upsampling calls are dependent on the loop iteration (dif-
ferent components use different upsampling routines). In this case, unrolling this loop would
allow for specialization of the different component’s function calls, which may help to enable
the analysis and transformations.

Much of the analysis performed in this thesis makes certain assumptions about the mode in
which the different applications are executed. As transformations are made, it will be important
to take advantage of the special characteristics of different modes, and optimize accordingly.
At the same time, it will be necessary to ensure that all other modes will still function prop-
erly. For example, sep upsample() cannot be optimized for all program inputs assuming that

74

h2v2 fancy upsample()will be called for both the Cr and Cb frames. However, it may be useful
to create a specialized version of sep upsample() for when this assumption is true.

One can extend these path specialization techniques to handle situations where certain char-
acteristics cannot be proved by the analysis (or even the programmer). For example, if certain
transformations require that loop bounds be constant, but it is not possible to prove that they
are, one could instrument the code with checks to verify this assumption and transform accord-
ingly. Such functionality would also be useful in cases where characteristics were generally
true but occasionally false. If the benefits of achieving parallelism outweigh the penalty for
handling the false case, then these transformations can and should be made. This is similar to
explicit data speculation in EPIC compilation.

In general, many of the transformations that are performed reorder the execution of code by
transforming the control flow. At times, it may be difficult to perform these transformations. If
an analysis can prove that there are no true loop-carried dependences between different blocks
of code in a loop, one can reorder execution by creating continuations not only of data but
also of functions. The coarse-grain model of the back-end of jpegdec (see Section 4.1.4.3)
does a good job of illustrating this concept. While this type of transformation may simplify
transformation and be more general, it requires the same difficult analysis.

5.4 Analysis

Much of the necessary analysis work to be done involves extending the existing array dis-
ambiguation techniques to work interprocedurally and working through corner cases. There are
some additional new analysis techniques that will be necessary to allow the existing techniques
to work in general purpose codes.

179.art shows that it will be necessary to handle variable loop bounds that are constant
within a certain contexts. It will be necessary to do this interprocedurally as well. In 179.art,
when match() is parallelized through the loop at its call site, it is necessary to determine that
the loop bounds of each of the computation loops are constant across these loop iterations.
Since SSA is capable of handling this intraprocedurally, it will need to be extended to the
interprocedural infrastructure.

In both jpegdec and MPEG-4, performing value-flow analysis to determine the relation-
ship between different variables will be necessary to disambiguate different array accesses.
While it may not be possible to determine the actual values of certain variables, it is sometimes
possible (and necessary) to determine relationships between sets of variables. Feeding these

75

relationships into the array disambiguation analysis will allow for it to remove blocking spu-
rious dependences. There has been some past work in interprocedural value-flow [27, 28], but
this was not done in the thread-level parallelism context.

76

REFERENCES

[1] J. W. Sias, S.-Z. Ueng, G. A. Kent, I. M. Steiner, E. M. Nystrom, and W. W. Hwu, “Field
testing IMPACT EPIC research results in Itanium 2,” in Proceedings of the 31st Annual
International Symposium on Computer Architecture, June 2004, pp. 26–39.

[2] International Technology Roadmap for Semiconductors, 2005, http://public.itrs.net.

[3] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach.
San Francisco, CA: Morgan Kaufmann Publishers, 1996.

[4] Cray Research, Inc., CF77 Compiling System, Volume 1: Fortran Reference Manual,
1990.

[5] R. Gupta, S. Pande, K. Psarris, and V. Sarkar, “Compilation techniques for parallel sys-
tems,” Parallel Computing, vol. 25, nos. 13,14, pp. 1741–1783, 1999.

[6] Standard Performance Evaluation Corporation, “SPEC CFP2000 benchmarks,” 1999,
http://www.spec.org/cpu2000/CFP2000.

[7] U. Banerjee, Loop Transfomations for Restructuring Compilers. Boston, MA: Kluwer
Academic Publishers, 1993.

[8] S. Muchnick, Advanced Compiler Design and Implementation. San Francisco, CA: Mor-
gan Kaufmann Publishers, 1997.

[9] W. Pugh, “The Omega Test: A fast and practical integer programming algorithm for
dependence analysis,” in Proceedings of Supercomputing 1991, November 1991, pp. 4–
13.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently com-
puting static single assignment form and the control dependence graph,” ACM Transac-
tions on Programming Languages and Systems, vol. 13, pp. 451–490, October 1991.

[11] W. Baxter and I. H. R. Bauer, “The program dependence graph and vectorization,” in
Conference Record of the 16th ACM Symposium on the Principles of Programming Lan-
guages, January 1989, pp. 1–10.

[12] D. Weise, R. F. Crew, M. Ernst, and B. Steensgaard, “Value dependence graphs: Rep-
resentation without taxation,” in Proceedings of the Twenty-First ACM Symposium on
Principles of Programming Languages (POPL), 1994, pp. 297–310.

77

[13] P. Tu and D. Padua, “Gated SSA-based demand-driven symbolic analysis for parallelizing
compilers,” in Interational Conference on Supercomputing, 1995, pp. 414–423.

[14] X. Kong, D. Klappholz, and K. Psarris, “The I-Test: An improved dependence test for au-
tomatic parallelization and vectorization,” IEEE Transactions on Parallel and Distributed
Systems, Special Issue on Parallel Languages and Compilers, vol. 2, pp. 342–349, July
1991.

[15] R. Wilhelm, S. Sagiv, and T. W. Reps, “Shape analysis,” in Proceedings of the 9th Inter-
national Conference on Compiler Construction, March 2000, pp. 1–17.

[16] R. Ghiya and L. J. Hendren, “Is it a tree, a DAG, or a cyclic graph? A shape analysis
for heap-directed pointers in c,” in Symposium on Principles of Programming Languages,
1996, pp. 1–15.

[17] J. W. Sias, “A systematic approach to delivering instruction-level parallelism in EPIC
systems,” Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2005.

[18] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools. Reading,
MA: Addison-Wesley, 1986.

[19] E. M. Nystrom, “Fulcra pointer analysis framework,” Ph.D. dissertation, University of
Illinois at Urbana-Champaign, 2005.

[20] J. Player, “An evaluation of low-overhead partial flow-sensitivity,” M.S. thesis, De-
partment of Electrical and Computer Engineering, University of Illinois at Urbana-
Champaign, 2005.

[21] J. D. Choi, M. G. Burke, and P. Carini, “Efficient flow-sensitive interprocedural com-
putation of pointer-induced aliases and side effects,” in Proceedings of the 20th ACM
Symposium on Principles of Programming Languages, January 1993, pp. 232–245.

[22] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?” in Proceedings of the
2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, 2001, pp. 54–61.

[23] S. Zee Ueng, “Template bundling for EPIC architectures,” M.S. thesis, Department of
Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 2004.

[24] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, S. Malik, and D. I. August,
“Memory system performance of programs with intensive heap allocation,” to appear in
ACM Transactions on Computer Systems, 2006.

[25] P. Feautrier, “Array expansion,” in ICS ’88: Proceedings of the 2nd International Confer-
ence on Supercomputing, 1988, pp. 429–441.

78

[26] S. Ryoo, R. E. Kidd, C. I. Rodrigues, S.-Z. Ueng, M. I. Frank, and W. W. Hwu, “Interpro-
cedural analysis for coarse-grain parallelization of C media programs with heap usage,”
submitted to Proceedings of the ACM SIGPLAN ’06 Conference on Programming Lan-
guage Design and Implementation, 2006.

[27] R. Bodik and S. Anik, “Path-sensitive value-flow analysis,” in Conference Record of the
25th ACM Symposium on Principles of Programming Languages, January 1998, pp. 237–
251.

[28] R. Bodik, “Path-sensitive, value-flow optimizations of programs,” Ph.D. dissertation,
University of Pittsburgh, Pittsburgh, PA, 1999.

79

