
I

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type o f computer printer.

The quality o f this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

i
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ROBUST FOUNDATION FOR
BINARY TRANSLATION OF X86 CODE

BY

LIANGCHUAN HSU

B.S., Chung-Cheng Institute of Technology, 1986
M.S.. Naval Postgraduate School, 1990

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1997

Urbana. Illinois

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9812629

UMI Microform 9812629
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

©Copyright by

Liangchuan Hsu

1997

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U N IV ER SITY OF ILLINOIS AT URBANA-CHAM PAIGN

THE GRADUATE COLLEGE

JUNE 1997

W E H E R E B Y RE COMMEND T H A T T H E T H E S I S BY

LIANGCHUAN HSU

E X T I T L E D ,
A ROBUST FOUNDATION FOR BINARY

TRANSLATION OF X 86 CODE

BE A C C E P T E D IX PA R TIA L FCLFILL.MEXT OF T H E R E o L 'I R E M E X T S FOR

THE D E G R E E OF. DOCTOR OF PHILOSOPHY

//̂
D irector of T h esis Research

H ead o f D epartm ent

Committee on Final Examinat ion!

t Required for doctor's degree but not for m aster’s.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ROBUST FOUNDATION FOR
BINARY TRANSLATION OF X86 CODE

Liangchuan Hsu, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1997
Wen-mei W. Hwu, Advisor

Software venders are unwilling to compile new software for a new processor until the mar­

ketplace of the processor becomes large enough. As a result, utilization of most new hardware

features is delayed. Binary Translation allows programs compiled for older machines to take

advantage of all the new features that have since been added. Binary translation can help

introduce new instruction set architecture (ISA) features to the software base.

This dissertation develops a solid foundation for binary translation. A hybrid approach to

resolving all of branch target problems is proposed and evaluated. It attempts to resolve as

many targets as possible statically, and uses a run-time support when the target cannot be

resolved at translation time.

Self-modifying code is one of the major hurdles to binary translation. This dissertation

describes a self-modifying code detector to prevent the binary translator from translating self­

modifying code. In order to illustrate the usefulness of the binary translation framework,

an optimizer that improves the load time of executable is designed and implemented in the

framework.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my wife, Chiu-hua, and my children, Amy and Andy.
Thank you for your love, support and longsuffering!

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

First and foremost, I would like to thank my advisor, Professor Wen-mei W. Hwu, for his

insight and guidance throughout my studies. Not only was it an honor to work with someone

of his caliber, but it was also a pleasure. He truly cares about the needs of his students. Next.

I would like to thank Sabrina. It always enjoyed having a barbecue at "Hwuville".

This research would not have been possible without the support of the IMPACT research

group. Members of the group were always willing to provide any help required - from research

discussions to practice talks. I deeply appreciate the assistance of Roger Bringmann. Scott

Mahlke. Dave Gallagher, Richard Hank, Dan Lavery, John Gyllenhaal, David August, Andrew

Hsieh. Teresa Johnson, Brian Deitrich, Le-chun Wu, Ben-Chung Cheng, and Matt Trommer.

Thanks to Kemal Ebcioglu and Eric Altman of IBM T. J. Watson Research Laboratory

for their valuable discussions about the VLIW architecture. Their technical ability and insight

across the entire spectrum of computer architecture are remarkable. I also would like to thank

Alfons Hoogervorst, a friend I made on an internet newsgroup. He answered a lot of my

questions about x86 protected-mode system programming.

Finally. I must thank my wife, Chiu-hua, and my children, Amy and Andy, for their love

and support during this difficult time in graduate school. They are the ones who truly sacrificed

to make my graduate studies possible. I also thank my mother-in-law, Yang, for helping to take

care of our children in the past year. During the last year of my graduate studies, Chiu-hua

had to return to Taiwan to resume her job. She works on week days in Taoyuan and takes

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the train to Chiayi on weekends to spend time with our children. Thanks, and we are eagerly-

awaiting again having a complete family!

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Chapter Page

1 In tro d u c tio n .. 1

2 P rev io u s W o r k ... 5
2.1 Related Work in I n d u s t ry .. 5
2.2 Related Work in Academia ... 10

3 B ack g ro u n d .. 12
3.1 Binary Translation M o d e l.. 12
3.2 Executable File Header ... 13

3.2.1 The NE Header .. 15
3.2.2 Tables in the NE F i l e .. 15
3.2.3 Per-Segment Data In fo rm a tio n .. 17

3.3 Dynamic Linking ... 18

4 B in a ry F r o n t - E n d .. 20
4.1 Parsing Binaries ..20
4.2 Decoding CISC Instructions...24

4.2.1 The Decoding P ro c e s s ... 24
4.2.2 Control-Flow A n a ly sis ..25

4.3 Verifying the Decoding P ro c e s s ..26
4.4 Executing the Translated C o d e .. 30

5 E d itin g B i n a r i e s ... 35
5.1 Relocation for Determinable T a rg e ts .. 35

5.1.1 Intra-Segment T a rg e ts ... 36
5.1.2 Inter-Segment T a rg e ts ... 37
5.1.3 Callback Functions..39
5.1.4 Hashing Jumps with Regular P a tte rn s ... 40
5.1.5 Indirect DLL Function Calls ... 42

5.2 Relocation for Non-Determinable T a rg e t... 43
5.2.1 Non-Determinable Branch T a rg e ts ... 43
5.2.2 Adjusting Non-Determinable Branch T a r g e t s .. 45
5.2.3 Analysis of Non-Determinable Branch T argets .. 47

5.3 Incremental T ran s la tio n .. 51

6 S elf-M odify ing C o d e ... 55
6.1 Overview of X86 Protected Mode A rch itec tu re ...56
6.2 Detection S tra te g ie s ...57
6.3 Handling Self-Modifying Code ... 62

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 Post Translation ... 66
7.1 Modification of Executable H e a d e r ... 67
7.2 Modification of Executable B o d y .. 68
7.3 Dealing with Size Expansion ... 69
7.4 Designing the New Executable File ... 73

8 Im proving the Program Load T im e ... 76
8.1 Description of Load Process and C o s ts .. 76
8.2 Examples of Load Time Inefficiencies..79
8.3 Improving the Load T im e ...81

8.3.1 Profile-Driven C o m p ila tio n ..81
8.3.2 Executable Translation .. 82
8.3.3 G an g lo ad ... 83

9 Conclusions ... 85
9.1 C o n trib u tio n ... 85
9.2 Future Work ... 86

9.2.1 Performing Machine-Level O p tim iza tio n s ...86
9.2.2 Removing Segment O p e ra tio n s ... 87
9.2.3 Translating 32-Bit C o d e ..87
9.2.4 Porting 32-Bit Code to 64-Bit C o d e ..88

R eferen ces .. 90

V i t a ... 92

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table Page

5.1 The percentage of non-determinable branch targets based on dynamic instruction
count... 51

5.2 The percentage of non-determinable branch targets based on dynamic instruction
count of special operations..52

5.3 The percentage of detected code for CALC.EXE. ... 54

6.1 Application segment types...64

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cn

CJ
*

CM

cm

C
M

List of Figures

Figure Page

3.1 The binary translation framework...13
3.2 The NE file format... 14
3.3 The segment flag word in the NE file... 16
3.4 A source program written in C..19

4.1 Internal data structure for in-memory segments..23
4.2 Verifying the decoding process.. 27
4.3 Operations that share the same addressing mode...28
4.4 Ambiguous situations in generating new binary code...29
4.5 An algorithm for translating and executing the new segment...30
4.6 An algorithm for trapping each loaded segment..31
4.7 Switching mechanism: a code example.. 32
4.8 Switching mechanism: the executable file... 33
4.9 Switching mechanism: the code in memory. ...34
4.10 Switching mechanism: trapping and redirecting execution flow.. 34

.1 Adjusting the branch target...37

.2 Adjusting the inter-segment branch target... 38

.3 Hashing jumps with regular patterns...41

.4 Example of calling a dynamically loaded function..42

.5 Indirect call to the dynamically loaded function (from Microsoft Word)........................... 43
5.6 Hashing jumps with irregular patterns.. 44
5.7 A dynamically determined branch target.. 45
5.8 Branches with non-determinable targets... 45
5.9 Replacing a non-determinable branch instruction with a VMM call.....................................46
5.10 The address mapping table.. 48
5.11 Internal segment data structure augmented with editing information..................................48
5.12 Distribution of CALL instructions..49
5.13 Distribution of JM P instructions.. 50
5.14 A code example of incremental translation {CALC.EXE!)...53

6.1 The x86 memory address translation process...56
6.2 A piece of code that generates self-modifying code...58
6.3 Information in selector table.. 60
6.4 Comparison of LDT entries: one without aliased segments in application program

and the other with aliased segments.. 63

7.1 Two situations resulted after segment size expansion.. 70
7.2 Comparison of original and new HELLOWIN.EXE files... 74

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.1 Segment loading distribution for MicroEmacs startup .. 79
8.2 Segment loading distribution for Excel s tartup ...81

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Software venders are unwilling to compile new software for a new processor until the mar­

ketplace of the processor becomes large enough. For example, when the Pentium Pro was

introduced to the market, most new software was still compiled for the Pentium until the Pen­

tium Pro market matured. As a result, utilization of most new hardware features is delayed.

Also, profiling and optimizing library and third-party code often require binary translation.

The lifespan of such software is usually longer than hardware upon which it was originally

developed. However, recompilation of the source code may not be possible.

Binary Translation is a technique used to transform one executable program generated for

an old processor into an executable for another newer processor. This allows programs compiled

for older machines to take advantage of all the new features that have since been added. Binary

translation can help introduce new Instruction Set Architecture (ISA) features to the software

base.

The objective of this thesis is to develop a solid foundation for binary translation. The most

important problems solved in the thesis work are:

• Analyzing binary code

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Allowing code size to change

• Enabling partial translation, conservative mixed execution of original code and translated

code

• Improving program load time

• Detecting self-modifying code

• Minimizing the overhead of translation

This thesis consists of 9 Chapters. Chapter 2 surveys some industry and academia related

research work on binary translation. Industry primarily uses binary translation during processor

development to facilitate the transformation of a code base developed for one architecture to

the other architecture. Binary translation is also of academic interest and Chapter 2 explores

some reasons why.

Chapter 3 introduces the framework of the binary translator presented in this thesis. Some

background knowledge used throughout the thesis will be introduced in this chapter as well.

Some of the background material needed throughout the thesis, such as executable file format

and dynamic linking, will also be discussed in this chapter.

Chapter 4 discusses the front-end of the binary translator. The front-end deals with reading

in a binary program, decoding it into an intermediate representation, and invoking the code

translator. This chapter analyzes the binary code and performs control-flow analysis. In order to

verify the decoding process, two essential components were implemented in the thesis: a binary

code generator and a execution switching mechanism. The binary code generator produces

binary code from the intermediate representation. After the translated binary code is generated,

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the execution switching mechanism redirects the program control to the translated code during

execution.

After decoding the original binaries, some instrumentation code may be inserted. This

code is used to make measurements, such as performance of the binary code. The binary

code may also be optimized. In either case, the addresses of some instructions may have to

be relocated due to the change in code size. Chapter 5 discusses this instruction relocation

problem. Relocation of code cam affect the branch target in the translated code. This target

may or may not be known during translation. This thesis proposes a hybrid approach to

resolving branch target problems. The hybrid approach resolves as many targets as possible

statically, and uses a run-time support when the target cannot be resolved at translation time.

In order to evaluate the run-time overhead of the proposed approach, this chapter presents a

detailed analysis performed over some popular benchmark programs.

Self-modifying code is one of the major hurdles in binary translation, and by its nature

is machine dependent. Since the x86 architecture was used to develop the binary translation

framework in this thesis, Chapter 6 covers the x86 memory architecture description. This thesis

implements a self-modifying code detector to prevent the binary translator from translating self­

modifying code.

Writing the translated code to secondary storage as a new executable file marks the full

translation cycle. Saving the translated code helps the translator avoid retranslating it when

it is executed again. Some information dynamically maintained by the translator needs to be

included in the new executable file. In order to make the new executable file work, the translator

also needs to modify the original executable file when it creates the new file. Chapter 7 discusses

some of these post translation issues.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The program load time is one of the most perceptible performance factors from the user's

point of view. The segment loading pattern of a program can be profiled during development.

However, the profiling data used in development may not match that of individual users. Chap­

ter 8 addresses this problem, and provides a solution to improve the load time for an executable

program. This solution is based on dynamic profiling of users workload. The translator uses

the collected information to optimize the load time by modifying the segment attributes in the

executable file.

Finally. Chapter 9 draws some conclusions about the work, presents the contribution of the

thesis, and outlines a few research directions in the future from different aspects.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Previous Work

Microprocessor technology has evolved quickly in recent years due to the improvement of

VLSI technology. As a result, hardware systems have become out of date in just a few years.

The lifetime of software, on the other hand, often outlives the system for which it was developed.

To ensure that existing software can be run on a new machine, hardware manufacturers need

to provide backward compatibility. Currently, compatibility is preserved by fixing the ISA.

Preserving compatibility through the ISA. however, limits the performance improvement that

the new hardware can have for old programs. Software compiled for one generation of hardware

may not be able to take advantage of features present in the next generation.

This chapter surveys some of the related work on binary translation. Section 2.1 surveys

the related work in industry and Section 2.2 surveys the related work in academia.

2.1 R elated Work in Industry

Digital Equipment Corporation used binary translation to allow VAX code and MIPS code

to be run on an Alpha AXP machine [27]. They created two translators: VEST, which translates

Open VMS binary images to Open VMS AXP images, and mx, which translates ULTRIX MIPS

images to DEC OSF/1 AXP images. They also ported the Open VMS operating system from

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the VAX architecture to the Alpha AXP architecture [13]. The migration tool contains two

components: a binary translator and a run-time environment. The VEST translator performs

backward symbolic execution [28] of VAX instructions to resolve as many computed branch

targets as possible. A run-time lookup is used when more than one possible computed target

exists. The run-time environment supports completely automatic translation by including a

fallback interpreter of old code, and extensive run-time feedback to avoid using the interpreter

except for dynamically created code. When the binary translator encounters a branch with a

non-determinable target, it generates code to call lookup routines. The lookup routine maps an

instruction address in the old architecture to a new address. If an address mapping exists, the

control switches to the translated code for execution. Otherwise, the interpreter will be invoked

to execute the destination code. The interpretation continues until a control flow change. There

is no detailed report about run-time overhead in [27].

Recently. Digital Equipment Corporation introduced a product. FX!32 [8] [30], which in­

corporated partial translation. FX132 combines both interpretation and binary translation

techniques to translate x86 Win32 applications on Windows NT Alpha. FX!32 consists of

three interoperating components: a run-time environment (runtime), a binary translator, and a

server. The runtime contains an emulator that implements the entire x86 user-mode instruction

set and the complete x86 Win32 environment. When the user rims an application program,

Windows NT invokes the runtime. When the application is first executed, the runtime will

emulate it. When the application is unloaded, the server looks for a new or enlarged profile.

A new profile means that a previously unseen x86 image has been executed and may require

optimization. An enlarged profile indicates that the runtime found more new code in the pre-

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vious execution. In either case, the server invokes the background optimizer to translate the

x86 code into Alpha code.

The binary translator implemented in this thesis differs from FX!32 in several aspects. First.

FX132 implemented the translation by modifying the NT loader. The binary translator in this

thesis, on the contrary, implemented the translation on top of Windows. This difference affects

almost all the implementations of the translation. Second, FXI32 redirects X86-based NT API

calls to corresponding Alpha-based NT calls. Alpha derives most of the performance gain from

the native compiled NT API source which is intensively used in Windows application programs.

This thesis assumes no existing source code.

IBM proposed an experimental binary translator in order to port binary p ro g ram s from

their S/390 architecture to a Very Long Instruction Word (VLIW) architecture [26]. The

architectural framework consists of the migrant engine, the native engine, and the switching

monitor. A translator takes the base object code and produces the native object code to run

on the native engine. The switch table is used during fallback from the native code to the base

code or vice versa. This table maps groups of base instructions to groups of native instructions.

The execution of application is started by setting the migrant engine's program counter

(mPC) to the entry address into base code. The switching monitor continually checks the

mPC, looking for a match with one of the base code address entries in the switching table.

If a match occurs, the corresponding native code address is loaded into the native program

counter, or shadow program counter (sPC). The control is then switched to the native code for

execution. The execution continues until the end of the translated code is reached. This may be

a branch whose target cannot be determined at translation time. If there is no corresponding

native code entry point for this target, the mPC is set to point at the base instruction which

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is the logical successor to the last instruction in the previously executed base code. [26] also

proposed a hardware support for detecting self-modifying code.

D A ISY [9] described some hardware features for a VLIW machine. It intended to emulate

existing architectures, so that existing software, including the operating system, runs without

changes on the VLIW machine. DAISY partitioned the memory into 3 sections. The low

portion is mapped to the physical address space of the old (base) architecture. The middle

portion consists of read-only virtual machine monitor software. The top section stores the

translated code. Each address in the low portion is mapped to an address in the top portion.

The code translation unit is a page. Several VLIW primitive branch instructions were also

defined. The VLIW primitive for branches with a non-determinable target can be implemented

either by hardware or by software. The software approach is similar to [15].

Tandem used binary translation for migrating software from the TNS (Tandem NonStop Se­

ries) CISC-based computer family onto the TNS/R (Tandem NonStop Series/RISC) computer

family based on the MIPS RISC architecture [1]. The approach to resolving various puzzles

about the unpredictable dynamic effects of the original CISC code is to make a best guess based

on static analysis. If the guess turns out to be incorrect, the processor falls into interpretive

execution mode for a short time This approach requires the presence of a CISC interpreter and

all of the original CISC code for potential use by the interpreter. Tandem defined the points

for entry to and recovery from interpreter mode. There is no clear description about how the

switching between the translated RISC code and the original CISC code was implemented.

Motorola used PowerPC Migration Tools to enable a smooth transition of existing applica­

tions (guest) to the PowerPC architecture (target) [2]. Migration tools consist of 4 components:

A Front-End. (parser) that parses the object code or assembly code, a Back-End (code generator)

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that generates the target code, an Interpretive, which is a macro that interprets the instruc­

tion^ semantics, and finally, the Runtime support, which provides the target machine with an

execution environment for the guest code. There were four different configurations for the Mi­

gration tools. In the Emulator configuration, a binary parser decodes one instruction at a time

and invokes a handler tha t uses "C” code to compute the semantics of the guest instruction. In

the Translator configuration, an assembly parser reads in assembly (source) code and invokes

a handler that constructs the intermediate data structures. These data structures are input to

the subsequent code optimizations and generation. It takes one pass through the whole source

code. In the Translating Interpreter configuration, the interpreted instruction can be directly

generated from the translating interpreter without needing to interpret the same instruction

when it is visited again. The Binary Translator configuration is similar to the Translator ex­

cept that its input is the binary code. The paper did not give a detailed discussion of this

configuration.

Sun Microsystems introduced Wabi to run Microsoft Windows applications on the Solaris

desktop [29]. Three core Windows dynamic link libraries: USER.DLL, KERNEL.DLL, and

GDI.DLL have their equivalent in Solaris. Without the need to emulate most of the operating

system code, much of the performance loss can be avoided. Other Windows executables can

have three options for translation. If the architectural platform is x86, the executable will pass

through to the hardware without needing to emulate the instructions. If the platform is not

x86, Wabi either interprets op-code by op-code or translates a block of instructions at a time.

For the latter case, the translated instructions are stored in the translator cache. Loops in

application code are translated once and executed multiple times.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Related W ork in A cadem ia

Laxus and Ball [15] described the analysis of rewriting executable files for their profiling and

tracing tool. qpt. In order to solve the non-determinable target problem, qpt uses a program's

original code segment as a translation table to map from an address in the original program to

addresses in the new program. A few instructions axe inserted before a branch with an unknown

target. These instructions compare the target of the branch at run-time. If the target turns

out to be within the old code, the code dereferences the translation table to find the new target

for the branch. In this thesis, the approach to resolving a non-determinable branch target is

similar to that of qpt.

Wahbe et al [31] presented adaptable binaries for implementing robust binary transforma­

tion. They demonstrated that the information necessary to support adaptable binaries can

be compactly recorded. However, they assumed that this necessary information was propa­

gated from the compiler. This thesis makes no assumption on any rules or compilers used for

generating the original executables.

Wahbe et al [31] also indicated several difficult problems in binary transformation. Among

other things, there is one issue which is of particular interest to this thesis. [31] mentioned that

there is no robust method for distinguishing code from data in the presence of indirect control

transfers. Therefore, one solution to this problem, as implemented in Pixie [7], is to duplicate

the code segment and instrument only the duplicated code. This thesis uses a different approach

to solving this problem. For example, not all kinds of the hashing jump taxgets axe difficult to

resolve. Chapter 5 will give a more detailed discussion on this problem.

The Morph Project [4] was proposed to enable the evolution of executables by repartition-

ing the compilation process and by re-writing the executable. Morph consists of four software

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

components. The Morph back-end. generates executable programs with annotations that can

be used by the editor to retarget the code. The Morph editor performs host-specific optimiza­

tions for the specific hardware platform. PostMorph analyzes existing executables and creates

application-specific optimization templates for retargeting. The Morph continuous monitoring

system generates profile data.

PostMorph uses conservative methods, such as single-step debugging or simulation, to trace

the control flow and data reference activity. The output of this process is classified as safe,

unsafe, and rarely used. Code marked as rarely used will not be optimized. Unsafe code may

require manual transformation. Morph did not examine the issue on transforming unsafe code.

Etch [3] was proposed to evaluate and optimize the x86 application program. Etch is

invoked with an executable and a Dynamic Link Library (DLL). The DLL includes a set of

routines which are called for instructions in the executable. After scanning and instrumenting

the executable. Etch writes a new executable that can be run. The new executable includes

all referenced functions in the callback routines as well as the Etch runtime library. The

instrumentation routines run as a side effect of running the new program. Lee et al [3] did not

discuss the instruction address relocation problem that arises due to editing binaries.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Background

3.1 Binary Translation M odel

The framework proposed in this thesis is designed to handle x86 code. The original ex­

ecutable is a 16-bit Windows application program. The translated executable will contain

instrumentation code or will be optimized code. Figure 3.1 illustrates the overall system.

The framework contains a front-end for reading in a binary program and decoding CISC

instructions. This thesis will introduce the translator front-end in Chapter 4. It also contains

an execution editor which performs insertion of instrumentation code or optimization. Editing

binary program issues will be discussed in Chapter 5. The translator also includes a code

generator that dynamically generates new binary code. After the new code is generated, the

translator may run it and measure the performance via either hardware execution or simulation.

More specifically, this thesis addresses the issues involved in implementing a solid transla­

tion framework. Issues addressed include reading binaries, decoding, solving address relocation

problems, enabling partial translation, supporting a run-time switching mechanism, and mea­

suring the overhead of translation. At the final stage of translation, the translated code will be

written to disk for reuse.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Disk1 R t o n u m a i i r o i k i

R i rrnn.'furmcd code)

Binary Reader

Decoder

Editor

Code Generator

Virtual Machine
Monitor (V VIM)

F igu re 3.1 The binary translation framework.

3.2 Executable File Header

This section describes the 16-bit Windows executable file format. Since much of the work

in the thesis was implemented based on the information given in the executable file, it is better

to introduce the executable file format in this section.

The 16-bit Windows executable file is also called New Executable, or NE. as distinguished

from old DOS executables. Instead of giving a comprehensive NE file description, this section

only introduces those portions which are pertinent to the thesis. For a complete description, the

reader may refer to [18]. Figure 3.2 illustrates the NE file format [18], with some modifications.

The NE file contains a header, followed by a few tables, then followed by each segment

data information. Section 3.2.1 will introduce the NE header. Tables that will be used during

translation will be introduced in Section 3.2.2. Segment data information will be discussed in

Section 3.2.3.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OOh Old-style EXE
Header

20h Reserved

3Ch | Offset to
Segmented Header

40h : Relocation Table
: & Stub Program

Entry Table Offset

Size o f Entry Table

Flags

Number o f Segments j

Segmenf.Offset (CS.1P) I

Segment Table Offset :

Sector Alignment

xx*1 ! Segmented EXE
Header

Segment Table

Resource Table

Resident Name
Table

Module Reference
 T ab le______

Imported Names
Table

Entry Table

Non-Resident
Name Table

Seg i Data
! Seg I Info

Logical-Sector Offset

Length o f seg in file
Flags

Allocation Size

Segment o f Entry Point

Flags

Offset o f Entrv Point

Seg j Data
Seg j Info

F ig u re 3.2 The NE file format.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 .2 .1 T h e N E H ead er

The first two bytes in the NE header are the NE signature. The translator uses this signature

to determine whether it is a valid application for translation. In the header there are also offsets

to several tables such as the Entry Table, Segment Table, and Resource Table. The header also

contains the number of entries in these tables. By using these offsets, the translator can easily

move the file pointer to locate the tables for accessing information. The number of entries

in the table usually helps the translator determine the boundary when accessing information

from within the table. The NE header also contains the address of the first instruction to be

executed. This address has the form of segment:of f set pair. Since the segment address cannot

be known until the NE file is loaded into memory, the value in segment portion has the form

of a logical ID.

At offset 32hex to the NE header there axe two bytes defining the logical sector alignment

shift count. This word indicates the alignment size for the NE file. It will be used when the

translator performs post translation discussed in Chapter 7. The default value for this count

is 9. The offsets 37hex through 3Fhex are reserved with current value 0?s. The translator may

utilize this space to store some valuable translation information. For example, the space may

be used to store the file pointer to a new added area in the NE file, such as whether a segment

was translated or not. Chapter 7 will discuss more details on these issues.

3 .2 .2 T ables in th e N E F ile

One of the tables most frequently used by the translator is the Segment Table. The translator

may use the segment table when a segment is loaded into memory for execution. It may also

need to use the segment table when it writes the translated code to secondary storage. This

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Value Type Description

0007h = TYPE_MASK Segment-type field
OOOOh = CODE Code-segment type
OOOlh = DATA Data-segment type
OOlOh = MOVEABLE Segment is not fixed
0040h = PRELOAD Segment will be preloaded
OlOOh = RELOCINFO Set if segment has relocation records
FOOOh = DISCARD Discard priority

F ig u re 3.3 The segment flag word in the NE file.

table contains an entry for each segment in the executable file [18]. There are 4 words in each

entry. The first word defines the logical-sector offset to the per-segment data, relative to the

beginning of the file. To locate the per-segment data, this number is left shifted by the value

of logical sector alignment shift count described in Section 3.2.1. The second word defines the

length of the segment in the file. The third word defines the flags for the segment. As the flags

defined in the third word are used in almost all the remaining chapters, this section gives a full

description for these flags. The fourth word in the segment entry defines the minimal allocation

size for the segment. In most code segments, this value will be identical to the segment length.

Figure 3.3 defines all the possible attributes for each segment [18]. Each segment in the

NE file can be either C O D E or D A T A , but not both. The P R E L O A D attribute indicates

whether or not the loader should load the segment before the program begins execution. The

M O V E A B L E attribute indicates whether or not the operating system can move it in linear

address space. The D IS C A R D a ttribu te indicates whether or not Windows may discard it

from memory if there is not enough space. If there are several target locations referenced by

the segment, and these locations cannot be determined before run-time, then this segment will

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contain the relocation information for these targets. The R E L O C IN F O attribute indicates

whether or not the segment contains any relocation information.

The Resource Table contains the entries for each resource used in the executable file. In

Windows, a resource can be an icon, cursor, mouse, or others. Although the translator only

translates code, getting information about the resource table can be crucial as far as post

translation and program reuse is concerned. Modifying the original executable file implies that

the offset of resource in the file may be changed as well. By carefully adjusting the offsets, the

translated executable file can be executed without error. Chapter 7 will discuss the modification

of the Resource Table after translation.

The Entry Table contains bundles of entry-point definitions. When a function in the segment

is to be exported, there must be an entry in the entry table. Because Windows is a dynamic

linking environment, the callers of this exported function cannot know the final address of this

function until the segment is loaded and the address is resolved by the loader. The information

in this table will be used both during translation and after translation.

3 .2 .3 P er-S egm en t D a ta In fo rm a tio n

The contents of each segment can be indexed by a combination of both the logical sector

from the entry of the segment table and an alignment shift count from the header. If the

segment has relocation fixups, as indicated in the segment table entry flags words, these fixup

records immediately follow the content. The addresses of exported functions in an application

program cannot be known before the program is loaded. Therefore, the program may call some

functions whose addresses may not be immediately available. One example is that most Win­

dows application programs may call Windows Application Program Interface (API) functions.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The target addresses for these API functions will be fixed when the application is loaded into

memory.

If the operand of an instruction references a target that cannot be resolved before loading,

then there is an entry containing the address of this operand. The translator does not need

to know the values for these fixup records. However, it may need to know the address of

each operand which needs a fixup record. If the translator modifies the content of the original

segment and if such modification results in changes of the offsets of some instructions, then it

needs to adjust the location for these operands, so that an operand of translated code can be

correctly fixed when it is loaded into memory again. These issues are discussed in more detail

in Chapter 5 and Chapter 7.

3.3 Dynam ic Linking

One feature of the Windows operating system is that all executable programs, including

applications and the operating system itself, are dynamically linked before execution. As op­

posed to static linking in which the linker links together all the object code referenced into an

executable at compile time, dynamic Unking is a method in which the program loader links the

modules at rim-time.

To illustrate the merit of dynamic Unking, let us look at an example that compares the

dynamic Unking with static Unking. In Figure 3.4, the application program contains a library

function call, print/ () . In static Unking, the Unker inserts the object code of prin tfQ into the

object code of the program foo.c before it generates the executable file. For example, assuming

there are 100 user programs executing simultaneously with each one calUng printfQ , then there

are 100 instances of p r in tfQ loaded into main memory. With dynamic Unking, on the other

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#include <stdio.h>
int main (void) •[

/* do something, and then call system library function */
printf("Hello world\n");

>

F ig u re 3.4 A source program written in C.

hand, only one instance of p r in t f () needs to be loaded into main memory. As a result, dynamic

linking utilizes memory better than static linking.

The translator implemented in this thesis performs dynamic translation for the binary pro­

gram, which means that the translation of a code segment begins after the loader loads this

segment. As such, most targets that cannot be determined statically have been resolved by the

loader during dynamic linking. However, even after loading, not all of the targets can be found

until the program actually rims. Chapter 5 will address this problem.

For a more detailed introduction to dynamic linking and dynamic link library, the reader

may refer to [16] [17].

19

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Binary Front-End

The frond-end of the binary translator consists of reading in binary code and decoding

it to an intermediate representation. This chapter discusses these issues in Section 4.1 and

Section 4.2 respectively. Verifying the decoding process is also important to the preliminary

stage of translation. This chapter addresses this problem in Section 4.3. The execution of

translated code will be discussed in Section 4.4.

4.1 Parsing Binaries

Parsing the executable program can be done statically or dynamically. There are a few

differences between these two approaches. For each executable file, there is a complete file

header describing all information about the program. When the executable program is loaded

into main memory for execution, some information will be discarded. One example is that

the relocation fixup record associated with the segment is discarded after the loader loads the

program into main memory. On the other hand, the instruction in an executable program

stored in the secondary storage may contain unsolved external addresses. This is because in

Windows all the libraries are dynamically loaded.

20

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This thesis focuses ou reading binaries from main memory. Translating the code when it is

loaded into memory provides us with more accurate information. For example, most unknown

far targets will be available before the translator starts to translate the instruction. Moreover,

since not all of the code segments will be executed, performing dynamic translation guarantees

that only code that is being translated will be executed. Put another way. dynamic translation

supports on-demand translation.

In Windows, each segment in the executable program can be dynamically loaded into main

memory. To intercept the dynamically loaded segment, the translator installs a notification

callback function before the application program stm ts execution. A callback function is a

function that will be called by Windows. Among other notifications, the translator is particu­

larly concerned with the following messages sent by Windows:

(1) When Windows loads a segment into memory

(2) When Windows frees a segment from memory

(3) When Windows is about to start a task. and

(4) When Windows is about to exit a task.

The translator maintains an internal data structure for keeping track of each in-meiuory

segment. Figure 4.1 illustrates the data structure implemented in the translator. Upon re­

ceiving message (1) from Windows, a N F Y -L O A D S E G data structure will be passed to the

translator. This structure includes six attributes: Size, Selector, SegNurn, Type, Instance,

and ModuleName. These attributes represent the size allocated for the segment, the selector

to the segment when the segment is loaded into memory, the segment’s logical segment ID in

the NE file, the segment type, the number of instances that share this segment, and the name

21

\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of its owner. The selector of the segment will be defined in Section 6.1. The size, the logical

ED. and the type of segment were previously described in Section 3.2. Most importantly, the

data structure includes the selector’s value to the segment. The selector value uniquely identi­

fies the segment in memory. This value plays a central role in the switching mechanism. The

DWORD in Figure 4.1 stands for double word which is a 4-byte unsigned integer. When the

translator receives message (1) from Windows, it first checks whether the segment is code or

data. If it is a code segment, it needs to check whether the segment has been translated or

not. It is likely that a code segment was loaded into memory by the loader, translated by the

translator, unloaded from memory by the loader, then loaded again by the loader. In this case,

the translator can avoid retranslation by simply checking the Translated bit for the segment.

The Present bit in Figure 4.1 indicates whether or not the translated code for the original code

segment is in memory. The NewSelector in Figure 4.1 is the selector to the translated code,

provided that the code is in memory.

When the translator receives message (2) from Windows, it updates the segment data

structure. The Present bit will be cleared. Any reference to a segment whose Present bit is

cleared will be considered as an invalid access.

When the user starts an application program, Windows first loads all of the PR E LO A D

segments into memory for the program, then starts execution. After loading all PR E LO A D

segments and before the execution is about to start, Windows will send message (3) to the

translator. Upon receiving this message, the translator obtains the program’s initial program

counter with a selector : o f f s e t pair, or CS:IP. After translation, the translator will redirect

the execution flow from this C S .IP value to its new counterpart. The translator needs the new

22

t
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

typedef struct SegNodeTypeTag -C
/ * NFY_LOADSEG data structure */
DWORD Size;
WORD Selector;
WORD SegNum;
WORD Type;
WORD Instance;
LPCSTR ModuleName;

/* New code segment information */
BYTE Translated; /* Translation bit of the segment */
BYTE Present; /* Presence bit of the segment */
WORD NewSelector; /* Pointer to the new code seg */

/* Info for control flow analysis */
0PER_TYPE *head_op, *tail_op;
DWORD index;
MEM_TYPE code_map[FLOW_MEM_CHUNK_MAP_SIZE];
MEM.TYPE fallthru_stack[MAX_STACK_SIZE+1] ;
DWORD top_fallthru_stack;

struct SegNodeTypeTag *nextSeg;
> SegNodeType;

F ig u re 4.1 Internal data structure for in-memory segments.

23

i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C S .IP not only to start executing the new code, but also to generate the new executable file

when the translation is completed. Chapter 7 will discuss this point.

When the running program is about to exit, the translator will receive message (4) from

Windows. After receiving this message, the translator can perform post translation task such

as writing the translated code to the secondary storage.

4.2 D ecoding CISC Instructions

4.2 .1 T h e D e co d in g P r o c ess

After intercepting binary code from memory, the next step is to decode it into an Intermedi­

ate Representation (IR). Decoding is basically a table lookup process in that the translator uses

the hexadecimal value to determine the operation code. Since the length of an x86 instruction

is variable, the translator may need to decode additional binaries such as addressing mode in

order to determine the instruction length.

There are several options in decoding the intercepted binaries. First, the translator can

decode one instruction at a time, translate it into new operations, and execute these operations.

This is actually an interpretation approach. Interpretation has one advantage in that the

translator will never translate data into code. However, in general interpretation is very slow

[8] [lOj.

The second option is to decode the whole intercepted code segment, perhaps one function at

a time. Decoding the whole segment provides us more opportunities for optimizing the new code.

However, it is likely that the translator may decode data or patched bytes into instructions.

There are two approaches to solving this problem. First, the translator may interpret the

instruction the first time it parses the original code, or whenever the untranslated code is

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

found. Second, the translator may perform a quick control-flow analysis over the code segment

before decoding it. For example, unless an address is the target of some branch instructions, the

address that immediately follows a non-conditional branch will not be decoded. In this thesis,

the decoding process is guided by control-flow analysis which will be discussed in Section 4.2.2.

4 .2 .2 C o n tro l-F low A n a ly sis

Given a dynamically-loaded code segment and a starting instruction pointer, the control-

flow analyzer starts decoding instructions without actually running them. If the instruction

being decoded is not a branch, then the analyzer only needs to advance the program counter to

the next instruction, provided that the program counter does not exceed the length of segment.

The starting instruction pointer can be either the initial IP , or any entry point in the segment.

Section 4.4 will discuss how the translator gets the instruction pointer before the control-flow

analyzer is invoked. In order to find as many instructions as possible, the control-flow analyzer

may need to iterate several times until all the entry points that belong to this segment are

visited.

During analysis, the translator maintains some information in its internal segment data

structure. Control-flow information is included in the data structure illustrated in Figure 4.1.

The variables headOp and tailOp in Figure 4.1 are used to maintain a list of operations in

the segment. The attribute index keeps track of the total contiguous instruction areas visited

for the segment. The attribu te codejmap defines the lower and upper boundaries for the each

contiguous instruction area. Both the attributes fallthru^stack and top-fallthru^stack are

used when the decoded instruction is a conditional branch or a function call. If the translator

encounters a conditional branch or a function call, it will first save the fallthrough target to a

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stack, and visit the taken target of conditional branch. If the translator cannot decode further,

it then pops the fallthrough target and keeps decoding, until the fallthrough stack is empty. As

soon as any adjacent instruction areas are found, the translator merges them to form a larger

single area.

The control-flow analysis module built in the thesis is a conservative approach in that all

the code area it detects must be instructions. While a conservative approach is needed to

guarantee correct translation, sometimes the results may be weak. To remedy this problem,

the translator must be able to support incremental translation which will be discussed in more

detail in Section 5.3.

4.3 Verifying th e D ecoding Process

After the decoding process, the translator may need to verify the output code before it can be

used for further transformation. The verification of the decoding process is difficult in general,

due to the irreversibility of compilation. One might use a commercial disassembler, such as

Sourcer [6], to help verify the decoding process. The translator may generate assembly code

from the IR, and compare the result with the assembly code generated by Sourcer. However,

this is not a reliable way to do verification. The assembly code generated by Sourcer may not

be accurate. In our approach to debugging the decoding process, the translator also contains a

binary code generator which translates the IR back to binaries for execution. This step bypasses

the editing process, thus helping to distinguish the bugs between the decoding process and the

editing process. The dashed arrow in Figure 4.2 illustrates the verification process.

The binary code generator is similar to an assembler. The main difference is that the input

to the generator is not assembly code, but the IR. One could use a commercial assembler to

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

jt

W i n d o w s E x e c u t a b l e

I R ! o r i g i n a l e o d e i

T r a n s l a t e d B i i u r v

Decoder

Code Generator

Binary Reader

Virtual Machine
Monitor (VMM)

F ig u re 4.2 Verifying the decoding process.

generate the new binary code. However, there are two major concerns with this method. First,

the input to the assembler must be assembly code. Sticking to a specific assembly representation

usually is not a good idea for later optimization. Second, the binary code is generated from

the IR after the executable program was loaded into memory for execution. Relying on an

assembler usually takes more time to produce new code and sometimes the generated code

must be modified to conform to the specific assembler syntax. For these reasons, this system

bypasses using an assembler to generate binary code.

Since some operations share the same pattern of addressing modes, the code generator uses

several templates to generate binary code. For example, Figure 4.3 shows that there are 8 x86

operation codes that share the same pattern of 4 addressing modes. The code generator may

group them together and use a template to generate the binary code.

In addition to fully generating the x86 code from the IR, a slim version of a code generator

was also implemented to accelerate the develop time. In this version, the original binary code

is copied to the new code directly from the IR, provided that the instruction has not been

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Operations:
ADC
ADD
AND
CMP
OR
SBB
SUB
XOR

Description:
Add with Carry
Add
Logical AND
Compare Two Operands
Logical Inclusive OR
Integer Subtraction with Borrow
Integer Subtraction
Logical Exclusive OR

Addressing Modes:
Destination
{AL,AX,EAX},
{r/m8,r/ml6,r/m32>,
{r/m8,r/ml6,r/m32},
{r8,rl6,r32},

Source
•[imm8, imml6, imm32j-
■Cimm8, imml6, imm32}
{r8rl6,r32>
{r/m8,r/ml6,r/m32>

imm: immediate value
r/m: either register or memory operand
r: register
8/16/32: size of operand, in byte

F ig u re 4.3 Operations that share the same addressing mode.

28

t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example I:

Opcode Instruction

FF ModR/M DEC r/m

48+rw DEC reg

Example 2:

Opcode Instruction

89 ModR/M MOV r/m. reg

8B ModR/M MOV reg. r/m

Intermediate

. DEC reg .

Opcode
I I

FF ModR/M

48+rw

OpcodeIntermediate

89 ModR/M
MOV reg. reg

8B ModR/M

F ig u re 4.4 Ambiguous situations in generating new binary code.

changed. For each IR, the hexadecimal code is also stored as soon as the instruction length

is determined during decoding. The hexadecimal code is copied to the new code during code

generation.

Since it is likely to have more than one binary code corresponding to an x86 assembly

instruction, generating new code from decoded binaries may result in ambiguity. Consider

Figure 4.4 for examples. In Example 1, there can be two binary codes for the decrement

register instruction. The first encoding contains two bytes: F F and a M o d R /M byte which

determines whether the operand is memory or register. The second encoding contains only one

byte since the register value is encoded as part of the operation code. Special care must be taken

during code generation, since different sizes of instructions may affect the relative addresses of

other instructions. This is particularly true after performing optimizations on the new code.

In each IR, instruction length as well as hexadecimal code are stored. Either information can

be used to determine the encoding. In Example 2, the assembly instruction moves the value

of one register to the other register. This assembly may have two different binary codes that

perform the identical operation. This case, however, does not affect the result since the length

of these two encodings are identical.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i = logical segment ID;
allocate a memory space, Mem[i] ;
translate Seg[i] into Mem[i];
make Mem[i] executable;
obtain the selector, Sel[i], for Mem[i];
Ofs[i] = new IP;
replace the initial CS:IP with SelCi]:Qfs[i];

return control to operating system;

F igure 4.5 An algorithm for translating and executing the new segment.

Another way to verify the decoding process is for the binary code generator to generate

a binary image to secondary storage, and compare the output file with the one generated by

commercial product. For example, the T D U M P command associated with Turbo Debugger

can be used to dump the specific binary image of an executable program. This can then be

compared with the output generated by the binary code generator.

4.4 E xecuting the Translated C ode

After the intercepted code is translated, the next step is to execute the new code. At the

beginning, this code will s tart execution from its new initial program counter. Figure 4.5 shows

the algorithm for redirecting execution to the new initial program counter.

The logical segment ID in Figure 4.5 can be obtained from the internal segment data struc­

ture described in Figure 4.1. First, the translator requests a memory space from the operating

system for storing the new code, then starts translation. Since allocated memory cannot be

executed, the translator needs to change the access right for allocated memory before it can

be executed. At the last stage, the translator replaces the original C S:IP value with its new

counterpart and returns control back to the operating system. The new initial code segment

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for each loaded segment {
find all entry points which belong to this segment;
for C j=l; j <=Entry_Found; j++) {

backup the byte content MEM[OFFSET(j)]
mask the byre content MEM[OFFSET(j)] with a breakpoint;

>
>

return control to operating system;

F ig u re 4.6 An algorithm for trapping each loaded segment.

address, or SW[t']. is available as soon as the translator makes the memory executable. The new

initial offset, or O fs\i\. is fully under the control of the translator. When the new code was

modified. O fs[i] may or may not be the same as IP . The translator is responsible for keeping

track of such change.

In addition to redirecting execution to the new initial program counter, the translator also

needs to set up some extra traps when each code segment is loaded into memory in order to

capture more instructions later. Figure 4.6 shows the algorithm used by the translator during

segment loading.

The entry points in Figure 4.6 can be found in the module table of an application program.

For each loaded code segment, the translator will replace the byte content a t all entry points

with breakpoints if the segment contains any of them. The O F F S E T (j) in Figure 4.6 stands for

the offset of an entry point, j , to the beginning of the segment. M E M [O F F S E T (j)] stands

for the byte content in address O F F S E T (j) . As mentioned previously, the translator can

obtain the program’s initial program counter from Windows. Starting from this initial program

counter, the translator can decode and analyze the binaries. If any instruction in the initial

segment branches to another segment, the translator must detect such a branch, or this target

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bar.c
func_l() {
}
func_2() {
}

fiinc_l(); |
fimc_2();

}
F ig u re 4.7 Switching mechanism: a code example.

segment could never get a chance to be translated. As such, the translator sets up breakpoints

at all entry points in the segment as traps. Whenever the target in the segment is trapped, the

translator may then translate the segment.

works. The source program contains two files, foo.c and bar.c. Foo.c contains calls to functions

will generate far calls for the calling instructions in foo.c. Figure 4.8 shows the executable

file for the source program. In Figure 4.8, the function foo() was stored in segment 1, the

functions f u n c A () and funcJ2{) were stored in segment 2. Since the address of segment 2 was

not available a t compile-time, the compiler generated 2 entry points in the executable header,

one for fu n c -1() and the other for fu n c .2().

Figure 4.9 shows the code image after the executable file is loaded into memory. After

segment 2 is loaded, its address is available. Now the loader fills this address in the target

of calling instructions in segment 1. Figure 4.10 shows the graphical description of how the

translator detects that funcA{) in segment 2 is executed. The left column in Figure 4.10 shows

the in-memory code image. The middle column shows the in-memory code image after the

translator sets up the traps. The right column shows the execution flow. After the trap is

Let us consider the code example in Figure 4.7 to demonstrate how the switching mechanism

defined in bar.c. If the program was compiled by using a large memory model, the compiler

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

foo.c bar.c
foo() { f im c _ l () {

func_l(); }
func_2(); func_2() {

} }

foo.exe
Header Segmentl Segment2 v

entry 1 entry2 foo() fiinc_I() func_2()
___ A_______________

F ig u re 4.8 Switching mechanism: the executable file.

received, the translator starts translating segment 2 and redirects the execution flow to the new

code. The black arrows in the right column indicate that the call to fu n cA Q branches to a

trap, then the translator redirects the branch to funcA '() .

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M em ory

foo.c
foo() {

func_l();
func 2 ();

(

bar.c
func 1() {
i
func 2 () {

' I

en try ! seg ofs
r -r 2 *
2 i 2 ; »

foo.exe
Header Sctmeatl

entry! cwry2
SccmeniZ ^

foot) funcl (> ftmc_2t 1

segment!:

func_I()
tunc_2() * * - •

segmentl:

foo():
call func_l

F i g u r e 4 .9 Sw itching m echan ism : th e code in m em ory.

M em ory M em ory M em ory

.
func_l'() *
func_2*()

. . .

entry seg ofs entry seg ofs entry seg ofs I
I - • ------ 1 2 • ------ 1 2 •
2 2 • — 2 2 • --------- 2 2 9

. . . - > • ' . . .
i

segment2:

func l()

; segment!
i

trap «*—

segment!

t « P *

!
i

func_2() * — ! trap ------
. . .

i
segment 1:

foo():
call func_l

; segment 1
| foo():

call func_l

segmentl
foo():

call func_l —
i

F ig u r e 4 .1 0 S w itch in g m echanism : tr a p p in g a n d red irec tin g ex ecu tio n flow.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Editing Binaries

Instrumenting code or performing optimization requires editing the code and may result

in code size changes. This chapter discusses the instruction relocation problem resulting from

this change of code size. Section 5.1 discusses adjusting the branch target whose value can be

determined at translation time. A method is proposed in Section 5.2 to solve the relocation

problem in situations where the branch target cannot be determined at translation time. Since

the translator needs run-time support to resolve the branch target, in this case the impact

to performance is also analyzed in this section. Because of the fact that the translator may

not be able to detect all possible instructions during initial translation, it may be able to find

more instructions as soon as the undetermined targets discussed in Section 5.2 are resolved at

run-time. Section 5.3 discusses the issue of enabling incremental translation.

5.1 R elocation for D eterm inable Targets

If the target of a branch can be determined during translation, then the translator is able to

solve all the relocation problems resulting from editing. A branch instruction with a statically

identifiable target can be either intra-segment or inter-segment. The solution to intra-segment

instruction relocation differs from that of inter-segment. These problems will be discussed in

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 5.1.1 and 5.1.2. respectively. The callback function and the regular hashing jump are

also determinable. Section 5.1.3 discusses the problem of editing a code segment that contains

callback functions, and hashing jumps with regular patterns will be discussed in Section 5.1.4

Some DLL function calls are compiled as indirect calls. Indirect DLL function calls can be

statically determined and will be discussed in Section 5.1.5.

5.1.1 In tra -S eg m en t T argets

Figure 5.1 shows how to adjust a branch target after insertion or deletion. All the targets of

branches in Figure 5.1 are PC-relative. Though there are intra-segment branches whose targets

are not PC-relative, this solution still applies. All of the intra-segment targets are relative to

the beginning of segment if they axe not PC-relative. For those grey-arrow branches indicated

in the figure, the translator does not need to adjust the target. For example, assume the user

inserted a few bytes at location 3000hex- the locations for those instructions after 3000hex will

be changed accordingly, but not for the instructions whose locations are prior to 3000hex ■ Now

if there is a branch from location 1000hex to location 2QQ0hex • or vice versa, then no adjustment

needs to be made. Likewise, if there is a branch from location 4000hex to 5000hex • or vice versa,

no adjustment needs to be made either. Assume the user inserted 100hex bytes at location

3000hex- the location of 4000hex and 5000he.x will become 4100hex and 5100hex, respectively. The

net difference does not vary.

If the source and destination of the branch straddle the insertion or deletion line, however,

adjustment may need to be made. These situations are indicated by the black-arrow branches

in Figure 5.1. Assume the user inserted 100hex bytes starting from location 3000hex and there

is a branch from 2000hex to 4000hex- Also assume the branch is PC-relative and the branch

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

❖ branch

Label X:

branch

// insertion/deletion

branch

Label Y:

r branch

F igu re 5.1 Adjusting the branch target.

instruction takes 4 bytes. If the insertion was not made, the value of operand in the branch

instruction would be LFFChex (4000hex - 2004hex)- Now if the user inserts 100hex bytes in

between these locations, the value of operand should be added by 100hex as well, that is.

20FChex-

5 .1 .2 In ter -S eg m en t T argets

Adjusting determinable inter-segment branch targets is slightly more complicated than

intra-segment, but not difficult. When a code segment is loaded into memory, the loader

needs to fix up all the branch targets in other segments if these targets reference the current

code segment. Likewise, changing the location of instructions in the current code segment may

require the translator to adjust these targets accordingly.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Seg_l

i call Seg_3:Y Seg -3 _____\ ’
% Insenion/Deletion

\
F ig u re 5.2 Adjusting the inter-segment branch target.

Figure 5.2 shows two cases for the inter-segment targets. The black arrow in Figure 5.2

indicates that the operand value in the calling instruction must be modified. The insertion or

deletion in Seg-3 results in the change of offset Y. This change, in turn, affects the operand

(target Y) of the calling instruction in Seg.l. On the other hand, the insertion or deletion in

Seg.3 does not affect the offset X. As such, no adjustment needs to be made for the calling

instruction in Seg.2.

After editing a code segment, the translator needs to iterate through all other present code

segments. During iteration, the translator looks up all the relocation fixup record to find if

the segment of the fixup records matches the current code segment. A detailed description of

relocation fixup records may be found in Section 3.2.3. If the segment that belongs to the fixup

record matches the editing segment, and the offset of fixup record is larger than an insertion or

deletion point, then the translator will replace the operand with a new value. This value can

be calculated during editing.

38

Seg_2

call Seg_3:X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 .3 C allback F u n ction s

Some functions in application programs can be declared as call-back. The description of

a callback function may be found in Section 4.1. The address of a callback function may

also be determinable. If a code segment contains any callback function and this segment is

translated, then its original segment must reside in memory as well. Section 4.4 mentioned

that when a code segment is loaded into memory, the translator sets up a trap for each entry

point in the original segment. When the user sends a command, for example, by pushing a

window button, the operating system sends a message to the application program in response to

user's action, which means that the operating system calls back the function in the application

program. Assume there is an operating system instruction I which calls back the function

in the application program. After the application program is loaded into memory, the loader

has filled the operand of I with the address of the callback function. This address is an old

address. Even if the translator translated the callback function and created a new address for

the callback function, the instruction I will still reference the old address unless the translator

can also modify the operand of I.

Therefore, the translator relies on the trap in the original segment to redirect the execution.

As soon as the trap is received, the translator looks up the address mapping table which will

be defined in Section 5.2.2, and switches the control to the new code.

As opposed to directly overwriting the offset as previous approaches did, the new address of

the callback function was not overwritten by the translator at run-time. After the translation

is finished, this information will then be w ritten to disk when the translator creates a new

executable file. Writing the new code to secondary storage will be discussed in Chapter 7.

For now, it suffices to say that the old code segment is not required to be present when the

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

translated program is run again. All the corresponding entry addresses in the code segment

will be updated when the translator generates the new executable file. When the program is

loaded again, the address of the callback function will have already become the new one.

5 .1 .4 H ash in g Ju m p s w ith R egu lar P a t te r n s

A hashing jump is another branch whose targets may be determinable. The compiler usually

generates a hashing jump based on a regular pattern. Several programs were analyzed with

four patterns of hashing jumps summarized in Figure 5.3. All the hashing jumps in Figure 5.3

are intra-segment and indirect. The intra-segment jump implies that the size of the target

specifier is 2 bytes. The indirect jump implies that the operand of the jump instruction is not

the target, but rather, the offset to the target. All the hashing jump patterns in Figure 5.3

examine the number of offsets before accessing the eligible indirect target. This is accomplished

by a compare instruction (cmp) and a conditional jum p instruction (ja or jbe). For example,

the value 7 in Pattern 1 of Figure 5.3 indicates tha t there are 8 possible indirect targets for the

branch, ranging from 0 to 7. The "shift left (s/2 /)'' instruction or "add' instruction Figure 5.3

converts the byte index (1 byte) to the word index (2 bytes). Since register ax is used for

computation and register bx is used as the base register, the “exchange (xchgY instruction is

introduced before the indirect jump instruction.

If the hashing jump was generated based on these regular patterns, the translator is able

to resolve all of the hashing jump’s possible targets. This is done by going to the offset of the

indirect targets (for example, ofs.0856 in P attern 1), and fetching the values accordingly.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pattern

Pattern

Pattern

Pattern

of s

1: (from Microsoft Paint Brush.)
cmp ax, 7
ja short ofs_3462
shl ax, 1
xchg bx, ax
jmp word ptr cs:ofs_0865[bx]

2: (from Microsoft Excel)
cmp ax,OCh
ja ofs_1148
add ax, ax
xchg bx,ax
jmp word ptr cs:ofs_1121[bx]

3: (from QVT Terminal)
mov ax,si
cmp ax,7
ja short ofs_5026
add ax,si
xchg bx,ax
jmp word ptr cs:ofs_0866[bx]

4: (from Microsoft Calculator)
cmp ax,OCh
jbe short ofs_0977
jmp ofs_1044
.0977:
shl ax, 1
xchg bx,ax
jmp word ptr cs:ofs_0367[bx]

set range: 0 - 7
punt if range > 7
double the index range, BYTE->W0RD
bx serves as base
base indirect jump

; another way to double the index
; range

; another way to double the index
; range, si can be other register
; as well

; another way to skip if the
; range is beyond the boundary

F ig u re 5.3 Hashing jumps with regular patterns.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lib_Instance = LoadLibraryC"Library_Name");
if (Lib_Instance > 32) {

Func_Pointer = GetProcAddress(Lib_Instance, "Function_Name");
(*Func_Pointer)() ;

>
else {

E rro rH an d ler() ;
>

F igu re 5 .4 Example of calling a dynamically loaded function.

5 .1 .5 In d irect D LL F u n c tio n C alls

Application programs may dynamically request the operating system to load a library func­

tion and then call the loaded function. In Windows, this can be achieved by two system API

function calls: LoadLibraryC), which requests Windows to load a specific dynamic fink library,

and GetProcAddress{), which obtains the address of the function in the loaded library. Fig­

ure 5.4 illustrates a code example for calling the dynamically loaded function. Upon returning

from LoadLibrary(), the operating system tells the programmer whether or not the library is

successfully loaded, and, if the library is not successfully loaded, the reason why. In Figure 5.4.

the number 32 indicates tha t the library is successfully loaded if the return value is greater than

32.

Calling a dynamically loaded function is usually compiled as an indirect call. Figure 5.5

illustrates the assembly code found in Microsoft Word. At first glance, the indirect call instruc­

tion at line 14 seems unable to be determined since the content in data.0262e is not defined

until the call to GetProcAddressC) at line 8 is executed. Since the translator is able to deter­

mine whether the dynamically loaded function is translated or not, the target of this type of

branches is determinable.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1) call far ptr LoadLibrary
(2) mov ds:data_0009e,ax
(3) cmp ax,20h
(4) jbe short loc_2781
(5) push ax
(6) push cs
(7) push 0C7h
(8) call far ptr GetProcAddress
(9) mov ds:data_0262e,ax
(10) mov word ptr ds:data_0262e+2,dx
(11) mov ax.dx
(12) or ax,ds:data_0262e
(13) jz short loc_2781
(14) call dword ptr ds:data_0262e

; call LoadLibrary()

; if return value greater than 32

; obtain an address to function
; address is stored in
; data_0262e

; then call data_0262e

F igure 5.5 Indirect call to the dynamically loaded function (from Microsoft Word).

5.2 R elocation for N on-D eterm inable Target

Sometimes a code segment may contain some branches whose targets are prohibitively ex­

pensive to analyze on the fly. A code segment may also contain some branches whose targets

cannot be determined without running the code. Section 5.2.1 will describe these cases. Sec­

tion 5.2.2 proposes a run-time mechanism to solve this problem, and analyzes the occurrence

for these instructions.

5 .2 .1 N o n -D eterm in a b le B ranch T argets

Not all of the hashing jum p patterns can be easily analyzed. Figure 5.6 shows some irregular

hashing jump patterns. These patterns are found in Q V T Terminal Emulator. The common

situation with these patterns is that the range of the hashing jum p cannot be easily determined.

Determining the range often demands a complicated calculation. There is no general rule to

outline a calculation pattern. For example, the value 3 in a right-shift instruction (shr) in

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5: (from QVT Terminal)
and al.OFOh
sub ax,OFOOOh
test al,OFh
jnz ofs_0653
shr ax,3
cmp ax,26h
ja ofs_0653
xchg bx,ax
jmp word ptr cs:ofs_0593[bx]

6: (from QVT Terminal)
mov cl,3
shl al.cl
add al,[bp-7]
xlat
inc cl
shr al.cl
mov [bp-7],al
cbw
mov bx,ax
shl bx, 1
jmp word ptr cs:ofs_0636[bx]

Figure 5.6 Hashing jumps with irregular patterns

Pattern 5 can be easily changed, depending on the compiler or assembly code writers. In this

pattern, the potential targets that follow the hashing jum p consist of 95 bytes. This is an odd

number, which conflicts with the fact that the total byte size should be an even number for the

hashing jump, since the "word ptr” cast expected a 2-byte target. For Pattern 6, determining

the range may also require the translator to perform a tedious back trace and complicated

calculation. It is even more difficult for the translator to automatically resolve the target if the

old assembly code was hand optimized.

Figure 5.7 illustrates an example in which the target of the branch cannot be determined

until the program is executed. The piece of code was detected in Microsoft Calculator. Before

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

call fax ptr INITTASK

jmp word ptr ds:ofs_04C8

[ds:ofs_04C8] contains value 0
This Windows system API sets
[ds:ofs_04C8] as side effect.
Now [ds:ofs_04C8] contains 004Bh

F ig u re 5.7 A dynamically determined branch target.

call sreg:[reg+disp] ; indirect target is in memory
call reg ; indirect target is in register

jmp word ptr sreg:[reg+disp] ; not including regular hashing jumps
jmp reg

sreg: segment registers
reg: general registers
disp: a constant value denoting the offset

F ig u re 5.8 Branches with non-determinable targets.

the call to function INITTASK. the memory at offset [ds:ofs-04C8] contained value 0. This

value was set to 004Bhex after the function call. Since the value cannot be determined until the

function is called, the target of the indirect jum p cannot be statically analyzed. Assuming a

user edited the code segment, which caused the change of offset 004Bhex- then the target may

land at a wrong location when the jump instruction is executed.

All the non-determinable branch targets can be summarized in a few patterns showed in

Figure 5.8. As soon as these instructions are detected, the translator may need to rewrite them

into the VMM calls, as described in Section 5.2.2.

5 .2 .2 A d ju stin g N o n -D eterm in a b le B ra n ch T argets

In order to resolve a non-determinable branch target at run-time, the translator replaces

the branch with a VMM call and some parameters. Figure 5.9 illustrates an example for such

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

New code

push bx
call VMM

VMM

I f [bx] has been translated
Jump to new address

else
Translate [bx] to new
address, update mapping
table, and jump to new
address

F igure 5.9 Replacing a non-determinable branch instruction with a VMM call.

replacement. If the value of register B X in the instruction "call [BX f' cannot be determined

statically, this instruction will be replaced with a VMM call with two parameters: register D S

and register B X . Upon receiving a call from the program, the VMM obtains the target from

[DS:BX]. The value of this target belongs to old code. The translator then checks whether the

corresponding new location is the same as the old one, and looks up the new location if they

are different. Finally, the translator switches execution to the new target.

Ideally, the translator may pass all necessary information to the VMM by using the space of

the original branch instruction. For instance, if the size of the original call instruction is 6 bytes,

the translator will replace these 6 bytes with some P U SH instructions followed by the VMM

call. The P U SH instructions may be needed to pass a parameter to the VMM. Sometimes

there may not be enough space to accommodate these instructions. For example, the instruction

11jmp [bxf takes only 2 bytes, which is not enough for calling VMM with parameters. To solve

this problem, the translator also maintains an internal fixup table for each code segment.

As shown in Figure 5.8, branch instructions with non-determinable targets include the

following attributes: a segment register, a general register, and a displacement. The entry

in the internal fixup table must also cover these attributes. Each entry in the internal fixup

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

table consists of 6 bytes: 2 bytes for the location of the requesting instruction. 1 byte for

the instruction type, segment register and 1 byte for the general register, and 2 bytes for the

displacement. Since the x86 has only 6 segment registers, it suffices to use 1 byte to cover the

instruction type and segment register. The most significant bit of the byte denotes the type

of instruction. The value 0 stands for CALL, and the value 1 stands for JMP. The translator

uses 1 byte to store 24 possible general x86 register usages: 8 byte addressable registers, 8

word addressable registers, and 8 double word addressable registers. Note that it is likely for

16-bit code to use 32-bit registers. As will be discussed later in this section, the occurrence of

a branch with a non-determinable target is rare in most programs, this extra memory needed

by the translator should not be a concern.

The translator must also maintain an Address Mapping Table, AM T for each translated

code segment. This table keeps track of address changes during editing. The format of the

AMT is illustrated in Figure 5.10. When a program requests a VMM call, the translator uses

this table to find the new offset for the target. The AMT does not need to maintain an entry for

each instruction. The number of entries in the AMT depends on how frequently the insertion or

deletion occurs. The internal data structure maintained by the translator must be modified as

well. Figure 5.11 is derived from Figure 4.1 in Section 4.1 with editing information augmented.

The NewSize attribute may be used by the translator when it is writing the translated code

back to the new executable file.

5 .2 .3 A n a lysis o f N o n -D eterm in a b le B ran ch T argets

The occurrence of non-determinable branch targets is rare. Figure 5.12 and 5.13 show the

distribution of the call and jum p instructions, respectively, from several b en c h m a rk p ro g ra m s .

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i Offset at Old Code Offset at New Code :
: !

0028h 003 8h

• •• : i
•••

lF27h 202Bh

F ig u re 5.10 The address mapping table.

typedef struct SegNodeTypeTag {
/ * Info for supporting run-time target resolution and editing */
AMT_TYPE amt; /* Address Mapping Table */
FIX_TYPE fixup_table; /* For undeterminable branches */
WORD NewSize /* New segment size after editing */

/* NFY_L0ADSEG data structure */
DWORD Size;
WORD Selector;
WORD SegNum;
WORD Type;
WORD Instance;
LPCSTR ModuleName;

/ * New code segment information */
BYTE Translated; / * Translation bit of the segment
BYTE Present; / * Presence bit of the segment
WORD NewSelector; /* Pointer to the new code seg

* /

* /

* /

/ * Info for control flow analysis * /

0PER_TYPE *head_op, *tail_op;
DWORD index;
MEM.TYPE code.map [FLOW_MEM_CHUNK_MAP_SIZE] ;
MEM_TYPE fallthru_stack[MAX_STACK_SIZE+l] ;
DWORD top_fallthru_stack;

struct SegNodeT]^peTag *nextSeg;
> SegNodeType;

F igu re 5.11 Internal segment data structure augmented with editing information.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100% p -
!

90% j-

80% T

70% r
i

60% r

50% j-

40% r
i

30% r
i

20% r

io% |
o% •—

F ig u re 5.12 Distribution of CALL instructions.

There axe four types of CALL instructions illustrated in Figure 5.12. The first type is an API

call. Since the translator currently does not intend to translate Windows operating system

code, the target address for the API call does not change during editing. The second type of

CALL is an inter-segment branch described in Section 5.1.2. The third type of CALL is intra­

segment branch described in Section 5.1.1. All the above three types of CALL instructions

do not require the translator’s help during run-time. The address adjustment was already

performed during translation. Only the fourth type of CALL instruction needs the translator’s

help at run-time. Fortunately, this kind of instruction only accounts for a very small portion of

all CALL instructions, as shown in Figure 5.12. Most of these instructions axe in the startup

code, meaning that they are executed only once.

Figure 5.13 shows the distribution of JMP instructions from several benchmark programs.

Note that Figure 5.13 does not count the number of conditional jumps. The target of an x86

49

C ontro l M icroso ft M icrosoft N o tep ad P ain t W rite X in g p ly

Panel E xcel W ord B rush

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Calculator C ontrol M icrosoft M icrosoft N otepad Paint W rite X ing_ply
Panel Excel W ord Brush

F ig u re 5.13 Distribution of JMP instructions.

conditional branch can always be determined. From Figure 5.13. more than 99 percents of

the unconditional jump instructions are determinable. These instructions also contain hashing

jumps with regular patterns.

In order to analyze dynamic instruction execution, a simulator was implemented to count

the instructions during program execution. Table 5.1 shows the dynamic instruction count for

several applications. Since the focus is on the applications, each API call was counted as one

instruction. Table 5.1 indicates that non-determinable branch instructions are rare, compared

to overall instructions. We also noticed that most of the non-determinable branch instructions

occur in program startup, which means that these instructions will be executed only once when

the program is executed.

Table 5.2 shows the percentage of non-determinable branch instructions that were executed

for several special operations. Two types of applications were chosen: computation-intensive

and text processing. For each benchmark program in Table 5.2, the experiment compared the

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I
Calculator v3.10 126.947 26 0.020%
Control Panel v3.I0 61.340 19 0.031%
Microsoft Excel vS.0 1,043,594 891 0.085%
Microsoft W ord v(H 534.675 38 0.007%
Notepad v3.I0 61,493 1 0.001%
Paint Brash v3J0 500.602 176 0.035%
Write V3.I0 369,466 8 0.002%
Xine olvvl.0 99.689 20 0.020%

Table 5.1 The percentage of non-determinable branch targets based on dynamic instruction
count.

instruction count of the program’s startup and the instruction count of repetitive operations.

For example, in Calculator the repetitive operations are sine, cosine, and other mathematic

calculations. For computation-intensive programs, the experiment indicates that the percentage

of non-determinable branch instructions decrease when the number of computation operations

increases, meaning that a major portion of the non-determinable branches are executed during

program startup, as we mentioned earlier. Similarly, for text processing applications, the ex­

periment found that there are no non-determinable branch instructions executed for handling

text processing, such as character input and pattern search.

5.3 Increm ental Translation

Since some targets of branches may not be known during initial translation, it could be that

the target falls into an undecoded area. In this case, the translator may need to dynamically

decode additional instructions. Figure 5.14 illustrates an example from Microsoft Calculator.

The first block and the third block were decoded during initial translation. The grey arrow in

Figure 5.14 denotes the control flow which was traced during the initial translation. Since the

translator failed to find any control flow to the second block during the initial translation, this

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Computation-intensive programs:
I n t a l I n s t r u c t i o n N o n -D c U 'r n ii i iv jb fe n f N on-

C o u n t I n s t r u c t i o n C o u n t D e te r m i n a b l e

_________ I n s t r u c t i o n s

XING PLY:
Stamm

6.314 7 0.11%

Repeated operations
(repeated piav>

192.413 15 0.01%

C alculator:
Stamm

15.484 8 0.05%

Repeated operations
(sin, coa. In. log. !. *)

76.600 12 0.02%

Text processing programs:

Notepad:
S tam m

7.201 1 0.11%

Repealed operations
fcharmnut. search)

66.763 0 0%

W rite:
Stamm

55.608 7 0.01%

R epea ted operations
(text input, format.... I

■176324 0 0%

Table 5.2 The percentage of non-determinable branch targets based on dynamic instruction
count of special operations.

block was marked as unknown area. The translator also noticed that somewhere in the third

block there exists a branch with a non-determinable target. It replaced the branch instruction

with a VMM call.

When the partially translated code is executed, the program will first display a window. If

the user hits any key in the window, the code in the third block of Figure 5.14 will be executed.

Immediately before the JM P instruction is executed, the translator obtains the value of register

B X . 0588hex, and the value of register DS, 3F9Fhex- It then queries the content in location

[3F9Fhex:0588hex] and finds that the value in location [3F9Fhex:0588hex] is 0C88hex- This value

is actually the offset of the second block in Figure 5.14. If the new code has been changed

during initial translation, this value may or may not be the same as its new counterpart. If

it is not, the translator will look up the address mapping table to find the new offset to the

translated code.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fstp St
fid tbyte ptr data_0156
mov byte ptr [bp-11 h] ,2
retn

mov
cx,404h
bx,dx
bx,ax
bx,10h
word ptr [bx]

F igu re 5.14 A code example of incremental translation (CALC.EXE).

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Offset Instruction Executed?
Target already Code Detected (%)
translated? 73.25% (Base)

(MIA jm p dword ptr ss:data_00l 8e No - -

09A4 jm p dword ptr ds:data_0014e Yes Yes -

1651 jm p word ptr [di] No - -

1D82 jm p word ptr [bx] Yes No 73.54%

IDE5 jm p word ptr [bx] Yes No 75.49%

2SE8 jm p word ptr [bp+LOCAL_3] No - -

T ab le 5.3 The percentage of detected code for CALC.EXE.

Table 5.3 shows the percentage of incrementally detected code for a segment in program

CALC.EXE during translation. From Figure 5.13, there are six unknown targets for the JMP

instruction. The first two columns in Table 5.3 show the offset and instruction, respectively.

The third column indicates whether the instruction is executed during run-time. Finally, the

fourth column shows whether the area pointed by the target of branch has been decoded or not.

If the area to which the new target points has not been previously translated, the translator

dynamically translates it and calculates the percentage of decoded binaries. The percentage is

calculated by dividing the size of code segment by the size of all decoded instructions. Note

that it is unlikely that the percentage can reach 100. This is because a code segment may

contain data, patched bytes, or any other garbage bytes. This table is for us to understand that

more code can be detected through the support of a run-time mechanism. When the program

is executed, 2 of them fall into undecoded areas, as indicated in the table. The remaining JMP

instructions either do not execute or fall into decoded areas during execution.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Self-M odifying Code

Self-modifying code refers to a piece of code that can be modified by the program itself. The

translator needs to detect self-modifying code in order to determine whether or not it should

be invalidated. Binary code translation becomes very difficult in the presence of self-modifying

code since code translated at a certain time may be different at a later time. If the translator

is not aware of such change, the program will most likely crash. Even worse, it is in general

not possible to debug a translated self-modifying program when a crash occurs.

An operating system may prevent a user program from generating self-modifying code. In

general, Windows 3.1 and later versions of Windows operating systems only allow application

programs to be run under the x86 protected mode. This means a code segment may not be

written to, and a data segment may not be executed. In this case, self-modifying code seems

less likely to happen. On the other hand, Windows allows application programs to alias a code

segment into a data segment. Application programs may write to a data segment first, create

a code selector, make it aliased to the data segment, and execute the code in the data segment.

This is how Windows application programs may contain self-modifying code.

Previous work used hardware to detect self-modifying code [12] [26]. In this thesis, however,

a software approach is proposed. Since the proposed approach relies heavily on x86 protected

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Selector Offset j Logical Address

i Base Addr ! — ' Type| _T
— «*8020CD20hl i Code!------

! — 1 | 1 |
j S020CD20h { Data I |

Descriptor Table 1

Page Index Offset Linear Address

' ----

Page Table _

Physical Address

F igu re 6.1 The x86 memory address translation process.

mode architecture. Section 6.1 will briefly review the x86 protected mode. Section 6.2 will

describe self-modifying code detection strategies and give a concrete example to show how the

translator detects the self-modifying code. Finally. Section 6.3 will discuss what the translator

should do in the presence of self-modifying code.

6.1 O verview of X86 P rotected M ode Architecture

Self-modifying code is processor-dependent. Creating self-modifying code, as well as detect­

ing self-modifying code in x86 code cannot avoid dealing with its processor memory address

architecture. Therefore, this section will briefly review the x86 memory address architecture.

The memory address translation process in the x86 is two-folded. Figure 6.1 illustrates

these two address translation steps. The address that is visible to the p ro g ram m e r is called

the Logical Address. The Physical Address refers to an address in the Random Access Memory

where the instructions or data are stored. If the processor is operating in Protected Mode, there

is one additional layer in the translation from a logical address to a physical address. The

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

segment value in this mode is used by the processor as an index to a descriptor table. This

value is called a selector in the protected mode. Each entry in the descriptor table contains

some attributes such as selector limit, whether it is code or data, etc. It is this layer that

prevents code from being written and data from being executed, thus the name "protection1".

It is also this layer in which an application program can create self-modifying code. The address

obtained by looking up the descriptor table is known as a Linear Address.

The linear address output from the descriptor table still is not the address where instructions

or data reside. By enabling the paging mechanism, each linear address can be mapped to a

physical address. The size of each page is 4K bytes. Note that addresses that are continuous

in linear address space may or may not be continuous in physical address space. In general, an

application does not, and should not, know where the final data is in physical memory.

There axe two types of descriptor tables in the x86 processor. There is one Global Descriptor

Table (GDT) for all tasks, and a Local Descriptor Table (LDT) for each task being run. However.

Windows only uses one LDT for all user programs. There are also several operating modes for

Windows. The various modes of Windows reflect the various modes of the Intel CPUs [20].

This thesis focuses on the Windows enhanced mode which utilizes the x86 protected mode

architecture. For a more detailed description of the x86 architecture, the reader may refer to

[12].

6.2 D etection Strategies

The example in Figure 6.2 illustrates a sample C code segment that produces self-modifying

code by calling a few system functions. It first allocates heap memory from the operating system

by calling GlobalAlloc{). It then acquires a pointer by calling GlobalLockQ, so that this memory

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 1
// Create a memory heap
hMem = GlobalAllocC GPTR, MemSize) ;
// Get a pointer to this memory
lpMem = GlobalLockC hMem);
// Write some data into the memory heap
MemoryWrite(SELECTOROF(lpMem), OFFSETOF(lpMem) ,

DataBuffer, sizeof (DataBuffer));
// Create an aliased code selector to execute the data
IpSel = AllocDSToCSAlias(SELECTOROF(lpMem));
// Switch control to IpSel and start execution
//

F ig u re 6.2 A piece of code that generates self-modifying code.

can be accessed. After this, the code writes the hard-coded instructions which were previously

stored in a data buffer into this memory block by calling M em aryW rite{). At the last stage, it

calls the function AllocDSToCSAliasQ to request a code selector from the operating system.

This selector shares the same base address as the heap memory selector. Finally, the subsequent

instructions can now start executing the aliased data code. This section uses the H E L L O W IN

program as the example. After some modification, this program contains the code illustrated

in Figure 6.2.

The detection strategy used in the translator consists of comparing the information of the

LDT entries that are obtained before and after the user program is executed. If there are more

entries found after the user program is executed, and the additional entries map to the same

linear address as that of original entry but with a different type (code or data), then there

may exist self-modifying code. Note that an application program may create segment aliases

but never make self-modifying code. For example, in the code example, after the function

AllocD SToC SA lias() is called, the program may not necessarily switch the execution control

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to D a ta B u ffe r . Thus, this approach provides a more strict examination in that it may expect

a greater potential presence of self-modifying code than actually present in real situations. This

thesis’s policy, however, is to minimize the risk of translating the self-modifying code.

Both Windows and the x86 processor maintain LDT information. Each LDT entry in the

x86, however, takes only 8 bytes. It cannot provide as much information needed for Windows

to manage the overall system. As a result, Windows also maintains auxiliary data called global

arena [22] [25]. These globed arena structures are chained together in a linked list. For each

memory object, the global arena also indicates its owner. This additional information helps the

translator filter out the unrelated descriptors when it traverses the global arena.

Figure 6.3 shows the results obtained when the translator traverses the Windows LDT.

after the sample program HELLOWTN is executed. For each memory object, the data structure

includes its linear address, size, handle (or selector) in the LDT, and its owner handle. The

type field in Figure 6.3 indicates the type of the memory object. For example, value 2 means

data, value 3 means code, etc. A detailed description for all values can be found in the Windows

Software Development Kit (SDK) [19]. The data field contents in Figure 6.3 depend on the

value in the type field. If the type of a memory object is neither code nor a Windows resource,

then the value in its data field is 0. As with the type field, detailed information can be found

in the SDK.

Windows provides a set of system functions for debugger writers. Among other things, this

set provides a couple of heap walk functions. The translator provides an empty data structure

and calls these functions. Upon returning from one of these functions, this data structure will

be filled, with the descriptor and other information in it. As indicated in the figure, in addition

to HELLOWIN, the linked list contains Windows system memory such as K R N L386 , G D I ,

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LinAddr Size Handle Owner Type Data FileName

FCOOh B400h 117h lOFh 3b lh C :\WIND0WS\SYSTEM\KRNL386.EXE
9D460h B40h lOEh lOFh 6b Oh C :\WIND0WS\SYSTEM\KRNL386.EXE

80805C00h COh 146h lOFh Ob Oh C :\WIND0WS\SYSTEM\KRNL386.EXE
802F0140h 220h D66h D66h 4h Ob C:\BC5\BIN\BCW.EXE
806FB9E0h 340h 2686b. D66h Ob Oh C:\BC5\BIN\BCW.EXE

lC200h 20h lF6Eh 237b 5b 6b C :\WINDOWS\SYSTEM\GDI.EXE
803CF040h EDCOh 36E6h 237b Oh Oh C :\WINDOWS\SYSTEM\GDI.EXE
801789A0h AOh 2C77h 17CFh Oh Oh C :\WINDOWS\SYSTEM\USER.EXE
801C2000h 1300h 17C7b 17CFh 3h lh C :\WINDOWS\SYSTEM\USER.EXE

2A580h 120h 3B4Fb 1126h Oh Oh C :\W0RK\HELL0WIN.EXE
8020CD20h lOOOOh 1256b 1126h Oh Ob C :\W0RK\HELL0WIN.EXE

AoC
M

QoHC
M

O0
0 lOOOOh 124Eb 1126b Oh Oh C :\W0RK\HELL0WIN.EXE

80804900h EOh 3B46b 3B47b 6b Ob C :\W0RK\HELL0WIN.EXE
808059E0h 220h 1126b 1126h 4h Oh C :\W0RK\HELL0WIN.EXE
808064C0h 2640h 315Eb 3B47b lb 2b C :\W0RK\HELL0WIN.EXE
80808B00h 20h 1236b 1126h Oh Oh C :\W0RK\HELL0WIN.EXE
80808B20h 140h 122Eb 1126b Ob Ob C :\W0RK\HELL0WIN.EXE
80808C60h 620h 1226b 1126h Oh Oh C :\W0RK\HELL0WIN.EXE
81540BC0h 8C0h HCEh 3B47b 3b lb C :\W0RK\HELL0WIN.EXE

F igu re 6.3 Information in selector table.

and U S E R , as well as other applications, such as B C W (the Borland C compiler). Though

the file name is not included in the list, the translator can derive it from the handle in the

node. The handle of a memory object serves as an identifier that makes the object unique in

Windows.

For each running program, Windows maintains per-task data called the Task Database. A

task is a thread of execution through code segments loaded by Windows [22]. The task database

owns a memory object whose type field has the value 4hex, as indicated in Figure 6.3. From

Figure 6.3, the HELLOWIN object with type value 4hex has a handle value 1126hex- This

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

handle value is exactly the same as the owner of some other memory objects that belong to

HELLOWIN.

Though using global arena traversing functions in TOOLHELP provides some information

needed for the translator, it does not provide all the necessary information. To give an example,

let us consider the memory objects that belong to HELLOWIN. From Figure 6.3, all the linear

addresses are unique. While the translator expects to find two entries with identical linear

addresses but with different handle values for HELLOWIN, as it does own aliased segments,

only one of the entries is found. Therefore, the translator needs to query the x86 LDT for some

additional information.

Querying the x86 LDT requires the translator to run the code in the higher x86 privileged

level. In order to achieve this, the DOS Protected Mode Interface (DPMI) function described in

[24] was used. Basically, the idea behind this approach is for an application program to request

a DPMI service which runs at the most privileged level. As such, it can acquire the x86 LDT

and return the information to the application program. As it turned out, the translator was

able to find out aliased segments at this time.

The translator queried the x86 LDT twice, one before HELLOWIN was executed and the

other after execution, dumping the x86 LDT contents for each query. Figure 6.4 shows the

result of several commands used to compaxe these two content files. The file LDTJDUMP.OLD

in Figure 6.4 illustrates the x86 LDT contents obtained before HELLOWIN was executed.

The file LDT .DUMP.NEW illustrates the x86 LDT contents obtained after HELLOWIN was

executed. The only difference is that there was one more entry in x86 LDT after HELLOWIN

was executed. The Unear address for this additional descriptor is 8020CD20hex; and the type

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

value is FBhex- This linear address is exactly identical to that of one of the HELLOWIN entries

that appeared in Figure 6.3.

An explanation needs to be made for the one-byte Type attribute in the x86 LDT contents

files, as it is different from the aforementioned one defined by Windows. For each 8-byte

x86 LDT entry, the least 4 significant bits in this byte indicate the Application Segment Types.

Table 6.1 shows the 16 types based on these 4 bits [12]. From Figure 6.4, there is only descriptor

whose linear address has value 8020CD20hex in LDT_DUMP.OLD with type value F3hex- The

least 4 significant bits in the type value are OOllbin (Number 3), meaning that the descriptor

type is data which can be read/written, and has been accessed. Now let us examine the file

LDT.DUMP.NEW. In addition to the entry in LDT_DUMP.OLD, there is another descriptor

which has the same linear address and has type value FBhex- The least 4 bits are lOllbm

(Number 11), meaning that the descriptor type is code which can be executed/read, and has

been accessed. This means that there are two entries that map to the same linear address, with

one writable and the other executable. Therefore, the self-modifying code may exist by writing

to this linear address first and executing the written data. The translator has now successfully

detected the potential self-modifying code in HELLOWIN.

6.3 H andling Self-M odifying Code

Since there may be multiple segments in an application program, not all containing self­

modifying code, the translator may still translate those segments which are not self-modifying.

If an instruction in a translated segment calls a function in the self-modifying segment, it will

use the old target. Since the translator did not translate the self-modifying segment, this target

did not change either. If, on the other hand, the instruction in the self-modifying segment

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C:\work\fc ldt_durap.old ldt_dump.new
Compaxing files LDT_DUMP.OLD and LDT_DUMP.NEW
* * * * * * LDT_DUMP.OLD
LinAddr = 8038A300h, Type = F3h
LinAddr = 807B64C0h, Type = F31i
****** LDT_DUMP.NEW
LinAddr = 8038A300h, Type = F3h
LinAddr = 8020CD20h, Type = FBh
LinAddr = 807B64C0h, Type = F3h
* * * * * *

* * * * * * LDT_DUMP.OLD
LinAddr = 825A9000h, Type = F3h
LDT entry count = 1576
****** LDT_DUMP.NEW
LinAddr = 825A9000h, Type = F3h
LDT entry count = 1577
* * * * * *

C:\work\grep 8020CD20 LDT_DUMP.OLD
File LDT_DUMP.OLD:
LinAddr = 8020CD20h, Type = F3h

C:\work\grep 8020CD20 LDT_DUMP.NEW
File LDT_DUMP.NEW:
LinAddr = 8020CD20h, Type = F3h
LinAddr = 8020CD20h, Type = FBh

F ig u re 6.4 Comparison of LDT entries: one without aliased segments in application program
and the other with aliased segments.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N um ber E w A
D escrip to r

T ype
D escrip tion

0
1
2
3
4
5
6
7

0
0
0
0
I
1
1
1

0
0
1
1
0
0
I
I

0
I
0
1
I
1
0
1

Data
Data
Data
Data
Data
Data
Data
Data

Read-Only

Read-Only, accessed
Read/W rite
Read/W rite, accessed
Read-Only, expand-dow n
Read-Only, expand-dow n, accessed
Read/W rite, expand-dow n
Read/W rite, expand-dow n, accessed

N um ber c R A
D escrip to r

T ype
D escrip tio n

3
9
10
11
12
13
14
15

0
0
0
0
I
I
1
1

0
0
1
I
0
0
I
I

0
I
0
I
1
1
0
1

Code
Code
Code
Code
Code
Code
Code
Code

Execute-Only

Execute-Only, accessed
Execute/Read
Execute/Read, accessed
Executed-Only, conform ing
Execute-Only, conform ing, accessed
Execute/Read-Only, conform ing
Execute/Read-O nly. conform ing, accessed

T ab le 6.1 Application segment types.

calls the function in the translated segment, then there may be trouble if special care is not

taken. This is due to the fact that the target of a call or jum p may land anywhere in the

translated segment, and the target offset in the translated segment may have been changed.

The translator may maintain an address mapping table that keeps track of pairs of old addresses

and new addresses for the translated segment. The problem, however, is that it is too late to use

this information unless the run-time environment can suppress the current instruction execution

in the self-modifying segment. One way to solve this problem is to single-step the instruction

execution in the self-modifying segment. Though this sounds costly, it is rare for an application

program to contain self-modifying code. It is even rarer that a self-modifying program contains

a large volume of multiple segments.

At the final stage, the translator may need to write the self-modifying code detection results

back to the executable file. A Self-Modifying Code Detection Table is added to the executable

file. For each segment, the table maintains a flag to indicate whether the segment has potential

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

self-modifying code. When the segment is loaded into memory, the translator checks this flag

in order to determine whether it should translate the segment or not.

The translator must be able to locate the Self-Modifying Code Detection Table. Two of

the reserved bytes described in Section 3.2.1 are used for the translator to access this table. A

detailed design for the new executable file will be discussed in Chapter 7.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Post Translation

Binary translation may not be completed without saving the translated code for reuse. Since

run-time translation cam be time consuming, the translator should avoid retranslating the same

code. A full translation cycle can be achieved after the translated code is written back to the

secondary storage. To reuse the translated code, however, future invocations of the translator

must also be able to detect the fact that the file has been translated. Therefore, both the

executable file and translator need to be modified. This chapter describes the details of writing

the translated code into disk. Since some of the NE file format information is used in this

chapter, the reader may wish to review the NE file format covered in Section 3.2.

In the first step of writing to disk, the translator reads in the original executable file. Both

the header and body of the original executable file are needed in order to create the new

executable file. The translator needs header information to determine the new offset of some

data such as the segment table. Modifying the file header will be discussed in Section 7.1.

Modifying the segment body will be discussed in Section 7.2.

Some of segments in the original executable file may be needed when the translator generates

the new executable file. If the segment has never been loaded for execution, then there is no

chance that the translator has translated it. To handle this, the translator just copies the whole

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

segment into the new executable file. If the segment has been changed, then the translator may

need to modify all the relocation data following the segment to reflect the code size change.

Section 7.3 addresses this problem. Finally, Section 7.4 will discuss the overall design for the

new executable file.

7.1 M odification o f E xecutable H eader

Each NE header contains the initial program counter in a double word, that is. C S :IP in

Figure 3.2. The initial program counter is actually the starting address of the program. If the

initial program counter was changed during editing, the translator needs to replace it with the

new value. Note that though the segment that contains the initial program counter must be

loaded into memory, modification of the initial program counter may not be necessary. This is

because editing the code segment may not change all the addresses of instructions. For instance,

if a few bytes are inserted at an offset that follows the initial program counter, the offset of

initial program counter is not changed, even though the size of segment was expanded.

Secondly, the translator may need to modify entries in the segment table. For some entries,

offsets may need to be updated even though their corresponding segments do not change. This

is because the size change of a segment may affect all of the segments’ offsets whose values are

larger than current one. In addition, for those segments whose sizes have been changed, the

translator needs to modify the segment length as well as allocation size.

The translator must next modify the entry table. Each entry in the entry table keeps track

of the address of an exported function. Put another way, it provides an address thunk for other

functions to call. If the segment size was changed, and such change results in a different offset

for the exported function, then its entry addresses also need to be adjusted accordingly.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One side effect of changing the code size is the requirement for the translator to update the

resource table. As described in Section 3.2.2. resources can be an icon, cursor, mouse, or others.

Basically, the translator should never change a resource in the executable file, since a resource

is not code. The problem is that the location for each resource is relative to the beginning of

the executable file, which may be affected due to the change of the segment size. As such, the

translator needs to check the offset for each resource, and adjust them whenever necessary.

7.2 M odification o f Executable B ody

If a segment was changed during editing, it will be written back to disk from main memory.

This in-memory image will replace the original segment when the translator writes to the new

executable file. If the segment was not changed, then the translator will just copy the whole

segment from the original executable file to the new executable file. In addition, the translator

may also need to patch a few bytes from the original file to the new one. The number of bytes

being patched is calculated by subtracting the offset of the last byte from the offset of the next

segment. Figure 7.1 (a) illustrates the calculation of the needed patching size.

Care must be taken for the permutation of segments in the executable file. From [18] it

seems that all per-segment data are attached to the end of the executable header in a descending

order: that is, the body of segment 2 should follow that of segment 1. However, this is not true

in general. This sequence holds only in the segment table. In the segment table, assume there

are n entries, then the logical segment ID of the first entry must be 1. However, the offset of

segment 2 could be less than that of segment 1. This may be the result of gangload, which will

be defined in Section 8.3. When writing to disk, segment order must be chosen according its

offset value, rather than its ID, so that the translator can keep advancing the file pointer.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When the linker encounters a target that it cannot resolve at link-time, it generates a fixup

record in the executable file for the loader. Given an instruction that contains a far target, the

linker will fill the segment field with value FFFFhex- Also, for API call instructions, the linker

will generate a value of OOOOhex for the offset field of the target. Although these two values will

be replaced by the loader at load time, when the translator generates the new executable file,

it still needs to mask the segment value with FFFFhex f°r aU instructions that need fix-ups.

and mask the segm entiof f set values with a FFFFhex:0000hex pair for all API calls. Thus, the

binary translator needs to update the information generated by the linker.

Incidentally, the translator implemented in this thesis differs from Digital’s FX!32 [8] in

that FX132 is capable of modifying the Windows NT loader. As such, determining whether the

portion of binaries have been translated or not is the loader’s task. Since our translator is not

able to modify the loader, the modification information must be passed through through the

loader, letting the translator deal with all remaining tasks.

After the code segment is written to disk, the translator writes relocation data if the current

segment has any. Relocation data tells the Windows loader that at some offset in the segment

there is an address that cannot be determined until run-time. The translator does not care

about this address as far as generating an executable file is concerned. However, the offset

that indicates the need of fixup is crucial if the segment size was changed during editing. The

translator only needs to modify the original offset if it was already different from the new offset.

7.3 D ealing w ith Size Expansion

There are two situations that occur after rewriting a code segment. Figure 7.1 illustrates

these two situations. The first situation happens when the expanded segment does not overlap

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) (b)

j Header

| Segment I

A
Old patch

New
Segment I

: New patch

Segment 2

Header New
Segment I

Segment 1

. c •

Segment 2

F igure 7.1 Two situations resulted after segment size expansion.

with the offset of the segment immediately following it. In this case, the header does not need

to be modified. The translator only needs to decrement the size of the patching code by the the

size of the net expansion. In Figure 7.1 (a), assuming the Oldpatch area occupies 20 bytes and

Segment 1 only increases by 10 bytes, then the offset of Segment 2 will remain the same value.

After writing the new Segment 1 to disk, instead of writing additional 20 bytes, the translator

only needs to patch another 10 bytes, since the file pointer has already been advanced by 10

bytes.

If segment expansion results in overlap of segments, as indicated in Figure 7.1 (b), then the

translator needs to modify the offsets of all following segments whose offset values are larger

than that of the current segment. The offset of a segment in the executable file does not consist

of a double-word or DWORD. Rather, it is a combination of the logical sector offset and the

file alignment size, as described in Section 3.2.1. To determine the offset of a segment, the

translator needs to left shift the sector offset value by the size of the alignment count. For

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each segment, the sector offset is stored in a corresponding entry in the segment table. The

alignment shift count is stored at offset 32hex to the beginning of the NE file.

Let us use an example to show how the segment offset is calculated. Assume at offset 32hex

to the NE file there is a WORD (2 bytes) whose value is 09hex and a segment whose sector

offset is 04hex- The segment offset is then determined to be

{D W O R D){(D W O R D)04hex « 09hex) = = 0100000000000bin = = 800hex (7.1)

Since the segment offset consists of two components, there axe two approaches to modifying

it. The translator could change the value of the alignment shift count, or change the sector

offset. There are several disadvantages for the first approach. The major disadvantage of this

approach is that, in general, it wastes space. Incrementing the alignment shift count by one

results in an unnecessary waste of space. Let us take the program H E L L O W IN .E X E as

an example. H E L L O W IN .E X E contains a code segment and a data segment. The size of

the code segment is 8B4hex. Assume the user inserted 100hex bytes at offset 7D6hex to the

segment. By using techniques that were mentioned in previous chapters, the new code can

execute correctly. Now the translator is going to save the translated code by writing to a new

executable file. The value of the alignment shift count for H E L L O W IN is 9, and the sector

offsets for the code segment and data segment axe 4 and 9 respectively. The original offsets of

the code and data segments are then

{D W O R D)((D W O R D)04hex « 09hex) = = 0100000000000bin = = 800hex (7.2)

and

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(DWORD)((DWORD)0%ex « 09hex) = = 1001000000000bin = = 1200hex (7.3)

respectively. While examining the original code we found that the code segment size is

8B4hex. and there are 23hex fix-up records immediately following this segment. Each fix-up

record occupies 8 bytes. There are 2 additional bytes indicating the number of fix-up records.

So. after dumping, the position of the file pointer should be at

800hex + 8 5 4 hex + (23hex * 8) + 2 = = l lO E hex (7-4)

Now since inserting 100hex bytes at offset 7D6hex in the code segment causes the file pointer

to become 12CEhex which is larger than the offset of data segment (i.e., 1200hex)- the translator

needs to adjust the data segment offset to avoid overlapping.

If the translator increments the alignment shift count by 1, then the final data segment

offset will become

(DWORD){(DWORD)09he.x « 0Ahex) = = 10010000000000bin = = 2400hex (7.5)

If the translator increments the sector offset by 1 instead, then the final offset will become

1400hex as calculated below, a saving of lOOOhex-

(DWORD)((DWORD)OAhex « 09hex) = = 1010000000000bin = = 1400hex (7.6)

Moreover, the alignment shift count is global to all segments, but not all the offsets of

segments need to be changed. For the above example, if the translator changes the alignment

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

shift count, it needs to change the sector offset of the code segment in order to make the final

offset unchanged.

We used Borland’s Turbo Dump Version 4.2.19.3 to dump the binary images of new gener­

ated file called N E W J 1 E L L 0 W I N . and compared these with the original image. Figure 7.2

shows all of the differences encountered.

The alignment shift count is 9, meaning that the minimal unit in this file is 200hex bytes.

From Figure 7.2, the new DOS file size and old DOS file size differ in 200hex bytes. Since

the code size has increased by lOOhex bytes, both the allocation size and file length have also

increased by lOOhex bytes, as indicated in Figure 7.2. The next change takes place in the data

segment. Though the size of the data segment did not change, its sector offset must be updated

due to the size expansion of the proceeding code segment. Since the minimal unit is 200hex

bytes, the translator only needs to increase the sector offset by one, from 09hex to OAhex- The

remaining changes in Figure 7.2 axe relocation fixups in the code segment. For example, ~PTR

07F8h KERNEL.S' in Figure 7.2 indicates that at offset 07F8h there is a referencing target to

function K E R N E L S . The location of K E R N E L S is not important. However, since lOOhex

bytes have been inserted at 07D6hex; the location 07F8hex where a fixup is needed must be

changed to 08F8hex- Note that not all entries need to be updated. For example, the location

061Dh is not required to be updated, as it is less than 07D6hex-

7.4 Designing the N ew Executable File

The translator may need to store some important information in the new generated exe­

cutable file. This information must be visible to the translator to accelerate the translation

process.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparing files hellowin.dmp and new_hellowin.dmp

***** hellowin.dmp
DOS File Size
***** nev_hellowin.dmp
DIS File Size

***** hellowin.dmp
Segment Type: CODE
Sector Offset: 0004h

***** new_hellowin.dmp
Segment Type: CODE
Sector Offset: 0004h

* * * * * hellowin.dmp
Sector Offset: 0009h

* * * * * new_hellowin.dmp
Sector Offset: OOOAh

1600h (5632.)

1800h (6144.)

Alloc Size: 08B4h
File length: 08B4h

Alloc Size: 09B4h
File length: 09B4h

File length: 0224h

File length: 0224h

***** hellowin.dmp
PTR 07F8h KERNEL.5
PTR 088Dh KERNEL.6
PTR 0837h KERNEL.7
PTR 061Dh KERNEL.137
PTR 08ABh KERNEL.10

***** new_hellowin.dmp
PTR 08F8h KERNEL.5
PTR 098Dh KERNEL.6
PTR 0937h KERNEL.7
PTR 061Dh KERNEL.137
PTR 09ABh KERNEL.10

***** hellowin.dmp
PTR 07ECh KERNEL.23
PTR 0804h KERNEL.24

***** new_hellowin.dmp
PTR 08ECh KERNEL.23
PTR 0904h KERNEL.24

F ig u re 7.2 Comparison of original and new HELLOWIN.EXE files.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The translator may use 4 bytes starting at offset 3 7 ^ to the NE file to store the sector

offset to the Self-Modifying Code Detecting Table indicated in Section 6.3. This sector offset,

combined with the file alignment shift count, can be used by the translator to locate the table

in the new executable file. In normal situations, using 2 reserved bytes is enough to locate

the table. In the worst case, however, the original file may be too large to be indexed by the

combination. As such, the translator uses 4 bytes as the sector offset.

As described in Chapter 5, the Address Mapping Table may also need to be saved to the

new executable file. Similarly, the translator can use 4 bytes starting at offset 3Bhex to the NE

file to store the sector offset to this table.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Improving the Program Load Time

In order to illustrate the usefulness of the binary translation framework, an optimizer that

improves the load time of the executable is designed and implemented in the framework.

8.1 D escription o f Load P rocess and C osts

The program load time is crucial to its overall performance. When the user launches a

program for execution, the operating system must load part or all of the program into main

memory from secondary storage. In comparing secondary storage access time with register or

main memory access times, accessing data from secondary storage requires significantly greater

amounts of time, due to the physical characteristics of secondary storage.

In Windows executable files, each segment has several attributes, as described in Sec­

tion 3.2.2. One of the attributes, PRELOAD, has implied two possible values: PRELOAD

and LOADONCALL. When the user invokes an executable file, all PRELOAD segments will

be loaded into memory before the program starts execution. A LOADONCALL segment will

not be loaded into memory until any instruction in this segment is executed. When the loader

loads the program into memory, it first sets up the program’s Module Database, or Module Table.

The Module Database is essentially an in-memory version of the NE file header, as described in

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 3.2, and contains the information necessary to perform dynamic linking [25]. Among

other things, the module database includes a segment table that keeps track of all segments

for the executable program in memory. This segment table serves as a placeholder for all the

segments belonging to the executable. For example, the final address of a segment cannot be

known in a dynamic linking system until it is loaded into memory. As soon as the final ad­

dress for the segment is available, the loader fills the address field in the segment table for this

segment.

After setting up the module database, the loader allocates a selector in the Local Descriptor

Table (LDT) for each PRELOAD segment, loads these segments into memory, and fills the final

address fields in the module database for these segments. For those segments whose attributes

are LOADONCALL, the selectors are allocated, but the loader does not load the segments into

memory. Rather, it clears the segment-present bits for these segments in their corresponding

LDT entries. A more detailed description of the LDT can be read in Chapter 6. Later on, if any

of these LOADONCALL segments is referenced, the x86 processor will generate a segment-not-

present fault. Upon receiving this fault, the operating system loads this segment into memory

and resumes execution. For a detailed description of the executable program invocation process,

the reader may refer to Chapter 3 in [22].

Loading too many segments that are not referenced during program execution both incurs

excessive segment load time and wastes precious memory resources. The latter may, in turn,

degrade the overall system performance by evicting other programs from memory. On the

other hand, those segments with the LOADONCALL attribute, but needed during program

execution, may also increase the total load time. This additional time results from exception

handling (segment-not-present fault) overhead incurred when unloaded segments are referenced.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to better understand which aspects we can improve during program loading, this

chapter will define the term startup. Since there are several m ean in g s for the term startup in

the context of Windows programming, in order to avoid confusion, throughout this chapter the

term startup refers to the time from when the user invokes a Windows executable program until

the program is ready for user interaction. Based on this definition, the program startup time

is different from the load time and the operating system turnaround time. Indeed, it includes

all of the following five different components:

(1) The time to load all the PRELOAD segments

(2) The time to execute instructions in part or all of the PRELOAD segments, until the

program falls into its message loop

(3) The time to load LOADONCALL segments, if these segments are referenced by any

previously executed code.

(4) The time to execute instructions in (3).

(5) The operating system overhead, including multi-tasking.

Note that instructions in (2) may belong to only some of the PRELOAD segments since

not all preloaded segments will be executed during program startup. On the contrary, LOAD­

ONCALL segments axe not loaded unless they Eire executed. This chapter will discuss the

feasibility of reducing the time spent in (1) and (3).

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

□ LOADONCALL. not used
|

□ LOADONCALL. used

■ PRH.OAD.uscd

■ PRELOAD, not used

F ig u re 8.1 Segment loading distribution for MicroEmacs startup.

8.2 Exam ples o f Load T im e Inefficiencies

In order to examine segment loading information, a segment loading profiler was imple­

mented to keep track of the segments used and their loading attributes during startup. The

segment loading profiler was then used to analyze the segment loading behaviors of both Mi­

croEmacs and Microsoft Excel version 5.0. The analysis results indicate that the time spent in

(1) and (3) from Section 8.1 may be reduced for both MicroEmacs and Microsoft Excel.

Figure 8.1 shows the statistical information gathered during MicroEmacs startup. Mi­

croEmacs contains 36 code segments in the NE file, with 27 marked as PRELOAD segments.

During program startup 22 segments were used. Among these segments, 20 were PRELOAD

segments and 2 were LOADONCALL segments. Only 20 out of 27 PRELOAD code segments

were referenced, which means that more than 25% of the PRELOAD segments were not used

during startup. Loading segments without using them is far more wasteful than using LOAD-

79

.Actual
segment
lo a d in g

(deal
se g m e n t
lo ad in g

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ONCALL segments. This is because loading a segment usually takes longer than processing

a segment-not-present fault. Moreover, as mentioned earlier, loading a segment into memory

may evict other useful code.

The rightmost bar in Figure 8.1 illustrates the ideal loading situation. The ideal case

occurs when those segments which are needed during startup are marked PRELOAD, and those

segments marked LOADONCALL are not used during startup. This ideal loading configuration

can be achieved when segment loading profiling information is available and the translator is

able to modify the NE file.

Figure 8.2 shows the statistical information gathered during Microsoft Excel startup. Excel

contains 248 code segments, including 32 PRELOAD segments. After the user invokes Excel.

31 out of the 32 PRELOAD segments axe used during startup. However. Figure 8.2 shows that

there are 70 code segments used during startup. This implies that there are 39 LOADONCALL

code segments referenced during startup. As a result, the processor needs to process 39 segment-

not-present faults while loading these LOADONCALL segments. This overhead can be avoided

if these segments are marked as PRELOAD in the original executable file.

It is the responsibility of programmers to tell the linker which segments should be PRELOAD

and which should be LOADONCALL [21]. After a binary program is generated, this informa­

tion becomes invariant throughout the program’s lifespan. If the programmer did not correctly

set the attributes for the segments, extra time will be incurred whenever the program is loaded.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

250

A ctual [ileal
segm ent segm ent
loading loading

F igure 8.2 Segment loading distribution for Excel startup.

8.3 Im proving the Load Tim e

8.3 .1 P ro file-D riven C o m p ila tio n

Profiling the executables during development can help detect the segments used at run-time.

Pietrek [23] discusses how to improve program load time by running the compiled executable

program and collecting segment loading information. Using this information, the developer can

then guide the compiler or linker to generate a new executable program. However, profiling

during development may not always reflect all users7 application needs. One user may use a

program to perform a certain task while another user may use the same program to perform

a different task. Different tasks may exercise different portions of the code, and thus, different

code segments. Moreover, after a profile guided executable is generated, there is no way for

each user to customize their segment loading configuration. The next section discusses how the

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

translator can improve the program load time. In addition, a scheme is proposed that allows

users to participate in configuring the segment loading sequence based on their preferences.

8.3 .2 E x ecu ta b le T ran sla tion

Improving the load time involves two steps. In the first step, the original load information

is collected. Then in the second step, the translator modifies the executable file in order to

reduce the overhead of unnecessary segment loading and/or exception handling. The net result

is that the load time improvement is transparent to the loader.

In order for users, who do not have source code available, to optimize the load time based on

their needs, the translator must first collect all segment load information during program startup

and throughout the user's program usage. Any commands issued during the programs lifetime

may also result in loading LOADONCALL segments. To further reduce the segment-not-

present faults, these LOADONCALL segments should also be changed to PRELOAD segments,

provided that there is enough memory to hold all PRELOAD segments.

After collecting load information, the next step is to modify the executable file. The NE

executable file format was introduced in Section 3.2. This chapter focuses on the segment

attribute field. Each entry of the segment table in the NE file contains 4 words, or 8 bytes,

representing each segment. The third word defines some flags. Figure 3.3 illustrates these flags

and their corresponding meanings [18]. Equipped with this information and the segment load

information gathered from the user, the translator is able to modify the PRELOAD flag for

the accessed segments by setting the 8th most significant bit (the 4 from 0040h in Figure 3.3

has its 8th bit set). The PRELOAD flag for the PRELOAD segments that were not accessed

is reset to 0 to indicate LOADONCALL.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Special care must be taken when the translator modifies the segment attribute. When the

loader initializes the module database for an NE file, it will automatically make the following

segments PRELOAD, even though the PRELOAD bit is clear in the NE file [22]:

(1) All code segments that axe MOVEABLE and NONDISCARD ABLE

(2) All code segments that me NONMOVEABLE

The MOVEABLE flag and DISCARD flag are defined in Section 3.2.2. Most LOADONCALL

code segments have their MOVEABLE and DISCARD attributes set in the segment table

entry in the NE file. However, when the translator detects a LOADONCALL segment whose

MOVEABLE bit is off, or whose MOVEABLE bit is on but DISCARD bit is off, it should regard

this as a PRELOAD segment. When the translator needs to change a LOADONCALL segment

to PRELOAD, it only needs to set the PRELOAD bit in the segment entry of the NE file. If.

on the other hand, the translator needs to change a PRELOAD segment to LOADONCALL.

it needs to clear the PRELOAD bit, clear the MOVEABLE bit, and set the DISCARD bit.

One important point is that the segment access pattern may vary even after the executable

file is generated. For example, most application p rogram s allow the user to configure their

application preferences. The segments needed for one configuration may be different from the

other. Users may reinvoke the translator to perform load optimizations when the segment

access pattern changes.

8 .3 .3 G an g lo a d

Starting with Windows 3.0, Microsoft introduced a technique called gangload, or fastload,

to accelerate program loading [22]. Suppose there are 10 code segments in the compiled code,

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with segments 1. 3, 5. 7, and 9 marked PRELOAD and segments 2, 4. 6. 8. 10 marked LOAD­

ONCALL. If the loader is going to load all the PRELOAD segments, it will take much time

seeking and reading each individual segment. When programmers invoke the resource compiler

to generate a final executable file, they may tell the resource compiler to create a gangload area.

The task of the resource compiler is to translate the ASCII-based resource into a binary file.

The resource compiler will rewrite the original binary file and put all these PRELOAD segments

into a contiguous area. Gangload can reduce the program load time, but it is only optional. If

the programmer did not use gangload development, then the loader will not improve the load

time, unless the generated executable file is modified later.

The reader should not get confused between gangload and our approach. Our approach can

help reduce the program load time, with or without the presence of gangload. Gangload does

not modify the segment attribute, but simply rearranges segment placement in the executable

file. Though they are two different optimizations, our approach can take advantage of gangload.

For example, if the original executable file does not contain a gangload area, the translator can

create a gangload area after optimizing the segment attributes. If the original file already has a

gangload area and the number of PRELOAD segments is increased, the translator can expand

the original gangload area. The only limitation is that the size of the gangload area must be

less than 1 MB. If the final PRELOAD size turns out to be larger than 1MB, gangload may

only be used for part of the segments.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

Conclusions

Binary Translation plays an important role in software migration. In the foreseeable future,

software will become the major driving force of computer evolution since it usually outlives

hardware. Both developers and users tend to reuse software in order to reduce any unnecessary

cost. Developers tend to reduce the software development cost by adding new features to the

original kernel module. Users tend to use original software due to budget and familiarity.

Improving hardware technology may not be able to speed up the original binary program

since the code compiled for one generation of hardware may not run faster on the next generation

of hardware. Binary translation makes it possible to improve the performance of an executable

program by creating a new executable capable of utilizing some if not all of the new processor’s

features.

9.1 C ontribution

This thesis addressed some of the issues in binary translation. A robust framework was

designed and implemented to translate the original binary code and execute the translated

code. A run-time switching mechanism was proposed to allow the code size to change as

well as to allow partial translation of the executable. A hybrid approach to resolving non-

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

determinable branch targets was designed to minimize the rim-time overhead. The switching

mechanism allows the translator to avoid making potentially incorrect assumptions about the

program’s control flow. A self-modifying code detector was also implemented to prevent the

binary translator from translating self-modifying code. Unlike other related work that is based

on special hardware, a software approach based on the standard address mapping mechanism

is used here to detect self-modifying code.

Since translation takes time, the translated code should be written to secondary storage for

reuse. This thesis documents the detailed implementation issues for the write-back module to

generate a correct executable file in place of the old file. Finally, this thesis proposed to improve

the program loading time without recompiling the program or modifying the operating system.

9.2 Future Work

Though this thesis has made progress in solving some of the important problems in binary

translation, there are still many research issues that are left to examine. The following sections

outline some future research directions.

9.2 .1 P erfo rm in g M achine-L evel O p tim iza tio n s

Choosing a large memory model during compilation sometimes incurs performance loss by

generating unnecessary far calls. This phenomena is ubiquitous in executable files. One example

is the Windows Control Panel. This program contains only one code segment. However, there

are several far calls whose targets turn out to be in the same segment as the callers. Each far

call takes 4 machine cycles while each near call takes only one machine cycle. Each far call

takes 5 bytes while each near call takes only 3 bytes.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This thesis provided a robust framework that allows the code size to change in the presence

of undeterminable instructions. After run-time profiling information is available, advanced

optimizations can be applied to the binary program to further improve the performance.

9.2 .2 R em o v in g S egm en t O p era tio n s

16-bit code may contain a lot of segment loading, which has a major negative impact on

performance [5]. The address used in 16-bit code is formed by a 16-bit offset and a 16-bit

segment or selector. 32-bit code uses a flat addressing model. In this model, the offset is 32-bit

and all segments point to the same linear address. Since the translator is able to rewrite the

binary code, it is possible to unfold the segmented address in 16-bit code to a 32-bit flat address.

Another way to reduce segment loading is by merging small segments to form a large seg­

ment. Most application programs do not contain large sized code segments. One of the largest

benchmark programs. Excel, contains 248 code segments. The average segment size of this

program is only 0x4026 bytes, which is approximately one fourth of the maximum segment

size. Merging small segments can reduce the number of segments, which in turn, can reduce

the overall time of segment loading. Merging code segments can also improve the situation

described in Section 9.2.1. Inter-segment call instructions may be rewritable as near calls after

code segment merging.

9.2 .3 T ran sla tin g 3 2 -B it C od e

Translating a 16-bit Windows executable differs from translating a 32-bit Windows exe­

cutable, depending on the operating system. In Windows 3.x, all programs share a single

address space. In Windows 95, however, each 32-bit program has its own address space while

all 16-bit programs share a common address space. In Windows NT, each program has its

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

own address space. Having a private address space prevents a malfunctioning program from

crashing other programs, or even the operating system. This additional restriction is imposed

by the operating system. At machine level, it should not matter since all code is running as

binaries, including the operating system code. However, since the kernel run-time manager.

VMM. is built on top of Windows, translating 32-bit code may require modification of the

VMM implementation.

Other issues in migrating 32-bit code include augmenting the binary front-end and the run­

time switching mechanism. 32-bit executables use the Portable Executable (PE) file format.

Reading the binaries as well as generating new binaries need to conform to this file format.

For example. 32-bit programs use a flat memory model. As such, there are no inter-segment

references any more. Every memory access is a near reference. Thus, the run-time support

must be modified as well.

Though the 32-bit executable has no segment structure, there is still space for improving

program loading time. Consider a source program that consists of 30 code segments after using

the 16-bit compiler. Among these 30 code segments, 10 are marked as PRELOAD. Though

these segments do not exist if the source program was compiled by the 32-bit compiler, not all

portions of the executable code need to be loaded into memory at one time. By recording some

run-time commands and analyzing the loading behavior, the translator may improve program

loading time.

9 .2 .4 P o r tin g 3 2 -B it C o d e to 64-B it C ode

By the time this thesis is written, the next generation of 64-bit x86 microprocessor, Merced,

will be nearing completion of development [32]. In response to the new architecture platform,

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Microsoft is developing a 64-bit version of their NT operating system [11]. We expect to see

a large volume of 16-bit and 32-bit binary programs running on the Merced. Given the speed

of processor development, we believe binary translation will be critical to the performance of

64-bit processors for typical users.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

T; K. Andrews and D. Sand. “Migrating a CISC Computer Family onto RISC via Object
Code Translation.- ASPLOS I", pp.213-222. October 1992.

_2 T. Afzal. M. Bretemitz. M. Kacher. S. Menyhert. M. Ommerman. and W. Su. “Motorola
PowerPC Migration Tools - Emulation and Translation.- COMPCOM. June 1996.

3 D. Lee. T. Romer. G. Yoelker. A. Wolman. W. Wong. B. Chen. B. Bershad. and
H. Levy. “Instrumentation and Optimization of WIN32/Intel Executables.- http:
u~tnv.cs.Washington.edu,/homes/'bershad/Etch/index.html. University of Washington.

4: B. Chen. M. Smith, and B. Bershad. “Morph: A Framework for platform-Speoifir Opti­
mization.- http://www.eecs.harvard.edu/morph/. Harvard L'niversity. March 1996.

,5] Personal talk with Susan Corwin. Center for Reliable and High-Performance Computing.
Urbana. IL.. March 15. 1997.

!6j V COMMUNICATIONS. INC. Sourcerf TM) Commenting Disassembler Reading. V COM­
MUNICATIONS. INC. San Jose. CA 95129. August 1994.

17] Digital Equipment Corporation. Ultrix vf.2 pixie Manual Page.

[8] Digital Equipment Corporation. “Technical Introduction to Digital FX132." http:
www.digital.com/info/semiconductor/amt/fxS2/fx.html. March 1996.

[9] K. Ebcioglu and E. Altman. “DAISY: Compilation for lOOCompatibility." Report No. RC
20538. IBM T.J. Watson Research Center.

[10] C. Hunter and J. Banning. “DOS at RISC.- BYTE. pp. 361-368. November 19S9.

[11] “NT will have three faces.- News. Info World Electric. Vol. 19. Issue 15. April 14. 1997.
The web site address is http://www.infoworld.com/cgi-bin/displayArchivc.pr.y97/l5/'t02-
lS.l.htm

[12] Intel, “Pentium Family User's Manual. Volumn 3: Architecture and Programming Man­
ual.- Intel Corporation. 1994.

[13] N. Kronenberg, T. R. Benson. W. M. Cardoza. R. Jagannathan. and B. J. Thomas, “Port­
ing Open VMS from VAX to Alpha AXP,- Communication of the ACM. pp. 45-53. Febru­
ary 1993.

[14] J. Larus and E. Schnarr, “EEL: Machine-Independent Executable Editing." .4 CM SIG-
PLAN ’95 Conferences on Programming Languages Design and Implementation (PLDI).
pp.291-300, June 1995.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.eecs.harvard.edu/morph/
http://www.digital.com/info/semiconductor/amt/fxS2/fx.html
http://www.infoworld.com/cgi-bin/displayArchivc.pr.y97/l5/'t02-

[15] .J. R. Larus and T. Ball, “Rewriting Executable Files to Measure Program Behavior."
Software Practice and Experience, 24(2): 197-218, February 1994.

[16] D. Long and D. Ruder, “Introduction to Microsoft Windows Dynamic-Link Libraries." Mi­
crosoft Developer Network Library, Technical Articles: Windows Articles: Kernel Articles,
August 1992.

[17] D. Long and D. Ruder, “Mechanics of Dynamic Linking," Microsoft Developer Network
Library, Technical Articles: Windows Articles: Kernel Articles, January 1993.

[18] Microsoft, “Executable-File Header Format," Microsoft Knowledge Base, Article number:
Q65122, February 1996.

[19] Microsoft, Microsoft Windows Software Development Kit, Version 3.1, Microsoft Part No.
30211, 1992.

[20] D. A. Norton. “Writing Windows Device Drivers,” Addison-Wesley, 1992.

[21] C. Petzold. Programming Windows: the Microsoft guide to writing applications for Win­
dows 3.1, Microsoft Press. Redmond, WA, 1992.

[22] M. Pietrek, Windows Internals, Addison-Wesley, 1993.

[23] M. Pietrek, “Windows Question and Answer,” Microsoft Systems Journal. Number 9.
September 1994.

[24] M. Pietrek, “Windows Question and Answer,” Microsoft Systems Journal, Number 10.
October 1994.

[25] A. Schulman, D. Maxey, and M. Pietrek, Undocumented Windows, Addison-Wesley. 1992.

[26] G. M. Silberman and K. Ebcioglu, “An architectural framework for supporting heteroge­
neous instruction-set architectures,” IEEE Computer, pp. 39-56, June 1993.

[27] R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, and S. G. Robinson, “Binary transla­
tion,” Communication of the ACM, pp. 69-81, February 1993.

[28] R. Sites, “Branch resolution via backward symbolic execution,” U.S. Patent, No. 5428786,
Mar 1991.

[29] Sun Microsystems Incorporation, “The Wabi(TM) White Paper,” Sun Microsystems In­
corporation, Mountain View, CA, 1996.

[30] T. Thompson, “An Alpha in PC Clothing,” B Y TE , pp. 195-196, February 1996.

[31] R. Wahbe, S. Lucco, and S. L. Graham, “Adaptable binary programs,” Tech. Rep. CMU-
CS-94-137, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, April
1994.

[32] A. Wolfe, “Parallelism is part of P7 picture,” EE Times, Oct 12, 1996. The web site address
is http://techweb.cmp.com/eet/news/p7web.html.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://techweb.cmp.com/eet/news/p7web.html

Vita

Liang-Chuan Hsu was born in 1962. in Ping-Tung. Taiwan. He pursued his undergraduate

studies at the Chung-Cheng Institute of Technology. Tao-Yuan, Taiwan, where he received the

B.S. degree in Vehicle Engineering in 1986. After receiving the B.S. degree, he joined the Taiwan

Army with the rank of First Lieutenant, and served as a Teaching Assistant at the Chung-Cheng

Institute of Technology. In 1990. he completed the M.S. degree in Computer Science at the

Naval Postgraduate School, California. After receiving the M.S. degree, he continued to serve

in the Taiwan Army as an Instructor at the Chung-Cheng Institute of Technology. In the

fall of 1993. he began his graduate studies in Computer Science at the University of Illinois

in Urbana. Illinois. During his graduate tenure at the University of Illinois, he has been a

member of the Center of Reliable and High-Performance Computing and the IMPACT project

directed by Professor Wen-mei W. Hwu. In 1994, he advanced the military rank to Major.

After completing the Ph.D. work, he will continue to serve in the Taiwan Army as an Assistant

Professor at the Chung-Cheng Institute of Technology.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

