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ABSTRACT

This work describes my solution to the performance portability problem:

between CPUs and GPUs in particular, but laying the foundation for even

broader performance portability support. I argue that the best approach is to

use a language like OpenCL as a portable, low-level programming model with

well-defined mechanisms for expressing multi-level parallelism and locality.

That low-level program representation can be supported with architecture-

specific compilers, runtimes, and libraries to target the application code to

various platforms with high performance. High-level language designers or

tool developers could then target this single, low-level programming and par-

allelism model as a portable, high-performance intermediate program repre-

sentation.

To demonstrate the feasibility of this approach, I show how one would

design a good CPU implementation of OpenCL given that the programs

are written according to the current high-level GPU vendor optimization

guidelines. Programs written in such a way already meet the criteria of good

GPU performance, and in this work, I show that those same programs on a

CPU platform implemented according to my proposals can out-perform an

OpenMP implementation of the same algorithm on the same system.
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CHAPTER 1

INTRODUCTION

In years past, a system’s inability to achieve reasonable performance for

generic codes that performed well on other systems were typically attributed

to architecture design flaws or compiler limitations. Once such expectations

are established, they are self-fulfilling, because new system designs are often

constrained by legacy programs.

With the advent of widespread parallel programming, the mindset of the

field has changed drastically, primarily because legacy applications were no

longer regarded as the sole or even primary constraint on system design.

The fragmenting of the parallel programming realm meant that programmers

could not choose any language or programming model that was supported by

a wide variety of relevant architectures. Among the various proposals for an

industry standard language for both CPU and accelerator architectures, the

most widely supported and adopted is OpenCL [23], specifically the hierar-

chical SPMD programming model component it shares in common with the

CUDA language [6]. Yet even after the standardization and implementation

process, there is still a serious disagreement among industry vendors about

what kind of OpenCL code people should write for good performance.

To illustrate the issue of performance portability, let us use the exam-

ple of a typical, experienced software engineer as recently as ten years ago.

Computer architectures have a wide variety of instruction sets and processor

designs: Alpha, x86, Itanium, PowerPC, SPARC, MIPS, and ARM, just to

name several. Yet the typical software developer did not have to assume a

particular processor to write good programs in high-level languages like C or

C++. That is to say, whatever made a generic C or C++ program “good”

was independent of the specific architecture on which it would eventually be

executed.

My research has operated under this definition.

A program exhibits performance portability for a particular
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set of computer systems when that piece of software, executed

on each system, achieves reasonable performance while producing

valid results.

The performance portability problem has gotten a lot of attention, and for

good reason. In this thesis, I define performance portability as a property ex-

hibited by some piece of software for some collection of architectures, where

that piece of software achieves a good level of performance on each architec-

ture. The use of the word “good” in the definition means that performance

portability is necessarily subjective. Essentially, a software developer decides

that a particular piece of software does not have performance portability for

the class of processors they care about when they decide to split their code

into multiple versions for multiple processors. That decision is determined

by context-specific weightings given to the cost of creating and maintaining

multiple versions of code versus the potential loss of performance on certain

platforms.

Performance portability as a general metric is applied differently in dif-

ferent software and system contexts. In the world of sequential computing,

performance portability usually meant that a single piece of software was

able to compile and execute on a variety of microprocessors from multiple

vendors. Although x86 architectures dominated the consumer-level comput-

ing market, the instruction set and architectures have not remained static.

Yet many software developers never consider which specific architecture gen-

eration with specific ISA extensions will be running their code. In paral-

lel clusters, performance portability among cluster MPI programs usually

means that the software package works well on a variety of clusters and in-

terconnects. This dissertation focuses on the emerging parallel accelerator

programming model of hierarchical, fine-grained SPMD kernel programming.

This programming model is embodied in many widely used languages, such

as OpenCL [23], CUDA [33], C++AMP [32], and OpenACC [37]. In prac-

tice, OpenCL is the only language with multiple mature implementations

from multiple vendors, in large part because it was the first language pro-

posed with an open specification and the explicit goal of portability among

multiple devices.

Despite portability being a goal of the OpenCL language, a belief in the

performance portability of applications written in OpenCL is noticeably ab-
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Figure 1.1: The EP NAS Parallel Benchmark in OpenCL executed on cur-
rent and proposed OpenCL implementations. GPU results were run on an
NVIDIA Tesla C2050. All platforms targeting x86 were executed on an Intel
CoreTMi7-3770 CPU.

sent from today’s accelerated code developers. To some extent, this is to

be expected; software projects that chose an accelerator programming model

typically place a higher-than-average priority on performance, and there-

fore a higher standard for performance portability. However, if publications

are any indication, there is a widespread belief that optimizing OpenCL pro-

grams for a GPU architecture requires drastically different optimizations and

coding practices than does optimizing an OpenCL application for a multi-

core CPU architecture or non-GPU accelerator [46, 41]. For example, let us

take a recent work studying the NAS Parallel benchmarks in OpenCL on a

variety of architectures. Seo et al. saw that with the OpenCL language im-

plementations available to them for GPUs and CPUs, they had to optimize

the GPU-targeted and CPU-targeted OpenCL kernels very differently to get

good performance on each [46]. When their results are reproduced for the

“Embarrassingly Parallel” benchmark on updated hardware in Figure 1.1,

we can confirm that the GPU-optimized kernel greatly outperforms the Intel

and AMD OpenCL language implementations on x86 for the CPU-optimized

kernel, largely because of the accelerator device’s higher peak throughput.

In this dissertation, I argue that the perceived lack of performance porta-

bility of OpenCL applications for CPU and GPU architectures does not mean

that the architectures lack features necessary for achieving high performance

with a common coding style. Instead it seems that the performance portabil-
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ity problem between modern GPUs and CPUs has more to do with the fact

that certain implementations of the OpenCL language have differing implicit

performance costs. For some applications, performance portability will never

be truly achieved, if the chosen algorithms are clearly much more suited to

one kind of architecture. For algorithms that can perform well on both CPUs

and GPUs in theory, I demonstrate that there is nothing fundamentally de-

ficient about programming for a CPU in OpenCL as opposed to OpenMP or

other more traditional CPU parallel programming models.

As Figure 1.1 also shows, the work implemented in this dissertation achieves

higher performance on the x86 processor than either existing industry OpenCL

language implementation, but most importantly gets very high CPU perfor-

mance for the GPU-optimized kernel. In this example, the language imple-

mentation methodology described here obviates the need to maintain the

distinct “CPU-optimized” version of the code, achieving single-source per-

formance portability.

1.1 Software and Hardware Industry Context

The context for this material is set by the current trends towards paral-

lel and heterogeneous computing in large consumer device markets. Energy

consumption limitations on practically every class of computing device led

CPU vendors to abandon the single-core design methodology. Fully auto-

matic exploitation of explicitly parallel platforms is largely seen as ineffec-

tive for most application code written under the assumption of sequential

program execution. The software industry experienced a major disruption,

because sequential legacy codes could no longer fully utilize the CPUs of

their customers. The software industry has been effectively forced to invest

a significant amount of development effort to migrate away from sequential

programming models for performance-sensitive code regions.

Simultaneously, forces in various special-purpose architecture markets were

leading architects in those markets to increase the flexibility and programma-

bility. In particular, GPUs began as fixed-function units whose only output

was four-channel pixel colors at eight unsigned bits per channel. Demand

for increasing realism and artistic expression in rendered scenes led GPUs

to increase in flexibility. The vertex and fragment units adopted more and
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more programmability, moving from being fixed-function only, to adopting

programmability with straight-line assembly, to supporting limited and fi-

nally arbitrary branching. Pioneers tracked the increasing capabilities of the

GPU with increasingly varied applications, hijacking graphics programming

interfaces to perform various linear algebra and scientific simulation calcula-

tions.

GPU vendors realized that with CPU software developers being forced

to parallelize code anyway, those developers may be willing to parallelize

their code for a GPU. GPU vendors released GPU-friendly programming

languages and tools that eschewed explicit graphics terms or constructs to

attract general developers. However, in 2007, when CUDA was released, it

would still not have been fully feasible to make serious claims regarding per-

formance portability between CPUs and GPUs. The GPU architectures of

the time imposed stringent requirements on software to achieve a significant

fraction of peak performance, which have since been significantly softened

as described in Chapter 3. Today, the first-order performance guidelines of-

fered by GPU vendors are mostly limited to fundamental performance issues

shared in common with CPU architectures, namely good locality manage-

ment, vector execution, and scalability.

1.2 Kernel Programming in the Software Abstraction

Hierarchy

Figure 1.2 shows a few levels of abstraction and translation in the process of

expressing and solving real-world problems on computing hardware, anno-

tated with some typical performance-impacting decisions or transformations.

From the programmer’s standpoint, anything addressed by tools, libraries,

and architecture after the application code has been written is part of the

“system”. The programmer does not care whether the CPU is a VLIW

processor relying on the compiler to completely control dynamic instruction

scheduling, or an OoO architecture that takes on much of the scheduling bur-

den in hardware. Neither does the programmer care about the complexity of

the code behind library interfaces, which could be implemented differently for

every system. Those optimizations that differ most among architectures are

typically assigned to the tools, libraries, and compilers for that architecture.
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Figure 1.2: Levels of abstraction translating a high-level problem into a se-
quential, computational solution. On the right are tasks roughly associated
with the level of abstraction at which they are typically addressed.

This is another way of describing performance portability, that the applica-

tion programmer is not expected to perform those optimizations unique to

one architecture.

A widespread sentiment today is that it is no longer possible to write one

piece of parallel software and expect it to get reasonable performance on

both CPUs and GPUs from various vendors [43, 46, 41]. This adds a heavy

burden to software engineers, who must now consider additional development

and perpetual maintenance costs for every additional platform they wish to

target. Software developers also have no reasonable guarantees that their

code will remain viable for future hardware platforms.

In this work I demonstrate that the lack of performance portability is far

from inevitable. In sequential processors, certain architecture design princi-

ples were fundamental, whereas others were addressed by the compilers and

libraries associated with that processor. Similarly, fundamental architecture

design principles govern parallel architectures, and other design variations

can typically be abstracted in a general way.

1.2.1 Generic, high-level translation and optimization

Figure 1.3 illustrates how the abstraction and optimization hierarchy should

be adjusted in my proposal for performance portability among parallel archi-
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Figure 1.3: Levels of abstraction translating a high-level problem into a par-
allel computational solution. On the right are tasks roughly associated with
the level of abstraction at which they are typically addressed. Tasks not
typically necessary for a sequential execution context are shown in bold.

tectures. Specifically, it is a proposal for how we can categorize most opti-

mizations as either generically applicable and expressible, or system-specific.

Achieving performance portability means that the programmer or high-level

programming tools can perform generic optimizations targeting a system-

agnostic interface. It also requires that system-specific performance concerns

are hidden behind portable abstractions with system-specific implementa-

tions.

The most important responsibility of the programmer is choosing a fine-

grained parallel decomposition of their application. Fine-grained decompo-

sition is most portable for parallel architectures, primarily because tools can

more robustly aggregate work into coarser tasks than they can further decom-

pose tasks into finer threads. Therefore, the initial parallel decomposition

should create a very large number of parallel tasks, to fill a current GPU’s

tens of thousands of thread contexts many times over and still have room

to scale for several more architecture generations. The parallel decomposi-

tion should also embody good locality principles, with tasks within a group

assigned to nearby or overlapping input and output data.

Beyond decomposition, several other high-level optimizations are often nec-

essary to get good performance, such as tiling and data layout [48, 52]. These

optimizations are nearly universal, as they address fundamental architecture
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design principles such as locality, line-oriented memory systems, and resource

contention. Chapter 2 will summarize the most important high-level opti-

mization patterns or techniques as they apply to the hierarchical SPMD

programming model. Even so, it is critical for researchers now to consider

how to design high-level parallel programming languages and compilers such

that we can practically move responsibility for many of these optimizations

away from the programmer and onto the system implementers. While the

specific parameters for optimizations like tiling may need to be tuned to

each specific system for best performance [44, 4], underestimating hardware

resources is typically much preferable to overestimating those resources, and

conservative parameter selections should often be reasonably portable.

1.2.2 Architecture-specific, low-level translation and
optimization

Performance portability requires that each system implementing the lan-

guage have at least non-conflicting requirements of what “good” source code

should look like. The most pressing issues are related to implementing uni-

form abstractions for vectorization and multithreading, when the degrees of

each vary widely from one architecture to another. A recent GPU will have

several orders of magnitude more thread contexts than a recent CPU. Archi-

tectures like GPUs that implement very fine-grained, low-overhead threads

in hardware can often map the fine-grained tasks of the hierarchical SPMD

kernel directly to hardware thread contexts. For a CPU architecture, the

tool and runtime components of the system must bridge the gap between the

many fine-grained tasks of the input program and the few hardware thread

contexts available on the system. Challenging as this may seem, it is in prac-

tice much easier to automate an increase in parallelism granularity than it is

to automate a decrease in parallelism granularity, effectively autoparalleliza-

tion.

1.3 Organization of this Document

Chapters 5 and 6 will cover the core proposals in this dissertation for how such

low-level optimizations should be directed for CPU architectures. The ex-
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perimental results supporting the feasibility of performance portability will

be presented in Chapter 7. The work begun in this dissertation has al-

ready made a significant impact in the research and industry communities,

as evidenced by the commercial support of the development of the Multicore

cross-Platform Architecture and the numerous research projects that built

on the work presented here. Chapter 8 will highlight collaborative projects

targeting the fine-grained SPMD kernel programming model to other archi-

tectures, including FPGAs, Rigel, and others. Chapter 9 will summarize the

conclusions of this dissertation, including recognition of areas for continued

development.
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CHAPTER 2

CURRENT PRACTICES

The modern field of GPU computing had a major inflection point approx-

imately six years ago with the first support for C-based programming lan-

guages for general computation on GPUs. Very quickly, the community

discovered and published what worked well on GPU platforms and what

did not at first. As the years progressed, GPU architects and application

researchers continually pushed at the boundaries of what GPUs could do

effectively, significantly improving performance for many workloads. In this

chapter, I focus on characterizing the broad optimization problems facing

high-performance software development in general, and examples of specific

mechanics in current GPU programming models used to address those chal-

lenges.

2.1 Characterizing Optimization Patterns for

Massively Threaded Systems

A segment of the parallel programming community has long been interested

in characterizing the programming patterns that are effective for parallel sys-

tems [31, 22]. However, in private conversations, some of authors in that field

have confided that they sometimes struggle with the fact that once a parallel

program is implemented, the optimization process involves software develop-

ment practices completely outside the domain of their structural patterns. I

would therefore like to begin the academic discussion of a set of patterns sys-

tematizing the optimization of parallel programs. The optimization patterns

were drawn in particular from an informal survey of the GPU Computing

Much of this chapter has been adapted from portions of a previously published work,
c©2012 IEEE, reprinted with permission [48]. The original paper was written in collabora-

tion with the many others who contributed to the development and analysis of the Parboil
benchmarks.
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Gems contributions [17, 18], and from a focused and detailed analysis of the

Parboil benchmarks [49].

Because accelerators are highly parallel devices, many of the techniques

specifically address general performance issues that arise from programming

a highly parallel shared-memory architecture, such as contention and load

imbalance. Some techniques are not specific to highly parallel architectures,

but avoid especially severe performance cliffs given the design of today’s ac-

celerator architectures, such as the especially software-driven approaches to

effective bandwidth utilization and locality management. Still other tech-

niques are specifically targeted towards leveraging the benefits of a hybrid

system, using the versatility of the CPU to not only process necessarily se-

quential code regions but to also precondition GPU kernel inputs such that

kernels can be further optimized more than would be possible for general

input.

Finally, parallel architectures are fundamentally a collection of sequential

processing units. When a parallel architecture is well used, the performance

limitation of a program on that architecture is the efficiency of the sequen-

tial programs running on each execution unit. Therefore, sequential program

performance optimization is still an area of interest for the SPMD code exe-

cuted on the accelerator. I will not discuss those techniques here, as they are

well studied and not unique to parallel programming systems, but acknowl-

edge that immature compiler technology sometimes will necessitate direct

programmer implementations of “trivial” code optimizations.

I firmly believe that every one of the patterns described here has been

explained in previous work, but note that previous descriptions of these pat-

terns as they apply to GPU workloads are typically embedded within im-

plementations of specific workloads. While I do not take credit for being

the first to discover any of these individual transformations, there is useful

insight to be gained by consolidating summaries of all those that applied to

the Parboil benchmarks in a way that highlights their generality to a variety

of GPU computing workloads. By gathering the optimization patterns to-

gether, anchored by the real benchmarks using them, we can study how they

interact with one another, their variations among different applications, and

their individual and cumulative results on real hardware systems.

To demonstrate the impact of each individual pattern we will review, for

benchmarks where that pattern was particularly relevant, performance im-
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1: Data Access Tiling

DRAM

DRAM

Cache

DRAM

Scratchpad

Explicit

Copy

Implicit

Copy

Local

Access

Local

Access

Figure 2.1: Tiling diagram for implicit storage (e.g. cache) and explicit stor-
age (e.g. scratchpad)

provements from the highest-performing code we could write without that

optimization to the highest-performing code we have. Except where noted

otherwise, results in this section are collected from an NVIDIA Tesla S1070.

2.1.1 Tiling

Tiling is perhaps the most widely used and understood technique for best

utilizing a tiered memory hierarchy. While the technique is fundamentally

the same in sequential code optimization, the actual implementation can vary

with the design of an architecture’s memory hierarchy, as shown in Figure 2.1.

Tiling in the context of a CPU architecture with a large-capacity, implicitly

managed cache hierarchy typically means writing regions of code that operate

intensively on smaller sections of memory. The regions could then be repeated

many times for different sections, or tiles, of data. The application need not

explicitly define the region of memory being operated on, as the hardware

should automatically respond to the heavy usage of certain regions and retain

those regions in the cache.

12



Table 2.1: Tiling results

Benchmark Pattern performance impact

Stencil 3.15×
TPACF 1.12×
SGEMM 6.18×

One of the most obvious differences of current GPU architecture is explic-

itly managed on-chip memory, such as on the right side of Figure 2.1. To

use the small-capacity, high-bandwidth scratchpad, software must explicitly

move data into it before use. The threads themselves are mediators between

DRAM and scratchpad, under the direction of source code written by appli-

cation programmers.

Recent GPUs have also added small implicit caches to their general mem-

ory system, providing a hybrid of implicitly and explicitly managed locality

mechanisms. What makes even cached GPUs significantly different from typ-

ical CPUs is that the ratio of cache capacity to the number of potentially

active threads is incredibly small for GPUs. Indeed, the overall predicted

trend for highly multithreaded processors is towards more limited resources

per thread [26]. For instance, if all thread contexts were active in an NVIDIA

Fermi GPU and cache space were partitioned among active threads, each

thread would have a mere 32 bytes of L1 or L2 cache space.

Clearly, neither caches nor scratchpads in current GPUs were designed

for CPU-style temporal locality and thread-private tiles, but for overlapping

accesses among threads. A block of threads may collectively have 16kB of

private cache or scratchpad space even when all thread contexts are active,

which is often sufficient to hold worthwhile-sized tiles of data. Therefore,

the software technique of tiling is still applicable for GPUs, but very often

must take the form of cooperative tiling using the shared resources of several

threads for sufficient impact.

The performance impacts of tiling are significant, as shown in Table 2.1.

The 3× improvement in performance for the stencil benchmark corresponds

to the fact that memory tiling reduces the number of bytes accessed from

global memory per iteration from 5 words per thread to 1.25 words per

thread on average. Performance does not increase by a full factor of 4× pri-
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2. (Hierarchical) Privatization

Private

Results

Local

Results

Global

Results

Figure 2.2: Example of the common hierarchical privatization pattern

marily because some accesses are still misaligned, not fully utilizing DRAM

bandwidth. Although the results in Table 2.1 are for a cacheless GPU, our

experiments in Section 3.3 verify, as any CPU high-performance programmer

will assert, that software tiling is still critical for architectures with implicit

caches.

2.1.2 Privatization

Privatization is the transformation of taking some data that was once com-

mon or shared among parallel tasks and duplicating it such that different

parallel tasks have a private copy on which to operate. Parallel threads

typically operate most efficiently when they can operate completely inde-

pendently, avoiding coordination with other threads, but many parallel al-

gorithms require threads to interact to obtain a final result. Privatization is

14



Table 2.2: Privatization results

Benchmark Pattern performance impact

BFS 3.15×
Histo 2.26× (GTX 480)

applied to isolate regions of code where threads can operate independently

and efficiently, before eventually combining results.

Figure 2.2 shows a common multi-level privatization pattern reflecting the

hierarchical task decomposition common among highly parallel systems such

as clusters or single-chip GPUs. Working up from the bottom of Figure 2.2,

a global result is built from the partial results from many independent tasks

(thread blocks in the case of a GPU). Those partial results are each in turn

constructed from many more “private” results. This kind of privatization

has applications in many different kinds of algorithms. Collective operations

such as sorting or reductions will use this pattern, as will data structures

such as histograms or queues.

One limitation of privatization is that the data footprint of the copies and

the overhead of combining the copies scale with the amount of parallelism

being exploited. Therefore, privatization is an extremely powerful technique

for today’s CMPs, with a relatively small number of threads, but somewhat

limited for the levels of thread parallelism in highly multithreaded architec-

tures. Often the “private” results are still shared by several GPU threads

due to resource limitations, but are intended to be constructed with as lit-

tle inter-thread cooperation as possible. As shown in Table 2.2, the BFS

Parboil benchmark privatizes the output work queues, resulting in a 3×
performance improvement over an unprivatized implementation. Privatiza-

tion allows the BFS kernels to exchange more costly global memory atomic

operations for shared memory atomic operations, and also collects irregu-

lar updates in shared memory before bulk-committing results to the global

queue in a more regular pattern, improving bandwidth. For the histogram

benchmark, the privatization transformation was ineffective for the S1070

due to shared memory capacity limitations; we therefore report GTX 480

speedups in Table 2.2 for that benchmark.
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3: Scatter to Gather Transformation

INPUT INPUT

OUTPUT OUTPUT

Figure 2.3: Depiction of a scatter-to-gather transformation

2.1.3 Scatter to gather transformation

A few Parboil applications demonstrate a computation pattern where an in-

put datum would either contribute to many output elements, or contribute

to one or more statically unknown output elements, such as shown in Fig-

ure 2.3. In either case, a common pattern for sequential implementation is

to examine each input element, determine the output elements it affects, and

update each one before moving on to the next input element.

This method works poorly as parallelism scales, because the output ac-

cesses are either contentious or random or both. Examining the previous

techniques, we see that tiling is very effective on input data, and privatiza-

tion is very effective on output data. However, a kernel implemented with a

scattering approach has no input read sharing to tile, and no outputs with

multiple updates from the same thread to privatize. In these situations, it

is often very important to transform the code such that input elements are

read-shared, but output elements are private to a parallel task. This is more

palatable than the converse case because shared reads can be much more ef-

ficiently handled than conflicting writes, which typically require more costly

atomic operations and coherence enforcement. A conversion to gather ac-

cesses means that privatization can be applied to output writes, reducing

their cost, while techniques such as tiling can be applied to improve shared

read efficiency.

Scatter-to-Gather transformation works exceptionally well when the range

of inputs affecting an output can be found without direct examination of the

input data contents. If this input-to-output mapping cannot be done stat-

ically, sometimes the transformation must be supplemented with a binning
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Table 2.3: Scatter-to-Gather results

Benchmark Pattern performance impact (GTX 480)

Histo 1.22×5, 6 & 7. Binning, Regularization & 

Compaction

0 0 1

0 1 0 0 2 13 5 9 7Raw Data Keys

Overflow Data for

Alternate Processing

0 1 32 5 7 9

Compacted

Data
0 1 32 5 7 9

0 1 32 4 5 76Output

Binned

Data

Figure 2.4: An example showing the binning, regularization, and compaction
optimization patterns

operation. The Parboil Histogram benchmark gains about 20% performance

on a Fermi architecture by using a gather-based approach instead of a scat-

tering approach. Results are presented on the GTX 480 because the gather

approach for the Parboil Histogram benchmark is only effective for GPUs

with sufficient shared memory space to privatize a reasonable portion of

the output histogram. The S1070 system does not have sufficient scratch-

pad capacity for the scatter-to-gather transformation to improve histogram

benchmark performance, and is therefore inapplicable as an optimization for

that architecture.

2.1.4 Binning

A gather operation can be difficult to orchestrate without a method of deter-

mining, based on output location, which inputs contribute to that location.
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Table 2.4: Binning results

Benchmark Pattern performance impact

CutCP 12.0×

In the Parboil Histogram benchmark, for instance, a set of work-groups re-

dundantly reads a section of the input data from off-chip DRAM, but each

only processes the set falling within its own output range.1 In general, the

bandwidth cost of reexamining data scales with the amount of parallelism.

Therefore, for some applications it is beneficial to first create a data struc-

ture creating a map from output locations to a small subset of the input

data that may affect that output location, reducing the redundant reading

of data. This data structure creation is called “binning” because it often

reflects a sorting of input elements into bins representing a region of space

containing those input elements. In the example of Figure 2.4, the unsorted

data keys are examined and sorted into an array. If the input dataset were

very regular, the sorting by key alone would likely create an efficiently ac-

cessible data structure. However, in the presence of irregularity, there will

either be empty or overflowing bins for any fixed bin size, which should be

addressed by some combination of the following two optimization patterns:

regularization and compaction.

Binning can improve system performance in several ways. If the GPU is

performing both the binning and the computation, the overhead of binning

can be outweighed by the improved efficiency of the main compute kernels.

Alternatively, the binning operation could be offloaded to the CPU, poten-

tially making better use of all available system resources. Binning is appli-

cable in particular for the CutCP benchmark, as shown in Table 2.4. The

speedups from binning are often very high, because binning input data for

a kernel’s input changes the fundamental computational complexity of the

kernel algorithm. A scatter-based kernel may not need binning to get com-

parable computational complexity, but even for scattering kernels, binning

is important because it can facilitate privatization of tiles of output data.

1An example of a Scatter-to-Gather transformation without binning. Binning is not a
useful technique for the Histogram benchmark because the actual histogram contribution
is no more expensive in computation or bandwidth than the operation of sorting the data
into bins would be itself.
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Table 2.5: Regularization results

Benchmark Pattern performance impact

SpMV 2.4×
MRI-Gridding 2.62×

2.1.5 Regularization

Load imbalance has been one of the banes of parallel processing throughout

its history. Typically load imbalance is exacerbated when the level of par-

allelism being exploited increases. Architectures exploiting SIMD or SIMT

vector processing suffer from low-level imbalance if the tasks assigned to

different execution lanes process different amounts or kinds of work. GPU

architectures are no exception. Furthermore, if threads co-executing in a

thread block have imbalanced loads, the shared resources of the entire thread

block may be occupied until the last thread completes, potentially reducing

the real amount of thread-level parallelism available for the architecture to

exploit.

Some applications that exhibit load imbalance can predict at run-time

where and how the load imbalance will occur. In the example of Figure 2.4,

we assume that the program can count the number of data elements for

each key at much lower cost than actually calculating its contribution to its

particular output. A preprocessing step can limit the amount of imbalance

in work units executed on the GPU by identifying regions of load imbalance

and proactively addressing them. In our example, during the binning process,

elements that “overflow” a bin can be put in a separate data structure, which

can be processed by some method less sensitive to load imbalance.

Regularization is the optimization pattern of preconditioning GPU kernel

input to improve performance. Among the Parboil benchmarks, there are

examples of processing work separately using a GPU kernel insensitive to

imbalance, offloading irregular work for the CPU to process concurrently with

the accelerated kernel. Other cases have no visible impact on the kernel code

except that load imbalance and warp divergence are on average improved,

resulting in higher performance. Regularization increases the efficiency of the

primary accelerated kernels handling the majority of the processing, resulting

in higher system performance overall, with impact as listed in Table 2.5.
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Table 2.6: Compaction results

Benchmark Memory buffer size reduction

SpMV 49%
MRI-Gridding 68%

2.1.6 Compaction

Compaction has been a technique within extremely parallel, shared-memory

systems and programming models for quite some time as well. The funda-

mental issue is that when parallel work units produce a varying number of

output elements into statically allocated output buffers, the buffer size must

be overprovisioned. Because tasks determine output locations statically, un-

used holes or spaces in the output are the consequence of overprovision, such

as those bins marked by X’s in Figure 2.4. Output gaps interleaved with

useful data cause bandwidth efficiency to drop for DRAM and cache ar-

chitectures operating on transactions of larger, contiguous memory chunks.

Compaction is a method of coordinating parallel tasks to dynamically deter-

mine output locations such that no holes are introduced.

If compaction were a separate processing step, as depicted in Figure 2.4,

it would simply move all the useful data elements into contiguous addresses,

filling in the holes, while keeping track of where each output section begins, as

it will be data-dependent [5]. More often, and in the MRI-Gridding and BFS

Parboil benchmarks where GPU computation produces compacted output,

the compaction is integrated into the kernel producing output itself.

The benefits from compaction primarily stem from the reduced memory

footprint of the compacted data format. Performance impacts are typically

only meaningful for bandwidth-bound kernels, and even then only minimally

if the overprovisioned regions of the buffers are mostly contiguous. Thus,

we quote not performance results but memory capacity reduction effects in

Table 2.6. Compaction is essential for the MRI-Gridding benchmark in par-

ticular, for which we cannot even run uncompacted versions of reasonable

datasets on most GPUs due to insufficient global memory capacity.
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4. Data Layout Transformation
struct foo{

float a;

float b;

float c; 

int d;

} A[8];

struct foo{

float a[8];

float b[8];

float c[8]; 

int d[8];

} A;

struct foo{

float a[4];

float b[4];

float c[4]; 

int d[4];

} A[2];

Array of Structures

Array of Structures of Tiled Arrays (ASTA)  

Structure of Arrays

Figure 2.5: Data layout example for a collection of structures. Different
layouts affect the coalescing of each warp access and the locality of multiple
accesses.
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Table 2.7: Data layout results

Benchmark Pattern performance impact

LBM 11.0×
SpMV 1.21×

2.1.7 Data layout transformation

DRAM systems supporting both CPU and GPU architectures are designed

to transfer data in large, contiguous lines or rows. Poor usage of CPU cache

lines or GPU coalesced bursts will result in poor performance. However, GPU

coalescing rules are somewhat harsher, because of the shorter time window

over which the software could make use of a data burst from DRAM before

any unused data is “dropped,” requiring retransmission if needed at a future

time. In some GPU architectures, the window is instantaneous, only exposed

to a single SIMD instruction. More recent architectures introduce a small

degree of caching extending this window, but because of the high degree of

threading and the cache’s low capacity, the window in practice is still very

small. This is in contrast to CPU cache lines, which will typically sit in the

cache for a longer period of time before being replaced.

Programmers work within the DRAM system design with well chosen data

traversal orders or task index organization. If the elements in question are

single-word data and closely associated with task indexes, a good choice

of task index to element index mapping is typically sufficient to get good

memory system performance. However, that pleasant situation is not always

feasible. Sometimes, the data elements needed within a particular time win-

dow are not naturally adjacent to each other in the memory address space.

Take, for example, the diagram in Figure 2.5, which shows a warp access-

ing fields from a set of cells for various layouts. In the top case, using C

standard data structure layout, the warp access addresses with a large stride

between them, requiring multiple memory lines of mostly unused data to

fulfill the requests. The middle case of Figure 2.5 shows equivalent accesses

with a structure-of-arrays layout, a common transformation. However, even

the middle case results in a large distance between the addresses of two fields,

which are likely to happen very close together in time.

Depending on the memory system design, performance can be improved

22



further by more complex layout transformation [53], perhaps resulting in

a layout like that depicted at the bottom of Figure 2.5 where accesses to

multiple fields will request adjacent, contiguous regions of memory. Specific

examples of data layout transformation in the Parboil benchmarks include

several instances of array-of-structure to structure-of-array transformations,

a matrix transposition in SGEMM, and a transposed sparse matrix data

storage format in SpMV. We specifically isolate the data layout transforma-

tion effect for the LBM benchmark, with an order-of-magnitude speedup as

shown in Table 2.7. Overall, transformations for the purposes of achieving

coalescing often achieve very high performance gains, such as the LBM, while

layout transformations for improving memory level parallelism or avoiding

moderate partition camping can effect a more modest improvement. Sung et

al. report speedups ranging from 5% to 30% for already coalesced accesses

in different benchmarks [53].

2.1.8 Granularity coarsening

Granularity coarsening has been anecdotally described in many application

optimization papers, perhaps most rigorously by Volkov in regards to lin-

ear algebra kernels [54]. When a larger task is decomposed into a set of

fine-grained work-items, there is almost invariably some amount of over-

head introduced in the problem decomposition. The overhead may vary for

different algorithms and kernels, but almost every kernel will exhibit some

inefficiencies in recalculating values like address offsets or other seemingly

“small” operations in many threads. The finer the decomposition, typically

the larger the overhead incurred. In addition to innate implementation in-

efficiencies, most real systems incur some fixed costs creating or scheduling

parallel tasks, and communication operations tend to become more costly as

the number of communicating tasks grows.

The CUDA and OpenCL programming models lend themselves to an “ele-

mental” style of decomposition, where the source code of the kernel is scalar,

processing a single element, with as many threads created as there are el-

ements to process. With this extreme level of decomposition, the level of

redundancy and other inefficiencies can be surprisingly high, but difficult to

address within the elemental-function methodology as the cost of commu-

23



8. Granularity Coarsening

Essential

Redundant

4-way

parallel

2-way

parallel

Time

Figure 2.6: Granularity coarsening and resulting efficiency gains. Each
shaded box represents an executed instruction or operation.

Table 2.8: Granularity coarsening results

Benchmark Pattern performance impact

SGEMM 1.96×
CutCP 1.3×

nicating between different tasks is still higher than the cost of redundant

computation.

Granularity coarsening is essentially a de-parallelization of a program. In-

stead of executing code where each thread processes one element, each thread

processes several. Figure 2.6 shows a coarsening transformation by a factor

of six. By putting several threads together, redundant operations that were

previously executed once by each original thread have their redundant exe-

cutions reduced by a factor of the degree of coarsening. Furthermore, what

had been shared reads or conflicting writes to a variable in the untransformed

code become private uses of data. In the example of Figure 2.6, although

task parallelism was reduced by a factor of six, the total number of opera-

tions required to compute the full output was reduced by nearly two-thirds.

The efficiency gains make incremental coarsening worthwhile so long as the

amount of parallelism is still sufficient to occupy the parallel resources of the

device. Examples of specific efficiency gains are shown in Table 2.8.
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1 __kernel void MatMul( __global float *A,

2 __global float *B, __global float *C) {

3 float result;

4 __local float A_tile[TILE_WIDTH];

5 __global float *A_line = A + get_group_id(1)*A_WIDTH;

6

7 result = 0.0f;

8 for (int i = 0; i < A_WIDTH; i+= TILE_WIDTH) {

9 A_tile[get_local_id(0)] = A_line[i + get_local_id(0)];

10

11 barrier(CLK_LOCAL_MEM_FENCE);

12

13 for (int ii = 0; ii < TILE_WIDTH; ii++)

14 result += A_tile[ii] *

15 B[(i+ii)*B_WIDTH + get_global_id(0)];

16

17 barrier(CLK_LOCAL_MEM_FENCE);

18 }

19 C[C_WIDTH * get_group_id(1) + get_global_id(0)] = result;

20 }

Figure 2.7: A simple, portable matrix multiplication kernel in OpenCL

2.2 Practical Details of Implementing

High-Performance Accelerator Code

The previous sections primarily highlight high-level optimizations necessary

for optimizing parallel code in general. In practice, there are some specific

details about precisely how the high-level optimizations are expressed in a

particular language such as CUDA or OpenCL. Clearly, if different vendors

have seriously divergent expectations of how programmers should use the

language, it is impossible for programmers to write portable code. OpenCL

programmers have already adopted certain practices to get performance on

a variety of GPU and CPU platforms. This section outlines those practices

and explains how they match the major architecture principles of GPUs and

CPUs today. Figure 2.7 shows a listing of an OpenCL kernel for multiplying

two matrices in single precision, which we will use as an ongoing example in

this paper. If these practices could be performance-portable in theory, then

achieving the goal of a portable language will require that both GPU and

CPU implementations of OpenCL deliver high performance for codes written

with these programming practices.
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2.2.1 Parallelism: Threads and SIMD

The OpenCL programming model includes a two-level decomposition of work.

Although the decomposition is just a two-level hierarchy of parallel tasks, the

two levels have very distinct performance implications. All of the work-items

in a work-group are guaranteed to be scheduled together, allowing them to

coordinate more closely. Work-groups cannot make any assumptions about

scheduling or co-scheduling of other work groups, which means both that

atomic operations must be used to guard critical sections, and that dataflow-

based programming patterns that rely on multi-group barriers are disallowed.

The groups of co-scheduled tasks are a clear source of thread-level paral-

lelism, and are exploited in that way by nearly all implementations. Less

obviously, perhaps, the work-items within a group are exploited as a source

of vector-level parallelism on all GPU implementations known to the authors.

The reasoning is that OpenCL’s single-program multiple-data programming

model will often naturally lead programmers to write groups of work-items

with nearly-identical paths through the program in many situations. Even if

it were not fully natural, the GPU implementations made this programming

pattern fastest on their architectures from the beginning, and every GPU

programming guide discourages “divergence,” or writing programs such that

different work-items within a work-group take different paths through the

program, making SIMD less effective.

To be performance-portable, the amount of parallelism in and among work-

groups needs to be flexible. Work-groups must be at least as wide as the na-

tive SIMD width of the machine, but never larger than the machine’s capacity

to schedule locally and simultaneously. The number of work-groups should

be several times larger than the number of processors on the device to enable

load-balancing. Given the variety of architectures, it is unclear whether these

constraints can be met for all platforms with a fixed-size work-group. At min-

imum, performance-portable programs have to query the device parameters

at runtime and choose group sizes appropriately, or allow the platform itself

to choose a group size suitable for itself.

Our example kernel program computes a single output element with each

work-item, so the number of work-items for a reasonably large matrix would

be substantial. In line 19, get group id(1), the second element of the group

index tuple, is used as the output row index, indicating that each work-
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group should process some contiguous section of a particular output row.

Therefore, every work-item in a work-group will need to access the same row

of data from the A matrix. Also, there are no divergent branches in the

kernel. Every condition is independent of the work-item index, so the entire

path taken through the program execution is uniform across all work-items.

Therefore, SIMD groups of work-items will be fully exercised, without the

need to predicate any SIMD lanes at any time.

One interesting point about the OpenCL programming model is that by

using groups of work-items as the basis for SIMD execution, the OpenCL

implementations are providing the user a way to exploit SIMD without re-

quiring them to program to a specific SIMD width. This is critical for porta-

bility, because different CPU and GPU architectures have widely varying

SIMD widths. Work-groups that are significantly larger than an architec-

ture’s SIMD width enable additional thread- or instruction-level parallelism,

as the group can be divided into multiple SIMD-width units. Subsequent

proposed languages captured this insight particularly well also, such as the

ISPC programming model that advocates SPMD programming as an easy

and effective way of writing SIMD code for x86 CPUs [41].

2.2.2 Spatial and temporal memory locality

A large part of writing high-performance code is managing data locality well.

In a recent survey article of seven broad GPU programming optimization

techniques, only one was not directly related to memory locality manage-

ment [50]. The OpenCL programming model makes explicit certain archi-

tectural realities that other languages try to keep abstracted away. Large,

coherent memories are inherently more expensive to access than small, local

data resources. As is typical, we will divide our discussion of locality into

two major classes: spatial locality and temporal locality.

Spatial locality originally came from the observation that in sequential,

stack-based programs, if a particular address was accessed, other addresses

nearby were likely to be accessed soon in the future. Today, spatial locality

is almost a performance requirement, because we build our entire memory

systems out of large-line data transactions, such as cache lines and DRAM

bursts. Furthermore, building hardware data structures with many ports for
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independent simultaneous access is very expensive. In particular, this means

that even if a wide SIMD unit has gather and scatter capabilities, spatial

locality among the addresses accessed will significantly reduce the number

of unique memory lines touched by the access, which means a much reduced

overall throughput demand on the memory system. In fact, OpenCL pro-

grammers are specifically encouraged to assign work-items to data elements

such that memory accesses are “coalesced” [36, 35, 1, 19]. Formally, an access

is considered coalesced if it can be decomposed into the form:

uniform base address + (get local id(0) % SIMD WIDTH).

A coalesced access causes all of the work-items in a particular SIMD execu-

tion bundle to access a set of contiguous elements in memory for the given

instruction or expression. To be tolerant to varying SIMD widths across ar-

chitectures, many programs assign the entire work-group to a contiguous set

of elements, such that any contiguous subdivision of the group will have a

coalesced vector access.

Temporal locality is somewhat more complex to manage portably. Given

that inter-group scheduling is out of the programmer’s control, her focus is on

temporal locality within each group. Furthermore, it is primarily temporal

locality in accesses from multiple work-items that needs explicit management;

task-private temporal locality is usually handled through simple register pro-

motion. There are two possible approaches to achieving temporal locality in

OpenCL: explicitly managed local memory buffers or assuming an implicitly

managed cache. Older GPUs prevalent during OpenCL’s drafting had very

limited caching support, forcing programmers to manage temporal locality

through explicitly-managed scratchpads. More recent GPUs from NVIDIA,

AMD, and Intel all include memory caches all the way down to the L1 level,

which simplifies but does not eliminate the need to specifically consider how

temporal locality is managed. Even if a cache is present, it can be exploited

one of two ways on a GPU: explicitly controlling the execution order with

work-group barriers, or relying on implicit, round-robin scheduling patterns

on GPUs to keep all work-items in a work-group roughly in phase with each

other. Either of these mechanisms will ensure that memory locations ac-

cessed repeatedly by different work-items in the group will likely still be in

cache.

In the given example, every access to global memory is perfectly coalesced
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across the entire work-group, because the index expressions on lines 9, 15,

and 19 are all of the form uniform base + get local id(0). Therefore,

this kernel achieves a high percentage of peak global memory bandwidth

consumption, even though more advanced tiling algorithms could reduce the

total number of global memory accesses significantly. The shown kernel also

uses the OpenCL local memory as a software-managed cache. Work-items

collectively copy a tile of data from global to local memory on line 9, and

then iterate through all of the elements in the tile in lines 13-15. Barriers are

necessary to separate each dynamic computation section from the preceding

and succeeding local memory update regions.

Note that controlling locality on GPUs always relies on being able to switch

between actively executing work-items frequently and with low overhead.

Round-robin instruction scheduling is another way of saying that the hard-

ware makes frequent implicit moves between actively executing work-items

to balance their progress. Frequent barriers are effectively programmer com-

mands to suspend currently executing work-items at the barrier so that other

work-items can catch up. Therefore, we can say that a fundamental require-

ment of an OpenCL implementation that supports performance portability

for current developer practices is a low-overhead mechanism for switching

execution between work-items.

2.2.3 Summary

Table 2.9 shows a compact representation of which optimization patterns

were relevant for each benchmark. Note that the table does not convey the

relative importance of each optimization pattern to each benchmark. In

my experience and that of my colleagues, a given benchmark’s performance

improvement due to optimization is typically dominated by one or two opti-

mizations, with others making smaller contributions. Also, note that certain

optimization patterns are widely applicable, such as granularity coarsening,

while others are only applicable to applications with certain characteristics,

such as binning. Finally, we would like to point out that some of the op-

timization patterns are clustered. Regularization and compaction, for in-

stance, are typically combined rather than applied separately, because both

are applicable for similar workload characteristics.
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We are not necessarily convinced that these optimization patterns are

a comprehensive list, and would not be surprised to see other application

domains introduce optimization patterns not represented in these studied

benchmarks. However, given the generality of the patterns that we have

seen so far, we do suggest that at least some of these optimization patterns

will be applicable to almost any GPU application workload.

This section has described optimizations for resource utilization in binary

terms: meeting or not meeting certain criteria for “well-behaved” code. Fol-

lowing the optimization guidelines in this section will generally result in high

hardware utilization efficiency, i.e. reaching an achieved bandwidth or execu-

tion efficiency close to the architecture’s peak. Unfortunately, the guidelines

alone cannot predict whether bandwidth or execution throughput will be

the ultimate limiting performance factor for a given architecture. Yet “well-

behaved” code does not guarantee high performance. To ensure high per-

formance, code must apply the optimizations from Section 2.1 for increasing

parallelism, decreasing output contention, and increasing locality as much as

possible. For instance, the example kernel program of Figure 2.7 is not as

well tiled as it could be, and only captures locality among a group of outputs

in the same output row. Better tiling techniques would further increase the

amount of captured locality and improve performance [54].

Finally, many of the optimization patterns could be applied to any par-

allel system, and are still relevant for today’s multicore CPUs after decades

of research and experience with high-performance parallel systems. While

innovation may still surprise us, it appears likely that manual program op-

timization according to the patterns presented in this section will continue

to be relevant for parallel architectures in general, and GPUs specifically,

for years to come. Current software developers for high-performance appli-

cations would do well to brush up on these optimization patterns, and to

continue to publish optimization insights either applying these general pat-

terns to specific contexts, or possibly describing new optimization patterns.

And low-level languages intending to support portable, high-performance

code development needs to support the expression of these optimizations in

ways that can be portably implemented across architectures.
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CHAPTER 3

PERFORMANCE IMPACT OF
ARCHITECTURES

Having explored the workload and optimization characteristics demonstrated

by the Parboil benchmarks, we can now discuss in more detail the impact of

different GPU architecture features on workload performance. Such a study

could be approached in multiple ways, with each method leading to particu-

lar insights. To address how these trends may affect performance portability,

we would like to focus on three primary methods of inquiry. In the first, we

assume that GPU workloads are in a state of perpetual hardware-software

co-design and optimization. Our experimental results under this methodol-

ogy will show how optimized software targets new features in each successive

hardware generation, and how architecture changes amplify the benefit of

particular optimization patterns. Secondly, we examine the other end of the

optimization spectrum, to see how a simple, unoptimized implementation

of each of the Parboil benchmarks improves with successive hardware gen-

erations. These results will tell us how well implicit or compiler-targeted

hardware features are finding ways to improve performance without explicit

software support. Finally, we would like to compare the performance gains

of code optimization for each architecture generation, to understand how

different architectures change or preserve the optimization process. Unfor-

tunately, the Parboil data sets for the MRI-Gridding benchmarks were large

enough that the GPU global memory capacity of both the 9800 GX2 and the

S1070 were insufficient to collect baseline results. This both highlights the

necessity of the compaction optimization for this benchmark, and prevents

us from analyzing its performance any further.

Much of this chapter has been adapted from portions of a previously published work,
c©2012 IEEE, reprinted with permission [48]. The original paper was written in collabora-

tion with the many others who contributed to the development and analysis of the Parboil
benchmarks.
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Figure 3.1: Performance of code optimized for each successive GPU genera-
tion, plotted against raw throughput and bandwidth scaling for comparison
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3.1 Hardware-Software Co-Design Results

We optimized each of the benchmarks for each of the GPU architectures stud-

ied, and recorded the speedups achieved by successive architecture genera-

tions in Figure 3.1. Because the implementations for the earlier generations

were already optimized around most of the performance cliffs of those archi-

tectures, the advances made by successive generations are typically near the

increase in raw bandwidth or instruction throughput. Architecture feature

improvements with a moderate impact on optimized workload performance

include increased register file capacity, which boosted the performance of

applications such as SGEMM and SAD in particular because of the exten-

sive register tiling of those benchmarks. The performance improvement for

register tiled benchmarks came less from the opportunity of additional reg-

ister tiling, which reaches asymptotically low incremental benefits and had

little impact in practice, but more from the architecture’s ability to increase

occupancy for the same degree of register tiling.

The single feature with the most performance impact overall was the global

memory cache added in the GTX 480 generation. Even for optimized codes,

scratchpad usage can introduce meaningful inefficiencies into the software.

That overhead is typically overcome by the performance improvement due

to captured locality otherwise unattainable in the absence of a cache, but

does put scratchpad at a disadvantage to implicit caches for certain work-

loads. Furthermore, the GTX 480’s cache captures what private scratchpads

never can: shared locality among different thread blocks and access patterns

with irregular locality. The spmv benchmark performance increases for the

GTX 480 primarily from the caching of irregular accesses to the dense vec-

tor. The stencil benchmark benefits from caching because any memory tiling

approach in that benchmark must address the fact that the size of input tile

needed to compute an output tile does not match the output tile size. Thread

block sizes must be chosen to fit either the input or output tile size, resulting

in inefficiencies from idle threads or increased software complexity for explic-

itly copying input tiles, respectively. In addition the tile borders overlap with

the working sets of other thread blocks, exposing locality that cannot be cap-

tured with private scratchpad memory. The version of the stencil benchmark

optimized for the GTX 480 actually avoids memory tiling, improving the ef-

ficiency of the instruction stream by relying on the cache and thread block
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scheduling policy to capture locality. The cache also significantly improves

the BFS benchmark’s performance by caching the end of the output queue

while threads in a block incrementally add to its tail.

Surprisingly, atomic operations to shared memory had less performance

impact than we expected. On further analysis, we found that privatization

optimizations had reduced contention on shared memory locations requiring

atomic updates to the point that the overhead of our software atomic up-

dates, which scales with contention, was not so high as to make hardware

assisted atomics indispensable. While our iterative atomic update methods

were limited to certain situations, the versions optimized for the 9800 GX2

targeted those situations specifically, resulting in sufficient atomic update

performance.

Finally, we note that the BFS benchmark in particular does not scale very

well with regards to the number of SMs in the system. The BFS kernel that

fills the GPU and performs device-wide barrier synchronizations in certain

kernels does not perform as well on the S0170 as on the narrower 9800 GX2

and GTX 480 devices. As it is likely that machine widths will be increasing

on average in the future, it seems reasonable to expect that using atomic

operations for chip-wide synchronizations will become increasingly inefficient,

and should perhaps be avoided if possible.

3.2 Baseline Performance Improvements

Figure 3.2 shows the performance improvement of a single, optimization-

agnostic implementation across the different GPU generations, again plot-

ted against the raw throughput and bandwidth improvements of the devices

themselves. The definition of “unoptimized” is somewhat slippery, because

it is always possible to write less efficient code by doing some kind of useless

computation. Our philosophy while writing these baseline versions was to

write the simplest functional code that seemed reasonable to us. We can-

not claim that the baseline versions of all the benchmarks are equivalently

unoptimized, but believe we can still learn some useful insights by paying

attention to what “inefficiencies” are automatically mitigated or eliminated

by particular architectures.

Generally, we can see that the performance trends are definitely positive,
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Figure 3.2: Performance of unoptimized code across GPU generations, plot-
ted against raw throughput and bandwidth scaling for comparison
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and significantly higher in magnitude than the improvement of optimized

code versions. In several instances, one architecture generation brings order-

of-magnitude speedups over the previous generation, mostly for benchmarks

with artificially poor memory bandwidth performance for uniform or mis-

aligned accesses on the 9800 GX2 surging in performance when those limi-

tations were removed in the S1070. The Fermi generation improved global

memory broadcast accesses further by automatically promoting them to use

the constant memory cache. Broadcast accesses are those where each thread

in a warp loads from exactly the same address in a particular instruction.

The GPU’s constant cache supports this access pattern with very high per-

formance. The constant cache design of the GTX 480 architecture enables

the CUDA compiler to automatically transform accesses to use it under cer-

tain conditions, which reduces pressure on the general global memory cache

and results in significant speedups for unoptimized mri-q, tpacf, and sgemm

implementations.

Despite the raw bandwidth improvements of the S1070 over the 9800 GX2,

the strided access pattern of the unoptimized lbm benchmark saw practically

no performance improvement. It was not until the cache of the GTX 480

that its performance meaningfully improved. The GTX 480 cache also had

significant impact on the performance of codes with had shared locality in

the accesses among thread blocks that was not exploited by explicit memory

tiling, in particular the stencil benchmark.

3.3 Optimization and Architecture Interactions

Finally, we examine the performance improvements of optimization for each

benchmark and GPU generation, with results presented in Figure 3.3. The

overall trend is significantly downward, implying that optimizations in gen-

eral are becoming less critical over time. Conversely, we can say that many of

the performance cliffs avoided by optimization are becoming less steep with

successive architecture generations. However, there are some exceptions. The

binning optimization pattern, exemplified by the cutcp benchmark in partic-

ular, results in consistently high speedups due to the change in fundamental

algorithmic complexity, as should be expected. Also, while architectures are

becoming slightly less sensitive to imperfect access patterns, good data lay-
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Figure 3.3: Speedup of optimizations for each GPU generation
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out remains extremely important, as exemplified by the lbm benchmark’s 5×
performance improvement from layout transformation, even on the Fermi ar-

chitecture. For the sgemm benchmark, register tiling results in consistently

high speedups. For such “simple” codes, the primary bottleneck is instruction

stream efficiency: how many instructions compute necessary floating-point

operations relative to how many instructions calculate addresses or move

memory around. Even when artificial bandwidth inefficiencies are addressed

by the Fermi architecture, a significant speedup can be expected from good

register tiling.

3.4 Summary and Conclusions

Hundreds of articles have been published on optimizing applications for

GPUs, and for good reason. Especially when the general computing lan-

guages and workloads were new to GPU architectures, it was not enough for

the application to simply have good locality, but the locality needed to be in

very specific forms for the system to recognize and support. But some of the

“worst” days of GPU computing are now behind us. Although legacy GPUs

will still linger in the marketplace for several years, NVIDIA and other ven-

dors seem to be getting on track with the design philosophy that the system

cannot put too many constraints on software before good performance can

be reached.

In summary, experiments show that most core optimization patterns con-

tinue to be relevant, but that architecture-specific constraints on how those

optimizations are expressed are reduced. It would be difficult to make

the case for performance portability for the earliest GPU generations sup-

porting general computing because of all the ancillary constraints on high-

performance source code not directly related to locality or divergence in the

abstract. However, as new architectures become more flexible in terms of

their support for slight deviations from the architecture’s ideal expression of

locality or regularity, there is more room in the intersection of various archi-

tectures’ constraints, widening the opportunity for performance portability

of code that can fit within that intersection.
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CHAPTER 4

MEMORY SPACE MAPPING AND
COMPILER DETAILS

This chapter describes some implementation details common to the topics

discussed in the remainder of this document. An implementation of an ac-

celerator kernel-programming language on a non-GPU platform generally

includes three primary components: the source-to-source compiler from the

kernel programming model to multithreaded C code of some kind, a back-

end compiler for generated object code, and a runtime library for invoking

such kernels. Chapters 5 and 6 will discuss different methods for translating

computation and thread-private variables from a general perspective. The

methodology of both sections must be supplemented with some additional

handling of the unique SPMD kernel programming memory model, described

here.

Parts of the work in this dissertation have been implemented for both

CUDA and OpenCL. The CUDA implementation was released as the MCUDA

framework, where the source-to-source compiler was developed within the

Cetus source-to-source compilation framework [29], with slight modifications

to the IR and preprocessor to accept ANSI C with the language extensions

of CUDA version. Our OpenCL-to-C compiler was implemented as an au-

tomatic source-to-source translator in the Clang frontend [10] of the LLVM

compiler infrastructure [28], and is being released as the Multicore cross-

Platform Architecture (MxPA).

This chapter has been adapted from portions of previously published work, c©Springer,
used with permission [51]. The original workshop paper was written in collaboration with
S. Stone and W. Hwu.

40



4.1 Implementing the Memory Spaces

4.1.1 Globally shared memories

Given that the C language does not have a memory model supporting read-

only memory spaces allowing multiple initializations, all of the globally shared

device memory spaces will be treated similarly: global, constant, and texture

objects. Global and constant variables are already required to be either stat-

ically allocated at file scope or potentially dynamically allocated in host code

(global memory only). In the C memory model, both of these situations are

congruous with the implementation of the execution model, and need not be

further modified.

It is useful to note that although CUDA and OpenCL define separate

memory spaces targeting scratchpads, global DRAM, and private registers

of GPU architectures, all data reside in the same shared memory system

in C. A typical CPU system provides a single, cached memory space that

implements the features of all of the CUDA/OpenCL memory spaces, at

least to a reasonable degree.

4.1.2 Block-shared memory

Objects in the shared memory space of CUDA (OpenCL local memory) are

defined as private to each thread block. Because such objects are shared

from the perspective of the serialized threads, they are treated as shared

objects by the compiler serializing the thread blocks, and are not targeted

for any kind of scalar expansion. C scope semantics specify that objects

declared within the kernel function are created on the program stack when

the function is called. This is exactly the effect desired: an instance created

when the thread block begins computation on function invocation, not visible

to any other thread blocks, and freed as soon as the thread block completes

the function. Thus the shared memory variables need only their language-

specific specifier removed.

CUDA allows a special case for statically unsized shared memory arrays.

The size of these arrays is determined in an additional parameter to the

kernel invocation, and could be any size supported by GPU hardware. To

handle this case, the compiler must remove the static declaration of the
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array, and instead replace it with a dynamically allocated memory object.

OpenCL does not have language mechanisms for declaring local memory of

undefined size, and instead allows the user through API functions to request

a dynamic amount of local memory, passing a pointer to that allocated space

as a parameter to the kernel.

In addition, it is possible, though rare, for programmers to specify shared

memory objects at file scope. This may be done to allow multiple device

functions to access the same array without having to worry about CUDA’s

restrictions on passing pointers to shared memory. If the programmer uses

this feature, the compiler ought to address it specially, as C semantics would

allocate only a single object at file scope. Without privatization, this effec-

tively requires the execution of thread blocks to be serialized. The solution

to this issue could potentially dovetail nicely with the method of addressing

statically unsized arrays, by removing the static declaration and introducing

a pointer parameter to a privatized object.

Neither of these special cases is currently handled, as their use is rare, but

the compiler could be extended to address them both. The key attribute

required is that, similarly to the statically sized arrays within a kernel func-

tion, the program semantics allow each actively executing block access to a

private scratchpad space. Under C semantics, dynamic sizing must either

be implemented as heap-allocated memory, or allocated memory of some

fixed maximum size, which the program is free to use as much as required

up to that maximum. Performance tuning experiments have already shown

that better performance can be obtained on some architectures if the offi-

cial CUDA capacity limits are surpassed. This would undoubtedly be true

again if another arbitrary limit were enforced on our system, even though

the OpenCL API forces us to report such a limit.

4.2 Work Distribution and Runtime Framework

The compilation stages for the device code generate kernel functions that

can be invoked with a single blockIdx value to complete the computation for

that thread block. Somewhere between the host code kernel invocation and

the block-level function, there needs to be a system that will take the specifi-

cation for the kernel launch, enumerate the work units defined by the thread
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Device threadsHost thread
Int main( ){  …  my_kernel<<<>>>();  …  my_kernel2<<<>>>();  …}

Kernel Barrier
Kernel Barrier

Thread_pool_exec_blocks{  while( ! Kernel_complete)  {     atomic_get_next_block();    run_block(params,blockIdx,gridDim,blockDim);  }}
Figure 4.1: Parallel kernel runtime framework using dynamic block assign-
ment

blocks, and prepare and assign those work units to threads. For a CPU that

gains no benefits from multithreading, an efficient way of executing the ker-

nel computation is to simply introduce an intermediary function between the

host code and the device code that includes a nested loop over block indexes.

However, CPU architectures that do gain performance benefits from mul-

tithreading will likely not achieve full efficiency with this method. Because

these blocks can execute independently according to the programming model,

the set of block indexes may be partitioned arbitrarily among concurrently

executing threads, and can at least partially execute asynchronously with

host code, if the host is also encapsulated in another thread. This allows the

kernels to exploit the full parallelism expressed in the programming model.

For both the CUDA and OpenCL implementations, we implement a run-

time library for the symbols of the host API of the language. The currently

available MCUDA distribution includes parallel kernel runtime implementa-

tions using OpenMP or Pthreads. MxPA currently only supports OpenMP,

but work is underway to support other threading models as well. Figure 4.1

illustrates the runtime framework described in the remainder of this section

as implemented in Pthreads as an example implementation.

For CUDA, the kernel launch is designated by an annotated function call

directly to the symbol for the kernel name. In MCUDA, the kernel launch
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statement is translated into a function call to the runtime kernel launch

routine. The function call specifies a reference to the kernel function to

be invoked, the kernel configuration parameters, and the parameters to the

kernel function itself. In the runtime library kernel launch routine, the host

thread stores the kernel launch information into global variables and enters

a barrier synchronization point. A statically created pool of worker threads,

representing the device in the CUDA model, also enters the barrier. On

exiting, each worker thread reads the kernel launch data and begins executing

blocks. The host thread then enters a second barrier to wait for kernel

completion before returning to the host code.

The Pthreads runtime in MCUDA includes support for static and dynamic

methods of assigning computation to CPU threads. The static method dis-

tributes a contiguous set of blocks to each worker thread. Any thread is

assigned at most one additional block compared to any other thread. Each

thread then executes independently until completing its set. Under the dy-

namic method, each worker thread iteratively acquires and executes blocks

until all blocks in the kernel have been issued. Each thread, when requesting

a block to execute, atomically loads the current block index, represented by

a global variable. If it is within the range specified by the kernel launch

configuration parameters, it executes that block and increments the current

block index to mark that the block is being processed. Otherwise, all blocks

in the kernel have been claimed by some worker thread.

In both methods, when each worker thread completes processing, it enters

the barrier at which the host thread is waiting. When all worker threads

reach the barrier, the kernel execution has completed, and the host thread is

allowed to leave the barrier and return to the host code.

In OpenCL, kernels are not invoked directly, but are encapsulated in ob-

jects which can be created with clCreateKernel with the kernel’s func-

tion name passed as a string. That object is called through the OpenCL

clEnqueueNDRangeKernel API function with the kernel name passed as a

string. In that scenario, the OpenCL kernel program, instead of being com-

piled and linked directly with the host code, is compiled into a shared library

object. When the kernel is created, its name is used in a dynamic symbol

lookup to get the correct function handle, which is then invoked behind the

clEnqueueNDRangeKenel interface.

A large body of work explores scheduling policies of parallel work units
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in OpenMP and other frameworks [3, 30, 16, 7]. These results are just as

applicable here as they are in any other similar system, and could potentially

increase the performance by better managing load balance or synchroniza-

tion costs from dynamic partitioning. Although the specific implementation

described here uses the Pthreads approach, OpenMP compilers targeting

Pthreads would have many similar components: a single thread executing the

serial host code, and a group of threads sharing the work of the parallel device

code with a CUDA thread block as the smallest work unit assigned. Initial

experiments have suggested that for the applications tested, the overhead of

parallel execution was negligible compared to the total program execution

time.
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CHAPTER 5

SERIALIZING SPMD PROGRAMS

The cornerstone of the implementation of CUDA for a CPU is reducing the

number of hardware thread contexts required. At minimum, all threads

within a single thread block must be simultaneously active, with all their

state. Currently, there are roughly two orders of magnitude difference be-

tween the typical number of logical threads within a thread block and the

typical number of hardware thread contexts available in a CPU. Implement-

ing a static SPMD model on a hardware substrate with significantly fewer

thread contexts than the SPMD application requests leads to many perfor-

mance issues arising from scheduling and context switching. This chapter de-

scribes a structured, sequential implementation of a constrained static SPMD

programming model that can be mapped to a single CPU thread context.

The constraints are solely on the use of barrier synchronizations: namely that

they fit the static-instance, textually aligned barrier model used in languages

like CUDA and Titanium.

There are several challenges in effectively serializing an SPMD program

with synchronization. First, without modifying the operating system or ar-

chitecture, the compiler or runtime library must somehow manage the execu-

tion of logical threads explicitly. Second, the SIMD-like nature of the logical

threads in many CUDA applications should be clearly exposed to the code

generator. However, this goal is in conflict with supporting arbitrary control

flow among logical threads. Finally, in a typical load-store architecture, pri-

vate storage space for every thread requires extra instructions to move data

in and out of the register file. Reducing this overhead requires identifying

storage that can be safely reused for each thread.

The translation component of MCUDA that addresses these goals is com-

This chapter has been adapted from portions of a previously published work, c©2009
Springer, used with permission [51]. The original workshop paper was written in collabo-
ration with Sam S. Stone and Wen-mei W. Hwu.
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posed of three transformation stages: iterative wrapping, synchronization

enforcement, and data buffering. For purposes of clarity, we consider only

the case of a single kernel function with no function calls to other procedures,

possibly through exhaustive inlining. This is always legal for the CUDA pro-

gramming model, which does not allow recursion. It is possible to extend

the framework to handle function calls with an interprocedural analysis, but

this is left for future work. In addition, without loss of generality, assume

that the code does not contain goto or switch statements, possibly through

prior transformation [2]. All transformations presented are performed on the

program’s AST. To avoid confusion, keep in mind through this discussion

that the final MCUDA implementation applies these transformations only to

logical threads within a thread block, as explained in the following chapter.

5.1 Simple Serialization

The first step in the transformation simply serializes all the threads within

the SPMD function. This changes the nature of the function from an SPMD

specification to a sequential specification, temporarily ignoring any poten-

tial synchronization between logical threads. Figure 5.1 shows an example

kernel function before and after this transformation. The loops enumerate

the values of the previously implicit threadIdx variable and perform a logical

thread’s execution of the enclosed statements on each iteration. For the re-

mainder of this document, we will refer to this introduced iterative structure

as a thread loop. Local variables are reused on each iteration because only a

single logical thread is active at any time. Shared variables still exist and per-

sist across loop iterations, visible to all logical threads. The other implicit

variables must be provided to the function at runtime, and are therefore

added to the parameter list of the function.

By introducing a thread loop around a set of statements, we are making

several explicit assumptions about that set of statements. The first is that the

program allows each logical thread to execute those statements without any

barrier synchronization between threads. Mutual exclusion synchronization,

such as a lock or atomic operation, is provided implicitly by the serializa-

tion. The second is that there can be no side entries into or side exits out of

the thread loop body. If the programmer has not specified any synchroniza-
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1 void cenergy(numatoms, gridspacing, energygrid[] )

2 {

3 int x = get_global_index(0);

4 int y = get_global_index(1);

5 int outIdx = get_global_size(0)*y + x;

6

7 float energy = 0.0f;

8 int atomid = 0;

9 while (atomid < numatoms) {

10 ...

11 }

12 energygrid[outIdx] = energy;

13 }

(a) OpenCL kernel

1 void cenergy(numatoms, gridspacing, energygrid[],

2 local_size, group_id, num_groups, work_dim)

3 {

4 // Thread Loop

5 for (int __y__ = 0; __y__ < local_size[0]; __y__++)

6 for (int __x__ = 0; __x__ < local_size[1]; __x__++)

7 {

8 int x = group_id[0]*local_size[0] + __x__;

9 int y = group_id[1]*local_size[1] + __y__;

10 int outIdx = num_groups[0]*local_size[0]*y + x;

11

12 float energy = 0.0f;

13 int atomid = 0;

14 while (atomid < numatoms) {

15 ...

16 }

17 energygrid[outIdx] = energy;

18 }

19 // end Thread Loop;

20 }

(b) Serialized OpenCL Kernel

Figure 5.1: Introducing a thread loop to serialize logical threads in a kernel
computing Coulombic potential.
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thread_loop {

...

__syncthreads();

...

}

(a) Unenforced syncthreads

thread_loop {

...

}

//__syncthreads();

thread_loop{

...

}

(b) Syncthreads enforced with
loop fission

Figure 5.2: Simple synchronization enforcement with loop fission

tion point and the function contains no explicit return statement, no further

transformation is required, as a function cannot have side entry points, and

full inlining has removed all side-exits. In the more general case, where us-

ing a single thread loop is insufficient for maintaining program semantics,

we must partition the function into sets of statements that do satisfy these

properties.

5.2 Enforcing Synchronization

A thread loop implies a barrier synchronization among logical threads at its

boundaries. Each logical thread executes to the end of the thread loop, and

then “suspends” until every other logical thread (iteration) completes the

same set of statements. For a simple synchronization within a serialized ker-

nel function, we can enforce the synchronization by applying a loop fission

(or splitting) operation, as shown in Figure 5.2. In the context of a serialized

kernel function, a loop fission operation essentially partitions the statements

of a thread loop into two sets of statements with an implicit barrier synchro-

nization between them.

Although a loop fission operation applied to the thread loop enforces a

barrier synchronization at that point, a fission operation cannot be applied

when the barrier is within some other control structure. For example, con-

sider the case of Figure 5.3. Splitting the thread loop exactly at the point of

synchronization is not coherent with the bracket-nesting requirements of the

C language. Therefore, a refinement of the loop fission operation is required
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thread_loop {

...

if(condition) {

...

__syncthreads();

...

}

...

}

(a) Unenforced
syncthreads

thread_loop {

...

if(condition) {

...

}

// __syncthreads();

thread_loop {

...

}

...

}

(b) Syncthreads
incorrectly enforced

thread_loop {

...

}

if(condition) {

thread_loop{

...

}

// __syncthreads();

thread_loop {

...

}

}

thread_loop {

...

}

(c) Syncthreads cor-
rectly enforced by
multiple thread loops

Figure 5.3: A case where simple loop fission fails to correctly enforce synchro-
nization within control flow, and an example of how multiple thread loops
could correctly enforce it

to address the general case. Essentially, all control statements or structures

on which a barrier is control-dependent must be moved outside of thread

loops for correct program functioning.

5.2.1 Deep fission

In describing the algorithm for enforcing synchronization points, I first as-

sume that all control structures have no side effects in their evaluation or

header. This is because the side effects could potentially modify thread-

private variables, and thus must be enclosed in a thread loop. However, deep

fission could move these conditionals out of any thread loop, necessitating

some transformations prior to deep fission. In particular, for loops must

be transformed into while loops in the AST, moving the initialization and

update expressions to appropriate statements. In addition, all conditional

evaluations with side effects must be removed from the control structure’s

declaration and assigned to a temporary variable, which then replaces the

original condition in the control structure.

Then, for each synchronization statement S, we apply Algorithm 1 to
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Input: Function F in AST representation
Input: Deep Fission Target Statement S
Output: Function F with Thread Loops Fissed Around S
while Scope C containing S is not a thread loop do

Create new thread loop L;
Make all children of C preceding S children of L;
Add L as child of C preceding S;
Create new thread loop L2;
Make all children of C following S children of L2;
Add L2 as child of C following S;
if C is an if-else construct then

Create new thread loop L3;
Make children of C in the branch not containing S children of
L3;
Add L3 as child of C in place of the statements it now contains;

end
S = C;

end
apply loop fission to C around S;
Return F ;

Algorithm 1: Deep fission around a synchronization statement S
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Figure 5.4: Applying deep fission to enforce synchronization
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thread_loop{
  while() {

    ...
    if()
      break;
    ...

    syncthreads();

    ...

  }
}

while() {
  thread_loop{
    ...
    if()
      break;
    ...
  }
  \\syncthreads();
  thread_loop{
    ...
  }
}

while() {
  thread_loop{
    ...
  }
  if()
    break;
  thread_loop{
    ...
  }
  \\syncthreads();
  thread_loop{
    ...
  }
}

(a) Initial Code with 
Serialized Logical Threads

(b) Synchronized at 
Barrier Function

(c) Synchronized at 
Control Flow Point

Figure 5.5: Addressing unstructured control flow. The break statement is
treated as an additional synchronization statement for correctness.

the AST with S as the input parameter. Figure 5.4 shows the steps of the

algorithm as they are applied to a matrix multiplication kernel. Figure 5.4(b)

shows the preprocessing step of transforming the for loop into a while loop,

with initialization and update statements adjusted appropriately. The thread

loop cannot be split at the barrier currently, because the barrier is contained

within the while loop. Therefore, the internal statements of the while loop

are partitioned into two new thread loops straddling the original local of the

barrier. Finally, the while loop structure as a whole becomes the statement

around which the outermost thread loop must be split, accomplished with a

simple loop fission operation around the while loop.

After this algorithm has been applied with each of the programmer-specified

synchronization points as input, the code may still have some control flow for

which the algorithm has not properly accounted. Recall that thread loops

assume that there are no side entries or side exits within the thread loop

body. Control flow statements such as continue, break, or return may not

be handled correctly when the target of the control flow is not also within the

thread loop. Figure 5.5(b) shows a case where irregular control flow would

result in incorrect execution. In some iterations of the outer loop, all logical

threads may avoid the break and synchronize correctly. In another iteration,

all logical threads may take the break, avoiding synchronization. However,

in the second case, control flow would leave the first thread loop before all

logical threads had finished the first thread loop, inconsistent with the pro-

gram’s specification. This is because the structure of the code resulting from
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the deep fission operation changed the target of the break from the statement

immediately after the while to the statement immediately after the thread

loop. Again, because the synchronization point is control-dependent on the

execution of the break statement, the break statement itself must be reached

or not reached uniformly by all threads on each particular while-loop iter-

ation. In essence, these are the same restrictions of a barrier, allowing the

compiler to essentially treat the break itself as another “synchronization”

point.

Essentially, this is just a further extension of the previously stated principle

that all control statements on which a true barrier is control-dependent must

be moved outside of thread loops. Therefore, the compiler must pass through

the AST at least once more to identify these violating control flow statements.

Upon the identification of a control flow statement S whose target is outside

its containing thread loop, Algorithm 1 is once again applied, treating S as

a synchronization statement, which will move statement S outside of any

thread loop. For the example of Figure 5.5, this results in the code shown

in Figure 5.5(c). Because these transformations more finely divide thread

loops, they could reveal additional control flow structures that violate the

thread loop properties. Therefore, this irregular control flow identification

and synchronization step is applied iteratively until no additional violating

control flow is identified.

The key insight is to not support arbitrary control flow among logical

threads, but leverage the restrictions in the language to define a sequen-

tial ordering of the instructions of multiple threads that satisfies the partial

ordering enforced by the synchronization points. This “over-synchronizing”

allows a complete implementation of “threaded” control flow using only itera-

tive constructs within the code itself. The explicit synchronization primitives

may now be removed from the code, as they are guaranteed to be bounded

by thread loops on either side, and contain no other computation. Because

only barrier synchronization primitives are provided in the CUDA program-

ming model, no further control-flow transformations to the kernel function

are needed to ensure proper ordering of logical threads. Figure 5.6(a) shows

the matrix multiplication kernel after this hierarchical synchronization pro-

cedure has been applied.
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1 __kernel void

2 small_mm_list(float* A_list,

3 float* B_list, const int size)

4 {

5 float sum;

6 int mat_start, col, row, out_idx, i;

7 mat_start = group_id(0) * size * size;

8 col = mat_start + tid(0);

9 row = mat_start + (tid(1) * size);

10

11 sum = 0.0;

12

13 for(i = 0; i < size; i++)

14 sum += A_list[row + i] *

15 B_list[col + (i*size)];

16

17 // Barrier before overwriting input

18 __syncthreads();

19

20 out_idx = matrix_start + tid(0) +

21 (tid(1) * size);

22 A_list[out_idx] = sum;

23 }

(a) OpenCL kernel

1 __kernel void small_mm_list(float* A_list,

2 float* B_list, const int size)

3 {

4 float sum[];

5 int mat_start, col[], row[],

6 out_idx[], i[];

7 for( each tid ) {

8

9 mat_start = group_id(0) * size * size;

10 col[tid] = mat_start + tid(0);

11 row[tid] = mat_start + (tid(0) * size);

12

13 sum[tid] = 0.0;

14

15 for(i[tid] = 0; i[tid] < size; i[tid]++)

16 sum[tid] +=

17 A_list[row[tid] + i[tid]] *

18 B_list[col[tid] + (i[tid]*size)];

19 }

20

21 for( each tid ) {

22 out_idx[tid] = mat_start +

23 (tid(1) * size) + tid(0);

24 A_list[out_idx[tid]] = sum[tid];

25 }

26 }

(b) Universal Private
Variable Replication

1 __kernel void

2 small_mm_list(float* A_list,

3 float* B_list, const int size)

4 {

5 float sum[];

6 int matrix_start, col[], row[], out_index, i;

7

8 matrix_start = blockIdx.x * size * size;

9 for(tid.x = 0; tid.x < blockDim.x; tid.x++) {

10 col[tid] = matrix_start + tid.x;

11

12 for(tid.y = 0; tid.y < blockDim.y; tid.y++) {

13 row[tid] = matrix_start + (tid.y * size);

14 sum[tid] = 0.0;

15

16 for(i = 0; i < size; i++)

17 sum[tid] += A_list[row[tid] + i] *

18 B_list[col[tid] + (i*size)];

19 }

20 }

21

22 for(tid.x = 0; tid.x < blockDim.x; tid.x++)

23 for(tid.y = 0; tid.y < blockDim.y; tid.y++) {

24 out_index = matrix_start +

25 (tid.y * size) + tid.x;

26 A_list[out_index] = sum[tid];

27 }

28 }

(c) Selective Scalar Expansion and
Loop Invariant Code Motion

Figure 5.6: Data replication in an example kernel multiplying many small
matrices. Some array sizes omitted and ID-queries abbreviated.
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5.3 Replicating Thread-Local Data

Once the control flow has been restructured, the final task remaining is to

buffer the declared variables as needed. Each logical thread should have a

local store for variables, independent of all other logical threads. Because

these logical threads no longer exist in separate thread contexts, the trans-

lated program must emulate private storage for logical threads. The sim-

plest implementation creates private storage for each thread’s instance of the

variable, analogous to scalar expansion [21]. This technique, which I will

refer to as universal replication, fully emulates the local store of each logical

thread by creating an array of values for each local variable, as shown in

Figure 5.6(b). Statements within thread loops access these arrays by thread

index to emulate the logical thread’s local store.

However, universal replication is often unnecessary and inefficient. In func-

tions with no synchronization, thread loops can completely serialize the ex-

ecution of logical threads, reusing the same memory locations for local vari-

ables. Even in the presence of synchronization, some local variables may

have live ranges completely contained within a thread loop. In this case,

logical threads can still reuse the storage locations of those variables because

a value of that variable is never referenced outside the thread loop in which

it is defined. For example, in the case of Figure 5.6(b), the local variable

k can be safely reused because the live range of its value begins and ends

within one iteration of the third thread loop.

Therefore, to use less memory space, the source-to-source compiler should

only create arrays for local variables when necessary. A live-variable analysis

determines which variables have a live value at the end of a thread loop,

and creates arrays for those values only. This technique, called selective

replication, results in the code shown in Figure 5.6(c), which allows all logical

threads to use the same memory location for the local variable k. However,

a and b are defined and used across thread loop boundaries, and must be

stored into arrays.

References to a variable outside of the context of a thread loop can only

exist in the conditional evaluations of control flow structures. Control struc-

tures must affect synchronization points to be outside a thread loop, and

therefore must be uniform across the logical threads. Because all logical

threads should have the same logical value for conditional evaluation, we sim-
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ply reference element zero as a representative, as exemplified by the while

loop in Figure 5.6(b-c).

5.4 Comparison with Industry Implementations

Much previous work has addressed the challenge of implementing OpenCL on

x86 processors, both published academically and implemented industrially.

Here, we cover those related works most directly related to our methodology

and those that are most popularly used today. We will study each imple-

mentation as it relates to the running example in Figure 2.7.

The AMD CPU OpenCL language implementation is based on the Twin

Peaks technology [13]. The primary insight of the implementation is that

modern, multicore, superscalar, x86 CPUs support a relatively low level of

thread-level parallelism, but a very high degree of instruction-level paral-

lelism. Therefore, it makes most sense to combine all of the work-items in

a group into a single CPU thread. The AMD CPU stack accomplishes this

with user-level threading techniques, using irregular control flow to “simu-

late” multiple parallel work-items with a single user thread.

Figure 5.7 shows a pseudocode example of how this user-level threading is

accomplished. First, the implementation declares a data structure suitable

for holding all the data private to a single work-item, and then initializes a

collection of such data structures to hold the state of all work-items in the

group (details not shown). The CPU thread calls the MatMul function with

a particular work-group index, which the compiler has modified such that it

will complete the execution of all work-items in the specified work-group. It

initializes the local state of the work-group on line 23, and selects the work-

item with index 0 to be the first active work-item. At any given time, the

active work-item is the one being advanced through the program. To support

multiple work-items with the same kernel code, a level of indirection is added,

with active wi pointing to the private data of the active work-item.

The program execution follows the original OpenCL kernel’s operations,

referring to the active work-item’s private storage through active wi for

references to private variables. Execution of the first work-item continues

until the barrier statement on line 34. At the barrier, the framework saves

the program location where the current work-item should be restarted, in this
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1 struct wi_state {

2 int local_id[3], group_id[3], global_id[3];

3 float result;

4 float *A_line;

5 int i;

6 int ii;

7 void *restart_point;

8 }

9

10 struct wi_state group_state[WORKGROUP_SIZE];

11 struct wi_state *active_wi;

12

13 void barrier(int fence, void* restart) {

14 (active_wi++)->restart_point = restart;

15 if (active_wi = group_state + WORKGROUP_SIZE)

16 active_wi = group_state;

17 goto active_wi->restart_point;

18 }

19

20 void MatMul(float *A, float *B, float *C,

21 int g_id[3], g_size[3]) {

22 float A_tile[TILE_WIDTH];

23 setup_wi_contexts(group_state);

24 active_wi = group_state;

25 kernel_start:

26 active_wi->result = 0.0f;

27 active_wi->A_line = A + active_wi->group_id[1]*A_WIDTH;

28

29 for (active_wi->i = 0; active_wi->i < A_WIDTH;

30 active_wi->i+= TILE_WIDTH) {

31 A_tile[active_wi->local_id[0]] =

32 A_line[active_wi->i + active_wi->local_id[0]];

33

34 barrier(CLK_LOCAL_MEM_FENCE, &&restart_0);

35 restart_0:

36 for (active_wi->ii = 0;

37 active_wi->ii < TILE_WIDTH; active_wi->ii++)

38 active_wi->result +=

39 A_tile[active_wi->ii] *

40 B[(active_wi->i+active_wi->ii)*B_WIDTH +

41 active_wi->global_id[0]];

42 barrier(CLK_LOCAL_MEM_FENCE, &&restart_1);

43 restart_1:

44 }

45 C[C_WIDTH*active_wi->group_id[1] + active_wi->global_id[0]] =

46 active_wi->result;

47 barrier(0, &&kernel_finish);

48 }

Figure 5.7: C-like pseudocode representing AMD’s OpenCL implementation

57



case the label restart 0 on line 35. It then updates the active wi pointer

to the next work-item’s private state, and performs an indirect jump to

the location at which the newly activated work-item should be restarted. At

initialization, all work-items have their restart points set to the kernel start

label, so in this case, the indirect jump takes the second work-item to the

beginning of the program, as it should. The second work-item will then follow

the same program path to the same barrier, at which point the framework

will make the third work-item the active work-item, and so on, until all

work-items in the group have reached the first barrier.

When the last work-item executes the first barrier, the condition on line

15 will evaluate to true for the first time, and restart the first work-item at

restart 0, allowing it to continue execution where it left off. It will do so

until the second barrier at line 42, where it will again save its current restart

point and switch to the second work-item. The constant switching of active

work-items continues until work-items begin to reach the kernel’s end. At

that point, the work-items save their restart point as some sentinel value that

will lead the framework to the cleanup code to finish the current work-group,

and prepare to execute another work-group if available.

The Twin Peaks methodology has several aspects that make it ill-suited

to support the programming practices outlined in Chapter 2. First, the over-

head of changing the active work-item is significant. The example shown

uses illegal label-passing to illustrate the concepts, but the real implemen-

tation is based on setjmp and longjmp. Even after significant optimization

of those low-level routines for this context, the Twin Peaks authors claim an

overhead of 10ns or 30 clock cycles per work-item change. Additionally, the

micro-threading approach makes no effort to capture vector-level parallelism

across work-items. Each work-item is executed in isolation, and any vector-

ization is limited to opportunities within the code of a single work-item.

Finally, the Twin Peaks implementation does not capture spatial locality

as expected by the developer. Figure 5.8 shows a graphical representation

of a single work-group’s accesses to the input matrix B over the course of

one tile. In a GPU implementation, with wide SIMD vectors and round-

robin scheduling, large collections of contiguous addresses are accessed and

consumed together. However, a serialization of work-items with the Twin

Peaks methodology effectively executes all of a single work-item’s accesses

first, before the accesses of any other work-items. But the kernel follows the
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Figure 5.8: Access patterns to the matrix B in our example OpenCL program
with various implementations. Cache lines are assumed to be 32 words wide,
with boundaries marked by the major Y axis lines.
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1 void MatMul( float *A, float *B, float *C,

2 int g_id[3], int g_size[3]) { // work-group ID and size

3 simd_float result[WORKGROUP_SIZE/SIMD_W];

4 float A_tile[TILE_WIDTH];

5 float *A_line = A + g_id[1]*A_WIDTH;

6 for (__x__ = 0; __x__ < g_size[0]; __x__+=SIMD_W) {

7 simd_store(result[__x__], simd_expand(0.0f));

8 }

9 for (int i = 0; i < A_WIDTH;

10 i+= TILE_WIDTH) {

11 for (__x__ = 0; __x__ < g_size[0]; __x__+=SIMD_W) {

12 simd_store(&A_tile[__x__] , simd_load(&A_line[i + __x__]));

13 }

14 //barrier(CLK_LOCAL_MEM_FENCE);

15 for (__x__ = 0; __x__ < g_size[0]; __x__+=SIMD_W) {

16 for (int ii = 0;

17 ii < TILE_WIDTH; ii++)

18 simd_accumulate(&result[__x__] , A_tile[ii] *

19 simd_load(&B[(i+ii)*B_WIDTH +

20 g_size[0]*g_id[0]+__x__]));

21 }

22 //barrier(CLK_LOCAL_MEM_FENCE);

23 }

24 for (__x__ = 0; __x__ < g_size[0]; __x__+=SIMD_W) {

25 simd_store(&C[C_WIDTH*g_id[1] + g_size[0]*g_id[0]+__x__],

26 result[__x__]);

27 }

28 }

Figure 5.9: C-like pseudocode representing Intel’s vectorizing OpenCL im-
plementation

guidelines to support SIMD across work-items, leading to interleaved accesses

among work-items but strided accesses in the access stream of a single work-

item. Figure 5.8 shows how the serialized implementation accesses a wide

range of addresses in a short amount of time for the first work-item, followed

by another set of strided accesses from the second work-item, and so on. If

the tile size or the memory footprint of the work-group’s total state gets large

enough, this kind of access pattern will cause significant cache thrashing, and

result in very poor spatial locality usage.

Intel’s implementation of OpenCL for x86 is both the most recent and the

least explicitly disclosed or studied. Our best understanding is that the Intel

implementation would behave somewhat like the pseudocode in Figure 5.9.

The figure assumes that the implementation uses region-based serialization

for simplicity, but this is not necessarily clear. What is more clear, and

noteworthy, is the implementation’s focus on explicitly combining multiple

work-items into vectorized execution bundles. Instead of creating private,

scalar data elements for every work-item, it will create vector data elements

for each SIMD bundle, as the declaration of the variable result on line 3
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shows. All serialization loops are effectively unrolled by a factor of SIMD W,

the width of the SIMD units, with each iteration performing operations on

vector values.

In practice, for recent CPUs, Intel’s methodology works very well compared

to the other techniques already described. It does map multiple work-items

to the SIMD units of the architecture, mirroring the expected behavior as

described in Chapter 2. The barrier overhead of the implementation is not

clear from the disclosed materials, but experimentally seems to be somewhere

between the region-based methods and the Twin Peaks method. The explicit

combining of work-items into SIMD units does assist in the capturing of

spatial locality, but still does not use the caches as effectively as they could

be used. The CPU 4-wide SIMD Access Pattern in Figure 5.8 shows why. For

GPUs, the effective SIMD width of the processor is very wide, and the cache

line size is closely matched to the SIMD data vector width for 32-bit words.

In CPUs, while the SIMD widths have increased recently, the cache lines

are still significantly larger than the SIMD data vector width. Therefore, a

single SIMD access will utilize a smaller portion of the cache line by itself.

In a kernel written according to the OpenCL programming guidelines, other

work-items in adjacent SIMD bundles would be consuming the rest of that

data. However, the overall control flow of the compute region on lines 15-20

of Figure 5.9 still executes all of the accesses for one SIMD group before any

accesses from the next SIMD group. The final result is an access pattern that

looks like the *** points of Figure 5.8, somewhere between the completely

serialized and completely vectorized access patterns.

For comparison, Figure 5.10 shows pseudocode for the result of the region-

based serialization methodology of this section. Some private variables such

as result are expanded into an array of values, with one element for each

work-item. However, analysis detected cases where private variables al-

ways store values uniform across the entire work-group, such as the variable

A line, and avoid creating separate memory locations to store redundant

information.

Instead of adding functionality to the barrier function, the compiler uses

the very presence of the barrier function to inform analysis of the kernel

code. According to the previously described algorithms, the kernel code is

split up into contiguous regions that contain no barriers. Each region is then

serialized with an inserted counted loop over the work-item indexes.
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1 void MatMul( float *A, float *B, float *C,

2 int g_id[3], int g_size[3]) { // work-group ID and size

3 float result[WORKGROUP_SIZE];

4 float A_tile[TILE_WIDTH];

5 float *A_line = A + g_id[1]*A_WIDTH;

6 for (__x__ = 0; __x__ < g_size[0]; ++__x__) {

7 result[__x__] = 0.0f;

8 }

9 for (int i = 0; i < A_WIDTH; i+= TILE_WIDTH) {

10 for (__x__ = 0; __x__ < g_size[0]; ++__x__) {

11 A_tile[__x__] = A_line[i + __x__];

12 }

13 //barrier(CLK_LOCAL_MEM_FENCE);

14 for (__x__ = 0; __x__ < g_size[0]; ++__x__) {

15 for (int ii = 0; ii < TILE_WIDTH; ii++)

16 result[__x__] += A_tile[ii] *

17 B[(i+ii)*B_WIDTH + g_size[0]*g_id[0]+__x__];

18 }

19 //barrier(CLK_LOCAL_MEM_FENCE);

20 }

21 for (__x__ = 0; __x__ < g_size[0]; ++__x__) {

22 C[C_WIDTH*g_id[1] + g_size[0]*g_id[0]+__x__] = result[__x__];

23 }

24 }

Figure 5.10: C-like pseudocode representing region-based loop serialization

In Figure 5.10, one region occupies lines 6-8, initializing the private variable

result for all work-items. A second region on lines 10-12 copies a tile of data

from global to local memory. The main computational region on lines 14-18

consumes the copied tile, accumulating inner products for each column of B.

The final region on lines 21-23 copies the final results to the correct region

of the output space. The regions themselves constitute nodes in a dynamic

control flow graph independent of work-item index, with each dynamic region

executed for all work-items. In the example kernel, there is a loop over the

second and third regions, executing both for each tile of the input data, while

the first and last regions are executed only once each.

The inserted serialization loops themselves then maintain the semantics

of the original barriers, not letting any operations following the barrier in

the dynamic execution completing before any operation before that barrier.

Therefore, the barrier itself can be removed from the final code, as it adds

no information or constraint not already represented by the serialized code.

From a portability standpoint, the region-based serialization methodology

has several advantages over the Twin Peaks technique. First, the overhead

of executing a barrier is significantly reduced. In this methodology, a barrier

only adds a cost of a loop branch and loop counter increment in the worst

case. In practice, the overhead is even smaller, because optimizing compilers
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Figure 5.11: Evaluating the performance of region-based serialization com-
pared to the Intel and AMD OpenCL stacks

apply optimizing transformations such as loop unrolling to the serialization

loops. Such optimizing loop transformations are practically prohibited by

the indirect jumps of the Twin Peaks methodology. Second, this implemen-

tation could indirectly result in SIMD vectorization across work-items, if

the inserted serialization loops happen to be innermost loops, and a vec-

torizing compiler is able to conservatively prove the vectorizability of those

loops. And finally, the implementation does not fundamentally solve the

spatial locality expectation mismatch, as the access patterns remain largely

unchanged. The CPU scalar access pattern in Figure 5.8 still accurately de-

scribes the serialized access pattern of the main computation region: strided

accesses along a column of the B matrix, followed by more strided accesses

along subsequent columns.

5.5 Performance Analysis

Figure 5.11 shows the performance results of the region-based serialization

methodology for the OpenCL versions of the Parboil benchmarks optimized

for an NVIDIA GPU. The results vary quite a lot reflecting the drastically

different implementation approaches, but show that on average, the Intel

OpenCL stack outperforms both the AMD OpenCL stack and the region-

based serialization.

The cutcp and sad benchmarks suit the AMD implementation well, be-

cause they conveniently use short-vector types which the AMD implemen-
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tation can directly convert into SIMD instructions, but somewhat complex

control flow preventing the Intel and region-based serialization methods from

extracting quite so much SIMD utilization. Kernels with regular control

flow and little or no barrier synchronization favor the Intel implementation

methodology, such as histo, mri-q, spmv, and lbm. But those kernels that

make extensive use of shared memory and barrier synchronization, such as

tpacf, stencil, mri-gridding, and sgemm, favor the region-based serializa-

tion method because of the significantly reduced overhead of handling those

dynamic barriers.

Overall, there is no clear, consistent best implementation among these

three. Those kernels which rely most heavily on low-overhead barriers favor

region-based serialization, while those favoring implicit SIMD execution of

multiple work-items favor Intel’s implementation, and those that fortuitously

fall into the pattern that the AMD implementation can vectorize favor it.

This is one reason why performance portability seems elusive today: the CPU

implementations themselves have drastic performance differences between

them. However, we also have to recognize that such differences are not

unheard of simply among various compilers for a single-core codebase as

well, depending on the strengths and methodologies of each compiler.
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CHAPTER 6

A VECTOR MACHINE MODEL OF
ACCELERATED KERNEL EXECUTION

The previous implementation methodologies show some common performance

insights and common portability oversights. It is clear that the work-items

in a single work-group should be combined into a single, sequential CPU

thread. Work-items within a group are primarily a source of vector- and

instruction-level parallelism, both of which CPU architectures exploit from

within a single CPU thread. The CPU implementations vary widely in their

approach to serializing work-items and capturing SIMD parallelism from the

work-items, with the Twin Peaks method vectorizing only explicit vector

operations within a work-item, region serialization relying on autovectoriza-

tion technology, and Intel’s methodology directly targeting SIMD instruc-

tions. And finally, no current CPU implementation does an excellent job

of handling spatial locality given the most common OpenCL programming

practices. Instead, they each result in some kind of strided access pattern

by executing one or more work-items as long as possible instead of inter-

leaving the accesses of the work-items that would consume the elements of a

particular cache line.

We propose a vector-based serialization of the work-group. Even though

the physical SIMD width of a machine is of a fixed and limited value, the

programming model’s usages would benefit from executing work-groups in a

way that emulates a work-group-wide vector machine. Instead of advancing

only a small number of work items until they are forced to yield, an imple-

mentation could execute each dynamic statement for all work-items in the

group before moving on to the next statement. The C Extensions for Array

Notation (CEAN) programming model provides an excellent mechanism for

describing just such execution semantics.
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Array Declaration int array[ARRAY SIZE]

Full array slice array[:]

Bounded array slice array[100:100]

Indirect gather or scatter array[indexes[:]]

Figure 6.1: CEAN array slice notation examples

6.1 C Extensions for Array Notation

Intel introduced CEAN as part of their production compiler in 2010. It has

also been implemented in gcc, although not integrated into the trunk, and

proposed to the C++ standards committee as an industry-standard extension

of C and C++. It is very similar to, and likely inspired by, FORTRAN-style

array operations. The basic syntax is shown in Figure 6.1. An array slice

expression is an array subscript expression (C99 6.5.2.1) that uses an ar-

ray slice operator. The two most relevant array slice operator types are the

full slice and bounded slice operators. A full slice operator, syntactically

expressed with a single semicolon as the subscript expression, can only be

used on arrays with a known size, and evaluates to the entire contents of the

array. A bounded slice operator can be used on any array or pointer, and is

a subscript expression of the form:

array ptr [ base index semicolon extent ].

The base index determines the offset of the first element of the slice, and

the extent value determines the number of contiguous elements that should

be extracted in the slice. The example bounded array slice in Figure 6.1

accesses a 100-element slice from the array, beginning with index 100 and

ranging to index 199. A bounded slice will always result in an array value

with a number of elements equal to the extent. Multi-dimensional slices are

permitted, but we will restrict ourselves to single-dimensional array opera-

tions for this chapter. Array expressions can also be used as array subscript

expressions into other arrays, which is useful for defining indirect gather and

scatter accesses. Indirect accesses tend to be significantly slower than full or

bounded accesses in practice.

Operations on multiple array expressions must operate per-element across

the extent of all involved array expressions. For instance, adding a scalar

to an array expression will result in a new array expression with the scalar

addition applied to every element of the array. Adding a pair of array ex-
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1 void MatMul( float *A, float *B, float *C,

2 int g_id[3], int g_size[3]) { // work-group ID and size

3 float result[WORKGROUP_SIZE];

4 float A_tile[TILE_WIDTH];

5 float *A_line = A + g_id[1]*A_WIDTH;

6

7 result[:] = 0.0f;

8 for (int i = 0; i < A_WIDTH; i+= TILE_WIDTH) {

9 A_tile[0:g_size[0]] = A_line[i:g_size(0)];

10 //barrier(CLK_LOCAL_MEM_FENCE);

11 for (int ii = 0; ii < TILE_WIDTH; ii++)

12 result[:] += A_tile[ii] *

13 B[(i+ii)*B_WIDTH + g_id[0]*g_size[0]:g_size[0]];

14 //barrier(CLK_LOCAL_MEM_FENCE);

15 }

16 C[C_WIDTH*g_id[1] + g_id[0]*g_size[0]:g_size[0]] = result[:];

17 }

Figure 6.2: CEAN-based result of our proposed OpenCL implementation

pressions means an element-wise addition, and requires that the two array

expressions have the same number of elements.

6.2 Implementing OpenCL with CEAN

Figure 6.2 shows how we can apply CEAN-style transformations similar to

the way previous work applies loop-based serialization. As with previous

work, we expand the result private variable into an array, because its value

depends on work-item index. However, instead of introducing loops over

the kernel code, we simply replace the scalar expressions in the code with

array slices where appropriate. Accesses to the result local variable on

lines 7, 12, and 16 use a full slice expression over the array. Accesses to

the global memory could use the indirect array access expression syntax in

the general case. However, in the example code, all global memory accesses

are provably coalesced across the entire work-group. They can therefore be

converted into the faster bounded slice operations by decomposing the index

operation into the form base index + get local id(0). Once the base index

expression has been identified, the compiler can generate a bounded array

slice beginning at that base index and with an extent equal to the work-

group size. The global memory access transformation is applied to A line

global memory pointer access on line 9, with i as the base index. Accesses

to matrix B on line 13 and matrix C on line 16 are also converted into array

slice accesses by first applying the following equivalence: get global id(0)
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== get group id(0)*get group size[0] + get local id(0). The result

of all these transformations is a program that expresses the execution of the

work-group as a sequence of vector operations over local variables.

CEAN has two important properties that make it very well suited to de-

scribing OpenCL work-group execution. First, array expression operations

were specifically introduced to support SIMD execution on CPUs. Opera-

tions over array expressions are explicitly independent across all elements,

and therefore directly targeted as vectorization opportunities. Second, the

execution semantics are such that each statement using array slice expressions

is evaluated in its entirety before the next statement executes, just as it would

if all operations were only scalar. This creates the kind of access pattern that

actually achieves the spatial locality the developer intended, matching the

GPU memory access pattern highlighted in Figure 5.8 in Chapter 5. And

like in the prior region-based serialization approach, barriers are rendered

irrelevant in the final code. The array slice ordering constraints essentially

provide the same ordering as if there were a barrier after every statement.

Note that this choice of scheduling has strong implications for the local

layout of data within the work-group. The Twin Peaks authors specifically

defend their choice of storing all the private data for a single work-item

contiguously in memory in a data structure. Their claim is that such a

layout will get the best spatial locality [13] (although they admit that more

research is needed on the topic). This makes sense given their execute-until-

yield serialization model. If one work-item is going to be executed for a long

time, it makes most sense that all its private data would be close together,

and not interleaved with the data from other work-items. However, it makes

vectorization across work-items inefficient. In order to efficiently combine

multiple work-items into a SIMD bundle, all instances of the local variables

for work items in that bundle should be contiguously stored.

Whether due to shortcomings on the compiler analysis and transformation

capability or restrictions on how CEAN can be used, there are cases where

CEAN-based translation of a particular piece of code is not possible. One

case is loops where the loop iteration count cannot be determined to be a

work-item invariant value, because Intel’s compiler (as of version 13.1) does

not permit CEAN notation in the condition checks of loops. To get the fullest

benefit of CEAN possible, when our compiler intends to target CEAN it will

still perform region formation as normal, so that the choice to use CEAN
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notation or region-based loop serialization can be made on a per-region basis.

This allows vector-serializable regions to utilize CEAN notation, without loss

of generality.

6.3 Performance Analysis

Figure 6.3 shows the performance results of the vector-based serialization

methodology as embodied in the MxPA product, compared with the AMD

and Intel OpenCL implementations as well as the region-based serialization

methodology, labeled “MOpenCL” in the graph. Again, the results vary quite

a lot reflecting the drastically different implementation approaches, but show

that on average, the vector-based serialization outperforms all previous work

by a significant margin for the workload represented by these benchmarks.

In most cases where the region-based serialization outperformed AMD and

Intel, the vector-based serialization performed even more strongly, including

every case from the Parboil benchmarks. This shows that the methodology

is equally efficient at delivering low-overhead barrier semantics as the region-

based serialization was, but that the more explicit vectorization notation was

making additional performance contributions. When those contributions are

small, it is because the compiler was already able to autovectorize the orig-

inal region-serializing loops for those benchmarks. In the mri-q case, the

region-based serialization was not able to perform adequate vectorization,

whereas the vector-based serialization enabled it. It outperformed even In-

tel’s vectorizing implementation because of better locality management that

only streamed through the shared input data set once per work-group, in-

stead of one per SIMD-bundle. In some cases, the compiler was unable to

make very effective use of CEAN, such as for the thread-dependent inner-

most loops in spmv and sad, and the gain from targeting other regions was

minimal.

Some limitations of the current implementations of MxPA and MOpenCL

are revealed by the lavaMD Rodinia benchmark, where the programmers

wrote extra control flow code to deal with the fact that they were creating

work-groups larger than their chosen tile size. The result labeled lavaMD ed

is excluded from the GEOMEAN calculations, but shows the performance

achievable simply by changing the work-group size to match the tile size, and
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Figure 6.3: Evaluating the performance of vector-based serialization (MxPA)
compared to the Intel and AMD OpenCL stacks, as well as region-based
serialization (MOpenCL).
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deleting all the control flow made irrelevant by that change.

The two cases where vector-based serialization is significantly outperformed

by region-based serialization are histo and lavaMD ed. In histo, most mem-

ory accesses are either perfectly regular, in-place updates to each data ele-

ment, or the actual scattered histogram accesses. Forcing SIMD execution

proved to be detrimental, because the ISA targeted does not support scat-

ter accesses directly from the vector registers. The lavaMD ed result shows

a limitation of the C compiler used for the CEAN output of MxPA, where

opportunities to avoid storing temporary array slices on the program stack

were not exploited.

In other cases, vector-based serialization did improve performance over

region-based serialization, but was not able to surpass the performance of the

best industry OpenCL implementation for that benchmark. sad remained

too irregular for vectorization across multiple work-items, such that AMD’s

direct vectorization of short vector types was able to get the best usage

of the CPU hardware execution units. As previously noted, the innermost

loop of spmv was not suitable for CEAN transformation, and the region-

based serialization was outperformed by both industry platforms. lbm has

no reuse of data among its work-items and no barriers, and a group working

set somewhat larger than the L1 cache size, so the policy of executing each

SIMD bundle to completion gave Intel’s platform a slight advantage.

Although there is no clear, consistent best implementation among these

four, the average performance clearly favors the vector-based serialization,

even with its current limitations. In successful cases, it combines the benefit

for low-overhead barriers with the throughput of vector execution, and more

closely matches the spatial locality profile expected by a programmer trained

according to GPU performance guidelines.
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CHAPTER 7

PORTABILITY

The goal of this dissertation is to demonstrate the feasibility of performance

portability. From the outset, we must admit that because a software de-

veloper could have arbitrarily high standards for performance portability,

we can never satisfy everyone. Some software developers, particularly high-

performance library developers, will go to great lengths to tune their library

for a specific architecture, with portability achieved for the end-user through

the many platform-specific implementations underneath the library inter-

face. On the other extreme, some software developers care only for func-

tional portability, and consider any software development effort specifically

dedicated to performance to be misplaced. But many application develop-

ers choosing accelerated kernel languages, and OpenCL in particular, fall

somewhere in the middle. They are specifically choosing a language and

programming model believed to increase software development costs because

they hope to get performance gains from using it. At the same time, the

presence of a particular kind of accelerator is not guaranteed, and most soft-

ware developers would prefer to have as wide a set of system targets as

possible from the single codebase. For these developers, they will not accept

performance they see as being “bad,” but may be happy with leaving some

performance on the table on some architectures if it means that they can be

more productive writing code with “good enough” performance overall.

For such performance-minded programmers, it is not enough to simply

show that one language implementation gets X% better than some other

implementation of that language. It is not even helpful to know whether a

particular piece of code gets Y% of the system’s peak computational through-

put or memory bandwidth, because we do not know what percentage of the

theoretical peak we should be expecting for a particular application. Porta-

bility is primarily defined by the amount of performance you are giving up

by not writing multiple versions of code customized to each architecture.
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Figure 7.1: A study of the performance of various parallel implementations
compared to a baseline, single-threaded CPU implementation

The question then becomes, what alternative code versions should we be

comparing against?

For many software developers, the code to beat is the code they already

have, and that code may not have been particularly well optimized. When

it comes time to turn attention to an existing piece of code and improve

its performance, there are natural questions of how much return on devel-

opment effort can be achieved through optimization. Here, we assume that

acceleration is important, and that an accelerator implementation is there-

fore imperative. While this dissertation does not make any particular claims

about the ease of adopting an accelerator programming model, assuming that

one must, we can measure the performance return on that investment.

7.1 CPU Performance Effects of Programming in

OpenCL

Figure 7.1 shows the clear benefit of targeting OpenCL as a portable lan-

guage that captures high-level optimization patterns. The OpenMP results

show that the benchmarks do benefit from parallel scaling. However, the

OpenMP compiler was typically not able to perform any more advanced op-

timization transformations than the C compiler. Even the baseline OpenCL

implementations, due to the constraints of the programming model, had

somewhat more natural tiling units in the OpenCL work-groups, and typ-
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ically got better performance than their basic OpenMP counterparts. The

GPU-optimized OpenCL kernels generally were comparable to the baseline

OpenCL implementations on the CPU architecture, in part because the pro-

gramming model forced even the baseline implementation to accommodate

some form of locality simply by enforcing a two-level hierarchical task decom-

position. Only one benchmark showed a performance change of more than

2× due to GPU-specific optimization, with one notable exception. The dras-

tic performance change in sgemm highlights just how much that benchmark is

dependent on manual tiling, despite it being the most easily transformed and

most studied kernel in the field. The OpenMP code performs both input and

tiling on the output, setting each parallel OpenMP task to compute a tile

of the output matrix, and processing sections of input in sequence. Yet de-

spite the programmer obviously taking efforts to improve the OpenMP code

performance, the choices made were suboptimal compared to the choices

made simply to map the programming model to the OpenCL language’s hi-

erarchical tiling scheme, even without explicit input tiling. By enforcing a

vector-based serialization pattern, the MxPA tool was forcing the task-tile

of the naive OpenCL kernel to compute on the input data in a tiled fash-

ion. Manual input tiling was able to speed up the kernel by an additional

7×. On average, the OpenMP implementations were approximately scaling

performance with the number of cores on the test system (four), while the

OpenCL implementations were approximately another factor of four higher,

due to improved tiling and vectorization enforced by the programming model

for even the “baseline” implementations.

The Rodinia benchmarks were excluded from Figure 7.1 because they have

neither sequential baseline code to normalize for nor multiple OpenCL ver-

sions embodying different optimization levels. However, we can examine the

benchmarks together by directly comparing the relative performance of the

OpenMP and OpenCL implementations in both suites. For this purpose,

we regard the Rodinia benchmarks as most similar in optimization level to

the Parboil basic OpenCL implementations. Like the Parboil OpenCL base

versions, these kernels were mostly developed by students in accelerator pro-

gramming courses, applying their optimizations skills to some new kernel as a

project. This means that software development institutions hiring new grad-

uates and assigning them to accelerator kernel programming would likely get

these kinds of results.
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Figure 7.2: Comparing OpenCL and OpenMP implementations of the Par-
boil and Rodinia benchmarks

7.2 Comparing OpenMP and OpenCL as Parallel

Programming Models for a CPU

Figure 7.2 shows those results, with strong evidence that the OpenCL perfor-

mance was getting a significantly better final performance than the compara-

ble OpenMP implementations. Comparing multiple source versions is always

difficult, because we do not have a firm understanding of how much effort was

spent on each kernel, whether the same programmer or a programmer of the

same skill was being applied to each, and therefore what software develop-

ment environments are most comparable to the results shown. However, we

do know that the software is real, considered publishable by their respective

developer groups, and developed independently of this dissertation research.

The results show that in all but one case, the OpenCL implementation

either beat or nearly matched the performance of the OpenMP implementa-

tion. On one extreme, the three benchmarks where MxPA gained the most,

lud, nw and stencil, were all cases where individual kernels completed in

a very short amount of time, on the order of milliseconds, although the ap-

plication as a whole would still run for several seconds. This shows that

despite extensive research and studies of reducing the overhead of OpenMP

work distribution automatically, the direct coarsening of the OpenMP tasks

accomplished through the serialization of OpenCL work groups proved to be

much more efficient for short-running kernels. (The lud benchmark addi-
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tionally performs no direct input tiling on the OpenMP version of the code,

resulting in even more exceptional speedups. The GEOMEAN performance

improvement of MxPA over OpenMP is reduced to only 2.1× if that data

point is excluded.)

The one case where the OpenMP application significantly outperformed

the OpenCL application on MxPA was lavaMD from the Rodinia benchmark

suite, where the kernel code structure causes the MxPA compiler to fall back

to region-based serialization specifically on regions where the threads are

block-copying data from global to local memory. The region-based serial-

ization causes the large-strided accesses, as highlighted in Chapter 5, with

demonstrated performance loss. Stronger MxPA compiler analyses should be

able to improve the performance of that kernel significantly.

In summary, the Parboil and Rodinia benchmarks show that not only is

OpenCL an applicable programming model for parallel CPU architectures,

but that with the appropriate implementation methodology, it is more than

comparable with the OpenMP implementations developed by the same teams

that developed the OpenCL benchmarks. While we can find instances where

the OpenMP benchmarks could be further optimized, the same could be

said about the OpenCL versions, especially considering our knowledge of the

limitations of the MxPA compiler, which were clearly demonstrated in some

cases.

Finally, the results overall most clearly demonstrate that in practice, one of

the most highly regarded C/OpenMP compilers of our time does not perform

the optimizations that compiler research has promised, such as automatic

loop tiling or reducing the overhead of distributing very small OpenMP tasks.

As a programmer, this is somewhat disheartening, because it means that

most of what makes accelerator programming hard is necessary even for good

CPU performance, particularly explicit tiling and parallelization. However,

the results of this section show that when such transformations are applied

for the benefit of accelerator architectures in a language like OpenCL, a

well-designed compiler and runtime for that same language can preserve the

benefits of those transformations for a CPU architecture as well.
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CHAPTER 8

EXTENDING PERFORMANCE
PORTABILITY TO BROADER

ARCHITECTURE CLASSES

Performance portability may not be limited to only CPU and GPU archi-

tectures, although those are the only clearly demonstrated platforms of this

thesis. The fundamental translation mechanism of coarsening fine-grained

parallel programming models into larger tasks makes the technology a very

versatile methodology for targeting other kinds of architectures as well. This

chapter summarizes some of the ongoing, collaborative efforts adapting the

core technology of this dissertation to other architectures.

8.1 Rigel

The Rigel architecture is a 1024-core MIMD research architecture developed

by colleagues at the University of Illinois [20], targeting task- and data-

parallel visual computing workloads that scale up to thousands of concurrent

tasks. The design objective of Rigel is to provide high compute density while

enabling an easily targeted, conventional programming model.

The Rigel architecture is summarized in Figure 8.1. The fundamental pro-

cessing element of Rigel is an area-optimized, dual-issue, in-order core with a

RISC-like ISA, single-precision FPU, and independent fetch unit. Eight cores

and a shared cache comprise a single Rigel cluster. Clusters are grouped log-

ically into a tile using a bi-directional tree-structured interconnect. Eight

tiles of 16 clusters each are distributed across the chip, attached to 32 global

cache banks via a multistage interconnect. The last-level global cache pro-

vides buffering for 8 high-bandwidth GDDR memory controllers.

Applications are developed for Rigel using a task-based API, where a task

is mapped to one Rigel core. Tasks can vary in length and do not execute

Parts of Section 8.1 have been adapted from portions of a previously published work,
c©2012 Springer-Verlag, used with permission [25]. The original work was written in

collaboration with S. Kofsky, D. Johnson, W. Hwu, S. Patel, and S. Lumetta.
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Figure 8.1: Rigel architecture diagram

in lock-step. Task generation and distribution is dynamic and handled by

software; the hardware only implements global and cluster level atomic op-

erations.

8.1.1 Mapping CUDA to the Rigel architecture

Rigel’s fundamental design rejects wide SIMD as inapplicable for certain

workloads, but still pursues energy-efficient, throughput-oriented computing.

It would be possible to run the fully coarsened code used for large-core CPUs

on each of the thousand cores of the architecture, but that is not the ideal

scenario. In the Rigel architecture, the closest analog to a CPU core or a

GPU processor is not a single core, but a cluster, which holds a private cache

roughly equivalent to a CPU core’s L1 cache or a GPU’s processor cache.

The cores within a cluster are also capable of executing local barriers very

efficiently, making the distribution of tasks within a group among the cores

of a cluster more palatable.

To target a CUDA kernel to a Rigel cluster, we extended the MCUDA

tool to transform the source code to be amenable to Rigel’s MIMD execution

model. For each serialization region, instead of completely serializing the

region, the region is parallelized into small tasks for each thread index within
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the group, which are dynamically distributed over the Rigel cores in a cluster

using the architecture’s hardware-assisted task-management system. At the

end of a region, the thread queue on the cluster is reset so that the cluster

can iterate over each thread again. Shared variables are stored as a per-

cluster data structure. Each core can read and write to the shared data

through the cluster cache. Further, local variables are stored in a cluster

level data structure since we allow CUDA threads to migrate between cores

within a cluster across regions. However, local CUDA thread variables that

are produced and consumed between synchronization points do not have to

be replicated since they are not used when a CUDA thread moves to another

core.

8.1.2 Performance considerations

Unlike GPUs, Rigel uses software to handle the work distribution from CUDA

kernels, which to incur some potentially avoidable overhead for task assign-

ment and distribution. The RCUDA runtime supports load balancing at the

cluster level by allowing individual cores to fetch CUDA threads on demand.

Dynamic fetching can be expensive for short regions, which could result from

either very simple kernels, or kernels with many synchronization points. An

alternative is to statically assign work to each Rigel core such that each core

executes a fixed portion of CUDA threads within a thread block. The static

assignment significantly reduces the number of Rigel tasks a core must fetch

in a region, at the cost of reduced dynamic load balancing ability. Therefore,

for static work assignment to perform optimally, the CUDA threads must

perform similar amounts of work and the number of CUDA threads should

be divisible by eight so that each Rigel core does the same amount of work.

Sometimes such a static schedule opens up new opportunities for optimiza-

tion. Just as in-code, region-based serialization opens up more opportunities

for CPU compilers, some degree of in-code serialization enables optimization

across multiple logical threads on Rigel as well. Thread fusing is a source

level transformation that merges threads into a group so they can execute in

parallel through software pipelining. For some kernels it is advantageous to

enforce an execution order as a way to optimize memory accesses.

In CUDA code with a two-dimensional thread block, it is common to see
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an indexing function based on the thread index. For example:

(threadIdx.y * BLOCK SIZE) + threadIdx.x .

The Y dimension is multiplied by a constant factor, usually the block size

or some other constant such as the width of an input matrix. On the other

hand, the X dimension of the thread index is used to direct threads with con-

tiguous X indexes to contiguous memory addresses. On Rigel, it is beneficial

to concurrently execute CUDA threads with the same Y value so that the

cores effectively share the same cache lines in the shared cluster cache. In

addition to enforcing an execution order, fusing threads is also advantageous

since it allows the compiler to optimize across a group of threads. The code

in CUDA threads is the same, except for the thread index values, and with

thread fusing the compiler is able remove redundant computation, creating

faster, more efficient code.

8.1.3 Initial evaluation

All performance results for the Rigel accelerator design are produced using

a cycle-accurate execution driven simulator that models cores, caches, inter-

connects, and memory controllers [20]. We use GDDR5 memory timings for

the DRAM model. Benchmark and library codes are run in the simulator

and are compiled with LLVM 2.5 using a custom backend. Inline assem-

bly was used for global and cluster level atomic operations. Optimizations

have yet to be fully implemented in our compiler, and thus were applied by

hand editing translated CUDA kernels. Results for CUDA on a GPU were

gathered on a Tesla T10 4-GPU server using one GPU.

With the exception of MRI and SAXPY, all benchmark codes were taken

from external sources and were originally written to be executed on a GPU.

Our benchmarks include a 2D image filter with 5x5 kernel (Convolve), dense-

matrix multiply (DMM), 256-bin histogram (Histogram), fractal genera-

tion (Mandelbrot), medical image construction (MRI), SAXPY from BLAS

(SAXPY) and matrix transpose (Transpose). MRI uses two kernels: the

first to initialize data structures, and the second to perform the actual com-

putation. Histogram also uses two kernels: the first calculates many partial

histograms from subsets of the input array, and the second merges the partial

histograms. Table 8.1 lists data sizes and characteristics for all benchmarks.
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Table 8.1: RCUDA benchmarks

Name Data Set # Kernels
Thread

Block Di-
mensions

Shared
Memory
Usage?

Convolve 1024×1024 1 (16, 16) Yes
DMM 1024×1024 1 (16, 16) Yes

Histogram 2M 2
(192,1)
(256,1)

Yes

Mandelbrot 512×512 1 (16,16) Yes
MRI 8192,8192 2 (512,1),(256,1) No

SAXPY 2M 1 (512,1) No
Transpose 1024×1024 1 (16,16) Yes

Figure 8.2: RCUDA baseline results
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Figure 8.3: RCUDA baseline performance breakdown

In Figure 8.2 we show the normalized speedup of the naive translation on

Rigel over NVIDIA’s Tesla. Given that Rigel’s peak throughput is about 1.1

times that of the tested GPU, these results show that the GPU-optimized

code is also well suited to Rigel with the RCUDA methodology of implemen-

tation, achieving speedups even beyond 10% improvement in most cases for

the baseline, fully-dynamic scheduling methodology.

We analyze the runtime overhead of our RCUDA framework on Rigel,

shown in Figure 8.3. We break down runtime into five categories: (1) Kernel,

which is the measurement of the time spent executing the CUDA kernel code,

(2) Thread ID, the overhead of generating the CUDA thread indexes when

dynamic load balancing is used, (3) Sync, the time spent in the thread block

barrier call, (4) Barrier, measuring the time cores spend waiting for kernel

execution to complete, which represents load imbalance, and (5) Other, which

includes all other overheads including runtime initialization, thread block

fetch and host code.

We see that thread index generation is quite expensive, particularly for ker-

nels with two-dimensional thread blocks. For two-dimensional thread blocks,

the CUDA thread indexes are generated from a count of remaining threads.

The conversion from a one-dimensional count to a two-dimensional index re-

quires a significant amount of computation that can be comparable to the

total work of smaller CUDA kernels such as Transpose and Convolve. Addi-

tionally, thread indexes are generated twice in Transpose and Convolve due
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Figure 8.4: RCUDA optimization performance effects measured as speedup
over baseline

to a single synchronization point in each kernel. We find that the time spent

in the thread block barriers is low, even though it is implemented in soft-

ware. We see that in Histogram and SAXPY the barrier constitutes roughly

20runtime. The Histogram code does not generate a large enough grid to

utilize the entire chip, so some cores only wait in the barrier without execut-

ing any kernel code and SAXPY has a very short kernel, so load imbalance

contributes to the high barrier cost. The barrier makes up the majority of

MRI’s runtime due to insufficient parallelism that leaves most clusters idle.

The first kernel utilizes only 16 clusters while the second kernel only uses 32

of the 128 available clusters. The amount of parallelism would increase with

larger datasets, which would take significantly longer to simulate fully.

We apply optimizations individually to each benchmark and then combine

the beneficial optimizations to create an optimal version of each benchmark

as shown in Figure 8.4. Shared memory removal was applied to the Convolve,

DMM and Transpose benchmarks. Removing the shared memory accesses

also allowed for all the synchronization points to be removed. DMM was the

only benchmark where the optimization did not improve the runtime because

the mapping function generated for DMM is complex, requiring costly multi-

plication instructions. All benchmarks except Convolve and SAXPY showed
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an improvement when using static scheduling of threads. Convolve is the

only benchmark where the amount of work varies greatly between threads

because not all CUDA threads compute an output value. SAXPY has very

short kernels, so the overhead of statically dividing the workload is significant,

and the runtime increases by 10%. Thread fusing improves the performance

of all benchmarks; in every case, at least some amount of redundant calcu-

lation could be removed. The optimal version of each benchmark uses the

combination of optimizations that results in the fastest runtime. Convolve

uses shared memory accesses removal along with thread fusing. DMM and

Histogram use static work partitioning and thread fusing. Mandelbrot, MRI,

Transpose and SAXPY only use thread fusing.

8.1.4 Conclusions

Clearly, the core MCUDA infrastructure was sufficiently powerful to enable

a very different execution model. The changes to the execution model were

primarily focused on mapping regions of the kernel code, which are com-

pletely free of overing constraints, onto system resources appropriate for the

working set typically assigned to a thread block. The optimizations for im-

proving performance typically fell into two categories. One was platform-

specific scheduling optimizations, more intelligently balancing static versus

dynamic scheduling for the closely-collaborating cores in the cluster, which

can be done completely automatically. The other highlights that the GPU-

encouraged model of using a software-managed cache was poorly matched to

the Rigel architecture’s locality management and task-communication mech-

anisms. Taken alone, this observation could lead us to conclude that most

kernels should eschew explicitly managed caches, given that modern GPUs,

CPUs, and Rigel all provide implicitly managed caches.
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8.2 FPGAs

With increasing transistor densities, the computational capabilities of com-

mercial FPGAs provided by companies like Xilinx and Altera have greatly

increased. Modern FPGAs are technologically in sync with the rest of the

IC industry by employing the latest manufacturing process technologies and

supporting high-bandwidth I/O interfaces such as PCIe. By embedding fast

DSP macros, memory blocks and 32-bit microprocessor cores into the re-

configurable fabric, a complete SoC platform is available for applications

which require high-throughput computation at a low power footprint. The

flexibility of the reconfigurable fabric provides a versatile platform for lever-

aging different types of application-specific parallelism, whether coarse- or

fine-grained, data- or task-level, or pipeline parallelism of various configu-

rations. Reconfigurability, though, has an impact in the clock frequency

achievable on the FPGA platform. Synthesis-generated wire-based commu-

nication between parallel modules may limit the throughput of designs with

wider parallelism compared to smaller but faster-clocked architectures.

FPGA devices reportedly offer a significant advantage (4×-12×) in power

consumption over GPUs. J. Williams et al. [55] showed that the computa-

tional density per watt in FPGAs is much higher than in GPUs. This is even

true for 32-bit integer and floating-point arithmetic (6× and 2× respectively),

which maximize the raw computational density of GPUs.

Programming FPGAs often requires hardware design expertise, as it in-

volves interfacing with the hardware at the RTL level. However, the advent of

several academic and commercial ESL design tools for HLS [11, 12, 56, 15, 14]

has raised the level of abstraction in FPGA design. Most of these tools use

high-level languages as their programming interface. Some of the earlier

HLS tools could only extract fine-grained parallelism at the operation level

by using data dependence analysis techniques. Extraction of coarse-grained

parallelism is usually much harder in high-level languages that are designed

to express sequential execution. To overcome this obstacle, some HLS tools

have resorted to employing language extensions for allowing the program-

mers to explicitly annotate coarse-grained parallelism in the form of parallel

Parts of Section 8.2 have been adapted from portions of a previously published work,
c©2009 IEEE, used with permission [39]. The original work was written in collaboration

with A. Papakonstantinou, K. Gururaj, D. Chen, J. Cong, and Wen-mei W. Hwu.
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streams, tasks [56] or object-oriented structures [15]. In a different approach,

special high-level languages that model parallelism with streaming dataflows

have been employed in HLS tools [14].

8.2.1 AutoPilot C for FPGAs

AutoPilot’s programming model conforms to a subset of C which may be

annotated with pragmas that convey information on different implementa-

tion details. Synthesis is performed at the function level, producing corre-

sponding RTL descriptions for each function. The RTL description of each

function corresponds to an FPGA core which consists of private datapaths

and FSM-based control logic. Attached to each core’s FSM are start and

done signals that enable cross-function synchronization (including function

calls and returns).

The front-end engine of AutoPilot (based on the LLVM compiler [28]) uses

dependence analysis techniques to extract ILP within basic blocks. Coarser

parallelism, such as loop iteration parallelism, can also be exploited by in-

jecting AUTOPILOT UNROLL pragmas in the code (assuming there are

no loop-carried dependencies). Note that unrolling and executing loop it-

erations in parallel impacts FPGA resource allocation proportionally to the

unroll factor. Concurrency at the function level is specified by the AUTOPI-

LOT PARALLEL pragma. The affected functions are launched concurrently

by the parent function, which stalls executing until every child function has

returned. Thus it is possible to implement an MPMD execution model with

a configuration of heterogeneous FPGA cores (i.e. parallel cores correspond-

ing to different functions). Note that AutoPilot will schedule two functions

(cores) to execute in parallel only when they cause no hazards. A hazard

arises when two functions access the same memory block (resource hazard)

or pass data from one function to another (data hazard).

With regard to memory spaces, AutoPilot may map variables onto local

(on-chip) or external (off-chip) memories. By default all arrays get mapped

onto local BRAMs while scalar variables are mapped on configurable fabric

logic. C pointers may also be used (with some limitations) in the input code

and, combined with the AUTOPILOT INTERFACE pragma, they can infer

off-chip memory accesses.
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8.2.2 FCUDA design methodology

The work of this dissertation seeds one potential pathway for synthesizing

FPGA configurations by leveraging an existing HLS tool called AutoPi-

lot, which takes annotated C code as its input. The advantages offered

by the CUDA programming model in an FPGA design flow are multifold.

Even though CUDA incorporates more memory spaces than AutoPilot, they

both distinguish between on-chip and off-chip memory spaces, and leverage

programmer-specified data transfers between off- and on-chip memory stor-

age.

Coarse-grained parallelism in CUDA is expressed in the form of thread-

blocks that execute independently on the independent processing units within

the GPU. Moreover, the number of thread-blocks in CUDA kernels is typi-

cally on the order of hundreds or thousands. Thus, thread blocks constitute

an excellent candidate in terms of lack of synchronization requirements and

workload granularity for FPGA core implementation. Mapping thread-blocks

onto parallel cores on the FPGA minimizes inter-core communication without

limiting parallelism extraction. Low inter-core communication helps achieve

higher execution frequencies and eliminate synchronization overhead. As a

final point, CUDA provides a very concise programming model for expressing

coarse-grained parallelism through the single-thread kernel model. AutoPi-

lot (as most existing HLS tools), on the other hand, employs a programming

model that expresses coarse-grained parallelism explicitly in the form of mul-

tiple function calls annotated with appropriate pragmas. FCUDA automates

the extraction of the inferred parallelism in CUDA code into explicit paral-

lelism in AutoPilot input code while handling data partitioning and FPGA

core synchronization. Thus, it eliminates the tedious and error-prone task

of directly expressing the coarse-grained parallelism in C for AutoPilot. Our

FPGA design flow allows the programmer to describe the parallelism in a

more compact and efficient way through the CUDA programming model re-

gardless of the implemented number of FPGA cores.

Our CUDA-to-FPGA flow (Figure 8.5) is based on a code transforma-

tion process, FCUDA (currently targeting the AutoPilot HLS tool), which is

guided by preprocessor directives (FCUDA pragmas) inserted by the FPGA

programmer into the CUDA kernel. These directives control the FCUDA

translation of the expressed parallelism in CUDA code into explicitly-expressed
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Figure 8.5: FCUDA toolchain flow

coarse-grained parallelism in the generated AutoPilot code. The FCUDA

pragmas describe various FPGA implementation dimensions which include

the number, type and granularity of tasks, the type of task synchronization

and scheduling, and the data storage within on- and off-chip memories. Au-

toPilot subsequently maps the FCUDA specified tasks onto concurrent cores

and generates the corresponding RTL description. Moreover, AutoPilot uses

LLVM’s dependence analysis techniques and its own SDC-based scheduling

engine [56] to extract fine-grained, instruction-level parallelism within each

task. Finally Xilinx FPGA synthesis tools are leveraged to map the gen-

erated RTL onto reconfigurable fabric. We demonstrated that the FPGA

accelerators generated by our FPGA design flow can efficiently exploit the

computational resources of top-tier FPGAs in a customized fashion and pro-

vide better performance compared to the GPU implementation for a range

of applications.

8.2.3 FCUDA design details

Concurrency in CUDA is inferred through a single-thread kernel with built-in

variables that are used to distinguish the tasks of each thread. Application

parallelism is expressed in the form of fine-granularity threads that are fur-

ther bunched into coarse-granularity thread-blocks. Even though thread-level

parallelism can improve performance, thread blocks offer higher potential for

an efficient multi-core implementation on FPGAs. As discussed previously,

CUDA thread-blocks comprise autonomous tasks that operate on indepen-
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dent data sets and do not need synchronization. Conversely, CUDA threads

within a thread-block usually reference shared data which often results in

synchronization overhead and/or shared memory access conflicts.

Parallelism in C code for FPGA synthesis by AutoPilot is explicitly ex-

pressed through parallel function calls. A single callee function with a dif-

ferent set of arguments in each call may be used to infer a homogeneous

multi-core configuration similar to the GPU organization, whereas differ-

ent callee functions may model a heterogeneous multicore configuration on

FPGA. Therefore, the core task of the FCUDA source-to-source translation

can be simply described as converting thread-blocks into C functions and

invoking parallel calls of the generated functions with appropriate argument

sets. Having extracted the coarse-granularity parallelism at the thread-block

level, fine-granularity parallelism at the thread level may also be extracted,

provided that non-allocated resources exist on the FPGA. This disparity in

the thread parallelism extraction scheme between GPU and FCUDA may

lead to different combinations of concurrently executing threads in the two

devices. Nevertheless, the degree of parallelism will not differ in typical

CUDA kernels that comprise hundreds of threads per thread-block and thou-

sands thread-blocks per grid.

Another important feature of the FCUDA philosophy consists of decou-

pling off-chip data transfers from the rest of the thread-block operations. The

main goal is to prevent long latency references from impacting the efficiency

of the multicore execution. This is particularly important in the absence

of GPU-like fine-grained multi-threading support in FPGAs. Moreover, by

aggregating all of the off-chip accesses into DMA burst transfers from/to on-

chip BRAMs, the off-chip memory bandwidth can be utilized more efficiently.

FCUDA also leverages synchronization of data transfer and computation

tasks based on the FCUDA annotation injected by the FPGA programmer.

The selection of the synchronization scheme often incurs a tradeoff between

performance and resource requirements. The FPGA programmer needs to

consider the characteristics of the accelerated kernel in order to make an ed-

ucated decision. A simple and resource-efficient scheme is the simple DMA

synchronization which serializes data communication and computation tasks.

This scheme is memory-overhead-free and it can also be a good fit for ker-

nels that are compute-intensive and incur low data communication traffic.

At the opposite end, the ping-pong synchronization scheme overlaps data
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communication with computation by doubling the number of BRAM blocks.

The interconnection logic interchangeably connects each BRAM block to the

compute logic and the DMA controller, ensuring that each BRAM block is

actively connected to only one of the two modules in each cycle. However,

this scheme may result in BRAM utilization overhead, impacting the number

of cores that can be instantiated on the FPGA.

The MCUDA tool, with minor modifications, was used as the front end

of the FCUDA source-to-source compiler, performing region-based serializa-

tion and scalar expansion as necessary. The back-end engine of the FCUDA

source-to-source compiler leverages the implementation information anno-

tated in the FCUDA pragma directives to guide the translation of the ker-

nel coarse-grained parallelism into the function-level type of parallelism sup-

ported by AutoPilot. Tasks annotated by FCUDA COMPUTE and TRANS-

FER pragmas are extracted into task functions to perform the specific compu-

tation or data transfer specified by that region, leaving calls to the extracted

functions in the original kernel program locations, hereafter called the parent

function. Multiple calls of the task functions wrapped within AUTOPILOT

REGION and PARALLEL directives in the parent function drive the syn-

thesis tool to instantiate parallel processing cores on the configurable fabric.

The degree of parallelism is specified by the parameter information included

in the COMPUTE and TRANSFER pragmas. Apart from the type and num-

ber of cores for each subtask, the FPGA programmer can also extract thread

parallelism (provided available resources exist) by injecting AUTOPILOT

UNROLL and PIPELINE pragmas within the FCUDA COMPUTE anno-

tated tasks, to specify thread-loop unrolling and pipelining, respectively.

FCUDA TRANSFER pragmas are used to annotate data communication

tasks to off-chip addresses. According to the FCUDA philosophy, off-chip

data communication usually infers DMA burst transfers of data between off-

chip memory storage and on-chip BRAM arrays. The FCUDA back-end

engine is also responsible for instantiating array variables which will infer

BRAM block allocation during synthesis by AutoPilot. BRAM associated

arrays are instantiated at the parent function and their number is determined

by the degree of parallelism annotated in the compute tasks that reference

them. BRAM associated arrays may be passed as arguments to compute and

transfer functions similarly to the rest of the variables. More details on the

leveraging of different CUDA memory spaces within FCUDA are discussed
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Table 8.2: FCUDA benchmarks

Kernel Configuration Description

Matrix Multiply
(matmul)

1024x1024
Common kernel in many
imaging, simulation, and

scientific applications

Coulombic
Potential (cp)

4000 atoms,
512x512 grid

Computation of electric
potential in a volume

containing charged atoms
RSA Encryption

(rc5-72)
4 Billion Keys

Brute force encryption key
generation and matching

in the paper by Papakonstantinou et al. [39].

8.2.4 Initial evaluation

For the evaluation of our FPGA design flow we targeted Xilinx Virtex5 FPGA

devices. Virtex5 FPGAs are fabricated in 65nm CMOS technology and can

be clocked at frequencies of up to 550MHz. These features render them good

candidates for making meaningful comparisons with most of the GPU devices

used at the time the work was done. Moreover, the Virtex5 family included

some of the biggest and most advanced FPGAs available that have the ca-

pacity to efficiently host high-concurrency multi-core accelerators. For our

comparison experiments we chose the XC5VFX200T Virtex5 device, which

has more than 100K LUTs, 16Mbits of on-chip BlockRAM memory and 384

DSP units. The GPU device used for the comparisons was NVIDIA’s G80

(90nm fabrication technology) with 16 SM units and 128 cores.

The CUDA kernels we used in these experiments are described in Table 8.2.

Two of them (matmul and cp) were based on GPU-optimized versions that

were tailored into different integer bitwidth versions. The third kernel was

implemented without any device-specific optimizations. In these experiments

we focused on integer performance. Figure 8.6 compares the FPGA and

GPU performance for all versions of the 3 kernels. The rc5-72 kernel is

intrinsically based on modulo-shift operations within 32-bit integers, and

thus it was not transformed into smaller integer bitwidth implementation.

The FPGA performance results are based on the assumption that the off-
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Figure 8.6: FCUDA results: speedup over GPU implementation

chip transfers are implemented by means of a high-bandwidth bus, such as

the FSB (8.5GB/s) [19]. The computation task latencies are measured on

the FPGA. Ping-pong synchronization is used between compute and data

communication tasks and the latency of a single invocation is measured for all

kernels. The GPU latencies do not include the data communication from/to

the CPU.

As can be seen, the generated multi-core accelerators can outperform the

GPU, especially in the case of smaller bitwidths, where application-specific

customization can adapt the datapath of the cores and put the freed resources

toward instantiating more cores. Moreover, the narrower datapaths allow

faster operation execution. For example, the datapath FSM of the 16bit

matmul has fewer states and also uses fewer DSP resources than the 32-bit

one. In the case of 32bit CP, the compute intensive nature of the kernel

results in high DSP utilization per core and low number of cores.

The number of implemented cores was determined by the resource (LUTs,

BRAMs and DSPs) that was most restrictive. However, in the case that

BRAM or DSP blocks are the limiting resource it may be possible to extract

more parallelism without increasing the number of cores. For example, in the

case of 16bit and 8bit matmul kernels where BRAM constrains the number
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of cores, a 2X performance increase was achieved by exploiting thread-level

parallelism within thread blocks. This is enabled by using AUTOPILOT

UNROLL pragmas in the generated thread-loops.

8.2.5 Conclusions

The collaborative FCUDA work established once again that the hierarchical,

fine-grained SPMD programming model popularized by GPU architectures

has rich opportunities for exploiting parallelism at multiple levels and gran-

ularities. Although much of the transformation was initially driven by pro-

grammer annotation, current work is attempting to remove those restrictions.

Given that the GPU programs used in these experiments were only modified

by the added pragmas in most situations, the results show the potential for

FPGAs to directly compete with GPUs as accelerators with existing GPU

kernels representing certain kinds of workloads.

8.3 Coarse-Grained Reconfigurable Arrays

CGRAs are a configurable processor architecture design well suited to being

targeted by software-pipelined loops, and are typically treated as accelerators

for such loops. The Samsung Reconfigurable Processor, for instance, couples

a VLIW processor with a CGRA accelerator [45]. Typically, such accelerators

are targeted with sequential code, analyzed and transformed by advanced

compilers. However, with the technology in this dissertation, we were able

to implement the SPMD kernel accelerator programming model on the same

processor.

8.3.1 Samsung Reconfigurable Processor

SRP, shown in Figure 8.7, is a traditional DSP processor architecture for var-

ious multimedia applications without the support of GPU-style multithread-

ing. In order to exploit the instruction-level and loop-level parallelism em-

Parts of Section 8.3 have been adapted from portions of a previously published work,
c©2012 IEEE, used with permission [24]. The original work was written in collaboration

with H. Kim, M. Ahn and W. Hwu.
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Figure 8.7: Block diagram of SRP architecture

bedding inside multimedia application, SRP has an accelerator called Coarse

Grained Reconfigurable Architecture (CGRA). The CGRA is composed of

an array of processing elements (PEs) such as functional units (FUs) and

register files (RFs). These PEs are connected to each other by dedicated

connection wires. The CGRA also has a dedicated memory for reconfiguring

itself called configuration memory. By changing the content of the con-

figuration memory, the CGRA can reconfigure itself for different kernels in

multimedia applications. The configuration memory can host multiple loops

simultaneously as long as their overall size is smaller than the capacity of the

configuration memory. The kernels executed on the CGRA must be loops

that can be modulo-scheduled [42]. All parts of the SRP code except the

accelerated loops are executed on a separate VLIW processor. These code

parts contain the instructions for the application control such as branch and

jump and prepare the data necessary for the execution of the loops in the

CGRA. In order to avoid the data copy for delivering program context from

the VLIW to the CGRA or vice versa, the central register file is shared by

the VLIW and the CGRA. Due to this, the execution handover from the

VLIW to the CGRA or vice versa takes only a few cycles.

SRP has a simple but efficient two-level memory hierarchy. Instead of data

cache, SRP has a scratchpad memory composed of multiple banks. As the

access latency in the scratchpad memory is much shorter than in DRAM, it

is usual to preload the necessary data in off-chip DRAM into the scratchpad
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memory by using DMA.

Programming for the CGRA is implicit. The only thing for the application

programmers to do is to select the loops that they want to accelerate on the

CGRA. They can do it by adding a pragma right before the loops. Then

the compiler for SRP automatically builds a configuration of the CGRA for

the loop by the modulo-scheduling algorithm [40]. In the modulo-scheduling

algorithm for the CGRA, the compiler tries to use not only instruction-

level parallelism but also loop-level parallelism by overlapping several loop

iterations at the same time. Generally an innermost natural loop is a good

candidate for modulo-scheduling. Even though the compiler can find the con-

figuration of good performance in many cases, it is advisable to fine-tune the

loop for modulo-scheduling. The performance of the modulo-scheduled loop

is mainly influenced by two factors: resource and recurrence constraints [42].

In order to increase the performance of the loop on the CGRA, the applica-

tion programmers have to make their loop with the minimum recurrence if

possible. They also should fit the maximum instantaneous resource usage in

the loop to the available resources of the CGRA, even though if-conversion

by the compiler can transform the control flow inside the loop.

8.3.2 OpenCL Compiler Framework for SRP

OpenCL
Program Serializer

  Post
Optimizer

   C
Compiler Binary

Figure 8.8: OpenCL compiler framework for CGRA

The proposed design of the OpenCL compiler framework is composed of

a serializer and post-optimizer, in addition to the standard C compiler. Fig-

ure 8.8 shows the block diagram of the framework. The serializer is simply

the MxPA OpenCL-to-C translator using region-based loop serialization, as

described in Chapter 5.

The post-optimizer takes over the serialized kernel and performs specific

optimizations for CGRAs. We have identified that additional optimizations

must be developed in pursuit of maximum performance after serialization.

In particular, the strength of CGRAs is the loop acceleration where it ex-
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ploits wide instruction-level parallelism from an aggressive software pipelin-

ing. Since OpenCL kernels are generally regarded as the most performance

demanding part of a program, program execution must remain in a CGRA

as long as possible when it runs OpenCL kernels. Therefore, optimizations

maximizing the coverage of software pipelinable loops in the serialized kernels

should be followed.

The exposed serialization loop is often the innermost loop of the trans-

formed kernel code, making it an excellent target for mapping to a CGRA.

Serialization loops bring useful properties that the compiler can take advan-

tage of. First, the serialization loops are canonical loops. Second, they are

natural loops in that they have single entry and single exit. Third, execution

of the serialization loops does not carry data dependence over its iterations

by assertion, because the loop iterations were originally expressed as parallel

tasks. Such properties are extremely valuable for the post-optimizer to fur-

ther optimize the code with loop-level transformations, which could at some

future point be integrated into Samsung’s C compiler for SRP.

Resource Utilization Optimization

A high degree of instruction-level parallelism can be achieved from a success-

ful software pipelining of a loop on a CGRA. In software pipelining [27], the

total execution cycle of a loop, denoted as T , can be calculated from Eq. 8.1

as shown below:

T = (N − 1 + S) × II, (8.1)

where N is the trip count of the loop, II is initiate interval and S is stage

count. II and S dictate the performance of the loop execution. Both resource

and recurrence constraints play a key role for compiler in determining II.

Among them, the compiler can ignore recurrence constraints according to a

property of serialization loops. Therefore, the performance depends on the

resource constraint.

While smaller II implies better performance in general, such low II can

be caused by too few operations to schedule, resulting in many unused FUs.

Resource utilization, denoted as R, is a metric to measure the efficiency of

hardware for a given task as defined in Eq. 8.2:
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Table 8.3: II, resource utilization and performance over different unrolling
factors

Unrolling factor II Resource utilization Performance (cycles)
1 5 0.11 5156
2 5 0.17 2608
4 5 0.27 1348
8 8 0.29 1088
16 14 0.30 964

R =
M

II ×W
, (8.2)

where M is the number of operations of the loop, and W is the number

of FUs of the reconfigurable grid. The importance of realizing smaller II

is stressed here again in pursuit of better resource utilization. It implies a

compiler should schedule as many operations as possible under the same II

envelop.

Unrolling a loop with low resource utilization is a valuable optimization

along with serialization. As previously mentioned, unrolling does not change

recurrence constraints due to the inherent properties of OpenCL kernels.

Therefore, a compiler can safely unroll a loop until full resource utilization

is obtained.

Table 8.3 shows trends of II, resource utilization and performance for

a serialized OpenCL vector addition kernel by changing the unrolling factor

from two to sixteen. The loop is software pipelined over a CGRA of 4x4 FUs.

Performance is measured on a cycle-accurate simulator assuming a perfect

memory system. The latency of load operation is set to four cycles. The rate

of increase of II is far lower than that of the unrolling factor, and it manifests

multi-factor speedup. Beyond a point where the performance saturates, eight

in this particular case, larger unrolling factor saturates resource utilization

and begins to increase II proportionally.

Serialization Loop Flattening

Work-items in OpenCL have indexes with up to three dimensions. As such,

serialization loops are formed as triply nested loops, as illustrated in Fig-
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void kernel_func_3D(...) {
  for (z = 0; z < nz; z++) {
    for (y = 0; y < ny; y++) {
      for (x = 0; x < nx; x++) {
        ...
} } } }

(a) Serialization loops in the form of
triply nested loops.

void kernel_func_3D(...) {
  for (zyx = 0; zyx < nz * ny * nx; zyx++) {
    z = zyx / (ny * nx);
    y = (zyx / nx) % ny;
    x = zyx % nx;
    ...
} }

(b) Flattened serialization loops
// ny = (1 << ly), nx = (1 << lx)
void kernel_func_3D(...) {
  for (zyx = 0; zyx < nz * ny * nx; zyx++) {
    z = zyx >> (ly + lx);
    y = (zyx >> lx) & (ny - 1);
    x = zyx & (nx - 1);
    ...
} }

(c) Flattened serialization loops using bit operations for
index calculations.

Figure 8.9: Serialization loop and flattening optimization examples.

ure 8.9 (a). Therefore, software pipelining cannot be done for the outer loops,

deferring processing of them to the control processor. As a consequence,

branch and arithmetic operations from the outer loops will contribute to the

execution cycles. It will also have to tolerate overheads due to switching

execution mode between the control processor and the CGRA.

The nested serialization loops can be transformed into a single flattened

loop [21]. A single loop reduces branch overhead from nested loops. In a

case where the flattened loop is the innermost loop, the resulting code can

run on a CGRA for many more cycles from the extended loop trip count. It

also removes execution mode switching overhead.

Flattening the serialization loops is straightforward as they are canonical

loops and natural loops at the same time. Index calculation from the flat-

tened loop is implemented in a simple arithmetic. Figure 8.9 (b) shows the

transformation example.

SRP’s CGRA does not support integer division and modular operations

by hardware. The compiler instead replaces them with equivalent software

implementations, which in turn disqualifies the flattened loop for software

pipelining.

In OpenCL, configuring a power of two number of work-items per work-

group is a common practice [35]. This is because GPU hardware is designed

to allocate resources in power-of-two units. If the programmer leaves the

group size unspecified, then the OpenCL driver can choose a number of

work-items per work-group. For the SRP architecture, a heuristic choosing
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a power-of-two group size would be beneficial.

Under the condition where the loop trip counts are a power of two, flatten-

ing becomes available with efficient bit operations, as shown in Figure 8.9 (c).

In this particular case, the compiler can substitute the integer division and

modular operations with equivalent bit operations for the index calculation.

This method can be extended further to address arbitrary trip counts by

increasing the trip count to the next power of two that is equal to or larger

than the actual trip count. The loop body is guarded with a predicate from

comparing the loop index to the actual trip count. The conditional statement

should be successfully if-converted by the compiler for software pipelining.

Serialization Loop Fission

When the original kernel code is imperfectly nested by the serialization loops,

it effectively prevents the resulting code from being mapped to a CGRA.

This is caused when the kernel code itself contains loops, which we call

kernel loops, and they have sets of statements to execute either before and

after them, such as Figure 8.10 (a). Because the kernel loop is the innermost

loop, it alone will be considered for mapping onto a CGRA, forcing the

leading and trailing blocks to execute on the slower control processor. By

breaking the kernel code at the boundaries of kernel loops, the leading or

trailing code blocks of a kernel loop become loop bodies of serialization loops,

and available for mapping on a CGRA. Breaking the serialization loops is safe

because the original OpenCL work-items have no execution dependencies by

assertion.

Figure 8.10 (c) shows an example of loop fission for serialization loops.

It contains initialization, an innermost loop and a termination part. After

the fission, the initialization and termination can run on a CGRA as they

are identified as software pipelinable. Thus, the transformation enlarges the

coverage of a CGRA execution of the OpenCL kernel. Note that the post-

optimizer could further apply additional transformations for kernel loops

containing serialization loops. For instance, loop interchange or flattening

could be applied to the nested loop in Figure 8.10 (c), transforming into a

perfectly nested loop.
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__kernel void fn(...) {
  ...    // init
  for (i = 0; i < N; i++) {
    ...
  }
  ...    // finish
}

(a) OpenCL kernel

void serial_fn(...) {
  for (x = 0; x < nx; x++) {
    ...    // init
    for (i = 0; i < N; i++) {
      ...
    }
    ...    // finish
} }

(b) Serialized kernel
void serial_fn(...) {
  for (x = 0; x < nx; x++) { ... // init }
  for (i = 0; i < N; i++) {
    for (x = 0; x < nx; x++) {
      ...
  } }
  for (x = 0; x < nx; x++) { ... // finish }
}

(c) Serialized kernel

Figure 8.10: Example of serialization loop fission.

// OpenCL code
__kernel void fn(__global uchar4* c,
    __global uchar4* a, __global uchar4* b) {
  c[idx] = a[idx] + b[idx];
}

// Serialized kernel code
void serial_fn(srp_uchar4* c,
    srp_uchar4* a, srp_uchar4* b) {
  for (x = 0; x < wgs; x++) {
    c[idx] = _I_intr003_rg_addb(a[idx], b[idx]);
} }

(a) Lowering OpenCL vector type

// OpenCL code
__kernel void fn(__global uchar* c,
    __global uchar* a, __global uchar* b) {
  c[idx] = a[idx] + b[idx];
}

// Serialized kernel code
void serial_fn(uchar* c, uchar* a, uchar* b) {
  for (x = 0; x < wgs; x+=4) {
    c[idx] = _I_intr003_rg_addb(a[idx], b[idx]);
} }

(b) Vectorization at the serialization
loop-level

Figure 8.11: Two examples of SIMDization for SRP

SIMDization

SRP’s CGRA supports subword parallelism via SIMD intrinsic instructions

for a selected set of operations. For SIMD instructions, a 32-bit register

can be divided into 2 of 16 bits or 4 of 8 bits. The subword parallelism

is especially useful for graphics applications where primitive information is

stored in 8 or 16 bits.

SRP’s subword parallelism can be used in two situations. First, direct

translation of a group of built-in vector data types of OpenCL becomes avail-

able. OpenCL supports subword vectors of 8-bit or 16-bit, where supported

sizes are 2, 3, 4, 8 and 16. Considering 8-bit subword, charn and ucharn ,

one 4x8bit SIMD operation can replace 4 scalar equivalents when n is equal

to or smaller than 4. For larger n , more than one SIMD operations can
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jointly be utilized. Second, OpenCL programs using subword scalar data

types can be vectorized at the level of serialization loops. The loop-level vec-

torization requires that data dependency is shorter than the vector length

and the loop needs to be innermost. Both can be guaranteed by properties

of the serialization loops. The loop is strip-mined by the vector length, two

or four in this case, and then each scalar instruction within the loop body is

replaced with the corresponding SIMD operation. Figure 8.11 demonstrates

two examples of the transformation. Note that the usage of SIMD intrin-

sics, as shown in the Figure 8.11, is adapted from the intrinsic model of the

IMPACT compiler [8].

8.4 Initial Evaluation

All experiment results are acquired using a cycle-accurate simulator for SRP.

The simulator assumes all data reside in on-chip scratchpad memory and as

such the compiler assigns a uniform latency to all load operations. We also

assume the configuration memory preloads all kernels so that no additional

costs are added other than a few cycles of the execution handover overhead

when reconfiguration happens. The latency of load operation is set to four

cycles. The architecture is configured as 2-way VLIW and CGRA with 4x4

FUs.

We used four benchmarks to evaluate the relation of portability and per-

formance. They are vector addition(vecadd), matrix multiplication(mm),

matrix transpose(transpose) and reduction. Also, we implemented five ver-

sions for each benchmark for comparison. They are unoptimized C code,

innermost accelerated of the unoptimized C code, fully hand-optimized C

code, OpenCL code with serialization and OpenCL code with serialization

and post-optimization. For demonstration purpose, we did not use floating

point operations as availability of floating point units varies across different

configurations of SRP architecture. OpenCL code is assumed to have gone

through the compiler pipeline as described in the framework shown in Fig-

ure 8.8. The unoptimized C code in the simplest form is used as a portable

baseline throughout the experiment.

Figure 8.12 illustrates speedups of various implementations of the bench-

marks. For vector addition, the performance of OpenCL code is approaching
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Figure 8.12: Experimental results for benchmarks. Five bars for a benchmark
represent speedups of (1) the baseline, (2) the baseline with innermost ac-
celeration, (3) fully hand-optimized C, (4) OpenCL kernel with serialization
and (5) OpenCL kernel with serialization and post-optimization, respectively.
The baseline is the unoptimized C code.

to the hand-optimized version, showing up to 5.1x speedup. The OpenCL

code is optimized from unrolling the serialization loop eight times and mapped

to the CGRA. In this simple kernel code, overhead compared to the hand-

optimized one is attributed to the iterative execution of work-groups where

the trip count of innermost loop execution is bounded within dimension of

a work-group, leading to a frequent mode switching and execution in the

VLIW.

The matrix multiplication demonstrates 3.6x speedup of the baseline, though

it is slower than the hand-optimized version by 2.6x. The OpenCL code is

optimized from loop flattening of the two nested serialization loops. Then the

code is further split into three groups by loop fission, in that the first group

sets global ids, the second group performs a dot product and the third group

stores the results. The first and third group run in the CGRA. The second

group is untouched and only the innermost loop runs in the CGRA. This is

not as efficient as the hand-optimized version, where it flattens and unrolls

102



loops to form one innermost loop. We expect the gap would be narrowed

as the post-optimizer extends its scope of optimizations beyond serialization

loops so it can generate code similar to the counterpart.

The OpenCL code of matrix transpose shows 20% slowdown. The OpenCL

code is optimized for GPUs where local memory tiling allows significantly

better memory performance, which is not the case for SRP. From the seri-

alization stage, local memory is lowered to a preallocated memory block in

scratchpad memory and it becomes the sole burden on performance. It also

introduces a barrier which limits the duration of CGRA execution. On the

contrary, the baseline as well as the hand-optimized versions are implemented

as a single innermost loop, loading and storing an item of an array using a

different index. It exemplifies a challenge using an optimized OpenCL code

for portability.

Reduction is a particularly interesting case as the performance gap be-

tween the hand-optimized C and OpenCL codes is the most significant. The

OpenCL implementation of reduction uses a tree-shaped reduction over local

memory, which is an algorithm well suited to a GPU. The code is written

assuming that parallel threads execute in lockstep, and that barriers cost no

more than any other single instruction. Serializing such code results in a loop

for every level of the reduction tree. As the performance results show, the

barriers are far from free, and the single-loop implementation used by the

baseline implementation is much more effectively software pipelined. This

also shows why reductions should be implemented as a library function by

vendors [34].

8.5 Summary and Conclusion

For coarse-grained CPU architectures, accommodating memory systems and

high inter-thread communication costs naturally lead to a model where the

entire task group should be serialized into a single thread. However, the

region formation algorithm ultimately results in small regions of code with

perfect do-all parallelism that can be targeted to other architectures with

different mechanisms. The efforts are somewhat less mature, but show high

promise in initial implementations and experiments.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Future Work: Additional Libraries for

System-Specific Operations

There are a few ways in which the current hierarchical SPMD programming

languages do not encourage portable programming practices. Reaching the

goal of true performance portability will therefore require some language ex-

tensions and standard libraries with platform-specific implementations. Most

often these were “collective” operations, where the threads in a group needed

to coordinate with each other in common patterns that were inhibited by the

barrier-dominated programming model. This section describes the set of new

built-in library functions I would like to add to a hierarchical SPMD language

in the future. The results of this dissertation have shown that in practice,

these tend to be second-order performance effects, in large part because they

are often sub-optimal accelerator programming patterns as well. Neverthe-

less, when they are necessary, these patterns cannot be implemented in a

truly portable manner today.

9.1.1 Reductions

One good example of collective operation is a group-wide reduction, which is

an algorithm whose efficient implementation depends too greatly on the real

degree of parallelism in the target system.

Figure 9.1 shows the two most extreme implementations of a reduction,

one entirely serial and the other maximally parallel. Neither solution is par-

ticularly portable, because the parallel implementation incurs much more

synchronization overhead than necessary on a CPU, while the sequential

algorithm seriously underutilizes the wide SIMD hardware of the GPU. Fur-
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Figure 9.1: Graphical depictions of two reduction algorithms, and their run-
times on an example CPU and GPU architecture. The CPU results are from
a quad-core x86 processor, while the GPU results are from an NVIDIA 9800
GX2.

thermore, neither implementation encourages the use of built-in reduction in-

structions across SIMD lanes in both CPU and GPU instruction sets. Other

collective algorithms that typically require system-specific implementations

are parallel scans [9], and sorts.

9.1.2 Memory copies and explicit locality control

For architectures without an implicit cache, programmers are required to

use explicit scratchpad memory to control locality. On architectures with

a strong implicit cache and no hardware scratchpad, copying data from

“global” memory to “scratchpad” memory is often pure overhead, since both

reside in the same cache hierarchy and memory space. Furthermore, architec-

tures with scratchpad memory often also have the support of DMA engines

for efficiently filling that scratchpad memory. However, the current hierarchi-

cal SPMD languages encourage the programmer to directly use the threads

themselves to move data between global memory and scratchpad. This can

significantly complicate code when the size of the data being cached does not

directly match the size of the thread group working on that tile of data, as

shown in Figure 9.2. Conversely, privatization of data results in block-shared

arrays that eventually need to be copied or contributed to global output.
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1 __global__ void block2D_reg_tiling(float c0,float c1,

2 int nx, int ny, int nz, float Anext[nz][ny][nx],

3 float A0[nz][ny][nx]) {

4 dim3 tidx = threadIdx;

5 dim3 bDim = blockDim;

6 int i = blockIdx.x*bDim.x+tidx.x;

7 int j = blockIdx.y*bDim.y+tidx.y;

8 float bottom = A0[0][j][i], current = A0[1][j][i];

9 if( i>0 && j>0 &&(i<nx-1) &&(j<ny-1) ) {

10 for(int k=1;k<nz-1;k++) {

11 float top =A0[k+1][j][i];

12 Anext[k][j][i] = c1 * (top + bottom + A0[k][j+1][i] +

13 A0[k][j-1][i] + A0[k][j][i+1] +

14 A0[k][j][i-1]) - c0 * current;

15 bottom=current;

16 current=top;

17 }

18 }

19 }

(a) Without explicit locality control
1 __global__ void block2D_reg_tiling(float c0,float c1,

2 int nx, int ny, int nz, float Anext[nz][ny][nx],

3 float A0[nz][ny][nx]) {

4 dim3 tidx = threadIdx;

5 dim3 bD = blockDim;

6 int i = blockIdx.x*bD.x+tidx.x;

7 int j = blockIdx.y*bD.y+tidx.y;

8 float bottom=A0[0][j][i];

9 __shared__ float cur_plane[blockIdx.y+2][blockIdx.x+2];

10 if( i>=0 && j>=0 && (i<nx) && (j<ny) )

11 cur_plane[tidx.y+1][tidx.x+1] = A0[k][j][i];

12 for(int k=1;k<nz-1;k++) {

13 if(tidx.x == 0) {

14 if(i != 0) cur_plane[0][tidx.x+1] = A0[k][j][i-1];

15 if(i != nx-1)

16 cur_plane[bD.y+1][tidx.x+1] = A0[k][j][i+bD.y];

17 }

18 if(tidx.y == 0) {

19 if(j != 0) cur_plane[tidx.y+1][0] = A0[k][j-1][i];

20 if(j != ny-1)

21 cur_plane[tidx.y+1][bD.x+1] = A0[k][j+bD.x][i];

22 }

23 __syncthreads();

24 if( i>=0 && j>=0 && (i<nx) && (j<ny) ) {

25 float top =A0[k+1][j][i];

26 Anext[k][j][i] = c1*( top + bottom +

27 cur_plane[tidx.y+2][tidx.x+1] +

28 cur_plane[tidx.y][tidx.x+1] +

29 cur_plane[tidx.y+1][tidx.x+2] +

30 cur_plane[tidx.y+1][tidx.x] )

31 - c0 * cur_plane[tidx.y+1][tidx.x+1];

32 bottom=cur_plane[tidx.y+1][tidx.x+1];

33 cur_plane[tidx.y+1][tidx.x+1]=top;

34 }

35 __syncthreads();

36 }

37 }

(b) With scratchpad usage

Figure 9.2: Simple stencil kernels demonstrating the complexity of scratch-
pad usage in a simple stencil benchmark, where the data tile size does not
directly match the computational tile size.
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I propose to develop an interface for explicit locality control that abstracts

away these implementation details, allowing system designers to implement

them as is best for each architecture. The primary features of the interface

will be the ability to specify tiles of data in up to three dimensions, with

cache, release, copy, and memset operations. On current GPUs, the imple-

mentations of these functions would use the threads directly to copy data as

necessary. On CPUs, certain caching optimizations would be replaced with

NOOPs, prefetches, locking of specific cache lines, or direct calls to memcpy.

On systems with DMA engines, many of these operations would be directed

to those engines.

9.2 Extending Serialization Techniques to Handle True

Functions

Several possibilities exist for extending either the region-based or vector-

based implementations to include true function support. One possibility is

to treat all function calls as synchronization points, so that all threads are

guaranteed to enter and exit the function. This would allow each function

to be compiled separately, but it imposes additional constraints on the pro-

gramming model.

An alternative approach is to use interprocedural analysis or a multipass

compilation framework to first identify which functions may contain syn-

chronization themselves. Functions that may contain synchronization are

translated normally. The previously described translation of a function as-

sumes that all threads will enter and leave synchronously. If the function

contains a barrier, then this condition is necessarily true in any context from

which it is called, due to the restrictions on barrier placement. It can always

be compiled using the described techniques.

Functions that do not contain synchronization must be specially consid-

ered. In the case where a function cannot possibly be the entry point of a

kernel of spawned threads and contains no synchronization, each invocation

of the function will exist within a thread loop of another translated function.

Implicit variables must still be supplied to the function as parameters, includ-

ing the thread index itself, but the internal structure of the function need not

be transformed. In the case where the function is the entry point of a kernel
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invocation, it should be translated as shown in this chapter to implement

the computation of all logical threads. If a function without synchroniza-

tion is both a potential entry point of a kernel and called from other device

functions, the function must be duplicated. One instance of the function is

referenced only by other device functions and the other referenced only by

kernel invocations. Each instance should be translated appropriately.

9.3 Alternatives and Related Work

This system design proposal is not the only feasible way of achieving per-

formance portability, but is a minimum set of requirements for what the

collection of systems must do to achieve it. Continued tools development

can help move additional optimizations reliably under the systems control,

e.g., by applying existing work on automatic locality management [38].

Other languages, particularly those at a higher level of abstraction, may

provide tools with additional opportunities to generate good code for various

platforms [47]. The work of those system developers should be assisted by

this proposal, which provides a single low-level program representation that

is portable across many parallel architectures. The developer of the high-level

language is then shielded from the burden of architecture-specific optimiza-

tions for each new architecture, and can instead focus on the more universal

but challenging issues of tasks of decomposition and locality management.

Similarly, with strong high-level language and tool support targeting a unified

interface, system developers can initially focus on implementing the low-level

interface well.

In this dissertation, I identify the subset of optimizations and implemen-

tation decisions that must be handled by the system on a per-architecture

basis. Without this support, performance portability is not possible, because

it would expose conflicting software requirements from the various platforms.
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