
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMi films the
text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white photographic
prints are available for any photographs or illustrations appearing in this copy for

an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

UMI”
800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INTERACTIVE SOURCE-LEVEL DEBUGGING OF OPTIMIZED CODE

BY

LE-CHUN WU

B.S., National Taiwan University, 1989
M.S., National Taiwan University, 1991

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2000

Urbana, Illinois

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI N um ber 9955681

_ ___ (f f i

UMI
UMI Microform9955681

Copyright 2000 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Copyright by Le-Chun Wu, 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

DECEMBER 1999
(date)

WE HEREBY RECOMMEND THAT THE THESIS BY

LE-CHUN WU

INTERACTIVE SOURCE-LEVEL DEBUGGING OFENTITLED.

OPTIMIZED CODE

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

DOCTOR OF PHILOSOPHYTHE DEGREE OF.

Director of Thesis Research

Head of Department

Committee on Final Examinatio:

Chairperson

t Required for doctor’s degree but not for master's.

0-517

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INTERACTIVE SOURCE-LEVEL DEBUGGING OF OPTIMIZED CODE

Le-Chun Wu, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 2000
Wen-mei W. Hwu, Advisor

With an increasing number of executable binaries generated by optimizing compilers

today to fully utilize advanced architecture features, it has become a necessity to support

debugging optimized code. One of the most difficult problems in debugging globally

optimized code is to recover the expected variable values at source breakpoints. To solve

this problem, the debugger not only has to stop the execution at appropriate places to

preserve necessary program state, but also needs to be able to correctly associate storage

locations with source variables.

In this dissertation, a new framework for debugging globally optimized code is pro­

posed. This framework consists of a novei breakpoint implementation scheme and a new

data location tracking mechanism. In the proposed breakpoint implementation scheme,

the debugger takes over the control of execution early and executes instructions under

a new forward recovery model. This enables the debugger to recover the expected be­

havior of a program even in the presence of optimization. Also the source breakpoints

are reported to the user in the order specified by the original source program and the

behavior of exceptions meets what the user expects.

The new data location tracking scheme keeps track of variable definition information

during optimization. A data-flow analysis based on the definition information preserved

is performed to collect data that is then used to generate the run-time data location

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information. With this data location information, a debugger incorporating the proposed

breakpoint implementation scheme can determine if the expected value of a variable is

available at a source breakpoint and how to recover it.

The debugging framework has been prototyped in both the IMPACT compiler and an

experimental debugger. Experiments conducted on several integer benchmark programs

have yielded encouraging results. The overhead in executable file size and compile time

incurred by this framework is reasonable. Compared with previous work, the proposed

approach is much more effective in the recovery of the expected variable values.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEDICATION

To my family.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Professor Wen-mei Hwu, for

providing an excellent environment in which to learn and carry out research, for his in­

sight, guidance and support during my studies, and for the opportunities he has provided.

My future career will benefit greatly from the lessons I have learned.

Next, I would like to extend my gratitude to the other members of my dissertation

committee, Professor David Padua, Professor Constantine Polychronopoulos, and Pro­

fessor Andrew Chien. Their comments, questions, and suggestions improved the quality

of this work immensely. I would also like to thank Professor Jane Liu, for her guidance

and support during the first two years of my graduate studies here.

This research would not have been possible without the support of the members of

the IMPACT research group, both past and present. The group members were always

willing to provide assistance, including research discussions, practice talks, and software

enhancements. Special thanks to Ben-Chung Cheng, John Gyllenhaal, David August,

and Brian Deitrich for answering numerous IMPACT compilation questions and providing

bug fixes over the years. Many thanks to Sabrina Hwu for creating such an enjoyable

work atmosphere in the group.

Also, thanks to Kuo-Feng Ssu, Hewijin Jiau, Liang-chuan Hsu, Tai-Yi Huang, Li-

Pen Yuan, Yi-Kan Cheng, Fu-Chiamg Chen, Chien-Wei Li, Ben-Chung Cheng, and the

members in my volleyball team for their steadfast friendship throughout my graduate

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

studies here, and for providing much needed mental breaks. They made my life in

Champaign/Urbana a lot easier and much more enjoyable.

I would like to thank my parents, Chi Wu and Lien Hung, for their love and encour­

agement throughout my life. They provided a firm foundation for me at home and in my

education, and have always offered assistance when I needed it. I would like to thank

my late grandmother for her love and for taking such good care of me during my child­

hood. I would also like to thank my sister, Yueh-Yun Wu, and my brother, Le-Shin Wu,

for their love and support. They did much more than their share in taking care of our

grandmother and parents back home while I was away for so long. I owe them a lot.

Finally, I would like to thank my wife, I-Wen Dzou, for her love, patience, caring,

and companionship. She has been a constant source of joy in my life and has helped me

through the difficult times.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

CHAPTER PAGE

1 INTROD UCTIO N... 1
1.1 C ontributions.. 7
1.2 Overview... 9

2 APPROACHES TO DEBUGGING OPTIMIZED C O D E 11

3 CODE LOCATION M A PPIN G ... 16
3.1 Anchor P o in ts ... 18

3.1.1 Proof of correctness... 20
3.2 Interception Points and Finish P o in ts .. 24

3.2.1 Instruction source o r d e r ... 25
3.2.2 Interception p o in ts ... 29
3.2.3 Finish points .. 33

3.3 Escape p o in ts .. 34

4 FORWARD RECOVERY SCHEME .. 38
4.1 Selective Emulation M odel.. 38
4.2 Proposed Forward Recovery M o d e l ... 40

4.2.1 Function calls in forward recovery.. 47
4.2.2 Loops in forward reco v ery .. 48
4.2.3 Beyond the function s c o p e .. 51
4.2.4 Proof of correctness... 53

5 DATA LOCATION TRACKING SCHEME .. 55
5.1 Variable Definition In fo rm ation ... 59
5.2 Available Expected Variable-Location Pair Analysis................................. 66
5.3 Range Calculation .. 76

6 EMPIRICAL EVALUATIONS... 82
6.1 Experimental Framework... 82

6.1.1 Compilation environment .. 83
6.1.2 Prototype debugger... 85

6.2 Overhead in Compile Time and Executable File Size 88
6.3 Overhead in Debug-Time Strategy ... 90
6.4 Effectiveness of The Fram ework... 91

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 CONCLUSIONS.. 95
7.1 S u m m ary ... 95
7.2 Future W ork.. 97

APPENDIX A A DATA-FLOW ALGORITHM FOR FINDING FINISH POINTS 100

REFERENCES... 102

V I T A .. 105

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table Page

5.1 Variable definition information for variables in the code example shown in
Figure 5.5.. 73

5.2 vLpair.gen, vLpairJcill, vljpairJn, and vljpairjyut sets for each instruction
in the code example shown in Figure 5.5.. 76

6.1 Benchmark descriptions.. 83
6.2 The size of the debug information for six optimized SPEC95 programs. . . . 89
6.3 Compile time increase due to the debugging framework for six optimized

SPEC95 programs.. 90
6.4 Results from static analysis on six optimized SPEC95 programs..................... 91
6.5 Effectiveness of the proposed debugging framework in the recovery of the

expected values for non-current local variables.. 94

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page

1.1 An example program (a) C-style source code (b) Optimized assembly code. . 5
1.2 A control flow graph example (a) Original program (b) After code hoisting

and tail merging... 8

3.1 Example program (a) Source program with line numbers (b) Control flow graph. 26
3.2 Sequence number adjustment for function inlining (a) Original C source code

(b) Functions after inlining. Each statement is annotated with (sequence # ,
line # , column #) ... 29

3.3 Execution order information maintenance (a) Original C source code (b) Pro­
gram after common subexpression elimination. Each statement is annotated
with (sequence # , line # , column #) ... 30

3.4 An iterative algorithm for interception point calculation.................................... 33
3.5 A control flow graph example... 35

4.1 (a) Original code (b) Optimized code after instruction scheduling (c) Opti­
mized code after register allocation.. 39

4.2 (a) Optimized code example (b) Instruction history buffer (c) Data history
buffer (the old values in the data history buffer are given arbitrarily in the
example)... 43

4.3 Instruction history buffer.. 44
4.4 (a) Instruction history buffer (b) Data history buffer (the old values in the

data history buffer are given arbitrarily in the example)................................... 47
4.5 A control flow graph with (a) old interception point (b) new interception point. 49
4.6 A control flow graph with (a) old finish point (b) new finish point.................. 50
4.7 (a) Original program (b) Optimized program.. 52

5.1 (a) Original source code (b) Unoptimized code (c) Optimized code (d) Range
records for variable a and b using previous techniques (e) Range records for
variable a and 6 desired by the proposed framework.. 57

5.2 (a) Unoptimized code (b) Optimized code after 15 is deleted (c) Optimized
code after /4 is deleted (d) Optimized code after I I is deleted......................... 63

5.3 Code moved to a non-control-equivalent place (a) Speculative code motion
(b) Partial dead code elimination.. 65

5.4 (a) Unoptimized code (b) Optimized code.. 69
5.5 (a) Unoptimized code (b) Optimized code.. 72
5.6 Range calculation algorithm... 78
5.7 (a) Code layout (b) Range information... 80

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 The architecture of the prototype debugger.. 86
6.2 Average number of local variables in scope at each source breakpoint............. 93

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

A source-level interactive debugger is a useful software tool that helps a programmer

control, examine, and monitor a running program interactively at the source level. Tra­

ditionally, the standard software development paradigm has been to compile the program

with little or no optimization during the debugging phase. When the program is to be

shipped to the users, it is sometimes compiled with optimizations enabled. However, with

the compiler optimizations becoming increasingly critical for today’s high-performance

computer systems such as EPIC architecture [1] and an increasing number of executable

binaries generated by optimizing compilers, the traditional paradigm has become incon­

venient or even unacceptable for several reasons [2], [3], [4]:

1. Optimization has become a default process or an integral part in modern compilers.

Some transformations, such as register allocation which appears to be a kind of

optimization to the debugger, may still be performed by the compiler even if the

optimization option has been turned off.

2. Programs may be too large to run on the target machine (especially in the embed­

ded systems) without memory space optimizations such as tail merging, memory

location (or stack frame slot) reuse, etc.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Without optimization, programs might ran several orders of magnitude slower at

debug time, which in turn makes the debugging process very ineffective.

4. Some bugs might only appear in optimized code, even when the compiler optimiza­

tion modules are correct. Examples illustrating this kind of bugs due to differences

in memory layout between optimized and unoptimized code can be found in Ref­

erence [5].

5. Due to the need to reverify the software after recompilation, many software vendors

would like to be able to debug the shipped version of the programs.

Therefore, it has become a necessity to provide a clear and correct source-level de­

bugger for programmers to debug optimized code.

However, debugging optimized code is difficult. There are two primary aspects as­

sociated with code optimization that make debugging difficult [2]. First, it complicates

the mapping between the source code and the object code due to code duplication, elim­

ination, and reordering. This problem is called code location problem. Second, it makes

reporting values of source variables either inconsistent with what the user expects or sim­

ply impossible. Because of code reordering and deletion, assignments to user variables

might take place earlier or later than expected. Also register allocation algorithms which

reuse registers or memory locations may make the run-time locations of variables varying

or non-existent at different points of execution. This problem is referred to as data value

problem.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In general, there are two ways for an optimized code debugger to present meaningful

information about the debugged program [2]. The debugger provides expected behavior of

the program if it hides the optimization from the user and presents the program behavior

consistent with what the user expects from the source code. It provides truthful behavior

if it makes the user aware of the effects of optimizations and warns of surprising outcomes

when the expected answers to the debugging queries cannot be provided. Although it is

not always possible to recover the program behavior to what the user expects without

constraining the optimization performed or inserting some instrumentation code [3], it is

desirable for the user to see as much expected program behavior as possible. Therefore,

in this dissertation I propose a new debugging framework designed to recover expected

behavior, whenever possible, which addresses both code location and data value problems.

As one of the most frequently used functionalities of a source-level debugger is for the

user to set breakpoints and examine variables’ values at these points, the proposed de­

bugging framework focuses on how to support these activities while debugging optimized

code. The framework consists of a novel breakpoint implementation scheme and a new

data location tracking scheme [6], [7]. The breakpoint implementation scheme includes

a new code location mapping mechanism and a new run-time debugger strategy. Under

this breakpoint implementation scheme, the program state can be properly preserved

at debug time and source breakpoints and program exceptions are reported to the user

in a manner consistent with what the user expects. With the preserved program state

and the information generated by the data location tracking scheme, the debugger in

the proposed framework can determine if the expected value of a variable is available

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at a source breakpoint and how to recover it. Although the goal of this new debugging

framework is to make optimization effects as transparent to the user as possible, how­

ever, since the proposed approach is non-invasive (that is, the debugged program is not

modified or inserted additional instructions by the compiler for the purpose of debug­

ging support [3]), the transparent debugging simply can not always be achieved. In my

proposed framework, whenever the expected behavior can not be recovered, the truthful

behavior will be presented so that the user will not be confused or misled.

The debugging framework was originally motivated by the observation that in order

for the debugger to provide expected variable values, the program states changed by the

out-of-original-source-order instructions have to be tracked by the debugger. To do this

for a breakpoint at source statement 5, the debugger suspends execution before executing

any of the instructions that are expected to happen after 5 . The object code location

where the debugger suspends the normal execution is referred to as the interception

point. It then moves forward in the instruction stream executing instructions (basically

single-stepping through the instructions) using a new forward recovery technique which

keeps track of program states. When the debugger reaches the farthest extent of the

instructions that should happen before 5, referred to as the finish point, it begins to

answer the user’s inquiries. When reporting the value of a variable, it uses the preserved

source-consistent program state to recover the expected values.

The basic idea of the approach can be illustrated by the example in Figure 1.1.

If the user sets a breakpoint at source statement 52, since instruction 13 originates

from source statement 53, the debugger suspends execution at 13. The debugger keeps

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S I: a = b + c ; 1 1 : I d r l . b <S1>
breakpoint— ^ S 2 : x = 2 ; 1 2 : I d r 2 . c <S1>

S3: y = z * 3; 1 3: I d r 5 . z <S3>
1 4: mul r 6 . r 5 , 3 <S3>
1 5: mov r 4 . 2 <S2>
1 6: add r 3 , r l , r2 <S1>

(a) (b)

Figure 1.1 An example program (a) C-style source code (b) Optimized assembly code.

executing instructions under the forward recovery model until instruction 76 is executed

because it originates from source statement 51 which should be executed before the

breakpoint. The debugger then hands over the control to the user and starts taking

user’s requests. During forward recovery execution, the original contents of the registers

which are updated prematurely are preserved to provide the user with the expected

variable values at 52.

While the basic idea of the new debugging scheme appears straightforward for

straight-line code, there are several challenging issues the scheme must address when

dealing with globally optimized code. I use the example shown in Figure 1.2 to illustrate

how global optimization complicates the problem. Figure 1.2(a) shows the control flow

graph of an unoptimized program where instruction 71 is from statement 51 ,12 is from

54, 73 is from 52, 74 and 75 are from 53, and 73' is from 55. Figure 1.2(b) shows an

optimized version of the program where instruction 75 is moved out of loop, instruction

74 is hoisted to basic block B, and 73 and 13' are merged and sunk to basic block E.

Basic block C becomes empty and is therefore removed. Suppose a source breakpoint

is set at statement 53 by the user. The problems which need to be addressed by the

proposed framework include:

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. How to calculate all the possible interception points and finish points? With code

being reordered globally, instructions which should be executed after a source break­

point might be hoisted above the breakpoint on different paths leading to the break­

point. For example, in Figure 1.2(b), instruction 74' and 75' are the instructions

which should be executed after the breakpoint but were hoisted. We can see that

when the control first reaches basic block A, the debugger should suspend the exe­

cution at 15', while when the control reaches basic block B through the back edge,

the debugger should suspend the execution at 74'. Therefore 15' and 74' should

both be interception points of 53. Similarly, 73 should be executed before the

breakpoint but was sunk to basic block E. The debugger needs to be able to iden­

tify where 73" is and continue its forward recovery until 73" is executed. Hence it

is necessary to devise a set of systematic algorithms to calculate all the possible

interception points and finish points.

2. How does the debugger confirm a source breakpoint? To preserve the required pro­

gram state, the debugger has to suspend the execution early at an interception

point. However, reaching an interception point of a source breakpoint does not

necessarily mean the breakpoint should be reported to the user. Consider Fig­

ure 1.2(b). After taking over control at instruction 75', which is an interception

point of 53, the debugger should report the breakpoint only when basic block C

is reached. Otherwise, it should continue the normal execution without reporting

the breakpoint. However, in this case, basic block C is removed after optimization.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We can see that there is no single object location which by itself can be used by

the debugger to decide if statement S3 will be reached or not. Thus, a set of object

locations and possibly some branch conditions will need to be incorporated into the

mapping scheme to help the confirmation of a breakpoint.

3. How does forward recovery work? A run-time (debug-time) technique which main­

tains data structures to keep track of the program states changed during the forward

recovery needs to be devised. This forward recovery technique also needs to ensure

that all the source breakpoints and exceptions are reported to the user in the order

prescribed by the source program for globally optimized code.

4. Where are the locations of user variables at run-time? The run-time locations

of user variables may be altered by optimization. The variable value may be in

different places (constant, register, or memory) at different points of execution.

Or it may not exist at all. To allow the user to access the value of a variable at

breakpoints, the debugger has to determine if the variable value exist or not, and

if it does, where or how to obtain it.

The aforementioned problems are addressed in the proposed debugging framework

and discussed in this dissertation.

1.1 Contributions

The major contributions of my dissertation work are discussed below.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

breakpoint 12 (S4)
I3’(S5)

12 (S4)
13 (S2)
14 (S3)
15 (S3)

15’ (S3)

II: bgt rl.5.C(Sl)

14’ (S3)

(a) (b)

Figure 1.2 A control flow graph example (a) Original program (b) After code hoisting
and tail merging.

A general, non-invasive, and practical solution to debugging globally optimized

code is proposed. In particular, I have proposed and developed

1. a novel breakpoint implementation scheme, under which source breakpoints

behave the way consistent with what the user expects and the program state

can be properly preserved, and

2. a new data-Iocation tracking scheme that generates the information with which

the debugger can unambiguously determine if the expected value of a variable

is available at a source breakpoint and where to obtain it.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The framework addresses both code location and data value problems and is capable

of recovering the expected program behavior for programs globally optimized by

techniques involving code duplication, deletion, and instruction-level reordering.

It does not require special run-time system support, nor does it need to insert

special instrumentation code at compile time. Practical algorithms and theoretical

foundations for the framework are devised and developed.

• A prototype debugger and necessary compiler support are implemented and eval­

uated. While a lot of the previous approaches have been developed and evaluated

only on the compiler side, I have implemented not only the compiler support within

the IMPACT compiler, but also an experimental debugger which incorporates the

proposed debugging strategy to prove the concept and feasibility of the framework.

Based on the fully-implemented prototype debugger and compiler support, the

overhead and effectiveness of the proposed approach are quantitatively evaluated.

This implementation experience and evaluation can be valuable and helpful to the

future research in the area of debugging optimized code.

1.2 Overview

This dissertation is composed of seven chapters. Chapter 2 reviews various previous

approaches to debugging optimized code and compare my approach with them.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3 discusses the code location mapping scheme. A new instruction source

order tracking method at compile time is described. The algorithms and the theoretical

foundations for constructing and calculating source-to-object mappings are presented.

Chapter 4 describes the forward recovery model in the novel breakpoint implemen­

tation scheme. The data structures and methods used for preserving program state and

ensuring source-consistent breakpoint and exception behavior are discussed in detail.

Chapter 5 presents the new data location tracking scheme. The approach to tracking

variable definition information during optimization is described. A data-flow analysis

based on the variable definition information is presented and explained. The algorithm

using the data-flow information to generate run-time data location information is also

presented.

Chapter 6 provides empirical results and evaluation based on the prototype. The

experimental framework used for generating the results is first described. The overhead

in compile time and executable file size due to the proposed debugging framework is

presented. The cost incurred in setting and reporting source-level breakpoints under the

new debugging framework as well as the effectiveness of the approach are quantitatively

evaluated.

Conclusions and directions for future work are presented in Chapter 7.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

APPROACHES TO DEBUGGING OPTIMIZED
CODE

Most of the previous approaches in debugging optimized code have focused on pro­

viding truthful program behavior [8], [9], [10], [5], [11], [12], [13], [14], [15], [16]. Hennessy

[8] first introduced the concept of currency. A variable is current at a breakpoint if its

value is consistent with what the user expects from the original source program at this

breakpoint. A variable is endangered if it might not be current. In his paper, Hennessy

provided algorithms to detect non-current and endangered variables caused by selected

local and global optimizations.

Coutant, Meloy and Ruscetta at HP [10] modified an existing C compiler and a source-

level symbolic debugger to support optimized code debugging. The optimizations they

addressed are global register allocation, induction variable elimination, copy propagation,

and instruction scheduling. The most noticeable part of their work is their solution to

the problem of tracking data locations. Based on the live range information of variables,

their compiler builds range data structure which keeps track of run-time locations of

variables in different address ranges of the binary program. With the range information,

the debugger can decide if there exists any source-level value for a source variable at an

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object code location. A similar data structure is adopted in my dissertation work for the

compiler to communicate to the debugger the location information for variables.

Range information calculated based on the live ranges of variables is considered con­

servative because of the fact that a variable is not live does not necessarily mean its value

should be unavailable. Adl-Tabatabai and Gross [13] later proposed a framework using

data-flow analysis to extend the range of a value location to the points where the variable

value is killed. Both works done by Coutant et al. and Adl-Tabatabai et al. provide early

implementation experience valuable to this dissertation work and are further discussed

in Chapter 5.

Works done by Copperman [5], [11] and Wismuller [12] are similar. Both of their

works focused on data value problem. Their approaches used data-flow analysis to deter­

mine and inform the user if a variable is current. Adl-Tabatabai and Gross [14], [15], [3]

also proposed algorithms to detect endangered variables caused by local and global op­

timizations. Their approach provides more precise classifications of variables by further

determining if an endangered variable is absolutely non-current or just suspect.

Tice and Graham [16] proposed an approach to display the effects of compiler op­

timizations at the source level by presenting a modified version of the source program.

While my proposed framework is not suitable for optimizations that reorder loop itera­

tion spaces such as loop interchange, loop fusion, loop skewing, etc., their approach can

handle this kind of optimization better by providing a transformed source to the user.

There also have been several research works using different strategies to provide ex­

pected program behavior [17], [8], [3], [14], [18], [19], [20]. Zellweger’s work [17] concen-

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

trated on code location problem. She proposed and implemented a method to handle

programs optimized by function inlining and crossjumping (tail merging) where a source

statement may have more than one instances, or a sequence of machine instructions

might correspond to two or more statements. Her method can correctly map a source

breakpoint to every object code location corresponding to the breakpoint, and can also

determine whether to report a breakpoint in a merged area by inserting hidden break­

points to the program. However, her work does not generalize to other optimizations,

while my code location mapping scheme can handle optimizations involving code dupli­

cation, deletion, and instruction-level reordering in general. Data value problem is not

addressed in her approach.

In his thesis [3], Adl-Tabatabai proposed to use branch conditions to help the debugger

to confirm a source breakpoint when there is no single object location for the debugger

to map the breakpoint to. This idea is similar to the anchoring condition mechanism

in my code location mapping scheme (see Chapter 3). However, he did not provide any

in-depth discussion on this topic, nor did he provide algorithms to keep track of the

required branch conditions during compilation.

Hennessy [8] and Adl-Tabatabai et al. [14] proposed techniques to recover the expected

values of variables. Their approaches are similar in concept. They recover the value of

a variable by reconstructing and interpreting the original assignment of the variable.

The expected value of the variable can be recovered successfully as long as the source

operands of the assignment are still available at the object breakpoint. Since both of their

approaches are based on a traditional source-to-object mapping scheme, the debugger

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

does not always suspend the execution early enough to preserve the values of the original

source operands. Therefore their recovery approaches can be improved by my breakpoint

implementation scheme.1 Also Adl-Tabatabai did not address the recovery of variable

values in globally optimized code, while Hennessy only briefly mentioned some extensions

to support a limited set of global optimizations in his paper and did not address the

problem of tracking run-time locations of variable values.

Gupta [19] proposed an approach to debug trace scheduled code. The user has to

specify monitoring commands before compilation. These commands will be compiled

into the program and later on used by the debugger to report the monitored information

to the user. The major problem with this invasive approach is that adding extra code to

the debugged program might change the program behavior and consequently introduce

new bugs.

Holzle, Chambers and Ungar [20] proposed an approach in their SELF programming

environment [21] to debug globally optimized code. By dynamically deoptimizing code

on demand, their debugger can provide full expected behavior. In their approach, the

debugger can be invoked only at pre-defined interrupt points where the program state is

guaranteed to be consistent with what the original program would have. This constraint

implies that the optimization can only be performed so that its effects either do not reach

an interrupt point or can be undone at that point. Once the debugger is invoked, the

function containing the interrupt point is deoptimized so that the debugging requests

rThe effectiveness of my framework in the recovery of expected variable values is compared with that
of Hennessy’s approach quantitatively in Chapter 6.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

caa be carried out. With the function deoptimized, the program can be stopped at any

source point within the function and almost all the typical debugging operations can be

supported. In this deoptimization scheme, the user is actually debugging unoptimized

code, whereas in my scheme it is the optimized code that is being debugged.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

CODE LOCATION M APPING

A debugger usually uses two kinds of code mappings [2],[3]: the object-to-source

mapping which the debugger uses to report the faulty statement when an exception

occurs, and the source-to-object mapping which the debugger uses to determine where

to suspend the normal execution and decide if a source breakpoint should be reported.

Since I am only interested in the implementation of user breakpoints in this dissertation,

the proposed scheme only focuses on source-to-object mapping. The object-to-source

mapping, nonetheless, can easily be built from the source ordering information preserved

during compilation (see Section 3.2.1).

To solve the code location mapping problem in debugging optimized code, there have

been different source-to-object mapping schemes proposed such as semantic breakpoint

mapping [2] which maps a source statement to the object code location that performs the

operations specified by the statement, syntactic breakpoint mapping [2] which preserves

the position of a statement with respect to its neighboring statements, and statement

label mapping [3, 10] which usually maps a statement to the first instruction originating

from the statement. Each of these mapping schemes maps a source breakpoint to a

different place in the object code to preserve different kind of source code properties.

However, since all of them map a source breakpoint to a single object location, only the

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

program state of a single point is available once the execution is halted by the debugger.

Therefore, optimized code debuggers that adopt a traditional breakpoint implementation

scheme usually have problems reporting the expected values of the variables which are

updated either too early or too late. When the values of these variables are requested,

the user will be informed that the expected values are not available at this point. The

availability of the variable values decreases when the code is optimized by increasingly

aggressive techniques which usually cause more code re-organization.

Unlike the previous source-to-object mapping schemes where a source statement is

mapped to a single object location, my approach maps a statement to a set of object

locations which can be classified into four categories with different functionalities: anchor

points, interception points, finish points, and escape points. Interception points are the

object locations where the debugger should suspend the normal execution and start

forward recovery. Finish points are the object locations where the debugger should stop

forward recovery and begin to take the user’s requests. Escape points are used for the

debugger to determine that a source breakpoint should not be reported. Anchor point

information is the base for deriving interception, finish, and escape points, and needs to

be constructed and maintained by the compiler. Interception points, finish points, and

escape points can be derived from the anchor point information at debug time. I will

discuss each of these object locations in the following sections.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Anchor Points

In a traditional mapping scheme, a source breakpoint at statement S is mapped to a

single object location (usually the first instruction of S). Without optimization, reaching

this object location at run time means statement S is reached (providing the compiler is

correct) and the debugger should report the breakpoint to the user.

Optimization, however, leaves this simple scheme insufficient. During optimization,

the first instruction of a statement (or even the whole statement) might be deleted or

moved away from its original place. Reaching the first instruction of a statement S does

not necessarily mean S will be reached in the original source program. Sometimes the

compiler cannot even find a single object location in the optimized code to correctly map

a source statement to, as illustrated by the example shown in Figure 1.2 (b).

In order for the debugger to be able to correctly confirm a source breakpoint for

globally optimized code, each source statement is associated with anchor point informa­

tion. An anchor point of a source statement is an object code location (an instruction).

Each anchor point comes with a boolean condition referred to as the anchoring condition.

When an anchor point of a source statement is reached during execution and its anchoring

condition is true, the breakpoint set at that source statement should be reported.

Anchor point information for each source statement is constructed and maintained

by the compiler. Before any optimization is performed, the anchor point of a source

statement S is set to the first instruction of S and the anchoring condition is set to

boolean value 1 (true).

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

During the process of code optimization, when code duplication optimization such

as loop unrolling, function inlining, and loop peeling is performed, if an anchor point

of statement S is contained in the duplicated code, the anchor point information is also

duplicated. When an instruction I which is an anchor point of statement S is deleted or

moved away from its original place, the compiler will modify the anchor point information

of S using the algorithm shown below.

case 1 If I has an immediate succeeding instruction J in the same basic block, J replaces

I to become an anchor point of S and the anchoring condition is boolean value 1.

case 2 else if I has an immediate preceding instruction J in the same basic block, J

replaces I to become an anchor point of S and the anchoring condition is boolean

value 1.

case 3 else, all of Ps immediate preceding instructions, Ji, ..., Jk (where k > 1),

jointly replace / to become anchor points of 5. If J{ is a conditional branch in­

struction, the condition under which J,- will branch to I becomes the anchoring

condition. Otherwise, the anchoring condition is boolean value 1.

Note that the algorithm is based on the assumption that conditional branches will

not be removed (assuming no predicated code). Thus any instruction I which is being

removed is never a conditional branch and its anchoring condition is always 1. If the

condition of a branch is a constant, our method allows the branch to be treated as an

unconditional jump and thus allows it to be removed.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Refer back to Figure 1.2(b), where the whole basic block C is removed due to opti­

mization. Based on our algorithm, instruction I I becomes the new anchor point of 53

(and 52) with the anchoring condition of r l > 5.1

Using the above algorithm, the anchor point (s) identified for each source statement

preserves the original source order. That is, if statement 52 follows statement 51 in source

order, the anchor point (s) of 52 will not be reached earlier than the anchor point (s) of

51 (in the same iteration) during execution.

3.1.1 Proof of correctness

To prove that the anchor point information maintained by the compiler using the al­

gorithm shown in Section 3.1 is correct, I will show that the debugger can unambiguously

decide if a source breakpoint should take effect based on the anchor point information. I

first introduce the concept of reaching condition.

D efinition 1 The reaching condition of an instruction I , RCi, is a boolean expression

comprising program variables and intermediate results so that when the condition is true,

instruction I will be reached from the function entry point.

Note that I assume that conditional branches will not be removed during optimization,

therefore the reaching condition of an instruction remains the same during optimization

as long as the instruction itself is not moved or deleted.

lIn practice, the direction of the branch (taken or fall-through) instead of the actual boolean expres­
sion is used as the anchoring condition.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There might be more than one path which can lead to an instruction. For an instruc­

tion to be reached through a specific path, on this path every branch condition under

which the path will be taken has to be true. Therefore, the single-path reaching condi­

tion of instruction I through a specific path P, RC[j>, is the conjunction of every branch

condition on P under which P is taken. That is,

D efinition 2 RCi j > = A?=i Ci> where C\ is the condition of branch i under which P is

taken, and n is the number of branches on P.

Since an instruction can be reached through multiple paths, the operational definition

of the reaching condition of instruction I, RCr, is the disjunction of all the I's single-path

reaching conditions. That is,

D efinition 3 RC[= V?=i RCi,pi, where P i is the ith path leading to I and n is the

number of different paths leading to I.

The reaching condition of an instruction can also be derived from that of its prede­

cessors as the following lemma shows:

Lem m a 1 The reaching condition of the first instruction I o f a basic block, RCi, can be

expressed as
n

V {RCji A B C jij)
i-l

, where {Ji} is the set of immediate preceding instructions o f I , RCji is the reaching

condition of instruction Ji, B C jij is the branch condition under which J i will branch to

I , and n is the number of I ’s immediate preceding instructions.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For any two instructions in the same basic block, when control reaches one instruction,

it will definitely reach or have reached the other. Therefore,

L em m a 2 All the instructions in the same basic block have the same reaching condition.

As I mentioned earlier, a source breakpoint will be reported only when any of its

anchor points is reached and the corresponding anchoring condition is true. The condition

for the debugger to report a source breakpoint is referred to as breakpoint confirmation

condition.

D efinition 4 The breakpoint confirmation condition of a source statement S, BCCs, is

V (R C n A A C n ys)
i=l

, where {Ii} is the set of anchor points of S, ACf^s is the anchoring condition of I i with

respect to S, and n is the number of S 's anchor points.

Before any optimization is performed, the proposed scheme will map the anchor point

of statement 5 to the first instruction, say / , of S and set the anchoring condition to 1.

Assuming the compiler is correct, it is true that for the unoptimized code the breakpoint

set at S should be reported if and only if / is reached. That is, before any optimization

is performed, the breakpoint confirmation condition of S is a sufficient and necessary

condition for the breakpoint set at S to be reported. Therefore if I can prove that

the breakpoint confirmation conditions before and after the algorithm in Section 3.1 is

applied are the same, the algorithm is correct.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lem ma 3 When an instruction I is removed due to optimization, its reaching condition,

RC[, is equal to

V {RCji A ACm j)
:=1

, where J\, J i , ..., > 1) are the instructions calculated using the algorithm in Sec­

tion 3.1, and A C jij is the anchoring condition of Ji with respect to I.

P roo f : When the algorithm in Section 3.1 is applied, if either step 1 or step 2 is true,

there will be only one instruction returned (i.e. A: = 1) and the anchoring condition

is 1. Assuming 4 is the instruction returned, since 4 and I are in the same basic

block, according to Lemma 2, R C jl — RC[.

Thus, \Jl—x(RCji A AC jij) — R C jx A 1 = RC[A 1 = RC[.

If step 3 is applied, all the / ’s immediate preceding instructions, 4 , J i , ..., <4 will

be returned and the branch condition of Ji, BCj u , under which 4 will branch to

I becomes the anchoring condition of 4 , A C jij.

H ence, \Jki=x{RCji A A C /i,;) = V f= i{RCji A B C jij).

From Lemma 1, we know RCt = \]\=l{RCji A B C jij), where B C jij is the branch

condition under which Ji will branch to I.

Therefore, RCi = \Jx=l(RCji A B C jij) = y^=i(RCji A A C jij)

T heorem 1 When an instruction I, which is an anchor point o f source statement S ,

is removed due to optimization, the breakpoint confirmation conditions of S before and

after the algorithm in Section 3.1 is applied are the same.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P ro o f : Assuming S has k anchor points, 71, 72, ..., Ii, ..., Ik , where k > 1 and I i = 7,

according to Definition 4, we have

BCCs,before = (RCn A AC n,s) V ... V

(RCr A AC/,5) V ... V (RCik A ACik,s) (3.1)

After instruction 7 is removed and the algorithm is applied, assuming m new anchor

points, 71, 72, ..., 7m, are calculated in place of 7, according to Definition 4, we

have

BCCs,after = (RCn A ACn,s) V ... V

(RC j i A ACj \j) V ... V (R C jm A AC/m,/)

V ... V (RCik A ACtk,s)

From Lemma 3, we know /2C/ = \J1£=l(RCji A AC/,-,/). Also, based on the assump­

tion of the algorithm that only non-conditional-branch instructions can be removed,

we know that the anchoring condition of 7 (with respect to S) is 1 (i.e. AC/,s = 1).

Therefore, RCf A AC/,5 = RC[— \J^i{R C ji A A C jij).

Thus, replacing RCi A AC/,5 with Vi^i(RCji A AC/,-/-) in Equation (3.1), we have

BCCs,be fore = BC Cs,after ■

3.2 Interception Points and Finish Points

When the user sets a breakpoint, the debugger needs to first identify the interception

points and finish points corresponding to the source breakpoint so that it knows where the

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

normal execution should be suspended and where the forward recovery should stop. Note

that reaching an interception point of a source breakpoint does not necessarily mean the

breakpoint should be reported to the user. Only when an anchor point of the breakpoint

is reached during forward recovery can the debugger report the breakpoint.

To calculate the interception points and finish points, information about the original

source ordering of instructions has to be constructed and preserved during compilation.

In the following subsections, an instruction source-order tracking method is presented,

and the algorithms to calculate the interception points and finish points are described.

3.2.1 Instruction source order

I propose an instruction source order tracking method which determines the original

execution order of all the instructions and maintains this information during compilation.

In my scheme, I do not distinguish execution order between instructions originating from

the same source statement. The reason for this is because I am focusing on source-level

breakpoints which can only be set at statement boundaries.

To determine the source order of instructions, one would intuitively think about using

source line numbers and column numbers, and annotating each instruction with this

information. Although the line number and column number information can determine

the execution order of the instructions in the same basic block, it is not sufficient to

track the execution order of the instructions across basic blocks. As we can see from

Figure 3.1, although statement LI has a smaller line number (line 3) than statement L2

(line 5), L2 will always be executed before LI in the dynamic execution flow as shown

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l i n e #

a = b + c 1
g o t o L2 2

Ll: d = e + f 3
g o to L3 4

L2: x = y + z 5
g o to Ll 6

L3: w = u + V 7

LI

L2

L3 w

goto LI

goto L2

goto L3

(a) (b)

F igure 3.1 Example program (a) Source program with line numbers (b) Control flow
graph.

in Figure 3.1(b). Therefore it is necessary to incorporate control flow information to the

source ordering information.

In my proposed scheme, each basic block is assigned an integer number, called se­

quence number, which reflects the dynamic execution flow. Sequence numbers are as­

signed to basic blocks of the original program such that basic block A has a smaller

sequence number than basic block B if and only if each path from B to A involves a back

edge.

The compiler computes sequence numbers by duplicating nodes to make the flow

graph reducible, removing back edges, and then topologically sorting the resulting acyclic

graph. Note that the sequence number assignment might not be unique, but there is only

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

one relative execution order between two basic blocks where the execution control can

reach one from the other without traversing the back edges.

Theorem. 2 In a reducible acyclic control flow graph, there is always a well-defined ex­

ecution order between two basic blocks where execution control can reach one from the

other.

P ro o f : We prove the theorem by contradiction.

Suppose there is a basic block A which can be reached both before and after another

basic block B in the control flow graph. There must be a path from A to B and

back to A, which makes the graph cyclic and contradicts our assumption. Thus,

there is only one execution order between A and B.

Having the sequence number, line number, and column number information associated

with each instruction, a simple comparison of the numbers can determine the original

execution order of instructions.

Before any optimization is performed, sequence numbers will be assigned, along with

the line number and column number information, to each instruction. During an opti­

mization phase, the source ordering information associated with each instruction remains

the same as long as there is no code duplication or code creation optimization performed.

When code duplication optimization which duplicates basic blocks is performed, main­

taining the sequence number information depends on if the duplicated code is introduced

to a new context. In optimizations such as loop unrolling, function inlining, and loop

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

peeling, the duplicated basic blocks are introduced to a context different from their orig­

inal one. Their original sequences numbers may no longer be valid in the new context,

so it is necessary to dynamically adjust the sequence numbers of the duplicated code

and the affected instructions in the surrounding new context to reflect the new execution

order. For optimizations such as tail duplication where the duplicated code remains in

the old context, the original sequence number information is kept.

To show how the compiler adjusts the sequence number information, I use a function

inlining example. Figure 3.2(a) shows an example C program with two functions, foo and

bar, where bar calls foo. Each statement is annotated with the execution order information

(sequence number, line number, column number). After inlining, statement 58 is replaced

with a set of statements duplicated from function foo as shown in Figure 3.2(b). In order

to maintain the correct relative execution order among instructions originating from

function foo and function bar, we need to change the sequence numbers of all the new

statements coming from foo and the sequence numbers of the statements which should be

executed after 58. In Figure 3.2(b), we can see the sequence numbers of the duplicated

statements are all changed to 2 (their original sequence number plus 1, the original

sequence number of the function call) and the sequence number of 59 becomes 3.

Sequence number adjustment for loop unrolling and loop peeling can be done in a

similar fashion.

For optimizations which involve creating new code such as common subexpression

elimination, the newly-inserted instructions are treated as if they are from one of the

statements involved in the optimization and assign them the same source ordering infor-

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f o o (i n t a , i n t b) f o o (i n t a , i n t b)
{ (

i n t t ; i n t t ;
S3 : t = a; (1 . 4 , 4) S3: t = a; (1, 4 , 4)
S4: a = b + 4; (1 , 5 , 4) S4: a = b + 4; Cl, 5, 4)
S 5 : b = t ; (1 , 6 , 4) S 5 : b = t ; Cl. 6, 4)

} }

b a r () b a r ()
{ {

i n t x , y ; i n t x , y ;
S 6 : x = 2; Cl, 12, 4) S6: x = 2; (1, 12, 4)
S7 : y = 3,- (1 . 13, 4) S7 : y = 3; (1, 13, 4)
S8: f o o (x , y) ; (1 . 14 , 4) {
S 9 : y = x + 1; Cl. 15, 4) i n t a , b , t ;

} S I ' a = x; (2, 1, 4)
S 2 ' b = y; (2, 1, 4)
S3' t = a; (2, 4, 4)
S 4 ' a = b + 4; (2, 5, 4)
S 5 ' b

v
= t ; (2, 6, 4)

S 9 :
/
y = X + 1 ; (3, 15, 4)

(a) (b)

Figure 3.2 Sequence number adjustment for function inlining (a) Original C source
code (b) Functions after inlining. Each statement is annotated with (sequence # , line
, column #) .

mation as the other instructions of the statement. For example, Figure 3.3(b) shows an

optimized program after common subexpression elimination, where S3 is newly created

code. The source ordering information of S i is assigned to S3 because S3 is treated as

if it originates from SI.

3.2.2 Interception points

With regard to a breakpoint at source statement S, all the instructions in the function

can be divided into two groups based on the source ordering information:

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S3: t = a + b (1 , 3, 4)
SI: x = a + b (1, 3 , 4) SI: x = t (1, 3, 4)

S2: y = a + b (1, 8, 4) S2: y = t (1, 8, 4)

(a) (b)

F igure 3.3 Execution order information maintenance (a) Original C source code (b)
Program after common subexpression elimination. Each statement is annotated with
(sequence # , line # , column #).

P re-b reakpo in t instructions are the instructions which have a source execution order

smaller than S , and

post-breakpoin t instructions are the instructions which have a source execution or­

der equal to or larger than S.

Instructions which can neither reach S nor be reached from S without traversing back

edges may be classified as either pre-breakpoint or post-breakpoint based on their source

ordering information. These instructions are irrelevant as long as they are not moved

to a place which can reach S or be reached from S during optimization. Otherwise,

the values of the variables affected will be denoted as unavailable to avoid providing

misleading information (see Chapter 5).

Interception points for a breakpoint set at 5, assuming instruction I is an anchor

point of S, are calculated using:

• every path from the function entry point to I without traversing back edges, and

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• every path starting from the loop header to I without traversing back edges for

each loop which I resides in.2

Along each path mentioned above, the first post-breakpoint instruction encountered is

an interception point of 5.

Note that the above algorithm assumes that all the loops in the optimized code are

monotonic. A loop in the optimized code is called monotonic if all the instructions in

iteration i -1-1 of the loop are supposed to be executed after any instruction in iteration

i in terms of the original program execution order, as opposed to non-monotonic loops

such as modulo scheduled loops [23, 24] where instructions from different iterations of the

original loop are mixed together in the same iteration of the new loop. In this dissertation

I only base the discussion of the proposed approach on the assumption that all the loops

in the optimized code are monotonic loops (such as unrolled loops).

Referring back to Figure 1.2(b), assuming II is the only anchor point of 53, there are

two paths leading to I I which the debugger needs to consider: path P i = < A, B(11) >

and path P2= < B(11) >. Assuming 15' is the earliest post-breakpoint instruction along

Pi, 15' is an interception point of 53. Also, assuming 14' is the earliest post-breakpoint

instruction along P 2,14' is another interception point of 53.

An algorithm using backward data-flow analysis to systematically calculate all the

interception points with regard to an anchor point is presented in the following.

In the control flow graph G of the function, suppose an anchor point I of statement

5 is in basic block D and the function entry block is E. To find out the interception

2The definitions of the loop header and the back edge can be found in Reference [22].

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

points of S with regard to I , D needs to be first split into two basic blocks D l and £>2,

where

1. D l is the top portion of D including instructions from the first instruction of D up

to the one at I.

2. D2 contains the bottom portion of D including instructions from the one immedi­

ately following I to the last one.

3. All the D ’s predecessors become D l’s predecessors.

4. All the D ’s successors become D2's successors.

5. There is no edge directly from D l to D2.

Let V be the set of basic blocks which can reach D l without traversing back edges

in graph G (including D l).3 For each basic block B in graph G, gen[B] and kill[B] are

defined as follows:

• If B is in V,

gen[B\ = A one-element set containing the first post-breakpoint instruction in basic

block B , if there is any. An empty set, otherwise.

out[B\ if gen[B] ^ (f>

<f> otherwise

If B is not in V,

gen[B\ = kill[B\ = (f>

kill[B] =

3V can be obtained through a simple backward depth-first search from D l.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for each, block B in graph G do
if B is in V th en

in[B\ = gen[B];
else

in[B\ = <f>;
endif

end for
while changes to any of the in s e ts occur do

for each block B in V do
OUt[B] = U s i a a successor of B Wl[5]«
in[B] = gen[B\ U (out[B] — kill[B]);

end for
end while

Figure 3.4 An iterative algorithm for interception point calculation.

The data-flow equations for in and out sets of B are:

out[B\ = (J in[S]
S is a successor of B

in[B\ = gen[B\ U {out[B\ — kill[B\)

A standard iterative algorithms for solving data-flow equations [22] to derive the in[B]

for each basic block B is presented in Figure 3.4. The union of in[E\ and in[D2\ is the

set of all the interception points of S with regard to I.

3.2.3 Finish points

To identify finish points, an issue about function calls needs to be first addressed. Due

to the surrounding pre-breakpoint instructions, if a post-breakpoint function call which

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performs some I/O operations such as printing messages to the display screen is executed

by the debugger, the user can. be confused because the breakpoint was supposed to be

reached before the function call. Therefore, the debugger in the proposed framework is

not allowed to execute those post-breakpoint function calls while it does forward recovery.

Instead, the finish point will be set before any of function call instructions. This way the

ability of the debugger to recover the expected values of some variables might be reduced

because the debugger does not always execute all the pre-breakpoint instructions, but

at least it does not confuse the user. Since most compilers have very limited abilities to

move code across I/O function calls, this will not be a serious issue in practice.

Suppose / is an anchor point of a source statement S. For each different path from

I to the function exit point without traversing back edges, the finish point of S on this

path is either the instruction immediately preceding the earliest post-breakpoint function

call or the last pre-breakpoint instruction, depending on which one is encountered first.

An algorithm using data-flow analysis to calculate all the finish points with regard to an

anchor point is designed. The algorithm is similar to the one shown in Section 3.2.2 and

is presented in Appendix A.

3.3 Escape points

Conceptually, the debugger confirms a source breakpoint when an anchor point of

the breakpoint is reached during forward recovery and the anchoring condition is true.

However, before the debugger can be sure that no anchor point of the statement is going

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interception point

anchor point

Figure 3.5 A control flow graph example.

to be encountered, it will have to scan forward in the binary all the way to the end of a

function. In order to allow the debugger to resume normal execution as soon as possible

when the breakpoint should not take effect, another set of object locations (referred to

as the escape points) which are derived from anchor point information is proposed. An

escape point of a source breakpoint is an object location such that when it is reached

during forward recovery, its corresponding breakpoint should not be allowed to take effect

and the normal execution is resumed.

For a breakpoint set at source statement S, there are two sets of escape points cor­

responding to it. The first set includes those instructions which can be reached from

any of S’s interception point(s) but does not lead to any of S’s anchor point(s) without

traversing back edges. The escape points in this set are calculated in the following way:

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

step 1 Using a simple backward depth-first search to find out all the basic blocks which

can reach any of the anchor points of S without traversing back edges. Let D be

the set containing all the basic blocks found in this step.

step 2 Using a simple forward depth-first search to find out all the basic blocks which

can be reached by any of the interception points of S. Let E be the set containing

all the basic blocks found in this step.

step 3 F = D n E . Set F will then contain all the basic blocks which can be reached

from one of the interception points and lead to one of the anchor points without

traversing back edges.

step 4 For each basic block in F which itself does not contain an anchor point of S , the

first instruction of its immediate successor which is not in set F is an escape point

of S.

Figure 3.5 shows a control flow graph of an example program in which 12 is the only

anchor point of a source breakpoint and I I is the only interception point. We can see that

there is only one path from I I to 12, which is < A, B ,D >. We find that basic blocks C

and E are the immediate successors of A and B, and they are not on any path leading

to 12. Therefore the first instructions of C and E are the escape points corresponding

to anchor point 12.

The second set of the escape points includes those anchor points with anchoring con­

ditions other than boolean constant 1. When an anchor point is reached, if its anchoring

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

condition is false and it does not lead to any of S ’s other anchor point (s) without travers­

ing back edges, the anchor point itself becomes an escape point.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

FORWARD RECOVERY SCHEME

After the debugger takes over control at an interception point of a source breakpoint,

the forward recovery process begins. During the forward recovery, the debugger must

ensure the program state required for the recovery of expected variable values is properly

preserved and the source breakpoints behave the way prescribed by the source program.

In this chapter, I first briefly describe an intuitive forward recovery scheme and discuss

some of the issues it has to address. I then describe in detail my proposed forward

recovery model that avoids the problems faced by the intuitive scheme and is adopted in

my prototype debugger.

4.1 Selective Emulation Model

To preserve source-consistent program state, an intuitive forward recovery model is to

execute (emulate) only pre-breakpoint instructions and skip the post-breakpoint instruc­

tions. Refer back to the simple example in Figure 1.1. If this recovery model is used,

after taking over control at 13 (the interception point), the debugger skips instruction

13, /4, and /5, and emulate only instruction 16 before it hands over control to the user.

Once the user resumes execution, the debugger will go back to emulate those skipped

instructions. It then writes out the emulated state to the debuggee, and resumes the de-

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S I : a = 1
S 2 : C = 0

S 3 : b = a + 1

S I : a = 1
S 3 : b = a + 1
S 2 : c = 0

I I : r l = 1
1 2 : r 2 = r l + 1
1 3 : r l = 0

(a) (b) (c)

F igure 4.1 (a) Original code (b) Optimized code after instruction scheduling (c) Op­
timized code after register allocation.

buggee in native execution mode. This forward recovery model is referred to as selective

emulation [6], [25].

In general, it is safe to emulate pre-breakpoint instructions before post-breakpoint

instructions because the optimizer must respect the data dependencies of the source

program when reordering instructions. However, since false dependencies might be in­

troduced in the optimized code when register allocation is performed after instruction

scheduling, a naive instruction reordering at debug time does not work. For example,

Figure 4.1(a) shows the original code of a sample program. Figure 4.1(b) shows the op­

timized code after instruction scheduling. Figure 4.1(c) shows the optimized code after

register allocation where both a and c are mapped to the same register r l . If a break­

point is set at source statement 53, then r l = 0 must be emulated before b = r l + 1.

However, at the point when the debugger emulates b = r l + 1 (when the user continues

from the breakpoint), the value of r l used for instruction 12 must be the value that it

had before it was overwritten by r l = 0.

One way to accomplish this is to represent the emulated state of the debuggee as a

list of change records, one for each emulated instruction [6]. A change record stores the

modified values of registers and memory. Although the instructions are emulated out

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of binary order, the list is ordered by the binary ordering of the emulated instructions.

When emulating an instruction, the debugger finds the instruction’s position in binary

order, and only use the preceding change records to construct the machine state needed

for emulation. Consider the example shown in Figure 4.1 again. When the user continues

from the breakpoint set at S3 and the debugger comes to emulate instruction 12, only

the change record for instruction I I is used to find the value of r l because I I is the only

instruction preceding 12 in binary order.

The selective emulation scheme is further complicated by the presence of function calls

and post-breakpoint branches in the emulated region. Special run-time strategies need

to be devised to address these problems [6]. Also this forward recovery model requires

the debugger to incorporate an emulator of the target processor.

4.2 Proposed Forward Recovery Model

In this dissertation work I propose another forward recovery model which avoids

the aforementioned issues faced by the selective emulation model. Under this forward

recovery model, every instruction between the interception point and the finish point (or

the escape point) is executed in the binary order and the values overwritten prematurely

are saved. This model does not require a full-fledged emulator of the target machine

in the debugger as all the instructions are natively executed. Therefore the debugging

process is more efficient.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this model, two important data structures need to be maintained by the debugger

during the forward recovery. The first one is the data history buffer which keeps track

of all the old contents of the destinations of the post-breakpoint instructions executed

between the interception point and the finish point. These old values are necessary to re­

cover the expected values of user variables. An entry in the data history buffer comprises

a destination location, which may be a register number or a memory address, and one

or more value information records. A value information record of a destination includes

the address of the corresponding instruction and the old content of the destination.

The other data structure is called instruction history buffer which contains the ad­

dresses of the instructions executed between the interception point and the finish point

in their dynamic execution order. Each address in the buffer might be annotated with

some other information.

The instructions of the debugged program will be executed in either normal mode or

forward recovery mode. The program starts running in normal mode. When an inter­

ception point of a source breakpoint is reached during normal execution, the debugger

takes over control and the forward recovery mode is entered. From this point on, each

instruction will be executed one by one (single-stepped) under the debugger’s supervision

until one of the finish points or escape points is reached.

In the forward recovery mode, before an instruction I is executed, the current content

of / ’s destination along with the address of I will be saved in the data history buffer if I

is a post-breakpoint instruction. The address of I is also saved in the instruction history

buffer (regardless of whether I is pre-breakpoint or post-breakpoint). If / happens to be

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an interception point of other breakpoint (s), 7’s entry in the instruction history buffer

will be annotated with this information.

Figure 4.2(a) shows an optimized program example. For simplicity, I use a single

number as the source ordering information in this example. Assuming the anchor point

of a source breakpoint set by the user is at instruction 75. The interception point and

the finish point will be set at 72 and 79 respectively. Once the debugger takes over

control at 72, each instruction is executed in forward recovery mode until 79 is reached.

Figure 4.2(b) and (c) show the resulting instruction history buffer and the data history

buffer.

Because some instructions such as load and floating-point operations might cause

exceptions during execution, handling the exceptions so that they behave in the way the

user expects is very important. If an exception is caused by a post-breakpoint instruction

and is posted immediately, the users might be confused because the exception should

have occurred after the breakpoint. In order not to confuse the user, the debugger

should suppress the exceptions caused by post-breakpoint instructions while executing

them, and post the exceptions to the user later on. One way to achieve this is for the

debugger to provide its own exception handling routine. When an exception occurs in

the forward recovery mode, the handling routine provided by the debugger takes over. If

the exception is caused by a post-breakpoint instruction, it will be suppressed and the

debugger will annotate the entry of the instruction in the instruction history buffer with

the exception information so that the exception can be signaled later on. Referring back

to the example in Figure 4.2, if an exception occurs at instruction 73, since it is a post-

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interception

address

2004 1 1 :
—► 2008 1 2 :

2012 1 3 :
2016 1 4 :

anchor - * - 2 0 2 0 1 5 :
2024 1 6 :
2028 1 7 :
2032 1 8 :

finish 2036 1 9 :

source ordering
r l r2 * 2 1
r4 = r3 - r l 5
r2 = Id X 6
f 6 = f2 / 3 . 0 2
y = St r5 4
r4 = r2 - 7 6
r2 = 9 8
r7 = r3 + 1 3

9

(a)

Instruction History Buffer Data History Buffer

address annotation

2008
2012
2016
2020
2024
2028
2032

destination old value instr. addr

r4 8 2008

6 2024

r2 -2 2012

7 2028

M(y) 0 2020

(b) (c)

Figure 4.2 (a) Optimized code example (b) Instruction history buffer (c) Data history
buffer (the old values in the data history buffer are given arbitrarily in the example).

breakpoint instruction, the exception will be suppressed and the entry corresponding to

13 in instruction history buffer will be annotated as shown in Figure 4.3.

When a finish point is reached, the debugger stops the forward recovery, reports the

source breakpoint to the user, and starts answering user’s requests. The information pre­

served during forward recovery, as well as the data location information (see Chapter 5),

is used by the debugger to provide the expected variable values.

At a source breakpoint, the user might set additional breakpoints or delete existing

breakpoints. When a new source breakpoint is set, besides setting the necessary object

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Instruction History Buffer
address annotation

2008
2012
2016
2020
2024
2028
2032

e x c e p t i o n

Figure 4.3 Instruction history buffer.

breakpoints at the interception points, the debugger also needs to check if any of the in­

structions in the instruction history buffer is an interception point of the newly-set source

breakpoint. If so, the debugger will annotate the corresponding entry in the instruction

history buffer with the interception point information so that the newly-set breakpoint

can be properly handled later on when the user continues from the current breakpoint.

Similarly, when the user deletes an existing source breakpoint, the debugger needs to

check if any of the instructions in the instruction history buffer is an interception point

of the deleted source breakpoint. If so, the debugger needs to remove the interception

point annotation from the corresponding entry in the instruction history buffer.

Once the user resumes execution, the debugger will go through the instruction history

buffer to check if there is any annotated information and will update both the instruction

history buffer and data history buffer. Until an instruction denoted as an interception

point of another breakpoint (or other breakpoints) is encountered or the whole instruction

history buffer has been processed, the debugger will visit each instruction I in the buffer

with the following actions:

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. If the instruction is annotated with exception information, the debugger will signal

the exception.

2. The value information record of this instruction’s destination (if there is any) is

removed from the data history buffer.

3. The entry of this instruction in the instruction history buffer is removed.

If the debugger has visited every instruction in the instruction history buffer without

running into another interception point, the normal execution will resume from the finish

point.

If an instruction visited is an interception point of another breakpoint, the debugger

will continue going through the instruction history buffer in the following way:

1. If an instruction is annotated with exception information, the debugger will first

determine the new type (pre-breakpoint or post-breakpoint) of the instruction with

regard to the new breakpoint because a post-breakpoint instruction for the old

breakpoint might become a pre-breakpoint instruction for the new breakpoint. If

the instruction becomes pre-breakpoint, the debugger signals the exception and

removes the annotation. Otherwise, the exception remains suppressed.

2. If the type of the instruction is changed (from post-breakpoint to pre-breakpoint),

the value information record of this instruction’s destination is removed from the

data history buffer.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the finish points of the new breakpoint might be different from those of the old

breakpoint, after having gone through the instruction history buffer, the debugger might

need to execute more instructions in forward recovery mode until a finish point or an

escape point is hit.

To understand the visiting process, refer to the example in Figure 4.2 again. If /3 is

an interception point of another outstanding breakpoint (whose anchor point is at 16), its

entry in the instruction history buffer will be annotated with this information as shown

in Figure 4.4(a). When the user wants to resume execution from the current breakpoint,

the debugger goes through the instruction history buffer. Since the instruction at address

2008 is not annotated with anything, the debugger removes it from the instruction history

buffer and deletes its corresponding entry in data history buffer as shown in Figure 4.4.

The debugger visits the next entry in the instruction history buffer and finds out the

instruction at address 2012 is an interception point of another breakpoint. The debugger

will keep going through the rest of the instruction history buffer without deleting any

entry. Since 15 (at address 2020) becomes a pre-breakpoint instruction with regard to

the new breakpoint, its entry in the data history buffer is deleted.

Similarly, when an escape point is reached in forward recovery mode, which means the

breakpoint should not take effect, the debugger will go through the instruction history

buffer in the same way described above and does not report the source breakpoint to the

user.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Instruction History Buffer Data History Buffer
address annotation

interception point
2008
2012
2016
2020
2024
2028
2032

destination old value instr. addr

r4 - 8

6

2008

2024

r2 -2
7

2012

2028
_

tt(y) 0 "" 2020 '

(a) (b)

Figure 4.4 (a) Instruction history buffer (b) Data history buffer (the old values in the
data history buffer are given arbitrarily in the example).

4.2.1 Function calls in forward recovery

A source of complication for the recovery scheme arises from the function calls in the

forward recovery region. As described earlier, during forward recovery, instructions are

single-stepped (that is, the debugger takes over control immediately after each instruction

is executed). Therefore executing instructions in forward recovery mode are considerably

slower than in normal mode. To increase the performance of the proposed breakpoint

implementation scheme, it is desirable to execute function calls in normal mode during

forward recovery.

On seeing a function call in forward recovery mode, the debugger first sets an object

breakpoint at the return point of the function so that it can regain control once the

function is finished. Since there might be source breakpoints set in the called function, in

order to avoid messing up the instruction and data history buffers of source breakpoints

from different functions, the debugger also needs to push the current instruction and

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data history buffers into stacks. The debugger then lets the function execute in normal

mode.

While executing the function call in normal mode, if the debugger stops at an in­

terception point of a source breakpoint in the called function, a new forward recovery

process starts and the source breakpoint is handled the same way as described earlier.

Note that all the source breakpoints set in the called function will be reported to the user

before the original source breakpoint in the calling function. This behavior is consistent

with what the user expects because all the function calls encountered during forward

recovery are pre-breakpoint instructions (based on the finish point calculation algorithm

described in Section 3.2.3), and therefore any source breakpoint in the called function is

expected to happen before the original source breakpoint in process.

After the debugger regains control at the function return point, the original instruction

and data history buffers are popped out from the stacks and the original forward recovery

process is resumed.

4.2.2 Loops in forward recovery

Another problem occurs when the debugger has to execute all the iterations of a loop

in forward recovery mode before it reaches a finish point or an escape point. There are

two cases where this problem will happen:

1. There is a loop lying between the interception point and the anchor point. The

interception point may or may not be in this loop, but the anchor point is not in

the loop. Figure 4.5(a) shows an example of this case. After taking over the control

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A

interception point 11 II

C new interception point

anchor point 12 anchor point 12

finish point 13 finish point 13

(a) (b)

Figure 4.5 A control flow graph with (a) old interception point (b) new interception
point.

of execution at / l , the debugger has to execute every iteration of the loop in the

forward recovery mode before it can reach 13.

2. There is a loop lying between the anchor point and the finish point. The anchor

point may or may not be in the loop, but the finish point is not in the loop.

Figure 4.6(a) shows an example of this case. After taking over the control of

execution at / l , the debugger has to execute every iteration of the loop in the

forward recovery mode before it can reach 13.

Since the number of loop iterations is non-deterministic, the instruction history buffer

and data history buffer might potentially explode.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interception p> tint

anchor p lint

new finish po nt

interception pt tint

anchor ptint

finish point

(a) (b)

Figure 4.6 A control flow graph with (a) old finish point (b) new finish point.

To solve this problem, the debugger can adopt a less aggressive approach which trades

the availability of the values of some variables for the feasibility of the proposed scheme.

The algorithms for finding the interception points and finish points can be modified to

avoid these cases. For example, in the case shown in Figure 4.5(a), the interception point

can be set at the beginning of block C as shown in Figure 4.5(b). Similarly, in the case

shown in Figure 4.6(a), the finish point can be set at the end of block B as shown in

Figure 4.6(a). Some of the variable values might be unavailable at the breakpoint because

of this modification.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.3 Beyond the function scope

The discussion of the forward recovery scheme has been so far limited to within the

function where the source breakpoint is set. When there are instructions moved across

the call site of this function in the caller function, the scheme is further complicated.

Figure 4.7(a) shows an example with two functions where function bar calls function foo.

Figure 4.7(b) shows the program after the optimizer hoists the statement 52 (which is an

assignment of global variable y) above statement 51. If a breakpoint is set at statement

53 and the forward recovery is only applied within function foo, the user won’t be able

to get the correct value of variable y. Apparently the debugger will have to take over the

control of execution as early as at 52 in the optimized code in order to solve this problem.

To do so, the debugger has to keep track of all the call sites for each function. When

the user sets a breakpoint in function foo, the debugger will need to go to every caller of

foo and see if there are instructions moved across the call site. If so, the debugger will

have to set the interception points, finish points, and escape points in caller function as

if there is a breakpoint set immediately after the call site. If there are multiple levels

of functions calls where F I calls F2, F2 calls F3, ..., and F i calls foo, the interception

points and finish points should set in the outer-most level of functions where there are

instructions moved across the call site.

The problem with this solution is that the instruction history buffer and data history

buffer might explode when there is a long chain of function calls. Also the time it takes to

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f o o () f o o ()

f {

S 3 : . S 3 :

} }

b a r() b a r()
C {

S I : fo o () ; S 2 : y = 3 ;
S2 : y = 3 ; S I : f o o () ;

} }

(a) (b)

Figure 4.7 (a) Original program (b) Optimized program.

run to the breakpoint may be extremely long because lots of the instructions are executed

in the forward recovery mode.1

Therefore, another more practical but less aggressive solution to this problem is to

still use the forward recovery technique within a function. As for those variables whose

values are updated either too early or too late due to the code movement in the caller

functions, the debugger does not try to recover them but just inform the user that the

values of those variables are not available at this point because of the optimization. By

using this approach, the availability of some variable values is traded for the efficiency

and feasibility of the method.

IThe run-time strategy I discussed in Section 4.2.1 to handle function calls cannot be applied in this
scheme because the debugger will not be able to preserve the values modified by the post-breakpoint
instructions in the inner functions if the inner functions are executed in normal mode.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.4 Proof of correctness

As I mentioned in Chapter 1, to provide the expected program behavior, it is essential

for the debugger to report the source breakpoints in the order consistent with what the

user expects. The new breakpoint implementation scheme handles and reports the source

breakpoints in the order of their corresponding interception points being reached. To

show that the source breakpoint behavior provided by my approach is correct, I need to

prove that the interception points of source breakpoints are always reached in the order

conforming to the original execution order of their corresponding source statements.

Theorem 3 For any two source statements 51 and 52 such that 51 has a smaller ex­

ecution order than 52 (that is, 51 should be executed before 52 if execution flow can

reach 52 from S i) , on any path which contains interception points of both 51 and 52,

the interception point of 52 will never be reached before the interception point o /51.

P ro o f : I prove the theorem by contradiction.

Suppose there is a path P contains an interception point of 51’s, I I , and an in­

terception point of 52’s, 12, such that 12 is reached before I I along P . From the

definition of interception point, we know I I is the earliest post-breakpoint instruc­

tion on path P with regard to 51.

Suppose 12 originates from statement B. B should be executed after statement 52.

Since 52 should be executed after 51, B should be executed after 51. Therefore,

12 is also a post-breakpoint instruction with regard to 51. Because 12 is reached

before I I on path P, 12 is an earlier post-breakpoint instruction than I I on P with

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

regard to 51, which contradicts the assumption that I I is the interception point of

51 on path P .

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

DATA LOCATION TRACKING SCHEME

Under the proposed breakpoint implementation scheme, the storage locations (mem­

ory and register file) updated prematurely by the out-of-order instructions can be properly

preserved. However, because the run-time locations of user variables may vary at differ­

ent points of the optimized program, in order to provide the user with expected variable

values, the debugger still needs to be able to correctly associate the storage locations

with user variables.

Coutant et al. [10] proposed a data structure called range to communicate to the

debugger the location information for variables in different ranges of the binary program.

A variable has a set of range records, each of which consists of an address range and a

storage location (register, memory, or constant). By comparing the address of an object

code location with each range record, the debugger can decide if there exists any source-

level value for the variable at this object code location. If the address is not in any one

of the range records, no source-level value of the variable is available at this object point.

Range information is calculated based on the live ranges of variables. Adl-Tabatabai and

Gross [13] later proposed a data-flow algorithm to extend the range of a value location

to the points where the value is killed.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The aforementioned techniques have focused on presenting truthful program behavior.

Therefore, while the data location information generated by these techniques provides a

good foundation for the debugger to determine and warn the user if the source-level value

of a variable can be found in any place at an object code location,1 it becomes insufficient

when the debugger attempts to recover the expected variable values at breakpoints under

the proposed breakpoint implementation scheme, as illustrated in Figure 5.1. Figure 5.1

(a) and (b) show the original source code and the unoptimized assembly code of a sample

program, respectively. Figure 5.1(c) shows the optimized code where instruction /5 (a

definition of variable a) is moved down and instruction 17 (a definition of variable b) is

moved up. The range records constructed for variable a and b using previous approach

are depicted in Figure 5.1(d). Suppose a breakpoint is set at statement 56. If the

user is interested in the value of variable b, based on the source program, b's value

at the breakpoint should come from the definition at /3 (in register r2). In order for

the debugger to correctly associate b with register r 2 using the range records shown in

Figure 5.1(d), the debugger has to map the source breakpoint to instruction 17'. However,

this mapping becomes problematic if the user requests for a ’s value. When the debugger

uses the address of 17' to compare with a ’s range records shown in Figure 5.1(d), the

debugger would think a ’s value is in register r l , while in fact the expected value of a

should be in r3. Mapping the source breakpoint to instruction 18 instead of 17' does not

solve the problem either as we will encounter the same problem the other way around.

*If the source-level value of a variable can be found in any place at an object code location, the
variable is resident at this object location [13].

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S I : a = 1 1 : r l = (d e f a) 1 1 : r l = (d e f a)
S2 : = a 1 2 : = r l 1 2 : = r l
S3 : b = 1 3 : r 2 = (d e f b) 1 3 : r2 = (d e f b)
S4 : = b 1 4 : = r 2 1 4 : = r 2
S5: a = 1 5 : r3 = (d e f a) 1 7 ' : r 5 = (d e f b) a tn r l

SS: c = 1 6 : r4 = (d e f c) -» X 6 : r4 = (d e f c)
S7 : b = 1 7 : r 5 = (d e f b) 1 5 ' :r3 = (d e f a)
S8 : y = c+b 1 8 : r 6 = r 4 + r 5 (d e f y) 1 8 : r 6 r 4 * r 5 (d e f y) ainr3

(a) (b) (c) (d)

b in r2

b in i5

aiiirl x

a in r3

(e)

b in r l

b in r5

Figure 5.1 (a) Original source code (b) Unoptimized code (c) Optimized code (d) Range
records for variable a and b using previous techniques (e) Range records for variable a
and b desired by the proposed framework.

In my breakpoint implementation scheme, the anchor point of the source breakpoint

(instruction 16 in this example) will be used to compare with the range records because

the anchor point information preserves some important properties of the source program.

We can see that the new breakpoint implementation scheme faces the same problem

of incorrectly associating storage locations with both variable a and 6 using the range

information shown in Figure 5.1(d).

To solve the problem mentioned above and provide data location information more fit­

ting to my breakpoint implementation framework, a new data location tracking scheme

which is extended from the previous techniques is proposed in this paper. The new

scheme keeps track of information about the definitions of source variables during opti­

mization and register allocation. A data-flow analysis is proposed to collect information

that is used for calculating the range information which will correctly reflect the original

execution order relationship between the assignments of a variable and source break­

points. Refer back to the example in Figure 5.1. The range information constructed by

the proposed data location tracking scheme will be the one depicted in Figure 5.1(e).

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By comparing the anchor point of a source breakpoint with this range information, the

debugger can unambiguously determine if the expected value of a variable is available

at the source breakpoint and where to obtain it under my breakpoint implementation

scheme.

Recovery of the expected values of variables whose assignments are deleted is also han­

dled by the new data location tracking scheme. Most of the time when an assignment of

a variable is deleted, the value assigned to the variable can still be found somewhere. To

exploit this fact, I have extended the location information of a variable to be an expres­

sion which can be a constant, a register number, a memory location, or an arithmetic

expression. The new scheme tracks where or how to obtain the value of a variable when

an assignment to the variable is deleted during optimization. Although the concept of us­

ing the values of other variables and temporaries to recover a deleted variable’s expected

value has been briefly mentioned in some of the previous work [8], [10], my scheme pro­

vides a more general and systematic approach which can handle almost all kinds of code

deletion and recover the expected values of deleted variables whenever it is possible.

The range information in my framework is calculated based on the anchor point

information and the variable definition information that is generated and maintained

by the compiler. The variable definition information basically tells the range record

calculation algorithm whether a source assignment of a variable still practically exists

after optimization, and where to find the value defined by this assignment if it does exist.

The anchor point information is used to determine where a source assignment should

start to take effect (which in turn decides where the corresponding range record should

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

begin). In the following sections I will discuss how the variable definition information is

maintained for various optimization techniques and how the range information is built

based on the information collected by a data-flow algorithm.

5.1 Variable Definition Information

For each source variable, the compiler maintains a set of definitions, each of which

corresponds to a movement of a source-level value of the variable to a storage location.

For each definition, the compiler keeps track of the following information:

D efinition type: The type of a definition can be original, equivalent, deleted, or vir­

tual. A definition that corresponds to a source assignment and is not deleted is

original. When a definition of a variable is deleted during optimization, if we can

manage to find the value defined by this definition somewhere, the definition is

practically existent and the type will become equivalent. Otherwise, the definition

type becomes deleted. Definitions introduced by optimizations are virtual defini­

tions. Unlike other types of definition, a virtual definition of a variable does not

correspond to any source assignment of the variable. It simply denotes that the

run-time location of the variable is changed at some point of the program.

V ariable location expression: This information denotes where or how to obtain the

value of a variable. It can be a constant, a register, a memory location, or an

arithmetic expression consisting of various storage locations.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ctual definition po in t (s): For an original or a virtual definition of a variable, the

instruction that moves a source-level value of the variable to a storage location

is the actual definition point of the definition. For an equivalent definition, the

instructions whose destinations constitute the variable location expression of the

variable are the actual definition points. Each actual definition point is annotated

with a definition-point attribute.

Source ordering of th e definition: This information contains the the source ordering

information of the corresponding source assignment statement. It is only meaning­

ful for non-virtual definitions.

Before any optimization is performed, a definition D is associated with each source

assignment statement S of variable V. The instruction I originating from S that moves

a source-level value of V to a storage location L is the actual definition point of D. The

type of D is original and the variable location expression is L. Note that without precise

interprocedural analysis, an indirect assignment or a function call with a pointer (or the

address of a variable) as an argument is considered a definition of every variable whose

storage location might be in the memory during the execution.

I discuss how the variable definition information is maintained for various optimiza­

tions that may cause the data value problem in the following cases.

1. Register Allocation.

During register allocation, when a virtual register is assigned a physical register

number, the compiler will check the variable definition information maintained and

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

then update accordingly the variable location expressions with the virtual register

as an operand.

2. Optimizations that transfer a source-level value of a variable from one storage lo­

cation to another.

Optimizations in this case include, among others, register promotion (including

global variable migration) where a memory variable is promoted to a register over

a region of the code, and register spilling where a register is spilled to a memory

location. A virtual definition is created for each transfer of a source-level value from

one storage location to another during this kind of optimization.

3. Code deletion.

When an instruction / , which is an actual definition point of a non-virtual definition

D of variable V, is deleted, assuming d is the destination of I that appears in the

variable location expression of D,

(a) If the value of d can be obtained from expression E whose operands are avail­

able at I, and I is the only actual definition point of D which defines d, then

(i) d (in the variable location expression of D) is replaced by E,

(ii) the instructions which define the operands of E jointly replace I to become

the actual definition points of D , and

(iii) the type of D becomes equivalent if it isn’t already.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sometimes some operands of E might not be available due to the optimizations

performed later on, the compiler will need to check the availability of E ’s

operands before building the range information.

(b) Otherwise, the type of D becomes deleted and there are no actual definition

point and location expression for D.

Refer to the program shown in Figure 5.2. Figure 5.2(a) shows an unoptimized

program where instruction 75 is an actual definition point of an original definition

of variable a. When instruction 75 is deleted as illustrated in Figure 5.2(b), we can

see that a’s source value assigned by 15 can be recovered by the expression r l + r2.

Therefore r l+ r2 becomes the new location expression of a for the deleted definition,

instructions 71, 12 (both of which might define r l used in 15) and 14 (which defines

r 2) become the actual definition points, and the definition type becomes equivalent

If instruction 14 is deleted later on during optimization as shown in Figure 5.2(c),

since r2’s value can be recovered by r 6 + 4 where r 6 is defined by 13, the location

expression of a becomes r l+ r6 + 4 and 73 replaces 14 to become an actual definition

point of the deleted definition of variable a. If instruction 71 is also deleted later

on as shown in Figure 5.2(d), since 71 is not the only actual definition point which

defines r l , we can see from Figure 5.2 that if the control reaches basic block C

from basic block A, a’s value can be recovered by the expression r5 — 8 + r 6 -F 4,

whereas if the control reaches basic block C from basic block B, a’s value should

be recovered by the expression r l + r 6 4- 4. Because we don’t know the run-time

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l : r l = r 5 - 8 (a c t d e f a)

1 3 :r6 = r 8 - 3
I 4 : r2 = r 6 + 4 t a c c d e f a)
I 5 i r 3 » e l »gl

(a) (b)

I l : r l = r 5 - 8 (a c c d e f a) I1 .l1-j.3-S (dCCl def a)

(c) (d)

Figure 5.2 (a) Unoptimized code (b) Optimized code after 75 is deleted (c) Optimized
code after 74 is deleted (d) Optimized code after 71 is deleted.

control flow at compile time and therefore cannot determine how to recover the

value of a defined by 75, my current approach simply doesn’t try to recover the

value of a in this case and the type of this definition will be set to deleted.

If an instruction 7 which is an actual definition point of a virtual definition gets

deleted, the compiler simply deletes the virtual definition, as it does not correspond

to any source assignment.

4. Code movement

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When an instruction I , which is an actual definition point of a definition D of

variable V, is moved to a place control-equivalent to its original location,2 nothing

really needs to be done as far as variable definition information is concerned, as

the definition is not deleted and the variable location is not changed. Instruction I

remains to be an actual definition point of D. However, when instruction I is moved

to a place which is not control-equivalent to its original location, the assignment to

variable V might actually take place when it shouldn’t have based on the source

program semantics, or vice versa. To be conservative, non-control-equivalent code

movement is treated as code deletion. I use the examples shown in Figure 5.3

to illustrate how non-control-equivalent code movement is handled. Figure 5.3(a)

shows a program where instruction I, which is an actual definition point of one of

variable V’s definitions, is speculatively moved up to basic block A. This case is

treated as if instruction / is deleted. Since the value of V defined by I can still be

found in register r4 whose value is available at the original place of I, the location

expression of this definition is r4, the type of the definition becomes equivalent,

and / ' becomes the actual definition point of the definition. Figure 5.3(b) shows

another example where instruction I is moved down to basic block C due to partial

dead code elimination. This case is also treated as if instruction I is deleted. If

the values of both r l and r2 are available at the original place of I, the variable

location expression of the definition is r l 4- r 2, the type of the definition becomes

2Two machine locations are control-equivalent if one dominates and is post-dominated by the other.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I': r4=rl+r2

1: i.4=Ll+r2— (dtif" V)I': r4=rl+r2

T i r4=rL+r2— tdu£"V

(a) (b)

Figure 5.3 Code moved to a non-control-equivalent place (a) Speculative code motion
(b) Partial dead code elimination.

equivalent, and the definitions of register r l and r 2 that can reach / ’s original place

become the actual definition points.

Another issue regarding code movement is caused by the limitation of the proposed

breakpoint implementation scheme. In my breakpoint scheme, for an actual defi­

nition point / of a definition D, if another instruction J with the same destination

as I gets moved below / , 3 the value defined by I will never be seen at a source

breakpoint in my recovery scheme because J will be a pre-breakpoint instruction

whenever I is a pre-breakpoint instruction with regard to a source breakpoint and

J will always be executed later than I. Definition D is practically deleted in this

case, so D's type will be changed to deleted.

3This can occur when I and J originaUy assign to different virtual registers. The code movement
occurs before register allocation. And then both registers are assigned to the same physical register.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Available Expected Variable-Location Pair Anal­

ysis

Range information is based on the variable definition information. For a source vari­

able, a range record is created for each of its definitions which are not deleted. Intuitively,

a range record corresponding to a variable definition should start from the actual defini­

tion point and ends at the place where the variable is redefined or the variable location

is killed. However, for a source assignment of a variable, the actual definition point (s)

might get moved around or even deleted during optimization, hence the original source

ordering between the assignment and a source breakpoint may not hold in the optimized

code, which, in turn, causes the problem illustrated in Figure 5.1. Therefore, instead

of starting from the actual definition points as previous approaches did [10, 13], range

records in my scheme start from the effective definition points of variable definitions. For

a non-virtual definition of variable V, an effective definition point of the definition is the

object code location from which the corresponding source assignment should take effect

based on the semantics of the original program. Since the anchor point information (see

Section 3.1) preserves the reaching conditions and execution order of the original source

statements, for a definition D, which corresponds to source assignment statement S, of

variable V, I use the anchor point(s) of source assignment S as the effective definition

point(s) of D. At debug time, when user requests for V’s value at a source breakpoint,

the debugger in my scheme will use the address of the anchor point of the source break­

point to compare with Vrs range records (derived from effective definition points) to find

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

out the expected variable value. As for a virtual definition, since it does not correspond

to any source assignment, its actual definition point is also its effective definition point.

To calculate the range information, the available expected variable-location pair anal­

ysis, which is basically extended from the variable residency analysis proposed by Adl-

Tabatabai [3], needs to be first performed. The analysis is performed through a data-flow

algorithm operated on expected variable-location pairs. An expected variable-location

pair, < V , L > , contains a source variable name, V, and a variable location expression,

L. We say an expected variable-location pair < V, L > is available at an instruction I if,

under my breakpoint implementation scheme, the expected value of variable V can be

obtained (or recovered) from location expression L at the source breakpoints with I as

an anchor point.

Before the data-flow algorithm is applied, for each definition D of variable V, the

effective definition point is identified and annotated. If the type of D is equivalent, it is

also necessary to check if all the operands of D ’s variable location expression are available

at the effective definition point. If not, the type of D becomes deleted.

For each variable V, let vl.pair.gen[I\ be the set of expected variable-location pairs

made available by instruction I and vLpair.kill[I] be the set of expected variable-location

pairs killed by I. I also define All-Possible-Loc-Expr[V\ to be the set of all the variable

location expressions which have ever been assigned to V in the program.

Given an instruction I, if I is annotated as an effective definition point of the definition

D of variable V, where D’s variable location expression is L, then immediately after I,

the expected value of V should be obtainable from L (if D's type is not deleted) under my

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

breakpoint implementation scheme. Hence, instruction I generates < V, L >. Meanwhile,

all the source-level values defined by other definitions of V are no longer available after

I. Also, for every variable V', the source-level values defined by the definitions with L

as their variable location expression are no longer available after I because, effectively,

L will be holding a source-level value of V after I.

If location L is a destination of instruction I, for every variable V, the source-level

value obtained from every location expression E in All-Possible JjOC-Expr\V\ that has

L as an operand is no longer available after I because L is redefined by I. However, if

I is an actual definition point of an original definition D of a variable, no source-level

values are killed by / as they will be killed by D ’s effective definition point. Refer to the

example shown in Figure 5.4. Figure 5.4(a) shows an unoptimized code and Figure 5.4(b)

shows an optimized code where instruction 17 is moved up after optimization. Assume

the effective definition point of the second definition of variable b is IS. The expected

variable-location pair < a, r l > generated by I I will be killed at /3 because r l is re­

defined by IS. However, the expected variable-location pair < 6, r2 > generated by 14

will not be killed by IT because IT is the actual definition point of an original definition

of b. Instead, this variable-location pair will be killed at the effective definition point of

b’s second definition, IS. We can see that if the expected variable-location pair < b,r2 >

generated by I A was killed by IT , there would be no expected variable-location pair

of b available at instruction 16. However, it is desirable for the variable-location pair

< 6, r 2 > to still be available at 16 as the forward recovery scheme in my debugging

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11: r l = (def a) 11: r l = (def a)
12: = r l 12: = r l
13 : r l = 13: r l =
14: r2 = (def b) 14: r2 = (def b)
15: = r2 15: = r2
16: r3 = (def c) 17' : r2 = (actual def b)
17: r2 = (def b) 16: r3 = (def c)
18: .. 18: (effective def b)
19: = r2 19: = r2

(a) (b)

Figure 5.4 (a) Unoptimized code (b) Optimized code.

framework would provide a correct value of r 2 even though r 2 is modified prematurely

by IT .

If instruction I is a function call, since function calls might reuse caller-saved registers,

for every variable V, every location expression L in All-PossibleJjOC-Expr[V\ that has

a caller-saved register as an operand should be assumed to no longer hold the expected

source-level value of V after the function call. That is, < V , L > should be killed by I.

Therefore, based on the above intuition, given an instruction I , vLpair.gen[I\ and

vLpairJcill[I] are constructed using the following rules:

R ule 1 : If I is annotated as an effective definition point of the definition D of variable

V, where D ’s variable location expression is L,

1.1 < V , L >€ vl.pair.gen[I] if D ’s type is not deleted

1.2 VI/ € All-Possible-Loc-Expr[V], < V,Lr >€ vl.pairJcill[I]

1.3 VV'whereL 6 All-Possible-Loc-Eorpr[V'], < V ' ,L > € vLpairJcill[I]

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R ule 2 : If / defines location L and I is not an actual definition point of an original

definition of any variable, for every expected variable-location pair < V, E > where

E is in All-PossibleJjOC-Expr\Y\ and has L as an operand,

• < V, E > 6 vljpairJzill[I\

R ule 3 : If I is a function call, for every expected variable-location pair < V , L > where

L is in All-Possible JjOC^Expr[V] and has a caller-saved register as an operand,

• < V ,L > € vljpairJcill[I]

An expected variable-location pair < V, L > is available at I only when it is available

at the points immediately after all of I's predecessor, therefore the in set for instruction

I is

vl.pairJn[I] = Q vl.pairjm t[J]
J is a predecessor o f I

And the out set is

vl-pair jout[I\ = vLpair.gen[I] U (vl.pairJn[I\ — vl.pairJzill[I\)

The standard iterative algorithms for solving data-flow equations [22] can be used to

find out the vLpairJn set and vLpairjout set for each instruction.

To illustrate how the proposed data-flow analysis works, consider the example shown

in Figure 5.5 (this example will be used throughout the rest of the chapter). Figure 5.5(a)

shows the unoptimized code where instruction I I from statement 51 and instruction 116

from statement 57 are source definitions of variable a, instruction 12 from statement

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52 is a source definition of variable b, instruction 76 from statement 53 and instruction

ilO from statement S4 are both source definitions of variable c, and instruction 714

from statement S6 is a source definition of variable d. I also assume the anchor points

for statement S i, S 2, S3, S4, S5, S6 , and S7 are instruction 71, 12, 16, 710, 711,

714, and 716, respectively. Figure 5.5(b) shows the optimized code after the following

transformations:

1. Instruction 76 which is a definition of source variable c is moved up to basic block

A as a result of speculative code motion and becomes 76'. Since this is a non­

control-equivalent code motion, the definition type becomes equivalent. However,

the location expression of the definition is still r l . (See Section 5.1.) Instruction

17 becomes the new anchor point for statement 53.

2. Instruction 710, another definition of variable c, is deleted after copy propagation

(and the use of r l in instruction 712 is changed to r2). The definition type becomes

equivalent and r2 becomes the new location expression. Also instruction 711 is

deleted (assuming it is dead). Instruction 712 becomes the anchor point for both

statement 54 and statement 55.

3. Instruction 714, a definition of variable d, is moved up to basic block A which is

control equivalent to basic block D and becomes 714'. Instruction 715 becomes the

anchor point for statement 56.

The variable definition information for each variable after optimization is summarized

in Table 5.1.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A

16
17
18

(S3: def c)

114: r3 =
115: ...
116: r5 =
117: return

(S6: def d)

(S7: def a)

= rl
= r3

15: branch
14:

(SI: def a)
(S2: def b)

110: rl = r2 (S4: def c)
111: r4 = (S5:)
112: = rl
113: ...

(a)

A

« -
17

= rl (eff def c)

branch

114: 13 *—
115: ...
116: r5 =
117: return

(eff def d)
(eff def a)

110.- rl ~ -t2t
111: g4
112
113

= r2 (eff def c)

13: = rl
14: = r3
16': rl =
114':r3 =
IS: branch

(eff def a)
(eff def b)

(b)

Figure 5.5 (a) Unoptimized code (b) Optimized code.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.1 Variable definition information for variables in the code example shown in
Figure 5.5.

Variable Definition Type Location Expression Actual Definition Point (s)
a Original rl 11

Original r5 116
b Original r3 12
c • Equivalent rl 16’

Equivalent r2 19
d Original r3 114’

The effective definition point for each source variable definition in the example pro­

gram is identified based on the anchor point information and annotated as shown in

Figure 5.5(b). The All-Possible-Loc-Expr sets for the source variables are as follows:

All-Possible-Loc-Expr[a] = {rl, r5}

All-Possible-Loc-Expr[b] = {r3}

All-Possible-Loc-Expr[c] = {rl,r2}

All-Possible-Loc-Expr[d\ = {r3}

Here I assume the non-branch instructions without destinations denoted in the exam­

ple (namely, instruction 73 ,74 ,77 ,112, 713, and 715) do not affect variables a, b, c, and d.

Thus, the destinations of these instructions do not appear in the All-Possible-Loc-Expr

set of any variable. I also assume the branch instructions 75 and 78 as well as the return

instruction 717 do not write to any general registers or memory locations.

vl.pair-gen and vLpairJcill sets for each instruction are then calculated based on

the rules described above. We can see in Figure 5.5(b) that instruction 71 is annotated

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as an effective definition point of a definition of variable a with location expression r l .

Therefore, from Rule 1.1, < a, r l > should be in vLpair-gen[Il}. From Rule 1.2, both

< a , r l > and < a, r5 > should be in vLpair J:ill[Il]. Also from Rule 1.3, < c ,r l >

should be in vLpair Jcill[Il]. That is,

vLpair.gen[I1] = {< a, r l >}

vLpair Jcill[Il] = {< a, r l >, < a, r5 > , < c, r l >}

Note that since I I is an actual definition point of an original definition and is not a func­

tion call, Rule 2 and Rule 3 don’t apply here. Similarly, the vLpair .gen and vLpair Jcill

sets for instruction /2, 17, 112, I 15, and 716, all of which are annotated as an effective

definition point of some variable definition, can be calculated in the same fashion.4

Instruction 16' and 19 are not denoted as an effective definition point of any source

definition. Since neither of them is an actual definition point of an original definition

(note that they are actual definition points of equivalent definitions), from Rule 2, we

know vLpairJcill[I6'\ should contain < a , r l > and < c ,r l >, while vLpair Jkill[I9]

should contain < c ,r2 >. Neither of them generates any variable-location pair. Hence,

vLpair.gen[I6'] = (f>

vLpair Jiill[I6r\ = {< o ,r l >, < c, r l >}

vLpair .gen[9] = <f>

4Some of these effective definition points (such as 17,112, and /15) are not actual definition points
and therefore we will need to apply Rule 2. However, since it is assumed that their destinations are
not in the All-Possible-Loc-Expr set of any variable, no variable-location pair wifi be added to the
vLpair Jrill set based on Rule 2.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vLpairJcill[I9] = {< c, r2 >}

Instruction 714' is not an effective definition point of a source definition either. Since

it is an actual definition point of an original definition of variable d, Rule 2 does not

apply (as discussed and illustrated in Figure 5.4). Therefore both the vl^pair.gen set

and vljpair-kill set of 714' are empty.

Instruction 73, 74, 75, 78, 713, and 717 are not effective definition points and they

don’t define any registers and memory locations which constitute the location expres­

sions of any user variable, therefore the vLpair.gen sets and vLpair Jcill sets for these

instructions are all empty.

With these vLpair.gen sets of vLpair Jcill sets, the vLpair .in set and vl.pairjout

set for each instruction are calculated using the standard iterative algorithm for solving

data-flow equations. The vLpair.gen, vl.pair Jcill, vl.pair.in , and vLpair jm t sets for

each instruction in the example are shown in Table 5.2.

Note that the representation of the expected variable-location pair in the data-flow

analysis is the same as that of the residence described in Adl-Tabatabai’s variable res­

idency analysis [3], but they have totally different meanings. As mentioned earlier, an

expected variable-location pair < V, L > is available at an instruction 7 if, under my

breakpoint implementation scheme, the expected value of variable V can be recovered

from location expression L at the source breakpoints with 7 as an anchor point, while

a residence, < V, L >, being available at a given point in the object code only means a

source-level value of V (not necessarily expected) can be found in L at the object Ioca-

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.2 vljpair.gen, vljpair Jcill, vLpair.in, and vLpairjout sets for each instruction
in the code example shown in Figure 5.5.

Instruction vl .pair .gen vljpairJnll vljpairJn vl.pairjout
11 < a ,r l> < o ,r l > ,< a,r5 > ,< c ,r l > <t> < a, r l >
12 < 6,r3 > <6,r3 >,< d, r3 > < a ,rl > < a ,r l > ,< b,r3>
13 <t> <t> < a ,rl > ,< 6,r3 > < a ,r l > ,< 6,r3 >
14 <t> <i> < a ,r l > ,< 5,r3 > < a ,r l > ,< 6,r3 >
16’ <t> < a ,r l > ,< c, r l > < a ,r l > ,< 6,r3 > <b,r3 >
114’ <t> 4> < 6,r3 > <b,r3 >
15 <t> 4> < 6,r3 > < b,r3>
17 < c,rl > < c ,r l > ,< c,r2 > ,< a ,r l > < 6,r3 > < b,r3 >,< c,rl >
IS <t> 4> < 6,r3 >,< c, r l > < 5,r3 >,< c, r l >
19 <t> < c, r2 > < 6,r3 > < 6,r3 >
112 <c,r2 > < c ,r l > ,< c,r2 > < 5,r3 > < 6,r3 >,< c,r2 >
113 <t> <t> < 6,r3 >,< c,r2 > < 6,r3 >,< c,r2 >
115 < d,r3 > <d,r3 >,< 5,r3 > < 6,r3 > < d,r3 >
116 < a, r5 > < a ,r l > ,< a,r5 > <d,r3 > < d,r3 >,< a, r5 >
117 <P <t> < d,r3 >,< a,r5 > < d,r3 >,< a,r5 >

tion. Also, the storage location of a residence can only be a register or a stack frame

slot.

5.3 Range Calculation

A range record of a variable basically consists of a start address, an end address, and a

variable location expression. Once the available expected variable-location pair analysis

is done, the range information can be easily built based on the availability of expected

variable-location pairs. Basically, a new range record for variable V with variable location

expression L starts from instruction / if < V, L > is first seen in vLpair jout[I\, and ends

at instruction / if < V, L > is no longer in vLpairjout[J] or if J is a program exit point

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or a function return. The detailed algorithm using the data-flow information to calculate

the range information is shown in Figure 5.6.

This algorithm steps through each instruction on the final code layout to determine

the start and end addresses of the range records of all variables. For each variable, two

book-keeping variables, CurrentRangeRecord which tracks the currently identified range

record, and CuTrentVarLocPair which tracks the variable location pair corresponding

the currently identified range record, are kept during the range record calculation. They

are initialized to nil before the calculation. To explain how the algorithm works, I will

again use the code example shown in Figure 5.5. The code layout for the example program

is shown in Figure 5.7(a). Although this algorithm calculates the range records of all

the variables in one single pass through the code, for simplicity, only variable a will be

discussed here. We start from instruction I I . CuTrentVarLocPair[a], which is initialized

to nil, is obviously not in either vLpair Jn[Il] or vLpair jout[I\\. However, from Table 5.2

we can see that < a , r l > is in vLpairjout[Il\. Therefore, a new range record (say RR1)

is identified. Its starting address is 2000 and its location is r l . CurrentRangeRecord(a)

is set to RR1 and CurrentVarLocPair(a) is set to < a , r l >. We then continue to

process the next instruction, 12. Since CurrentVarLocPair{a) (i.e. < a, r l >) appears

in both the vLpair Jn[I2] and vLpair jmt[I2\ (see Table 5.2), nothing needs to be done.

The same goes for instruction /3 and 74. When we move on to instruction 16', we find

out CurrentVarLocPair{a) is in vLpair Jn[I&], but not in vLpair jyut[I6'\. Therefore

CurrentRangeRecord(a) (RR1) ends at instruction 16'. That is, RRVs end address is

2016. Both CurrentRangeRecord(a) and CurrentVarLocPair(a) are reset to nil. Since

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/* initialization */
for each variable V {

Current VarLocPair(V) = nil
CurrentRangeRecord(V) = nil

}

Starting from the first instruction of the function,
for each instruction I {

for each variable V {
if (CurrentVarLocPair(V) is not in vLpair .in[/]) {

if (Current VarLocPair(F) ^ nil) {
CurrentRangeRecord(V) .EndAddr = AddrOf(PreviousInstr(/))
CurrentVarLocPair(V) = nil
CurrentRangeRecord(V) = nil

}
if (a variable-location pair < V ,L > of variable V is found in vl.pair_in[/]) {

Current VarLocPair(Vr) = < V, L >
CurrentRangeRecord(V) = NewRangeRecord()
CurrentRangeRecord(V).StartAddr = AddrOf(/)
CurrentRangeRecord(V).Location = L

}
}
if (CurrentVarLocPair(Vr) is not in vl_pair_out[/]) {

if (CurrentVarLocPair(V) ± nil) {
CurrentRangeRecord(V') .EndAddr = AddrOf(/)
C urrent VarLocPair (V) = nil
CurrentRangeRecord(V) = nil

}
if (a variable-location pair < V , L > of variable V is found in vLpair_out[/]) {

CurrentVarLocPair(V) = < V ,L >
CurrentRangeRecord(V) = NewRangeRecord()
CurrentRangeRecord(V).Start Addr = AddrOf(/)
CurrentRangeRecord(y) .Location = L

}
}
if (/ is an exit point or a function return) {

if (CurrentVarLocPair(V) ^ nil) {
CurrentRangeRecord(V’) .EndAddr = AddrOf(/)
Current VarLocPair(V)̂ = nil
CurrentRangeRecord(V) = nil

}
}

}
}

Figure 5.6 Range calculation algorithm.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

no variable-location pair of a is found in vLpair-Out[ffi\, CurrentRangeRecord(a) and

CurrentVarLocPair(a) remain to be nil when we come to process the next instruction.

Because no variable-location pair of a is found in the vLpair J n and vLpair jout sets of

instruction 714', 5, 77, 78, 79, 712, 13 and 15, we therefore don’t have to do anything

(as far as the range information of variable a is concerned) until instruction 716 is being

processed. We can see that < a ,r5 > first appears in vljpairjout[H6\, therefore another

range record (say 72722) is identified. Its starting address is 2052 and its location is

r5. CurrentRangeRecord(a) is set to 72722 and CurrentVarLocPair(a) is set to <

a,r5 > . We then process instruction 717. Since it is a function return instruction,

CurrentRangeRecord(a) (72722) ends here. That is, 72722’s end address is 2056. The

range information for all the variables is shown in Figure 5.7(b).

Note that in the algorithm, the range record 7272 built for a definition D (which corre­

sponds to a source assignment S) of variable V starts from the effective definition point

7 of D, instead of the instruction immediately following 7. The reason why instruction

7 is included in range record 7272 is because 7, which is an anchor point of S, might also

serve as an anchor point of other source statements. Some of these statements might be

expected to happen before assignment S in the original source code and some of them

might be expected to happen later than S. Refer back to the example shown in Fig­

ure 5.5. After both instruction 710 and 711 are deleted, instruction 712 becomes the

anchor point for both statement 54 (a source assignment of variable c) and statement

55. Statement 55 is expected to happen after statement 54. For a source breakpoint

set at 54, when the debugger compares the address of 712 (an anchor point of 54) with

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

address
A: 2000 11 r l = (s ta r t o f RR1)

2004 12 r3 =
2008 13 = r l
2012 14 = r3
2016 16 : r l = (end of RR1)
2020 1 1 4 ':r3 =
2024 15 branch B, C

B: 2028 17 = r l
2032 18 branch D

C: 2036 19 r2 =
2040 112: = r2
2044 113: . . .

D: 2048 115: . . .
2052 116: r5 = (s ta r t of RR2)
2056 117: re tu rn (end of RR2)

(a)

Variable S ta r t Addr End Addr Loc Type

a 2000 2016 r l re g is te r
2052 2056 r5 re g is te r

b 2004 2048 r3 re g is te r
c 2028 2032 r l re g is te r

2040 2044 r2 re a is te r
d 2048 2056 r3 re g is te r

(b)

Figure 5.7 (a) Code layout (b) Range information.

the range records of variable c, based on the original source program, the range record

corresponding to source assignment 54 should not cover 712 as the value defined by 54

should not be seen at the breakpoint set at 54. However, for a source breakpoint set at

55, we would like the range record to cover 712 as the value defined by 54 should be seen

at 55. Without the knowledge of where the breakpoints will be set in advance, I always

include 712 in the range record (which, in turn, might cause this range record to overlap

with the previous range). I also extend range information to include the source ordering

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information of the corresponding source assignments.5 At debug-time, the debugger will

use the source ordering information of the range records to determine whether a range

record actually covers a source breakpoint if the anchor point of the breakpoint falls

within the range record, or which range record covers the breakpoint if the anchor point

falls within two overlapping ranges. In our example, when the user sets a breakpoint at

54, although the anchor point of 54 (712) falls within the second range record of variable

c (see Figure 5.7(b)), after comparing the source ordering of the range record with that

of the breakpoint, the debugger knows this range record should not cover the breakpoint

and will report to the user that no expected value of variable c can be provided. This

is consistent with what the user would expect from the unoptimized code. On the other

hand, when the user sets a breakpoint at 55, by comparing the source ordering informa­

tion of the breakpoint and the range record, the debugger knows that the second range

record of variable c indeed covers the breakpoint. It will then retrieve the value in r2

and report it to the user.

5 For a range record built for a virtual definition, there will be no source ordering information.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

EMPIRICAL EVALUATIONS

The compiler support for the proposed debugging framework is implemented within

the framework of the IMPACT compiler [26]. A prototype source-level debugger, idb,

which incorporates the new breakpoint implementation scheme is also designed and im­

plemented. The evaluations presented in this chapter were conducted based on the fully-

implemented compiler support and prototype debugger. In this chapter, I first describe

the experimental framework used for the empirical evaluations. The overhead in compile

time and executable file size due to the proposed debugging framework is then presented.

The cost incurred in setting and reporting source-level breakpoints under the new de­

bugging framework as well as the effectiveness of the approach are also quantitatively

evaluated.

6.1 Experimental Framework

All the evaluations presented in this chapter were conducted on HP’s PA-RISC based

workstations running HP-UX 10.20. Six integer C programs from the SPEC95 benchmark

suite were used for the experiments. These benchmark programs are summarized in

Table 6.1. In the evaluations regarding the cost of the new breakpoint implementation

scheme and the effectiveness of the proposed framework, experimental data were collected

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.1 Benchmark descriptions.

Benchmark Description Total possible
source breakpoints

124.m88ksim Simulator for the 88100 microprocessor 6082
129.compress Performs adaptive Lempel-Ziv coding 358
130.11 Lisp interpreter 2529
132-ijpeg Image compression and decompression 7871
134.perl Perl interpreter 12434
147.vortex Single-user object-oriented database transaction benchmark 21687

for every possible source breakpoint (that is, every source line which contains a source

statement) in the benchmark programs. The last column of Table 6.1 shows the total

number of all possible source breakpoints in each benchmark program.

6.1.1 Compilation environment

The benchmark programs were first compiled and optimized by the IMPACT com­

piler. The generated assembly files were then assembled and linked by gcc to generate

the executables. The IMPACT compiler is a retargetable, optimizing C compiler being

developed at the University of Illinois. Various compilation paths within the IMPACT

compiler can be chosen to study different compilation techniques, architecture features,

and compiler/architecture tradeoffs for ILP processors. In my dissertation work, an opti­

mizing compilation path in the IMPACT compiler was selected to prototype the compiler

support for the debugging framework.

On this prototyped compilation path, C source code is first translated to the highest

level IR, Pcode [27], which is a hierarchical representation of the C source with source-level

constructs such as loops and if-statements intact. Basically all the source code informa-

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tion required for the debugging support is well preserved at the Pcode Level. Pcode files

are translated to the middle level IR, Hcode, which is a flattened C representation with

simple if-then-else and go-to control flow constructs. Sequence numbers are first assigned

to basic blocks at the Hcode level. Hcode files are then converted to the low-level HI

called Lcode. Lcode is a generalized register transfer language similar in structure to most

load/store processor assembly instruction sets. At the Lcode level, machine-independent

optimizations are first applied. These include the classic local, global, loop, and jump

(branch) optimizations described as follows [28].

Local optim izations : constant propagation, forward/backward copy propaga­

tion, memory copy propagation, common subexpression elimination, redundant

load/store elimination, constant combining/folding, strength reduction, logic reduc­

tion, operation folding, operation cancellation, code reordering, dead code removal,

and register renaming.

Global optim izations : constant/copy propagation, memory copy propagation, com­

mon subexpression elimination, redundant load/store elimination, dead code re­

moval, and dead if-then-else removal.

Loop optim izations : loop invariant code removal, loop back branch simplification,

global variable migration (global register promotion), induction variable strength

reduction, induction variable elimination, and dead loop removal.

Jum p optim izations : dead block removal, branch-to-next-block elimination, combin­

ing branches to the same target, branch-to-unconditional-branch combining, merg-

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mg always successive blocks, label combining, branch target expansion, and branch

swapping.

After machine-independent optimization, machine-dependent optimization and code

generation for HP PA-RISC architecture are performed. The machine-dependent op­

timizations include acyclic scheduling, register allocation, and peephole optimization.

Acyclic scheduling [29], [30] is applied both before register allocation (prepass scheduling)

and after (postpass scheduling) to generate an efficient schedule. The IMPACT global

register allocator [31] is based on the graph-coloring algorithm described in [32]. When

possible, the register allocator tries to minimize the number of registers used so that

the number of registers that need to be saved and restored at procedure call boundaries

can be reduced. At various points in the code generation process, a set of specially tai­

lored peephole optimizations are performed. These peephole optimizations are designed

to remove inefficiencies introduced during the early phase of code generation, to take

advantage of specialized opcodes available in the architecture, and to remove inefficient

code inserted by the register allocator. While instruction source ordering information,

anchor point information, and variable definition information are generated and contin­

uously maintained throughout every code optimization stage, the range information is

calculated after all the optimizations (including register allocation) have been performed.

6.1.2 Prototype debugger

The prototype debugger, idb, is a command-line based, source-level interactive debug­

ger which is implemented on HP’s PA-RISC based workstations running HP-UX 10.20.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Debug
InformationMachine Code

ptraceQ
Debuggee Process

commands

User

Debugger Kernel

Disassembler
Debug Information
Management Module

Process and Execution
Control Module

Data Access Module

Figure 6.1 The architecture of the prototype debugger.

It supports functionalities commonly seen in most of the current commercial symbolic

debuggers such as running and continuing a program, setting and deleting source break­

points, inquiry of variable values at breakpoints, etc. The architecture of the prototype

debugger is shown in Figure 6.1.

When debugging a program, the disassembler of the debugger is first invoked to

disassemble the object code. The disassembled program is represented in the Lcode

format (see previous subsection) so that the routines written for the debugger (such as

the calculation of interception points, finish points, and escape points) can also be used

by the compiler, which greatly reduces the complexity of my static empirical evaluations.

Also the time to develop the debugger was reduced by exploiting some of the control-flow

and data-flow routines already developed and tested on the compiler side.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The debug information management module reads in the debug information propa­

gated from the compiler and builds internal data structures such as variable and function

symbol tables, source statement tables (including anchor point information), variable

type and range information, etc. The debug information management module also anno­

tates the instructions of the disassembled program with the source ordering information.

In response to the user’s debugging commands (passed from the command-line

parser), the process and execution control module controls the creation and termina­

tion of the debuggee process, running and continuing the program, as well as setting

and deletion source breakpoints. At the core of the process and execution control mod­

ule is the proposed breakpoint implementation scheme. For a source breakpoint, the

module calculates the corresponding interception points, finish points, and escape points

using the anchor point and the source ordering information. It takes over control at the

interception point and starts forward recovery as described in Chapter 4.

When the user requests the value of a variable at a source breakpoint, the data access

module uses the range information to find out whether the variable value exists or not

and, if it does, where to obtain it. It then accesses the storage locations (register file

or memory) from debuggee’s address space and presents the value to the user with the

help of the variable type information. The debugger controls the debuggee process and

accesses debuggee’s address space all through UNIX ptrace system call.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Overhead in Compile Time and Executable File

Size

Besides the traditional debug information, the extra information that the compiler

needs to emit for the proposed debugging framework includes the source ordering of

instructions, the anchor point information (which actually replaces the source line table

in the traditional debuggers), and the range information which records the run-time

locations of variables. Table 6.2 summaries the experimental results for the increase in

executable file size due to the extra debug information.

Row 1 of Table 6.2 shows the size of the stripped executable file for each of the

optimized SPEC95 programs without any debug information. Row 2 shows the increase

in executable file size (in byte and in percentage) for source ordering information. Row 3

and Row 4 show the same evaluation for anchor point information and range information.

The average increases in executable file size for the source ordering information, anchor

point information, and range information are 38%, 62%, and 282%, respectively. On

average, the file size increase for all the debug information (including traditional and extra

information) is about 406% as shown in Row 5. In comparison, the average executable file

size increase due to the debug information when the benchmark programs were compiled

by gcc (without optimization) is around 319%. While the size of debug information may

vary with different sets of optimizations performed, the results presented in Table 6.2

can nonetheless demonstrate that the overhead in executable file size introduced by my

approach is acceptable.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.2 The size of the debug information for six optimized SPEC95 programs.

P ro g ram m88ksim compress9S It VPeff peri vortex
E xecu tab le file size in

b y te (s tr ip p ed) 294944 98328 147485 323616 536618 938032
Source o rd erin g

in form ation
Size (byte) 127824 7452 56868 166332 261684 382044

Inc. percentage 43% 8% 39% 51% 49% 41%
A nchor po in t
in fo rm ation

Size (byte) 200640 11888 90552 260224 405320 721696
Inc. percentage 68% 12%" 61% 80% 76% 77%

R ange
inform ation

Size (byte) 817200 27800 269272 851760 2722828 4042368
Inc. percentage 277% 28% 183% 263% 507% 431%

All debug
in form ation

Size (byte) 1215840 52424 468144 1386440 3475000 5391088
Inc. percentage 412% 53% 317% 428% 648% 575%

I also noticed that compared to other programs, compress95 has a relatively small

percentage of the executable file size increase for the debug information. After examining

the executable files, I found out that for compress95 the code sections occupy only a small

portion of the executable file (which contains a very big data section), while for all of the

other programs, the code sections occupy about half the size of the executable files. It is

easily understood that the percentage of the file size increase due to debug information

will be small when the code sections occupy only a small portion of the executable file.

Table 6.3 summaries the compile time increased due to the compiler support for

the proposed framework. Since the generation and maintenance of the necessary debug

information are primarily taking place at the code optimization and code generation

phases on the prototyped compilation path, I only measured the compile time increases

for these two phases. On average, the compile time increases by about 38% at the

optimization phase and by about 142% at the code generation phase.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.3 Compile time increase due to the debugging framework for six optimized
SPEC95 programs.

Program m88ksim compress95 li ijpeg peri vortex
Code optimization phase 41% 10% 41% 19% 87% 29%
Code generation phase 118% 36% 206% 123% 115% 251%

6.3 Overhead in Debug-Time Strategy

It is interesting to know how much cost is incurred in reporting source-level break­

points under the new debugging framework. To answer this questions, my experiments

were conducted statically by analyzing the optimized code and collecting data for every

possible source breakpoint in the benchmark programs. First 4 rows of Table 6.4 show the

average numbers of anchor points, interception points, finish points, and escape points

for a source breakpoint.

In my framework, hitting of an interception point at run time starts forward recovery.

During forward recovery, instructions are executed one by one (single-stepped) until a

finish point or an escape point is reached. Row 5 of Table 6.4 shows the total number of

instructions executed during forward recovery. These numbers were obtained statically

by looking at all the possible paths from every interception point of a source breakpoint

to either a finish point or an escape point. Although in some worst cases, hundreds of

instructions might need to be executed during forward recovery, on average only about

2 to 25 instructions will need to be executed before the debugger can determine if a

source breakpoint should be reported to the user or not. Note that if there is no code

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6 .4 Results from static analysis on six optimized SPEC95 program s.

Program m88ksim compress95 li ijpeg peri vortex
Average no. of anchor points

per source breakpoint 1.05 1.06 1.05 1.07 1.09 1.03
Average no. of interception

points per source breakpoint 1.17 1.22 1.07 1.22 1.19 1.08
Average no. of finish points

per source breakpoint 1.12 1.20 1.09 1.21 1.27 1.06
Average no. of escape points

per source breakpoint 0.28 0.21 0.03 0.33 0.44 0.14
Instructions executed
per forward recovery

Average 10.76 15.00 2.13 24.91 8.07 13.35
max 206 167 76 581 294 714
min 0 0 0 0 0 0

being moved across a source breakpoint, the interception point and the finish point both

coincide with the anchor point and no instruction is executed during forward recovery.

From the experience with the prototype debugger, the time to set a breakpoint un­

der my proposed scheme was only slightly longer than that required by GDB’s regular

breakpoint, and the extra time is hardly noticeable by a human user. Furthermore, as

the average number of instructions executed during forward recovery is only around 12

(based on the measurements shown in Table 6.4), even though forward recovery is time

consuming, most of the time it did not add an overhead that is noticeable in an interactive

debugging situation.

6.4 Effectiveness of The Framework

To show the effectiveness of my approach, I first measured the effects of global op­

timization on the data value problem. The stacked columns labeled base in Figure 6.2

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

show the average numbers of local variables that are uninitialized, current, and non-

current at a source breakpoint for the optimized benchmark program without applying

any recovery scheme. As discussed in Chapter 2, a variable is current at a breakpoint

if its value is consistent with what the user expects from the original source program at

this breakpoint [8]. Otherwise, it is non-current} A variable is considered uninitialized

at a source breakpoint if the variable is not defined on any path leading to the source

breakpoint from the function entry point. Again, the results were obtained by collecting

data for every possible source breakpoint. Since most of the global variables were found

to be current at source breakpoints based on my experiments,2 I only present the results

for local variables. We can see from Figure 6.2 that, on average, about 10-33% of the

local variables in scope are non-current at a source breakpoint without recovery.

In contrast, the stacked columns labeled proposed scheme in Figure 6.2 show the

results under the proposed debugging framework. On average only about 7% of the local

variables in scope are non-current.

Table 6.5 further illustrates how often the expected values of non-current variables

can be recovered by my debugging framework. Row 1 shows the average number of local

variables that are non-current at each source breakpoint. These numbers correspond to

the top portion of the stacked columns labeled base shown in Figure 6.2. As mentioned

before, a variable can be made non-current at a source breakpoint because of the following

optimizations:

1 Non-current variables in my classification actually includes both endangered and nonresident vari­
ables defined in some previous work [8, 15]

2 The fact was also observed and noted by other research work [3].

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

!B uninitialized ■ current □noncurrent

vortexm88ksim

Figure 6.2 Average number of local variables in scope at each source breakpoint.

1. An assignment to the variable is moved across the breakpoint.

2. An assignment to the variable which can reach the breakpoint is deleted.

3. The storage location of the variable is reused due to register allocation, which in

turn makes the source-level value of the variable non-existent at the breakpoint.

Row 2 of Table 6.5 shows the average number of the non-current variables that are

caused by code reordering and code deletion. Row 3 shows the average number of non-

current variables whose expected values can be recovered by my debugging framework.

On average, my approach can recover around 58% of all non-current variables, as shown

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.5 Effectiveness of the proposed debugging framework in the recovery of the
expected values for non-current local variables.

P ro g ra m m88ksim compress95 it img peri vortex
n o n -cu rren t

variables 0.796777 0.812849 0.467774 1.958836 3.799662 4.537926
non-curren t variab les caused by

code reo rd erin g an d deletion 0.486518 0.452514 0.231712 1.6961 3.442255 3.398626
n on-cu rren t variables

recoverab le 0.414173 0.405028 0.213523 1.318892 2.451585 3.112879
recovery % w ith
resp ec t to R o w l 52% 50% 46% 67% 65% 69%
recovery % w ith
resp ec t to RowZ 85% 90% 92% 78% 71% 92%

in Row 4. As my debugging framework is designed to recover the non-current variables

caused by code reordering and deletion, it makes more sense for me to measure the

recovery rate based on these variables. We can see from Row 5 of Table 6.5 that around

85% of the non-current variables caused by code reordering and deletion can be recovered

by my approach.

To the best of my knowledge, Hennessy’s work [8] is probably the only related pre­

vious work that has shown the recovery rate of non-current variables. Without register

allocation, his approach can only recover 58% of the non-current variables caused by

a limited set of local optimizations involving code reordering and deletion.3 Compared

with his experiment results, my measurements have shown that the approach I proposed

is more effective in the recovery of expected variable values.

3The optimization techniques he considered only include local common subexpression elimination, lo­
cal redundant store elimination, local reordering of computations, code motion from loops, and induction-
variable elimination.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

CONCLUSIONS

7.1 Summary

Compiler optimizations cause debugging difficulties in two ways: (1) the mapping

between source code and object code becomes very complicated, and (2) reporting values

of source variables is either inconsistent with what the user expects or simply impossible.

In this dissertation, I have presented a novel framework for debugging globally optimized

code which addresses the abovementioned problems. While most of the previous ap­

proaches in this area have focused on providing truthful program behavior, the proposed

framework was designed to recovered the expected program behavior, whenever possible.

Under the new breakpoint implementation scheme of the proposed framework, the

debugger takes over the control of execution early to make sure the information required

for recovery will not be destroyed permanently. It then moves forward executing instruc­

tions under a forward recovery model which maintains some data structures to keep track

of the program states changed during the forward recovery. This enables the debugger to

recover the expected behavior of a program even in the presence of optimization. In this

breakpoint implementation scheme, the source breakpoints are reported to the user in

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the order specified by the original source program and the behavior of exceptions meets

what the user expects.

A new code location mapping scheme has been described in this dissertation. The

new mapping scheme helps the debugger to determine where to suspend and resume the

normal execution and decide if a source breakpoint should be reported. The algorithms

and the theoretical foundations for constructing and calculating different mappings have

been presented. A new instruction execution order tracking method at compile time has

been described.

I have also presented a new data location tracking scheme for the recovery of ex­

pected variable values in this dissertation. In this scheme, variable definition information

is generated and maintained during optimization and register allocation. Based on this

variable definition information and the anchor point information, a data-flow analysis is

performed to collect variable location data that is then used to generate the range infor­

mation fitting to my breakpoint implementation scheme. With this range information,

the debugger can unambiguously determine if the expected value of a variable is available

at a source breakpoint under the breakpoint implementation scheme and how to recover

it.

The framework has been prototyped in the IMPACT compiler and an experimental

debugger to validate the concepts presented in this dissertation. Experiments conducted

on several SPEC95 integer programs have yielded encouraging results. The overhead

in executable file size and compile time incurred by the new framework is reasonable.

The extra time needed for the debugger to calculate the limits of the forward recovery

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

region and to single-step instructions during forward recovery is hardly noticeable. On

average, the expected values of around 85% of the non-current variables caused by code

reordering and deletion can be recovered by my debugging framework. Compared with

previous work, my approach is more general and effective in the recovery of the expected

variable values. The experience with the prototype has shown that the proposed scheme

provides a low-cost, practical approach to debugging optimized code.

7.2 Future Work

The framework described in this dissertation currently has a number of limitations

which needs to be addressed in the future work. There are also several interesting lines

of future research stemming from this dissertation.

As outlined in Section 3.2.2, the proposed scheme is incapable of handling non­

monotonic loops such as modulo scheduled loops where instructions from different it­

erations in the original loop are mixed together in the same iteration of the new loop.

To handle this, the current approach needs to be generalized so that it deals with the

dynamic instances of instructions rather than the static instances considered here.

My debugging framework is not believed to be suitable for optimizations that reorder

loop iteration spaces such as loop interchange, loop fusion, loop reversal, etc. For ex­

ample, consider a loop that is reversed by the compiler so that the first source iteration

is the last binary iteration and vice versa. To handle this, the debugger would have to

set the interception point at the start of the loop and, during the forward recovery, save

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the values modified by all instructions except those that belong to the last iteration (of

the optimized loop). As I discussed in Chapter 2, this kind of optimization is probably

better handled by presenting a transformed source to the user [16].

One engineering issue which can be further studied is how to pass the debug infor­

mation to the debugger. Currently the additional debug information required for the

new debugging framework is emitted by the compiler and propagated to the debug­

ger in my own debug format. Existing debug information formats such as stabs [33]

and DWARF [34] were not designed to support the extra information required by my

approach, but some of them nonetheless do provide some extension capability. It is in­

teresting to explore whether and how the debug information can be encoded into one of

the existing debug formats.

Another area for further work is debug-time live range extension. In my current

approach, if a variable becomes dead before the debugger reaches the interception point,

then there is no way for the debugger to recover its last known value. The results

presented in Section 6.4 have shown that most of unrecoverable variables in my framework

are due to this problem. One way to overcome this problem would be to place a hidden

breakpoint at a location just before the variable goes dead and have the debugger save its

value. Although doing this for every variable that becomes dead can be very expensive,

it may not be too costly if we do this only for the functions where breakpoints are set.

The approach described in this dissertation has only focused on user-set source break­

points. That is to say, the approach depends on the fact that it can anticipate breakpoints

and take over control of the debuggee early enough to perform debug time forward re-

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

covery. However, many debugger functions (such as signals, watchpoints, etc.) cannot in

general be anticipated. Dealing with unanticipated stops is a major area for future work.

As mentioned in Section 4.2.2, when the forward recovery region contains a loop, my

current implementation adopts a less aggressive approach which trades the availability

of the values of some variables for the feasibility of the proposed scheme by moving the

interception points or finish points to new places. An alternative strategy which is a

potential extension for future implementation is to still use the normal forward recovery

scheme on the code as is and fall back on moving the interception points or finish points

when the number of instructions executed in the forward recovery mode grows too large.

Finally, my prototype debugger does not currently allow the user to change the values

of variables at debug time. In general, this is not always possible: whenever the opti­

mizer transforms code based on inferences about the values of variables (e.g, constant

propagation, loop invariant code motion) or about the relations between the values of

variables (e.g., many induction variable optimizations), the user must be prevented from

modifying variables in such a way that these inferences are violated. Determining when

it is safe to modify the value of a variable (and how to update all compiler generated

temporaries that depend on the new value) so that the debugger can provide advice to

the user whether the value of a variable can be changed at a given breakpoint is an

interesting and important area for future research.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

A DATA-FLOW ALGORITHM FOR FINDING
FINISH POINTS

In the control flow graph G of the function, suppose an anchor point I of statement

S’ is in basic block D and the function exit block is E (I assume there is a unique exit

block for each function). To find out the finish points of S with regard to / , D needs

to be first split into two basic blocks D1 and D2 in the same m anner as described in

Section 3.2.2.

Let V be the set of basic blocks which are on the paths from D2 to E (including D2

and E)} For each basic block B in graph G, gen[B\ and kill[B] are defined as follows:

• If B is in V,

gen[B] = A one-element set containing the instruction which is either the instruc­

tion immediately preceding the earliest post-breakpoint function call or the last

pre-breakpoint instruction (depending on which one is encountered first) in basic

block B , if there is any. An empty set, otherwise.

{in[B] if gen[B\ ^ $

<f> otherwise

• If B is not in V,

lV can be obtained through a simple depth-first search from D2.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gen[B] = kill[B\ = <f>

The data-flow equations for in and out sets of B are:

in[B\ = (J out[P}
P is apredecessorof B

out[B\ = gen[B] U (in[B] — kill[B\)

The standard iterative algorithms for solving data-flow equations [22] can be used to

derive the out[B\ for each basic block B in V. out[E] is the set of all the finish points of

S with regard to I.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[1] L. Gwennap, “Intel, HP make EPIC disclosure,” Microprocessor Report, vol. 11,
pp. 1-9, October 1997.

[2] P. T. Zellweger, “Interactive source-level debugging of optimized programs,” Ph.D.
dissertation, Electrical Engineering and Computer Sciences, University of California,
Berkeley, CA 94720,1984.

[3] A. Adl-Tabatabai, “Source-level debugging of globally optimized code,” Ph.D. dis­
sertation, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
15213, 1996.

[4] J. B. Rosenberg, How Debuggers Work: Algorithms, Data Structures, and Architec­
ture. New York, NY: John Wiley and Sons, 1996.

[5] M. Copperman, “Debugging optimized code without being misled,” Ph.D. disserta­
tion, Computer and Information Sciences, University of California, Santa Cruz, CA
95064, 1993.

[6] L.-C. Wu, R. Mirani, H. Patil, B. Olsen, and W. W. Hwu, “A new framework for
debugging globally optimized code,” in Proceedings of the ACM SIGPLAN ’99 Con­
ference on Programming Language Design and Implementation, May 1999, pp. 181—
191.

[7] L.-C. Wu and W. W. Hwu, “A new data-location tracking scheme for the re­
covery of expected variable values,” IMPACT, University of Illinois, Urbana, IL,
Tech. Rep. IMPACT-98-07 (ftp://ftp.crhc.uiuc.edu/pub/IMPACT/report/impact-
98-07.dataloc.ps), September 1998.

[8] J. Hennessy, “Symbolic debugging of optimized code,” ACM Transactions on Pro­
gramming Languages and Systems, vol. 4, pp. 323-344, July 1982.

[9] D. Wall, A. Srivastava, and F. Templin, “A note on Hennessy’s “Symbolic debugging
of optimized code”,” ACM Transactions on Programming Languages and Systems,
vol. 7, pp. 176-181, January 1985.

[10] D. Coutant, S. Meloy, and M. Ruscetta, “DOC: A practical approach to source-
level debugging of globally optimized code,” in Proceedings of the ACM SIGPLAN
’88 Conference on Programming Language Design and Implementation, June 1988,
pp. 125-134.

[11] M. Copperman, “Debugging optimized code without being misled,” ACM Transac­
tions on Programming Languages and Systems, vol. 16, pp. 387-427, May 1994.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ftp://ftp.crhc.uiuc.edu/pub/IMPACT/report/impact-

[12] R. Wismuller, “Debugging of globally optimized programs using data flow analysis,”
in Proceedings of the ACM SIGPLAN ’94 Conference on Programming Language
Design and Implementation, June 1994, pp. 278-289.

[13] A. Adl-Tabatabai and T. Gross, “Evicted variables and the interaction of global reg­
ister allocation and symbolic debugging,” in Conference Record of the 20th Annual
ACM Symposium on Principles o f Programming Languages, January 1993, pp. 371-
383.

[14] A. Adl-Tabatabai and T. Gross, “Detection and recovery of endangered variables
caused by instruction scheduling,” in Proceedings of the ACM SIGPLAN ’93 Confer­
ence on Programming Language Design and Implementation, June 1993, pp. 13-25.

[15] A. Adl-Tabatabai and T. Gross, “Source-level debugging of scalar optimized code,”
in Proceedings of the ACM SIGPLAN ’96 Conference on Programming Language
Design and Implementation, May 1996, pp. 33-43.

[16] C. Tice and S. L. Graham, “OPTVIEW: A new approach for examining optimized
code,” in Proceedings of the 1998 Workshop on Program Analysis for Software Tools
and Engineering, June 1998.

[17] P. T. Zellweger, “An interactive high-level debugger for control-flow optimized pro­
grams,” SIGPLAN Notices, vol. 18, pp. 159-171, August 1983.

[18] L. L. Pollock and M. L. Soffa, “High-level debugging with the aid of an incremental
optimizer,” in Proceedings of the Twenty-First Annual Hawaii International Con­
ference on System Sciences, January 1988, pp. 524-532.

[19] R. Gupta, “Debugging code reorganized by a trace scheduling compiler,” Structured
Programming, vol. 11, pp. 141-150, July 1990.

[20] U. Holzle, C. Chambers, and D. Ungar, “Debugging optimized code with dynamic
deoptimization,” in Proceedings o f the ACM SIGPLAN ’92 Conference on Program­
ming Language Design and Implementation, June 1992, pp. 32-43.

[21] D. Ungar and R. B. Smith, “SELF: The power of simplicity,” in OOPSLA ’87
Conference Proceedings, October 1987, pp. 227-241.

[22] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools.
Reading, MA: Addison-Wesley, 1986.

[23] D. M. Lavery and W. W. Hwu, “Unrolling-based optimizations for modulo schedul­
ing,” in Proceedings of the 28th International Symposium on Microarchitecture,
November 1995, pp. 327-337.

[24] D. M. Lavery and W. W. Hwu, “Modulo scheduling of loops in control-intensive
non-numeric programs,” in Proceedings of the 29th International Symposium on Mi­
croarchitecture, December 1996, pp. 126-141.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[25] R. Mirani, B. Olsen, and H. Patil, “Debugging of optimized code using debug time
instruction reordering,” Unpublished Draft, Hewlett-Packard Company, 1997.

[26] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, “IMPACT:
An architectural framework for multiple-instruction-issue processors,” in Proceedings
of the 18th International Symposium on Computer Architecture, May 1991, pp. 266-
275.

[27] B. Cheng, “A profile-driven automatic inliner for the impact compiler,” M.S. thesis,
Department of Computer Science, University of Illinois, Urbana, IL, 1997.

[28] S. A. Mahlke, “Design and implementation of a portable global code optimizer,” M.S.
thesis, Department of Electrical and Computer Engineering, University of Illinois,
Urbana, IL, 1991.

[29] R. A. Bringmann, “Compiler-controlled speculation,” Ph.D. dissertation, Depart­
ment of Computer Science, University of Illinois, Urbana, IL, 1995.

[30] P. P. Chang, D. M. Lavery, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, “The im­
portance of prepass code scheduling for superscalar and superpipelined processors,”
IEEE Transactions on Computers, vol. 44, pp. 353-370, March 1995.

[31] R. E. Hank, “Machine independent register allocation for the IMPACT-I C com­
piler,” M.S. thesis, Department of Electrical and Computer Engineering, University
of Illinois, Urbana, IL, 1995.

[32] G. J. Chaitin, “Register allocation and spilling via graph coloring,” in Proceedings
of the ACM SIGPLAN 82 Symp. on Compiler Construction, June 1982, pp. 98-105.

[33] J. Menapace, J. Kingdom, and D. MacKenzie, The stabs debug format. Free Software
Foundation, Inc., Contributed by Cygnus Support, 1993.

[34] Industry Review Draft, UNIX International Programming Language Special Interest
Group, DWARF Debugging Information Format, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Le-Chun Wu was bom in Hsinchu, Taiwan, in 1966. He grew up in Taipei, Taiwan,

and attended Taipei Municipal Chien-Kuo Senior High School. He received his B.S. and

M.S. degrees in Computer Science and Information Engineering from National Taiwan

University in 1989 and 1991, respectively. In 1993, he came to the U.S. to pursue the

Ph.D. degree in Computer Science at the University of Illinois at Urbana-Champaign. He

joined the IMPACT research group directed by Professor Wen-mei Hwu in the summer

of 1995. His doctoral research focuses on compiler and debugger support for debugging

optimized code. He spent the summer of 1996 at Rockwell Semiconductor Systems (now

Conexant Systems, Inc.) in Newport Beach, California, and the summer of 1997 at

Hewlett-Packard Laboratory in Cambridge, Massachusetts, working on various debugger

and compiler design issues. He is a member of Phi Kappa Phi honor society. After

completing his Ph.D. work in 1999, he joined Hewlett-Packard Company in Cupertino,

California, as a software design engineer.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

