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In this thesis we address the problem of interprocedural analysis on a dynamic appli-

cation. We present a framework for performing partial analysis ahead of time and using

it to facilitate a large range of runtime analyses and optimizations. We demonstrate one

such analysis by performing swift, safe analysis during profiling of threaded, dynamically

Iinked, adaptively compiled applications. In our framework, we focus on one such lan-

guage, Java; however) our techniques are adaptable to others within this realm. We also

present models for adaptive compilation utilizing our framework to verify compilation as-

sumptions in the event of dynamic class loading. We present our system for performing

a subset of analyses ahead of time by constructing a graph called a Compact Dataft,ow

Graph (CDG), of the object references used intraprocedurally. The CDG is designed to

be independent of the internal representation used by the runtime and general enough

to facilitate a large range of dynamic interprocedural analysis and optimizations. We

present our design and implementation of one such use of the CDG by using it to swiftly

construct a form of a unification points-to graph we call an Object Connectr,on Graph

(OCG), which is used to determine swiftly a set of method local allocations that could

be safely stack ailocated. We present results for the use of the OCG using a subset of

the threaded Java Grande benchmarks, and a set of small Java threaded applications.
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CHAPTER 1

INTRODUCTION

1.1 Object Oriented Languages and Java

Object oriented languages have established themselves as an enabling technology for

Iarge enterprise level applications. Among the set of commonly used object oriented lan-

guages in this domain is the Java programming language introduced by Sun Microsystems

in 1995 [1]. Like other object oriented languages, Java is based on the notion of a class.

A class is a user defined type that contains elements, called fields, and procedures for

manipulating those elements. Classes are polymorphic, meaning that a class can inherit

from a parent class allowing it to have access to fields within the parent class, specialize

a procedure to its needs even if the procedure is defined within the parent class, and

introduce additional fields and procedures. Java limits the number of parents to one

but places no limitations on the number of children a parent can have. The inheritance

allows a programmer to use the parent type of an object when writing code, relying on

the dynamic runtime type of the object instance to choose the correct procedure. For

example, a scene rendering routine can be written to take objects of type shape calling

the procedure draw on each individual object. Then all drawable objects that inherit

from shape can be passed to the scene rendering routine, allowing their runtime types



to choose the correct draw routine. In this way, the programmer can rely on the run-

time type of the object instance for implementing the desired functionality. This form

of choosing the appropriate functionality based on runtime-type virtual-call resolution

is in contrast to the more traditional control structures used in languages such as C.

Due to this form of control, object oriented languages tend to contain a iarge number of

small procedure calls, each of which could have multiple potential targets based on the

dynamic resolution of the objects.

The Java language also incorporates features that increase the level of programmer

flexibility. One such feature is the ability to dynamically locate and link in the necessary

class files only when the application first accesses them. This allows a programmer to

change individual classes or even introduce new ones without the need to change the entire

application. Additionally, Java has dynamic discovery mechanisms such as introspection

and reflection which enable an application to dynamically discover the properties of a

class and instantiate an object of that class even if the the class did not exist when the

application was first written. This facilitates the incorporation of multiple packages from

multiple independent software vendors as well as allowing the creation of applications

that can dynamically create new classes to suit changing user needs.

Java is also designed to be machine independent. It targets a virtual machine architec-

ture allowing the application to be written, compiled, and tested for only one architecture

yet run on multiple targets. Furthermore, Java standardizes and simplifies interactions

that were traditionally dependent on the operating system or server implementation. The

thread model allows only one type of locking and a simple set of calls for accessing those



locks as well as guaranteeing thread safety for a set of library procedures. The network

model defines a simple set of calis for establishing and using the desired network connec-

tions. The database model uses a simple set of library calls to abstract away database

design issues. These standard interfaces also allow programmers to easily incorporate the

use of packages that implement them into their appiications. Therefore, these features

further facilitate the integration of packages from multiple independent software vendors.

On top of all of this, Java also uses a memory manager relieving the programmer

of the responsibility of tracking memory references and trying to free unused memory

when the last reference to it expires. Programmers can write their code without fear of

runaway memory usage growth. They rely on the virtual machine's memory manager to

track live memory locations and recover dead ones.

With the additional benefits also come additional overheads. To overcome some of

these overheads, Java relies on runtime optimizations to increase execution efficiency.

However, Java's dynamic properties limit the applicability of traditional static analysis

techniques. The lack of appropriate analysis techniques also limits the scope and aggres-

siveness of the optimizations applied. This thesis presents the design of our framework to

facilitate aggressive runtime optimization by performing efficient and effective dynamic

application analysis.



L.2 Analysis and Optimization

Interprocedural optimization is a critical means to enhance performance for object

oriented languages. Since object oriented programs contain a large number of small pro-

cedure calls, most of the optimizations start by iniining procedure calls and optimizing

over what used to be the procedure boundaries. Most of these forms of optimizations

share a common assumption, that the set of class files used by the application is known.

They have a "closed-world" view l2l - l2ll. Based on this assumption, conservative cail

graphs are constructed and aggressive optimizations are performed. Significant perfor-

mance gains have been achieved by using these techniques.

However, dynamically linked and loaded applications such as Java have the potential

to introduce new subclasses of a given class at any time. This violates the "closed-world"

assumption of static analysis. Some researcher have tried to tackle the problem of the

elimination of the "closed-world" assumption by focusing on a subset of the applica-

tion that can be considered closed '.221, 
[23]. This form of optimization restricts inlining

to only procedures that can be determined impossible to override at runtime. We call

these procedures rnonomorphi,c procedures, meaning one and only one implementation of

them exists within the application. The rnonomorphi.c procedures are either f inal pro-

cedures, meaning no other class can subclass them or they can be proven to be "sealed"

procedures within a sealed package as defined in 1221. The optimizations and inlining of

ntonomorphic procedures can be performed statically while allowing for additional run-

time optimizations. In Chapter 5 we extend the notion of monomorphic procedures via



the use of our framework. We introduce the concept of context-based monomorphic pro-

cedures and describe the advantages and limitations imposed by restricting optimizations

to only this subset.

However, although there is some gain from the inlining of provable monomorphi,c

procedures, it has been shown that there are still substantial opportunities if more prG-

cedures are identified and inlined [10] - [12], [23] - [28]. Therefore, more aggressive

runtimes make assumptions based on some form of profile information and determine a

set of additional virtual calls that can be transformed from multiple potential call targets

to inlined procedures guarded by control blocks. These procedures are then inlined and

optimized along with their caller's code. Unlike the inlining of provable monomorphi,c

procedures, this second set is not guaranteed to remain closed in the presence of dynamic

class loading. This then leads to design concerns about how to detect that the current

call graph and class hierarchy assumptions have changed and what to do in the presence

of these changes. Both of these are addressed in our framework.

Sometimes it is beneficial to use known caliing context and perform swift, on-the-fly

analysis to enable first invocation optimizations. However, traditional forms of interpro-

cedural analysis are too costly in both time and space for application to this analysis

domain. As a result, most runtimes that attempt to employ on-the-fly optimizations

restrict the analysis and scope of the optimizations to a swift, safe, intraprocedural sub-

set. Our framework is designed to enable efficient and effective on-the-fly interprocedural

analysis as well as provide more comprehensive intraprocedural information. This combi-

nation enables optimizations previously believed to be too costly for runtime deployment.



In Chapter 4, we describe and show results for an implementation of our framework to

perform swift, safe, on-the-fly, interprocedural analysis.

1.3 Overview of Our System

The proposed dynamic optimization framework consists of three major building blocks:

the static analysis engine, the dynamic analysis engine, and the dynamic optimization en-

gine. These are shown conceptually within the corresponding portion of the Java runtime

in Figure 1.1.

The static analysis engine operates on each individual class file at compile time. It

produces a compact summary of each method, upon which the dynamic analysis engine

performs various types of efficient runtime analysis. The summaries become available

to the dynamic analysis engine through the standard annotation mechanism defined by

Java specification [29]. The verification of this annotation is important to uphold the

tight Java security model, and in Chapter 2, we present an approach for meeting this

constraint that incorporates the best of both worlds.

The proposed summary of a method is referred to as a Compact Datafi,ow Graph

(CDG). It is a dataflow graph since useful dataflow information can be easily extracted

from this graph. However, it contains more than just dataflow information. It is a

compact graph since all internal units, such as local variables, are removed from the

graph. The details will be explained in Chapter 2.



Figure 1.1 An overview of the Dynamic Application Analysis Flamework.

1.3.1 Runtime architecture phases

At runtime, the dynamic analysis engine generates useful optimization tips in two

different modes. The two modes are defined as fi,rst mode, or in the same process as

the executing application, and second mode, or in a separate process from the executing

application.

7
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Figure 1.2 A conceptual of the phases during the lifetime of an application.

Figure 1.2 shows a conceptual view of an application's progression through several

phases during its lifetime. In this figure, the horizontal lines can be thought of as different

processes executing over time. The top horizontal line is the main application while

the horizontal lines labeled Opti,mzzer i,nuoked are separate processes running in paraliel

with the actuai application. The vertical lines represent events. Some of these events

also involve a production and consumption of information, and therefore the vertical lines

indicate a direction of information flow. For example, the snapshot of the profile produces

information that is consumed by the runtime optimizer. When the runtime optimizer

completes, it produces new code and validation requirements that are consumed by the

Java runtime. The profiling of the application is continuous and our analysis can also be

conducted in conjunction with it. This is the first mode of analysis. The analysis results

produced here can either be instantly consumed, such as deciding on stack allocation of

a new object instance, or passed on to the optimizer for later consumption.

The runtime optimizer is considered a separate process with a static set of input

information. Analysis performed then is similar in concept to static analysis with the

view



added safeguards to handle dynamic class loading. This is the second mode of analysis.

The code being executed by the runtime can be in hasty erecut'ion mode, which we define

as interpreted or unoptimized code. This is shown below the timeline in Figure I.2. At

some point, the runtime decides that enough profile information has been generated

and "snap shots" the profile collected. We show these events as vertical lines crossing

the timeline in Figure 1.2. The runtime then invokes the runtime optimizer. Once the

runtime optimizer completes, it passes the produced optimized code back to the runtime

along with any validation requests. This exchange is shown as the vertical line marked

"validation registration" and "optimized code available," in Figure 1.2. The transferal

of the optimized code and validation requests then transitions the runtime into the next

phase of code execution, mixed mode. In this phase of execution, both optimized and un-

optimized code coexist in the runtime. Note that the profiler is stiil running and whether

or not to restart the profiling, discarding all previously collected profile information, is

dependent on the particular runtime. In our framework, we now also transition back to

the first mode of analysis. At some point during the execution, an event occurs which

either significantly changes the behavior of the application or forces a recovery from a

validation failure. At this point in our timeline in Figure 7.2, we assume the event was

significant enough for the runtime to abandon optimized code and transition back to

hastE erecutton mode. The transition to hasty execution mode then starts the cycle over

again. In Chapter 5, we describe the rollback and recovery mechanisms necessary in the

event of validation failure.



L.3.2 First mode analvsis

The first mode of performing analysis, we define as occurring while the application is

running. The Java runtime executes a Java application and performs profiling at the same

time. Our analysis used during this phase has the advantage of being context sensitive

and knowing the exact calling context of the method. However, there are overheads

that can impede performance and therefore can impact the strength of the analysis. For

example, if we use our framework to make swift decision on whether to allocate an object

on the stack or the heap, we need to make this decision at the point the object is allocated.

However, in order to decide, we need to analyze what will occur over the object's lifetime

to determine if the object has the potential to survive its allocating method. To do this,

we construct a quick, safe interprocedural analysis at the point the method containing

the allocation is executed. We describe an implementation of our framework for this

form of analysis in Chapter 4. The analysis conducted in this first mode is not restricted

to just this form of analysis. For example, it can be used to augment the profile data

by constructing the interprocedural results as the profile is being collected. Then when

the snap shot is taken, the context-sensitive analysis information is passed as part of

the input set for the optimizer. The profiling is ongoing and as such the first mode of

analysis for this example is considered continuous. We describe several forms of first

mode analysis in Chapter 3.

If the analysis results are consumed in the first mode, the optimized code is specialized

to a particular calling context. Therefore the optimized code has a very limited lifespan

10



and in some cases becomes single use. This means that the optimizations may be dis-

carded after execution and regenerated should the same calling context be encountered

again. Therefore, not only must the analysis performed during in this mode be designed

efficiently, weighing the costs versus benefits, but also the choice of optimization and

overhead of implementing it. The structures we designed as part of our framework help

facilitate this form of analysis by reducing some of the overheads.

1.3.3 Second mode analvsis

The invocation of the runtime optimizer then brings us to the second mode for analysis

generation. In the second mode, the dynamic analysis engine waits until the profiling

stage snap shots. The profile, along with any output from first mode analysis collection, is

then input to a separate process running the optimizer. The other inputs to this process

include the currently known class hierarchy, which is used to construct a call graph.

However, the second mode is not restricted to just a consumer of first mode analysis

results. Our framework can also be used in conjunction with various adapted techniques

developed in static algorithms to produce either context-sensitive or context-insensitive

results. We discuss further the difference between the analysis in the second mode and

the first mode in Chapter 3. By performing the analysis and consuming the results in the

second mode, we avoid the extra overheads paid to keep the analysis information up-to-

date dynamically during profiling. However, some optimization opportunities can be lost

due to exact context information only present during the first mode. For example, notice

that we are now missing the exact type information of formals passed to a procedure,

1 1



that was present during the first mode. To enable aggressive optimizations, the optimizer

needs to incorporate safeguards and modifications to handle the incompleteness of the

information due to the possibility of new classes being loaded into the system. We define

several models of optimization and describe the necessary safeguards needed for each in

Chapter 5. We also present our framework for validation, r rollback, and recovery based

on these models, defining what is meant by the uali,dati,on reg'istrat'ion on the timeline

in Figure 1.2. In order to enable context-sensitive optimization in the second mode, we

need a system for identifying context and accessing the correct version. We discuss the

restriction and potential design of such a system in Chapter 7 as part of future work.

1.3.4 Consumption of analysis results

The analysis results can be thought of as producing optimization tips. We classify

optimization tips as falling into several main categories. The first category is when the

optimization tip is absolutely valid for every possible execution path. We refer to this case

as always safe. In this case, we can perform optimization without any trouble; however,

the number of tips that fall under this subset is relatively small. The second category is

when the optimization tip is conditionally safe since not every possible execution path

has been exposed yet. In this case, the lifespan of the optimized code can become short.

In the second mode, if the optimizer chooses to perform aggressive optimization using

conditional tips, it also incorporates the appropriate validation checks. We break this

form of optimization into two subcategories: somet'imes safe rn which the optimizer

embeds the validation checks into the optimized code, and speculat'iuely safe in which

1 . )
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the optimizer relies on validation and roilback in the runtime. The primary difference

between the two is the assumptions made about the state and stability of the class

hierarchy contained within the runtime at the time the optimizer runs. We describe this

further in Chapter 5. A combination of the two aggressive optimization techniques can

also be employed where some assumptions may be speculative while others are validated

in the code.

L.4 Primary Contributions

The primary contributions of this work as follows.

An efficient and effective framework for dynamic application analysis and validation

of a subset of runtime optimizations in the presence of dynamic class loading. We

present our framework for analysis and discuss the types of optimizations enabled

by it. We identify and classify the basic optimization models including the neces-

sary validation, rollback, and recovery for each model. Our framework allows for

validation using the CDG to enable techniques that swiftly verify the correctness of

some of the optimization decisions with the potential to facilitate more aggressive

optimizations and expand the lifetime of the optimized code for the given applica-

tion segment.

A graph that represents intraprocedural object instances and that is independent of

the detail of the internal runtime representation called a Compact Dataflow Graph

(CDG). We show that the CDG is a key mechanism for enabling a large range
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of efficient dynamic analysis and optimizations. The CDG efficiently represents

the important object instance information at the intraprocedural level and enables

swift propagation of results interprocedurally.

A design for performing swift interprocedural analysis based on the use of the CDG.

This includes a call graph abstraction we call an Ad,apti,ue Call Graph (ACG). The

ACG differs from a traditionai call graph in two important ways. First, it is formed

using the procedure under consideration for optimization as the entry point and not

necessarily the nain procedure which is the entry point for the entire application.

Second, it incorporates context information and represents points within the call

graph that can change and therefore may require some additional adaptation.

An example use of the CDG for dynamic interprocedural analysis to guide opti-

mization. We extract points-to relations from the CDG and develop an undirected

form of a unification points-to relation called an Object Connecti,on Graph (OCG).

The OCG is designed to facilitate swift interprocedural analysis in a running, dy-

namically loaded application. This representation can be created swiftly from the

information in the CDG and shows the power of the information representation

contained within the CDG. The OCG is designed also to enable swift interproce-

dural propagation of the information, and in turn identify a subset of objects as

local to the allocating method. These object are allocated on the stack at the time

of allocation.
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o Classification of optimization strategies based on the consumption of information

generated by the framework. We also identify and classify the types of validation

and recovery mechanisms needed for the different strategies. We then give examples

of these strategies and how they impact different optimizations.

The structure of the remainder of the thesis follows roughly the main components iden-

tified in Figure 1.1. In Chapter 2, we present the construction and representation for the

CDG, shown in Figure 1.1 as the section labeled i,ntraprocedural analgsi,s. We address

the actual format of the annotations shown in the box labeled annotated Jaua class fi,les

in Appendix A. In Chapter 3 we describe the design of the dynamic analysis framework.

This includes descriptions of the sections labeled dynami,c class hi,erarchy, adapti,ue call

graph, i,nterprocedural analgzer, and analys'is results, in Figure 1.1. Also in Chapter 3,

we identify a set of optimizations that can benefit from the analysis results generated by

our framework and present an overview of how the intermediate structures may be used

to enable them. Next in Chapter 4, we present an actual implementation of one of the

dynamic analysis techniques. We introduce an intermediate representation designed for

efficiency and present results for a set of benchmarks. This is followed by Chapter 5 in

which we present the framework for dynamic optimization and validation. We describe

the analys'is consumer, uali,dati,on requests, and uali,dafor shown in Figure 1.1. We discuss

the basic structures used in the framework, classify three primary optimization strategies,

and present an overview of what types of validation and rollback are required for several

types of optimizations under the different strategies. We follow this in Chapter 6 with

I J



a review of related research both in the realm of static analvsis and in the domain of

dynamic analysis. Finally, in Chapter 7 we discuss the future directions for this research.
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CHAPTER 2

INTRAPROCEDURAL ANATYSIS

Understanding the use and interactions of object instances within a dynamic ob

ject oriented application is essential to not only locating the correct target for a virtual

method call, but also to enabling a large subset of optimizations and validations. How-

ever, since the application is dynamically loaded and linked, the actual interprocedural

information may not be fully available until the application is running. Therefore, the

goal of our intraprocedural analysis is not only to discover the use and interaction be-

tween unique object instances, but to represent it in such a way as to facilitate the swift

connection and propagation of the information interproceduraily. In this chapter, we

describe our intraprocedural analysis and representation that are the building blocks of

our interprocedural analysis.

2.L Overview

Conceptually we can view a procedure as shown in Figure 2.1. It has inputs - the

formals F0, Fr, and F2 - which represent unique object instances iocations entering a

method. It also has outputs, Ps, P1, and return value F-1, that are inputs to other

procedures. It can also create new object instances, such as objl and obj2, and use
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Figure 2.1 A conceptual view of a procedure.

properties associated with the object instances, such as lock. The procedure also contains

a set of temporary locations where any of the object instances can reside while in use.

However, what is missing from this view is how these locations shown in Figure 2.1

interact. The purpose of intraprocedural analysis is to analyze each method in such a

way as to discover the interactions and properties of these locations and then to distill

this information to remove the internal temporary locations from the representation.

This result is then representative of the method's effects on the unique object instances

it comes in contact with. The set of interactions between unique object instances are

then represented in such a way as to facilitate swift interprocedural propagation of the

information.

For example, given the conceptual view of our method shown in Figure 2.1, the

analysis first discovers the interaction shown in Figure 2.2(a). However, the goal of

our analysis is not only to discover this interaction and dataflow but to also reduce
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(a) Interactions between objects and temporaries. (b) Interactions between objects only.

Figure 2.2 A conceptuai view of intraprocedural analysis.

it such that only the object instances are left. Basically, we are not concerned with

the temporary locations used, since these are internal to the method. They can be

viewed as only temporary place-holders for the actual object instances. Instead, what

interests us is how the actual memory locations representing the object instances are

interconnected and used. This interaction and use is what defines not only the target of

virtual method calls, but how these locations can be laid out and optimized. F\rrthermore,

since temporaries are internal to the individual procedures, they are meaningless for

interprocedural propagation of information. The reduced version contains the relations

between the unique object instances used in the method, minus the temporary locations.

This representation is shown in Figure 2.2(b). We call this reduced graph a Compact

Datafiow Graph (CDG).

Context independence is maintained during the intraprocedural analysis by not in-

cluding any calling context or application-specific information during this phase. Its

compact design and context independence allow persistence by utilizing the annotation
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Table 2.1 Definition of entries in a Dataflow graph.

Node symbols Definition

n the zth formal of the method rn
(P-t,l) lhe return value of the method m at line I
I the object created at the line /
(u,,1) a definition of the variable u at line /
(f ,l) a field access of the fleld / at line I
(n,l) the nth formal of the method invoked at line I
(-1,1) the return variabie of the method invoked at line I
(t,l) the throwing (t), of an exception at line I
(L,I) the locking (L), of an object at iine I

fU , / )  t h " " " l " " k t "g (4 ,o fanob jec ta t l

There are two types of edges in the DG of the method rn:
4, F dataflow (strong) edge

association (weak) edge

mechanisms provided by the Java specifications [29]. F\rrthermore, the virtual machine

independence is maintained by representing the CDG in terms of bytecode level infor-

mation.

2.1.t The Compact Dataflow Graph

We now examine the structure used to describe the intraprocedural relationships in

more detail. The locations in Figure 2.1 contain reference values and can be divided into

several fundamental types of nodes. These nodes in conjunction with their associated

edges form the basis of the initiai dataflow graph. Table 2.1 lists the types of nodes and

edges present in a dataflow graph. They are defined in more detail as follows:
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Local Vari,able Nodes: Nodes representing a temporary variable name. These

are represented by nodes of type (r,l), where I is the bytecode line number that

defines the iocal variable location.

Fornr,al Value Nod,es: Nodes representing the formals to a method, these include

any object instance returned by the method. These are represented by nodes of

type Pt and (P-1, /), where P-1 represents a return value and I is the line number

it occurred at.

Parameter Value Node: Nodes representing reference values passed to callee

methods. These are represented by nodes of type (n,l) and (-1, r), where (-1,1)

is a reference value returned from a callee method at line number l.

Allocation Nod,e: Nodes representing new object instances being allocated within

the method. These are represented by nodes of type l, where I is the line number

the allocation occurred at.

Field Nodes: Nodes representing a fieid associated with another object instance

within the graph. These are represented by nodes of type (f ,l), where / is the

constant pool identifier for the field and I is the line number the field was accessed

at.

Property Nod,es: Nodes that represent a property associated with an access of

a reference value. These are represented by nodes of type (t,t), (L,l), and (U,t),

where I is the use of a reference value to throw an exception, L is the locking of
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the monitor associated with a reference value, U is the unlocking on the monitor

associated with a reference value, and I is the line number at which the event

occurred.

o Global Nod,e: Nodes that represent an object instance that is globally visible

to all threads running within the application. In Java, these object instances are

associated with a class file instead of the particular object instances and are declared

using the static key word. These nodes are represented in the graph by nodes

(g,l) where g is the identifier for the global and I is the line number the access

occurs at.

Under these definitions, the locations te, tr, t2, t3, t4, tb, t6, and t7, shown in Figures 2.1

and 2.2(a), become local uari,able nodes. Locations Fo, Fr, F2, and F-1 become formal

aalue nodes. Locations P6 and P1 become parameter ualue nodes. Locations obj 1 and

obj2 become allocat'ion nodes. Location f becomes a field node and the location lock

becomes a property node. Note that property nodes differ from the other forms of nodes

in that they do not represent the flow ofdata or a connection between the nodes. Instead,

they represent a property that is associated with a given access to a node that may affect

the state of the reference value when the graph is used to perform analysis. Since our

goal is to provide an intraprocedural representation that accurately represents the usage

and interconnections between the unique object instances within a method, the property

nodes are necessary to correctly represent the usage ofthe object instances. For example,

knowing where and when an object instance is used to obtain a loclc as well as conveying

22



the fact that the lock is associated with a given object instance is necessary to identify

unnecessary synchronization operations dynamically.

Although the analysis used to generate a CDG is performed on a bytecode repre-

sentation of the method, m, it can be conceptually viewed as performing the following

steps.

1. Execute a reaching definition algorithm.

2. Construct an initial graph from the reaching definition.

3. Complete the initial graph by extending edges around temporary nodes, forming a

transitive closure on the initial graph.

4. Remove temporary nodes and edges from the extended graph.

Two types ofedges are used in the graphs, a dataflow edge and an association edge. The

dataflow edge represents the flow of data between two locations, while the association

edge is a means of attaching field locations and properties to their parent objects. Data

does not flow along an association edge, and the edge does not contain direction. TabIe2.2

gives the edges used to connect the nodes within the graph for a set of source level style

expressions. To better explain an association edge, refer to the third entry in Table 2.2,

I : a.f :: 'tr. This expression at line number I stores the value of tu in /, of object u.

Therefore, we denote the data flowing from tu to / with the dataflow edge, but denote

the relationship between u and / with an association edge. Association edges are also

used for properties associated with a reference value, such as the locking/unlocking of
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Table 2.2 Ruies to add edges in initiai DGs. The l's represent line numbers.

expresslon edges added

l : u : : n e w C } add a dataflow edge I --+ (u,l)

l : u : : u ) for each definition (r.,1') reaching line I
add a dataflow edge (tr, l') ---+ (u,l)

l : u . f  : : w for each definition (o, /') reaching line I
add an association edge (u, l')---(f ,l)

for each definition (r,l') reaching line I
add a dataflow edge (tu, l') --+ (f ,l)

l :  u : :  w . f for each definition (w,,1') reaching line I
add an association edge (tr, l')---(f ,l)

add a dataflow edge (/, l) ---, (u,l)

I  :  u  : :  p ( w 0 , .  . , , w n ) add a dataflow edge (-1, l) ---+ (u,l)
f o r e a c h i , : 0 . . . k
for each definition (wo,l') reaching line l,

add a dataflow edge (tu6, lt) ---+ (i,.,1)

l :  synchronize(w){

: )ill
L

for each definition (*,1') reaching line l,
add an association edge (tu, l')---(L,I)
add an association edge (Tr.', l')---(U,,1")

I :  throw(w) for each definition (w,l') reaching line l,
add an association edge (u, l')---(t,l)
where f represents the state thrown

the reference's monitor or the use of the object to throw an exception. These are shown

by the last two entries in Table 2.2.

The initial graph is then expanded into an extended graph by extending edges around

local variable or intermediate locations, thus forming a transitive closure. The rules for

extending these edges are shown in Table 2.3. They simply ailow the graph to bypass

any local variables used within the initial graph while still accurateiy representing the

relationship and usage of the object instances.
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Table 2.3 Rules to add edges to the initial graph to form the extended graph.

if n1 -+ n' and n' - n2 add a dataflow edge n1 , n2

if n1 --+ n' and n'---n2 add an association edge ny--n2

where n' is a local variable node.

The first rule allows the data flowing from one object instance to another object

instance to be represented directly without the local variable node. The dataflow edge

between rL1 and n' states that they can be considered direct aliases for each other, and

likewise for the edge between n'and n2. Therefore, since TLr:nt andn' :T12, we know

TLL : TL2. The next rule simply states that if an association edge exists on a local variable

node, it is extended with an association edge to any node with a dataflow edge entering

the local variable node. Therefore, a relation between the two objects is maintained

even though no data flows between them. This extension of the association edge enables

relations that are only associations to local variable nodes to be associated with the object

instance nodes while maintaining the read/write direction of the access. Note that if no

edges are leaving rz', then the relatiorrrll ---+ n' * n2 has no effect on the object instances

n1 and n2. Therefore the node n' and its associated edges can be safely removed from

the graph without loss of information.

After applying the rules in Table 2.3, the CDG is formed by removing the extraneous

temporary nodes and their related edges from the graph. The edges added then capture

the relationships between the unique object instances used in the method.
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1 :  c l a s s  C l a z z  {
2 z  C l a z z  f ;
3 :  s t a t i c  C l a z z  g ;
4 z
5 :  < C l a z z > ( C T a z z  o )  {
6 :  < o b j e c t >  ( o )  ;

8 :
q '

1 0 :  v o i d  H o e  ( C l a z z  o )  {
L1 :  C lazz  a  =  new  C lazz  O  ;
12 :  <C lazz> (a )  i
r J  :
1 4 :  C | a z z  b  =  n e w  C l a z z O ;
1 5 :  < C l a z z >  ( b )  ;
L 6 :
I 7 :  o . F o o ( a ,  b ) ;

1 9 t
2 0 1  v o i d  F o o ( C l a z z  o ,  C l a z z  p ,  C l a z z  q )  t
2 L :  C T a z z  r  =  n e w  C l a z z o ;
2 2 :  < C l a z z > ( r l ;
2 5  i

2 4 : .  o . B a r ( p ,  q )  t
2 5 .  )
2 6 t
2 7 2  v o i d  B a r ( C 7 a z z  o ,  C l a z z  x ,  C l a z z  y l l
2 8 :  C l a z z  z  =  n e w  C l a z z 0 ;
2 9  2  < C l a z z >  ( z l  i
3 0 :
3 1 :  z . f  =  x ;
3 2 :  g  =  z i

3 4  Z  I

Figure 2.3 Example for illustrating construction of the CDGs.

2.2 CDG Formation

To better illustrate the formation of a CDG, we use the example in Figure 2.3. The

class in this example contains four methods: an initializer, <Cl.azz>, and three other

methods, Hoe, Foo, and Bar. In Java, the default method type is uirtual, meaning that an

object instance is used to locate the correct definition of the procedure. In the example

class in Figure 2.3, we have shown this object instance explicitly as the first parameter,

Clazz o, in each of the four procedures in the class. Therefore, for the call shown on line
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Figure 2.4 CDG construction steps for method Bar.

17, o .Foo (a, b), the object instance, o, maps to the first parameter in Foo's parameter

list, Clazz o. To illustrate the construction of a CDG, we use the method Bar. We also

show, but do not discuss, CDGs for the procedures Hoe, Foo, and (Clazz>, which are

used in subsequent chapters.

Figure 2.4 constructs the CDG from the method Bar shown in Figure 2.3. The

bottom right side gives a legend for the different node types defined in this chapter.

We walk through the construction of the CDG in a forward progression although the

actual implementation uses a backward flow algorithm. The forward algorithm follows

the normal execution progression and is therefore easier for readers to follow. We present

the actual backwards algorithm performed on the bytecode representation of the method

in Appendix A.
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In Figure 2.4(a), the formals coming into the method Bar add three formal nodes

to the graph, Po, Pr, and P2. These are assigned to temporary locations, o, tr, and g,

adding three local variable nodes to the graph. Following the rule for formals given in

the fifth row of Table 2.2, (l:u :: p(w0,,...,wn)), we attach solid dataflow edges between

the appropriate pairs. The creation of the new object at line 28 of Figure 2.3 adds an

allocation node labeled 28, shown in the upper right side of the graph. Its assignment to

temporary location z adds a local variable node to the graph, labeled (2,28). They are

then connected via a dataflow edge as shown in Figure 2.4. The call to the initializer at

line 29 of Figure 2.3 is shown by the addition of the parameter node labeled (0,29) and

the dataflow edge attaching the local variable node (2,28) to (0,29). The field assignment

at line 31 adds the field access node label"d ("f,31) to the graph, with two edges attached

to it. The dashed edge associates it with the local variable node labeled (2,28), and the

solid edge expresses the dataflow from the local variable node labeled (r,27). Finally,

the assignment into static field location g adds the global node labeled (g,32) and the

dataflow edge attaching the local variable node, (2,28), to it.

To form the extended graph in Figure 2.4(b),, we apply the rules for edges given in

Table 2.3, extending around the local variable nodes. We next remove all local variabie

nodes from the graph along with any edges incident on them, bringing us to the final

CDG given in Figure 2.a(c).

The construction of the CDGs for the remaining three methods shown in Figure 2.3

are simpler. Figures 2.5 - 2.7 show the construction of these graphs.
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Figure 2.5 CDG construction for <Clazz) in Figure 2.3.
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Figure 2.6 CDG construction for Hoe in Figure 2.3.

2.3 File Annotations

The final step is the persistence of the information via the annotation mechanism

in the bytecode file format specifications given in [29]. Although the analysis can be

conducted at load time, it is flow sensitive with a worst case time complexity of O(ns),
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Figure 2.7 CDG construction for Foo in Figure 2.3.

where n is the number of basic blocks in the CFG. Note that when a method is a

single basic block, the complexity is linear. The flow sensitivity allows the dynamic

interprocedural analysis to be either flow-sensitive or flow-insensitive. For example, the

synchronization removal algorithm presented in [16] uses flow sensitive analysis to remove

extraneous synchronization operations even from thread, escap'ing references. Aithough

the work presented in [16] is based on a static, closed-world view of the Java application,

by including the flow sensitivity in the CDG we can enable similar techniques to be

employed dynamically.

However, Java is dynamically linked and loaded implying that, aside from the library

files that are part of the runtime, the class files used by the application may arrive from

outside sources at any time during the applications execution. Files obtained at runtime

(a) initial graph

X Y
( o , 2 0 1 1 p , 2 0 )

\ l
(xz2
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Figure 2.8 The percentage of unique methods in each benchmark that are from the
benchmark versus librarv class files.

may not contain the necessary annotations. Even if the files do contain the annotations,

the cost of verifying their correctness may approach the cost of creating them.

Not all of the intraprocedural analysis needs to be conducted dynamically. A signifi-

cant portion of the unique methods used by an application are from the runtime library.

Figure 2.8 shows, for the unique methods used in each of the examined set of programs,

what percentage came from the program class files and what percentage were from the

Iibrary class files. As can be seen from the graph, the percentage of methods unique to

the application specific portion of the program versus the percentage of methods coming

90Vo lNVo

t-B*.h*."]
I tr Library I
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Table 2.4 Percentage of actual methods used that were single basic block.

Programs
Percentage

Programs
Percentage

Library

JGFCrypt 47.6% 52.0%
JGFLUFact 47.7Y0 523%
JGFSOR 52.6% 52.0%
JGFSeries 55.07 52.1%
JGFSparseMatnult 64.3y 52.2%
JGFMolDyn 53.6% 56.0%
JGFRayTracer 695% 52.1%
Heat 49.r% 52.2%
Fib 48.7Y 54.0%
MSort 44.8% 52.5%
NQueens i l . \Y 47.7%
Barr ierJacobi 33.3% 50.1%
LU 45.0% 54.r%
MatrixMult lply 50.0% 54.0Y0
TotaI 57.}Ta 52.3%

from the library class file portion is relatively small. Furthermore, even for those methods

that are analyzed dynamically, a significant portion of them are single basic block, mean-

ing the analysis for them is linear. Table 2.4 shows, for the programs investigated, what

percentage of the unique methods invoked by the application were single basic block.

This is divided in Table 2.4 into those that were program specific and those that were

part of the standard library files.

One solution to the security issue is to only statically persist the CDG in the library

files. Since the library fiies are under the control of the runtime and considered part of the

runtime, standard security measures such as sealed packages and signatures can be used.

The file size expansion from annotating these files in a Java 1.2 library implementation

was measured at 7L.28%. Any new program files loaded into the system can have the CDG
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constructed at either load time, or first invocation. For commonly used applications, some

of the annotations created by the runtime could be made persistent on the deployment

machine. Techniques similar to those we developed in [30], [31] could be used to recognize

version changes within these persistent files both at a coarse and fine grain level, thus

discarding and updating their CDGs only when necessary.

For the interested reader, Appendix A presents the actual analysis performed on the

bytecode representation of the method. The final result is compared to the conceptual

view presented in this chapter. Also presented is the actual format of the annotations

within the bytecode files. These sections are not necessary for understanding the remain-

der of the thesis, which requires only the conceptual view of the CDG.
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CHAPTER 3

DYNAMIC ANALYSIS: INTERPROCEDURAT
ANALYSIS

The key to optimizing a dynamically linked object oriented style application is the

ability to perform the interprocedural analysis assuming incomplete information. When

the application is dynamically linked, the call graph can only be assumed to contain a

partial set of the calls used within the running lifetime of the application. At any point

during the execution, the system can load a new class file and increase the number of

potential targets for one or more points within the call graph. The dynamic analysis

framework must have a way to represent uncertainty and to perform analyses based on

only partial information.

In addition to this uncertainty are concerns of time and space. With a dynamically

linked and adaptively compiled application, the analysis engine is competing with the

actual application for system resources. Therefore, the need for efficient use of memory

and processor resources limits the use of some static analysis techniques. Furthermore,

since the application can change behavior at different phases of execution, it is important

for the analysis engine that guides the optimizer to have the analysis results in a timely

fashion. Otherwise, an optimization may become obsolete before it can be applied, due

to newly loaded class files or changes in user behavior.
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In this chapter, we address the structures necessary for efficient dynamic interpro-

cedural analysis. They include the class hierarchy representation already part of most

VMs, the dynamically adaptive call graph, and the connecting of intraprocedural analysis

results to arrive at an interprocedural solution. We present our designs and interfaces for

each of these. Additionally, we discuss how our analysis framework can be used to pro-

vide the information necessary to perform a set of optimizations shown to be beneficial

for Java style applications.

3.1 Class Hierarchy Representations

A Class Hi,erarchy (CH) representation is a structure used to represent the inheritance

relationships between class files. Java requires that all ancestors of a new class file be

initialized before the class file is initialized [29]. To facilitate this ordering, most Java

virtual machines contain some form of representation for an application's currently known

class hierarchy. We do not assume any particular structure for this representation, but

instead identify the types of information necessary to implement our framework. The

primary information needed by the analysis engine is the ability of the VM's CH to return

results from two queries, parent of a given class file, and children of the given class file.

Note that although Java has a single inheritance structure for class files, it does not

impose that constraint on interfaces. In fact, the number of interfaces that a class file

can implement is limited only by the size of the 16-bit interf ace-count field within the
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J J



class file [29]. The part of the framework presented in this thesis covers only the single

inheritance structure used for class files but can be easily extended to include interfaces.

3.2 Adaptive Call Graphs

One important tool for performing interprocedural analysis is a graph of the caller-

callee structure within the application commonly called a call graph. This structure

usually encompasses the entire application and contains multiple potential targets for

virtual call sites. For our framework, we adapted the traditional definition of a call

graph to better suit the dynamic application analysis problem. Instead of creating a

single call graph for the entire application, we create a partial call graph for a procedure

under analysis. Furthermore, based on context information known about the procedure

being analyzed, we represent call sites within the call graph as either single target or

unknown. We call our modified cail graph an Adapti,ue Call Graph (ACG) because it

adapts to a given procedure and context. We define an ACG as follows:

Definition L An Adapti,ue Call Graph (ACG) r,s a call graph that ertends from a root

procedure, m, to i,nclude the potenti,al callees of m such that gi.uen the calli,ng contert of

m, the nodes i,n the ACG are of the followi.ng tgpes.

o Knoran, the callee has only one potenti,al target wi,thi,n the gr,uen contert.

o Speculatiue, the callee has two or more potentzal targets wi,thi,n the gi,uen contert.

To explain the ACG, we again use the example introduced in Figure 2.3, and subclass

it with the two new classes shown in Figure 3.1,, CIazzA and CLazzB. Since we have
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35: c lass ClazzA extends Clazz {
3 6 :  v o i d  F o o ( C l a z z  o ,  C l a z z  p ,  C l a z z  q ) {
37:  Cl-azzA r  = new ClazzAO,.
3 8 :  r . < C I a z z > O  i
3 9 ;  C l . a z z P = r ;
4 O :  o .  f . B a r ( P ,  q )  ;
4]-2 )
42 :  \
A A ,

44: class CTazzB extends Clazz I
45 :  vo id  Bar (C lazz  o ,  CLazz  x ,  C lazz  y ) {
4 6 .  g = y ;
4 7 :  )
4 8 :  ]
49l.

Figure 3.1 Example subciassesfor the class in Figure 2.3.

(a) type of Clazz o = ClMz (b) type of Clazz o = ClazzA (c) type of Clazz o = ClazzB

Figure 3.2 ACGs for the three potential types of. CLazz o in Figure 2.3.

these classes in our CH, and the CH only contains loaded and initialized classes, all three

definitions for an object of type CLazz are available. Figure 3.2 shows three ACGs for

the root method Hoe for the three potential types of. C\azz o. In the figure, solid nodes

denoted known and dashed nodes denote speculati,ae nodes. The edges specify the line

number at which each method was called.

Note that even though the class Clazz has several subclasses that have been loaded

and initialized into the runtime, at profile time we know the exact type of CLazz o, the
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object used to call Hoe, as the Java runtime uses the runtime object instance to locate

the correct method table and correct method resolution for Hoe. Therefore, since the

object instance value, Clazz o, shown explicitly in this example as the first parameter

to Hoe, is known, and this is also the object instance used to call Foo, this method is also

definitively known. This fact is reflected by the use of a known node for Foo in all three

ACGs in Figure 3.2 .

Not all nodes in a first mode, profile time ACG can be classified as known. The

resolution of Bar is not known in the ACG in Figure 3.2(b). If the object o has the

runtime type CIazzA, the resolution of Bar depends on the object instance type of its field,

f , as the implementation of Foo in CLazzA uses o. f to locate Bar (line 36 of Figure 3.1).

When performing and consuming analysis results during execution, resolution of the field

type when constructing the ACG can require several accesses to memory to retrieve the

type. Additionally, the exact field must be tracked through the iCDG built in conjunction

with the ACG to be certain that it remains that type until the invocation site. Therefore,

since overhead is a factor during the first mode, this level of resolution is not viewed as

practical. Therefore, the ACG in Figure 3.2(b) shows Bar as a speculati,ue node labeled

? : Bar.

The type of node in the ACG does not necessarily remain the same if the interpro-

cedural analysis is performed when the runtime optimizer runs (second mode). At this

point, the calling context including the exact runtime type of the object is missing, mak-

ing type determination difficult. The only information is on potential types, which can

be determined from the CH. Using the same set of class files with the same CH defined at
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profile time, no assumptions can be made about which of the three class files the object

instance Clazz o will beiong to. Therefore, both the instance of 20: Foo shown in the

first mode, profile time ACGs in Figure 3.2(a) and (c), and the instance of 36:Foo shown

in Figure 3.2(b), could be the target of the call to Foo. Additionally, potentially not yet

Ioaded subclasses could introduce additional targets. This uncertainty makes the node

for Foo in the second mode ACG speculative. However, optimization is still possible and

we address this further in Chapter 5.

There are invocation targets that are known single targets and remain monomorphic

even in the presence of dynamic class loading. These include i,ni,ti,ali,zers and methods

declared as f inal or static. For i,ni,ti,ali,zers, the object is being created of a known type

with a known descriptor. Therefore, there can be only one resolution for the ini,ti,ali,zer

call. For the case of methods declared using the f inal key word, no subclass can override

the method by definition of the use of the f inal modifier [29]. Methods declared with

the static key word are resolved via the ciass object versus a given object instance.

Like fields declared as static, there is only one implementation of them available, and

therefore the target is monomorphic.

3.3 Analysis Information

The interprocedural analysis assumes the availability of the CH, ACG, and CDG.

Based on these three structures, the following types of analyses can be made.
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(b) CDG for the class ClazzA (c) CDG for the class ClazzB

Figure 3.3 Final abstract source-level CDGs for the methods in Figures 2.3 and 3.1.

o Access i,nformati,on: When and how an object instance is accessed. For example,

whether it is read or written as well as where within the method the access occurred.

o Escape i,nformation: Whether or not a given object instance escapes a given scope

of control. At the thread level, this determines whether or not the object instance

becomes visible to other threads. At the method level, this involves whether or not

the object instance lifetime extends beyond its allocating method.

o Property i,nforrnati,orz: Whether or not a particular object instance is used for a

locking operation or to throw an explicit exception.

The formation of the ACG is an iterative process that connects the CDGs for each

known node to form an i,nterprocedural CDG (iCDG). Super nodes are used to connect

formal and actual parameters at call sites, and are later replaced with edges. Figure 3.3
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(b) Object type Clazz o = ClazzA

(a) Object type Clazz o = Clazz
(c) Object type Clazz o = ClazzB

Figure 3.4 Results from interprocedural propagation of the three types of. CLazz in
Figure 2.3.

shows the CDGs for the class files introduced in Figure 3.1. Figure 3.4 shows the iCDGs

constructed in conjunction with their respective ACGs shown in Figure 3.2. The super

nodes are explicitly shown in Figure 3.4 as the iarger, rounded-edged nodes containing

both a caller parameter node and its corresponding callee formal node. The specula-

tive node shown in Figure 3.2(b), is reflected in Figure 3.4(b) by the three parameter

nodes ((0, 40), (1, 40), (2, a0)) left open (not contained in super nodes). Recur-

sive procedures are also connected via super nodes. Depending on the full type context

information passed with recursive calls, the CDG connected within the iCDG can either
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be duplicated for a partially overlapping type context, or directly connected to the ex-

isting one for a fully overlapping type context. We constructed these ACG/iCDG, and

in general all ACG/iCDGs, as follows:

o Create root node in the ACG for the procedure being analyzed.

o For each procedure called by the root node:

- Add a known node for any provably monomorphic procedures

- Add a speculati,ue node for all others.

o Examine the CDG for the root node and promote any speculatiue nodes to known

nodes based on iCDG propagated context information.

o Form super nodes by connecting actual and formal parameters from the CDGs

corresponding to lhe known nodes in the ACG, into the iCDG.

o For each known node in the ACG not yet resolved, treat it as a roof node and

repeat the previous steps.

There are two types of information that need propagation across the interprocedural

boundary: state and edges. A reference value crossing an interprocedural boundary can

exist in one or more of the following states:

o Thread Escaping (T Esc.) A reference to it is accessible from other threads.

o Method Escaping (M Esc.) The object out lives its allocating method.

o Thrown (Thr.) The object instance was thrown as an exception.
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Used in Locking (Lck.) The object's monitor is currently locked by the current

thread.

o Read (R) The object instance or one of its fields was read.

o Written (W) The object instance or one of its fields was written.

A reference vaiue crossing an interprocedural boundary can become linked to other object

instances via field assignments within the callee. This then adds edges to the iCDG.

Edges are used to propagate state information between reference values and therefore

new edges forged by a callee procedure should be propagated back to the caller. The

level of refinement needed in the edge representation is dependent on the type of analysis

as weil as the phase at which the analysis is conducted. The interprocedural phase

propagates these new edges such that all state information is correctly propagated. We

refer to these new edges as Li,nks.

3.4 Optimizations Enabled

The analysis can be used to drive optimization decisions. In this section we discuss

the generation of analysis results and which optimizations would consume the results.

We iilustrate this analysis result generation by demonstrating the construction of the

ACG/iCDG for each of the optimization types listed in Table 3.1. We defer discussion

of the actual optimization models until Chapter 5. In that chapter, we focus on the

optimization models that consume the analysis results presented. The aggressiveness of
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Table 3.1 Analysis needed based on optimization.

optimization
ln

acc.

formation

I esc. I prop.
propagarlon

Link I T Esc. I tt esc. I rnr. I r,ct. I n/W
stack alloc. X X X
sync. removal X X X X X
result caching X X X X X X
Iifetime X X X X
memory layout X X X X X
code motion X X X X X X X X X
race detect. X X X X X X X

the optimization determines the level of validation necessary with the dynamic loading

of new subclasses; therefore, we also leave discussion of the validation type and level for

each optimization until that chaoter.

The following subsections correlate directly to the rows in Table 3.1. The columns in

this table are broken into two main sets, information and propagation. The information

set refers to the types of information that are contained within the CDG that is pertinent

to generating the analysis results for the given optimization. The propagation set refers

to the propagation of the information interprocedurally. For each optimization, it lists

what level of information propagation is needed to produce the correct analysis results.

3.4.1 Stack allocation of objects

Stack allocation of dynamically allocated objects is an optimization that reduces over-

head of not only access delays going through the main heap, but also reduces the number

of short-lived object instances within the heap. This reduction of heap allocated ob-

ject instances reduces the number of garbage collection epics required by an application.
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Therefore, for applications containing a large number of method local allocations, this

optimization has been shown to contribute significantly to performance [15], [18].

In Table 3.1, we identified one type of "information" and two types of properties as

necessary for the interprocedural analysis result generation for this optimization. The

necessity to include escape information stems from the need to determine if a reference

to the object instance being considered for stack allocation will exceed the lifespan of its

allocating method. Therefore, the need for both method escaping (U. Esp. ) and new

edge information (f:.nt<) to perform the interprocedural analysis. In order to accurately

make this determination of escaping state of an object, we need to propagate not only

the escaping state of the references within the iCDG, but also any new links forged.

For example, if an object being considered for stack allocation gets written into the

field of another object instance and that object instance exceeds the lifetime of the

allocating method, then the information retained by the new link is necessary for the

correct determination of the method escaping state of the original object instance.

Referring back to the two mode of analysis generation we described in Chapter 1,

identifying object instances that can be stack allocated can occur in either of these modes.

The fi.rst mode of analysis result generation has the advantage of the exact context being

known, but the disadvantage of the analysis potentially delaying the execution of the

code segment substantially. Additionally, first mode analysis has the added potential to

swiftly identify object instances that are candidates for stack allocation at or prior to

the point of allocation even when the method is being executed for the very first time.

This enables the system to catch and reduce the overhead of short-lived object instances
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that occur infrequently as well as identify allocations whose state depends on calling

context information. However, the cost of performing the analysis during the profiling

stage needs to be low or it could outweigh any performance gained from the consumption

of its results.

The second mode occurs after a profile has been collected and the runtime optimizer

is invoked. Although the application is executing at the same time that the optimizer is

running, the optimizer is considered a seperate and distinct process and the execution is

not stalled waiting for the analysis results in order to continue. Rather, the second mode

has a snapshot of the application as input but no exact context information. Therefore,

analysis performed during the second mode can alleviate some of the cost concerns;

however, it is missing the exact calling context information that was present during the

first mode. With the cost alleviation, the analysis can become more aggressive, and

consider items such as the escaping state for all potential targets known to be present in

the class hierarchy and make a general aggressive optimized version of the code. It can

identify object instances that may exist across several interprocedural boundaries and

even have extended lifetimes as still meetine the criteria for stack allocation. The loss of

calling context information can cause the analysis results to add a ievel of conservation

due to the consideration of multiple potential targets for call site; however, this can be

mitigated by some forms of the optimization models covered in Chapter 5.

In both cases) we define a stack allocatable obiect instance as follows.
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Definition 2 An obiect'instance'is def,ned to be stack allocatable i,f and only i,f the futl

li'feti'me of the object 'instance can be analyzed and no reference to the object ,i,nstance

suru'iues the li,feti,me of i,ts allocati,ng method.

Based on Definition 2, we then define the criteria for which an object instance is consid-

ered to survive its allocating method.

Definition 3 An object i,nstance i,s sai,d to surai,ue the li,feti,me of i,ts allocati,ng method,

or to be method, escaping, 'if one of the followi,ng euents occurs during i,ts li,feti,me.

o Global Escaping: A reference to the object'instance becomes accessi,ble ui,a a global

uariable.

o Reference Escap'ing: A reference to the object i,nstance is stored i,n the address of

another object'instance, either through an ass'ignment or as a fi,eld ualue wi,th,in the

other object 'instance, and the other object i,nstance's li,fet'ime erceeds the allocat'ing

method.

o Return Escapi,ng: A reference to the object i,nstance i,s retumed from i,ts allocati,ng

method.

c (Jnlsnown Path Escapi,ng: A reference to the object i,nstance crosses an i,nterproce-

dural boundary for whi,ch the current thread does not haue access (nati,ue methods,

methods wi,thout CDGs, passed i,n a call to another thread).

The first three - global escapi,ng, reference escap'ing, and return escaping - concern an ob-

ject instance that has a reference to it existing beyond the allocating method. The fourth
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item, unknown path escap'ing, concerns an object instance whose full lifetime cannot be

analyzed because portions of it exist in code not accessible to the analyzer.

The analysis varies based on whether it is conducted during the first or second mode.

To illustrate the information collected in each mode, we again use the example class files

given in Figures 2.3 and 3.1. The abstract, source-level view of the CDGs from these three

class files is shown in Figure 3.3. We assume that our Class Hierarchy (CH) contains

all three classes: CLazz, CLazzA, and CIazzB. Note that the CDG for the (object)

initializer called at line 6 of Figure 2.3 is simply the node (P6), which is included in the

figure.

In the first mode of analysis gathering, we have one of the three potential ACGs with

a root node of Hoe. The choice among the three is based on the calling context of Hoe,

mainly the type of the parameter Pe. In the first mode of analysis, the exact type is

known and the ACG will be one and only one of the three ACGs shown in Figure 3.2.

The corresponding iCDGs for the ACGs shown in Figure 3.2 are shown in Figure 3.4.

We reduce the iCDGs in Figure 3.4 by removing the super nodes from the graphs and re-

piacing them with their corresponding edges and the resulting graphs are in Figure 3.5(a)-

(").

In Figure 3.5(a), the object instances created at line 14 and 2L are method local and

stack allocatable. The object instance created at iine 11, however, is found to be method

escaping due to lhe global write node, (9,,32), now attached to it. This property was

propagated through the iCDG by first forming the new edge between the object instance
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Figure 3.5 Results from removing the super nodes from the iCDGs in Figure 3.4.

created at line 11 and the field access occurring at line 31, then propagating the write

to a global at line 32 through all edges reachable from the global node.

When the runtime type of. CIazz o resolves to C1.azzA in Figure 3.5(b) the solution

changes. The speculative nodes at line 40 in Figure 3.2(b), cause only the object in-

stance at line 14 to be found as method Iocal and stack allocatable. The other object

instances allocated within the iCDG are unknown path escaping due to the presence of

the speculative node in the ACG. This presence is reflected in the iCDG in Figure 3.5(b)

by the parameter nodes remaining in the graph.

The allocation decision changes again when the runtime type of the object instance

is CIazzB, as can be seen in Figure 3.5(c). Here the objects created at lines 11 and 21

are found to be method local and stack ailocatable.

We present an actual implementation of our framework for first mode, profile time

method local analysis in Chapter 4.
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3.4.2 Synchronization removal

In Java, synchronization is based on acquiring and releasing the monitor associated

with a particular object instance or the monitor associated with a class instance. The

monitors are single threaded, meaning that only one thread can own a monitor at any

given moment. A monitor must be acquired upon entry to a procedure if the procedure

is declared with the synchronized keyword. It can also be acquired explicitly in the

code by use of the synchronized block structure. To avoid cluttering the libraries and

confusing programmers with synchronized and unsynchronized versions of the files, the

Java runtime libraries made several library calls thread safe. In making the libraries

thread safe, they include the safest level of synchronization necessary to limit accessi-

bility by multiple threads in any potentially critical region. Additionally, Java packages

produced by Independent Software Vendors (ISV), may also be identified as thread safe

and include the additional synchronization operations.

Although alleviating the programmer of some of the responsibility when writing

threaded applications, the thread safe guarantees can add unnecessary overhead to an

application in the form of unneeded or redundant synchronization. Redundant syn-

chronization occurs from attempts to reacquire an already owned monitor for an object

instance, through several nested layers of invocations. Although Java specifies that if

a given thread already owns a given particular monitor and executes another synchro-

nization block using the same monitor, then it does not reacquire the lock and must not

block in the attempt, the nested attempts still add overhead. Therefore, since only one
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thread is allowed to synchronize on (i.e., own the monitor for) a given object instance at

any given point in the execution, the reacquisition of an already owned monitor can be

considered superfluous. We also refer to these redundant synchronization blocks as nested

synchronization. Additionally, it is possible for a thread to synchronize on a thread local

object instance, meaning an object instance visible to only one thread. Since no other

thread has access to the object instance, no other thread can contend for the monitor

associated with it, and the synchronization is unneeded.

It is important to note that the identification of the locking operations as superfluous

(unneeded or redundant) is based on recent developments within the Java specifications.

In the original Java memory model, the acquisition of a monitor was tied to a memory

barrier forcing a thread to synchronize its view of memory with that of the main memory.

Therefore, the above synchronizations, although superfluous, had side effects that made

their removal unsafe. This model is currently being revised and the current proposal only

requires that the memory changes be visible to any thread that locks the same monitor

[32] - [34]. Under the proposed model, the side effects originally associated with the

nested and thread local synchronization operations are gone and the locking actions are

indeed superfluous. In the old model, if there were thread escaping variables used by the

thread with the identified superfluous locking operations, the synchronization operations

could not be fully eliminated, still requiring a memory barrier and main memory update.

The identification and elimination of superfluous synchronization can occur at either

the two modes. During the first mode, the ability to know dynamically that a monitor

associated with an object is already held by a given thread, can be used to skrp nested

5 1



synchronization operations. This property is tractable with the information contained

within the CDG. The locking information is contained within ihe CDG in the form of

the property nodes attached via association edges to the entries. This information can

also help the analyzer to determine swiftly that an object instance is thread local and

will remain thread local withtn a given synchronization region. Based on this, these

synchronization operation can be eliminated.

For example, Figure 3.6 shows a synchronized version of the class file introduced in

Figure 2.3. The CDGs for the synchronized methods in this class are shown in Figure 3.7.

The difference between these CDGs and the ones for the unsynchronized version of the

class file shown in Figure 3.3(a) is the addition of the locki,ng and unlocki,ng property

nodes. These nodes are connected via association edges. Figure 3.8 shows the iCDGs

both before and after super node removal. The synchronization operations identified

as superfluous are the green highlighted property nodes in Figure 3.8(b), which are the

four center property nodes attached to the formal node Po and the two property nodes

attached to the allocation node 21.

The synchronization pair, {(tr,10), (U,18)}, acquire and release the monitor associ-

ated with the object instance represented by node P6 (Figure 3.8(a)). Therefore, the

monitor pairs {(,L,20),(U,26)} and {(L,27), (y,33)} are nested and superfluous. Refer-

ring back to the source code for the method Hoe in Figure 3.6, these pairs correspond to

the calls to Foo and Hoe, respectively. For the superfluous thread local synchronization

pair, { (2, 23), (U,25)}, the determination is based on the fact that the object instance for
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l - :  class slmcClazz {
2 :  s lmcc lazz  f ;
3 :  s ta t i c  s lmcClazz  g ;
4 :
5 :  <syncClazz> (s lmcClazz  o)  {
6 :  o . < o b j e c t > O ;
7 :  ]
6 :

t : ,

1-0: slmchronized void Hoe(s1mcC1 azz o') {
1-L: slmcClazz a = new slmcClazz O ;
1 2 :  a . < s l m c C L a z z > O ;
1 3 :
L4 t  syncClazz  b  =  new s lmcClazz f l t
L 5 :  b . < s y n c C l a z z > O ;
1 5 :
1 , 7  :  o .  F o o  ( a ,  b )  ;
1 R .  r

L 9 :
20: s\mchronized void Foo(slmcClazz o, slmcClazz p, s)mcClazz q) {
21- :  s lmcClazz  r  =  new s lmcClazzO;
2 2 2  r . < s y n c C l a z z > l l  i
23 z slmchronized (r) {
2 4 :  o .  B a r  ( p ,  q )  ;
25 )
z o  

"  
J

27:  synchron ized vo id  Bar (s lmcClazz  o ,  s lmcClazz  x ,  symcClazz  y l  t
282 s lzncClazz  z  =  nev t  s lmcClazzp;
2 9 2  z . < s y m c C l a z z > O ;
3 0 :
3 1 :  z . f  =  x i
3 2 :  g = z i

3 4 2  l

Figure 3.6 Synchronized version of the class file from Figure 2.3.

which the monitor is acquired and then released, is not thread escaping and is therefore

inaccessible by another thread.

It is important to note that in general, the iCDG alone is not sufficient to deter-

mine nested synchronization information. Although the iCDG contains all the locki,ng

atd unlocki,ng inf.ormation attached to the object instance associated with it, control

flow information is still needed to definitively determine that a synchronization pair is
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Figure 3.7 CDGs for the class file shown in Figure 3.6.

fully enclosed within another pair. Therefore, the iCDG is an enabling tool for this

determination and not the onlv tool necessarv.

3.4.3 Caching of redundant callee results and call elimination

In object oriented languages, sometimes procedures are used simply to obtain the

value of a field of an object instance. For example, the call to size in the library class

,'afufuel;Rter
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Figure 3.8 The interprocedural propagation result for the class in Figure 3.6.

file Vector simply returns the integer value store in the elenentCount field for the class

instance it is called with. However, since Vector is a growable type, in order to cache and

reuse the result stored in this location, the analysis must be able to determine whether

or not the Vector object instance has the potential to change. The information required

to make a decision is not only whether or not the given iCDG shows a change to the

value, but also the escaping state of the object instance under analysis.

To illustrate, we introduce a growable list style class, ListClazz, Figure 3.9, which

expands in size as more elements are added. List1l.azz contains a field that indicates

its current size; however, the value stored in the field is also retrievable via a call to the

method size contained within the class file.
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1 :  c l a s s  L i s t C l a z z {
2 :  C lazzNode C;
3 : int s,.
4 z
5 :  < L i s t C l a z z > ( L i s t C l a z z  o )  {
6 :  o . s  =  0 ;
7 z  ]
d :

9z vo id  add(L is tC lazz  o ,  C lazzNode N)  i
1 0 :  i f ( o . C  = =  n u l l )
1 1 - :  o . C  =  N ;
a 2 z  o . s  =  1 ;
l - 3 :  ) e l s e {
L 4 l  o . C . a d d ( N ) ;
1 5 :  o . s  =  o . s  +  l - t
l - o :  )
L 7 t  )
l - B :  i n t  s i z e ( L i s t C l a z z  o )  {
1 - 9 :  r e t u r n  o . s i
2 0 :  )
2Lz  C lazzNode getE lement (L is tC lazz  o ,  in t  i )  {
2 2 2  i f ( i  <  0  l l  i  > =  o . s ) {
23:. return nul l i
2 4 t .  e l s e  i f  ( i  = =  0 )
2 5 2  r e t u r n  o . C ;
2 6 t  e l s e
2 7 :  r e t u r n  o . C . g e t E l e m e n t ( i ) ;
z 6  a  t
2 9 2  )

3L :  c lass  C lazzNode{
3 2 t  o b j e c t  D ;
33 :  C lazzNode n , .
3 4 :
35 :  <C1azzNode>(ClazzNode o)  {
3 6 :  o . < o b j e c t > O ;
37: .  i
3 8 :
39 :  vo id  add(C lazzNode o ,  C lazzNode x ) {
4 0 :  i f ( o , n  = =  n u 1 l )
4 L :  o . n  =  x i
42 :  e lse
4 3 t  o . n . a d d ( x ) ;
4 4 t  )

46 t  C lazzNode getE lement (C lazzNode o ,  in t  i ) {
4 7 2  i  =  i  -  1 ;
4 8 : .  i f ( i  = =  0 )
4 9 :  r e t u r n  o . n i
5 0 :  e l s e
5l- :  return o. n. getElement ( i  )  t
52 .  )

Figure 3.9 Example list class.
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55 :  c l - ass  L i s t c l azzUse r {
56 :  vo i d  append (L i s tC lazzUse r  o ,
57 :  L i s t c l azz  e ,  L i s tC lazz  N )  {
5 8 :  f o r ( i n t i  =  0 ;  i < A . s i z e o r  i + + ) t
5 9 :  L i s t C l a z z  X  =  A . g e t E l e m e n t ( i - ) ;
60  :  N .  add  (X )  ;
b r :  t
6 2 2  )

64 :  L i s tC lazz  L i s tCop ie r (L i s tC lazzUse r  o ,  L i s t c l azz  A )  {
65 :  L i s tC lazz  B  =  new  L i s tC lazz ;
66 :  <L i s tC lazz>  (B )  , .
5 7 2  f o r ( i n t  i  =  0 ;  i < A . s i z e 0 ;  i + + ) {
58r ClazzNode N = new ClazzNode;
69 z <ClazzNode> (N) ;
70 :  C lazzNode  M  =  A .ge tE lemen t ( i )  t
7 L l .  N . D  =  M . D ;
7 2 :  B . a d d ( N ) ;
7 3 :  i
74 :  r e tu rn  B t
7 5 2  )
/ o :

77 :  L is tC lazz  L is tF la t tener  (L is tC lazzuser  o ,  L is tC lazz  C [  ]  )  {
78 :  L is tC lazz  R =  new L is tC lazz ;
7 9 :  < L i s t C l a z z >  ( R )  ;
c n .
8 1 :  f o r ( i n t  i  =  0 ;  i  <  C . l e n g t h ;  i + + )  {
8 2 t  L i s t C l a z z  T  =  o . L i s t C o p i e r ( C l i l  ) ;
8 3 :  o . a p p e n d ( T , R ) ;
8 4 :  ]
85 :  re tu rn  Rt
8 5 :  )
8 7 :  )

Figure 3.10 User class for the list class shown in Figure 3.9.

The ListCJ-azzcontains elements of type ClazzNode also shown in Figure 3.9. Cl.azz-

Node is a simple linked list node containing a data field, D, and a pointer to the next

node, n. Both class files have definitions for the same two methods, add and getElenent.

When the method add is called with an object of type ListClazz, it proceeds to call

the method add with an object of type ClazzNode. The method add in ClazzNode is

recursive, calling itself with subsequent elements of the list until the last element is found,

adding the new element to the end of the list. The method getElenent is similar in its

calling pattern with the version in ListClazz calling the version in ClazzNode.
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To illustrate the use of the iCDG/ACG for determining whether or not the value

returned by size can be cached and reused, we introduce a user class for the list class.

This user class, shown in Figure 3.10, contains three methods: the method append which

appends the elements in one list onto another list, the method ListCopier which creates

a new list then copies the elements of the original list onto the new list, and the method

ListFlattener, which takes an array of lists and creates one long list out of them by calling

the other two methods. The CDGs from the intraprocedural analysis results for these

three class files, ListCl-azz, ClazzNode, and ListCIazzUser, are shown in Figure 3.11.

The interprocedural analysis builds the ACG/iCDG iteratively following the steps

described in Section 3.3. We walk through this process starting with ListFlattener as

our root procedure for the ACG and adding the CDGs for the known nodes at each step.

Figure 3.12 shows the ACG and corresponding iCDG starting from the root procedure

ListFlattener. Note that in this figure, only the procedure ListFlattener and the

initializer (ListClazz> are known nodes in the ACG and therefore onlv these two

CDGs are incorporated into the iCDG. Note also that we have assumed that Ps, used

to resolve ListFlattener, is the exact type ListClassUser and not a subclass. This is

important since from the iCDG we notice that P6 is used for the resolution of append

and ListCopier. In order to promote these nodes to known within the ACG, the type

of Ps must be definitively known.

Making the assumption that P6 is definitively known, we promote append and List-

Copier to known nodes in the ACG and incorporate their CDGs into the iCDG. This new
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Figure 3.11 CDG formation from the class files in Figures 3.9 and 3.10.

version of the ACG/iCDG is shown in Figure 3.13. Note that we have also incorporated

the CDGs for the known nodes in the ACG corresponding to the initializer calls.

The speculative node add in the ACG of Figure 3.13 is resolved using the object

allocation node (65) and therefore definitively known by definition. To continue pro-
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Figure 3.12 Initial ACG and corresponding iCDG for ListFlattener.

Figure 3.13 ACG and corresponding iCDG after resolving List0opier and append.

moting nodes, we make an additional assumption that the type of parameter & of

ListFlattener is also definitively known. This is important since from the iCDG

in Figure 3.13, we observe that Pr is used to resolve the speculative nodee, size and

getElenent. With the assumption concerning node Pr and the obeervation concerning

node (65), we promote the nodes getEleuent, add, and sige corurmted to Li.stCopier,

\F7
Y .

.. i. .::" ' .
{1sslhI t i l  ,  821
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Figure 3.L4 ACG and corresponding iCDG after resolving getElenent and add.

to known nodes. We then incorporate their CDGs into the iCDG. The new ACG/iCDG

is shown in Figure 3.14.

We next observe from the iCDG in Figure 3.14 that the node used to resolve size and

getElenent in append is the allocation node (65). Furthermore, the node used to resolve

add from append is the allocation node (78). Since these are both allocation nodes, the

types are definitively known and the speculative nodes, size, add, and getElenent can

be upgraded to knovrn in the ACG. We have performed this upgrade and incorporated

their CDGs into the iCDG in Figure 3.1.5.

To continue promoting nodes, we again make a type assumption. We assume the type

of the field C accessed from Ps is the exact type C1azzNode. This allows us to promote the

speculative nodes getElenent and add to known and incorporate their respective CDGs

into the iCDG. This new iCDG is shown in Figure 3.16. This then leaves two speculative
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Figure 3.15 ACG and corresponding iCDG after resolving the next tier getElenent
and add.

nodes in the ACG. For these two nodes, again we must make a type assumption, i.e.,

the field n of parameter node P6 is the exact type ClazzNode. With this assumption, we

can connect these two nodes as recursive nodes in the ACG and corresponding iCDG, as

shown in Figure 3.17. Since there are no more speculative nodes within the ACG and all

of the known nodes have been incorporated into the iCDG, this is also the final graph.

For the caching of the result return from size for the call to append made in the

method ListFlattener at line 83, we need to determine where the object associated

with parameter node P1 is originating from. We have highlighted this node in the final

iCDG in Figure 3.17. Fbom this graph, we determine that the object passed as parameter

Pi is from the allocation node (65). Once the object definition is established, we then

need to determine two items about it, its escaping state and when the fieid s is written.
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Figure 3.16 ACG and corresponding iCDG after resolving the next tier getElenent
and add.

The graph with the super nodes removed and the s field nodes highlighted is shown in

Figure 3.18. As can be seen in this graph, only weak edges are incident upon the node

(65). This means that only fields within the object are capabie of escaping and not the

base object itself, since none of the fields within the object are the same type as the base

object and only weak edges are incident upon it.

To determine if the value of s changes within the body of the loop for the method

append we need two pieces of information. The first, which points in the instruction

stream change the value of s, needs to know when is s is written. We removed the read

only nodes for s from the graph in Figure 3.18 and show the reduced graph in Figure 3.19.

63



Figure 3.17 Final ACG and corresponding iCDG.

Flom Figure 3.19 we discover that the write nodes attached to the node (65) , are (s,6) ,

(s,12), and (s,15). Next we need to determine if any of these writes to s occur in the

area where the cache result is of interest. The write nodes correspond to the writes in

the initializer and the method add, neither of which is called from within the body of the

for loop in append. Flom the escaping information and the change information, we carr

determine it is safe to cache the value returned by size.

There are several important items to note with this example. First, the promotion of

several of the nodes in the ACG was based on type assumptions. Although in general type

assumptions can prove unsafe, there are some cases where we can make these assumptions

and validate that they do indeed remain valid as new class files get loaded. For example,
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Figure 3.L8 Final iCDG with super nodes removed.

if our class hierarchy only contains the class files used in this example and not any

subclasses for them, then we could promote based on only one copy. However, if a new

subclass should get introduced into the system, then the class hierarchy for this example

could change and this assumption may no longer be valid. In Chapter 5, we address type

assumption optimizations and the types of validation rollback and recovery necessary

when such assumption invalidations occur. Additionally, the optimization we discussed

as being enabled by the analysis requires that an optimized version of the entry method

be created which inlines the callee methods. Therefore, the optimization of caching the
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Figure 3.L9 Final iCDG with field s reads removed.

value returned by size is only valid in the inlined version. We discuss these types of

optimizations and several optimization models further in Chapter 5.

3.4.4 Lifetime-based optimizations

Lifetime-based optimizations are optimizations that recognize that even though an

object instance is no longer thread local, there is a portion of its lifetime prior to it

escaping in which thread local optimizations are still valid. This form of optimization

uses the iCDG information to augment flow-sensitive information provided by the Control

FIow Graph (CFG) or other optimization structures.
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The primary difference between the analysis results needed for this type of optimiza-

tion versus the analysis results used for the method local and thread local determination,

is its use of fl.ow sensitive information requiring more than just the iCDG. For example,

rn thread local or method local determination, the analyzer may iust be interested in a

"safe" solution. The solution is therefore based on whether or not the obiect instance

in question ever escapes during its lifetime. The answer therefore can use bidirectional

propagation and propagate an escaping property along the reverse direction of a data

flow edge. The solution is then "safe," but not flow sensitive. For lifetime-based opti

mizations, the analyzer needs to consider not only the escaping state but when within the

code stream the property changed. Therefore, information such as a global write, which

changes the state of an object instance, should only be propagated along forward data

flow links to preserve the temporal information implicitly contained within the iCDG.

As an example, we introduce another version of the class ListCLazztJser in Figure 3.20.

This new class, ListClazzUser2, uses the other two class files shown in Figure 3.9,

ListClazz, and C1azzNode. It varies from the other version in that it contains a global

field G on line 65. The ACG for the procedure Foolist is shown in Figure 3.21. The only

difference between this ACG and the one for append shown in Figure 3.11 besides the

line numbers and procedure name is the inclusion of call to the initializer, (ListClazz).

The CDG for Foolist is shown in Figure 3.22, the super node connected iCDG is shown

in Figure 3.23, and lhe super node removed version of the iCDG is shown in Figure 3.24.

Again we would like to determine if it is safe to cache the value returned by the call

to size within append. To determine the escaping state of the allocation node (68)
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64: c lass Listc lazzuser2{
65 :  s t a t i c  L i s tC lazz  G ;
6 5 :
672  vo id  Foo l J i s t ( L i s t c l azzuse r2  o ,  L i s tC lazz
6 8 :  L i s t c l a z z  N  =  n e w  L i s t C l a z z 0 ;
5 9 :  N . < L i s t c l a z z > O ;
7 0 2  f o r ( i n t  i  =  0 ;  i  < A . s i z e Q ;  i + + ) {
7 1 :  L i s t C l a z z T = A . g e t B 1 e m e n t ( i ) ;
7 2 :  N . a d d ( T )  ,
7 3 |  ]
7 4 :  o . c  =  N ;

76 : .  )

Figure 3.2O Another version of
List1Lazz and C]-azzNode shown in

CFG for Foolist

the class ListClazzUser that uses the classes
Figure 3.9.

6 7 :  F o o l i s t ( . . .
6 8 :  L i s t C l a z z  N  =  n e r r r . . .
5 9 :  N . < L i s t c l a z z > ( l ;
7 0 : f o r ( i n t i = 0 ;

7 0 :  i  <  A . s i z e 0 ;

7 0 :  i + +  )  {
7 L :  L i s t c l a z z  T  =  A . g e t E l e m e n t ( i ) t
7 2 :  N . a d d ( T )  ;

7 4 :  o . G  =  N ;

67 :  Foo l i s t

6  r<L i ,s tC lazz>

46 :  ge tE l J v : a o o

Figure 3.21 The ACG for the procedure Foolist shown in Figure 3.20.
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Figure 3.22 The CDG for the procedure Foolist shown in Figure 3.20.

and whether it changes the value of its field s within the region under analysis, we need

the iCDG and control flow. The region under analysis is first determined from the CFG

for the method Foolist, shown on the right of Figure 3.20. Flom the CFG, it can be

determined that the region in which the value returned by size would need to remain

unchanged is lines 70-73. This determination is made similarly to the one in the previous

section, with the only writes to s occurring in the initializer and the call to add. Neither

of these writes are within the bounds of the current analysis. The determination of the

escaping state of the allocation node (68) is again based on the region under analysis.

Although this node does indeed escape as observed by the strong edge connecting it to the

global node (G,74), this event does not occurring within the analysis region. However,

exclusion from the region is not sufficient. We also must determine if the event occurs

either prior to or after the analysis region. Flom the CFG, we can determine that the

strong connection to node (G,74) occurs after the region in question, and therefore it is

safe to still cache the value returned bv size.
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Figure 3.23 The resulting iCDG from the interprocedural propagation in Foolist.

In general, the iCDG/ACG is a helping tool for this form of analysis. Note that

the traditional CFG and flow information was still needed. Furthermore, we have made

assumptions similar to those made in the prior analysis concerning known types which

also require additional validation of these assumption when new class files are loaded.

3.4.5 Memory layout for better data locality

The relationship between object instances can be used to provide hints to the memory

manager for potentially better memory layout. If two object instances are shown to be

connected in some fashion, and one object instance contains a reference to the other, it

may become desirable to place the two object instances next to each other in memory.
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Figure 3.24 The resulting iCDG after super node removal.

This information is contained within the CDG as the relation between obiect instances

via the association edges.

This analysis can be conducted during both of the two modes. For example, referring

back to the class CLazz shown in Figure 2.3, the new object created at line 28 has a

field connection to the object created at line 11. This information could be used by the

memory manager to allocate these two object instances next to each other. Normally this

level of information would not be avaiiable to the memory manager. However, looking

at the interprocedural graph for Hoe shown in Figure 3.5(a), the connection between the

two allocations is clear. Even though these object instances were found to be method

n 1
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escaping, the layout information can be used to guide the heap layout and improve

memory performance.

3.4.6 Code motion after inlining

Often, after inlining callees within a method being optimized, it is desirable to move

instructions above other instructions, thus reordering the original execution order. This

movement can facilitate several optimizations such as eliminating duplication of work on

multiple iterations through a loop, or allowing other instructions to execute sooner, thus

reducing or eliminating potential stalls. To determine if it is safe to move and instruction,

the optimizer must have results from several forms of analysis, including flow information

and points-to information. The information contained in the CDG is helpful to the

optimizer since a points-to relation can be extracted from it and escaping information

is also present. However, using the CDG to determine the connections between objects

and their escaping states is not a separate form of analysis but rather an application of

analysis results during the optimization of the code. Therefore, this particular application

of CDG information is covered in Chapter 5.

3.4.7 lJnsafe sharing, potential race determination

The information in the CDG can be viewed as the first step in implementing a race

detection system. The CDG contains all the necessary information for the propagation

of locking properties, escaping states, and flow information. The state information con-

tained within the CDG is a first step in the solution for full race detection. The detection

72



of races also needs temporal information such as when the locks are held and by which

thread. This form of detection in a dynamic application may need to be conducted as

the application is running since newly loaded ciasses can change the results of previous

detections, thus making a safe access become a data race. The detection process itself

may interfere with the application in such a way as to change an assumed timing and

cause incorrect results. Even though the assumed timing is actually a masked data race,

for server-side applications where remaining up is the most critical component, the ex-

posure and potential premature termination of such a race could be problematic. The

problem of race detection and its correction is complex, and therefore the iCDG/ACG is

only part of the solution, the rest remaining part of future work.
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CHAPTER 4

SPECIFIC APPLICATION: OBJECT
CONNECTION GRAPHS

In Chapter 2 we presented the Compact Dataflow Graph (CDG), which summarizes

the use of reference values within a procedure. In Chapter 3 we presented the design of the

dynamic interprocedural analysis engine, which employs an Adaptive Call Graph (ACG)

in combination with the individual CDGs to create an interprocedural CDG (iCDG). We

showed how the iCDG can be used to provide a wide range of analysis results. In this

chapter, we present an implementation of our framework to perform a subset of analysis

outside the range of other dynamic analysis systems.

4.I Problem Description

Several researchers have shown that if the worldview of a Java application is assumed

closed and no further class files will be loaded, fuli program analysis can identify as

much as g4To of the object instances used in the application as being stack allocatable

[15], [25]. Furthermore, by stack allocating these object instances, these researchers have

shown that speedups as high as 44Yo can be achieved [15]. The analysis, referred to

as static analysis since it assumes a closed-world, static view of the application, must
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determine the safe set of method local object instances based on traditional analysis

techniques. The determination of a safe set of method local object instances requires

the identification of all object instances that have the potential to exceed the lifetime

of their allocating method or are method escaping. Although other researchers have

demonstrated through static analysis that a large portion of the object instances used

within an application are indeed method local, Java is dynamically loaded and linked.

Therefore, static full application analysis is not available.

Some researchers have suggested that the static analysis techniques could be employed

in a dynamic application during the runtime optimization phase. Even if a partial, safe

solution is determined during the optimizalion phase (second mode), this solution can

be invalidated when new class files are loaded. On top of the invalidation problem, de-

laying method local determination and this form of optimization until the optimizing

phase could miss some potentially beneficial stack allocation opportunities. The loading

and initializing of new class files can involve the use of temporary object instances that

can be stack allocated. Initialization code tends to make liberal use of short-lived ob-

ject instances. The same liberal use of short-lived object instances occurs in the early

portion of an application's execution, prior to the first run of the optimizer. During

this segment, a large portion of the application code is initialization code. Therefore,

identification of stack allocatable object instances at the point of first allocation can help

the runtime capture these optimization opportunities. Performance improvements from

stack aliocating these object instances include reducing if not eliminating the memory

i r
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manager overhead. Additionally, the stack allocation can delay garbage coilection events

by reserving the memory for potentially longer-lived method escaping object instances.

There are several obstacles with the identification of stack allocatable object instances

using first mode analysis. First, all new object instances in Java call an initializer,

meaning the analysis is interprocedural. Fhrthermore, Java does not restrict the actions

performed by an initializer, making the determination of escaping state dependent on

interprocedurai analysis. Second, we cannot assume control flow information is avail-

able or even within a reasonable cost bound to compute. The computation of control

flow information can become costly when factoring in the multiple paths of control and

potential targets in polymorphic languages. Thkd, the determination of the escaping

state of a particular reference value depends on points-to information concerning the ref-

erences used within the region under analysis. Points-to information normally requires

control flow information for its derivation. Fourth, in order to reap any benefit from

the determination of stack allocatable object instances, the benefit of the optimization

must outweigh the cost of the analysis. Since the maximum determined static analysis

benefit was shown to be a speedup of 45% with an average of 24%, the analysis cost

shouid not exceed the average benefit. All of these factors have made the determination

of stack allocatable object instances using first mode analysis difficult and unattractive

to other analysis systems. However, our framework makes this form of analysis efficient

and attractive.
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4.2 Our Solution

Our framework provides a very efficient solution to this analysis challenge. The CDG

contains all the information concerning the use of reference values within a given method.

This enables swift extraction of points-to information for each method. Second, our

design of the ACG/iCDG system enables swift, efficient propagation of interprocedural

analysis results. We can adapt this design to accommodate interprocedural propagation

of points-to information as well. Although, control flow information is missing at the

time of analysis, the CDG was constructed using flow-sensitive information. Therefore,

we are able to still capture a large percentage of the potentially stack allocatable object

instances using just the extracted points-to information and the efficient interprocedural

propagation. Finally, using our design, we are able to keep the costs below 22To for the

benchmarks we used, which is within the bounds set by the potential benefits of a 45%

performance improvement.

4.2.L Definition

In Chapter 3, we defined the properties used to determine if an object instance is

method escaping as follows.

Definition 4 An object i,nstance i,s sai,d to surtsi.ae the li,feti,me of i,ts allocati,ng method,

or to be method escapi,ng, i,f one of the followi,ng euents occurs duri,ng its li,fet'ime:

o Global Escap'ing: A reference to the object'instance becomes accessible for any por-

ti,on of i,ts li,feti,me, u'ia a global field.
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Figure 4.1 Reduced CDG example for the method Bar.

Reference Escapi,ng: A reference to the object 'instance is stored i,n the f,eld of

another object'instance whose li,feti,me erceeds the allocati,ng method.

Return Escapi,ng: A reference to the object'instance i,s retumed from i,ts allocating

method.

Unknown Path Escapi,ng: A reference to the object'instance crosses an i,nterproce-

d,ural boundary for which the current thread does not haae access (nati,ue method,s,

methods wi,thout i,ntraprocedural analysis results, passed in a call to another thread).

4.3 Extracting Points-To Information

Extracting a points-to relation from the CDG is straightforward. First, property

nodes can be removed from the CDG since these do not represent dataflow. Second. field

nodes can be eliminated by making the relationship between the two reference values a

weak link, meaning they are not direct aliases for each other but one is reachable via

information contained within the other. To illustrate, Figure 4.1 contains the resulting

reduced CDG for the method Bar. This reduced CDG is formed by first adding a weak

Y;7
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edge between nodes Pr and 28 and then removing the field node and its associated edges.

Figure 4.1(b) shows the resulting CDG from this process. The final graph in Figure 4.1

is equivalent to a reverse points-to relation with the addition of the weak edges.

The weak edges are important when we later use the edge type to propagate class

types for swift method resolution when forming the ACG. Typ" information does not

propagate across weak edges. Therefore, if a weak edge is used to connect a parameter

node that is used for the resolution of a callee, the callee cannot be promoted to a known

node status in the ACG, and subsequently its intraprocedural information is missing.

The inclusion of speculative nodes causes the object instances to be marked as method

escaping due to the unknown path, and this affects the analysis results.

The next simplification to our points-to relations is intended to reduce the cost of

the analysis. We choose in our representation to eliminate the direction from the edges.

This simplification gives a conservative analysis result in the sense that it overestimated

the number of escaping object instances. However, by eliminating direction, we are able

to propagate information more efficiently while identifying between 47% and 61% of the

the oracle method local object instances.

Figure 4.2 illustrates the conservative aspect of direction elimination. In this figure,

we consider only strong edges, but analogous results occur with weak edges. The partial

reduced CDG in Figure a.z(a) shows the CDG from an object allocation site. This object

allocation is passed interprocedurally as two different callee parameters. The potential

callee graphs are shown in Figures 4.2(b) and (c). For the first interprocedural graph,

Figure 4.2(d), if parameter P4 escapes, then we also mark F1 as escaping since these
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Figure 4.2 OCG propagation through the ACG for the type resolution CIazzB.

two are equivalent. This escaping state then propagates interprocedurally to P1 and

obj. However, since we do not have control flow information, we do not know if the

assignment to P3 occurred before or after Fl escaped. Therefore, P3 is also marked as

escaping. Likewise for the assignment to P2. This case does not hold in Figure 4.2(e). In

this case, if P4 escapes, then Fl also escapes. However, since P4 overwrote the reference

originally in F1, this escaping information does not propagate any further. Likewise, since

P3 overwrites F1, the lack of control flow information does not affect the propagation as

in the previous example, and this object instance also remains unaffected. By eiiminating

the direction from the edges, we arrived at the correct solution for Figure 4.2(d) when

R
R A

A X
e) Case I and Case 3

R
R A

A X
d) Case 1 and Case 2
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OCG 1:  (n* ,e*)

n ' :  ( j , t ) l ( G w ) l ( c " ) l ( l ) l ( P r ) l ( P - , , D
e ;: an undi,rected ed,ge connecti,ng node ry wi,th nod,e ni

ei,ther strong: (ru) - (ni), or wealc: (ru)- - -(ni)

(j,l) :: the jth parameter to the method called at I'ine I

(-1, /) :: the return ualue from the parameter called at li,ne I

(Gr) :: a write access of a global uariable

(Gr) :: a read access of a global uari,able

(l) :: an allocati,on occuri,ng at li,ne I

(4) :: the i,th formal parameter to the method m.

(P-t,l) :: the retum ualue from the method m at li,ne l.

Figure 4.3 Definition of the Object Connection Graph.

propagating escaping information, but an overly conservative one for Figure 4.2(e), since

we must mark all of the entries escaping. Although this solution is not as precise, it is

still safe.

We call the new points-to relation that we extract from the CDG an Object Connec-

ti,on Graph (OCG) to distinguish it from a traditional points-to relation. Likewise, the

corresponding interprocedural version is called an iOCG. The definition of an OCG is

given in Figure 4.3. Note that line numbers have been removed from all but the allocation

and parameter nodes. Although the line numbers aid in precision when used in combina-

tion with control flow information, the absence of this information makes their inclusion

superfluous. The line number information retained in the allocation and parameter nodes

aids in the identification of the exact allocation operation within the method as well as

the appropriate call site for the ACG construction.
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Figure 4.4 OCGs for Figure 2.3.

Figure 4.4 shows the OCGs for the CDGs in Figures 2.5 - 2.7. Note that for three

of these OCGs - <-CLazz>, Hoe, and Foo - their OCGs are almost identical to their

corresponding CDGs with the only noticeable difference being the transformation of the

directed edges into undirected edges. For the method Bar, the OCG is equivalent to an

undirected form of the reduced CDG shown in Figure 4.1(b).

4.4 Interprocedural Propagation

The next step in the determination of stack allocatable object instances is the prop

agation of information interprocedurally. There are four basic determinations we can

make based on the interprocedural propagation of the information contained within the

iOCG:

o method, escap'ing based on intraprocedural information,

A
t t  2 8 , 1
\1

A@
Bar
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. n'Lethod esca,p,ing based on interprocedural information,

o method local based on interprocedural information,

o cannot be decide due to the presence of speculative nodes in the ACG.

All allocations call an initializer: thus, no object instance can be classified as method

local based solely on intraprocedural information. Also note that weak edges or multiple

strong edges in the OCG can cause speculative nodes to remain in the ACG. Object

instances under analysis that pass into a speculative ACG node cannot be definitively

determined based on the information present. Therefore, by Definition 4, we define these

object instances conservatively as being unknown path escaping, making them method

escaping.

The steps for forming the iOCG are almost identical to the steps for forming the

iCDG. They are as follows:

1. Create root node in the ACG for the procedure being analyzed.

2. For each procedure called by the root node:

o Add a known node for any provably monomorphic procedures.

o Add a speculati,ue node for all others.

3. Create the iOCG with the OCG for the root node and promote any speculati,ae

nodes to known nodes based on iOCG information and current context.

4. Form super nod,es by connecting actual and formal parameters from the OCGs

corresponding to lhe known nodes in the ACG, into the iOCG.
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Figure 4.5 OCG for the subclass Cl.azzA.

5. For each known node in the ACG not yet resolved, treat it as a roof node and

repeat the previous steps.

To illustrate the formation of the iOCG and the four resulting types of allocation

decisions, we again use the example application introduced in Figure 2.3 with the added

subclass, C1.azzL, introduced in Figure 3.1. The OCG for the method Foo from the class

frle, CLazzA, from Figure 3.1 is shown in Figure 4.5. It was derived from its corresponding

CDG shown in Figure 3.3 using the same method outlined in Section 4.3. Figure 4.6 walks

through the formation of the ACG/iOCG for the case where type used to resolve Hoe is

CIazz. Later, we present the results for type Cl.azzA The ACG shown in Figure 4.6(a)

begins with the node Hoe. Since Hoe calls an initializer and initializers are by definition

also known, the ACG also contains a known node for <CLazz>. However, the node

Foo is initially speculative. The iOCG is created by connecting the OCGs for Hoe and

lC1.azz), the known nodes in the ACG. Examination of the iOCG reveals that a strong

edge connects nodes P6 and (0,17), meaning that the known type used to resolve Hoe

is also used to resolve Foo, and likewise for the initiaiizer (Object) called at line 6 in

lC\azz). In Figure 4.6(b), Foo has been promoted to known status and (0bject)
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Figure 4.6 Example of ACG/iOCG constrution.
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has been added as a known node. The resolution of Foo has added another node to

the ACG, Bar, which is speculative until the iOCG is examined. The OCGs for Foo

and <Clazz> are then added to the iOCG shown in Figure 4.6(b). Note that there is

only one copy of the node '-Cl.azz) in the ACG since the ACG contains the unique

methods called. However, the iOCG is context sensitive and represents each unique call

to a method; therefore, a new copy of the OCG for <Clazz) is added to the graph.

By examining the new iOCG, it is discovered that a strong edge connects P6 from node

(0,24), meaning that the same known object instance type used to resolve Foo is now used

to resolve Bar. This allows Bar to be promoted to known status and its corresponding

OCG added to the iOCG. This is shown in Figure 4.6(c). Since all known nodes in the

ACG have been resolved (step 4 in the iOCG/ACG formation algorithm) the formation

of the iocG/ACG terminates.

Next, the super nodes are replaced with direct edges, and the escaping state produced

by the write into the global node is propagated up the graph. The final result shows that

the objects allocated at lines 14 (from Hoe) and 21 (from Foo) are indeed method local and

stack allocatable, while the objects allocated at lines 11 (from Hoe) and 28 (from Bar) are

not. Note that the escaping information also propagates along the weak edges. Referring

back to the four potential determinations, the escaping states of the object instances

created at lines 14, 27, and 11, were determined by using interprocedural information.

However, the escaping state of the object instance allocated at line 28 was known prior

to the incorporation of any interprocedural information due to the edge connecting it

with the global node, G.,.
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Figure 4.7 OCG propagation through the ACG for the type resolution CIazzA.

The next case to consider is when a weak edge is used to connect the parameter node,

Pe, for a virtual callee method. This case occurs when the runtime type of the object

instance used to resolve Hoe is the type Cl.azzA. We show the ACG along with the iOCG

before and after super node removal in Figure 4.7. The construction process is similar

to that of the previous case. The key difference is that in Figure 4.7(b), a weak edge

connects the formal node Pe with the node (0,40). Therefore, the node for Bar in the

ACG of Figure a.7@) remains speculative. The inclusion of a speculative node in the

final ACG means that when the escaping state of the object instances is determined from

the iOCG in Figure 4,7(c), only the escaping state of the object instance allocated at

line 11 is definitively known. The other three object instances used in Hoe - Pe and the

aliocations at lines 14 and 37 - are not decidable based on the iOCG information and
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are therefore method escaping because they are passed into an unknown path the call to

Bar.

Weak edges are not the only case where during ACG/iOCG construction the type

of an object instance may no longer be considered definitively known. It is possible for

more that one execution path to reach a given cail. Therefore, it is possible for more

than one type to be associated with a node. If that node is the parameter node, Pe for

a virtual call, then the call node cannot be promoted from speculative to known in the

ACG. There are three types of nodes in an iOCG - formal, parameter, and allocation

nodes - and two types of edges - strong and weak. Based on these node and edge types,

we define the cases where a node type is no longer definitively known within the iOCG

as follows.

Deftnition 5 A nod,e type i,s no longer consi,dered defi,ni,ti,uely known wi,thi,n an iOCG i,f

one of the following condi,ti,ons i,s true:

o The node i,s di,rectly connected to another node'in the i,OCG ui,a a weak edge.

e The node i,s di,rectly connected, to another node that 'is already of unknown type.

o The node i,s di,rectly connected ui,a two or rnore strong edges to nodes of tgpe formal

and/or allocati,on.
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4.5 Runtime Structures

In order to improve runtime efficiency, a compact internal representation is used for

the OCG and iOCG. Rather than representing them as graphs with pointers, a table is

used, with each node represented as an entry in the table.

There are several steps when converting an OCG into the table representation. First,

the global nodes only convey a change in escaping state of all nodes connected to them.

Therefore, they can be removed from the graph and the attached nodes marked as method

escaping. The removal of global nodes then leaves only three types of nodes remaining in

the graph: parameter, formal, and allocation nodes. Second, in order to facilitate swift

propagation, a transitive closure of the edges is formed. However, the graphs contain

two types of edges, strong and weak. The rule for forming the transitive closure when it

comes to the two types of edges is simply this: If a strong edge exists along any branch of

a path traversed when forming the transitive closer, then the edge type of the edge added

is a strong edge. This way, weak edges originally incident on parameter nodes remain

incident on those nodes, and nodes that did not have at least one weak edge incident

upon them prior to forming the closure do not acquire a weak edge. Since the primary

purpose of the weak edges is to convey during interprocedural analysis that the exact

type of an object instance is not definitively known, then the original edge still retains

this information and allows for correct propagation.

Figure 4.8 shows the mapping for the nodes in the OCG into the table entries and bit

vector format. Paths between the nodes are represented using bit vectors (li,nks). Each
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bit location represents an entry in the table, with the leftmost bit corresponding to the

top entry. A bit is set for each node reachable from the current entry (through one or

more edges). There are three additional bits for each entry in the bit vector field. The

first of these, W (weak), is set only for parameter nodes and indicates that the node has

a weak edge incident upon it. The second bit, C (changed), is set during interprocedural

propagation to indicate that one or more of the bits within the bit vector has been set

and requires propagation. The final bit, E (escaped), holds the escaping state of the

entry.

For example, for the transitive closure formed from the OCG for the method Bar,

shown in Figure 4.8(a), there are three formals coming into this procedure: Pe, P1, and

P2. These are the first three entries in the table. The fourth entry is the allocation node

labeled 28. A parameter node labeled (0,29) is the fifth entry in the table. The edges

between the nodes are defined by setting the corresponding bits in the links bit vector.

For example, the edge between nodes P1 and 28 is shown by the setting of the second

and fourth bits (counting from the left) for both entries. The edge between nodes 20 and

(0,29) is shown as the setting of the fourth and fifth bits for those two entries. The edges

added by the transitive closure are represented by also setting the fifth bit for entry 2 and

the second bit for entries 4 and 5. The remaining tables for the class Cl-azz are created

in a similar fashion and are also shown in Fisure 4.8.

Two properties of the OCG table representation enable swift interprocedural prok

agation of the escaping information. First, all interprocedural connections between the

graphs for each method occur at the parameter entries, and second, since all paths from
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each node are fully represented, the formal parameter entries for the callee method con-

tain all the information that needs to be propagated to the caller. This information

consists of either state bits, (W,C,E), or new connections between the actual parameters

of the caller. The interprocedural propagation is performed in two passes: a forward pass

to resolve speculative nodes in the ACG, and a backward pass to propagate state changes

from the forward pass. Weak edges are propagated during the forward pass, caller-callee,

allowing an edge to be downgraded from strong to weak. The rule for edge downgrading

follows.

Definition 6 If a node of type parameter i,n the i,OCG has a weak edge directly i,nc'ident

upon i,t, then when the OCG for the callee i,s added to the |OCG, all edges di,rectly i,nci,dent

upon ang and all fonnal nodes wi,thi,n the super node are downgraded to weak. If a node

of type F-1 (formal node of tgpe return) has a weak edge di,rectlg i,ncident upon r,t, then

all edges connected to any and all parameter nodes w'ithi,n the super node are downgraded

to weak.

Since weak edges used to identify P6 nodes where the type is unknown are critical for

virtual ACG nodes and all ACG node resolution occurs on the forward pass, downgrad-

ing of edges is only implemented during the forward pass. The downgrading of edges

only during the forward pass allows for the propagation of known type information and

enables safe, accurate method resolution based on known types. Formals representing

returns from the procedure are marked as escaping only when the OCG table is the root
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Figure 4.9 Example of additional conservation from combined transitive closure and
edge downgrading.

table for an ACG, thus capturing return escaping events but not introducing additional

conservation by also marking callee return events.

The propagation of weak edge information and downgrading of edges adds an addi-

tional level of conservativeness is primarily an artifact of the transitive closure. Consider

the initial two OCGs shown in Figure a.9(a). The transitive closure shown in Fig-

ure 4.9(b) adds edges (F10, P16) and (F20, Pzd. When the OCGs are connected to

form the iOCG in Figure 4.9(c), the edge from F'26 to P2s is downgraded from a strong
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edge to a weak edge because P1p has a weak edge incident upon it. However, from

examination of the original OCG, it can be seen that P2s is actually from Obj2. Since

allocations are always known types, the parameter P2s should have been a known type

and the resolution of the virtual method called with it, likewise known. However, because

of the downgrading of the new edge added from the transitive closure, the parameter P2s

is no longer considered definitively known.

The propagation of information across the parameter connections is accomplished

with a parameter map, which maps the actual parameters of the callee to the formal

parameters of the calier. Its purpose is to perform the necessary masking and shifting

of the links vector of the callee to the appropriate location of the corresponding actual

parameter node in the caller. These vectors can then be propagated from the callee to

the caller using a simple OR instruction. Any changes are then propagated within the

caller's OCG, also using simple OR instructions.

Figure 4.10 shows the propagation across the call to Foo and its subsequent call to

Bar. After all interprocedural interfaces occurring in Bar have been resolved: the ,E

bit on the second formal parameter of Bar is propagated to the table for Foo. This

change sets the E and C bits for the second to last entry in the table for Foo. The C

bit indicates state changes that require propagation. This change propagates to all of

the nodes connected to the changed node in Foo through the use of the link bit vector,

causing the E and C bits to be set on the second entry (the second formal parameter

into Foo). This information then propagates through the parameter mapping for the
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Figure 4.10 State propagation through the Parameter Maps (circles indicate changes
during iOCG formation).

interprocedural interface between Hoe and Foo, eventually setting the E and C bits on

the second and third entries in Hoe's table.

After lhe E bit has been fully propagated, a quick look at the two allocations in

Hoe's table show that the object instance at line 11 must be heap allocated since it is

escaping, but the object instance at line 14 can be stack allocated.

4.6 Experimental Setup and Results

To evaluate the effectiveness of our techniques, we used several benchmarks from the

Java Grande Threaded Benchmark Suite [35] and several small threaded Java applications

from Doug Lea's book [36]. A description of the programs used can be found in Table 4.1.

The first seven of these are from [35] and the last seven are from [36].

95



Table 4.1 Description of benchmarks and applications used.

Program Threads Description

JGFCrypt 4
Performs the International Data
Encryption Algorithm (IDEA) on an array
of ltr bytes.

JGFLUFact 4 Solves an NxN linear system using
LU factorization. Same as Linpack.

JGFSoT A
a Perform 100 iterations of successive

over-relaxation on a NxN srid.
JGFSeries 4 Computes the first N Fourier coefficients

of the function: f (r) : (r + 1)".
JGFSparseMatmult 4 Performs a sparse matrix multiplication

algorithm using a compressed row format.
JGFMolDyn 4 Models partial interactions with boundary

conditions.
JGFRayT[acer 4 Renders a 3D scene containing 64 spheres.
Heat A

a Simulates heat diffusion across a mesh.
Fib A= Computes a Fibinacci number using

a specified number of threads.
Msort 4 Parallel merge/quick sort on random numbers.
NQueens 4 Positions N queens on an NxN board so that thev

can not attack each other.
BarrierJacobi A

a Performs a cyclic barrier version of Jacobi
iteration on a mesh of the given size.

LU A
a Decomposes a randomly filled matrix.

MatrixMult A Matrix multiplication using parallel
divide-and-conquer.

Evaluating the effectiveness of an optimization on threaded applications poses several

problems. The timing and performance of a threaded application depends on the timing

of the threads. Slight changes in timing between runs of the same application can cause

significant changes in performance by causing one or more threads to stall waiting on

resources that during previous runs had been available at the optimal time. Additionally,

virtual machine overheads, such as garbage collection, can affect performance of the
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application by occurring at different times. Complicating this data collection dilemma

further is the desire to evaluate the effectiveness of our techniques in a state-of-the-art

Java runtime rather than a VM used solely for research.

To address these issues, we chose to collect traces of the benchmarks using the produc-

tion level HP Hotspot 1.0 VM [37] in interpreted mode. The use of the tracing mechanism

allowed us to capture the dynamic execution trace for these programs on a production

level runtime. We then use this trace to guarantee that the execution order remains the

same for every run of the applications and evaluate the costs of our analysis based on

the same execution order. Furthermore, we guarantee that garbage collection occurs at

the same point in the execution and evaluate the effects on memory of our system.

To handle the simulation of a virtual machine executing the trace lines, we built

a simulation of a Java runtime environment. Figure 4.11 shows an overview of the

Simulated Runtime. The key components of our Simulated Runtime are the Simulated

Execution Engine, the Thread States, the Memory Manager, and the Method Invoker,

with its associated class loader. A more thorough description of the simulator can be

found in Appendix B.

To explain the data collection process we describe briefly the basic units of the sim-

ulated runtime that are pertinent to the collection of the data. The simulated execution

environment simulates the effects of each bytecode instruction encountered by reading

the trace file line in execution order. It then applies the appropriate state changes to the

specified thread, loading and storing thread states as necessary.
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Figure 4.1L An abetract overview of the simul.ated runtime environrnent.

Invocatione are handled as requests to the rnethod invoker. \Mhen a request is reeeiwd

by the rnethod inrruker, it firet checks to see if it has an initialized version of the mdhod

available. If it doe6 not have one, it places a request to the cllaee loeder. The class loeder

firet chscks its initialized claes files to see if the requested elaee is availa,ble. If not, the

class }oad€'r loeds the qlasc fiIe from a set of pre*nnotated class files. During simrlation,

these class fiI€s alvmys exiet. The clase loader locates the requested rnethod and retwas

it to the method innoker. When the rnethod invoker receines a new method from the class

I@der, it co-rnputee the OeS for the rnethod based on its CDG and store* the iaitialiaed
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method (the bytecode for the method, the clean CDG, and the clean OCG) in its table.

A copy is made of the initialized method and passed back to the simulated execution

environment.

The OCG of a newly invoked method returned from the method invoker is checked

by the simulated execution environment to see if it contains allocation nodes. A Boolean

field is used to indicate whether or not a given OCG contains an allocation node. This

field is set at the time the OCG is constructed. If it does contain allocation nodes,

based on the runtime object type used to locate the method and any known object types

in the thread's state for this invocation, the simulated execution engine constructs the

ACG/iOCG with this method as the root node. If the OCG does not contain allocation

nodes, nothing is done, and the only overhead is the check.

If the simulated execution environment encounters a bytecode instruction involving

a memory location, it processes the request by also involving the memory manager. The

memory manager handles allocation requests as well as field assignments. The simulated

memory representation contains, for each simulated memory location, a table representing

referenced fields as well as the state of the memory location, indicating whether or not a

given memory location is method local. Each field is identified with its unique field ID

and contains a reference to the simulated memory location it is referencinq.

4.6.L Experimental results: potential benefits

In addition to the introduced conservativeness alreadv discussed. there is one more

level or conservation occurring in our implementation from our self-imposed bounding
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of the ACG/iOCG resolution. We stop the method resolution process in the forward

pass when we reach a speculative node that cannot be promoted or when we reach a

predetermined maximum resolution depth. We set the maximum resolution depth to six

based on observed call stack depths within the simulated runtime. While this constraint

allows us to bound the size of the ACG and guarantee termination of the ACG/iOCG

construction process, we do not always resolve the graph as precisely as we could have.

Any node in the ACG exceeding the maximum resoiution depth remains speculative and

therefore by Definition 4, unknown path escaping.

To evaluate the impact of level of added conservation as well as determine the effec-

tiveness of the ACG/iOCG analysis technique, we also implemented an oracle version

of the algorithm. The oracle version used the full CDG and the actual executed calls

within the trace to determine method escap'ing. The full CDG still contains the direction

on the arcs and does not contain a transitive closure. FurthermoreT we only updated

information within the iCDG as a given bytecode instruction is executed. This allowed

us to eiiminate any conservation introduced by the absence of control flow information

since we followed the exact execution flow of the application. In addition, we computed

the results at the point of execution, or after the object instance's full lifetime had been

explored, therefore making all nodes in the ACG known and the full call depth explored.

This eliminated the final loss of precision caused by the speculative nodes and the max-

imum resolution depth in the ACG/iOCG analysis. We consider the use of CDGs in

forming this version of the iCDG as an oracle result that is not achievable with either
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Figure 4.12 Percentage of. method local tsing iOCG compared to oracle method.

runtime or static analysis. However, it does provide an upper bound for the evaluation

of our simplification.

In Figure 4.72 we compare the determination of method local allocations using our

iOCG method to the best possible results from the oracle method. The graph shows the

percentage of method local allocations found using the iOCG compared with those found

with oracle's perfect knowledge. To compute the information, we tracked the decision as

fields in the simulated memory locations used by the memory manager, and the values

were collected by analyzing the memory locations collected at the first GC event. Note
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that, on average over the benchmarks, the quicker iOCG method is able to identify 53$%

of the method local allocations identified by the oracle method. This result indicates that

although we introduced additional conservation, we were able to identify a significant

portion of the actual method local memory locations.

Additionally, we tracked what percentage of the collected memory locations were

identified as method local based on each of the analysis methods. Figure 4.13 shows for

each of the analysis methods, iOCG and oracle, what percentage of the total collected

memory can be stack allocated. An average of 68.8% of the memory collected was iden-

tified as stack allocatable by the oracle analysis, compared ro 36.5% by the ACG/iOCG

technique. These results imply that the use of our technique within our framework could

reduce garbage collection events by as much as 30% by stack allocating these identified

object instances.

To understand how far the benchmark had progressed at the first GC event, we

also recorded the number of dynamic bytecode instructions execution by each of the

benchmarks at the time of the GC event. Table 4.2 contains these numbers. Note that

Heat, Fib, Msort, and NQueens completed execution entirely, and they also showed a

large percentage of the memory locations as method local.

4.6.2 Experimental results: estimated costs

To estimate the costs of our implementation, we compare the cost of the analysis

to the execution time of the application. The propagation of information through the

ACG/iOCG uses logical 0R operations. We recorded the number of logical 0R operations
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Figure 4.13 Percentage of method local memory location collected using iOCG com-
pared to oracle method.

performed in constructing the ACG/iOCG for each of the benchmarks, prior to the GC

event. We assert that the cost of each logical 0R operation with its associated loads is

comparable to the execution of a single bytecode instruction and therefore consider this a

fundamental measure. Note that in support of this assertion, most bytecode instructions

translate into more than one simple assembly instruction, some requiring additional safety

checks by the virtual machine. In Figure 4.14 we show the ratio of the fundamental 0R

operations to the dynamically executed bytecode instructions for each benchmarks. This

cost averages around 20T0, which is within the analysis cost bounds we had set.
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Table 4.2 The actual number of dynamic bytecode instructions executed at the time
of GC.

Program Dynamic instructions

JGFCrypt 99,910,804
JGFLUFact 79,014,889
JGFSoT 83,267,676
JGFSeries 67,872,390
JGFSparseMatmult 115,199,730
JGFMolDyn 92,423,979
JGFRayTracer 25,505,724
Heat 18,54r,123
Fib 4,299,037
Msort 7,206,937
NQueens 6,199,075
BarrierJacobi 99,877,803
LU 64,816,366
MatrixMult 98,195,473

To understand the values in Figure 4.74, we also tracked the ratio of method OCGs

that contained an allocation event versus the total number of methods used bv the bench-

marks. This method breakdown is shown in Figure 4.15. Because of the large number

of methods coming from the runtime library files, we have broken the methods with al-

location percentage into library methods and application/benchmark specific methods.

Note that for benchmarks that allocate a large portion of temporary location but whose

percentage of benchmark specific methods to library methods is small (Figure 2.8), the

percentage of allocations is substantial. For example, in JGFSparseMatmult, which trans-

forms sparse matrices into vector representations, less than 3% of the methods were from

benchmarks but more than 57% of those contained allocations. This relationship also

holds for the similar benchmark, JGFSor. For the JGFRayTracer, the benchmark meth-
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Figure 4.14 Percentage of OR operations to dynamic bytecode instructions.

ods also contain a large number of aliocations, but not as many are nxethod /ocol: because

it is computing the pixels for a scene and passing some of the results back, the objects

tend to persist beyond their allocating methods. JGFCrypt, on the other hand, does not

contain a particularly large percentage of methods containing allocations compared to

the other benchmarks. However, these methods use a substantial number of temporary

structures to hold intermediate results, which can be stack allocated.
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Figure 4.15 Percentage of unique methods containing allocations.

Conclusion on iOCG

In this chapter we have shown how our framework is able to capture a significant

percentage of. method local stack allocatable object instances that traditionally remain

unidentified by most runtimes. Since most runtimes do not attempt to perform this level

of analysis until the first optimization epoch, these initialization object instances are

rarely if ever identified as stack allocatable and optimization opportunities are missed. If

identified early with a swift, safe, analysis method, their promotion to stack allocatable

objects could delay a GC event and potentially improve startup performance.
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CHAPTER 5

DYNAMIC OPTIMIZATTON VALIDATION AND
ROttBACK

Up until this point we have discussed how the Dynamic Application Analysis Flame-

work can be used to generate analysis results in a dynamic application. However, the

structures and design of this framework are also applicable to the validation of optimiza-

tions enabled by the analysis results. In this chapter we classify models for optimization

and describe the types of validation that would be necessary to enable each. We also

discuss the necessary mechanisms for rollback and recovery in the event of a validation

failure. In several cases, we show how the information contained within our framework

structures not only facilitates more aggressive optimizations but also enables a finer grain

of validation. By enabling this finer grain validation, some forms of optimizations have

the potential for longer dynamic lifespans.

5.1 Optimization Models and Validation

We start by first defining three types of optimization decisions based on how the

optimizer decides to use the information provided by the analysis engine. They are as

follows.
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Definition 7 Opti,mi,zati,on deci.si,ons

ahaags safe: The opti,m'izati,on performed by the optimizeris restricted to a proa-

able set of monomorphi,c classes and proced,ures. Erecut'ion of the opti,m,izati,ons

enabled und,er thi,s model remai,n safe euen in the presence of dynami,c class load-

ing.

sometimes safe: The opt'im'izer assumes the class hi,erarchg (CH) i,s open. The

optimi,zer recogni,zes the "speculati,ue" nodes i,n the ACG and opt'imi,zes based on

these poi,nts of opti,mi,zat'ion-time target nondetermi,ni,sm. Opti,mizati,ons enabled

under thi,s model embed checles wi,thi,n the code to determi,ne dynami,cally when i,t,is

safe to erecute along the optimi,zed code path.

o speculatiaelg safe: The opti,mizer assumes the class h'ierarchy (CH) i,s closed.

The opti,mizer aggressi,uely promotes speculati,ue nodes wi,thi,n the ACG to known

. 
nodes based on i,nformati,on withi,n the CH. It reli,es on uali,dati,on and recouery

mechani,sms wi,thi,n the r"untime i,f the closed CH assumpti,on i,s ui,olated. It proui,des

the runti,me wi,th the necessary i,nformati,on to prou'ide the desired leuel of uali,dati,on

and recouery.

The actuai optimization of a given code region may use a combination of the three

types noting that the aggressiveness of the optimization is correlated to the optimization

type. Therefore, optimizations based on the always safe model are not as aggressive

as those based on the speculatively safe model. However, the always safe model does

not require validation since it is always safe to execute the code optimized under this
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model even in the event of dynamic class loading. The sometimes safe and speculatively

safe models do require validation, and we classify validation into two main categories as

foilows.

o erecution time: The validation check is embedded in the executing code and

performed as part of the execution.

o load, time: The validation check is performed by the runtime as a new class file is

loaded.

The two types of validation are reiated directly to the two optimization types requiring

validation. The somet'ime safe model of optimization, which embeds validation checks

in the optimized code, is an example of. erecution time validation, while the speculati,aely

sale model, which relies on the runtime to handle validation, is an example of load ti,me

validation.

5.1.1 Always safe

As previously mentioned, the optimizations we focus on are based on interprocedural

analysis and use optimization tools such as inlining. The determination of whether

an optimization is always safe is based on the type of the procedure being considered

for inlining and optimization. We restrict always sale optimizations to monomorphic

procedures, which we introduced in Chapter 1. We define them more formally as follows:

Definition 8 A monomorphi,c procedure 'is any procedure that, wi,thi,n a g'iuen content,

can be proaen not to be redefi,ned i,n the presence of dynami,c class loadi,ng during the er-
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ecuti,on of a dynam'ic appli,cati,an and'is a si,ngle-target node i,n the ACG for the procedure

be'ing analyzed and opti,m,ized.

Therefore, in addition to procedures that were declared using the f inal key word or

procedures that are sealed within a sealed package 122], olher procedures can also qualify

as monomorphic. Initializers called by an allocating method are considered monomorphic

procedures because the type of the object instance being initialized is defined by its

allocating procedure and therefore definitively known. Furthermore, method resolution

using the same definitively known allocated object instance, are also single target and

monomorphic within the iCDG/ACG with respect to the given context. For an object

instance to be considered defini,ti,uely known wi,thi,n a g'iuen contert, it must meet all of

the following criteria:

1. The object instance is allocated within the iCDG.

2. The object instance is only attached via a node or nodes of type write, to another

node in the iCDG that are also defini,ti,uelg known.

3. The object instance is not attached to any node of type read that contains the

bytecode line number of a checkcast bytecode instruction.

4. The object instance remains enclosed within the iCDG under analysis.

Qualification 1 is a requirement because only object instances actually created within

the iCDG can be considered members of the given class and not one of its subclasses.

Qqalification 2 addresses type changes. If an object instance is written to by another
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object instance represented in the CDG that is also definitively known, then even though

the type may change, it still remains definitively known. Therefore, qualification 2 is

recursive in that in determining if a node rs defini,ti,uely known the optimizer may also

need to resolve attached nodes in the iCDG. Qualification 3 uses the information that

a checkcast bytecode instruction is actually represented in a CDG as a node of type

field read, as specified in Appendix A. Since the node in the CDG contains the bytecode

line number of the operation, a simple check for the bytecode type at that line number

can be used to qualify this. By performing the secondary bytecode check, we can avoid

eliminating all object instances connected to read nodes from the set of definitivelv known

object instances. Qualification 4 simply addresses the fact that we can only know the

definitive state of an object instance if we can analyze the whole region where the object

instance is used. Therefore, any object instance escaping either via an interprocedural

boundary into a speculative node within the ACG or to another thread, cannot be fully

analyzed and therefore its state cannot be definitively known.

Figure 5.1 shows the optimizing time ACG which assumes the CH contains the three

versions of. C\azz shown in Figures 2.3 and 3.1. This ACG varies from the others in

that we have completed two potential targets for Foo and two potential targets for Bar

while still leaving a purely speculative node for each. The calls from Hoe to Foo and

subsequently Bar are virtual calls located via a formal to Hoe which is not definitively

known. The only monomorphic procedures shown in this ACG are the initializers. We

have distinguished these from the known nodes by using a double line around the node.
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L0  :  Hoe

2 0 : F o o ,

45 : Bar, : <C lazz

Specualtive

Known

Monomorphic

Figure 5.L The optimizing time ACG for the versions of. CIazz in Figures 2.3 and 3.1.

500:  pub l i c  vo id
5 0 1 :  C l a z z  C  =
5 0 2 :  < C L a z z > O ;
5 0 3 :
5 0 4 :  C . H o e O ;
5 0 5 r  i

Hoeuser  (CLazz  A,  C lazz
new Clazz O ;

B ) { v v v

(a) Procedure using Hoe (b) CDG for HoeUser

Figure 5.2 Exampie user for the class C\azz from Figure 2.3.

If we are optimizing Hoe based on the always sale premise, then only the initializer calls

at lines 12 and 15 are safe for inlining and optimizations.

In contrast, consider the case where the type for the object instance used to call Hoe

is definitively known by the optimizer. Figure 5.2(a) shows the procedure HoeUser that

calls the procedure Hoe. If we are optimizing HoeUser, then the determination of inlining

candidates is based on Hoeuser's iCDG/ACG.

We step through the construction of the iCDG/ACG for HoeUser and identification

of ACG nodes as monomorphic, in Figure 5.3. First, starting with the CDG for HoeUser,
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Figure 5.3 Interprocedural CDG for HoeUser in Figure 5.2.
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Figure 5.2(b), we connect the initializer called at line 502 and resolve the virtual call

to Hoe at line 504. Note that the call to Hoe and its subsequent node in the ACG is

upgraded to monomorphic because the object instance used to resolve it is the same

one allocated at line 501. The next step is to connect the CDG for Hoe into the iCDG

which causes the speculative node Foo to be added to the ACG. These iCDG/ACG are

the graphs shown in Figure 5.3(a). Upon analysis of the iCDG in Figure 5.3(a) it is

concluded that the same object instance that was used to resolve the virtual call to Hoe

is also used to resolve the virtual call to Foo. This determination is made by following

the arc connected to the parameter node, (0,17), and treating super nodes as extensions

of their attached arcs. The only node connected to this parameter node (excluding super

nodes) is the allocation node, 501. This then causes the node Foo in the ACG to be

upgraded to monomorphic and its corresponding CDG incorporated into the iCDG. This

is shown in Figure 5.3(b). The incorporation of Foo causes a new node to be added to the

ACG, Bar, which is added as a speculative node. By analyzing the iCDG in Figure 5.3(b)

it is observed that the same object instance used to resolve Hoe and subsequently Foo

is also used to resolve Bar. Therefore, Bar can be upgraded to monomorphic and its

corresponding CDG incorporated into the iCDG. This is shown in Figure 5.3(c). The

incorporation of Bar did not add any new nodes to the graph and the CDGs for all

of the known nodes have been incorporated into the iCDG; therefore, the iCDG/ACG

construction terminates.

The final ACG shown in Figure 5.3 contains all monomorphic nodes. This means that

all procedures executed during the execution of HoeUser are candidates for inlining and
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subsequent optimizations. The final optimized code would remain valid at all times since

dynamic class loading cannot affect the monomorphic state of the nodes in this ACG.

In general, only a subset of the object instances in an iCDG can be classified as

defini,ti,uely known and as such only a subset of the nodes in the ACG can be promoted

to monomorphic nodes and optimized using the always sale model. This make the always

safe model conservative, Ieaving many optimization opportunities unexploited.

5.1.2 Sometimes safe

The sorneti,mes sarfe optimization model recognizes that the CH is not closed and

can increase the number of class files in it during execution. This causes the inclusion

of speculative nodes for any nodes that are not monomorphic within the ACG. This

model is more aggressive than the always safe model, choosing to optimize one or more

paths through the known nodes in the ACG. The optimizer also embeds the necessary

validation checks and recovery mechanisms in the optimized code to handle the multiple

potential execution paths.

For example, in Figure 5.1, if the profile showed that the execution had always resolved

the call to Foo as Foo2, the optimizer under the somet'imes safe optimization model would

inline Foo2, but would embed a type check as validation as early as possible in the code to

determine the type of the object used to locate Foo. If the type check failed, it would re-

direct execution to the original version of the code. The validation check under this model

would be an erecuti,on ti,me check since the validation is embedded in the optimized code.

Note that for this example, there are actually two types that can result in the execution
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of Foo2, C|azz and, C1.azzB as shown in the ACGs of Figures 3.2. Therefore, since the

optimizer assumed the ACG for the unoptimized path could expand to yet unknown

classes, it would need to embed a double type'check for this inlining to direct only types

of. CLazz and CIazzB to the optimized segment.

However, checking the type at every execution of a method adds overhead even to

the optimized path. If the loading of a new class of the given type is a rare event, then

this overhead may be mitigated by a more aggressive optimization model.

5.1.3 Speculatively safe

Under the speculati,uely sale optimization model, the CH is assumed closed, meaning

this model assumes no new class files will be loaded into the svstem. The assumption

forces the registration of a validation check with the runtime. The actual registration of

the validation check can be delayed until after the optimizalion, allowing the optimizer

to potentially request a finer grain validation of specific properties of the newly loaded

class files.

For example, in Figure 5.1, only the two known nodes for Foo would be included in

the ACG. Although a type check would still be needed to determine the correct version

to execute, the set of types would be considered closed. Unlike the double check used in

the sometimes safe model, this optimization model would only need to check the single

type, CIazzA, that can resolve to Foo1. This model registers a validation request with

the runtime relying on the runtime to disqualify the optimized code should the closed

CH assumption become invalid.
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1"00;  c lass  L is tcLazzA ex tends  l , i s tC lazz{
10L:  C lazzNodeA C;
r 0 2 .
l -03 :  C lazzNode g fe tE lement (L is tc lazz  o ,  in t  i ) {
1 0 4 :  i f ( i  <  0  l l  i  > =  o . s  l l  i  = =  0 )
1-05 :  re tu rn  o .C, . '
1 0 6 :  C l a z z N o d e A X - o . C ;
1 0 7 :  f o r ( i n t  j  =  0 ;  j  <  i ;  j + + ) {
1 0 8 :  x  =  x . g e t N e x t 0 t
1 0 9 :  )
110:  re tu rn  X;
1 1 1 :  )
1 \ 2 :  )
l - l - J :

I74:  c lass ClazzNodeA extends ClazzNode{
115 :  C lazzNodeA  n ;
l r o :
L!7 z ClazzNodeA getNext  (ClazzNodeA o) {
1 1 8 :  r e t u r n  o . n i
1 1 9 :  ]
7202  )

Figure 5.4 Subclass for the list class in Figure 3.9.

5.L.4 Mixing optimization models

Sometimes speculatiae optimizations can be mixed with someti,mes safe or always

sale optimizations. To illustrate the combining of sometimes safe and speculative mod-

els, Figure 5.4 introduces two new subclasses, ListClazzA and ClazzNodeA, for the

ciasses introduced in Figure 3.9. The new ACG for the call to append is shown in Fig-

we 5.5. Additionally, we introduce a new user class for these two versions of ListCLazz,

IistBuilderDriver shown in Figure 5.6. If the optimizer is optimizing listBuilder-

Driver, and the profile shows that the call to getElement always resolved to the version

at line 103 of Figure 5.4, then the optimizer under lhe somet'inxes st,fe model could decide

to inline this version of getEtenent. However, since this is a virtual call, the ACG would

also have a speculative node for getElement. The optimizer upon deciding to inline the
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103 :  gelE

Figure 5.5 ACG for append in Figure 3.9 with the new subclasses in Figure 5.4.

100:  vo id  l i s tBu i lderDr iver ( l i s tBu i lder  o ,  L is tC lazz [ ]  l i s ts )  t
L 0 1 :  L i s t C l a z z  L  =  n e w  L i s t C l a z z ( ) ;
] ,02r  <L is tC lazz> (L )  ;
1 0 3 :
l -04 :  L is tC lazzUser  D =  new L is tC lazz tJser ( l ;
1 0 5 :  < L i s t C 1 a z z U s e r > ( D ) ;
r -06 :
L 0 7 :  f o r ( i n t  i  =  0 ;  i  <  l i s t s . l e n g t h ;  i + + )  {
1 - 0 8 :  D . a p p e n d ( l i s t s  I i ]  ,  L )  ;
1 0 9 :  )
1 1 - 0 :  )

Figure 5.6 Driver class for the subclasses of ListClazz.

version of getElenent based on the profile information, would also place a type check for

the ListCl azz lype when it is read from A at line 59 of Figure 3.9. The check would be

used to redirect to a normal invocation if the type is not ListCI azzA. This then classifies

this portion of the optimization as sometirnes safe.

Figure 5.7 highlights the sometimes safe portions of the optimized version of list-

BuilderDriver. Now the optimizer could make a speculati,ue decision based on the loaded

versions of getElenent and add. It could decide this set is closed and to cache the value

returned by the call to size in the for loop since neither ofthese causes the value returned
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2 0 0 :
2QL:
202:
203: .
204l.
2 0 5 :
2 0 6 :
207: .
2 0 8 :
2 0 9 :
21"0:
2ALt
z L z  I

2'J.3 t
21,4:
21"5 t
2 L 6 z
z L  I  I

2 I 8 t
2]-9 z
220 z
2 2 L t
2 2 2 :
2 2 3 :
2 2 4 :
225:

vo id  l i s tBu i lderDr iver ( l i s tBu i lder  o ,  I J is tC lazz [ ]  l i s ts )  {
/  / in l ine  in i t ia l i zer  fo r  L is tC lazz  L
/ / in l ine  in i t ia l i zer  fo r  L is tC lazzuser  D
/ /check escaping state of l i ,sts t .o determine which loop
i f (1 is ts  no t  escap ing)  { t r - - - -

i Sometime Safe checksi n t  temp =  l i s ts . length ;
fo r ( in t  i  =  0 ;  i  <  temp;  i++)  {

/ / in l ined  append f ron  L is tC lazzuser
//assumed that append forrnal l- does not
/ /  in caTI to getElement ( )  ;
/  / cache s ize  resu l t
i n t  t _ 2  =  l i s t s l i l . s i z e O ;
f o r ( i n t  j  =  0 ;  j  <  t _ 2 ;  j + + ) {

/ /op t im ized vers ion  o f  loop
i f  ( l i s t s l i l  i s  L i s t C l a z z )

/ /op t im ized vers ion  o f
)  e l s e  {

/ /o r ig ina l  code
)

)
)

)
e lse  {

/ /o r ig ina l  code
)

Figure 5.7 Sometimes safe regions of optimizations for listBuilderDriver.

by size to change across iterations of the loop. If a new subclass of ListClazz is loaded

into the runtime, this optimization may no longer be vaiid. Therefore, the caching of the

return value of size would be speculati,ae and the optimizer would register a validation

request with the runtime for the class loader.

Figure 5.8 highlights the speculative portions of the optimized version of listBuilder-

Driver. Note that both the speculative and sometimes safe optimizations are intertwined

in this optimized code segment and the validation failure of the speculative optimization

disqualifies both of them.

getElement and add
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2 0 0 :
2 0 1 :
) n ) .
203 z
z u 4 l

z v o l

207 :
2 0 8 :
2 0 9 :
Z L U :

2 ! 7 :
272:
z r 5  i

21,4 z
z r S i

z L o  i

2L7 :
z L 6 1

z L >  7

z z u :

z z r ?

z z z  t

223:
z z +  z

225:

vo id  l i s tBu i l de rD r i ve r ( l i s tBu i l de r  o ,  L i s t c l azz t l  l i s t s )  i
/ / i n l i ne  i n i t i a l i ze r  f o r  L i s t c l azz  L
/ / i n l i ne  i n i t i a l i ze r  f o r  L i s t c l azzuse r  D
//check escaping state of  l is ts to determine which loop
i f ( 1 i s t s  no t  escap ing )  {

i n f  f 6 n 6  -  1 i - | . q  I a h d f h .r r r u  L r r t r P  -  r r D L p .  + c r r Y L r r ,

f o r ( i n t  i  =  0 ;  i  <  t e m p ;  i + + ) {
// inl ined append from ListClazzuser
//assumed that append formal 1 does not escape
/ /in cal.I to getElement ( ) t
/  /cache s ize resul t
i n t  t_2  =  l i s ts  [ i ]  .  s ize  (  )  ;
f o r ( i n t  j  =  0 ;  j  <  L _ 2 ,  j + + ,  I

/ /op t im ized vers ion  o f  loop
i f  ( l i s t s  t i l  i s  L i s t c l a z z )  {

/ /optimized version of getElement and add
' I  

a ' l  ca  I

/ / o r i g i na l  code
)

i
]

]
e l se {

/ / o r i g i na l  code
)

Figure 5.8 Speculative optimization in listBuilderDriver.

5.2

Up

validation are needed for each optimization model. However, validation could fail. In

the event of a validation failure, rollback and recoverv mav be necessarv. In this section.

we address the types of rollback and recovery needed to handle validation failures, how

these mechanisms are impacted by the state of the execution at the time of the validation

failure, and what type of information is needed by the runtime to recover from validation

failure events.

We start by identifying the following rollback mechanisms as facilitating the rollback

of the state of the application in the event of a validation failure.

Validation Failure, Rollback, and Recovery

until this point, we have discussed the need for validation and what types of
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Code based, stubs: The replacement of entry instructions at the entry point of

what was previously a valid optimization with an unconditional jump to rollback

and recovery code.

On stack replacement: The replacement on the call stack of return targets with

unconditional jumps to roilback and recovery code.

c Stack object instance flush'i,ng: The transferring of a stack allocated object

instance to the heap.

The first two mechanisms are general and may be necessary for handling validation

failures across a wide range of optimizations. The third recovery mechanism is directly

related to a particular type of optimization, namely stack allocation of object instances

and therefore optimization type dependent. These rollback and recovery mechanisms are

not exclusive to a particular type of validation and could require employment either with

erecut'ion time or load ti,me validation. For example. in an execution time validation

check, the validation failure event normally redirects either directly to an unoptimized

version of the code or first performs a rollback for some of the state prior to the redirect.

The rollback may include the flushing of stack allocated object instances. In the event of

a load time failure, not only could code stubs be used to redirect future execution of the

optimized region, but it may also be necessary to flush stack allocated object instances

and even in some cases to reset and re-execute portions of the affected region. In the

remainder of this section we focus primarily on load time validation failure events since

execution time validation failures are directlv handled within the code.
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Rollback/recovery needed

Figure 5.9 Abstract view of the necessary fields in a validation registration.

Load time validation is handled by the runtime as new class files are loaded into the

system. To facilitate load time validation, we have developed an abstract structure we call

a aali'dati,on regi,strati,on. The format of. a aali,d,ati,on regi,strat'ion is shown in Figure 5.9.

The basic fields are the class file name for the class load event needing validation, the

type of validation, and the type of rollback and recovery needed. The type of validation

can either be a coarse grain validation such as the occurrence of the load event itself, or

a fine grain validation such as particular property of a field or method of the class loaded

by the load event.

For example, the caching of the return value for size described in Section 5.1.4,

was based on the assumption that the CH was closed. F\rrthermore, it was observed

that within the closed CH, none of the procedures called within the body of the loop

changed the value of size. If a coarse grain validation is used, then any loading of a new

subclass of ListClazz is sufficient to trigger a validation failure event. However, our

framework is designed to do better than this. In our framework, fine grain validation

can be specified, requiring that a validation failure event only occur if the newly loaded
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subclass of ListClazz contain a new version of getElenent and the new version affects

in some way the value returned by size. The validation of this information can be derived

from the CDGs for the newly loaded procedures. Most fine grain validation events use

the information in the CDG/ACG to perform the validation, meaning that in most cases,

without the CDG this type of fine grain validation would not be practical. Therefore,

the CDG/ACG can be viewed as an enabling technology for fine grain validation.

Validation failure from a load event could occur while the execution of the affected

region is in one of the following two states:

o prereg'ion: Not yet entered the affected optimized region of the application.

o in-regi,on: In the process of executing the affected optimized region of the applica-

tion.

Note the absence of a postregion state from the necessity for rollback and recovery. Since

the event affecting the validation failure occurred after the region had been executed, it

could not have affected that region of the program. If the region is to be re-executed,

then the state can be handled as preregion.

5.2.! Preregion execution state

In the preregi,on execution state, rollback is not necessary since the region ofcode has

not yet been executed. Instead, the recovery mechanism can simply replace the entry

instruction for the image of the optimized code region with a stub redirecting future

callees to the unoptimized version of the code. It incurs the added overhead of the
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redirection; however, this overhead can be mitigated, if not completely eliminated, at the

nexb optimization epic.

Figure 5.10 shows an abstract view of how this mechanism works. The original code

after the optimizer runs is laid out in memory according Figure 5.10(a). Here we have

shown three optimized versions of the same region of code. Note that each optimized

version is branching to a continuation point, Ox1dff. Whether or not the code at the

branch target for the continuation point is optimized is immaterial, so we have not

specified it. Note also that the original code continues execution on through the branch

target (continuation code) for the three optimized segments. When a validation failure

event causes a stub insertion, the conceptual approach is to place a hard jump at the

entry point for the region. This is shown in Figure 5.10(b) with the jump to the starting

address of the block marked original. This jump instruction can overwrite the entry

instruction(s) in the block since the remainder of the block's instructions are now dead

code.

There are some additional assumptions made in this abstract representation. For

example, we assume that the state of the program upon entry to each of the optimized

versions is identical to the state of the program should we have entered the original

code version. If it is not, then the stub must contain any necessary patch code to bring

this state back to the state the program would have been in had the original code been

entered. For example, if one or more of the optimized versions used stack allocated object

instances and these object instances were assumed heap allocated in the original code,

then the redirect may not be directly to the original version of the code. Rather, the
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optimized
version l-

branch 0x1df

optimized
version 2

branch 0xLdf

optimized
version 3

original
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a) Abstract code view b) Stub insertion

Figure 5.1-0 Abstract view of code space and insertion of redirection stub.

redirection stub would be to a patch code region that flushes the stack allocated object

instances prior to continuing. This patch code could be unique for each of the three

versions of optimized code shown in Figure 5.10. Since the redirection is in the target

entry point for the optimized region, all other code which had this target is unaffected

by the change.

Additionally, this model requires maintenance of the original code. However, most

runtimes do keep the bytecode version of the code available at all times. Therefore, as

goto  Ox1cf f

n n f  i  m i  z a A

version l"

branch 0x1df
go to  Ox1cf f

optimized
version 2

branch 0x1df
goto Oxl"cff

optimized
vers ion  3

original
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long as the optimized code and the unoptimized code share the same memory model, call

stack and code space, this level of rollback is achievable in the system.

5.2.2 In-region execution state

The in-region execution state is a little more complex with the required rollback

and recovery being directly related to the aggressiveness of the optimization. We have

identified two approaches to handling executing regions of code when a newly loaded class

file causes a validation failure event. The first approach, continue executing, contends

that the event cannot affect the executing code and can only affect future entries into

the region. Therefore, do nothing to the executing code and just insert stubs in the

optimized region for new entries into the region. This is similar to the stub described in

Section 5.2.7. However, we may be able to get more aggressive with the optimizations if

we can roll back and re-execute. Therefore, the second approach, checkpoint, rollback,

and re-execute, contends that validation failures are rare events; therefore, the cost of

check-pointing, then rolling back the program's state and re-executing the affected region,

is acceptable. This approach requires extra overhead and recovery code for executing

methods.

5.2.2.L Approach 1: continue executing

This model allows the region to complete and is only concerned with redirecting future

entries into the region. Note that this model contends that procedures are located via

a specific object or class instance. There is a limited means in which a reference to an
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object instance can be obtained in an executing application. These iimited forms are as

follows.

1. Allocati,on: The actual creation of a new object.

2. Field, Access: The obtaining of an object reference via the reference stored in an-

other object.

3. Global Access: The obtaining of an object reference via the global field of a class

object.

4. Formal Parameter: The reference was passed to the method via a formal parameter.

5. Callee Retum: The reference was returned from a callee invocation.

Since this set is finite, and the behavior of the object instances is fuliy specified in the

CDG for each procedure, we are able to track the state of the object instances involved

in the optimization. The main restriction placed on optimizations under this model is

that object instances involved in the optimization must be definitively known not to

escape either prior to or during the region being optimized. This means object instances

shared among threads or object instances crossing into speculative nodes in the ACG are

excluded from optimization.

To illustrate why this restriction is necessary, consider again the example class in

Figure 3.9 in which we introduce a user, producerQueue shown in Figure 5.11. At opti-

mization time, the only implementation of ListClazzUser is the one shown in Figure 3.9.

The field Q of producerQueue is declared as static and by definition thread escapi,ng.
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121: c lass producerQueue{
I22 :  L i s t c l assuse r  C ;
123 :  s t a t i c  L l s t c l azz  Q ;
L24: <producerQueue>(producerQueue o){
! 25 :  o .C  =  new  L i s t c l assuse r0 ;
L 2 6 :  o . C . < L i s t C l a z z u s e r > O ;
7 2 7 :  o . Q  =  n e w  L i s t C l a z z 0 )
L 2 8 :  o . Q . < L i s t c l a z z > ( 1 ,
r z > i  l
1 3 0 :
131:  void add, fobs(producerQueue o,  L istClazz
732 ' .  o .C .append (p roduce roueue .Q ,  , J ) ;

1 3 4 :  )

Y Y @

\ a x
A

J )  t

(a) class file (b) CDG for addJobs

Figure 5.11 A user class for the class file ListCIazzllser in Figure 3.9.

Since the field Qis thread escapi,ng, the items stored on it are not under the sole control of

the executing thread. Under the aggressive speculative model, the optimizer may want

to inline append and subsequently getElenent then add. However, if while the appli-

cation is running, a new subclass of ListClazz gets loaded, the results from executing

the optimized code may vary from those of an unoptimized version. It is possible for

a new object instance of the new subclass of ListClazz to be on the Q list. The new

subclass may use different versions of getElenent and/or add, meaning if the execution

of addJobs is allowed to complete, the result of the execution may not match the unop

timized version. Therefore, under this model, the determination that Q is escaping would

prevent the optimization.

In order to assure a reasonable level of reliability, optimizations based on this recovery

model are limited to reference fields known to be thread local and in some cases. the

stricter defini,ti,uely known subset.
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5.2.2.2 Approach 2: checkpoint, rollback, and re-execute

The second approach enables more aggressive optimizations. The concept is to check-

point the state of the executioq prior to entry to the region. If a validation failure event

occurs, roll back to the check-pointed state and redirect execution to the unoptimized

version of the code. This is similar in concept to the speculation mechanisms used in most

compilers and processors. As long as state has not been committed, this model works.

It does incur the cost of the checkpoint operation and may involve several checkpoints

and rollbacks for a given region.

To illustrate, we use again the producerQueue class in Figure 5.11. Again we assume

the CH is closed. This time we perform the aggressive speculative optimizations described

in Section 5.2.2.I that were prohibited under that model. Now the determination that

Q is escaping is not an automatic disqualification of the optimization. Instead, further

analysis is used to determine how involved the check pointing would need to be should a

rollback and recovery be necessary.

In the case of producerQueue, we can observe from the code that we are only making

a copy of Q and not affecting Q. This observation can be extracted from examination of

the iCDG/ACG for addJobs. The iCDG is shown in Figure 5.12. To observe that Q

is only read, we can reduce the iCDG by removing all property nodes, then bypassing

and removing the field nodes. The steps and the final reduced version are shown in

Figure 5.13. From observation of Figure 5.13(e), it is seen that there are only arcs leaving

the node Q. Therefore, we can accurately conclude that we only read Q. Additionally, Q
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Figure 5.12 The iCDG for the procedure addJobs shown in Figure 5.11,.

is written to a field in formal node P1. Fbom the information contained in the iCDG

of Figure 5.13(a), the optimizer can determine that the necessary check-pointing is the

copying of the original contents of the field C and its field n prior to execution of the

region. Then if a validation failure event occurs, the original values in these fields can

be restored, any new objects created, discarded, and an unoptimized version of the code

re-executed. The validation registration for this optimized region would consist of the
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(a) initial iCDG with super nodes removed

I c ,21 ,

\ - - l

(c) nodes (C,14) and (C,11) removed

Y  V 6 D* - - - - - - - - - - - - - \ - - l

(e) all field nodes removed

Figure 5.L3 The intermediate graphs and final iCDG after removing field nodes.

131



class file names ListClazz and ListclazztJser. It would also specify that the type was

coarse grain since any new version of these class files could invalidate the optimization.

The rollback/recovery would specify both a code and a call stack entry. The code entry

would consist of the same redirect to original version of the code discussed earlier. For the

call stack entries, a stub could be inserted at the previous return points in the optimized

code. This would then cover future entries into the region and returning entries.

For the case of executing code, the runtime must be able to signal the execution that

a validation failure event has occurred. One way to signal the execution is by use of a

flag. The optimized version of the code could check the flag prior to a commit of the

state changes. If the flag is set, do not commit, but roll back to the original version and

re-execute. Note that since the optimized code entry point has been replaced with an

unconditional branch to the original code, the re-execution will automatically redirect

to the original. Since only the optimized version of the code would check this flag, the

setting of it would have no effect on the unoptimized version.

However, there may be no definitive way to determine if all optimized code segments

have completed executing without examining the call stacks of every thread. Therefore,

it may be difficult to determine when it is safe to clear the flag. For this reason, it may

be desirable to use a flag located within the code space of the optimized code segment.

Although these models cover the state of the runtime at the time of the validation

failure event, they do not fully discuss the intricacies of specific optimizations.
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5.3 Additional Optimization Examples

Optimization concerns and validation of optimizations can also be specific to the type

of optimization employed. In this section, we cover some of the types of optimizations

introduced in Chapter 3 and what forms of validation would be necessary to enable ag-

gressive optimizations. Additionally, we address optimization implementation concerns.

Where appropriate, we show how the information contained with the CDG could be

used to specify a fine grain validation, thus potentially expanding the lifetime of the

optimization.

5.3.1 Stack allocation of object instances

In Chapter 3 we introduced the use of the iCDG/ACG for the discovery of stack

allocatable object instances. In Chapter 4 we focused on the analysis necessary for

discovering stack allocatable object instances at first allocation. In this section, we now

address optimization implementation models and concerns for the implementation of

stack allocation optimizations.

First, if the runtime is using an interpreter based start-up, then the interpreter must

be stack allocati.on auare. This means that instructions such as getf ield and putf ield

that used to go through the memory manager to the heap, now need to be redirected

to use the stack. Ideally, we would like to replace these instructions with instructions

that are specific to the runtime's interpreter and identify these as stack allocations and

accesses. This can be accomplished within the current bytecode code space. Note that
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in the Java Virtual Machine specification, only 205 of the available 256 unique bytecodes

have been assigned [29]. This gives 51 available unique bytecodes within the instruction

space. The use of the unassigned bytecode space allows the runtime to replace in the

code array for the method, the original heap accessing instruction with the new stack

local accessing version. This can be done swiftly upon entry to the method if the CDG

is used. Since the CDG contains the bytecode address of each access by a heap-accessing

object instance, and it also associates these with their given object instances, the runtime

has the necessary information to implement this change. Furthermore, since the use

of the "special" instructions is internal to the runtime and not visible outside of it,

it does not affect other runtime implementations. Additionally, if future changes to

the Java specifications use this address space, the runtime will need to be redesigned

to accommodate the new instruction and at the same time the "sDecial" instructions

can be adapted. The original specifications showed a similar use of this unassigned

bytecode space with the use of the "quick bytecodes" by the original implementation of

the interpreter [38].

However, not all calling contexts have the same results. Referring back to Figure 3.5

in Chapter 3, the decision on which object instances to stack allocate was based on the

type of the object instance used to locate Hoe. Therefore, the heap accessing bytecode

instructions that need replacement with stack accessing counterparts are dependent on

the runtime type of Clazz o. Since the decision of which bytecodes to replace is made

based on calling context, then the code may only be appiicable to this one use.
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One way to handle this is to have a main code buffer for the original bytecode image of

the code. The class's method table would point to the main code buffer version. When an

analysis such as the iOCG/ACG described in Chapter 4 identifies stack allocatable object

instances, a specialized version of the method could be created - for example, copying

the main code buffer contents to a new memory location, replacing the instructions used

to access the now stack allocated object instance, and returning a pointer to this new

location. When the method's execution completes, since this was calling context specific,

the code space is collected. This can be done as a trigger on the call stack, thus allowing

the code space used to house the specialized versions to be collected. Collecting and

regenerating the optimized segments can prove expensive. Therefore, in Chapter 7, we

address some future work that may allow efficient context matching and reuse some of

the optimized methods.

5.3.1.1 Flushing of stack allocated object instances

For optimizalion time stack allocation decisions described in Chapter 3, the decision

is based on the modei being used - always safe, sometimes safe, or speculative. However,

in the event of a validation failure, the object instance may need to be moved from the

stack to the heap. This can involve additional overhead both in the implementation and

the design.

If object instances have been allocated on the stack instead of through the heap, then

when flushing the object instance, all reference fields must also be updated. Therefore,

the decision as to which object instances to stack allocate needs to be weighed against

135



the recovery cost of validation failure events including the expected failure frequency.

Therefore, once an object instance has been identified as stack allocatable, the next

important criterion for determining whether or not to stack allocate it is the type of

fields it contains. We ciassify the object type criteria for stack ailocation progressing

from easiest to implement and recover from to hardest, as follows:

1. All fields of the object are primitive values.

2. One or more reference fields in the object but all reference fields for the given object

instance point to stack allocated object instances.

3. One or more reference fields in the object and the reference fields may point to

stack or heap allocated object instances.

For the first case, all fields are primitive: should the object instance need flushing,

then only the stack allocated object instance is affected. Therefore, the flushing is a

simple copy from the stack to the heap. For the second case, all reference fields point to

other stack allocated object instances, then the flushing of one object instance may have

a rippie affect. For example, if other stack allocated object instances point to it, then

they also must be flushed to the heap for this property to be maintained. Note that the

efficient implementation of such a property may require the use of double-ended pointers

to keep track of a1l object instances with fields pointing to a given object instance. This

overhead could mitigate any benefit from the optimizalion. The third case complicates

the second even further. Note that when the memory manager collects unused memory

locations, it often moves object instances within the memory space. Under this model,
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even if an object instance that had been stack allocated should remain stack allocated,

then at every garbage collection epic, the reference fields accessing heap allocated object

instances would need updating. Therefore, when implementing a speculative optimization

model, it may be desirable to restrict stack allocated object instances to case 1.

Although stack allocation of object instances has the potential to show significant per-

formance improvement, care should be taken when applying the speculative optimization

model to this form of optimization so as to not mitigate the benefits.

5.3.2 Synchronization removal

In Section 3.4.2, we showed how the iCDG could be used to identify redundant and

unnecessary synchronization operations. FurthermoreT we showed how these operations

could be eliminated. In this section we address the types of validation, rollback, and

recovery necessary for both the sometimes safe and speculative optimization models.

In the someti,mes safe model, nested synchronization may be removed along one of

the paths but not the other path. This is because the other path is assumed unbounded,

meaning the set of potential targets for the callee could expand at any instance. Further-

more, the expanded set has the potential of allowing to escape an object instance that

was thread-local based on the iCDG when the code was optimized. Therefore, in order

to enable aggressive optimizations, the someti,me sale model needs to check the escaping

state of references passed across the callee boundary to determine if it is safe to continue

in, or possibly even return to the optimized version of the code. This level of validation

can again be accomplished using the CDGs for the callees.
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class syncClazzA extends syncClazz {
synchronized void Foo(slmcclazz o t

syncClazz r = new slmcclazzAO t
<s lmcClazz> ( r )  ;
synchron ized( r )  {

Y  
-  4 ,

o . f  . B a r ( p ,  q ) ;
)

)
i

V

A

Figure 5.14 A new subclass of syncClazz in Figure 3.6.

Figure 5.14 shows a new synchronized class file that extends the syncClazz introduced

in Figure 3.6. At the time the optimizer runs, syncCLazz and syncCLazzA have been

loaded by the runtime. While optimizing Hoe, the optimizer makes the decision under

the sometimes safe model, to inline the sync0lazzA version of Foo. The optimizer then

makes the decision to inline the context monomorphic version of Bar when the context

is from classes SyncClazz or SyncClazzA. Once inlined, the optimizer is able to remove

synchronization operations from the call to Foo, and Bar, as well as the synchronized

block within the syncC1.azzl implementation of Foo. However, the internal removal
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5 2 8 :
529, :
5 3 0 :
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5 4 0 :
5 4 1 :
542: .
5r3 :
5 l t :
5 t 5 :
516 r
517 t
518  r
5 { 9 :
5 5 0 :
5 5 1 :
5 5 2 :
5 5 3 :
5 5 4 :
5 5 5 :
5 5 6 :
5 5 7  :
5 5 8 :
5 5 9 :
5 6 0 :
5 6 L :
5 6 2 :
5 6 3 :
564: .

s lmchronized Hoe(s lmcClazz o)  {
/ /same as before
//embedded check
if (o inetanccof slzacClazzA)

//ialined versioD of, Foo
I lsyacCLazzl
//enbcdded chec*,

fro

tf(o.f inetsancoof, eyacClazzA I
o. f iaetaaceof elzacClazz ) (
//no glracronization block
q . r t
//inliaed version of Bar fron
I leytcCLazz

)  e l se  {
//embedded check failure
slmchronized (r) t

q = r i
o . f  . B a r ( p , q ) ;

)
)

)  e l se  t
//embedded check failure
o . F o o ( a , b )  ;

)

Figure 5.L5 The conceptual view of the sometimes sz,fe inlined version of Hoe.

of the synchronization block is only done on one path. On the alternative path, the

synchronization is still present.

Figure 5.15 shows a conceptual view of the somet'irnes sale optimization model for

this form of optimization. Note that there axe two embedded validation checks, one at

line 543 to determine if the inlined version of Foo is valid, and one on lines 547 and.

548 to determine if the inlined version of Bar is correct. For the second check. on the

vaiidation failure branch, the svnchronization block remains intact. The second branch
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5 9 2 :
5 9 3  :
5 9  4 :

synchron ized Hoe(s lmcClazz  o)  i
/  /sane as before
//embedded check
i f  (o  ins tanceof  s lmcClazzA)  {

/ / in l ined  vers ion  o f  Foo f

/ / symcClazzA

//embedded check
i f  (o .  f  instanceof  s lmcCLazzA |  |

o . f  i ns tanceo f  s lmcC lazz )  {
/ /no symcronization block
q = r , '
/ / in l ined vers ion of  Bar  f rom
/ / syncClazz

i  e l s e  {
//embedded check failure
if (lotllrrl 2 in thc CDG of Bar door

q = r ;
o . f  . B a r ( p , q ) ;

)  e l s e  {
synchronized(r)  {

Y .  -  r ,

o . f  . B a r ( p , q ) ;
)

)
)

a ' l  c a  F

//embedded check failure
o .  F o o  ( a ,  b )  ;

)

not qscaDo) (

Figure 5.16 The conceptual view of lhe someti,rnes safe inlined version of Hoe utilizing
the CDG.

could have been optimized further by eliminating the synchronization block there as well

if the CDG for any new version of Bar is checked.

Figure 5.16 now shows a somet'inxes safe version of Hoe which becomes more aggressive

by exploiting CDG information. In this version we perform not just a type check on o. f ,

but in the event this type check fails, we perform a property check on the CDG of the

new version of Bar. On line 580, the optimized version checks the CDG to see if the new

Sometime safe check
using CDG information
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version of Bar still retains the property allowing the synchronization removal. If it does

not, then a version with the synchronization block is called.

5.3.3 Code motion after inlining

Sometimes even though an optimization is someti,me safe, the information in the

iCDG can be used to help guide code motion decisions. For example, in the sometimes

sale optimized version of Hoe shown in Figure 5.16, the assignment q = r occurs in each

of the branches. F\rrthermore, from the CDG for the syn.cCJ.azzA version of Foo shown in

Figure 5.14 it can be seen that the value of r remains thread,local in the region preceding

the call to Bar. Therefore, the assignment statement can be moved out of the blocks

and above the first validation check at line 573. This new version of Hoe is shown in

Figure 5.17. The optimizer can employ similar uses of the CDG information to perform

code motion and potentially improve the level of optimization.

5.4 Conclusions

In this chapter we have presented many new concepts and ideas. We have classified

not only the types of optimizations but also deveioped models for validation, rollback,

and recovery. We have shown, in most cases, how the CDG, ACG, and subsequent iCDG

can be used to implement several forms of validation. We have motivated the design of

this validation, roilback, and recovery system with intuitive examples. In Chapter 7, we

discuss future work for implementing this portion of the framework.
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Figure 5.17 The new version of Hoe after code motion for Figure 5.14.
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CHAPTER 6

RETATED WORK

The research presented in this disseration builds upon the past research of several

researchers. First, in the field of program analysis several of the techniques used here were

developed from research in the field of object oriented program anaiysis. Although the

majority of this work related to languages such as C+* or SmallTalk, it was still partially

applicable to this problem domain. Additionally, over the past several years, many

researchers have mapped Java back into a "closed-world" model in order to explore the

opportunities for optimization. Some of these researchers have expanded into the realm of

dynamic analysis focusing on a subset of the problem set. In addition, we have designed

specific runtimes additions and therefore the design of Java runtime implementations is

also related to our work. In this chapter, we review the previous research most closely

related to the work here. We compare our work and design with the work of these

researchers.

6.1 Static Analysis

Research into the use and behavior of references within an application as been an

active topic for several years. The focus has ranged from trying to track the behavior
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of references in programs, to trying to determine an efficient cail graph for polymorphic

languages, thus reducing the analysis space. However, reference tracking or alias anal-

ysis can be complicated in object oriented languages by the inclusion of reference fields

within objects. Deutsch, [7] presents a technique for alias analysis that actually attempts

to follow the fields within structures. It uses a numbering technique to identify the fields

and works well when the set of class files is closed. However, in a dynamically loaded

application, this assumption is not valid. Diwan et al. [39] describes a type based alias

analysis for modulo-3 programs and its extensions into Java. They start by showing

results for an analysis based only on type information. They then apply several improve-

ments from field disambiguation to, finally, flow sensitivity. They also demonstrate that

type information in strongly typed languages such as Java can be used to reduce the

conservativeness of assumptions when optimizing an incomplete program. Furthermore,

they show that parameter types can be used to eliminate potential aliases from the set of

aliases. We have incorporated both the field disambiguation and the flow sensitivity in

the CDG representation. Furthermore, we do not try to eliminate potential aliases. This

is because our interprocedural analysis is dynamic, and in most cases the elimination of

extraneous classes is an artifact of the svstem.

6.1.1 Class hierarchy and call graphs

Restricting the input set of class files in a polymorphic application is critical in static

analysis in order to bound the analysis space. Reducing the number of class files assumed

used by an application can also reduce the amount of conservation in the analysis and
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thus increase the precision of the results. DeFouw et al. [S] try to restrict the set of

class files needed for the call graph construction by computing a set of classes that a

runtime variable can resolve to. They then use this to cull out unreachable procedures

from the call graph. The method is successful in reducing the size of the cali graph

when the full set of files used by an application can be assumed closed. Grove et al. [10]

focus on the same problem space, reducing the number of targets in a call graph for a

polymorphic application. They studied Cecil and C++ appiications and found that the

target of virtual function calls within a given application tended to have a very peaked

distribution. Furthermore, they discovered that this distribution remained relatively

consistent through several generations of the application. Although static, this finding

may extrapolate to changes in a dynamic application. As such, the information could be

exploited to reduce some of the overhead in our system. We address this in our future

work section.

Bacon and Sweeney [12] compared three static methods of virtual function resolution:

unique name (UN), class hierarchy analysis (CHA), and rapid type analysis (RTA). The

UN is a Iink time algorithm and looks for unique names within the object files to elim-

inate those calls as being virtual. CHA uses the statically declared types of the objects

in combination with the class hierarchy of the program to determine virtual method res-

olution. RTA improves upon CHA by using instantiated type information to reduce the

potential call sites in the graph. All three depend and require access to the full code for

the application. The introduction of new subtypes or code dynamically to any of the

methods could cause the analysis results to be incorrect. For an application that has
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full code knowledge, the RTA performed the best of the three methods with comparable

costs to the CHA. As we addressed in Chapter 3 the dynamic nature of our problem

space automatically culls a large portion of the class hierarchy for us. Although the full

dynamic class hierarchy may be too much for a smaller region of the application, the

use of CDG information when resolving targets in the ACG/iCDG construct eliminates

additional potential targets. Therefore, in our model, we do not attempt to employ these

techniques.

Calder and Grunwald [11] showed that profile information can accurately predict

targets of indirect function calls, thus reducing the costs of resolution. By resolving

the target of indirect calls via profiling, the calls for the common target can be inlined

with a check used for the uncommon branch. They showed that this aliows not only

the optimizations normally associated with inlining but also allows the branch target

hardware to predict the branch and eliminate the need to stall while the indirect call is

resolved. This is similar to our somet'ime sale model of optimization. The interesting

finding in their work is the effect of the check on the branch target buffer (BTB), thus

suggesting the costs may be mitigated by standard hardware features. We have not

examined this closely and consider an investigation of exploiting the BTB and potentially

predicate registers in a given hardware design to facilitate some of the validation and

optimization models as future work.

Sundaresan et al. [21] build a call graph starting with a class hierarchy graph of all

the class files in the application. They approximate the runtime types of the receivers

when building the call graph. They refine RTA by using a reachability graph. The graph
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maps assignments to the types that can possibly reach a given node N. Therefore, a type

must not only be instantiated in the program but must also have a valid path to the

node in the call graph. They aiso collapse strongly connected components in their graph

using a set of types to represent the type of the new node. They show that with the

mapping back to class type and the collapsed nodes, their analysis can be performed in

linear time. Again, their work hinges on a static "closed-world" view of the application.

There may be some gain during the construction of the ACG/iCDG by employing these

techniques to further reduce the set of potential targets.

Grove et al. [14] developed a formal specification for call graphs based on a lat-

tice modei. They then used this specification to evaluate different context sensitive and

context insensitive call graph construction algorithms. They found, at the time, that

interprocedural analysis had a noticeable impact on Cecil applications but not as sub-

stantial an impact on Java applications. However, this work was conducted soon after

the introduction of Java as a programming language. Java applications have grown sub-

stantially in both size and complexity since this early work. They have also increased in

the level and degree to which they employ the polymorphic properties of the language

thus making their behavior closer to the Cecil programs studied in this work. They

did find that flow sensitivity improved the results but did not scale well with the level

of improvement versus the increase complexity. In our design, we incorporate the flow

sensitivity in the intraprocedural analysis phase. We then store information on all po-

tential definitions that can reach a given use in our CDG representation. Combining this

with other techniques, the runtime can choose the desired amount of interprocedural flow
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sensitivity dependent on the cost constraints of the system. This allows the runtime to

incorporate a reasonable level of flow sensitivity into the particular analysis, scaling it

as desired. We have not done a cost/benefit analysis on how much gain there is from

different levels of flow sensitivity during the ACG/iCDG construction phase. This is

part of the future work. Grove et al. also found that interprocedural escape analysis

was sufficient in enabling allocation optimization. They also suggested there could be

a substantial gain from incremental algorithms not only for scalability but for handling

dynamic class loading features.

6.1.2 Interprocedural propagation

Object oriented programming styles tend to use polymorphism to implement control

decisions. This tends to make the program decision logic more call-based than languages

such as C. Therefore, the need for interprocedural analysis in order to optimize becomes

more critical. Research into the analysis of object oriented applications has centered

around the need for interprocedural analysis and the need to answer if not the general

question of how references or data behaves, then a specific question.

Burke [40] deals with interprocedural analysis in Pascal and Fortran style programs.

They use summary functions to represent the intraprocedural information and then prop-

agate the information interprocedurally using the resulting summary function. The use

of intraprocedural summary functions is similar in concept to our use of CDGs. How-

ever, the information we include in the CDG goes beyond that of a standard summary

function, thus enabling a wider range of analysis and, ultimately, optimizations.
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Chatterjee et al. [2] use a similar approach with summaries of the intraprocedural

information. They adapt the approach to polymorphic languages forming a class hier-

archy and conservative call graph for the interprocedural propagation phase. We take

a similar approach with our use of CDGs for the procedures and the combining of the

CDGs interprocedurally to find a solution. However, the dataflow element (dfelm) rsed

in their analysis represents only points to pairs and potential pairs either intraprocedu-

rally or propagated interprocedurally. They do not retain the information on the type

or use, which we do retain in the CDG. The additional information contained within

our CDG representation aliows us to utilize it for a wider range of analysis as detailed in

Chapters 3 and 5. Additionally, because they have a closed worldview, they combine the

information from all potential call sites at a given node in the call graph. We, instead,

only try to combine in this fashion in the speculative optimization model. In our other

models, we avoid combining the CDG information from multiple potential targets when

forming the iCDG. Goodwin [9] also addresses the problem of interprocedural analysis.

He uses the analysis to compute live registers and thus improve register allocation in

an actual optimizer. He handles the dynamic portion of the application, such as calls

to dynamically linked libraries, conservatively. Since we delay the interprocedural phase

until runtime, our analysis can eliminate some if not all of this conservatism, making our

results potentiaily more precise.

However, sometimes a general solution is more than is necessary. Another form of

static analysis that is similar to the work we have done is that of program slicing. A

program slice is a form of analysis where the state of a program is examined at a given
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point in order to answer a specific question. This is similar in concept to the work we pre-

sented in Chapter 4 where we looked at a specific context of the execution state ro answer

the specific questions concerning stack allocation of object instances. Duesterwald et al.

[5] and Horwitz et al. l2 ] both present techniques to solve interprocedural equations

for specific answers by walking backwards through the call graph and terminating once

an answer is found. Reps and Rosay [6] describe a form of programming slicing called

chopping. They use the chop or slice of a program at a given point with a given state

to answer a specific question. They do assume that they have a closed worldview of the

application.

6.2 Java Specific Research

Early research into Java applications approached the problem by applying techniques

from earlier research into object oriented languages. They mapped the dynamic applica-

tion state of Java back into a closed worldview of the application and focused on areas

that set Java apart from the other languages.

6.2.L Escape analysis

One key concept soon surfaced as a delineating factor in Java applications and that

was the use of threads. Research soon focused on how to determine which object instances

were shared among threads and which remained local to a given thread. Blanchet [15]

published one of the first works in this area and used the term "escape analysis" to de-
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scribe his technique. One of his primary contributions is the use of height information to

represent the fields and relationships between objects in a program. He then constructed

the full call graph for the application, and used a forward and reverse traversal algorithm

using iteration to settle strongly connected subgraphs. This is similar to how we settled

the strongly connected components in the ACG/iCDG construction. The difference be-

ing that he is using a points-to relation and connecting the intraprocedural information

conservatively relying on the type height values to cull out extraneous procedures. We,

on the other hand, contain more than just points-to information in the CDG. Therefore,

we only connect the components if the context matches and stop at a maximum depth

otherwise. His work focused on method local determination and stack allocation of ob-

ject instances. One of the first works to show a performance improvement in this area,

his system was implemented in turbo-J which converts Java to C code. The main draw-

back of his work is that it assumes a closed worldview of the application when making

the height determination for the fields and the relationships between the objects. It is

not clear from this work how the technique can be adapted when the set of class files

may change. The dynamic changes could invalidate height assignments by enclosing new

cyclic regions into the class hierarchy representation he uses.

Aldrich et al. [20] also present a method of performing escape analysis on a closed

worldview of a Java application. They use the results of the escape analysis to eliminate

redundant synchronization. They are also able to eliminate synchronization on thread

local objects. They showed a significant performance gain could be achieved if these

redundant operations were discovered and eliminated. Ruf [16] presents a similar tech-
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nique using a closed-world static view of a Java application to perform escape analysis

for synchronization removal. What made his work unique is that he does not restrict syn-

chronization removal to only thread local object instances but also tracks *no u.tuutty

locks each unique object, whether or not it has escaped the control of a single thread.

Because he uses a closed worldview, he is able to perform this level of determination, and

therefore can remove synchronization from global objects that are provably only synchro-

nized by one thread. The call graph he uses employs a form of method specialization to

handle calling context by duplicating the method summary at each call site and unifying

it for both the caller and callee. This is similar in concept to our speculati,ue optimization

portion of the mixed model described in Section 5.1.4 of Chapter 5. He uses context sen-

sitivity in his alias analysis tracking, which allows him to do a better job of identifying

objects that are only synchronized by one thread. We showed in Chapter 3 how our

CDG/ACG formulation could be used to perform a similar form of escape analysis on

a dynamic application. By using the CDG/ACG, the closed-world assumption of these

previous researchers can be relaxed. We then showed in Chapter 5 how our system en-

abled aggressive optimizations by incorporating the appropriate validation and rollback

mechanisms.

Rountev et al. [18] describe a method of doing points-to analysis for Java programs

in such a way as to annotate the information in the points-to graph to included more

detailed method and field information. By doing this, the authors show they can reduce

the space required to hold the points-to graphs since the field information results in

smaller graphs. With the smaller graph, they can also improve the accuracy of call
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graph construction over HfA since the method information allows for better resolution

of virtual function calls. They also show that the information can be used to identify

method local and thread local objects. They assume access to the entire application code

and do not address the problems associated with dynamic class discovery. Although we

include more specific use information about the object instance, we also include field

information in the CDG. The points-to relation we derive from the CDG, as described in

Chapter 4, folds out this information to enable a very swift interprocedural propagation.

However, because the field information is present, their form of points-to relation could

be derived from the CDG if so desired.

Choi et al. [25] describe a method of performing escape analysis that uses an abstrac-

tion called a connection graph to represent the interrelationships between objects. Nodes

in the graph contain a set of information pointers that point to fields of the object: a

points-to edge that is established at a creation point, and deferred edges for assignment

statements. A set of possible definitions for a variable are located by traversing all of

its deferred edges until they terminate in points-to edges. They talk about the notion of

bottom graphs to handle methods for which they do not yet have an analysis, such as

native methods or methods not yet ioaded. They say they exploit the strong type system

in Java to resolve these. Thev do not talk about how thev handle the dvnamic class file

Iocation and creation in Java where a new subclass could appear at any moment. This

would mean that almost all of the methods have the potential of being bottom methods.

They do not state how they handle the escaping value of object instances that could be

passed to bottom methods.
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Bogda and Hulzle [17] present an interesting method of performing a quick version

of coarse grain escape analysis. They ignore the control flow in the first pass, only

looking for certain types of expressions and setting an escaping property based on the

expression. They define the notion of s- escaping, that a reference is stored in a heap

object and therefore the reference value escapes the stack. With this definition, they

identify expressions of the form x.f - y and y : x.f as s- escaping and propagate this

information to formal parameters of calls. The assignment must be to an already s-

escaping reference or to a ciass object (static). Exceptions are treated as s-escaping

and arrays are treated as one whole object. They perform the analysis on the OSUIF

intermediate representation, which has already transformed the code into expression trees

based on a static closure of the application. The static closure conservatively maps all

polymorphic call sites to the full set of legal methods for the resolution. The technique

provides a conservative and safe solution to the problem space. We have taken a different

approach in that we identify these types of expressions as reference affecti,ng during the

intraprocedural analysis phase. We, however, do not try to propagate properties during

this phase, but rather compactly represent the relations and properties in the CDG.

This enables our technique to not only improve precision by delaying the interprocedural

propagation until we have a ACG, but also to cover a wider problem space than their

solution.
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6.2.2 Static stability, (6leaf" class/procedure determination

Some researchers focused on how to discover portions of the Java application that

could not change in the presence of dynamic class loading. They then optimized these

portions based on the provable stability of the code segments.

Ghemawat et ai. [41] performs a form of analysis restricted to individual class files,

called field analysi,s. Their analysis derives properties about fields in a given class file

using Java declarations such as public, protected, and private. They then examine every

load and store to a static single assignment (SSA) form of the methods within the class

file to determine such properties as never null or always class C, not a subclass of C.

They determine whether or not a field is always initialized, can be inlined, can be leaked,

etc. Then then use these properties to determine if a reference escapes a method. In this

regard, their work is similar to our always sa/e optimtzalion model. The key differences

are that we perform our analysis and determination on a particular application's use of

the class files and do not restrict the analysis to a single class file.

Zaks et al. [22] present a form of static analysis that exploits the Java package

security guarantees to "seal" a set of calls. By extrapolating these security guarantees

into provable states for classes and methods within the package, they can devirtualize

call sites within the package. They construct a class hierarchy graph of each package,

then traverse the graph for a given method to determine whether or not it is sealed. Only

methods found not to escape the package are sealed. They showed a performance gain

from this form of optimization. This work is complementary to our work and part of
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what we use to define "leaf" procedures in the alwaEs safe optimization model described

in Chapter 5.

Sreedhar et al. [23] define a system that analyzes part of the application prior to

execution. Their analysis allows them to determine methods that can only resolve to

one possible target at runtime even if a new class is loaded, extant, and methods that

could have a different target at runtime if their type is different due to class loading,

nonextant. They also present a framework for how to identify where to place checks for

nonextant methods so that the correct version of the code is called. This is similar to the

ACG known and speculati,ue nodes and the always sale optimization model. However,

we make no assumptions about the application ahead of time. Therefore, we can handle

a fully dynamic application.

6.2.3 Addressing dynamic applications

Several researchers have also begun to study the problems associated with optimizing

a dynamic application. Whaley and Rinard 142] wre among the first to address the issues

of dynamic application analysis with the creation of the points-to escape graph. This

graph is used to determine escaping information via a compositional points-to graph.

The program is represented with CFG that has only those statements that are relevant

to the analysis. This is similar to the representation we describe in Chapter 2 for the

intraprocedural phase of our analysis. They do not, however, discuss how they represent

exception controi flow or finally blocks within their CFG representation, but state in the

paper this is assumed correct. For interprocedural phase, Whaley uses a call graph to
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determine caller-callee pairs. The points-to graph contains nodes for each object creation

point, and there are several fine grain variations on the node types described in the paper.

It then represents interactions between the nodes in the graph via edges. The algorithm

allows for the insertion of new information should an unknown callee become resolved.

They do not discuss how they conclude that a callee site has obtained all potential callees,

handle dynamic class creation, or how they adjust information in the presence of behavior

changes in the application. The algorithm computes a safe solution using a join at call

sites. The points-to escape graph is similar in concept to the CDG; however, the CDG

contains both finer grain detail for the object instances and flow sensitive information.

Furthermore, we do not restrict nodes in the CDG to just creation nodes. In this regard,

the points-to escape graph is closer to a directed form of the OCG described in Chapter 4.

Whaley later expanded this work to enable a form of partial method optimization [26].

They use profiling to identify rare code block as BBs that were not executed at all during

the profiling phase. They replace rare BBs with stubs that transition to interpreted code.

They ignore rare paths in their escape analysis and stack allocate objects that are method

local. If the object could escape along the rare path and the execution traverses to the

rare path, then the objects are copied from the stack to the main heap and pointers are

updated. This approach is similar to what we discussed in Chapter 5 for Nhe somet'ime

sale model of stack allocation. We, however, address not only the concerns of a single

object flushing but also related objects.

Vivien and Rinard [43] present a system that uses the points-to escape graph in a

dynamic optimizing runtime. They compute partial points-to escape graphs that denote
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objects that escape their allocating method. They do this dynamically with resolution of

method information dynamically folded in. In their approach, each method has a points-

to escapes graph for the objects it uses. Information from each method is folded back into

the bigger picture. For methods not yet resolved, the objects are considered escaping

and the method is marked as unresolved. The algorithm computes which unresolved

method could produce the best returns and analyzes that one next. They perform the

analysis on a CFG which has been preprocessed to contain only the reference information,

assignments, field accesses (load and store), creations, and invocations. This is similar to

the CFG we use in Chapter 2. Each method is initially processed under the assumption

that the parameters are unaliased. If parameters are found to alias, the nodes are merged

to conservatively represent the aliases. This is similar to our use of the CDG to construct

the OCG in Chapter 4. The primary difference between the OCG we use and the points-to

escape graph used here is that we have removed direction from our graph, thus enabling

swift, dynamic decisions on first invocation.

Several researchers have applied the points-to escape graph representation to static

analysis as well. Salcianu and Rinardl44) expand points-to escape graphs to now cover

multiple threads executing together. The goal is to verify region based allocation schemes

where objects used within the lifetime of regions of a group of threads do not exceed the

region. This is common in many forms of parallel applications. The goal of this analysis

is to allocate the object instances together, thus freeing the whole block once the region

completes. Therefore, they look for references that outlive a region, thus escaping the

region, versus escaping a given thread. In this regard, it is similar to our use of the
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CDG/ACG information to provide hints to the memory manager for allocation. They

can also use the thread graph to discover objects that are shared between the treads but

only synchronized by one thread or separated by thread start barriers. This allows them

to eliminate synchronization on objects that intrathread algorithms could not identify.

Our CDG/ACG representation could be used to perform a similar form of static analysis.

Souter and Pollock [45] use a modified version of the points-to escape graph to study the

def-use association between aggregate members of classes in the calling context of a

class/application. An aggregate relation is when a class of type A contains fields of

class B. They used the modified version of the points-to escape graph to compute and

represent the def-use information. They suggest that the improved def-use information

computed by their annotations to the points-to escape graph could be used to improve

program testing tools. This type of information is already contained within our CDG

representation. Therefore, the CDG could be employed in a similar fashion for program

testing.

Several researchers have also presented the use of partial information to perform

optimizations in a running application. They also suggest that some form of validation

and rollback may be necessary. Pechtchanski and Sarkar [46] perform an optimistic

optimization on a partial call graph as then known by the application. This is similar

to our optimization models based on the ACG formulation as described in Chapter 5.

They use validation and have fix-up code for when the assumptions were incorrect. They

do not give detail on their validation system and speak very abstractly about registering

requests and performing corrections. This makes it difficult to understand how it actually
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accomplishes what they claim it does. To perform a form of validation, they use a value

graph for type information. The graph is used for type inference. Since a graph is

constructed in a single linear pass, a graph of each new method executed is constructed

and folded into the global graph. If a type assumption used for an optimization is

violated, the code is invalidated and execution returns through unoptimized code. They

do not perform analysis with this representation but only use it for quick validation.

The information in the CDG can be used for the same purpose. However, the CDG

contains much more information and enables a richer set of analysis and validation tools.

Therefore, our design solves a much larger problem space than the specific case value

graph. They also do not address the form of the validation or the mechanisms for

redirection to the unoptimized portion of the code.

Ishizaki et al. l 7] describe a form of devirtualization of methods using a partial CHA

of the appiication. They "fix up" code when they discover a new class that overrides a

method that had been devirtualized and inlined into another method. Thev locate the

collision by use of a result cache that contains not only the class resolution information,

but also address information on which locations in the code stream need patching. They

patch the code stream by inserting a branch to redirect to the new virtual call. If code

motion was used around the inlined site, the redirect of the branch may include fix-up

code. This is similar in concept and design to our validation registration described in

Chapter 5. The primary differences between our design and their result cache is our abil-

ity to specialize validations to specific state changes by use of the CDG. Furthermore, we

can specialize the rollback and recovery to the particular optimization. We also present
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a simpler design than the backward patching described here, with our use of redirection

stubs at the optimized code segment entry point. Although this adds overhead to the tar-

get sites, we assume the overhead is mitigated by the next run of the optimizer during the

next optimization phase of the runtime. Therefore, we view this added overhead as only

temporary. We further address the need to check-point and roll back should a devirtual-

ized method get overridden. However, we do not address the additional issues involved

with interface definitions and leave that expansion to future work. They also keep track

of how many dynamically loaded classes implement each interface. If only one class is

found to implement it at compile time for the given method, the interface invocation can

be weakened to a virtual invocation with the potential of further weakening.

6.2.4 Enabling aggressive optimization through annotations

The use of annotations within class files has also been suggested by other researchers.

Azevedo et al. [48] was one of the first published works to suggest the use of annota-

tions to improve code generation in a dynamic Java application. They present a set of

annotations to be derived from Java source code and annotated into the bytecode files.

They store the annotations using the attribute fields. We, on the other hand, do not

assume source level access and derive our information from the bytecode representation.

We do, however, also exploit the attribute properties of a bytecode file to persistently

maintain our intra-procedural information. They store information such as register al-

location, mapping it back to the bytecode stream. They are primarily concerned with

quick code generation. We, on the other hand, use annotation to store information about
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the interrelations of reference fields within a method. Our goal is to enable swift runtime

optimization by amortizing the costs of dynamic runtime analysis. Krintz and Calder [49]

also suggested that annotation may benefit runtime code generation. Their goals were to

design a generai purpose annotation that could be used by a wide range of optimizations

as well as reduce the size expansion of such an annotation. They reduce the size by using

a single Unicode character for the annotation type name in the constant pool and by

gzipping the annotations. Since all other VM wili silentiy ignore this annotation, only

theirs needs to know that it is in a gzip format. They annotate the entire class file, not

each method. They annotate information for global register allocation, flow graph con-

struction, inlining, profile based method priority (optimizing), and constant propagation.

Their annotations are application specific and cannot be used for library functions as of

this publication, but they plan to extend that. They are also runtime specific, while our

CDG is designed to be runtime independent.

6.2.5 Validation

Validation of threaded applications has been an active area of research for several

years. Recently, researchers have begun to address these concerns in Java applications.

Corbett [50] presents the design of a system that is capable of detecting unsafe sharing

and synchronization problems in multithreaded Java applications. They are capable in

their system to even identify globals as being "owned" by one thread. However, in order

to provide this level of provable results, they rely on a closed worldview of the application

and assume full application knowledge. They further assume, for simplification purposes,
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that all procedures have been inlined. To handle polymorphic call sites, they use test

cases for type determination and target the correct inlined code. We briefly mention in

Chapters 3 and 5 how our research can also be expanded to perform this form of anaiysis.

Naumovich et al. [51] also present a model for checking concurrent Java applications.

His work deals primarily with checking properties in concurrent Java programs by using

a representation called a Tface Flow Graph (TFG). The TFG represents programs as a

form of a CFG which contains only events they wish to reason about. They then perform

the analysis on the TFG and prove properties about the concurrent Java application.

Again, this work assumes a closed-world, full-knowledge view of the application.

6.2.6 Java runtime designs

Several researchers have discussed the design of Java runtimes and although we do not

restrict our work to a particular runtime design, we do discuss modifications that may be

necessary to utilize it. Therefore, the design of the Java runtimes is also related to our

work. Suganuma et al. [52] describe a Java runtime that uses a Mixed Mode Interpreter

(MMI) intermixing the execution of interpreted code and compiled code. The MMI

runtime shares the execution stack and exception handling mechanism between the two

types of execution. The runtime uses profiling based not only on method counts but

also on loop counts to discover which methods or sections of methods are candidates

for optimization. They employ three levels of optimization in their dynamic runtime

compiler to offset the cost-benefits of dynamic compilation. They do not address how

their optimized code deals with dynamic class loading. They only present optimization
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on a method boundary level with limited inlining, so it is possible that the dynamic

class loading issues are never a concern. Our system of analysis and validation would

complement their design by potentially efficiently enabling more aggressive optimizations

in all three optimization level of their runtime compiler.

Burke et al. [53] presents an overview of the IBM Jatapeno Java VM written entirely

in Java. Jaiapeno uses a compile only approach to bytecode execution. All bytecode is

compiled into machine code prior to execution. It uses back patching to support dynamic

loading of classes after compilation. The profiling system uses a context sensitive call

graph for maintaining information. The collected profile triggers the optimizing compiler

when certain thresholds are met. Their analysis and optimizations rely on several verifi-

able bytecode guarantees such as the stack height and type, and every variable must be

defined before use. We make the same assumptions in our analysis framework.

Kazi et al. [28] describe several types of systems for Java execution. They describe

details of very early Java execution systems including very early generations of the JIT

compilation architecture. They do give brief descriptions of Sun's Hotspot and IBM's

Jalapeno as the examples of dynamically optimizing environments. They also describe

some hardware implementations of the VM, although most of these projects are no ionger

active. They report on other Java analysis and optimization tools such as automatic

parallelization tools similar in structure to the Fortran automatic parallelization tools.

They cover some of the work in improving specific Java features such as synchronization

and Remote Method Invocation (RMI) calls. They talk about Java's shortcoming for

numeric computations and briefly discuss GC implementation. They then evaluate the
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benchmarks available for Java research. Although not directly related to our work, this

paper gives a good overview of the then available Java related tools.

6.3 other Forms of object oriented optimizations

Besides the forms of analysis and optimizations already addressed in this section,

there are other forms of object oriented optimizations. Some of these, such as object

inlining, do not have a clear means of implementation in the presence of dynamic class

loading. Object inlining, inlines the fields of one object that are themselves objects into

a parent object. It involves substituting the instances of the child object within the

application with the appropriate field accesses to the corresponding new parent object.

Dolby and Chien [13] describe a technique for performing object inlining. This paper

formalizes the definition of object inlining and gives examples of its use. They define the

notion of dynamic one-to-one as the determination that for a given execution, a child

object field has one and only one mapping for a given parent object. They then define the

transformation as first locating within an execution trace all one-to-one mappings, then

creating the new parents and locating all child accesses that must now be transformed.

Note that in the presence of dynamic class loading, new child classes can be loaded at any

time. Furthermore, new users of the created inlined obiect could appear at any point,

making it difficult to track and update the code space.

Although Java has single inheritance for class files, it allows multiple interfaces to

be implemented. This is in essence a form of multiple inheritance that can complicate
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Java optimizations. Alpern et aI. l27l describe a method of overcoming the three main

obstacles they see as inhibiting performance with interface calls. They are dynamic type

checking, method dispatch, and inhibited compiler optimizations. They explain that -

unlike the single class inheritance structure in Java class files that allows a VM to exploit

the virtual method table offsets to redirect subclass methods by using the same superclass

offset - interfaces could be implemented by unrelated classes and thus have no consistent

offset. They present a coloring scheme for interface resolution that has conflict stubs

for coloring conflicts. The also discuss how type information can be used to virtaulize

interfaces calls and even devirtualize them with the potential of inlining. Although our

work can be extended to incorporate interface calls, we do not address the particulars in

this thesis. Primarily, inclusion of interfaces in our design affects our runtime structures.

The representation of the interface hierarchy, the interface inheritance for class files, and

the ACG, all require adjustment to efficiently accommodate interfaces. However, the

design of the CDG remains unchanged.

Other forms of analysis and optimization are specific to Java. Aggarwal and Randall

[54] define a form of analysis called related field analysis. They say that related field

analysis can be viewed as proving an invariant about related fields. They give an example

of a loop that steps though the elements of an array. They analyze fields of the same

class where field A is an array type and field B is an integer type. They then look to

prove a relationship between the two fields. They then use this analysis to eliminate

array bounds checks. The field relation information in the CDG can be used to facilitate

this form of analysis.
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Choi et al. [55] present a form of CFG construction for Java applications that groups

exceptions that may be thrown in a BB into one factor edge connected to the appropriate

handler. In a normal CFG, control is broken at the potentially exception causing instruc-

tions, and they are connected to an appropriated intramethod handler or the exit block

for the CFG. They state that this modification could impact analysis techniques, espe-

cially backward propagation techniques. It does not complicate local forward analysis

but actually enables more optimizations because the BBs are larger in an FCFG than in a

traditional CFG. Because we used backward propagation for our intraprocedural analysis

described in Chapter 2, we did not employ this optimization to our CFG construction.

However, our intraprocedural analysis can be performed in a forward traversal. By trans-

forming the intraprocedural analysis to a forward propagation algorithm, we may be able

to take advantage of this optimization.

Fitzgerald et al. [56] use the detection of the construction of more than one thread of

execution as a means of detecting a multithreaded application. If they discover only one

thread, then they conclude that the application is single threaded and synchronization is

unnecessary and can be eliminated. They also determine an early region in an application

prior to the construction of the second thread when the application is in singie threaded

mode. They then can eliminate synchronization from these regions as well. Their work

was performed on an earlier version of the Java runtime with earlier libraries. They did

not address the newer library code in which helper threads are spawned very early in

the application's lifetime. It is not clear how their work could be extrapolated to handle

these cases.
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Liang et al. [19] present an exploration and evaluation of constructing points-to

graphs using adaptations to Steensgaard's and Andersen's algorithms. They explore

two methods of handling the "this" parameter; one method treats "this" as a formai

parameter and the other uses a simplification of field accesses which maps instances back

to the class to simplify the handling of "this." They use a constructed abstract syntax

tree representation of the applications to evaluate the effectiveness of the algorithms.

They evaluate the algorithms on three different approaches for virtual call resolution,

class hierarchy analysis, rapid type anaiysis, and a method that starts from main and

discovers the virtual targets that are correct at each call site. They call this method

FLY. They also rely on a user supplied model for handling container and table classes

such as the Vector and Hash tables in the Java libraries. They do not address how they

handle dynamic class resolution where the closure cannot be ascertained. They conclude

from their study that the best results come from applying Anderson's algorithm with

the field class mapping and either rapid type analysis or their on-the-fly analysis. Our

construction of the class hierarchy as the classes are loaded, and our on-demand ACG

construction, make our model similar to applying their FLY method. Therefore, their

results suggest that our dynamic resolution may also be optimal.
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CHAPTER 7

CONCTUSIONS AND FUTURE WORK

In this dissertation we have described the design of a framework for performing anal-

ysis in dynamically linked and loaded applications. This framework divided the problem

space into intraprocedural and interprocedural analysis. For the intraprocedural anal-

ysis, we described our representation for the interactions among reference values which

we called a Compact Dataflow Graph. For the interprocedural analysis, we presented

our design of an Adaptive Call Graph which differs from traditional call graphs in two

main ways. First, it is formed for the procedure being considered for optimization and

not necessarily the whole application. Second, it distinguishes between call sites that are

known and those that remain speculat'ioe within the graph. The ACG is then part of our

described framework for efficient and effective interprocedural analysis, which iteratively

forms the ACG in conjunction with the iCDG. We then presented an implementation

of our framework to solve the first invocation stack allocation analysis problem. We

demonstrated how information could be easily extracted from the CDG and formed an

intermediate structure that represented the points-to information within the graphs. We

then simulated a Java runtime that we constructed and evaluated the effectiveness of our

design by using traces collected from a production level runtime.
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We expanded our framework beyond its application to the dynamic analysis domain

into validation and recovery. We started by defining three optimization models for dy-

namic application optimizations: always safe, sometimes safe, and speculative. Then

for each of these three models, we described how our framework helped implement each

model. Furthermore, we described the validation necessary to enable aggressive optimiza-

tions, and the types of rollback and recovery needed in the event of validation failure.

Although in this dissertation we described our design of a new framework for inter-

procedural analysis, which presents a formable step in the construction of a dynamic

application analysis system, there is still a great deal of research left to be accomplished

within this domain.

7.L Context-Specific Analysis Result Retention

In the implementation of our framework that we described in Chapter 4, we made

no attempt to maintain and reuse intermediate or even previous interprocedural analysis

results. In turn, this means we also do not have the ability to retain and reuse the

optimization results.

The design of a reuse system consists of several layers, including storage, and locating

the correct optimized method versions for each context. The storage of multiple results

fbr a given method can be accomplished via a modification to the structure pointed to by

the method pointer. We show an abstract version of this modification in Figure 7.1. In

this modified method representation, an invocation of a method now takes an additional
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Method-rep -+

Figure 7.1 Theoretical modified method pointer to handle multiple context versions.

step besides the standard virtual table lookup. When an invocation for a given method

is made dynarnically, it is made with a certain context. This context is then matched

with the available contexts in the method representation. If a match is found, then that

version of the code is used with the default being the original code or Context 0 in

Figure 7.1.

The matching of a context is not as simple as Figure 7.1 implies. We made the

decision to discard intermediate analysis results not because of the new method repre-

sentation design but rather because of the difficulty in recognizing what was meant by a

context. The context for which a given analysis result is valid can be rather complex. For

example, not only is the exact type of the object instances being passed interprocedurally

important, but also how the fields within these object instance connect. The matching

of exact object instance types requires accessing the memory representation of the object

instance and recovering its exact ciass type. Then this set or types require matching

with the stored copy or potential copies of the intermediate results. One technique we

Optimized I

Optimized 2

Optimized 3
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proposed for efficiently implementing such a system may be a class numbering scheme

similar to the one used by Blanchett [15]. However, we cannot implement a height sys-

tem as simple as his since the class hierarchy is never assumed closed and the height

values may require realignment with each newly loaded class file. Instead, a system that

sequentially assigns a class id number to each newly loaded class file and then stores

that number within the runtime's representation for that class may be a viable solution.

Then when a new object instance of a given class is allocated, its memory representa-

tion contains the assigned number for that class file. With this design, when the types

of the context require matching, the numeric values can be retrieved from the memory

representations and matched with the stored context. This system would allow for even

don't care positions within the context identifiers shown in Figure 7.1.

However, there is more to a context than just the exact types of the object instance.

The analysis results often depend on the connections between the object instances as

well as their escaping state upon entry. This level of matching is not a problem for our

framework. Note that in Chapter 4, we showed how the bit vector was used to pass

connection and state information across the interorocedural boundaries. This same bit

vector approach could be used for the matching of the state information. The bit vector

associated with each pertinent type would also be part of the context identifiers shown

in Figure 7.1.

As future work, we hope to implement within the simulator several techniques for

matching context. We hope to be able to use the context matching to define an efficient

technique and be able to retain and reuse previous results.
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7.2 Quanti$ring the Validation Framework

Our validation framework described in Chapter 5 has not as of yet been implemented.

We foresee this framework as being potentially instrumental in the implementation of a

modified version of the Hot Spot detector developed by Merten et al. [57, 58]. With our

framework, it may be possible to retain optimized hot spots even in the presence of newly

loaded class files. It also may allow us to recognize when a currentiy active hot spot is no

Ionger valid due to the newly loaded class files. We hope to use the validation framework

in this way and measure its effectiveness in identifying potentially disqualified hot spots.

We hope to measure this in two ways: first, how effective our system is in identifying

which class file loads truly caused a hot spot disqualification and, second, how much

longer hot spots lived when the fine grain validation mechanisms are employed versus

straight class loading disqualification.

7.3 Accomidating Additional Java Features

Although we designed the analysis framework for use within the Java language, we

have not fully specified the design for additionai language features. This incorporation

should be fully explored before full incorporation of these techniques within a production

Java runtime. Among the Java language features yet to be fully specified are the use and

inheritance of the interface definitions, and the use of the iCDG for interprocedural

exception tracking.
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However, Java exceptions incur overhead that is not necessary when used in this fashion -

for example, the building of a stack trace that is discarded when the exception is caught.

The CDG representation does contain connections for targets of potential interpro-

cedural exceptions. However, we have not fully explored the use of the CDG to solve

this problem space. Therefore, we still need to determine if the inclusion of exit points

for all potential exception points when forming the CFG for the formation of the CDG

described in Appendix A, is necessary for the analysis of interprocedural exceptions. It

is not clear at this point whether or not this step is necessary, and further investigation

is still needed.

7.4 Additional Validation and Verification LJses

We believe that the validation system we described in Chapter 5 can be applied to

additional validation and verification domains. For example, the information contained

within the CDGs gives an accurate representation of the intraprocedural object instance

usage and state. This information could also be used to solve harder validation problems

such as data race detection.

7.4.I Race detection

The iCDG/ACG structures can be viewed as a first step in the design of a race

detection system. There are two ways of detecting races in an application: dynamically

or statically. In static race detection, a graph of the running threads with thread control
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boundaries is constructed. Flom this construction, properties are deduced about the

given threads. This requires fuli knowledge of the class files used by the application.

However, the appiications we are studying are dynamic. Therefore, it may not be possible

to build a static view of the application. Furthermore, since the class file input set to

the application could change at any time, the detection mechanism needs to be adaptive

as well.

The dynamic solution depends on the goal of the race detection system. For example,

in order to provide precision, the system may require far more overhead than is tolerable

in a running application. However, an alternative goal is to use race detection as a

means of providing stability to the system. For example, if the runtime can detect with

a reasonable amount of overhead that the application has a potential data race, then the

optimizer may choose not to optimize sacrificing performance for stability. Therefore, a

safe solution may be sufficient. To accomplish this, an intermediate structure similar to

the OCG we introduced in Chapter 4 may be needed. This use of the iCDG/ACG is

currently under investigation and therefore part of future work.

7.5 Extrapolation into Other Languages

Aithough our work was based on the Java language, we do not envision its use as

limited to just this language. Therefore, we view Java as a smaller subset of languages

such as C++. In extrapolating this research into other languages, we foresee several
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challenges but view them as adjusting the boundary conditions used in our problem

descriotion.

7.5.! Eliminated boundarv conditions

One restriction within Java that could be considered a boundary condition is the

single inheritance structure on the class hierarchy. The class hierarchy in C++ is more

complex with multiple parents. However, since C+* is statically linked and compiled

the solution is known. Therefore, what we discover dynamically can be provided by the

annotations in the C++ executables.

Another boundary condition within Java that is absent in C** is the use of a memory

manager. This boundary in Java makes is virtually impossible for even native code to

step into the space of another object instance and change it. This imposition is basically

because the representation of the object instances in memory as well as their locations

and relative locations to each other, is under the control of the memory manager. This

means that a code segment using a pointer to memory cannot make any assumptions

about what will be located at a given offset from it. In C++, often pointers are used

to step through memory locations, making the linking and alias tracking problem more

difficult. It may not be possible to sufficiently represent the links between object instance

since the relation may be dependent on unknown offsets. However, by employing some

of the techniques developed in alias analysis of C and C++ programs, a conservative,

safe representation may be achievable.
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7.6 Exploiting Hardware Specific Features

We conducted some early work on the evaluation of Java's eariy runtime implementa-

tions of certain hardware features [60]. At the time, we found that early Java interpreters

performed poorly on current hardware features such as Branch Target Buffers (BTBs).

Recently, some researchers have found that under the newer optimization models for Java

runtimes, this is not the case. They have suggested that certain forms of optimization

such as otr someti,mes safe model even benefit, not suffering the full cost of the added

check. This is because the branch is almost always one path with the rare case being

the other, thus making it easily predictable by most branch prediction hardware. One

area of exploration for this research is the use of hardware features such as the BTB or

predicate registers to enable forms of validation. We plan to evaluate how the forms of

optimization proposed in our Dynamic Application Analysis Flamework map to these

hardware features, as well as how each model's validation, rollback, and recovery can be

enhanced by certain forms of underlying hardware structures.
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APPENDIX A

BYTECODE LEVET ATGORITHM AND
ANNOTATIONS

In Chapter 2 we presented a source-level abstraction to describe the formation of

the CDG. However, one primary assumption of our system is that we will only have

access to a bytecode representation ofthe class file and not a source level version. Under

this assumption, the actual analysis used is designed to operate on a bytecode level

representation of the class files. F'urthermore, the final CDG is then written back out

using the annotation facilities provided by the Java specifications [29].

In this chapter, we describe the actual analysis for forming the CDG using only

the bytecode representation of the file. We present an example of this using the same

example method used in Chapter 2 for describing the source-level abstract version. We

then compare the resulting graphs, the abstract one in Chapter 2 and the CDG formed

from the the bytecode representation, and show that the two are equivalent. Finally, we

describe the format of the annotations added to the bvtecode files.
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A.1 Intraprocedural Algorithm for Forming CDG

The intraprocedural algorithm is performed in the following steps:

1. Form a traditional Control Flow Graph (CFG).

2. Adjust the CFG by breaking the Basi,c Blocks (BBs) and adding additional arcs

for Java specific language features.

3. Perform a linear pass over the graph to determine which temporary locations are

used by each instruction.

4. Remove any instruction not operating on a reference value.

5. Perform a flow-sensitive, iterative, backwards, dataflow propagation algorithm form-

ing an intermediate graph.

6. Reduce the results to a CDG.

The CFG is formed utilizing traditional methods for CFG construction as given in

[61]. It uses control flow to determine the Basi,c Block (BB) boundaries and then connects

the appropriate BBs. The main differences between a traditionai CFG and the one used

here is we also represent internal exception flow and subroutine arcs which are part of

the Java language.

A.1.1 Breaking BBs for exceptions and subroutines

In the event of an exception, the exception handling mechanism within Java redi

rects control to the nearest enclosing handler that is capable of handling the particular
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StArtPC ENdPC handlerPC type

0 20 23 myExceptionType

0 23 J J java.lang.Throwable

Table A.1 Exception scoping example.

(a) Before parent exception

(b) After parent exception

type of exception. For example, in Table A.l(a), the range covered by the handler for

nyExceptionType is from the bytecode instruction occurring at location 0 to the byte-

code instruction ending before location 20. The handler for this exception starts with

the bytecode instruction occurring at line 23. A table similar to the one shown in Ta-

ble A.1 is included in the bytecode file for each method containing a handler. When

an exception occurs, execution continues from the handler code forward, and does not

return to the point at which the exception occurred. Handlers can be contained within

the method (i.e., intraprocedural handlers), or in a caller method (i.e., interprocedural

handlers), with the degenerate case of no handler. In the intraprocedural analysis phase

we are concerned with the intraprocedural exceptions and connect the appropriate arcs

for both explicit and implicit exceptions.

startPC endPC handlerPC type

0 20 23 java.lang.Throwable

0 23 33 myExceptionType
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The explicitly thrown interprocedural exceptions are also represented in our refined

CFG. For handler ranges that enclose an invocation, we make a conservative assumption

that any callee covered by its range can return to it and form the appropriate connections.

Although implicit exceptions not handled intraprocedurally can be viewed as method exit

points, we do not represent these exits in our refined CFG.

In the event of an implicit exception, the object creation for the exception object is

handled by the virtual machine and not represented within the bytecode for the method;

therefore, we rely on the interprocedural analysis and profiling of the running application

to detect these exceptions.

The exception arcs added to the CFG are added in two phases. First, using the handler

ranges specified in the exception table for the bytecode file for the method (Table A.1),

the BBs are broken such that the range handled by a particular handler is completely

enclosed within a subset of BBs while maintaining the original control flow. These BBs

are then connected via a special exception arc to the specified handler. Note that in

locating the correct handler for a given exception type, the inheritance structure of the

exceptions is also considered.

The second phase breaks the BBs at the potential exception point, maintaining the

original control flow and adding a new arc to the appropriate handler. There are two

types of intraprocedural exceptions we represent within the CFG, implicit exceptions and

explicit exceptions. Implicit exceptions are exceptions that can be thrown by a subset of

the Java bytecode instructions. Table A.2 shows each set of bytecode instructions that

can cause an implicit exception or error to be thrown, and which errors or exceptions they
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Table A.2 Potential implicit runtime exceptions and errors thrown by specfic bytecode
instructions.

4
TT Bytecode Runtime Exceotions Runtime Errors

1 invokestatic User Defined Initialization errors
UnsatisfiedLinkError

2 invokespecial User Defined
NullPointerException

UnsatisfiedLinkError

3 invokevirtual User Defined
NullPointerException

AbstractMethodError
UnsatisfiedlinkError

A invokeinterface User Defined
NullPointerException

IncompatableClassChangeError
IllegalAccessError
AbstractMethodError
UnsatisfiedlinkError

r areturn IllegalMonitorSt ateException (none)

6 getstatic,
putstatic

(none) Initialization errors

7 checkcast ClassCastException (none)
8 getfield, NullPointerExceotion (none)

I instanceof (none) (none)
10 aaload, baload,

caload, daload,
faload, iaload,
Iaload, saload,
bastore, castore,
dastore, fastore,
iastore, lastore,
sastore

NullPointerException
ArraylndexOutOfBoundsException

(none)

1 i arraylength NegativeArraySizeException (none)

t2 aastore NullPointerException
ArraylndexOut OfBoundsException
ArrayStoreException

(none)

13 new (none) Initialization errors
T4 newarray,

multianewarray
anewarray

NegativeArraySizeException (none)

I D monltorenter NullPointerException (none)
l b monttorexlt NullPointerException

IllegalMonitorStateException
(none)

1 1 7
L I athrow User Defined

NullPointerException
IllegalMonitorStateException

(none)
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can throw. We classify these instructions into 17 sets based on the types of exceptions

and errors each set throws. Due to the polymorphic properties of the Java language,

it is possible for a parent class of these exception types to also catch and handle the

thrown exception. Figure A.1 shows a graphical view of the exception and error class

hierarchy for the implicit exceptions and errors shown in Table A.2. This hierarchy is

part of the standard Java library files and the hierarchy is defined in [29]. Under each

exception or error shown in Figure A.1 we have specified which set in from Table A.2 is

capable of reaching a handler of the given class type. Handlers of a parent type are valid

handlers for the exceptions and errors in Table A.2. The type of exception handled by

the handler connected by the exception arcs in the first pass, is used to define the set

of bytecode instructions that can reach it via throwing the appropriate type of implicit

exceptions. For example, if a BB is connected via an exception arc to a handler of type

ClassCastException, then the BB is broken at any checkcast instruction contained

within it and connected from that point directly to the handler.

The reason for this breaking and direct connection is that although the operand stack

has been emptied of all values except the exception object, the local variable locations are

still valid. It is possible for the handler code to affect the state of one or more of the local

variable values. This information needs to be collected and transfered up the reverse path

from the handler. The reason for connectins the exact instruction that can throw the

exception directly to the handler instead of the end of the BB, is that the local variabies

could change from the point where the exception is feasible and the actual end of the BB.

Therefore, in order to guarantee correctness, the exception point is connected directly
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AbstractMethodError
( 3 , 4 )

IllegalAccessError
( 4 )

LinkageError
( T , 2 , 3 , 4 , 6 , 1 3

( L , 6 , 1 3 )

VirtualMachineErnor - OutOflVlemorvError
( 1 3 )

Throwable
(all)

( 2 , 3 ,  4 , 5 , 7 , 8 , r 0 ,  ( 2 , 3 ,  4 , 5 , 7 ,  8 ,  L 0
r L , 1 2 , 1 4 , 1 5 ,  L I , 1 2 , : - 4 , L 5 ,

( 2 , 3 ,  4 ,  8 ,  L 0 ,  L 2 , ! 5 ,  L 6 ,  t 7  |

IllegalMonitorStateException
( s , 1 6 , 1 7 )

ClassCastException
( 7 )

IndexOutOfBoundsException - ArraylndexOutOfBoundsException
( r0  ,  L2 \ ( 1 0 , 1 2 )

L6, t7 ' , ) L 6 , ! 7 \

Figure A.1 A graphical hierarchy of the implicit bytecode exceptions.

to the handler by breaking the BB at any bytecode instruction that couid reach the

handler's exception type. The interprocedural exceptions are handled here by breaking

any BB containing a handler arc at any invocation bytecode instruction it contains and

adding an additional arc connecting it directly to the handler. These instructions are the

first four instructions listed in Table A.2. This connection is not precise but is safe. It is

possible to connect an invocation to a handler it can never reach. However, aithough we

include extraneous arcs, this can only increase the potential reachable uses for a given

definition and not reduce them since the original path is still included in the set. We

are able during the intraprocedural analysis propagation phase to cuil out some of the
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extraneous information added by these arcs. This will become clearer when we discuss

the intraprocedural analysis propagation.

The other type of exceptions are explicit exceptions thrown by using the key word

athrow. They can either be library exceptions like the ones shown in the implicit set in

Table A.2, or user defined exceptions that can subclass from any point in the hierarchy

of library exceptions as long as throwable is the root of the hierarchy [29]. Therefore,

explicit exceptions aiways break a BB and are conservatively connected to all enclosing

handlers for the BB stopping the scoping of the connections only if the handler type is

an exact match for the exception thrown. This conservative approach can add additional

control flow arcs to the graph but will not remove any arcs. Therefore, it can only add

superfluous information which is safe though not precise.

Subroutines in Java bytecode files are regions of code that the regular execution

stream explicitly redirects execution to. At the end of the subroutine, execution returns

to the next instruction in the regular stream. Subroutine regions can either be explicitly

added by a programmer or implicitly added by the Java source to Java bytecode compiler.

They are used primarily for freeing resources before continuing execution.

Subroutines can be called from multiple points within the Java method. Therefore

for the analysis, we use simple duplication of the subroutine blocks to avoid pollution

from connections to multiple streams that would occur if all streams were connected to

one instance of the subroutine blocks.

This completes the first two steps in the analysis process. The next step identifies

the operand stack and/or iocal variable locations used by a given bytecode instruction.
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L.L.2 Reducing anyalysis bytecode and assigning arguments

To assign the temporary locations used by each instruction we assume that the byte-

code is verifiable. This assumption can be lifted by simply performing the steps outlined

in [29] for bytecode verification. Verified bytecode guarantees that the operand stack

height will be the same upon entry to each BB no mater which path is used to reach

the BB. Furthermore, it guarantees that if a primitive value is written to a temporary

location, only a primitive value of the same type can be read from that location, and

likewise for reference values. Therefore, we can use a linear pass starting at the root BB

and traversing each BB only once to determine which temporary locations are used by

each instruction.

To reduce the number of instructions analyzed by the algorithm, we remove any

instruction that strictly uses primitive values. This is safe since these instructions cannot

operate on reference values or affect the contents of any temporary location containing

a reference value. Table A.3 gives the bytecode instructions that remain in the CFG

after this step. They are subcategorized into eighteen subcategories, based on the type

of instruction. The instructions account for 57 of the 202 assigned bytecodes, with

both aload-(n) and astore-<n> representing four distinct instructions each. The

percentage of these 57 instructions in the unique methods executed within the threaded

programs we used is given in Table A.4. The percentage comes into play if portions of

the analysis are performed at load time. For example, if the application dynamically
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Table A.3 Reference affect events and their bytecode instructions.

catagory bytecode instructions

pop PoP, PoP2
constant Idc, ldc-w, 1dc2-w, aconst-nulI
swap swap
stores astore, astore_< n >
dupli,cati,on dup, dup-x1, dup-x2, dup2, dup2-x1, dup2-x2
loads aload, al-oad-< n )
ercept'ion athrow
lock monitorenter
unlock monitorexit
allocation nelr, newarf?1r, angll4rray, nultianewarray
array store aastore, bastore, castore, dastore, fastore,

iastore,Iastore, sastore
arcay load aaload, baload, caload, daload, faload,

iaload, laload, saload, arraylength

field wri,te put f ie ld

field read checkcast, getf ieId, instanceof
statzc read getstat ic
stat'ic write putstatic
return arerurn
i,nuolte invokestatic, invokespecial, invokevirtual,

invokeinterface

Ioads an unannotated class file, the runtime may decide to create CDG dynamically for

each method used in the unannotated file.

The bytecodes listed in the eighteen subcatagories shown in Table A.3, are trans-

formed into a structure called a Reference Affecti,ng Euent (RAE), denoting it as an

event that can affect a reference value within the method. The RAE contains informa-

tion on which of the eighteen types it belongs to, the temporary locations it uses, and

some additional refining properties such as the bytecode line number it occurred at, a

field specifier and/or parameter locations.
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Table A.4 Percentage of dynamic instructions containing the bytecode instructions in
Table A.3.

Benchmark Program Library

JGFCrypt 5r.2% 64.0%
JGFLUFact 51.27 64.0%
JGFSOR 53.8Y0 63.9%
JGFSeries 60.4% 633%
JGFSparseMatnuIt 69.27 63.9%
JGFMolDyn 68.r% 63.9%
JGFRayTracer 67.3Y0 63.9%
Heat 62.9% 61.r%
Fib 70.7% 63.7%
MSort 63/% 60.9%
NQueens 67.0% 67.0%
BarrierJacobi 54.4% 63.1%
LU 68.6% 63.6%
MatrixMultiply 65.2% 63.7%
Total 63.6% 63.7Y0

The handling of implicit exceptions by the analysis is further refined here. Implicit

exceptions create a new object instance of the exception type, empty the operand stack,

and then "throw" the exception for the new type. When we perform RAE transformation

on the bytecode, we also add an allocatr,on RAE for any implicit exception arc that may

reach a handler in the CFG. This RAE is added to the top of the handler block. For

explicit exceptions, the information accumulated during the analysis of the handler is

merged into the exception allocated location. For impiicit exceptions, this object instance

became live at this point and the information for the object instance is saved. This will

become clearer in the next section.
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This then completes the third and fourth steps of the analysis. To this point, all

passes have been linear. It is the propagation step forming the intermediate graph that

is nonlinear.

Once transformed into an RAE representation, the intraprocedural analysis then

forms an intermediate graph by performing a reverse dataflow propagation algoritm.

A.1.3 Forming the intermediate graph

The static analysis operates on the RAE transformed CFG representation to form

an intermediate graph of the unique references used within the method. The graph

formed is defined in Table A.5. Note that this graph only assigns directed field accessing

edges and undirected use/define edges calied property edges. The directed dataflow edges

are added in the next pass by transforming this intermediate graph. The direction for

the dataflow edges is defined by the property type. Note that property nodes have a

difierent meaning in this analysis than what was defined before. Property nodes actually

hold all define and use information for a given node. Therefore, only the connections

between fields needs to be represented as directed. The use and d,efine edges can be

added once the temporaries have been removed from the graph. In this way, all use and

defi,ne information for each unique reference will have been merged into one location for

the reference instead of multiple temporary locations. This becomes clearer when the

next pass is described. The graph, iG, contains two types of nodes, n which are data

nodes, and P, which are property nodes. The property nodes contain all the use and

define information for a given data node. The data nodes can be viewed as temporary
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Symbol Definition

iG : ( n * , e * r P * )

(a :An edge

{ * ,  * }

{ - - t ,  * - - }

i-)'

connecting 2 nodes. Three types of edges
dirrected strong edge
dirrected weak edge
undirrected weak edge

TLi data nodes, {slulrl}
P : property nodes, {(L, l)l(U, Dl(ft , l) I (W, l)l(Gr, l)l(Gr, l)l

(7, l )  I  @, t) l (F)l(Pi, l )  |  (c, /))
where I is the line number.

Table A.5 Definition of the intraprocedural analysis graph.

n6lype Definition

51 : 0,n operand, stack locat'ion: ,i : 0, .., (mar-stack - I)

Ui : a local uari,able location: 'i : 0, .., (mar_local - I)

, x i:: reference ualue known used ,in the method but not
resi,di,ng 'in s or u

P type Definition

( L , l ) : a lock operat'ion occuring at li,ne I

(u, l ) : an unlock operati,on occuring at line I

( f t , l ) : a r€ad, operati,on occuri,ng at li,ne I

(w,D : a write operatton occuri,ng at li,ne I

(Gw, l ) : a write access of a global uariable occuring at l,ine I

(Gr ,L ::: a read access of a global uari,able occuring at li,ne I

( T , l ) : a thrown ercepti,on occuri,ng at li,ne I

( A , l ) : an allocati,on occuri,no at li,ne I

(F) : the jth formal parameter to the method

(P i ' l ) ::: the jth parameter to the method, called at line I

( " , 1 ) : a constant ualue loaded at li,ne I
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place holders for the use and define information concerning a given reference value. For

example, at the end of this propagation phase, a node, /s should have a property node

(Fs) attached to it. This is because, refering to Table A.5, F0 refers to the Oth formal

parameter to the method and the virtual machine specification state that this is passed

in local variable location zero 1291. Note that the property node, F6, would be the define

for the temporary location us and the transformation in the next pass will replace the

node ze with a new node corresponding to (Fo). A"V uses of zs will be connected via a

directed outgoing edge to the new node (f's). This is explained further when we describe

this transformation in the next section.

The data nodes can be connected to other data nodes via a directed field accessing

edge, e. They can also be connected to a property node via an undirected property

edge, p. The data nodes can be of three types, either an operand stack location, s, a

local variable locatiorr) t/) or none of the above, r. The formal parameters passed to a

procedure are passed in local variabie locations as defined in [29]. The procedure may use

additional local variable locations up to the maximum number specified in the method's

definition in the bytecode file; therefore, the intermediate graph is initialized with a node

location for each of the z nodes. The operand stack nodes are actually temporary holders.

They correspond to the locations on the operand stack being used during the execution

of the procedure. The operand stack is guarenteed not to exceed the value specified in

the bytecode representation of the method for the maximum stack height. Therefore,

the initialization of the intermediate graph also contains a node for each of the specified

stack locations. These define the initial work'ing set of. nodes for the graph. Note that
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by assuming verifiable bytecode, we are guaranteed that on entry to a procedure, the

operand stack is always empty. Since the algorithm performs a reverse propagation from

the exit points of the procedure up to the entry point, at the end of this pass, none of

the stack nodes should have edges attached to them.

A reference value defined within the procedure will have resided at one point in either

a node of type z or type s. It will not be present in the final set of these two types

of nodes. Therefore, we define the node set r, which holds the reference values defined

within a given method and the corrsponding edges. These new nodes ) r ) are added to the

graph as needed during the analysis. They are not present in the initial graph. When a

reference value residing during the analysis in a temporary location defined as the node

set z and s, is known to no longer reside there, a new node r is added to the graph and

all edges that were attached to the temporary node are now moved to the new node, r.

We therefore define "live" nodes in the graph as nodes that have edges attached to them.

Nodes without edges are simply part of the working set of nodes in the intermediate

graph. The final graph is defined as the subgraph containing only "live" nodes, obtained

at the entry point of the procedure. Therefore, upon completion of the reverse traversal,

only the z nodes corresponding to formals of the method and the r nodes should remain

in the set of live nodes in the final graph. If any other u or s nodes remain in the graph,

they are extraneous data added by the conservative edges in the CFG introduced when

exception arcs were added, and can be removed. This is correct because we have assumed

the bytecode is verifiable and therefore guaranteed that the only "live" locations in the

node set u, s, are the formals to the method.
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The reverse propagation algorithm can perform one of three potential actions on

the number of nodes within an intermediate graph, increase the number, decrease the

number, or allow the number of nodes to remain constant. To perform these three actions,

the algorthim uses the functions add(ni), remoue(nt), and ki,ll(ni)/transfer(ni,ry). The

add(n1) function adds a new node, TLi, aild its corresponding edges to the graph. The

remoue(na) function performs the inverse, removing a node, n4, a,nd its corresponding

edges from the graph. Conversly, the ki.ll(n) function differs from the remoue(n;)function

in that it only breaks the edges corresponding to a node within the graph; it does not

remove the node ni from the graph. Note that the breaking of edges has the effect

of removing the node from the set of "live" nodes. It does, however, remain in the

working set. Therefore the ki,ll(niJ function does not change the number of nodes in

the intermediate graph. The transfer(ni,ni) function transfers the information from

one node, n4, Lo another node, ?q, thus neither increasing nor decreasing the number of

nodesinthegraph. Wecanthendefinelhetransfer(ni,ni), functionasbeingcomposed

of two logical functions, copy(ni,ni) and ki,ll(n;). All three of these, copy(n6,ni), ki,ll(ni),

and transfer(ni,ni), are defined in Figure A.2. The transfer(ni,ni)first copies the edge

information from node ni to node ni,then kills the edges attached t"oni. With the four

basic functions, add(ni), remoue(n;), kill(ni), and transfer(n6,ni), we can describe the

effects on the intermediate graph, of processing each RAE encountered during the reverse

traveral.
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copg(ni,ni){

v,b{
l {("u) -- '  (nk)} + (ni) --,  (n*);
l{("u) +- (n&)} + (n) t-- (n*);
: { ( " , ) . . . ( P ) }  +  ( n ) . .  . ( P ) ;

)
)

ki,tt(n6){
vk{

l {("n) --+ (nk)} + (n) - \  --* (r,o);
={("n) *- (n&)} =+ (q) +- \ - (nr);
: { ( " n ) . . .  ( P ) }  +  ( n ) .  . \ . . .  ( P ) ;

)
)

transf er(nt,ni){
copy(ni,ni);
ki,Il(na);

)

Figure A.2 Definition of the copy, ki,ll, and transfer operations.

Tables A.6 and A.7 contain the execution behavior and the effects of each RAE on

the intermediate graph. For example, the first rule in Table 4,.6 is for the P'"AE pop(s).

When a pop bytecode instruction is executed, it discards the top entry on the operand

stack. Therefore, when the reverse traversal analysis encounters a pop(si)RAE, it knows

that if the operand stack location represented in the working set by node s6 contains

any edges, these are from the conservative edges added to the CFG and are actually

extraneous information. This is true because this location was actually cleared in the

forward execution of the instruction and anv obiect reference that was loaded into it
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RAE Execution behavior/reverse analvsis traversal effect
I :  pop(s1) erecution order: clear contents

analysis effect: ki,ll(st)

^ r  ^
u.l 5i

I  :  constant(s1) erecution order: load, ci6 -- si
analysis effect: add(r i), tr an f er (si, r i),

add properiy edge: ?i) - -("oa,l)

I  :  swap(s i ,  s i ) erecut'i,on order: trade posi,tions, si ---+ terrlp, sj + si,
temP ---+ s,

analgsis effect: add(temp), tr an f er (si, temp)
tr an f er (s i ,  s 1),tr an f er (t emp, s i),r emou e (t emp)

I :  store(ui, si) enecution order: moue sj - ut
analgsis effect: ki,ll(s1), trans f er (ui, s i)

I : dupli,cati,on(si, si) enecution ord,er: copy(si, si)
analysi,s effect: transf er(si,s1)

I  :  load(s6,  u i ) enecution order: copy (ui, sr)
analgsis effect: transf er(si,ui)

l :  erception(s) erecuti,on ord,er: empty operand stack, put si on stack,
transfer control to handler

analgsis effect:
add property edge and nod,e: (ro) - -(T,l)

I  :  Iock(s1) erecution order: obtai,n lock for si remoue(s6)
analysis effect: add property edge and node:

( sn )  -  - (L , l )

I  :  unlock(s1) erecuti,on order: release lock for si ren'Loae(si)
analgsis effect: add property edge and node:

( r , )  -  - (U , I )

l :  a l locat ion(s) erecution order: addsiof type Aid
analgsi,s effect: add(ri), transf er(si,ri),

add property edge and node: (r) - -(Aoa,l)

arT aA store(si ,  s i) erecution order: n'Loue s j to rnernory locati,on speci,fied bg si
3t + sjli'nderl

analysis effect: add to information s; and si
(s3)  - -+ (s ; ) ;
add propertg edge and node: ("0) - -(W,l);

( " i )  -  - (W, l )

Table 4.6 Rules for adding nodes and edges based on RAE entries, part a.

o id, is the index into the Constant Pool of. the class file which uniquelv identifies the
obiect within the class file.
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RAE Execution behavior/reverse analvsis traversai effect
arraA load(si, si) enecution order: place the contents of s{inder)

i,n stack locati,on sj sili,nder] - ri
analgsis effect: saue the i,nformati,on concerning sj,

update properti,es of si add(r1,); transf er(si,r*);
(s1) --+ (r7,);
add property edge and node: ("0) - -(R,I);

( r r )  -  - (R , I )

I : field wri,te(si, si) enecution order: moae si.i,d <- si
analgsis effect: (s1) --r (si);

add propertg edge and node: ("0) - -(W,l);

( r r )  -  - (Wm, l )
I  :  f ield read(si, si) erecution order: cop! si.'id ---+ s3

analysis effect: add(rp); transf er(si,rr,);
add property edge and node: (sa) --+ (s7);

( "0)  -  - (R, t ) ;  ( r r )  -  - (&,a, t )
l :  s ta tzc read(sa) etecution order: copA Gid ---, si

analgs'i,s effect: add(rp); transf er(srrn);
add property edge and node: ("*) - -(Gri6,l)

I  :  statrc write(si) enecution order: rnoae Gu + s,i
analysis effect:

add propertg edge and node: (s,) - -(Gw66,I)
I : return(s1) erecuti.on order: moue callee(s) ---+ caller(si)

analysis effect:
add property edge and node: (ro) - -(F-t, l)

l :  i ,nuoke
(s i  :  P -1 ,  s i :  P i , . . sn :  Pp )

enecut ion order :  Vr  :  , i , . .n ;U :  j , . .k  :
call er (s,) --+ call e e (uy) ;call e e (s 1) --- call er (s )

analgsis effect: add(r*); transf er(sr,r^);
add propertg edge and node: (r^) - -(P-r, l) ;

Y r  : , i , . . n  :
add property edge and node: (rr) - -(Pn,l)

where k i,s the kth parameter

method descri,ptor
(F i , . .F")F_\

analgsi,s effect: Vj : i,,..n :
add property edge and node: (r) - -(F*,1)

where k i,s the leth formal
method attributes

(synchron'ized)
analgsis effect:

add propertg edge and node: (ro) - -(r, -1)

Table A.7 Rules for adding nodes and edges based on RAE entries, part b.

c i,d is the index into the Constant Pool of the class file which uniquelv identifies the
object within the class file.
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should have been transfered to another node before reaching this RAE. The analysis,

therefore, kilis any edges leaving this node, thus removing it from the set of "live" nodes.

The size of the intermediate graph is defined by the number of data nodes contained

within it. It can increase whenever new nodes are added to it. Onlv data nodes of

type r can be added to a graph after initialization of the graph. There are six RAEs

in Tables ,{.6 and A.7 that add these types of data nodes. The bounding of this set is

discussed later.

There are two additional entries in Table A.7 that were not specified in the set of

RAEs in Table A.3. They are the method descriptor, which is used to identify the

formals of the method, and the method attributes, which is used to assign additional

properties to the nodes. Both of these are processed on the final graph and only add

property nodes to the graph. The processing of the method descri,ptor helps to eliminate

additional extraneous data from the final graph. This is because only the data nodes of

type u corresponding to formal parameters of the method were defined at entry to the

method. Any reference that occupied a iegitimate data node of lype u that was defined

within the method and not defined as a formal, should have been transfered to a node

of type r by the analysis. Therefore, since we have assumed verifiable bytecode, we can

safely kill the edges attached to any node z not identified as a formal to the method. If

the attribufes information defines the method as ui.rtual and synchronized, this enables

the analysis to add the corresponding locking and unlocking operations to the zs node.

This additional property information is used by some forms of interprocedural analysis
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access f lags:  0
name index: 19, Bar
descriptor index: 18, (LCLazz;LCLazz;)Y
nax stack: 2
max locals: 4
code length: 18
0: new cpfndex: 2, CIazz
3: dup
4: invokespecial Clazz ( init) OV
7: astore-3
8: aload-3
9: aload-l
10:  put f ie ld  cp lndex:  6  c lass:  CLazz f ie ld :  f
13: aload-3
t4: putstatic cpfndex: 7 class: CLazz f ield: g
L7: return

Figure A.3 Bytecode representation of Bar from Figure 2.3.

including idenitification of extraneous synchronization and identification of potential data

races.

To explain the analysis, we start with the simple case of a single BB method. The

algorithm for iterative settling of multpile BB CFGs will be presented later.

We start by using the same sample method, Bar from Figure 2.3. The bytecode

representation of Bar is shown in Figure A.3. Note that there is no control flow or

intraprocedural exception handler in this method; therefore, it contains only one BB.

Following the steps outlined, the temporary locations used by each bytecode instruction

are determined as in [29]. Then the RAEs for the method are formed. These are shown

in Figure A.4.
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method descriptor(Fo, Fr, F2)
0: allocati,on(ss)
3: dupli,cat'ion(ss, s 1)
4: i,nuoke(s1 : P6)
7: store(us,s6)
8: load(ss,us)
9: Ioad,(sy u1)
70: field wri,te(ss, s1)
13: load(s6,4)
14: stati,c wri,te(ss)

Figure A.4 RAE representation of Bar from Figure A.3.

The graph is constructed by applying the rules in Tables 4..6 and A.7 to the RAEs in

Figure A.4 in a backwards dataflow analysis. By performing the analysis in a backwards

propagation, we are able to fold out the temporary locations as we compute the final

graph. Figure A.5 steps through this process. Property nodes are shown with dotted

circles while data nodes are shown in solid circles. The edges foliow the edge connection

convention given in Table A.5. For clarity, only nodes that are part of the "live" set of

data nodes are shown in the intermediate graphs formed during the RAE processing.

Starting at the bottom of the RAE representation for Bar shown in Figure A.4, the

first RAE encountered is the L4:stati,c write(ss). This adds the property node labeled

(Grr,14) to the graph and connects it via a property edge to the data node (se). The

GarT denotes that this is a global property node which writes to a global location specified

by the information contained in the constant pool at location 7. The 14 is the line number

the global write occured at. The intermediate graph formed by processing this RAE is

shown in Figure A.5(a).
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(a) 14: static write(s d
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(g) 4:invoke(s,:$ )

(j) method descriptor(F0,F,,4 )

Figure A.5 Graph construction for Bar in Figure A.4.

Progressing in the reverse direction up the list of RAEs shown in Figure A.4, the next

RAE, l3:load(ss,z3), simply transfers the information between two nodes in the working

set. It transfers the edges connected to node ss to node 23. It does not add any new

nodes to the graph. The intermediate graph formed from processing this RAE with the

graph from Figure A.5(a) as input is shown in Figure A.5(b).
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Progressing in the reverse direction, the next RAE, 7}:fi,eld write(sg,s1), forms a field

accessing edge between nodes ss and s1. It also attaches property nodes to each of these

- one to the parent object, s6, which simply specifies it was involved in a write operation

at line 10, and one to the object stored in the field which gives the constant pool tndex

for the field zd, 6. Since we define the size of the graph as the number of data nodes

contained within the working set, the processing of this RAE did not affect the size. This

is because, as we previously stated, the nodes s and z are the intial working set of nodes

and the number of them is defined in the bytecode file for the method. It does not grow

or shrink in size during the analysis, and it constitutes the intial set of nodes, remaining

in the working set at all times. They can transistion to and from the li,ue set of nodes

but are never removed from the working set. They are removed from the graph only in

the final step, reducing the graph to only liue nodes, if they are not part of the lz,ue set.

The processing of this RAE added property nodes to the graph but no data nodes as

seen in Figure A.5(c).

The next RAE is the 9 : load(s1, z1). This performs a transfer, transfering the edges

attached to s1 to node 21. Because we only show "live" nodes in the intermediate graphs

in Figure A.5, node s1 is not shown in Figure A.5(d). Only node z1 is shown in the

intermediate graph obtained from processing this RAE. Note that s1 does remain in

the working set for the intermediate graph. Comparing the graphs in (c) and (d), the

incoming field accessing edge that was pointing to node s1 is now moved to node /1 and

the property edge between nodes s1 and (W6,L0) is now moved to between nodes \ and

(w6,7a).
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Progressing up the RAEs for Bar, the next one encountered, 8 : Ioad,(ss,o3), is also a

load RAE and performs a similar edge transfer as that performed by the previous load.

This can be seen by comparing graphs (d) and (e) in Figure A.5. The property edge

between nodes s6 and (W,10) has been moved to now connect nodes us and (laz, 10). The

node ss no longer has any edges attached to it and as such is not shown in the graph in

Figure A.5(e).

This RAE is followed in the reverse progression by the RAE 7 : store(us,ss). The

store RAE again performs a transfer, this time transferring the edges from /B to s0. The

effects of this transfer can be seen by comparing the intermediate graphs in Figure A.5(e)

and (f). The edge between nodes /3 and (Grr,14) and the edge between us and (W,,L})

now exist between these two property nodes and the data node ss. The node z3 no longer

has any edges attached to it and is therefore no longer in the "live" set and not shown

in Figure A.5(f).

The next RAE in reverse progression is 4:'inuolee(st r Po). This RAE attaches a

property node to data node s1 making it "live" again. This property node idenitfies

the reference in data node s1 as being used as the Oth parameter to a callee called at

line number 4. The intermediate graph resulting from processing this RAE is shown in

Figure A.s(e).

The i,nuoke RAE is followed in reverse progression by 3 : dupli,cati,on(ss, s1) which

identifies data nodes s6 and s1 as being the same referenc value. Therefore, the processing

of this RAE transfers the edges connected to s1 to s6. The effects of this transfer on the

intermediate graph can be seen by comparing graph (g) and (h) in Figure A.5. Note that
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data node s1 no longer has any edges attached to it, therefore removing it from the set

of "live" nodes.

The next RAE in reverse progression is 0 : allocati,on(so). An allocatzon RAE iden-

tifies a data location as becoming "live" at this point in the method. Since we are

traversing backwards, we do not know anything about the data node before this point in

execution order and have accumulated behavior information about the reference that was

stored into it at this point. We therefore need a new data node to hold this accumulated

information. We create a node 16 and add it to the graph. We then transfer the edges

connected to node s6 to the new node rs, r€rnoving s0 from the set of "live" nodes. Note

that since we have added a data node to the working set, we have increased the size of

the intermediate graph. The effects of this on the intermediate graph can be seen by

comparing the graphs (h) and (i) in Figure A.5.

Finally, we reach the method descri,ptor RAE which identifies which data nodes in the

set of z4 nodes in our working set were live coming into the method. For this method, the

method descriptor(Fo,Ft,F2) identifies the data nodes r/g, r./y, andu2 as being "live" on

entry, respectively. We denote this in the intermediate graph by attaching the property

nodes Fo, Ft, and Fz to their corresponding data nodes. This can be seen in Figure A.5(j).

Note that the graph in Figure A.5(j) only has nodes of type ,/ corresponding to formals to

the method and nodes of type r among its "live" set. Since only the "live" set of nodes is

shown, and we defined the final graph as the subgraph containg only "live" nodes reached

at the entry point of the method upon completion of the reverse traversal, this is also

the final graph for this method.
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Although not imediately obvious, the final graph of Figure A.5(j) contains the same

information contained in the CDG in Figure 2.a@). Both graphs show that formal

parameters 0 and 2 were not used within the method. This is shown in the CDG of

Figure 2.a@) by these nodes being unattached and in the final graph in Figure A.5(j)

by only having formal parameters property nodes attached to these data nodes. For

formal parameter 1, both graphs contain the same information though in different forms.

The node labeled 28 in Figure 2.a@) is analogous to the data node labeled rs with

the property (Ar,0) attached in Figure A.5(j). The field node in Figure z.ak) labeled

(/,31) and attached via a field access edge to node 28 and a dataflow edge to node P1,

is analagous to the field access edge attaching data nodes rs and z1 with the properties

(W,10) and (1416, 10) attached to them, respectively. The use of node 28 as a parameter is

denoted by the dataflow arc to the node labeled (0,29) in Figure 2.a@). This represented

in the final graph of Figure A.5(j) by the property node labeled (Ps,4) attached to the

data node rs. The difference in the line number between these two entries is because

Figure 2.A@) is a source level graph while Figure A.5(j) is a bytecode level graph. The

invocation in the source code at line number 29 is the same invocation that occurs at line

number 4 in the bytecode representation. Finally, the node representing the dataflow of

the global write in Figure 2.a@) and labeled (g,32) is denoted in Figure A.5(j) as the

property node (G7, 14) attached to data node 16. Again, the variance in the line numbers

is due to the source versus bytecode representation; however, the access is the same.

205



0: formGraph(refinedCFG){
1: workli,st :: initializeWorklist(refi,nedCFb;
2: while (workli,st + 0){
3: BBi :: renoveNext(workli,st);
4: testGraph,:UT:oGrlYie chi,ld(BB);
5: if (- visited(BBj) l l  testGraph{ Gb){
6: Goj :: G6ilJtestGraph;
7:  gt ! : :  process(BBi) ;
8: Vi € pareni(BBj){
9: it (G4 { G* UU BBi- eworkli,sD{

10: worleli,st.append(BB6);
1 1 :  )
12: )
13: )
74: )
15 :  )

Figure .4..6 The algorithm for processing CFG to form graph

Next we discuss the construction of this intermediate graph on a CFG containing

more that one BB. We will describe the transformation of the final graph into the actual

CDG in Figure A.5(j) after fully specifying this step.

4.L.4 lterative, backwards, dataflow algorithm

The iterative part of the backwards dataflow algorithm uses a worklist based algo.

rithm. It starts with the refined CFG reduced to an RAE representation and places the

BBs in the CFG in reverse topological order onto a worklist. The algorthim is given in

Figure .{.6. The algorithm iterates over the BBs on the worklist until no more property

or data nodes can be added to the graph and a final graph is formed. This final graph is
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the top graph of the entry BB for the method. We begin by defining the following two

terms:

Definition I For a g'iuen BBi, G1i is the graph associ,ated wi,th the topmost poi,nt or

entry potnt for forward erecution of BBi. It ,is ini,ti,alized to an empty graph.

Definition LO For a g'iuen BB,;, G6i zs the graph associ,ated wi,th the bottommost point

or the eri,t poi,nt for forward erecut'ion of BBi. It i,s i,nr,tr,ali,zed to the joi,n of the top graph

of all of i,ts chi,ldren.

The algorithm starts by initializing the workli,st on line 2 of Figure ,4.6 by placing the

BBs in the refinedCFG on the worklisf in reverse topilogical order. Next it processes

each BB on the workli,st until the list is empty. To process a given BBi, it starts by

forming a join of the top graphs of all of its children BBs. This is shown on line 4 of

the figure. Then on line 5 of Figure 4..6, it performs a test to see if the BB has not

been visited or if the testGraph created from the join of the children's top graphs is not

a subset of the bottom graph of the BB. If either of these tests is true, it then initializes

the bottom graph of the BB to the join of its current bottom graph with the testGraph

and processes the BB to arive at a new top graph. This is shown on lines 6 and 7 of

Figure A.6. It then checks for each parent of the BB to make sure that its new top graph

is still a subgraph of the parent. If it is not and the parent is not already on the workl'ist,

it appends the parent to the end of the worklist to be reprocessed. This is shown on

lines 8-12 of Figure A.6. The algorithm only terminates when there are no further BBs

to process on the worklist.
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The key to proving termination of the algorithm lies in the proof that there is a

maximum saturation point for the join operation performed at line 4 of Figure .{.6. This

is because if the bottom graph of a BB currently being processed is not a subset, then

on line 6 of Figure ,{.6, the bottom graph of a given BB is always set to at least the join

of the result, thereby making it at least equal and, by definition, a subset. Therefore,

if the join forms a graph that saturates at a maximum point and cannot grow beyond

that point, then the bottom graph must be at least equal to that after it is set to the

result on line 6 and will not be reprocessed. The key properties in this proof are that a

join operation will only increase the number of entries in a graph and that the potential

number of entries is finite. Although the data nodes u and s are finite in size and distinct,

the graph size can increase with the addition of data nodes of type r. Therefore, the join

operation must be capabie of recognizing that two data nodes of type r actually represent

the same object and can be merged into one.

Definition 11 Two nod,es, ni and ni, from two graphs G, and Gn are defi,ned to be

joi,nable i,f and, only i,f at least one of the fotlowi,ng i,s trae.

. ni : so and hj : so; a : 0, ,,,, (mar-stack - I),

.  n i :  u6 and n j  :  ub;b:  0 ,  . . , (mar- local  -  7) .

. ni: r" and, ftj : rd and at least one of the followi,ng holils:

- r" has properig (P-t,I') and, 16 has propertU (P-t,l'). TheE were both retumed,

from the same callee method, at the same li,ne number.
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- r"has property (A*,1') and,16 has propertA (A*,1'). They wereboth allocated,

with the same type at the same li,ne number.

- r" has properiy (Gr*,l') and16 has property (Gr^,|'). They were both reail

from the same global locati,on at the same li,ne number.

- r" has property (c,I') and, r4 has property (",1'). They were both i,ni,ti,ali,zed to

the same constant reference ualue.

- r" has property (R*,1') and (n") --t (r") and ra has proper-ty (R*,1') and

(n") --, (ra). They were both read, as the same field from the same base object

at the same li,ne number.

As given in Table A.5, the size of the u and s nodes is finite. These are defined and

given in the method representation in the classfile. Refering back to the rules for adding

nodes to the graph as given in Figure 2.2, lhere are only a finite set of RAEs that can

add nodes of type r to the graph. Each of these adds a property field to the node which

is used to identify a join operation as given in definition 11. Therefore, since the number

of RAEs in a method is finite, and the number of RAEs that can increase the size of the

nodes r is finite, and by definition 11 no two nodes r will have the same property after

the join, the maximum number of r nodes contained in the resulting joined graphs is also

finite. Therefore, the graph size is finite and has a saturation point.

The subset test at line 5 of Figure A.6 then tests for each node in testGraph lhat

there is a node in G6i that contains at least the same set of properties.
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Table A.8 Property nodes divided into "defines" and "uses."

define use

constant
allocati,on
stat'ic read,
arcay load

field read
i,nuoke(si ' Pq)

pop
swap
store
dupli,cation
load
ercept'ion
lock
unlock
array store
field, wri,te
stati,c wri,te
return
method d,escriptor
method attributes

The maximum size of the graph is a function of the number of "defines" that can

occur within a method. This is because "defines" are capable of adding data nodes to

the graph. Therefore, we define the size of the final graph as follows:

si,ze(f G) : nun'Lber(RAga.p,") (A .1)

This states that the size of the final graph is a function of the number of "defi.ne" RAEs

contained within an RAE representation of a bytecode method. We further define a "de-

fine" RAE as one capable of adding a data node of type r to the graph. Table A.8 shows

the RAEs from Tables 4..6 and A.7 divided into "defines" and "uses." The RAEs capable

of adding data nodes of type r to the graph are the RAEs constant, allocati,on, array load,

fi,eld read, stati,c read, and 'inuoke. The i,naoke RAE only adds a data node of type r if it
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returns a reference value. There is a theoreticai limit to the maximum potential size any

given graph could reach. This limit is defined by the limits given in [29]. The "define"

RAEs can be viewed as a function of the method descriptor and the size of the method.

The number of parameters passed to a method is limited to 255 as specified in [29]. The

maximum size of a bytecode method is limited to 216 by the size of the field specifying the

exception handler coverage ranges in the bytecode file specifications [29]. Data nodes of

type r that are added to the intermediate graph have at least one "defi.ne" property node

attached to them. There are six RAEs capable of adding a data node of type r to the

graph as shown in Table A.8. The corresponding bytecode instructions for these RAEs

is shown in Table A.3. Of this set, the smallest size instruction is the ldc instruction,

which is two bytes in length [29]. Therefore, a completely theoreticai maximum size for

the intermediate graph, which is given by a theoretical bytecode method of the maximum

size with the maximum number of parameters and containing only instructions of type

Idc, is given by:

s,ize: (255 + 2'u 12) x 215 (A.2)

This is purely a theoretical maximum limit to the potential size of a graph and in practice

the final graph is much smaller.

A.1.5 Connecting defines and usages

The current graph represents unique objects as data nodes and the usage and defini-

tions for the objects as properties attached to the data nodes. In this phase, we simpiy
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definitions
(A,l) ::: an allocati,on occuri,ng at li,ne I

(F) :;: the jth formal parameter to the method

(",1) ::: a constant ualue loaded at li,ne I

(P-r,D ::: the retum ualue from a method called at li,ne I

(Gr,l) :: a r€ad access of a global uari,able occuring at l,ine I

USES

(L,l) ::: a lock operati,on occuring at I'ine I

(U,l) ::: an unlock operation occuri,ng at li,ne I

(R,l) ;:: a read, operati,on occuri,ng at li,ne I

(W,l) ::: a write operation occuring at li,ne I

(Gw,I) :;: a write access of a global uariable occuring at li,ne I

(T,I) ::: a thrown ercepti,on occuring at li,ne I

(Pi,l) ::: the jth formal parameter to the method called at li,ne I

Figure A.7 Property nodes broken into definition and usage nodes.

replace the objects with their "define" property node and attach the "use" property

nodes to it. Figure A.7 divides the property nodes from Table A.5 into "definitions" and

"uses." The formation of the final CDG is performed in the following steps:

1. Mark all "define" property nodes.

2. Attach all the remaining "use" property nodes to the "define" nodes via dataflow

edges from the "define" property node to the "use" property node.

3. Move all field accessing edges to corresponding "define" property nodes.

4. Remove all now extraneous data nodes (typ" r and z) from the graph.

Figure A.8 shows the steps for performing this final phase on the intermediate graph

from Figure A.5.
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(c) Step 3: Move field accessing edges (d) Step 4: Remove extraneous nodes

Figure A.8 Final CDG formation from the graph for Bar in Figure A.5.

4.2 Annotations

The primary purpose of this section is to describe the format of the annotation used

to represent the CDG within classfiles. We focus primarily on the entries and what each

field means to enable users to read and understand the annotations.

To form the actual persistent annotation, the remaining nodes in the graph are sorted

into a table based on their bytecode order. The links between the entries are represented

in the table as offsets from the entry's location to the entry it is linking to. This table is

annotated into the classfiles.

The annotation used to represent the CDG in a classfile is designed to use a minimum

amount of space while still maintaining the information within the CDG. The CDG

r ( W G '  I U r ,

{ @ @

(b) Step 2: Attach remianing property nodes

€/@ @
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represents relationships between nodes as directed edges on a graph. To convert this

graphical view into an annotation, the nodes in the CDG are placed in a table. The

edges in the CDG are then represented as directed pointer to their corresponding entries

in the tabie. We order the nodes in the table starting at their bytecode address. Formals

to a method take up the first few entries in the table where their index into the table

directly matches their corresponding formal index. Edges to and from parameter nodes

then point to and from these entries. Forward edges are then transformed into offsets

from the entry's location to the table entry it points to. The table entries are then

reduced in size and annotated into the classfiles.

Figures A.9 and A.10 show the format for each of the entries in the annotated table

representation. There are several points to note about the entries. First, note that these

entries are variable length. The use of variable length entries allows the annotation to

use the minimum size for each type of entry instead of the maximum size needed to

handle any given entry in the set of entries. Second, edges are now offsets from the

current position. The offsets now point to where within the method bytecode stream

the object instance is first defined. This could be as a formal passed to the method, an

object created within the method, a field read within the method, a returned value from

another method, etc. The formals passed to the method are left as implicit entries at the

top of the table. The table starts indexing its bytecode entries at the maximum local

variable index value. This value is given as part of the method representation in the

bytecode file. The bytecode offset is an offset from the previous entry that corresponds
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g e t f i e l d :

Affay Load:

putf ie ld:

Array Store:

gets ta t i c  t

pu ts ta t i c :

BC o f fse t FIELD, READ table index CP index

6  b i bs  L0  b i t s  8  b i t s  15  b i r s

tabl-e index: Offse! from current location to the table location of lhe object the
f ie ld is  read f rom.

CP index: Constant pool index for the conslant pool entry specifying the fietd read.

BC o f fseE FIELD, READ ZERO Eable index

6 bi ts 10 bi ts  8 b i ts  8 b i rs

table index:  Offset  f rom current .  local ion to the table locat ion of  the array object ,

BC of fset FTELD, WRITE E.ab1e index CP index table index

5  b i t s  10  b i t s  I  b i t s  L6  b i r s  8  b i t s

table index:  of fset .  f rom current  locat ion to the table locat ion of  the obiect  the

f ie ld is  wr i t ten t .o.
CP index: Constant pool index for the constant pool entry specifying the field read.

table index: offset from current Location Eo the table localion of the objecE being

stored in the f ie1d.

BC of fset FIELD,  WRITE ZERO table index table index

5 bi ts  10 bi ts 8 bi ts  8 b i ts  8 b i ts

6  b i t s  10  b i t s  16  b i t s

table j.ndex: Offset from current location bo the table localion of the array object
being r,rritten to.

tabLe index: Offset from current l-ocation to the table location of the objec! being

sEored in the array.

BC offset I STATIC, READ I CP index

6 bibs 10 bi ts  L6 bi tss

CP index: Constant pool index for the const.an! pool ent.ry specifying the st,atic fieLd read.

BC of fset STATIC, WRITE CP index table index

8 bi ts

CP index: Constant pool index for the constant pool entry specifying the st.atic field.

tabl-e index: Offset. from current location to Ehe table location of the object being

wri t ten into the stat ic  f ie ld.

Figure A.9 The format for the table entries used to annotate the CDG information
into a class file.
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returned by: BC offset I  RETURNED, BY I table index

6  b i t s  10  b i t s 8 b i ts

table index: Offset from current location to the table location of the
object being returned.

returned from:
BC offset I  FTELD, WRITE

6  b i t s  1 0  b i t s

h A ? A M A T A ? .

BC o f fse t PARAMETER table index Parm num

6 b i t . s  10  b i ts  8  b i ts  8  b i ts

table index: Offset from current location to the table Location of the
object being passed.

Parm num: The parameter number the object, corresponds to.

c rea te :
offset I  CREATEBC offset I  CREATE I CP index

5 b i ts  10 b i t .s Lb  D ] - cs

CP index: Constant pool index for the constant pool entry specifying the

Moni to r :

object t lpe being created.

BC offset I  LOCK I table index

6 b i ts  l -0  b i ts 8  b i t s

b.abl-e index: Offset from current location to the table location of the

thrown:

object being locked/unlocked.

BC offset I  THROWN I table index

6 b i ts  10  b i ts 8  b i ts

table index: Offset from current location to the table location of the

object being thrown.

Figure A.10 The format for the table entries used to annotate the CDG information
into a class file.
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to the distance in bytes within the bytecode array for the method between the previous

table entry and the current entrv.

The maximum address length for a bytecode address is 16 bits as given in [29]. How-

ever, we are starting at the iowest indexed node and progressing forward. Therefore,

instead of representing an absolute address within the table, we use an offset from the

previous bytecode address. Since the table entries are in ascending order, the value is

always positive. We choose a 6-bit size for this field based on several factors includine

the desire to maintain byte boundaries, the average bytecode distance between entries in

the files analyzed and, finally, the size and desired representation for entry types which

shared the field space. The 6-bit field size means the maximum difference between anv

two entries is limited to 63 bytes. However, it is possible for the distance between two

entries to be greater than 63 bytes. Under these conditions, a Bytecode Line Number

stub is used. The format of this stub is shown in Figure A.11. The stub contains a value

of 63 for the offset followed by a zeroed-out usage field to denote it as a bytecode stub.

This gives the stub a total size of 16 bits or 2 bytes. When reading the access table and

a bytecode stub is encountered, the runtime simply adds the 63 to the offset of the next

entry. In this fashion, the stubs can be layered to provide any necessary amount of offset

between two entries in the table.

One of the fields consistent across all of the entries in Figures A.9 and A.10 is a usage

field. This field contains a single bit representation of the type of access. It is 10 bits in

Iength, thus covering the ten potential types of accesses. Figure A.12 specifies the usage

type of each entry based on the bit location set. Noting that the bytecode address stub
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Bytecode offset O J zeroed

6 bi ts L0 bi ts

Table index offset zeroed index table of fset

15 bi ts 4 bi ts z d  D r E s

Figure A.11 The format for an index stub within the annotated tabie.

Figure L.l2 Entry type specification for usage bit fields.

left this field cleared, this then completely specifies the locations in this field. This usage

value, in combination with the other field entries, determines the type and size of the

other fields in the entry. For exampie, if the Field Read bit is set, then the next field is

8 bits in length and contains the indexed offset into the table that is the offset from this

usage location to the location within the table where the object instance was defined. If

this field is set to zero, then the entry is for an array access and the next field is the table

entry offset. For cases when the field is nonzero, it is followed by a lGbit constant pool

index. The entry in the constant pool for the given class file is an entry of type f ield

inf o which contains the information of the type of field. Therefore, this pair of values
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at tr ibute_info {
u2 attribute_name_index;
u4 attr ibut,e_length;
u1 infoIattr ibute_length] ;

1

/ / this is fMPACT_AccessTable
/ / Tength in bytes of the table
/ / tabl-e

Figure A.13 The format of the attribute field used to hold the table.

uniquely identifies the field type and memory location. Aithough the constant pool index

covers all possible values, the 8-bit table index does not. Since the table index field is

finite in length, the offset is +l-127 which limits the distance between a use and a define

in the table. This is again handled by the use of a stub the format of which is shown

in Figure A.11. Since the full bit space of the 10-bit usage field is specified, we denote

that this is a table index stub by setting both the bytecode offset and the usage fields

to zero. In this fashion, it is distinguished from the bytecode index stub and does not

require expanding the usage bit space to accommodate the type. Looking at Figures A.9

and A.10, there are four potential byte locations within a given entry that are offsets

into the the table. The next field, index, specifies which of these four locations the stub

is associated with. This then leaves a 28-bit field to represent the offset.

The table is annotated into the bytecode file using the attribute info field which is

part of the method info field within the bytecode file. The format of the attribute info

field as well as comments identifying what information is present in each field, is shown

in Figure A.13.
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APPENDIX B

SIMUTATOR ARCHITECTURE

The simulator used to simulate a Java runtime consists of four major parts. These

parts are labeled in Figure B.1. In this appendix we describe each of these four main

sections in detail.

Figure E}.1 An abstract overview of the simulated runtime environment.

Simulated
Execution
Engine
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vir tual  jobject  spec.benchmarks.-205-raytrace.Face.cetvert ( j in t )  ( I )Lspec/benchmarks/_205_raytrace/point ;
T9  105900857  0
T tO  105900858  0
19  1 .05900859  1
T10  105900870  1
19  105900871  4
T10  105900872  4
T9  105900873  5
T 1 0  1 0 5 9 0 0 8 ? 4  5
1 9  1 0 s 9 0 0 8 7 5  6
r r . 0  105900875  6

Figure 8.2 Section of the trace flle for the -227-mtrt benchmark from the SpecJVMg8
benchmark suite.

El.1 Simulated Execution

The input to the Simulated execution engine is a line read from a trace file collected

from the HP Hotspot 1.0 VM. The line read consists of two potential types, an invocation

line, which contains a full path resolved signature for the method invoked, or an execution

line, which contains a thread id (TID), the absolute number of the instruction and the

bytecode Iine number at which the instruction occurred. Figure B.2 gives a small section

from one of the SPECjvmg8 benchmarks [59]. The first line in this figure is an invocation

line. This line is actually a combination of the standard trace mechanism output and

a modification we made to record the actual method signature. If this is read from the

trace file, it is passed to the method invoker to recover the method.

The next line shown in Figure B.2 is a trace output of an execution of one of the lines

of bytecode. The format of this line consists of the thread ID, the absolute execution

order for the instruction, and the bvtecode line number in the method that the instruction

occurred at. We have also included a disassembled version of the bvtecode for the method

GetVert in Figure B.3. The disassembled version also contains the CDG table for this

Engine
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access  f lags :  1 ,  pub l i c
name index: t6, GetVert
descr iptor index: 9, ( I )Lspec/benchnarks/_205_raytrace/point;
attribute count: 2
attribute [0]
name index: 12, Code
nax stack: 2
max locals:  2
code length: 7
0: aload_O
1:  ge t f ie ld  cp lndex :  5

class : spec/benchnarks/_2O5_raytrace /Face
field: Verts , [Lspec/benchnarks / _205-raytrace/point;

4 :  i load_1
5: aaload
6: areturn
attribute [1]
name index: 26, IMPACT_AccessTabIe
number of entries: 3
Tab le [0 ] :  ( imp l ied ,  Ioca l  var iab le  0 )
Table [1]  :  ( impl ied, local var iable 1)
TabIe [2]
Table [3]
Table [4]

(1 ,  f ie ld - read,  tab le  o f fse t :  -2 ,  CP index :  5 )
(4 ,  f ie ld - read,  Ar ray ,  tab le  o f fse t :  -1 ,  tab le  o f fse t :  0 )
(1, returned_by, table offset:  -1)

Figure E|.3 Bytecode disassembly for the method GetVert.

method. This is shown at the bottom of the figure. The first two entries in the CDG table

correspond to the implied entries for the local variable locations described in Appendix A.

The remaining three entries are the entries that were annotated in the bytecode file.

When the line is loaded, the simulated execution engine first checks to see if the thread

ID matches the thread ID for the thread state it currently has loaded. If it does not,

it places a request to the thread state manager to recover the state for that thread

and switches its loaded state to correspond to that thread. The current state of the

thread that was previously loaded is passed to the thread state manager for storage. The
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absolute instruction order for the trace line is ignored by the simulator since it has no

bearing on the behavior of the simulator. The bytecode line number is then used to

access the internal representation for the CDG for the method representation for this

thread's context to see if there is an entry corresponding to this bytecode line number.

If there is, then the CDG is updated.

The updating of the CDG when a trace line corresponding to an entry is encountered,

varies depending on the type of the entry and the type of analysis being simulated. For the

simulation of the use of the Object Connection Graph (OCG) described in Chapter 4, the

CDG is updated only for the exact or oracle method. It is used to track the exact escaping

state for the memory entries. To accomplish this, each entry in the CDG has a pointer to

the memory location it uses. These are established either when an allocation is reached

or when the OCG analysis is conducted by the method invoker. The memory locations

pointed to by the entries are allocated and controlled by the memory manager. Any

requests for new memory locations go through this manager. The format and tracking

information for the memory locations follows later in this appendix.

When an invocation entry is encountered, the call stack for the thread is updated to

reflect the call. The actual sisnature for method is constructed in the same fashion that

the virtual machine uses. The simulator recovers the constant pool index corresponding

to the method type from the bytecode for the method. It then constructs the signature

based on the constant pool entries. Since we are dealing with a trace file, we know exactly

which version of this method is subsequently executed, so object type resolution to locate

the method is not necessary. Instead, when the actual instructions corresponding to the
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callee method are encountered in the trace file, the signature stored on the thread's call

stack is compared with the actual method called to be certain they match.

The handling of return instructions is a little more involved than that of invocations.

When a return instruction is encountered in the instruction stream, a flag is set in the

thread's state to indicate that it executed a return. The return point is then verified

with the call stack entry for the method'prior to proceeding with the execution. The

verification of the return point is multileveled. First, the callee is verified to be certain

it is returning from the method the call stack claims was called. Then a look-ahead is

performed for the caller thread, to verify that the next instruction being executed follows

logically from the invocation instruction to the callee.

The primary reason for the invocation and return checks is that it is possible for calls

to native code methods to be interspersed with calls to bytecode methods. The trace

file does not contain execution information on native methods. If a native method is

encountered in examining the call stack of a thread, then all objects passing across the

call interface are marked as escaping. This level of conservation insures that the results

will always be correct if not precise.

Once the CDG had been updated for the instruction, the simulated execution engine

proceeds to process the next line.
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8.2 Thread States

The thread states used in the simulator can be viewed as a database of the known

currently active threads based on the trace file being simulated. A thread becomes

active when its thread ID is first encountered during the processing of trace lines by

the simulated execution engine. A thread is only considered no longer active when the

entire trace of the given benchmark has been processed. The thread states are stored

and accessed via their unique thread IDs. This is the entry in the first column of the

execution trace line shown in Fieure B.2.

When a new thread state is created, it is initialized with a set of state information

unique to that thread. Figure 8.4 shows the fields contained in each active thread state.

For each thread, the state stores a reference to the bytecode representation ofthe method

it is currently executing. Since thread states are only created when a trace file execution

line is first encountered for the thread, it will always be initialized to a reference to

the executing method. The only time this entry will not be set is if the thread state

has an empty call stack and the thread encounters a return bytecode statement from

its executing method. Even if this event occurs) the thread state will remain in the

thread state database until the entire trace for the benchmark has been processed. When

the thread is first encountered, a copy is made of the CDG table for the method it is

executing. A reference is then placed in the thread state to this CDG table. The bytecode

line number within the current method is then recorded in this field of the thread state

shown in Figure B.4.
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Thread States

Figure B.4 The format of the thread state entries.

As the thread executes within the simulated execution engine, it can encounter allo-

cation bytecode instructions. When such an event occurs, the simulated execution engine

places a request to the memory manager for a new memory location. A reference to this

new location is stored in the corresponding entry for the current CDG table for the thread

as well as a reference added to the thread's view of main memory. These references are

folded into the CDGs for this thread along any invocation interfaces.

In addition to allocation bytecode instructions, the simulated execution engine can

encounter invocation instruction. When this occurs, a call stack entry is created and

pushed onto the bottom of the stack used to hold the thread's call stack. A reference to

this call stack is contained in the thread's state as shown in Figure B.4. The fields in

the call stack entry are shown in Figure B.5. The first of these, the caller signature, is

the trace file invocation line for the method currently being executed. A reference to the

method's current CDG table is also added to the call stack entry along with the bytecode
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caller signature

last executed BC line number trace hle invocation line

caller's CDG table shifted bits from caller's CDG entrv

location of entrv in caller's CDG table

bits from callee's CDG table

Figure E}.5 The format of the call stack entry.

line number within the method that the invocation instruction was encountered at. Next,

the invocation signature is created by the simulated execution engine as detailed above.

This is stored in the top field of the callee signature. Finally, a mapping table is created

to facilitate the mapping of the caller parameters to the callee formals.

The mapping table contains an entry for each parameter slot identified by the callee's

method signature. For each one of the parameters passed, information is stored in this

table. The fields for each entry are also shown in Figure B.5. Although not an ex-

act representation, the field shifted bits from the caller's CDG entry correspond to the

highlighted section of the example interface shown in Figure 4.10. Note that this field

also holds any state information being transferred across the interface. The next field

is an index into the caller's CDG for the parameter being passed. This allows for swift

folding of any changes from a result of the invocation back into the caller's table upon

return. Note that since the parameter numbers correspond directly to their location

within the mapping table and these locations match exactly with their corresponding

locations within the callee's CDG, no index is needed for the forward mapping. If the
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entry in the caller's CDG shows that it expects a return value back, then a reference is

created to hold the return value. The return value entry contains the same fields as a

parameter entry but is not contained in the mapping table since it does not directly map

to a known callee table entry.

The final field shown in Figure B.4 is the thread specific data. This field actually

holds several pieces of information. For example, when the simulated execution engine

simulates an execution line, it changes the bytecode line number field in the thread state.

However, it may be necessary to also know the previous bytecode iine number executed

by the thread. Therefore, it records this information in a field marked in the thread

specific data. Additionally when the execution line in the trace file corresponds to a

return statement, the simulated execution engine will want to know that the previous

instruction executed was a return. This is important for when the next line executed by

the given thread is encountered. Since the simulated execution engine will need to pop

the call stack and fold back in CDG table results, it needs to know that a call returned.

The thread specific data field is also used to track any thread specific analysis infor-

mation. For example, if we are tracking exactly how many bytecode lines each thread

executes, then this information is stored here. It can also track items such as how many

bytecode instructions were executed since the last time this thread executed.
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Initialized Methods

Figure El.6 The format of the initialed methods used by the method invoker.

E|.3 Method Invoker

The method invoker is called by the simulated execution engine anytime an invocation

line is read from the trace file. An invocation line corresponds to the first line in the

sample trace file shown in Figure B.2. The method invoker keeps a table of all methods

it has initialized. Figure 8.6 shows an abstract view of this table. Entries in the table

are accessed via the invocation line read from the trace file. This mapping is a one-to-one

mapping since we have modified the trace output to include the full method signature.

To illustrate this, we have broken the invocation line from Figure B.2 into its constituent

parts.

Table B.1 contains the labeled version of the invocation iine from the trace file. The

first field in an invocation line is the type of the method. There are only two types,

virtual and static. A virtual method is iocated via a method table oointer used with

the object instance it is called with, while a static method is located via a class file.
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Table B.1 Sample line showing fields in the invocation line from a trace file.

virtual job j  ec t spec . benchmarks . _2 05_raytrace . Face . l 6 | - \ f 6 r f

Tvpe
of
method

Return
Tvpe

Exact path location of the class file Method
name

( j i n r ) ( I ) Lspec,/benchmarks /_2 0 S_raytrace / Point ;

Parms Actual method descriptor

This is not critical for the simulator since we do not distinguish between the two types

in our method invoker. The next field is the trace mechanism's notation for the return

type from the method. Note that for this method, the return type is jobject. The

trace mechanism uses this return type for any reference type returned from a method

regardless of whether its an object or an array. This is one of the reasons we found

it necessary to include the actual method descriptor in the trace output. This actual

method descriptor is shown as the last item in the labeled invocation line of Table 8.1.

The return type is specified at the end and is given as an object of type Point with

the full path information. Since the invocation line is from a trace file, it has already

been resolved to the exact version of the method invoked. Therefore, even though this

method is virtual, we know it is the version located in the Face class file which can

be found in the directory spec/benchnarks/-205-raytrace. The name of the actual

method invoked follows the class file name. For this example, the method is GetVert.

This name, plus the actual descriptor, are what is used to form the method signature.
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This signature is used to make certain that an invocation or return on a thread's call

stack is indeed correct. The method name is followed in the invocation line by the formal

parameters to the method. This parameter listing uses the same ambiguous jobject

for any reference types, and therefore we ignore it when resolving methods. Finally,

the invocation contains the actual method descriptor for the method invoked during the

execution of this benchmark. This is obtained as the program is executing and output by

the trace mechanism. Note that the invocation line will be exactly the same every time

we invoke or execute part of this exact method. Therefore, we use the full invocation

line to access the initialized method in the table.

An initialized method consists of several fields. The first of these points to the byte

array for the bytecode for the method. This byte array is used by the simulated execution

engine. The next field points to a clean copy of the CDG table. This copy is what was

read in from the annotated class file. It does not contain any changes. This clean copy

is needed every time the method is invoked. It is copied into the thread's state and then

any information is folded into the copied version. Finally, the initialized method can

contain pointers to other items that may be needed by the simulated execution engine.

For the simulation we ran, this included a clean copy of the OCG for the method and a

flag indicating whether or not the method contained an allocation.

There are times when the method invoker will not have an initialized copy of the

method requested in its table. When this occurs, the method invoker places a request

to the ciass loader for the method. The class loader will locate the requested class file
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Memorv Locations

Figure B.7 Simulator memory format.

and then the requested method and return it to the method invoker. In this way, only

methods actually invoked go through the added overhead of initialization.

8.4 Memory Manager

The simulator keeps track of the unique memory locations used during the trace.

This tracking of memory locations is done primarily by the memory manager. Figure B.7

shows the format of the simulated memory. The memory locations are represented as

entries in a growable array. Each entry has the exact type name for the entry. When an

allocation request is received from the simulated execution engine, the memory manager

creates a new entry in the array and a return reference to it. When a field write occurs,

the simulated execution engine notifies the memory manager with the reference to the

memory location the field belongs to, an identifier for the field, and a reference to the

memory location being stored in the fieid. At that point, the memory manager uses the

unique field name passed by the simulated execution engine to access the field in the field

Exact type name

Pointerto memory
location of the field
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array. It then changes the field pointer to point to the newly specified memory location.

If an entry does not exist in the field array, one is created.

The memory format shown in Figure 8.7 also contains an entry for state. For the

simulation we ran, we used three state values: one indicated whether the memorv location

was method escaping via OCG analysis, another indicated whether the memory location

actually escaped during execution, and the final state was used during garbage collection.

The garbage coilector used by the memory manager is a mark and sweep collector.

At the time a garbage collection epic occurs, the collector places a request to each thread

to mark as "live" any memory locations it knows about. The thread manager then goes

through the current CDG and all cali stack CDGs and marks all references within them

live. When all threads have marked their references live, the memory manager then

traverses the memory locations to mark any location reachable via a field link from a live

location aiso live. This process is iterative and completes when no further updates can

be made. The garbage collection uses the following steps.

1. Starting at the first location in the memory array,

If the location is live, check memory locations reachable via its field array.

If field reachable location is not live, mark it live and set changed state in

garbage collector.

2. When end of memory array is reached,

o If changed state is set clear it and start again at top of array.

r If changed it is not set, collect any memory location not marked as live.
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For the simulation we ran, the collected memory locations were then analyzed and

the results recorded.
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