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Abstract

This thesis proposes a novel GPU implementation for merging two sorted arrays.

We consider the problem of merging two arrays A and B into a single array C. Each

element in the arrays has a key. An ordering relation denoted by  is defined on the keys.

Array A and array B have m and n elements, respectively, where m and n do not have to

be equal. Both array A and array B are sorted based on the ordering relation. The task

is to produce the output array C of size m + n. Array C consists of all the input elements

from array A and array B, and is sorted by the ordering relation.

We applied several GPU-specific optimizations to a parallel merge algorithm. The opti-

mizations include coordinating the memory access pattern, making full use of the shared

memory and reducing the thread divergence. Our implementation achieves up to 10x and

40x speedup on Titan-Z and GTX 980 GPU respectively compared to thrust merge imple-

mentation.
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Chapter 1

Introduction

Merge is an important operation in contemporary computing systems. It is used as a sub-

routine by many popular algorithms and applications such as merge sort and database

operations. As a frequently used subroutine, the performance of merge is critical.

As the need for high performance computing grows, single-chip multiprocessors (CMPs)

become more and more popular. However, most existing sequential algorithms cannot fully

utilize the computing resource on CMPs. To exploit the performance of CMPs, parallel

algorithms are developed. In [1], Siebert et al. proposed a parallel merge algorithm. With

p processing elements, the time complexity of merge could be reduced from O(m + n) to

O(m+n
p +logmin(m,n)). This parallel merge algorithm can be implemented on CMPs using

openMP with minimum e↵ort, and achieve considerable speedup compared to the sequential

merge. This algorithm can also run on graphics processing units (GPUs). We implemented

it on GPUs (we call it Naive Parallel Merge) without any GPU-specific optimizations. To

the best of our knowledge, thrust library has the fastest GPU merge implementation.

Figure 1.1 shows the memory throughput for di↵erent input sizes of naive parallel merge

and thrust merge. We observe that for some input sizes (from 1K to 1M), the performance

of naive parallel merge is better than that of thrust library.

Compared to CMPs, GPUs have more cores and larger memory bandwidth. A direct

implementation of this parallel merge algorithm on GPUs (naive parallel merge) will result

in suboptimal performance due to the underlying architecture di↵erences between GPUs

and CMPs. To exploit the massive parallelism on GPUs, we need to coordinate the memory

access pattern, make full use of the shared memory and reduce the thread divergence. This

motivates us to do further optimizations on naive parallel merge, and find a better GPU

merge implementation that outperforms thrust library.
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Figure 1.1: Performance of Thrust Merge and Naive Parallel Merge on GTX 980

This thesis proposes a novel GPU implementation for merging two sorted arrays. Our

implementation achieves up to 40x speedup compared to the thrust library for certain input

sizes.

The rest of the thesis is organized as follows: Chapter 2 describes algorithm and archi-

tecture background. The parallel merge algorithm [1] is described in Chapter 3. Chapter 4

describes the implementations of the parallel merge algorithm with GPU-specific optimiza-

tions. Chapter 5 describes further optimizations. Evaluation is presented in Chapter 6.

Finally, Chapter 7 concludes the thesis.
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Chapter 2

Background

2.1 Algorithm Background

2.1.1 Problem Definition

In this thesis, we consider the problem of merging two arrays A and B into a single array C.

Each element in the array has a key. An ordering relation denoted by  is defined on the

keys. Array A and array B have m and n elements, respectively, where m and n do not have

to be equal. Both array A and array B are sorted based on the ordering relation. The task

is to produce the output array C of size m + n. Array C consists of all the input elements

from array A and array B, and is sorted by the ordering relation.

Figure 2.1 gives an example of merging two arrays of integers. We will use this example

throughout this thesis to demonstrate the parallel merge algorithm.

Figure 2.1: Merge Example
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2.1.2 Sequential Merge

Sequentially merging two sorted arrays has been solved for a long time. Listing 2.1 shows

the sequential code implemented in C++.

void merge(int

*

A, int m, int

*

B, int n, int

*

C)

{

int i, j, k, l;

i = 0; //index A

j = 0; //index B

k = 0; //index C

/

*

handle the start of A[] and B[]

*

/

while ((i < m) && (j < n))

{

if (A[i] <= B[j]) {

C[k] = A[i];

i++;

} else {

C[k] = B[j];

j++;

}

k++;

}

if (i == m) { //handle remaining b[]

for (l = j; l < n; l++)

{

C[k] = B[l];

k++;

}

} else { //handle remaining a[]

for (l = i; l <m; l++)

{

C[k] = A[l];

k++;

}

}

}

Listing 2.1: Sequential Merge Implementation in C++

This implementation uses a while loop to do the merge. It first merges A and B to C

when there are both remaining A and remaining B. When it reaches the end of A or B, it

copies the remaining A or B to C. The time complexity of this implementation is O(m+n).
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2.2 Architecture Background

2.2.1 GPU Architecture

• Computation: GPUs are designed for high computation throughput instead of low

latency. GPUs typically contain hundreds of cores. Programmers are allowed to set

the number of blocks and the number of threads for each block to create massive

parallelism that utilizes the huge number of cores on a GPU.

• Memory hierarchy: The GPU memory hierarchy consists of global memory, shared

memory and registers. Global memory is shared across thread blocks. It is the largest

in terms of size. However, it is the slowest. Shared memory is shared only among the

threads in a single block. It is faster than global memory but slower than registers.

The size of shared memory is limited. In all the GPUs we use, the shared memory size

per block is 48 KB. Registers are the fastest but have the smallest size.

2.2.2 Global Memory Coalescing

When we launch a kernel on GPU, it is executed by the parallel threads. If the kernel has

a global memory reference, then each thread will also generate a global memory request,

and the memory addresses for each thread will most likely be di↵erent. Listing 2.2 shows

an example of global memory reference.

__global__ void kernel(int

*

a)

{

int tid = threadIdx.x;

a[tid] = tid;

}

Listing 2.2: Memory Access Pattern

These memory requests are grouped into a number of memory transactions. When con-

secutive threads access consecutive global memory addresses (as in Listing 2.2), we call this

coalesced access. When coalesced access happens, a single transaction may be implemented

[2] to maximize the bandwidth usage.
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When the memory addresses accessed by threads are not consecutive (e.g., for an access

a[tid⇤N ] instead of a[tid] in Listing 2.2), we call this non-coalesced access. It is not possible

anymore to pack the di↵erent requests from di↵erent threads into a single transaction. In

the worst case, we may need to make one transaction per thread. This will result in a poor

usage of memory bandwidth.

It is desirable to make all the accesses to global memory coalesced. One approach is to use

shared memory as the scratch pad. This approach requires complex code restructuring and

is one of the GPU-specific optimizations that we use to improve the performance of parallel

merge.
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Chapter 3

Parallel Merge Algorithm

In [1], Siebert et al. proposed a parallel merge algorithm, in which each processing element

calculates the output range it is going to produce, and uses that output range as the input

to a co-rank function to identify the corresponding input ranges that generate the out-

put. Finally, each processing element calls the sequential merge function to do the merge

independently in parallel.

3.1 Co-rank Function

Let A and B be two input arrays with m and n elements respectively. Both input arrays

are sorted according to an ordering relation . The index of the arrays starts from 0. The

task is to merge A and B into an array C with m + n elements. They use C[m + n] =

merge(A[m], B[n],) to denote this task. In their paper, Siebert et al. pointed out two

observations:

• For any i, 0  i < m+ n in C, there is either a j, 0  j < m such that C[i] = A[j] or

a k, 0  k < n such that C[i] = B[k].

• For any i-element prefix C[0, ..., i� 1] of C, there must be indices j and k of A and B

such that C[0, ..., i� 1] = merge(A[0, ..., j � 1], B[0, ..., k � 1],).

Siebert et al. also proved that j and k, which define the prefixes of A and B needed to

produce the prefix of C of length i, are unique. For an element C[i], they call the index i

its rank. And they call the unique indices j and k its co-ranks. Consequently, they use the

term co-rank for the process of determining j and k from A,m,B, n and i. Notice that

i = j + k because the number of elements in the output array equals the sum of the number

7



of elements in the input arrays. Figure 3.1 shows an example of co-rank. In this example,

C[16] = merge(A[8], B[8],). C[8] = merge(A[5], B[3],). Therefore, the co-rank of 8 is 5

and 3.

Figure 3.1: Co-rank Example

The pseudo code to find the co-rank from A,m,B, n and i is also given in their paper. In

listing 3.1, we transform their pseudo code into the C++ implementation of co-rank function.

We calculate j by using j = co rank j(i, A,m,B, n). Then we calculate k by k = i� j.
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int co_rank_j(int i, int

*

A, int m, int

*

B, int n)

{

int j = i < m ? i : m; //j = min(i,m)

int k = i - j;

int j_low = 0 > (i-n) ? 0 : i-n; //j_low = max(0, i-n)

int k_low;

int delta;

bool active = true;

while(active)

{

if (j > 0 && k < n && A[j-1] > B[k]) {

delta = ((j - j_low - 1) >> 1) + 1;

k_low = k;

j = j - delta;

k = k + delta;

} else if (k > 0 && j < m && B[k-1] >= A[j]) {

delta = ((k - k_low - 1) >> 1) + 1;

j_low = j;

j = j + delta;

k = k - delta;

} else {

active = false;

}

}

return j;

}

Listing 3.1: Original Co-rank

3.2 Overall Parallel Merge Algorithm

The co-rank function provides a simple and e�cient way to perform merging in parallel. Let

p processing elements be given, all of which can access input and output arrays A, B and

C. Each processing element has its own id r, 0  r < p.

Each processing element calculates the output range (C[i start, ...i end]) it is going to

produce. The output ranges can be chosen such that they cover the whole output array of

size m + n, and the size of output each processing element producing di↵ers by at most 1.

Then, each processing element computes the corresponding co-ranks for both the start and

9



end index. These co-ranks determine the input ranges of the input arrays this processing

element needs to merge sequentially.

Listing 3.2 shows the pseudo code for the overall parallel merge algorithm.

void paralle_merge(int

*

A, int m, int

*

B, int n, int

*

C)

{

r = processing_id; // 0 <= r < p

i_start = floor(r

*

(m+n)/p); // start index of output

i_end = floor((r+1)

*

(m+n)/p); // end index of output

j_start = co_rank_j(i_strat, A, m, B, n);

j_end = co_rank_j(i_end, A, m, B, n);

k_start = i_start - j_start;

k_end = i_end - j_end;

merge( A[j_start,...,j_end-1], B[k_start,...,k_end-1],

C[i_start,...,i_end-1] );

}

Listing 3.2: Pseudo Code for Parallel Merge Algorithm

We use figure 3.2 to show an example of the parallel merge process. In this example, there

are two processing elements (p = 2). These two processing elements are going to perform

the task C[16] = merge(A[8], B[8],) collaboratively in parallel.

Figure 3.2: Parallel Merge Algorithm Example

For p0 (solid red arrows), r = 0, i start = 0, i end = 8, p0 is going to produce C[0, ..., 7].

After running the co-rank function, p0 knows the input ranges: j start = 0, j end = 5,
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k start = 0, k end = 3. Therefore, p0 will call C[0, ..., 7] = merge(A[0, ..., 4], B[0, ..., 2],).

For p1 (dashed green arrows), r = 1, i start = 8, i end = 16, p1 is going to produce

C[8, ..., 15]. After running the co-rank function, p1 knows: j start = 5, j end = 8, k start =

3, k end = 8. So p1 will call C[8, ..., 15] = merge(A[5, ..., 7], B[3, ..., 7],).

Because p0 and p1 are working on di↵erent parts of the input and output, they can run in

parallel without interference. Also, the sizes of output they produce are the same. Therefore,

load balance is guaranteed.

11



Chapter 4

Implementations of Parallel Merging Algorithm

We implement the parallel merge algorithm on CMPs using OpenMP before implementing

the parallel merge algorithm on GPUs. The result is shown in Chapter 6.

Compared to CMPs, GPUs have more threads and larger memory bandwidth for the

purpose of massive parallelism. However, a direct translation of a parallel algorithm that

suits CMPs may not run e�ciently on GPUs. To explore massive parallelism on GPUs, we

need to coordinate the memory access pattern, make full use of the shared memory, reduce

the thread divergence, improve the load balance for di↵erent processing units, and create

enough parallelism.

We have three GPU implementations. We name the first implementation naive parallel

merge. Naive parallel merge is a direct translation of the parallel merge algorithm on GPU

without any GPU-specific optimization.

Since coalesced global memory is critical to improve the application performance that runs

on GPU[3], we implement a second GPU version that utilizes shared memory as a scratch

pad to make the accesses to global memory coalesced. We name it single bu↵er parallel

merge.

In single bu↵er parallel merge, we only consume half of the data we load into the shared

memory. The other half is wasted. To better utilize the data we load into shared memory,

we implement a third version and we call it double bu↵er parallel merge.

4.1 Naive Parallel Merge

In naive parallel merge, we copy the input arrays A[ ] and B[ ] from host to device global

memory first. Then each thread calculates the thread index (r) and total number of threads

12



(p) using r = blockIdx.x ⇤ blockDim.x + threadIdx.x and p = gridDim.x ⇤ blockDim.x

respectively. Based on r and p, each thread calculates the output range it is going to produce,

and uses the output range as the input to the co-rank function to identify the corresponding

input ranges. After getting the input ranges, all threads start to merge independently by

calling the sequential merge function in parallel and writing the result to C[ ] in device global

memory. Finally, we copy C[ ] from device global memory back to the host.

Figure 4.1 shows an example of naive parallel merge. A[ ], B[ ] and C[ ] are in device

global memory. This example shows the work of one thread. After identifying its output

range(C[ ]) and input ranges(A[ ], B[ ]), it uses sequential merge to write the result to C[ ].

All the threads run in parallel and produce the result for the entire output array C[ ].

Figure 4.1: Naive Parallel Merge

4.2 Single Bu↵er Parallel Merge

Naive parallel merge does not have a coalesced memory access pattern, so this implemen-

tation results in a poor usage of memory bandwidth [2]. To better utilize the memory

bandwidth on GPU, coalesced global memory accesses are critical. For this reason, we use

shared memory on GPU as a scratch pad, and make the access pattern to global memory

coalesced in single bu↵er parallel merge. Single bu↵er parallel merge works as follows: Co-

rank function is run in two levels, block level and thread level. At the block level, all the

threads in the same block do the same searching. Each thread calculates the block index

and total number of blocks using b id = blockIdx.x and b num = gridDim.x respectively.
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Based on b id and b num, all threads within the same block calculate the output range that

block is going to produce, and use the output range as the input to the co-rank function to

identify the corresponding input ranges for that block. The co-rank function is run on global

memory in the block level. After knowing the input ranges for the block, all threads in the

block cooperatively load the input to the shared memory. In this way, we can guarantee

that the global memory access pattern is coalesced.

However, shared memory may not be large enough to hold all the input data. So we create

a loop. In each iteration, we load x elements from input array A and x elements from input

array B into shared memory. This will produce x (not 2x) elements to the output array C,

because in extreme cases, all the output may come from one of the input array. We waste

half of the data loaded into the shared memory.

Then, we run the co-rank function at thread level. Threads in a block will merge x elements

using the data we load into shared memory. So the co-rank function is run on shared memory

in the thread level. Each thread calculates the thread index and total number of threads in

the block using t id = threadIdx.x and t num = blockDim.x respectively. Based on t id

and t num, each thread calculates the output range that thread is going to produce, and

uses the output range as the input to the co-rank function to identify the corresponding

input ranges. Then each thread starts its work independently and calls the sequential merge

function to perform the merge in parallel on the input we load to shared memory and write

the output to device global memory. Figure 4.2 shows the first iteration of single bu↵er

parallel merge. The solid orange box is the block level run of the co-rank function. The

dashed green box is the first iteration of the thread level run of co-rank function. The data

marked by the solid blue arrow are wasted.

In the next iteration, we will load the data we have not merged into shared memory, run

co-rank in the thread level, and perform merge in parallel. Figure 4.3 shows the second

iteration of single bu↵er parallel merge. The dashed red box is the second iteration of the

thread level run of co-rank function.

The loop runs until we have merged all the data that block is going to produce (filling the

entire solid orange box).

14



Figure 4.2: First Iteration of Single Bu↵er Parallel Merge

Figure 4.3: Second Iteration of Single Bu↵er Parallel Merge

4.3 Double Bu↵er Parallel Merge

In single bu↵er parallel merge, we only consume half of the data we load into shared memory.

The other half is wasted. To further optimize the performance, we create the double bu↵er

parallel merge, in which we utilize all the data we load into the shared memory.

The overall process is similar to single bu↵er parallel merge except for how we use shared

memory. Co-rank function is run in two levels, block level and thread level. At the block

15



level, all the threads in the same block do the same searching. Each thread calculates the

block index and total number of blocks using b id = blockIdx.x and b num = gridDim.x

respectively. Based on b id and b num, all threads within the same block calculate the

output range that block is going to produce, and use the output range as the input to the

co-rank function to identify the corresponding input ranges for that block. After knowing

the input ranges for the block, all threads in the block cooperatively load the input to the

shared memory.

Figure 4.4: Initialization of Double Bu↵er Parallel Merge

We use a loop because shared memory may not be large enough to hold all the input data.

When initializing, we load 2x elements from input array A and 2x elements from input array

B into the shared memory. Figure 4.4 shows the initialization process.

In each later iteration, all the threads in a block will produce x elements to the output

array C. If there are more than x elements in shared array A and shared array B, we do

not load from global memory. Figures 4.5 and 4.6 show examples of the first iteration and

second iteration of double bu↵er parallel merge. In these two iterations, there are enough

data remaining in the shared memory, so we did not load from the global memory to shared

memory.

16



Figure 4.5: First Iteration of Double Bu↵er Parallel Merge

Figure 4.6: Second Iteration of Double Bu↵er Parallel Merge

Figure 4.7: Third Iteration of Double Bu↵er Parallel Merge

17



If there are less than x elements in either shared array A or shared array B, we will load

another x elements into shared memory. Figure 4.7 shows an example of the third iteration

of double bu↵er parallel merge. In the third iteration, there are enough data in the shared

array B. However, there are not enough (less than x) data in shared array A. So we load

x elements from the global memory to shared memory (marked by the red box). Data in

shared memory will wrap around.

Then we run the co-rank function at thread level. The co-rank function is run on shared

memory. Each thread calculates the thread index and total number of threads in the block

using t id = threadIdx.x and t num = blockDim.x respectively. Based on t id and t num,

each thread calculates the output range that thread is going to produce, and uses the output

range as the input to the co-rank function to identify the corresponding input ranges. Then

each thread starts its work independently and calls the sequential merge function to do the

merge in parallel on the input we load to shared memory and write the output to device

global memory.

The loop runs until we have merged all the data that block is going to produce (filling the

entire solid orange box).
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Chapter 5

Further GPU Optimizations

5.1 Reduce Number of Calls to Co-rank Function

In all the GPU parallel merge implementations above, each thread needs to call the co-rank

function twice: once for the start point of the output range, and once for the end point of

the output range. Figure 5.1 gives an example. In this example, there are 8 threads. We

mark the call to co-rank function using “⇤”. Each thread will call co-rank twice to calculate

j start and j end. Therefore, the total number of calls to co-rank function is 16.

Figure 5.1: Number of Calls to Co-rank Function before Optimization

One observation we have is that the start point of thread r is the same as the end point

of thread r � 1. In the example we provide in figure 3.2, the start point of p1 is 8 and the

end point of p0 is also 8. For this reason, we could reduce the number of calls to co-rank

function. We first let all the threads calculate the co-rank for the end point, as shown in

figure 5.2. Instead of using co-rank function again to calculate the co-rank for starting point,

we store the result(j end) in an array in shared memory. Then after a synchronization, we
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read the co-rank of start point of thread r from the result of thread r� 1. If thread index is

0, we will set the co-rank to 0 instead of reading from thread �1. Now we only need to call

co-rank function for 8 times (as marked by “⇤” in figure 5.2) and reduce the number of calls

by half. The overhead is that we are using more shared memory, and we need to perform a

synchronization before reading the co-rank stored in shared memory.

Figure 5.2: Number of Calls to Co-rank Function after Optimization

5.2 Change Control Divergence to Memory Divergence

Control divergence can degrade the performance of GPU application [4]. When the threads

in the same warp take di↵erent branches for an if � else statement, control divergence will

occur. The hardware needs to execute the if part and else part sequentially. This will hurt

the overall performance. As a result, it is desirable to write code with a minimum amount of

control divergence to achieve high performance. In parallel merge, we are concerned about

two functions: merge and co-rank.

• Merge

Listing 2.1 shows the original sequential merge code. It first merges A and B to C

when there are both remaining A and remaining B. When it reaches the end of A or

B, it copies the remaining A or B to C. The time complexity of this implementation is

O(m+n). We can see that the original merge has control divergence due to if and else

statements inside the while loop. To remove the control divergence, we use selection
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to replace the if and else statements. Listing 5.1 shows the sequential merge code

after removing control divergence. After this optimization, we e↵ectively remove all

the control divergence. However, memory divergence still exists because the threads in

a warp are reading from di↵erent addresses, and these memory requests may complete

at di↵erent time [5].

void merge(int

*

A, int m, int

*

B, int n, int

*

C)

{

int count = m+n;

int ai = 0, bi=0;

for(int i=0; i< count; ++i)

{

bool p;

bool c1 = (bi >= n);

bool c2 = (ai >= m);

p = c1 ? true : c2 ? false : A[ai]>B[bi] ? false : true;

C[i] = p ? A[ai++] : B[bi++];

}

}

Listing 5.1: Merge Remove Code Divergence

• Co-rank

Listing 3.1 shows the original code for co-rank function. The code divergence also

comes from the if and else statements. We replace the if and else statements by

selection. The resulting code is shown in Listing 5.2.
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int co_rank_j(int i, int

*

A, int m, int

*

B, int n)

{

int j = i<m ? i : m; //j = min(i,m)

int k = i - j;

int j_low = 0>(i-n) ? 0 : i-n; //j_low = max(0, i-n)

int k_low;

int delta;

while(1)

{

bool cond_1 = j > 0 && k <n && A[j-1] > B[k];

bool cond_2 = k > 0 && j <m && B[k-1] >= A[j];

delta = cond_1 ? ((j-j_low-1)>>1) + 1 :

cond_2 ? ((k-k_low-1)>>1) + 1 : delta;

k_low = cond_1 ? k : k_low;

j_low = cond_2 ? j : j_low;

j = cond_1 ? j - delta : cond_2 ? j+delta : j;

k = cond_1 ? k + delta : cond_2 ? k-delta : k;

if(!cond_1 && !cond_2)

break;

}

return j;

}

Listing 5.2: Co-rank Remove Code Divergence

Since naive parallel merge, single bu↵er parallel merge and double bu↵er parallel merge

all use the co-rank function and merge function, we apply these two optimizations to all of

them. The performance improvement after the optimizations is shown in Chapter 6.
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Chapter 6

Evaluation

6.1 Methodology

6.1.1 Experiment Platform

We use OpenMP to implement the CMP parallel merge on an intel CPU, and CUDA to

implement the GPU parallel merge on Nvidia GPUs. The CPU and GPUs we use are listed

as follows, and their specifications are presented in table 6.1.

• CPU: Intel Core i7-4960 HQ Processor

• GPU: Nvidia Titan-Z, Kepler Architecture

• GPU: Nvidia GTX 980, Maxwell Architecture

Table 6.1: Specifications of CPU and GPUs

Intel Core i7 Titan-Z GTX 980
Theoretical Memory Bandwidth (GB/s) 25.6 336 224
Experimental Memory Bandwidth (GB/s) NA 240 163
Peak Floating Point Calculation Rate (GFLOPS) 89.6 8122 4616
Number of Cores 4 5760 2048

6.1.2 Tuning Parameters

When launching the kernel, we can set the number of blocks, the block dimension, and shared

memory size. These parameters will a↵ect the performance. Moreover, the best combination
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of these parameters on one architecture may not achieve the best performance on a di↵erent

architecture. Therefore, we set these parameters as tunable.

• number of blocks: The number of blocks is related to the amount of work for each

block. Increasing the number of blocks will create more parallelism that could be

scheduled on di↵erent streaming multiprocessors. Meanwhile, the amount of work for

each block will decrease. It is desirable that we have enough number of blocks to

explore the parallelism, as well as enough amount of work for each block to amortize

the block launching overhead. The number of blocks is chosen from 1, 4, 16, 64, 256,

and 512.

• block dimension: Block dimension determines the number of threads in the thread

block. We choose the block dimension from 128, 256, and 512.

• shared memory size: Shared memory size can a↵ect the number of blocks that can

run simultaneously on the streaming multiprocessors. Increasing shared memory size

will increase the amount of data we merge in each iteration, and decrease the number

of blocks that can be scheduled simultaneously on the streaming multiprocessors. It

is desirable to merge enough data in each iteration, while keeping enough number of

blocks scheduled on the streaming multiprocessors to hide latency. We choose shared

memory size from 1024B, 2048B and 2560B.

We enumerate all the combinations of tuning parameters, and launch the same kernel

multiple times with di↵erent combinations of tuning parameters. We record the running

time of all the combinations, and choose the one that has the best performance. The best

parameters are di↵erent for di↵erent input sizes and architectures.

The input sizes we use are 1K, 10K, 100K, 1M, 10M and 100M. The input size is the

number of elements (integers) in an input array A. For example, if the input size is 100M,

we will have 100M integers from A, 100M integers from B, and 200M integers from C.

The total memory usage will be 1.6 GB. We start from 1K because this is a relatively small

number to demonstrate the advantages of sequential merge and CMP merge over GPU merge

implementations. We increase the input size until 100M. There are two reasons we didn’t
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go beyond 100M: (1) When the input size is 100M, the total memory usage is 1.6 GB. As

we go beyond this size, we will possibly run out of memory. Thrust merge library will fail

for larger input size by complaining: not enough memory. (2) Merge is a basic subroutine.

It is only part of an application and cannot occupy too much memory. In [6], the maximum

input size used is also 100M.

6.2 Results

6.2.1 Performance on CMPs

Figure 6.1 shows the performance of CMP parallel merge over sequential merge.

Figure 6.1: Performance of CMP Merge over Sequential Merge

The CPU we use has 8 threads. Ideally, the speedup of CMP parallel merge could achieve

8 compared to sequential merge. In reality, CMP parallel merge is slower than sequential

merge when the input size is small. As the input size grows, parallel merge becomes faster,

and can achieve a speedup of 5x compared to the sequential merge.
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For the small input size, parallel merge is slower than sequential merge because the over-

head of binary search from co-rank function dominates the actual merge. As the input size

grows, the overhead of binary search from co-rank could be amortized, and parallel merge

could outperform the sequential merge. However, the overhead of binary search cannot be

neglected. Moreover, memory congestion may occur because the threads are issuing more

memory requests when doing merge in parallel. Due to the non-negligible overhead and

potential memory congestion, the actual speedup can achieve 5x instead of 8.

6.2.2 Performance on GPUs

We only count the kernel time for all the GPU implementations in our experiments. If the

application is running on the device (GPU), we don’t need to copy data between host and

device because everything is on the device. If the application is running on the host side,

we can use CUDA stream to transfer data asynchronously and hide the overhead of data

transfers[3]. On the host side, we can run the co-rank function and partition the input data.

Data transfers, including host to device transfer and device to host transfer, could be hide

by the computation.

Figures 6.2 and 6.3 show the memory throughput of all implementations of parallel merge

on Titan-Z and GTX 980 respectively.
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Figure 6.2: Throughput on Titan-Z

Figure 6.3: Throughput on GTX 980
In naive parallel merge, both the co-rank function and merge function run on the global

memory. Due to the nature of the co-rank function, in which each thread is performing a
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binary search for its own input range, the global memory accesses are not coalesced. The

global memory accesses for merge function are not coalesced either. For these reasons,

although naive parallel merge is faster than thrust merge for certain input size, it still

underutilizes the memory bandwidth o↵ered by GPU and therefore did not achieve the

optimal overall performance.

In single bu↵er parallel merge, we use shared memory as a scratch pad. There are two

benefits to using shared memory: (1) Global memory accesses are coalesced when we fill

shared memory. This will better utilize the memory bandwidth on GPUs. (2) There will

be fewer global memory requests. Using shared memory as scratch pad, the thread level

co-rank function runs on shared memory, and the merge function reads the inputs from

shared memory. In this way, we convert many expensive global memory reads to cheap and

fast shared memory reads. Therefore, single bu↵er parallel merge outperforms naive parallel

merge as expected.

In double bu↵er parallel merge, the benefits of using shared memory are preserved. More-

over, we utilize all the data loaded into shared memory, while in single bu↵er parallel merge,

half of the input data are wasted. We expect that double bu↵er parallel merge will out-

perform single bu↵er parallel merge. However, the results in figures 6.2 and 6.3 show the

opposite outcome. The reasons are: (1) In double bu↵er parallel merge, each thread merges

fewer number of elements due to the limited shared memory size, so the overhead for search-

ing could dominate the actual merge. (2) We observed that double bu↵er parallel merge

used more registers than single bu↵er parallel merge, and caused the occupancy to drop. As

a result, double bu↵er parallel merge is not as fast as single bu↵er parallel merge.

All the GPU implementations we have are significantly faster than sequential merge for

large input sizes. Among the three implementations we have, single bu↵er parallel merge has

the best performance. In figures 6.4 and 6.5 we show the speedup of single bu↵er parallel

merge over thrust merge implementation.
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Figure 6.4: Speedup on Titan-Z

Figure 6.5: Speedup on GTX 980
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On Titan-Z, single bu↵er parallel merge can achieve up to 10x speedup compared to

thrust merge implementation. On GTX 980, single bu↵er parallel merge can achieve up to

40x speedup compared to thrust merge implementation.

Single parallel merge has a larger speedup on GTX 980 than on Titan-Z. The reason is

that thrust merge is not specifically optimized for Maxwell Architecture and therefore its

performance is far from optimal on this platform.

In Figures 6.6 we show the performance improvement after applying the optimizations

we present in Chapter 5. Reducing number of calls to co-rank function and changing code

divergence to memory divergence contribute another 1.5x speedup for single bu↵er parallel

merge on Titan-Z.

Figure 6.6: Performance Improvement after Optimizations
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Chapter 7

Conclusion

In this thesis, we implemented three versions of parallel merge on GPUs with di↵erent levels

of GPU-specific optimizations: naive parallel merge, single bu↵er parallel merge and double

bu↵er parallel merge.

We set up the auto tunable parameters, and chose the best tuning parameters for di↵erent

input sizes and GPU architectures. Evaluations on Titan-Z and GTX 980 showed that single

bu↵er parallel merge had the best performance among the three versions.

All the GPU implementations are significantly faster than sequential merge for large input

sizes. Single bu↵er parallel merge achieved up to 10x and 40x speedup on Titan-Z and GTX

980 respectively compared to thrust merge implementation.
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