A DYNAMIC APPLICATION ANALYSIS FRAMEWORK

BY
MARIE THERESE CONTE

B.E.E., University of Delaware, 1995
M.S., University of Illinois, 1999

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2003

Urbana, Illinois

© Copyright by Marie Therese Conte, 2003

A DYNAMIC APPLICATION ANALYSIS FRAMEWORK

Marie Therese Conte, Ph.D.
Department of Electrical Engineering

University of Illinois at Urbana-Champaign, 2003
Wen-mei W. Hwu, Adviser

In this thesis we address the problem of interprocedural analysis on a dynamic appli-
cation. We present a framework for performing partial analysis ahead of time and using
it to facilitate a large range of runtime analyses and optimizations. We demonstrate one
such analysis by performing swift, safe analysis during profiling of threaded, dynamically
linked, adaptively compiled applications. In our framework, we focus on one such lan-
guage, Java; however, our techniques are adaptable to others within this realm. We also
present models for adaptive compilation utilizing our framework to verify compilation as-
sumptions in the event of dynamic class loading. We present our system for performing
a subset of analyses ahead of time by constructing a graph called a Compact Dataflow
Graph (CDG), of the object references used intraprocedurally. The CDG is designed to
be independent of the internal representation used by the runtime and general enough
to facilitate a large range of dynamic interprocedural analysis and optimizations. We
present our design and implementation of one such use of the CDG by using it to swiftly
construct a form of a unification points-to graph we call an Object Connection Graph
(OCG), which is used to determine swiftly a set of method local allocations that could
be safely stack allocated. We present results for the use of the OCG using a subset of

the threaded Java Grande benchmarks, and a set of small Java threaded applications.

1l

This thesis is dedicated to my mother, Anne M. Conte, whose encouragement, love, and
support helped me achieve this milestone but who died on March 5, 2003, just a few

months before its completion.

v

ACKNOWLEDGMENTS

I would like to thank my adviser, Wen-mei Hwu, whose patience, training, and support
over the past eight years helped me to grow both academically and personally. In addition
I wish to thank the other members of my thesis committee, Carol Thompson, Steve
Lumetta, and William Sanders, who provided invaluable editorial feedback on this thesis.
I would also like to thank my brother, Thomas M. Conte, who encouraged me to stick
it out on numerous occasions when the road to completing this degree got a little hard
to tread. Additionally I would like to thank John Gyllenhaal who was my mentor when
I started with the IMPACT research group. He helped me navigate the transition to
graduate school, teaching me to balance the class work and the research work to succeed
at both. Furthermore, I would like to acknowledge the contributions of Hong-Soek Kim,
who helped me formalize the presentation of my research. Finally, I would like to thank
the members of the IMPACT research group for their encouragement, support, and help
over the past eight years. They provided invaluable feedback on numerous occasions that

helped me focus my research, helping me develop and define my final thesis topic.

TABLE OF CONTENTS

CHAPTER PAGE
Sl g s dast 0 SRS s e s e deete Ol O e e s 1
1.7 Object Ovienbed Langusses amd Jave 50 o0 vv i oo 1
Lo Aol Sl OB IOn - . i e e s 4
Io-itw el Dy Wb - C i e e e e 6
P30k - untime sachitochure phismes . .. v .. o s i e i ¢

Lool PIAR G i e s e e s 10

Vi Dol bR IV . . e e g e e A 11

1.34 Conmmuption of snalysievestills i ien 12

14 PRIy UORIEOINNES . . . v e et et e 13

2 ANTRAPRECEDNIRAE BOINEY - o o e 17
S R s e T e e e et T &3
251 Thelompact Datallow Coapli - - .. . L i i i 20

B VR Ol . e i e e 26
S NN . e i s et R e e 29

3 DYNAMIC ANALYSIS: INTERPROCEDURAL ANALYSIS 34
3.1 Class Hierarchy Represamtabions 0 s h « dv v i wioaty 35
S22 el VLR - e R i s 36
RN T s T eI e e SR C S S S s 39
ol Uil LRI i i e e i 43
540 ek alloration oE obleRtE .~ ol e e e s 44

SAZ Dyndiiiisileon pegitval - L e b e e e 50

3.4.3 Caching of redundant callee results and call elimination 54

344 Lilcthmebagsed optinizalions i i v e s 66

3.4.5 . Memory layout for better data locality oo 70

48 Todemotimalterimliniow - Ll i i i e i

3.4.7 Unsafe sharing, potential race determination 72

4 SPECIFIC APPLICATION: OBJECT CONNECTION GRAPHS 74
CRBE L 2 S S e A e e e e EE e s e 74
CaaEel R T e e e S e S et e B e Tl

B el N s e b e e 7

43 Ttrctme PorieTo IBraiaiion v 50 v o v vnmsinn 78
a4 leipiocodral VIonaialion . . o . o v i e b s e 82
AL - FElE IR N . i e i e e 89

vi

10 Toporbnestd Clupand Heslts 0 . e i 95

4.6.1 Experimental results: potential benefits 99
4.6.2 Experimental results: estimatedcosts 102

ST el I r T v g e 106
DYNAMIC OPTIMIZATION VALIDATION AND ROLLBACK 107
3.1 Optimizstion Medelsand Validatlon -« .. .= 107
R RN o i e T 109
SlZ oMY o e e e e 115
Sk RNl e e e e 116
bl 4 Miing eptimbsdionmmodels ol i h e o 117

5.2 Validation Failure, Rollback, and Recovery 120
Sd.) Drctelion Mo BIeEe.. . . . o e s e e 123
022 inpegonexanlion slale e e e e e e e 126
8221 Approach 1- continteexecatingo 126

5.2.2.2 Approach 2: checkpoint, rollback, and re-execute 129

5.3 Additionsl Opthpizetion Examples50 oo ik, 133
551 ‘Diack alloeationof chipet mdlabesso L oL Ll n 133
5.3.1.1 Flushing of stack allocated object instances 135

baad ommbromigatien temeal . . i i e e 137
D Codemeatiom elter tillmig ol v i i 141
SR i S et e 141
s ST RN L R R e . sl e i B R TG SR e s 143
Bl T . o e A 143
61 Chwhlermihyandoallgrapls e s 144
012 dnterocodaral DEOPREBIION - . . o o e i 148

G2 e LR .. e e i i A e 150
E R e e e e i e e e G N o s e 150
6.2.2 Static stability, “leaf” class/procedure determination 155
623 Addvessing oynamicappliealions o0 0o D ae i 156
6.2.4 Enabling aggressive optimization through annotations 161
- N e e i e e e 162
s EREC T E T UL T T A e e Bl e e e i s e B 163

6.3 Other Forms of Object Oriented Optimizations 165
CONCIUSIONS AND FUTURE WORK . .. v ot v i 169
7.1 Context-Specific Analysis Result Retention 170
1.2 Quantilying the Validatlon Framework 0. ... o i 173
7.3 Accomidatine Additional Java Peatures0 .. i e 173
P imag T LG E BRR R e RS R K S e e g 174

1.3.2 Ipterprocedural exceplion tradking v v v e e e 174

7.4 Additional Validation and Verification Uses 175
BB T R e e e s R e e 175

vii

1.5 ‘Ixtrapoleiion inlo Cber Labpuages © .. 00 . i e 176

io:1 Elinmaied bonlidery conditions 5 . o vh v e 177

16 Expleiting Hardware Specific Peatures i e 178
APPENDIX A BYTECODE LEVEL ALGORITHM AND ANNOTATIONS .. 179
Al Intraprecedural Algorithm for Forming CDG 180
A.1.1 Breaking BBs for exceptions and subroutines 180

A.1.2 Reducing anyalysis bytecode and assigning arguments 187

Al13 Forming the hilermediabe graph v . e e 190

A.1.4 Iterative, backwards, dataflow algorithm 206

A25 Lonmedling delinms anid WeBE0S . . 5« v e s 211

el T T e N s e e Sl e S e O 213
AVPENDIX B SINULATOR ARCHITECTURE o, o v v ibaion 220
Bl Semisted BExscntlom Bngine i i i i i 221
Chgg e TN R T S RO S e R SR S e e S R S S 225
L T T e e S TS e Rl S e e e D 229
DA - DGRy DRI ke e e A e 232
BE i e e e e 235
Ly ¢ B SRS e B e S e s e O SRS S S S e) R 241

viii

LIST OF TABLES

Table Page
2.1 DelinitionolentrissinaDataflow graph. 20
2.2 Rules to add edges in initial DGs. The [’s represent line numbers. 24
2.3 Rules to add edges to the initial graph to form the extended graph. 25
2.4 Percentage of actual methods used that were single basic block. 32
3.1 Analysis needed based on eptimization. oo 44
4.1 Description of benchmarks and applicationsused. 96
4.2 The actual number of dynamic bytecode instructions executed at the time of

¢ R e S S e e T B e S R S D S 104
Al Bociplion ot Giliple. .=, o o o v 181
A.2 Potential implicit runtime exceptions and errors thrown by specfic bytecode

o a R SeE D e e SRS e o g RS s LR R e 183
A.3 Reference affect events and their bytecode instructions. 188
A.4 Percentage of dynamic instructions containing the bytecode instructions in

TOENG. v e e S s ke e 189
A5 Definition of the intraprocedural analysisgraph. 191
A.6 Rules for adding nodes and edges based on RAE entries, part a. 196
A.7 Rules for adding nodes and edges based on RAE entries, part b. 197
A.8 Property nodes divided into “defines” and “uses.” 210
B.1 Sample line showing fields in the invocation line from a trace file. 230

ix

LIST OF FIGURES

Figure
1.1 An overview of the Dynamic Application Analysis Framework.
1.2 A conceptual view of the phases during the lifetime of an application.
24 Avomeptanl Vew ol s poedlite: L L s e i e e
2.2 - A conceptusl view of intraprocedwrnl aualysis. v
2.3 Example for illustrating construction of the CDGs.
24 CDG complruction deps formethod Bar,00 i ik
25 CDG congtraction for «Clege>inFigure 2.3, . . .00 . . oD
zh ChC eomsrictionioc BoelnFipwme L3 . o . -0 e
2T ChGeomtraiion i Poo i Fime 20, 0 0 i e
2.8 The percentage of unique methods in each benchmark that are from the bench-
e veimb bl llon . . o L iy i e s s
3.1 Example subclasses for theclass iy Figare 2.3, o oo vviiiv o
3.2 ACGs for the three potential types of Clazz o in Figure 2.3.
3.3 Final abstract source-level CDGs for the methods in Figures 2.3 and 3.1. . .
3.4 Results from interprocedural propagation of the three types of Clazz in Fig-
W i i e e R e S A
3.5 Results from removing the super nodes from the iCDGs in Figure 3.4.
3.6 Synchronized version of the class file from Figure 2.3.
37 UhGalortheclassileshomn i Figure 38« . .0, 0058
3.8 The interprocedural propagation result for the class in Figure 3.6.
SR T T T e SR e e e O e e e S e e
3.10 User class for the list class shown in Figure 3.9.
3.11 CDG formation from the class files in Figures 3.9 and 3.10.
3.12 Initial ACG and corresponding iCDG for ListFlattener.
3.13 ACG and corresponding iCDG after resolving ListCopier and append. . . .
3.14 ACG and corresponding iCDG after resolving getElement and add.
3.15 ACG and corresponding iCDG after resolving the next tier getElement and
Bda e e e e e e e e e e
3.16 ACG and corresponding iCDG after resolving the next tier getElement and
Ll ls kol et S s ek s R e e s e e
S17 Fhl A0 andoommmmponting 1CDG L v e A e
318 Final ICDG with superpodes removed. - (v vin va v i
S0 P iCDG with ield s reatls vemoved. o i e

31

37
37
40

49
93
o4
99

3.20 Another version of the class ListClazzUser that uses the classes ListClazz
aad Claspliode shown m e 00, .- .. . & . v e

3.21 The ACG for the procedure FooList shown in Figure 3.20.

3.22 The CDG for the procedure FooList shown in Figure 3.20.

3.23 The resulting iCDG from the interprocedural propagation in FooList.

3.24 The resulting iCDG after super node removal.

4.1 Reduced CDG example for the mmethod Bax. . & . 0 s o5 s
4.2 OCG propagation through the ACG for the type resolution ClazzB.
4.3 Delmition of thie Object Conpection Graph.o oo, s
B AR Y e L . . i e s e e
40 A Glorthe sabela ULIRRR. o E e i
46 Fxample o ACGHROCG oonsbenbion, - . . . o i ih s v vaie s
4.7 OCG propagation through the ACG for the type resolution ClazzA.
4.8 Runtime table used for representing the OCG from class Clazz.
4.9 Example of additional conservation from combined transitive closure and edge

S R B e e e e I e e s D
4.10 State propagation through the Parameter Maps (circles indicate changes dur-

R E R T e R SR R e e SR
4.11 An abstract overview of the simulated runtime environment.
4.12 Percentage of method local using iOCG compared to oracle method.
4.13 Percentage of method local memory location collected using iOCG compared

s o S B el D R A S i S e S) o
4.14 Percentage of OR operations to dynamic bytecode instructions.
4.15 Percentage of unique methods containing allocations.

5.1 The optimizing time ACG for the versions of Clazz in Figures 2.3 and 3.1. .
9.2 Example user for the class Clazz from Figure 2.3.+ .
5.3 Interprocedural CDG for HoeUser in Figure 5.2.
o4 Subclisslorthe b chmin Figwee 39,o 5 v o ci i i
5.5 ACG for append in Figure 3.9 with the new subclasses in Figure 5.4.
5.6 Driver class for the subelasses of ListClage. i i
5.7 Sometimes safe regions of optimizations for listBuilderDriver.
5.8 Speculative optimization in 1istBuilderDriver.
5.9 Abstract view of the necessary fields in a validation registration.
5.10 Abstract view of code space and insertion of redirection stub.
5.11 A user class for the class file ListClazzUser in Figure 3.9.
5.12 The iCDG for the procedure addJobs shown in Figure 5.11.
5.13 The intermediate graphs and final iCDG after removing field nodes.
5.14 Anewsubclass ol syacQlazzin Flgme 88, o .. s
5.15 The conceptual view of the sometimes safe inlined version of Hoe.
5.16 The conceptual view of the sometimes safe inlined version of Hoe utilizing the
5110 SISl Ente i e te S i i ok SIS S s S e

5.17 The new version of Hoe after code motion for Figure 5.14.

xi

112
112
113
117
118

7.1 Theoretical modified method pointer to handle multiple context versions. . . 171

A.1 A graphical hierarchy of the implicit bytecode exceptions. 185
A.2 Definition of the copy, kill, and transfer operations. 195
A.3 Bytecode representation of Bar from Figure 2.3. 199
A.4 RAE representation of Bar from Figure A3. 200
AbD Graphoonstrictionfor Bar in Plowme Al 5 0 0 i 201
A.6 The algorithm for processing CFG to formgraph 206
A.7 Property nodes broken into definition and usage nodes. 212
A.8 Final CDG formation from the graph for Bar in Figure A.5. 213
A.9 The format for the table entries used to annotate the CDG information into
s E SRR e e e e St SIS s e L SR e B 215
A.10 The format for the table entries used to annotate the CDG information into
QU W o e e e N e 216
A.11 The format for an index stub within the annotated table. 218
A .12 Eutry type specification for usage bit helds, L a0 218
A.13 The format of the attribute field used to hold the table. 219
B.1 An abstract overview of the simulated runtime environment. 220
B.2 Section of the trace file for the 227 mtrt benchmark from the SpecJVM98
L B e o SRR S S LSS P el S S e S R e L 221
B.3 Bytecode disassembly for the method GetVert. 222
Bd Thelormmat githetlgeadslateenmitdeos. . .0 0 .0 i v v v vivimii 226
B5 Thelormmatolthe call GUBeR GlPY. . . 5 v i v s e s 227
B.6 The format of the initialed methods used by the method invoker. 229
B Shonlatar ey WIBL. .. . o i e s e R e 232

xil

CHAPTER 1

INTRODUCTION

1.1 Object Oriented Languages and Java

Object oriented languages have established themselves as an enabling technology for
large enterprise level applications. Among the set of commonly used object oriented lan-
guages in this domain is the Java programming language introduced by Sun Microsystems
in 1995 [1]. Like other object oriented languages, Java is based on the notion of a class.
A class is a user defined type that contains elements, called fields, and procedures for
manipulating those elements. Classes are polymorphic, meaning that a class can inherit
from a parent class allowing it to have access to fields within the parent class, specialize
a procedure to its needs even if the procedure is defined within the parent class, and
introduce additional fields and procedures. Java limits the number of parents to one
but places no limitations on the number of children a parent can have. The inheritance
allows a programmer to use the parent type of an object when writing code, relying on
the dynamic runtime type of the object instance to choose the correct procedure. For
example, a scene rendering routine can be written to take objects of type shape calling
the procedure draw on each individual object. Then all drawable objects that inherit

from shape can be passed to the scene rendering routine, allowing their runtime types

to choose the correct draw routine. In this way, the programmer can rely on the run-
time type of the object instance for implementing the desired functionality. This form
of choosing the appropriate functionality based on runtime-type virtual-call resolution
is in contrast to the more traditional control structures used in languages such as C.
Due to this form of control, object oriented languages tend to contain a large number of
small procedure calls, each of which could have multiple potential targets based on the
dynamic resolution of the objects.

The Java language also incorporates features that increase the level of programmer
flexibility. One such feature is the ability to dynamically locate and link in the necessary
class files only when the application first accesses them. This allows a programmer to
change individual classes or even introduce new ones without the need to change the entire
application. Additionally, Java has dynamic discovery mechanisms such as introspection
and reflection which enable an application to dynamically discover the properties of a
class and instantiate an object of that class even if the the class did not exist when the
application was first written. This facilitates the incorporation of multiple packages from
multiple independent software vendors as well as allowing the creation of applications
that can dynamically create new classes to suit changing user needs.

Java is also designed to be machine independent. It targets a virtual machine architec-
ture allowing the application to be written, compiled, and tested for only one architecture
yet run on multiple targets. Furthermore, Java standardizes and simplifies interactions
that were traditionally dependent on the operating system or server implementation. The

thread model allows only one type of locking and a simple set of calls for accessing those

locks as well as guaranteeing thread safety for a set of library procedures. The network
model defines a simple set of calls for establishing and using the desired network connec-
tions. The database model uses a simple set of library calls to abstract away database
design issues. These standard interfaces also allow programmers to easily incorporate the
use of packages that implement them into their applications. Therefore, these features
further facilitate the integration of packages from multiple independent software vendors.

On top of all of this, Java also uses a memory manager relieving the programmer
of the responsibility of tracking memory references and trying to free unused memory
when the last reference to it expires. Programmers can write their code without fear of
runaway memory usage growth. They rely on the virtual machine’s memory manager to
track live memory locations and recover dead ones.

With the additional benefits also come additional overheads. To overcome some of
these overheads, Java relies on runtime optimizations to increase execution efficiency.
However, Java’s dynamic properties limit the applicability of traditional static analysis
techniques. The lack of appropriate analysis techniques also limits the scope and aggres-
siveness of the optimizations applied. This thesis presents the design of our framework to
facilitate aggressive runtime optimization by performing efficient and effective dynamic

application analysis.

1.2 Analysis and Optimization

Interprocedural optimization is a critical means to enhance performance for object
oriented languages. Since object oriented programs contain a large number of small pro-
cedure calls, most of the optimizations start by inlining procedure calls and optimizing
over what used to be the procedure boundaries. Most of these forms of optimizations
share a common assumption, that the set of class files used by the application is known.
They have a “closed-world” view [2] - [21]. Based on this assumption, conservative call
graphs are constructed and aggressive optimizations are performed. Significant perfor-
mance gains have been achieved by using these techniques.

However, dynamically linked and loaded applications such as Java have the potential
to introduce new subclasses of a given class at any time. This violates the “closed-world”
assumption of static analysis. Some researcher have tried to tackle the problem of the
elimination of the “closed-world” assumption by focusing on a subset of the applica-
tion that can be considered closed [22], [23]. This form of optimization restricts inlining
to only procedures that can be determined impossible to override at runtime. We call
these procedures monomorphic procedures, meaning one and only one implementation of
them exists within the application. The monomorphic procedures are either final pro-
cedures, meaning no other class can subclass them or they can be proven to be “sealed”
procedures within a sealed package as defined in [22]. The optimizations and inlining of
monomorphic procedures can be performed statically while allowing for additional run-

time optimizations. In Chapter 5 we extend the notion of monomorphic procedures via

the use of our framework. We introduce the concept of context-based monomorphic pro-
cedures and describe the advantages and limitations imposed by restricting optimizations
to only this subset.

However, although there is some gain from the inlining of provable monomorphic
procedures, it has been shown that there are still substantial opportunities if more pro-
cedures are identified and inlined [10] - [12], [23] - [28]. Therefore, more aggressive
runtimes make assumptions based on some form of profile information and determine a
set of additional virtual calls that can be transformed from multiple potential call targets
to inlined procedures guarded by control blocks. These procedures are then inlined and
optimized along with their caller’s code. Unlike the inlining of provable monomorphic
procedures, this second set is not guaranteed to remain closed in the presence of dynamic
class loading. This then leads to design concerns about how to detect that the current
call graph and class hierarchy assumptions have changed and what to do in the presence
of these changes. Both of these are addressed in our framework.

Sometimes it is beneficial to use known calling context and perform swift, on-the-fly
analysis to enable first invocation optimizations. However, traditional forms of interpro-
cedural analysis are too costly in both time and space for application to this analysis
domain. As a result, most runtimes that attempt to employ on-the-fly optimizations
restrict the analysis and scope of the optimizations to a swift, safe, intraprocedural sub-
set. Our framework is designed to enable efficient and effective on-the-fly interprocedural
analysis as well as provide more comprehensive intraprocedural information. This combi-

nation enables optimizations previously believed to be too costly for runtime deployment.

In Chapter 4, we describe and show results for an implementation of our framework to

perform swift, safe, on-the-fly, interprocedural analysis.

1.3 Overview of Our System

The proposed dynamic optimization framework consists of three major building blocks:
the static analysis engine, the dynamic analysis engine, and the dynamic optimization en-
gine. These are shown conceptually within the corresponding portion of the Java runtime
in Figure 1.1.

The static analysis engine operates on each individual class file at compile time. It
produces a compact summary of each method, upon which the dynamic analysis engine
performs various types of efficient runtime analysis. The summaries become available
to the dynamic analysis engine through the standard annotation mechanism defined by
Java specification [29]. The verification of this annotation is important to uphold the
tight Java security model, and in Chapter 2, we present an approach for meeting this
constraint that incorporates the best of both worlds.

The proposed summary of a method is referred to as a Compact Dataflow Graph
(CDG). It is a dataflow graph since useful dataflow information can be easily extracted
from this graph. However, it contains more than just dataflow information. It is a
compact graph since all internal units, such as local variables, are removed from the

graph. The details will be explained in Chapter 2.

Java class files
(bytecode)

Intraprocedural
Analyzer

Profiler

Runtime Loader/linker

Execution engine

Execution profile

Adaptive Call Graph Interprocedural Analyzer

Figure 1.1 An overview of the Dynamic Application Analysis Framework.

1.3.1 Runtime architecture phases

At runtime, the dynamic analysis engine generates useful optimization tips in two
different modes. The two modes are defined as first mode, or in the same process as
the executing application, and second mode, or in a separate process from the executing

application.

snap shot Validation registration Behavior change snap shot Validation registration

of profile optimized code available vyalidation failure ©f profile optimized code available
Profile Profile 4 Profile i Profile Profile k
time | ;
i
i

1
: :
i i

Hasty execution Hasty execution : Mixed execution Hasty execution : Hasty execution
5 i
i i
1]

Optimizer invoked : ;Optimizer invoked :

S it

Figure 1.2 A conceptual view of the phases during the lifetime of an application.

Figure 1.2 shows a conceptual view of an application’s progression through several
phases during its lifetime. In this figure, the horizontal lines can be thought of as different
processes executing over time. The top horizontal line is the main application while
the horizontal lines labeled Optimizer invoked are separate processes running in parallel
with the actual application. The vertical lines represent events. Some of these events
also involve a production and consumption of information, and therefore the vertical lines
indicate a direction of information flow. For example, the snapshot of the profile produces
information that is consumed by the runtime optimizer. When the runtime optimizer
completes, it produces new code and validation requirements that are consumed by the
Java runtime. The profiling of the application is continuous and our analysis can also be
conducted in conjunction with it. This is the first mode of analysis. The analysis results
produced here can either be instantly consumed, such as deciding on stack allocation of
a new object instance, or passed on to the optimizer for later consumption.

The runtime optimizer is considered a separate process with a static set of input

information. Analysis performed then is similar in concept to static analysis with the

added safeguards to handle dynamic class loading. This is the second mode of analysis.
The code being executed by the runtime can be in hasty execution mode, which we define
as interpreted or unoptimized code. This is shown below the timeline in Figure 1.2. At
some point, the runtime decides that enough profile information has been generated
and “snap shots” the profile collected. We show these events as vertical lines crossing
the timeline in Figure 1.2. The runtime then invokes the runtime optimizer. Once the
runtime optimizer completes, it passes the produced optimized code back to the runtime
along with any validation requests. This exchange is shown as the vertical line marked
“validation registration” and “optimized code available,” in Figure 1.2. The transferal
of the optimized code and validation requests then transitions the runtime into the next
phase of code execution, mixed mode. In this phase of execution, both optimized and un-
optimized code coexist in the runtime. Note that the profiler is still running and whether
or not to restart the profiling, discarding all previously collected profile information, is
dependent on the particular runtime. In our framework, we now also transition back to
the first mode of analysis. At some point during the execution, an event occurs which
either significantly changes the behavior of the application or forces a recovery from a
validation failure. At this point in our timeline in Figure 1.2, we assume the event was
significant enough for the runtime to abandon optimized code and transition back to
hasty execution mode. The transition to hasty execution mode then starts the cycle over
again. In Chapter 5, we describe the rollback and recovery mechanisms necessary in the

event of validation failure.

1.3.2 First mode analysis

The first mode of performing analysis, we define as occurring while the application is
running. The Java runtime executes a Java application and performs profiling at the same
time. Our analysis used during this phase has the advantage of being context sensitive
and knowing the exact calling context of the method. However, there are overheads
that can impede performance and therefore can impact the strength of the analysis. For
example, if we use our framework to make swift decision on whether to allocate an object
on the stack or the heap, we need to make this decision at the point the object is allocated.
However, in order to decide, we need to analyze what will occur over the object’s lifetime
to determine if the object has the potential to survive its allocating method. To do this,
we construct a quick, safe interprocedural analysis at the point the method containing
the allocation is executed. We describe an implementation of our framework for this
form of analysis in Chapter 4. The analysis conducted in this first mode is not restricted
to just this form of analysis. For example, it can be used to augment the profile data
by constructing the interprocedural results as the profile is being collected. Then when
the snap shot is taken, the context-sensitive analysis information is passed as part of
the input set for the optimizer. The profiling is ongoing and as such the first mode of
analysis for this example is considered continuous. We describe several forms of first
mode analysis in Chapter 3.

If the analysis results are consumed in the first mode, the optimized code is specialized

to a particular calling context. Therefore the optimized code has a very limited lifespan

10

and in some cases becomes single use. This means that the optimizations may be dis-
carded after execution and regenerated should the same calling context be encountered
again. Therefore, not only must the analysis performed during in this mode be designed
efficiently, weighing the costs versus benefits, but also the choice of optimization and
overhead of implementing it. The structures we designed as part of our framework help

facilitate this form of analysis by reducing some of the overheads.

1.3.3 Second mode analysis

The invocation of the runtime optimizer then brings us to the second mode for analysis
generation. In the second mode, the dynamic analysis engine waits until the profiling
stage snap shots. The profile, along with any output from first mode analysis collection, is
then input to a separate process running the optimizer. The other inputs to this process
include the currently known class hierarchy, which is used to construct a call graph.
However, the second mode is not restricted to just a consumer of first mode analysis
results. Our framework can also be used in conjunction with various adapted techniques
developed in static algorithms to produce either context-sensitive or context-insensitive
results. We discuss further the difference between the analysis in the second mode and
the first mode in Chapter 3. By performing the analysis and consuming the results in the
second mode, we avoid the extra overheads paid to keep the analysis information up-to-
date dynamically during profiling. However, some optimization opportunities can be lost
due to exact context information only present during the first mode. For example, notice

that we are now missing the exact type information of formals passed to a procedure,

11

that was present during the first mode. To enable aggressive optimizations, the optimizer
needs to incorporate safeguards and modifications to handle the incompleteness of the
information due to the possibility of new classes being loaded into the system. We define
several models of optimization and describe the necessary safeguards needed for each in
Chapter 5. We also present our framework for validation, r rollback, and recovery based
on these models, defining what is meant by the walidation registration on the timeline
in Figure 1.2. In order to enable context-sensitive optimization in the second mode, we
need a system for identifying context and accessing the correct version. We discuss the

restriction and potential design of such a system in Chapter 7 as part of future work.

1.3.4 Consumption of analysis results

The analysis results can be thought of as producing optimization tips. We classify
optimization tips as falling into several main categories. The first category is when the
optimization tip is absolutely valid for every possible execution path. We refer to this case
as always safe. In this case, we can perform optimization without any trouble; however,
the number of tips that fall under this subset is relatively small. The second category is
when the optimization tip is conditionally safe since not every possible execution path
has been exposed yet. In this case, the lifespan of the optimized code can become short.

In the second mode, if the optimizer chooses to perform aggressive optimization using
conditional tips, it also incorporates the appropriate validation checks. We break this
form of optimization into two subcategories: sometimes safe in which the optimizer

embeds the validation checks into the optimized code, and speculatively safe in which

12

the optimizer relies on validation and rollback in the runtime. The primary difference
between the two is the assumptions made about the state and stability of the class
hierarchy contained within the runtime at the time the optimizer runs. We describe this
further in Chapter 5. A combination of the two aggressive optimization techniques can
also be employed where some assumptions may be speculative while others are validated

in the code.

1.4 Primary Contributions

The primary contributions of this work as follows.

e An efficient and effective framework for dynamic application analysis and validation
of a subset of runtime optimizations in the presence of dynamic class loading. We
present our framework for analysis and discuss the types of optimizations enabled
by it. We identify and classify the basic optimization models including the neces-
sary validation, rollback, and recovery for each model. Our framework allows for
validation using the CDG to enable techniques that swiftly verify the correctness of
some of the optimization decisions with the potential to facilitate more aggressive
optimizations and expand the lifetime of the optimized code for the given applica-

tion segment.

e A graph that represents intraprocedural object instances and that is independent of
the detail of the internal runtime representation called a Compact Dataflow Graph

(CDG). We show that the CDG is a key mechanism for enabling a large range

13

of efficient dynamic analysis and optimizations. The CDG efficiently represents
the important object instance information at the intraprocedural level and enables

swift propagation of results interprocedurally.

A design for performing swift interprocedural analysis based on the use of the CDG.
This includes a call graph abstraction we call an Adaptive Call Graph (ACG). The
ACG differs from a traditional call graph in two important ways. First, it is formed
using the procedure under consideration for optimization as the entry point and not
necessarily the main procedure which is the entry point for the entire application.
Second, it incorporates context information and represents points within the call

graph that can change and therefore may require some additional adaptation.

An example use of the CDG for dynamic interprocedural analysis to guide opti-
mization. We extract points-to relations from the CDG and develop an undirected
form of a unification points-to relation called an Object Connection Graph (OCG).
The OCG is designed to facilitate swift interprocedural analysis in a running, dy-
namically loaded application. This representation can be created swiftly from the
information in the CDG and shows the power of the information representation
contained within the CDG. The OCG is designed also to enable swift interproce-
dural propagation of the information, and in turn identify a subset of objects as
local to the allocating method. These object are allocated on the stack at the time

of allocation.

14

e (lassification of optimization strategies based on the consumption of information
generated by the framework. We also identify and classify the types of validation
and recovery mechanisms needed for the different strategies. We then give examples

of these strategies and how they impact different optimizations.

The structure of the remainder of the thesis follows roughly the main components iden-
tified in Figure 1.1. In Chapter 2, we present the construction and representation for the
CDG, shown in Figure 1.1 as the section labeled intraprocedural analysis. We address
the actual format of the annotations shown in the box labeled annotated Java class files
in Appendix A. In Chapter 3 we describe the design of the dynamic analysis framework.
This includes descriptions of the sections labeled dynamic class hierarchy, adaptive call
graph, interprocedural analyzer, and analysis results, in Figure 1.1. Also in Chapter 3,
we identify a set of optimizations that can benefit from the analysis results generated by
our framework and present an overview of how the intermediate structures may be used
to enable them. Next in Chapter 4, we present an actual implementation of one of the
dynamic analysis techniques. We introduce an intermediate representation designed for
efficiency and present results for a set of benchmarks. This is followed by Chapter 5 in
which we present the framework for dynamic optimization and validation. We describe
the analysis consumer, validation requests, and validator shown in Figure 1.1. We discuss
the basic structures used in the framework, classify three primary optimization strategies,
and present an overview of what types of validation and rollback are required for several

types of optimizations under the different strategies. We follow this in Chapter 6 with

15

a review of related research both in the realm of static analysis and in the domain of

dynamic analysis. Finally, in Chapter 7 we discuss the future directions for this research.

16

CHAPTER 2

INTRAPROCEDURAL ANALYSIS

Understanding the use and interactions of object instances within a dynamic ob-
ject oriented application is essential to not only locating the correct target for a virtual
method call, but also to enabling a large subset of optimizations and validations. How-
ever, since the application is dynamically loaded and linked, the actual interprocedural
information may not be fully available until the application is running. Therefore, the
goal of our intraprocedural analysis is not only to discover the use and interaction be-
tween unique object instances, but to represent it in such a way as to facilitate the swift
connection and propagation of the information interprocedurally. In this chapter, we
describe our intraprocedural analysis and representation that are the building blocks of

our interprocedural analysis.

2.1 Overview

Conceptually we can view a procedure as shown in Figure 2.1. It has inputs - the
formals Fy, Fy, and Fy - which represent unique object instances locations entering a
method. It also has outputs, Py, P;, and return value F_;, that are inputs to other

procedures. It can also create new object instances, such as objl and obj2, and use

17

to it :tZ;——

-

<

& @ ¢

Figure 2.1 A conceptual view of a procedure.

properties associated with the object instances, such as lock. The procedure also contains
a set of temporary locations where any of the object instances can reside while in use.

However, what is missing from this view is how these locations shown in Figure 2.1
interact. The purpose of intraprocedural analysis is to analyze each method in such a
way as to discover the interactions and properties of these locations and then to distill
this information to remove the internal temporary locations from the representation.
This result is then representative of the method’s effects on the unique object instances
it comes in contact with. The set of interactions between unique object instances are
then represented in such a way as to facilitate swift interprocedural propagation of the
information.

For example, given the conceptual view of our method shown in Figure 2.1, the
analysis first discovers the interaction shown in Figure 2.2(a). However, the goal of

our analysis is not only to discover this interaction and dataflow but to also reduce

18

® @P ? L
@

2
O i -O—®—®
(a) Interactions between objects and temporaries. (b) Interactions between objects only.

Figure 2.2 A conceptual view of intraprocedural analysis.

it such that only the object instances are left. Basically, we are not concerned with
the temporary locations used, since these are internal to the method. They can be
viewed as only temporary place-holders for the actual object instances. Instead, what
interests us is how the actual memory locations representing the object instances are
interconnected and used. This interaction and use is what defines not only the target of
virtual method calls, but how these locations can be laid out and optimized. Furthermore,
since temporaries are internal to the individual procedures, they are meaningless for
interprocedural propagation of information. The reduced version contains the relations
between the unique object instances used in the method, minus the temporary locations.
This representation is shown in Figure 2.2(b). We call this reduced graph a Compact
Dataflow Graph (CDG).

Context independence is maintained during the intraprocedural analysis by not in-
cluding any calling context or application-specific information during this phase. Its

compact design and context independence allow persistence by utilizing the annotation

19

Table 2.1 Definition of entries in a Dataflow graph.

Node symbols Definition

P, the ¢th formal of the method m

(P, b the return value of the method m at line [

the object created at the line [

a definition of the variable v at line [

a field access of the field f at line [

the nth formal of the method invoked at line [

the return variable of the method invoked at line [
the throwing (), of an exception at line [

the locking (L), of an object at line [

the unlocking (U), of an object at line [

,_\,.\,\,\,\,_\,_\N
SRl St s
= Nb_.\\‘
G i S s o s
e Py
=

=~

There are two types of edges in the DG of the method m:
—, + dataflow (strong) edge
--- association (weak) edge

mechanisms provided by the Java specifications [29]. Furthermore, the virtual machine
independence is maintained by representing the CDG in terms of bytecode level infor-

mation.

2.1.1 The Compact Dataflow Graph

We now examine the structure used to describe the intraprocedural relationships in
more detail. The locations in Figure 2.1 contain reference values and can be divided into
several fundamental types of nodes. These nodes in conjunction with their associated
edges form the basis of the initial dataflow graph. Table 2.1 lists the types of nodes and

edges present in a dataflow graph. They are defined in more detail as follows:

20

e Local Variable Nodes: Nodes representing a temporary variable name. These
are represented by nodes of type (v,1), where [is the bytecode line number that

defines the local variable location.

e Formal Value Nodes: Nodes representing the formals to a method, these include
any object instance returned by the method. These are represented by nodes of
type P; and (P_1,1), where P_; represents a return value and [is the line number

it occurred at.

e Parameter Value Node: Nodes representing reference values passed to callee
methods. These are represented by nodes of type (n,!) and (—1,1), where (—1,1)

is a reference value returned from a callee method at line number [.

e Allocation Node: Nodes representing new object instances being allocated within
the method. These are represented by nodes of type [, where [is the line number

the allocation occurred at.

e Field Nodes: Nodes representing a field associated with another object instance
within the graph. These are represented by nodes of type (f,1), where f is the
constant pool identifier for the field and [is the line number the field was accessed

at.

e Property Nodes: Nodes that represent a property associated with an access of
a reference value. These are represented by nodes of type (¢,1), (L,1), and (U, 1),

where ¢ is the use of a reference value to throw an exception, L is the locking of

21

the monitor associated with a reference value, U is the unlocking on the monitor
associated with a reference value, and [is the line number at which the event

occurred.

e Global Node: Nodes that represent an object instance that is globally visible
to all threads running within the application. In Java, these object instances are
associated with a class file instead of the particular object instances and are declared
using the static key word. These nodes are represented in the graph by nodes
(g,1) where g is the identifier for the global and [is the line number the access

occurs at.

Under these definitions, the locations to, ti, to, t3, t4, ts, ts, and t7, shown in Figures 2.1
and 2.2(a), become local variable nodes. Locations Fy, Fy, Fy, and F_; become formal
value nodes. Locations Py and Py become parameter value nodes. Locations obj1 and
obj2 become allocation nodes. Location f becomes a field node and the location lock
becomes a property node. Note that property nodes differ from the other forms of nodes
in that they do not represent the flow of data or a connection between the nodes. Instead,
they represent a property that is associated with a given access to a node that may affect
the state of the reference value when the graph is used to perform analysis. Since our
goal is to provide an intraprocedural representation that accurately represents the usage
and interconnections between the unique object instances within a method, the property
nodes are necessary to correctly represent the usage of the object instances. For example,

knowing where and when an object instance is used to obtain a lock as well as conveying

22

the fact that the lock is associated with a given object instance is necessary to identify
unnecessary synchronization operations dynamically.

Although the analysis used to generate a CDG is performed on a bytecode repre-
sentation of the method, m, it can be conceptually viewed as performing the following

steps.

1. Execute a reaching definition algorithm.

2. Construct an initial graph from the reaching definition.

3. Complete the initial graph by extending edges around temporary nodes, forming a

transitive closure on the initial graph.

4. Remove temporary nodes and edges from the extended graph.

Two types of edges are used in the graphs, a dataflow edge and an association edge. The
dataflow edge represents the flow of data between two locations, while the association
edge is a means of attaching field locations and properties to their parent objects. Data
does not flow along an association edge, and the edge does not contain direction. Table 2.2
gives the edges used to connect the nodes within the graph for a set of source level style
expressions. To better explain an association edge, refer to the third entry in Table 2.2,
[:v.f:=w. This expression at line number [stores the value of w in f, of object v.
Therefore, we denote the data flowing from w to f with the dataflow edge, but denote
the relationship between v and f with an association edge. Association edges are also

used for properties associated with a reference value, such as the locking/unlocking of

23

Table 2.2 Rules to add edges in initial DGs. The I’s represent line numbers.

l expression ’ edges added]
l:v:=newC() add a dataflow edge | — (v, 1)
lro=w for each definition (w,!") reaching line
add a dataflow edge (w,!") — (v,1)
Pred v for each definition (v,!’) reaching line [

add an association edge (v,!")---(f,1)
for each definition (w,!’) reaching line {
add a dataflow edge (w,l') — (f,1)

broi=wd for each definition (w,) reaching line [
add an association edge (w,!")---(f,1)
add a dataflow edge (f,1) — (v,1)
l:v:=plwy,...,wg) | add a dataflow edge (—1,1) — (v,1)
tfoveachi="0.. .k
for each definition (wj;,l") reaching line I,
add a dataflow edge (w;, ') — (3,1)
I : synchronize(w){ | for each definition (w, ") reaching line ,
T add an association edge (w,')---(L,)
i3 add an association edge (w,")---(U,1")
[: throw(w) for each definition (w, l’) reaching line [,
add an association edge (w,')---(¢,1)
where ¢ represents the state thrown

the reference’s monitor or the use of the object to throw an exception. These are shown
by the last two entries in Table 2.2.

The initial graph is then expanded into an extended graph by extending edges around
local variable or intermediate locations, thus forming a transitive closure. The rules for
extending these edges are shown in Table 2.3. They simply allow the graph to bypass
any local variables used within the initial graph while still accurately representing the

relationship and usage of the object instances.

24

Table 2.3 Rules to add edges to the initial graph to form the extended graph.

if ny > n' and n’ — ny add a dataflow edge n; — nq

if ny — n' and n'---no add an association edge ni---ns

where n' is a local variable node.

The first rule allows the data flowing from one object instance to another object
instance to be represented directly without the local variable node. The dataflow edge
between n; and n’ states that they can be considered direct aliases for each other, and
likewise for the edge between n’ and ny. Therefore, since n; = n’ and n’ = ns, we know
ny = ng. The next rule simply states that if an association edge exists on a local variable
node, it is extended with an association edge to any node with a dataflow edge entering
the local variable node. Therefore, a relation between the two objects is maintained
even though no data flows between them. This extension of the association edge enables
relations that are only associations to local variable nodes to be associated with the object
instance nodes while maintaining the read/write direction of the access. Note that if no
edges are leaving n’, then the relation n; — n’ + ny has no effect on the object instances
ny and ny. Therefore the node n’ and its associated edges can be safely removed from
the graph without loss of information.

After applying the rules in Table 2.3, the CDG is formed by removing the extraneous
temporary nodes and their related edges from the graph. The edges added then capture

the relationships between the unique object instances used in the method.

25

1 elags Clagz {

2% Clazz [

3z static Clazz g;

Az

5% <Clazz>(Clazz o) {

B <object> (o) ;

s }

81

9:

10 void Hoe(Clazz o) {

bS5 Clazz a = new Clazz();
12: <Clazz>(a) ;
13¢
14: Clazz b = new Clazz();
15: <Clazz>(b);
163
17 o.Poola, b);

18 }

19:
20: void Fool(Clazz o, Clazz p, Clazz q){
20 Clazz r = new Clazz();
22: <@Glazzs(r);
25%
24: oiBax(p,)
25% }
263
21t woid . Bar(Clagz o, Clazg x, Clazz v){
282 Clazz z = new Clazz();
29: zClazz>(z);
30:
33 o R Y
S g = z;
33 }
34y}

Figure 2.3 Example for illustrating construction of the CDGs.

2.2 CDG Formation

To better illustrate the formation of a CDG, we use the example in Figure 2.3. The
class in this example contains four methods: an initializer, <Clazz>, and three other
methods, Hoe, Foo, and Bar. In Java, the default method type is virtual, meaning that an
object instance is used to locate the correct definition of the procedure. In the example
class in Figure 2.3, we have shown this object instance explicitly as the first parameter,

Clazz o, in each of the four procedures in the class. Therefore, for the call shown on line

26

(o 27) (x5 27) (o 27)

\

l£,31)
N

(a) initial graph (b) extended graph

L1 Local/temporary {_j Field access

N/ Formal) Property

\

Parameter O Global
© Allocation

(c) final Compact Dataflow Graph

Figure 2.4 CDG construction steps for method Bar.

17, 0.Foo(a, b), the object instance, o, maps to the first parameter in Foo’s parameter
list, Clazz o. To illustrate the construction of a CDG, we use the method Bar. We also
show, but do not discuss, CDGs for the procedures Hoe, Foo, and <Clazz>, which are
used in subsequent chapters.

Figure 2.4 constructs the CDG from the method Bar shown in Figure 2.3. The
bottom right side gives a legend for the different node types defined in this chapter.
We walk through the construction of the CDG in a forward progression although the
actual implementation uses a backward flow algorithm. The forward algorithm follows
the normal execution progression and is therefore easier for readers to follow. We present
the actual backwards algorithm performed on the bytecode representation of the method

in Appendix A.

27

In Figure 2.4(a), the formals coming into the method Bar add three formal nodes
to the graph, P, Pi, and P,. These are assigned to temporary locations, o, z, and v,
adding three local variable nodes to the graph. Following the rule for formals given in
the fifth row of Table 2.2, (l:v := p(wy, ..., wy)), we attach solid dataflow edges between
the appropriate pairs. The creation of the new object at line 28 of Figure 2.3 adds an
allocation node labeled 28, shown in the upper right side of the graph. Its assignment to
temporary location z adds a local variable node to the graph, labeled (z,28). They are
then connected via a dataflow edge as shown in Figure 2.4. The call to the initializer at
line 29 of Figure 2.3 is shown by the addition of the parameter node labeled (0,29) and
the dataflow edge attaching the local variable node (z, 28) to (0,29). The field assignment
at line 31 adds the field access node labeled (f, 31) to the graph, with two edges attached
to it. The dashed edge associates it with the local variable node labeled (z,28), and the
solid edge expresses the dataflow from the local variable node labeled (z,27). Finally,
the assignment into static field location g adds the global node labeled (g,32) and the
dataflow edge attaching the local variable node, (z,28), to it.

To form the extended graph in Figure 2.4(b), we apply the rules for edges given in
Table 2.3, extending around the local variable nodes. We next remove all local variable
nodes from the graph along with any edges incident on them, bringing us to the final
CDG given in Figure 2.4(c).

The construction of the CDGs for the remaining three methods shown in Figure 2.3

are simpler. Figures 2.5 - 2.7 show the construction of these graphs.

28

o/
6.0\

(a) initial graph (b) extended graph (c) Compact Dataflow Graph

Figure 2.5 CDG construction for <Clazz> in Figure 2.3.

(c) Compact Dataflow Graph

Figure 2.6 CDG construction for Hoe in Figure 2.3.

2.3 File Annotations

The final step is the persistence of the information via the annotation mechanism
in the bytecode file format specifications given in [29]. Although the analysis can be

conducted at load time, it is flow sensitive with a worst case time complexity of O(n?),

29

AL

I4

(0,20) ‘(p 20)| I(q 20)' (r, 21) (r, 21)[
%g\m (0,22) >22)

(a) initial graph (b) extended graph

N/
(0, 2aN 1,24\ “(2,24) A@;

(c) Compact Dataflow Graph

Figure 2.7 CDG construction for Foo in Figure 2.3.

where n is the number of basic blocks in the CFG. Note that when a method is a
single basic block, the complexity is linear. The flow sensitivity allows the dynamic
interprocedural analysis to be either flow-sensitive or flow-insensitive. For example, the
synchronization removal algorithm presented in [16] uses flow sensitive analysis to remove
extraneous synchronization operations even from thread escaping references. Although
the work presented in [16] is based on a static, closed-world view of the Java application,
by including the flow sensitivity in the CDG we can enable similar techniques to be
employed dynamically.

However, Java is dynamically linked and loaded implying that, aside from the library
files that are part of the runtime, the class files used by the application may arrive from

outside sources at any time during the applications execution. Files obtained at runtime

30

JGFCrypt

JGFLuFact

JGFSor

JGFSeries

JGFSparseMatmult

JGFMolDyn

JGFRayTracer

Program

Heat

Fib

Msort

Nqueens

BarrierJacobi

LU

| J
l |
| |
l l
| l
I |
\ | \
J |
| |
t l
{ l
l l
| |

l

|

\

J

|

|

% l
l | I
‘ |
\

l

|

l

MatrixMultply l :

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

B Benchmark
Percentage O Library

Figure 2.8 The percentage of unique methods in each benchmark that are from the
benchmark versus library class files.

may not contain the necessary annotations. Even if the files do contain the annotations,
the cost of verifying their correctness may approach the cost of creating them.

Not all of the intraprocedural analysis needs to be conducted dynamically. A signifi-
cant portion of the unique methods used by an application are from the runtime library.
Figure 2.8 shows, for the unique methods used in each of the examined set of programs,
what percentage came from the program class files and what percentage were from the
library class files. As can be seen from the graph, the percentage of methods unique to

the application specific portion of the program versus the percentage of methods coming

31

Table 2.4 Percentage of actual methods used that were single basic block.

Percentage | Percentage
Programs Programs Library
JGFCrypt 47.6% 52.0%
JGFLUFact 41.7% 52.3%
JGFSOR 52.6% 52.0%
JGFSeries 55.0% 52.1%
JGFSparseMatmult 64.3% 52.2%
JGFMo1Dyn 53.6% 56.0%
JGFRayTracer 69.5% 52.1%
Heat 49.1% 52.0%
Fib 48.7% 54.0%
MSort 44.8% 52.5%
NQueens 51.1% 47.7%
BarrierJacobi 33.3% 50.1%
LU 45.0% 54.1%
MatrixMultiply 50.0% 54.0%
Total 51.0% 52.3%

from the library class file portion is relatively small. Furthermore, even for those methods
that are analyzed dynamically, a significant portion of them are single basic block, mean-
ing the analysis for them is linear. Table 2.4 shows, for the programs investigated, what
percentage of the unique methods invoked by the application were single basic block.
This is divided in Table 2.4 into those that were program specific and those that were
part of the standard library files.

One solution to the security issue is to only statically persist the CDG in the library
files. Since the library files are under the control of the runtime and considered part of the
runtime, standard security measures such as sealed packages and signatures can be used.
The file size expansion from annotating these files in a Java 1.2 library implementation

was measured at 11.28%. Any new program files loaded into the system can have the CDG

32

constructed at either load time, or first invocation. For commonly used applications, some
of the annotations created by the runtime could be made persistent on the deployment
machine. Techniques similar to those we developed in [30], [31] could be used to recognize
version changes within these persistent files both at a coarse and fine grain level, thus
discarding and updating their CDGs only when necessary.

For the interested reader, Appendix A presents the actual analysis performed on the
bytecode representation of the method. The final result is compared to the conceptual
view presented in this chapter. Also presented is the actual format of the annotations
within the bytecode files. These sections are not necessary for understanding the remain-

der of the thesis, which requires only the conceptual view of the CDG.

33

CHAPTER 3

DYNAMIC ANALYSIS: INTERPROCEDURAL
ANALYSIS

The key to optimizing a dynamically linked object oriented style application is the
ability to perform the interprocedural analysis assuming incomplete information. When
the application is dynamically linked, the call graph can only be assumed to contain a
partial set of the calls used within the running lifetime of the application. At any point
during the execution, the system can load a new class file and increase the number of
potential targets for one or more points within the call graph. The dynamic analysis
framework must have a way to represent uncertainty and to perform analyses based on
only partial information.

In addition to this uncertainty are concerns of time and space. With a dynamically
linked and adaptively compiled application, the analysis engine is competing with the
actual application for system resources. Therefore, the need for efficient use of memory
and processor resources limits the use of some static analysis techniques. Furthermore,
since the application can change behavior at different phases of execution, it is important
for the analysis engine that guides the optimizer to have the analysis results in a timely
fashion. Otherwise, an optimization may become obsolete before it can be applied, due

to newly loaded class files or changes in user behavior.

34

In this chapter, we address the structures necessary for efficient dynamic interpro-
cedural analysis. They include the class hierarchy representation already part of most
VMs, the dynamically adaptive call graph, and the connecting of intraprocedural analysis
results to arrive at an interprocedural solution. We present our designs and interfaces for
each of these. Additionally, we discuss how our analysis framework can be used to pro-
vide the information necessary to perform a set of optimizations shown to be beneficial

for Java style applications.

3.1 Class Hierarchy Representations

A Class Hierarchy (CH) representation is a structure used to represent the inheritance
relationships between class files. Java requires that all ancestors of a new class file be
initialized before the class file is initialized [29]. To facilitate this ordering, most Java
virtual machines contain some form of representation for an application’s currently known
class hierarchy. We do not assume any particular structure for this representation, but
instead identify the types of information necessary to implement our framework. The
primary information needed by the analysis engine is the ability of the VM’s CH to return
results from two queries, parent of a given class file, and children of the given class file.

Note that although Java has a single inheritance structure for class files, it does not
impose that constraint on interfaces. In fact, the number of interfaces that a class file

can implement is limited only by the size of the 16-bit interface_count field within the

35

class file [29]. The part of the framework presented in this thesis covers only the single

inheritance structure used for class files but can be easily extended to include interfaces.

3.2 Adaptive Call Graphs

One important tool for performing interprocedural analysis is a graph of the caller-
callee structure within the application commonly called a call graph. This structure
usually encompasses the entire application and contains multiple potential targets for
virtual call sites. For our framework, we adapted the traditional definition of a call
graph to better suit the dynamic application analysis problem. Instead of creating a
single call graph for the entire application, we create a partial call graph for a procedure
under analysis. Furthermore, based on context information known about the procedure
being analyzed, we represent call sites within the call graph as either single target or
unknown. We call our modified call graph an Adaptive Call Graph (ACG) because it

adapts to a given procedure and context. We define an ACG as follows:

Definition 1 An Adaptive Call Graph (ACG) is a call graph that extends from a root
procedure, m, to include the potential callees of m such that given the calling context of

m, the nodes in the ACG are of the following types.

e Known, the callee has only one potential target within the given context.

e Speculative, the callee has two or more potential targets within the given context.

To explain the ACG, we again use the example introduced in Figure 2.3, and subclass

it with the two new classes shown in Figure 3.1, ClazzA and ClazzB. Since we have

36

35: class ClazzA extends Clazz {

367 void Foeo(Clazz o, '‘€lazz p, Clazz g){
s ClazzA r = new ClazzA();

38: r.<llazps4);

39 Clazz P = &;

40: o.L£.Bar(P, a);

41 }

425}

433

44: class ClazzB extends Clazz {

45: void Bar(Clazz o, Clazz x, Clazz v){
46: g=Y;

47 }

4871 -}

49:

Figure 3.1 Example subclasses for the class in Figure 2.3.

o

17 a 12,15

Bt<Clazz>

6
1 \ X
o)) @) G (@)

(a) type of Clazz o = Clazz (b) type of Clazz o = ClazzA (c) type of Clazz o = ClazzB

Figure 3.2 ACGs for the three potential types of Clazz o in Figure 2.3.

these classes in our CH, and the CH only contains loaded and initialized classes, all three
definitions for an object of type Clazz are available. Figure 3.2 shows three ACGs for
the root method Hoe for the three potential types of Clazz o. In the figure, solid nodes
denoted known and dashed nodes denote speculative nodes. The edges specify the line
number at which each method was called.

Note that even though the class Clazz has several subclasses that have been loaded

and initialized into the runtime, at profile time we know the exact type of Clazz o, the

37

object used to call Hoe, as the Java runtime uses the runtime object instance to locate
the correct method table and correct method resolution for Hoe. Therefore, since the
object instance value, Clazz o, shown explicitly in this example as the first parameter
to Hoe, is known, and this is also the object instance used to call Foo, this method is also
definitively known. This fact is reflected by the use of a known node for Foo in all three
ACGs in Figure 3.2 .

Not all nodes in a first mode, profile time ACG can be classified as known. The
resolution of Bar is not known in the ACG in Figure 3.2(b). If the object o has the
runtime type ClazzA, the resolution of Bar depends on the object instance type of its field,
f, as the implementation of Foo in ClazzA uses o.f to locate Bar (line 36 of Figure 3.1).
When performing and consuming analysis results during execution, resolution of the field
type when constructing the ACG can require several accesses to memory to retrieve the
type. Additionally, the exact field must be tracked through the iCDG built in conjunction
with the ACG to be certain that it remains that type until the invocation site. Therefore,
since overhead is a factor during the first mode, this level of resolution is not viewed as
practical. Therefore, the ACG in Figure 3.2(b) shows Bar as a speculative node labeled
2 Bar:

The type of node in the ACG does not necessarily remain the same if the interpro-
cedural analysis is performed when the runtime optimizer runs (second mode). At this
point, the calling context including the exact runtime type of the object is missing, mak-
ing type determination difficult. The only information is on potential types, which can

be determined from the CH. Using the same set of class files with the same CH defined at

38

profile time, no assumptions can be made about which of the three class files the object
instance Clazz o will belong to. Therefore, both the instance of 20:Foo shown in the
first mode, profile time ACGs in Figure 3.2(a) and (c), and the instance of 36:Foo shown
in Figure 3.2(b), could be the target of the call to Foo. Additionally, potentially not yet
loaded subclasses could introduce additional targets. This uncertainty makes the node
for Foo in the second mode ACG speculative. However, optimization is still possible and
we address this further in Chapter 5.

There are invocation targets that are known single targets and remain monomorphic
even in the presence of dynamic class loading. These include initializers and methods
declared as final or static. For initializers, the object is being created of a known type
with a known descriptor. Therefore, there can be only one resolution for the initializer
call. For the case of methods declared using the final key word, no subclass can override
the method by definition of the use of the final modifier [29]. Methods declared with
the static key word are resolved via the class object versus a given object instance.
Like fields declared as static, there is only one implementation of them available, and

therefore the target is monomorphic.

3.3 Analysis Information

The interprocedural analysis assumes the availability of the CH, ACG, and CDG.

Based on these three structures, the following types of analyses can be made.

39

O I s

g
<Object> <Clazz> Hoe(Clazz o) Foo(Clazz o, Clazz p, Clazz q) Bar(Clazz o, Clazz x, Clazz y):
]

(b) CDG for the class ClazzA (c) CDG for the class ClazzB

Figure 3.3 Final abstract source-level CDGs for the methods in Figures 2.3 and 3.1.

o Access information: When and how an object instance is accessed. For example,

whether it is read or written as well as where within the method the access occurred.

e FEscape information: Whether or not a given object instance escapes a given scope
of control. At the thread level, this determines whether or not the object instance
becomes visible to other threads. At the method level, this involves whether or not

the object instance lifetime extends beyond its allocating method.

e Property information: Whether or not a particular object instance is used for a

locking operation or to throw an explicit exception.

The formation of the ACG is an iterative process that connects the CDGs for each
known node to form an interprocedural CDG (iCDG). Super nodes are used to connect

formal and actual parameters at call sites, and are later replaced with edges. Figure 3.3

40

0 @

Ny
Em 17; (1% 0. 12 mm;
Q0 M\‘?}

~

| (
A 0,6) ((o,m
(£,40) Dol had

g, o

(b) Object type Clazz o = ClazzA
7 @
%m 1,47 0,12 2. A
0y 3 JLVI/) Dl

(g,46)

(a) Object type Clazz o = Clazz
(c) Object type Clazz o = ClazzB

Figure 3.4 Results from interprocedural propagation of the three types of Clazz in
Figure 2.3.

shows the CDGs for the class files introduced in Figure 3.1. Figure 3.4 shows the iCDGs
constructed in conjunction with their respective ACGs shown in Figure 3.2. The super
nodes are explicitly shown in Figure 3.4 as the larger, rounded-edged nodes containing
both a caller parameter node and its corresponding callee formal node. The specula-
tive node shown in Figure 3.2(b), is reflected in Figure 3.4(b) by the three parameter
nodes ((0, 40), (1, 40), (2, 40)) left open (not contained in super nodes). Recur-
sive procedures are also connected via super nodes. Depending on the full type context

information passed with recursive calls, the CDG connected within the iCDG can either

41

be duplicated for a partially overlapping type context, or directly connected to the ex-
isting one for a fully overlapping type context. We constructed these ACG/iCDG, and

in general all ACG/iCDGs, as follows:

e Create root node in the ACG for the procedure being analyzed.

For each procedure called by the root node:

— Add a known node for any provably monomorphic procedures

— Add a speculative node for all others.

Examine the CDG for the root node and promote any speculative nodes to known

nodes based on iCDG propagated context information.

Form super nodes by connecting actual and formal parameters from the CDGs

corresponding to the known nodes in the ACG, into the iCDG.

For each known node in the ACG not yet resolved, treat it as a root node and

repeat the previous steps.

There are two types of information that need propagation across the interprocedural
boundary: state and edges. A reference value crossing an interprocedural boundary can

exist in one or more of the following states:

e Thread Escaping (T Esc.) A reference to it is accessible from other threads.

e Method Escaping (M Esc.) The object out lives its allocating method.

e Thrown (Thr.) The object instance was thrown as an exception.

42

e Used in Locking (Lck.) The object’s monitor is currently locked by the current

thread.
e Read (R) The object instance or one of its fields was read.
e Written (W) The object instance or one of its fields was written.

A reference value crossing an interprocedural boundary can become linked to other object
instances via field assignments within the callee. This then adds edges to the iCDG.
Edges are used to propagate state information between reference values and therefore
new edges forged by a callee procedure should be propagated back to the caller. The
level of refinement needed in the edge representation is dependent on the type of analysis
as well as the phase at which the analysis is conducted. The interprocedural phase
propagates these new edges such that all state information is correctly propagated. We

refer to these new edges as Links.

3.4 Optimizations Enabled

The analysis can be used to drive optimization decisions. In this section we discuss
the generation of analysis results and which optimizations would consume the results.
We illustrate this analysis result generation by demonstrating the construction of the
ACG/iCDG for each of the optimization types listed in Table 3.1. We defer discussion
of the actual optimization models until Chapter 5. In that chapter, we focus on the

optimization models that consume the analysis results presented. The aggressiveness of

43

Table 3.1 Analysis needed based on optimization.

information propagation
optimization acc. | esc. ‘ prop. || Link [T Esc. ‘ M Esc. | Thr. | Lck. J R/W
stack alloc. X X X
sync. removal X X X X X
result caching X X X X X X
lifetime X X X X
memory layout | X X X X X
code motion X X X X X X X X X
race detect. X X X X X X X

the optimization determines the level of validation necessary with the dynamic loading
of new subclasses; therefore, we also leave discussion of the validation type and level for
each optimization until that chapter.

The following subsections correlate directly to the rows in Table 3.1. The columns in
this table are broken into two main sets, information and propagation. The information
set refers to the types of information that are contained within the CDG that is pertinent
to generating the analysis results for the given optimization. The propagation set refers
to the propagation of the information interprocedurally. For each optimization, it lists

what level of information propagation is needed to produce the correct analysis results.

3.4.1 Stack allocation of objects

Stack allocation of dynamically allocated objects is an optimization that reduces over-
head of not only access delays going through the main heap, but also reduces the number
of short-lived object instances within the heap. This reduction of heap allocated ob-

ject instances reduces the number of garbage collection epics required by an application.

44

Therefore, for applications containing a large number of method local allocations, this
optimization has been shown to contribute significantly to performance [15], [18].

In Table 3.1, we identified one type of “information” and two types of properties as
necessary for the interprocedural analysis result generation for this optimization. The
necessity to include escape information stems from the need to determine if a reference
to the object instance being considered for stack allocation will exceed the lifespan of its
allocating method. Therefore, the need for both method escaping (M. Esp.) and new
edge information (Link) to perform the interprocedural analysis. In order to accurately
make this determination of escaping state of an object, we need to propagate not only
the escaping state of the references within the iCDG, but also any new links forged.
For example, if an object being considered for stack allocation gets written into the
field of another object instance and that object instance exceeds the lifetime of the
allocating method, then the information retained by the new link is necessary for the
correct determination of the method escaping state of the original object instance.

Referring back to the two mode of analysis generation we described in Chapter 1,
identifying object instances that can be stack allocated can occur in either of these modes.
The first mode of analysis result generation has the advantage of the exact context being
known, but the disadvantage of the analysis potentially delaying the execution of the
code segment substantially. Additionally, first mode analysis has the added potential to
swiftly identify object instances that are candidates for stack allocation at or prior to
the point of allocation even when the method is being executed for the very first time.

This enables the system to catch and reduce the overhead of short-lived object instances

45

that occur infrequently as well as identify allocations whose state depends on calling
context information. However, the cost of performing the analysis during the profiling
stage needs to be low or it could outweigh any performance gained from the consumption
of its results.

The second mode occurs after a profile has been collected and the runtime optimizer
is invoked. Although the application is executing at the same time that the optimizer is
running, the optimizer is considered a seperate and distinct process and the execution is
not stalled waiting for the analysis results in order to continue. Rather, the second mode
has a snapshot of the application as input but no exact context information. Therefore,
analysis performed during the second mode can alleviate some of the cost concerns;
however, it is missing the exact calling context information that was present during the
first mode. With the cost alleviation, the analysis can become more aggressive, and
consider items such as the escaping state for all potential targets known to be present in
the class hierarchy and make a general aggressive optimized version of the code. It can
identify object instances that may exist across several interprocedural boundaries and
even have extended lifetimes as still meeting the criteria for stack allocation. The loss of
calling context information can cause the analysis results to add a level of conservation
due to the consideration of multiple potential targets for call site; however, this can be
mitigated by some forms of the optimization models covered in Chapter 5.

In both cases, we define a stack allocatable object instance as follows.

46

Definition 2 An object instance is defined to be stack allocatable if and only if the full
lifetime of the object instance can be analyzed and no reference to the object instance

survives the lifetime of its allocating method.

Based on Definition 2, we then define the criteria for which an object instance is consid-

ered to survive its allocating method.

Definition 3 An object instance is said to survive the lifetime of its allocating method,

or to be method escaping, if one of the following events occurs during its lifetime.

e Global Escaping: A reference to the object instance becomes accessible via a global

variable.

e Reference Escaping: A reference to the object instance is stored in the address of
another object instance, either through an assignment or as a field value within the
other object instance, and the other object instance’s lifetime exceeds the allocating

method.

e Return Escaping: A reference to the object instance is returned from its allocating

method.

e Unknown Path Escaping: A reference to the object instance crosses an interproce-
dural boundary for which the current thread does not have access (native methods,

methods without CDGs, passed in a call to another thread).

The first three - global escaping, reference escaping, and return escaping - concern an ob-

ject instance that has a reference to it existing beyond the allocating method. The fourth

47

item, unknown path escaping, concerns an object instance whose full lifetime cannot be
analyzed because portions of it exist in code not accessible to the analyzer.

The analysis varies based on whether it is conducted during the first or second mode.
To illustrate the information collected in each mode, we again use the example class files
given in Figures 2.3 and 3.1. The abstract, source-level view of the CDGs from these three
class files is shown in Figure 3.3. We assume that our Class Hierarchy (CH) contains
all three classes: Clazz, ClazzA, and ClazzB. Note that the CDG for the <object>
initializer called at line 6 of Figure 2.3 is simply the node (P,), which is included in the
figure.

In the first mode of analysis gathering, we have one of the three potential ACGs with
a root node of Hoe. The choice among the three is based on the calling context of Hoe,
mainly the type of the parameter Fy. In the first mode of analysis, the exact type is
known and the ACG will be one and only one of the three ACGs shown in Figure 3.2.

The corresponding iCDGs for the ACGs shown in Figure 3.2 are shown in Figure 3.4.
We reduce the iCDGs in Figure 3.4 by removing the super nodes from the graphs and re-
placing them with their corresponding edges and the resulting graphs are in Figure 3.5(a)-
(el

In Figure 3.5(a), the object instances created at line 14 and 21 are method local and
stack allocatable. The object instance created at line 11, however, is found to be method
escaping due to the global write node, (g,32), now attached to it. This property was

propagated through the iCDG by first forming the new edge between the object instance

48

W YOO e
- S __ 3{,45)) A 4@

\(f,}l)--

e TS

(a)yClazz o =Clazz (b) Clazz o = ClazzA (c) Clazz o = ClazzB

Figure 3.5 Results from removing the super nodes from the iCDGs in Figure 3.4.

created at line 11 and the field access occurring at line 31, then propagating the write
to a global at line 32 through all edges reachable from the global node.

When the runtime type of Clazz o resolves to ClazzA in Figure 3.5(b) the solution
changes. The speculative nodes at line 40 in Figure 3.2(b), cause only the object in-
stance at line 14 to be found as method local and stack allocatable. The other object
instances allocated within the iCDG are unknown path escaping due to the presence of
the speculative node in the ACG. This presence is reflected in the iCDG in Figure 3.5(b)
by the parameter nodes remaining in the graph.

The allocation decision changes again when the runtime type of the object instance
is ClazzB, as can be seen in Figure 3.5(c). Here the objects created at lines 11 and 21
are found to be method local and stack allocatable.

We present an actual implementation of our framework for first mode, profile time

method local analysis in Chapter 4.

49

3.4.2 Synchronization removal

In Java, synchronization is based on acquiring and releasing the monitor associated
with a particular object instance or the monitor associated with a class instance. The
monitors are single threaded, meaning that only one thread can own a monitor at any
given moment. A monitor must be acquired upon entry to a procedure if the procedure
is declared with the synchronized keyword. It can also be acquired explicitly in the
code by use of the synchronized block structure. To avoid cluttering the libraries and
confusing programmers with synchronized and unsynchronized versions of the files, the
Java runtime libraries made several library calls thread safe. In making the libraries
thread safe, they include the safest level of synchronization necessary to limit accessi-
bility by multiple threads in any potentially critical region. Additionally, Java packages
produced by Independent Software Vendors (ISV), may also be identified as thread safe
and include the additional synchronization operations.

Although alleviating the programmer of some of the responsibility when writing
threaded applications, the thread safe guarantees can add unnecessary overhead to an
application in the form of unneeded or redundant synchronization. Redundant syn-
chronization occurs from attempts to reacquire an already owned monitor for an object
instance, through several nested layers of invocations. Although Java specifies that if
a given thread already owns a given particular monitor and executes another synchro-
nization block using the same monitor, then it does not reacquire the lock and must not

block in the attempt, the nested attempts still add overhead. Therefore, since only one

50

thread is allowed to synchronize on (i.e., own the monitor for) a given object instance at
any given point in the execution, the reacquisition of an already owned monitor can be
considered superfluous. We also refer to these redundant synchronization blocks as nested
synchronization. Additionally, it is possible for a thread to synchronize on a thread local
object instance, meaning an object instance visible to only one thread. Since no other
thread has access to the object instance, no other thread can contend for the monitor
associated with it, and the synchronization is unneeded.

It is important to note that the identification of the locking operations as superfluous
(unneeded or redundant) is based on recent developments within the Java specifications.
In the original Java memory model, the acquisition of a monitor was tied to a memory
barrier forcing a thread to synchronize its view of memory with that of the main memory.
Therefore, the above synchronizations, although superfluous, had side effects that made
their removal unsafe. This model is currently being revised and the current proposal only
requires that the memory changes be visible to any thread that locks the same monitor
[32] - [34]. Under the proposed model, the side effects originally associated with the
nested and thread local synchronization operations are gone and the locking actions are
indeed superfluous. In the old model, if there were thread escaping variables used by the
thread with the identified superfluous locking operations, the synchronization operations
could not be fully eliminated, still requiring a memory barrier and main memory update.

The identification and elimination of superfluous synchronization can occur at either
the two modes. During the first mode, the ability to know dynamically that a monitor

associated with an object is already held by a given thread, can be used to skip nested

ol

synchronization operations. This property is tractable with the information contained
within the CDG. The locking information is contained within the CDG in the form of
the property nodes attached via association edges to the entries. This information can
also help the analyzer to determine swiftly that an object instance is thread local and
will remain thread local within a given synchronization region. Based on this, these
synchronization operation can be eliminated.

For example, Figure 3.6 shows a synchronized version of the class file introduced in
Figure 2.3. The CDGs for the synchronized methods in this class are shown in Figure 3.7.
The difference between these CDGs and the ones for the unsynchronized version of the
class file shown in Figure 3.3(a) is the addition of the locking and unlocking property
nodes. These nodes are connected via association edges. Figure 3.8 shows the iCDGs
both before and after super node removal. The synchronization operations identified
as superfluous are the green highlighted property nodes in Figure 3.8(b), which are the
four center property nodes attached to the formal node P, and the two property nodes
attached to the allocation node 21.

The synchronization pair, {(L, 10), (U, 18)}, acquire and release the monitor associ-
ated with the object instance represented by node P, (Figure 3.8(a)). Therefore, the
monitor pairs {(L,20), (U, 26)} and {(L, 27), (U, 33)} are nested and superfluous. Refer-
ring back to the source code for the method Hoe in Figure 3.6, these pairs correspond to
the calls to Foo and Hoe, respectively. For the superfluous thread local synchronization

pair, {(L,23), (U, 25)}, the determination is based on the fact that the object instance for

52

1: class syneClazz {
2 syncClazz f;
3¢ static syncClazz g;
a3
B <syncClazz> (syncClazz o) {
6 o.<object>();
i ¥
8
94
105 synchronized void Hoe (syncClazz o) {
i 5 syncClazz a = new syncClazz();
12: a.<syncClazz> () ;
13
il syncClazz b = new syncClazz();
&5 b.<syncClazz> () ;
16+
1 o.Foo(a, b);
18+ }
39
20 synchronized void Foo(syncClazz o, syncClazz p, syncClazz q) {
2L syncClazz r = new syncClazz();
22 r.<syncClazz> () ;
23% synchronized (r) {
24: osBar(p, gl
25 }
26 }
2% synchronized void Bar (syncClazz o, syncClazz x, syncClazz y) {
28¢ syncClazz z = new syncClazz();
29 Zz.<syneClazz>();
30
3 Zafs X
324 =2
33 }
343

Figure 3.6 Synchronized version of the class file from Figure 2.3.

which the monitor is acquired and then released, is not thread escaping and is therefore
inaccessible by another thread.

It is important to note that in general, the iCDG alone is not sufficient to deter-
mine nested synchronization information. Although the iCDG contains all the locking
and unlocking information attached to the object instance associated with it, control

flow information is still needed to definitively determine that a synchronization pair is

93

\/ V4 @)

s
o ~
~

P 7 =S
N I«L,lo)@ 18))

AN
e e 2,17\ A0.15)

a) <syncClazz> b) Hoe(syncClazz o)

7 \\ // ~\ \\
(L, 20)) (v, 26)]‘ I\L 23) ‘(U 95)}
NN e \\ -, \\ //

¢) Foo(syncClazz o, syncClazz p, syncClazz q)

NQ4S.
Pt \~\ <
H;,27)) l\//U,33)) (/f,3l)l @

\\“’/ N \\—/

d) Bar(syncClazz o, syncClazz x, syncClazz y)

Figure 3.7 CDGs for the class file shown in Figure 3.6.

fully enclosed within another pair. Therefore, the iCDG is an enabling tool for this

determination and not the only tool necessary.

3.4.3 Caching of redundant callee results and call elimination

In object oriented languages, sometimes procedures are used simply to obtain the

value of a field of an object instance. For example, the call to size in the library class

o4

e S e S

s e g e AR SRS P ws =Y
e S T .
(fi'io/)) N N \S -, X N N~
14z, 20)) @
N e e

Oy ®
= l(\f,:n/,

. e
//—\/\ //\1\\ P 2
1z, 27)) 1yv,33))

%y i

~

//:§ v
L, I) Iy

W o, AN o

N
\
Y

i)

21

P e s b) iCDG super node removed
(L, 23 N
L, » Iy, 25))

Nt 0,22 NS

a) iCDG super node resolved

Figure 3.8 The interprocedural propagation result for the class in Figure 3.6.

file Vector simply returns the integer value store in the elementCount field for the class
instance it is called with. However, since Vector is a growable type, in order to cache and
reuse the result stored in this location, the analysis must be able to determine whether
or not the Vector object instance has the potential to change. The information required
to make a decision is not only whether or not the given iCDG shows a change to the
value, but also the escaping state of the object instance under analysis.

To illustrate, we introduce a growable list style class, ListClazz, Figure 3.9, which
expands in size as more elements are added. ListClazz contains a field that indicates
its current size; however, the value stored in the field is also retrievable via a call to the

method size contained within the class file.

55

el e
WP o

NNVNNNR R R R R
B WNRE OWOo WU

WWwWwWwwwNDNDNDNDND
Uk WNhPE OWwWowJoW,m

w W
© J

U U U U DD BB
W NP O WwWOowIo s W NP o

W oo Jo Ui WN R

=
1=

w
o

w
e

i
(6]

class ListClazz({
ClazzNode C;
InE s

<ListClazz> (ListClazz o) {

G- =0
}
void add(ListClazz o, ClazzNode N) {
TfE(onChi=="null)
0LC = N5
ows = 13}
telse(
0.C.add(N) ;
0.8 = 0.8 + 1;
}
}

int size(ListClazz o) {
return o.ls;
}
ClazzNode getElement (ListClazz o, int i) {
A (e Ol e) o
return null;
else if(i == 0)
return 0.C;
else
return o.C.getElement (i) ;

}
class ClazzNode({
object D;

ClazzNode n;

<ClazzNode> (ClazzNode o) {
o.<object>();

}
void add(ClazzNode o, ClazzNode x) {
if (ol ns=="mull)
oo 18—
else
o 0. ackd (%)
}
ClazzNode getElement (ClazzNode o, int i) {
iom d-= %y
LR li==)
return o.n;
else

return o.n.getElement (i) ;

Figure 3.9 Example list class.

56

55 class ListClazzUser({

56)s void append(ListClazzUser o,

B ListClazz A, ListClazz N){
58 & for(int i =10% i < Nisizel): T5+)§
59: ListClazz X = A.getElement (i);
60: N.add (X) ;

61: }

62: }

63

64 : ListClazz ListCopier(ListClazzUser o, ListClazz A){
65: ListClazz B = new ListClazz;

66: <ListClazz> (B) ;

673 forlint -4 = 0; 1 < Acsize() s d+e) 1
68: ClazzNode N = new ClazzNode;

69: <ClazzNode> (N) ;

0 s ClazzNode M = A.getElement (i) ;
7310 N.D = M.D;

72% B.add (N) ;

i R }

74 : return B;

75 }

5

Tis ListClazz ListFlattener (ListClazzUser o, ListClazz C[]) {
78 ListClazz R = new ListClazz;

79: <ListClazz> (R) ;

80:

81 for(int i-=-07 i < C.length iws){
82: ListClagze T= o ListCoprer(Clil)s
83: o.append(T,R);

84 : }

85: return R;

86: }

8740

Figure 3.10 User class for the list class shown in Figure 3.9.

The ListClazz contains elements of type ClazzNode also shown in Figure 3.9. Clazz-
Node is a simple linked list node containing a data field, D, and a pointer to the next
node, n. Both class files have definitions for the same two methods, add and getElement.
When the method add is called with an object of type ListClazz, it proceeds to call
the method add with an object of type ClazzNode. The method add in ClazzNode is
recursive, calling itself with subsequent elements of the list until the last element is found,
adding the new element to the end of the list. The method getElement is similar in its

calling pattern with the version in ListClazz calling the version in ClazzNode.

o7

To illustrate the use of the iCDG/ACG for determining whether or not the value
returned by size can be cached and reused, we introduce a user class for the list class.
This user class, shown in Figure 3.10, contains three methods: the method append which
appends the elements in one list onto another list, the method ListCopier which creates
a new list then copies the elements of the original list onto the new list, and the method
ListFlattener, which takes an array of lists and creates one long list out of them by calling
the other two methods. The CDGs from the intraprocedural analysis results for these
three class files, ListClazz, ClazzNode, and ListClazzUser, are shown in Figure 3.11.

The interprocedural analysis builds the ACG/iCDG iteratively following the steps
described in Section 3.3. We walk through this process starting with ListFlattener as
our root procedure for the ACG and adding the CDGs for the known nodes at each step.
Figure 3.12 shows the ACG and corresponding iCDG starting from the root procedure
ListFlattener. Note that in this figure, only the procedure ListFlattener and the
initializer <ListClazz> are known nodes in the ACG and therefore only these two
CDGs are incorporated into the iCDG. Note also that we have assumed that P,, used
to resolve ListFlattener, is the exact type ListClassUser and not a subclass. This is
important since from the iCDG we notice that P, is used for the resolution of append
and ListCopier. In order to promote these nodes to known within the ACG, the type
of Py must be definitively known.

Making the assumption that F, is definitively known, we promote append and List-

Copier to known nodes in the ACG and incorporate their CDGs into the iCDG. This new

o8

i . et \
’ cewe’ (s, 15) V ,5
W \(5,12)\, | l\ ,‘ -
' Seuflt &/ ! o ot s “c. 27}
: i 2 A -
: s /,;;\ e = 5 (czs) o 1,27
i ’(5,6)) . e | s \ 5% .
: N s(C, 14k oL, (C,11) (5,190
: = Ty % M= iy
Fl<LiskClazz> el : 102
: n size
. add getElement

4 m 49> i ‘:
;; (n 51)
Y '...“,§~\\\I,—/ 51
! dndap L \n, 41}
Bt LS N ’
i ey Y7
! e /51

add getElement

4‘0 58’;\7\“0 59) \g :(1 60:
append
ListCopier
Jlength m] 82).
81)

LlstFlattener

(c) CDGs for class ListClazzUser

Figure 3.11 CDG formation from the class files in Figures 3.9 and 3.10.

version of the ACG/iCDG is shown in Figure 3.13. Note that we have also incorporated
the CDGs for the known nodes in the ACG corresponding to the initializer calls.
The speculative node add in the ACG of Figure 3.13 is resolved using the object

allocation node (65) and therefore definitively known by definition. To continue pro-

99

77:ListFlattener

@A flength.; (111, 82}

k. 81) o

———————— ; . 2 . .o
:\ ?:append : & _?_:_L_i_si:gg;zi_e‘r/r 5:<ListClazz> i

-]D,vut‘—%u,n)j

(0,69)

(0,36)

Figure 3.13 ACG and corresponding iCDG after resolving ListCopier and append.

moting nodes, we make an additional assumption that the type of parameter P; of
ListFlattener is also definitively known. This is important since from the iCDG
in Figure 3.13, we observe that P; is used to resolve the speculative nodes, size and
getElement. With the assumption concerning node P, and the observation concerning

node (65), we promote the nodes getElement, add, and size connected to ListCopier,

60

77:ListFlattener ! \\ :

l‘ 12)‘

Ws,12)- === = 1 2
S S o (SR

e Sa(0, TOREN 4

OB = ATt

. =
’ \
\(s,15)
S

10,14) (1,14

Figure 3.14 ACG and corresponding iCDG after resolving getElement and add.

to known nodes. We then incorporate their CDGs into the iCDG. The new ACG/iCDG
is shown in Figure 3.14.

We next observe from the iCDG in Figure 3.14 that the node used to resolve size and
getElement in append is the allocation node (65). Furthermore, the node used to resolve
add from append is the allocation node (78). Since these are both allocation nodes, the
types are definitively known and the speculative nodes, size, add, and getElement can
be upgraded to known in the ACG. We have performed this upgrade and incorporated
their CDGs into the iCDG in Figure 3.15.

To continue promoting nodes, we again make a type assumption. We assume the type
of the field C accessed from F, is the exact type ClazzNode. This allows us to promote the
speculative nodes getElement and add to known and incorporate their respective CDGs

into the iCDG. This new iCDG is shown in Figure 3.16. This then leaves two speculative

61

35:<ClazzNode>
36 1
$ ¢
’
>

‘ N
M, 12)= =
Ve oL

7 : (

. it 3 Yedlc, i e =1; "

Mg, a5 aeiC 2, | SN (P, 2 .2 \gl
l-_.,' oot -G -

Sl

’ \
Ws,15)
N 4
{0,14) (1,14

=1, 27 (0,27

Figure 3.15 ACG and corresponding iCDG after resolving the next tier getElement
and add.

nodes in the ACG. For these two nodes, again we must make a type assumption, i.e.,
the field n of parameter node F is the exact type ClazzNode. With this assumption, we
can connect these two nodes as recursive nodes in the ACG and corresponding iCDG, as
shown in Figure 3.17. Since there are no more speculative nodes within the ACG and all
of the known nodes have been incorporated into the iCDG, this is also the final graph.
For the caching of the result return from size for the call to append made in the
method ListFlattener at line 83, we need to determine where the object associated
with parameter node P, is originating from. We have highlighted this node in the final
iCDG in Figure 3.17. From this graph, we determine that the object passed as parameter
P, is from the allocation node (65). Once the object definition is established, we then

need to determine two items about it, its escaping state and when the field s is written.

62

-

Ilengt}:l[i] ,82}

NP @

X/ sompheny

> A
s, i
.o ‘ :
\(s,15)
R
(0,14)
sy

=N
3 N ey
an, 438 L \(n, 41

e
/ \
:
AY 7/
el - 0
ek
\(n,41)

. . s
o(n,40)

Figure 3.16 ACG and corresponding iCDG after resolving the next tier getElement
and add.

The graph with the super nodes removed and the s field nodes highlighted is shown in
Figure 3.18. As can be seen in this graph, only weak edges are incident upon the node
(65). This means that only fields within the object are capable of escaping and not the
base object itself, since none of the fields within the object are the same type as the base
object and only weak edges are incident upon it.

To determine if the value of s changes within the body of the loop for the method
append we need two pieces of information. The first, which points in the instruction
stream change the value of s, needs to know when is s is written. We removed the read

only nodes for s from the graph in Figure 3.18 and show the reduced graph in Figure 3.19.

63

Ao, 43)

77:ListFlattener

0,14)

(1,14 (1,43

35:<ClazzNode>
36

) 2o (0

))

yc,255 ¢

"

CE S T

e v

N
ebes

-

oo

(4 N
Ws,12)p- - = =
N e T

o

- ((0,27 (0,51)
P, ,51 P, 49 :P{

n, 495 “n,515/]
{ 4

(na3f L. n.a1y

Figure 3.17 Final ACG and corresponding iCDG.

From Figure 3.19 we discover that the write nodes attached to the node (65), are (s,6),
(s,12), and (s,15). Next we need to determine if any of these writes to s occur in the
area where the cache result is of interest. The write nodes correspond to the writes in
the initializer and the method add, neither of which is called from within the body of the
for loop in append. From the escaping information and the change information, we can
determine it is safe to cache the value returned by size.

There are several important items to note with this example. First, the promotion of
several of the nodes in the ACG was based on type assumptions. Although in general type
assumptions can prove unsafe, there are some cases where we can make these assumptions

and validate that they do indeed remain valid as new class files get loaded. For example,

64

A4

M
Foa
e

{lengthy(i], 82}
S ’

/—\,
’ \ -
Ws,12)

N &
P

(s,158

’ \
\(n, 41y
&

Figure 3.18 Final iCDG with super nodes removed.

if our class hierarchy only contains the class files used in this example and not any
subclasses for them, then we could promote based on only one copy. However, if a new
subclass should get introduced into the system, then the class hierarchy for this example
could change and this assumption may no longer be valid. In Chapter 5, we address type
assumption optimizations and the types of validation rollback and recovery necessary
when such assumption invalidations occur. Additionally, the optimization we discussed
as being enabled by the analysis requires that an optimized version of the entry method

be created which inlines the callee methods. Therefore, the optimization of caching the

65

L

Py
s
! Seniie

{1lengthylil, 82}
s 81) e i

e, B

4D, 71)#(D, 71}

. .

: i + (4 \
3 S e Yoy \
 Sheeld §
/ ; i e
(s, 12) : oo :
N et fen) 2
. Pl o e, 11) o '
% salCOR N L # sy Lk
T O
S i
\
/N (s, 15)
1 N
I e
N \ \
// s \\
g ! 5
\ X
\ \
(n,432o i \(n,41)

Figure 3.19 Final iCDG with field s reads removed.

value returned by size is only valid in the inlined version. We discuss these types of

optimizations and several optimization models further in Chapter 5.

3.4.4 Lifetime-based optimizations

Lifetime-based optimizations are optimizations that recognize that even though an
object instance is no longer thread local, there is a portion of its lifetime prior to it
escaping in which thread local optimizations are still valid. This form of optimization
uses the iCDG information to augment flow-sensitive information provided by the Control

Flow Graph (CFG) or other optimization structures.

66

The primary difference between the analysis results needed for this type of optimiza-
tion versus the analysis results used for the method local and thread local determination,
is its use of flow sensitive information requiring more than just the iCDG. For example,
in thread local or method local determination, the analyzer may just be interested in a
“safe” solution. The solution is therefore based on whether or not the object instance
in question ever escapes during its lifetime. The answer therefore can use bidirectional
propagation and propagate an escaping property along the reverse direction of a data
flow edge. The solution is then “safe,” but not flow sensitive. For lifetime-based opti-
mizations, the analyzer needs to consider not only the escaping state but when within the
code stream the property changed. Therefore, information such as a global write, which
changes the state of an object instance, should only be propagated along forward data
flow links to preserve the temporal information implicitly contained within the iCDG.
As an example, we introduce another version of the class ListClazzUser in Figure 3.20.
This new class, ListClazzUser2, uses the other two class files shown in Figure 3.9,
ListClazz, and ClazzNode. It varies from the other version in that it contains a global
field G on line 65. The ACG for the procedure FooList is shown in Figure 3.21. The only
difference between this ACG and the one for append shown in Figure 3.11 besides the
line numbers and procedure name is the inclusion of call to the initializer, <ListClazz>.
The CDG for FooList is shown in Figure 3.22, the super node connected iCDG is shown
in Figure 3.23, and the super node removed version of the iCDG is shown in Figure 3.24.

Again we would like to determine if it is safe to cache the value returned by the call

to size within append. To determine the escaping state of the allocation node (68)

67

64:
65:
66:
61
68:
69z
Tz
Tl
42
T3
Td:
T3
763

class ListClazzUser2{ 68: ListClazz N = new...

67: Foolist(...

static ListClazz G; 69: N.<ListClazzs();
d0r foriint 1 = O

l

‘70: 1< A.size();l

void FooList (ListClazzUser2 o, ListClazz A){
ListClazz N = new ListClazz();
N.<ListClazz>() ;
for(int i = 0; i < A.size(); i++){

ListClazz T = A.getElement (i) ;

N.add(T) ;
}
0.6 = N; 70: i++){
3 Wilive ListClazz T = A.getElement (i) ;
i N.add(T) ;
18}

o

CFG for FoolList

Figure 3.20 Another version of the class ListClazzUser that uses the classes
ListClazz and ClazzNode shown in Figure 3.9.

67 :FooList

\71 <
[2l:getElemen% [9:ad§]

27 14

[46 :getElemeng [39 :addj

B |43

6:<ListClazz>| [18:size|

Figure 3.21 The ACG for the procedure FooList shown in Figure 3.20.

68

Figure 3.22 The CDG for the procedure FooList shown in Figure 3.20.

and whether it changes the value of its field s within the region under analysis, we need
the iCDG and control flow. The region under analysis is first determined from the CFG
for the method FooList, shown on the right of Figure 3.20. From the CFG, it can be
determined that the region in which the value returned by size would need to remain
unchanged is lines 70-73. This determination is made similarly to the one in the previous
section, with the only writes to s occurring in the initializer and the call to add. Neither
of these writes are within the bounds of the current analysis. The determination of the
escaping state of the allocation node (68) is again based on the region under analysis.
Although this node does indeed escape as observed by the strong edge connecting it to the
global node (G,74), this event does not occurring within the analysis region. However,
exclusion from the region is not sufficient. We also must determine if the event occurs
either prior to or after the analysis region. From the CFG, we can determine that the
strong connection to node (G,74) occurs after the region in question, and therefore it is

safe to still cache the value returned by size.

69

A8 A0 s 3m) e, 25)

/\

s, 12)-
N

Figure 3.23 The resulting iCDG from the interprocedural propagation in FooList.

In general, the iCDG/ACG is a helping tool for this form of analysis.

the traditional CFG and flow information was still needed. Furthermore, we have made
assumptions similar to those made in the prior analysis concerning known types which

also require additional validation of these assumption when new class files are loaded.

3.4.5 Memory layout for better data locality

Note that

The relationship between object instances can be used to provide hints to the memory

manager for potentially better memory layout. If two object instances are shown to be
connected in some fashion, and one object instance contains a reference to the other, it

may become desirable to place the two object instances next to each other in memory.

70

s
1
|
1
’ 1 S~
\
1 /
|
|
|
I
1
|
|

Ty (s, 19):
s ‘(s,15) e

(s, 22} (C, 25} \

/
,/ I(S:l2)\l‘\ \\
’ \) \
7 %

Rk iy
I(s,6)) «(C,10)
\\ 7/ .‘- "'

Figure 3.24 The resulting iCDG after super node removal.

This information is contained within the CDG as the relation between object instances
via the association edges.

This analysis can be conducted during both of the two modes. For example, referring
back to the class Clazz shown in Figure 2.3, the new object created at line 28 has a
field connection to the object created at line 11. This information could be used by the
memory manager to allocate these two object instances next to each other. Normally this
level of information would not be available to the memory manager. However, looking
at the interprocedural graph for Hoe shown in Figure 3.5(a), the connection between the

two allocations is clear. Even though these object instances were found to be method

iz

escaping, the layout information can be used to guide the heap layout and improve

memory performance.

3.4.6 Code motion after inlining

Often, after inlining callees within a method being optimized, it is desirable to move
instructions above other instructions, thus reordering the original execution order. This
movement can facilitate several optimizations such as eliminating duplication of work on
multiple iterations through a loop, or allowing other instructions to execute sooner, thus
reducing or eliminating potential stalls. To determine if it is safe to move and instruction,
the optimizer must have results from several forms of analysis, including flow information
and points-to information. The information contained in the CDG is helpful to the
optimizer since a points-to relation can be extracted from it and escaping information
is also present. However, using the CDG to determine the connections between objects
and their escaping states is not a separate form of analysis but rather an application of
analysis results during the optimization of the code. Therefore, this particular application

of CDG information is covered in Chapter 5.

3.4.7 Unsafe sharing, potential race determination

The information in the CDG can be viewed as the first step in implementing a race
detection system. The CDG contains all the necessary information for the propagation
of locking properties, escaping states, and flow information. The state information con-

tained within the CDG is a first step in the solution for full race detection. The detection

72

of races also needs temporal information such as when the locks are held and by which
thread. This form of detection in a dynamic application may need to be conducted as
the application is running since newly loaded classes can change the results of previous
detections, thus making a safe access become a data race. The detection process itself
may interfere with the application in such a way as to change an assumed timing and
cause incorrect results. Even though the assumed timing is actually a masked data race,
for server-side applications where remaining up is the most critical component, the ex-
posure and potential premature termination of such a race could be problematic. The
problem of race detection and its correction is complex, and therefore the iCDG/ACG is

only part of the solution, the rest remaining part of future work.

73

CHAPTER 4

SPECIFIC APPLICATION: OBJECT
CONNECTION GRAPHS

In Chapter 2 we presented the Compact Dataflow Graph (CDG), which summarizes
the use of reference values within a procedure. In Chapter 3 we presented the design of the
dynamic interprocedural analysis engine, which employs an Adaptive Call Graph (ACG)
in combination with the individual CDGs to create an interprocedural CDG (iCDG). We
showed how the iCDG can be used to provide a wide range of analysis results. In this
chapter, we present an implementation of our framework to perform a subset of analysis

outside the range of other dynamic analysis systems.

4.1 Problem Description

Several researchers have shown that if the worldview of a Java application is assumed
closed and no further class files will be loaded, full program analysis can identify as
much as 94% of the object instances used in the application as being stack allocatable
[15], [25]. Furthermore, by stack allocating these object instances, these researchers have
shown that speedups as high as 44% can be achieved [15]. The analysis, referred to

as static analysis since it assumes a closed-world, static view of the application, must

74

determine the safe set of method local object instances based on traditional analysis
techniques. The determination of a safe set of method local object instances requires
the identification of all object instances that have the potential to exceed the lifetime
of their allocating method or are method escaping. Although other researchers have
demonstrated through static analysis that a large portion of the object instances used
within an application are indeed method local, Java is dynamically loaded and linked.
Therefore, static full application analysis is not available.

Some researchers have suggested that the static analysis techniques could be employed
in a dynamic application during the runtime optimization phase. Even if a partial, safe
solution is determined during the optimization phase (second mode), this solution can
be invalidated when new class files are loaded. On top of the invalidation problem, de-
laying method local determination and this form of optimization until the optimizing
phase could miss some potentially beneficial stack allocation opportunities. The loading
and initializing of new class files can involve the use of temporary object instances that
can be stack allocated. Initialization code tends to make liberal use of short-lived ob-
ject instances. The same liberal use of short-lived object instances occurs in the early
portion of an application’s execution, prior to the first run of the optimizer. During
this segment, a large portion of the application code is initialization code. Therefore,
identification of stack allocatable object instances at the point of first allocation can help
the runtime capture these optimization opportunities. Performance improvements from

stack allocating these object instances include reducing if not eliminating the memory

75

manager overhead. Additionally, the stack allocation can delay garbage collection events
by reserving the memory for potentially longer-lived method escaping object instances.

There are several obstacles with the identification of stack allocatable object instances
using first mode analysis. First, all new object instances in Java call an initializer,
meaning the analysis is interprocedural. Furthermore, Java does not restrict the actions
performed by an initializer, making the determination of escaping state dependent on
interprocedural analysis. Second, we cannot assume control flow information is avail-
able or even within a reasonable cost bound to compute. The computation of control
flow information can become costly when factoring in the multiple paths of control and
potential targets in polymorphic languages. Third, the determination of the escaping
state of a particular reference value depends on points-to information concerning the ref-
erences used within the region under analysis. Points-to information normally requires
control flow information for its derivation. Fourth, in order to reap any benefit from
the determination of stack allocatable object instances, the benefit of the optimization
must outweigh the cost of the analysis. Since the maximum determined static analysis
benefit was shown to be a speedup of 45% with an average of 24%, the analysis cost
should not exceed the average benefit. All of these factors have made the determination
of stack allocatable object instances using first mode analysis difficult and unattractive
to other analysis systems. However, our framework makes this form of analysis efficient

and attractive.

76

4.2 QOwur Solution

Our framework provides a very efficient solution to this analysis challenge. The CDG
contains all the information concerning the use of reference values within a given method.
This enables swift extraction of points-to information for each method. Second, our
design of the ACG/iCDG system enables swift, efficient propagation of interprocedural
analysis results. We can adapt this design to accommodate interprocedural propagation
of points-to information as well. Although, control flow information is missing at the
time of analysis, the CDG was constructed using flow-sensitive information. Therefore,
we are able to still capture a large percentage of the potentially stack allocatable object
instances using just the extracted points-to information and the efficient interprocedural
propagation. Finally, using our design, we are able to keep the costs below 22% for the
benchmarks we used, which is within the bounds set by the potential benefits of a 45%

performance improvement.

4.2.1 Definition

In Chapter 3, we defined the properties used to determine if an object instance is

method escaping as follows.

Definition 4 An object instance is said to survive the lifetime of its allocating method,

or to be method escaping, if one of the following events occurs during its lifetime:

e Global Escaping: A reference to the object instance becomes accessible for any por-

tion of its lifetime, via a global field.

4

(a) add field bypass edge (b) remove field node and field edges

Figure 4.1 Reduced CDG example for the method Bar.

e Reference Escaping: A reference to the object instance is stored in the field of

another object instance whose lifetime exceeds the allocating method.

e Return Escaping: A reference to the object instance is returned from its allocating

method.

e Unknown Path Escaping: A reference to the object instance crosses an interproce-
dural boundary for which the current thread does not have access (native methods,

methods without intraprocedural analysis results, passed in a call to another thread).

4.3 Extracting Points-To Information

Extracting a points-to relation from the CDG is straightforward. First, property
nodes can be removed from the CDG since these do not represent dataflow. Second, field
nodes can be eliminated by making the relationship between the two reference values a
weak link, meaning they are not direct aliases for each other but one is reachable via
information contained within the other. To illustrate, Figure 4.1 contains the resulting

reduced CDG for the method Bar. This reduced CDG is formed by first adding a weak

78

edge between nodes P; and 28 and then removing the field node and its associated edges.
Figure 4.1(b) shows the resulting CDG from this process. The final graph in Figure 4.1
is equivalent to a reverse points-to relation with the addition of the weak edges.

The weak edges are important when we later use the edge type to propagate class
types for swift method resolution when forming the ACG. Type information does not
propagate across weak edges. Therefore, if a weak edge is used to connect a parameter
node that is used for the resolution of a callee, the callee cannot be promoted to a known
node status in the ACG, and subsequently its intraprocedural information is missing.
The inclusion of speculative nodes causes the object instances to be marked as method
escaping due to the unknown path, and this affects the analysis results.

The next simplification to our points-to relations is intended to reduce the cost of
the analysis. We choose in our representation to eliminate the direction from the edges.
This simplification gives a conservative analysis result in the sense that it overestimated
the number of escaping object instances. However, by eliminating direction, we are able
to propagate information more efficiently while identifying between 47% and 61% of the
the oracle method local object instances.

Figure 4.2 illustrates the conservative aspect of direction elimination. In this figure,
we consider only strong edges, but analogous results occur with weak edges. The partial
reduced CDG in Figure 4.2(a) shows the CDG from an object allocation site. This object
allocation is passed interprocedurally as two different callee parameters. The potential
callee graphs are shown in Figures 4.2(b) and (c¢). For the first interprocedural graph,

Figure 4.2(d), if parameter P4 escapes, then we also mark F1 as escaping since these

19

ANI/EN VNN ViN/ON

a) Case 1 b) Case 2 ¢) Case 3

d) Case 1 and Case 2 e) Case 1 and Case 3

Figure 4.2 OCG propagation through the ACG for the type resolution ClazzB.

two are equivalent. This escaping state then propagates interprocedurally to P1 and
obj. However, since we do not have control flow information, we do not know if the
assignment to P3 occurred before or after F1 escaped. Therefore, P3 is also marked as
escaping. Likewise for the assignment to P2. This case does not hold in Figure 4.2(e). In
this case, if P4 escapes, then F1 also escapes. However, since P4 overwrote the reference
originally in F1, this escaping information does not propagate any further. Likewise, since
P3 overwrites F1, the lack of control flow information does not affect the propagation as
in the previous example, and this object instance also remains unaffected. By eliminating

the direction from the edges, we arrived at the correct solution for Figure 4.2(d) when

80

WG =(ne)

no = GDIGOIGENIDIRIPL,])

e := an undirected edge connecting node n; with node n;
either strong: (n;) — (n;), or weak: (n;)- - -(ny)

(7,0 := the jth parameter to the method called at line |

(=1,1) := the return value from the parameter called at line |

(Gw) = a write access of a global variable

(Gr) := a read access of a global variable

(1) := an allocation occuring at line |

(P) := the ith formal parameter to the method m.

(P-1,1) := the return value from the method m at line .

Figure 4.3 Definition of the Object Connection Graph.

propagating escaping information, but an overly conservative one for Figure 4.2(e), since
we must mark all of the entries escaping. Although this solution is not as precise, it is
still safe.

We call the new points-to relation that we extract from the CDG an Object Connec-
tion Graph (OCG) to distinguish it from a traditional points-to relation. Likewise, the
corresponding interprocedural version is called an iOCG. The definition of an OCG is
given in Figure 4.3. Note that line numbers have been removed from all but the allocation
and parameter nodes. Although the line numbers aid in precision when used in combina-
tion with control flow information, the absence of this information makes their inclusion
superfluous. The line number information retained in the allocation and parameter nodes
aids in the identification of the exact allocation operation within the method as well as

the appropriate call site for the ACG construction.

81

m (0,24 Elhon (2,24) A
Foo

<Clazz>

4;;;;(LN) (0,12} Ad&h‘elb
Hoe Bar

Figure 4.4 OCGs for Figure 2.3.

Figure 4.4 shows the OCGs for the CDGs in Figures 2.5 - 2.7. Note that for three
of these OCGs — <Clazz>, Hoe, and Foo — their OCGs are almost identical to their
corresponding CDGs with the only noticeable difference being the transformation of the
directed edges into undirected edges. For the method Bar, the OCG is equivalent to an

undirected form of the reduced CDG shown in Figure 4.1(b).

4.4 Interprocedural Propagation

The next step in the determination of stack allocatable object instances is the prop-
agation of information interprocedurally. There are four basic determinations we can

make based on the interprocedural propagation of the information contained within the

i0CG:

e method escaping based on intraprocedural information,

82

e method escaping based on interprocedural information,

e method local based on interprocedural information,

e cannot be decide due to the presence of speculative nodes in the ACG.

All allocations call an initializer: thus, no object instance can be classified as method
local based solely on intraprocedural information. Also note that weak edges or multiple
strong edges in the OCG can cause speculative nodes to remain in the ACG. Object
instances under analysis that pass into a speculative ACG node cannot be definitively
determined based on the information present. Therefore, by Definition 4, we define these
object instances conservatively as being unknown path escaping, making them method
escaping.

The steps for forming the iOCG are almost identical to the steps for forming the

iCDG. They are as follows:

1. Create root node in the ACG for the procedure being analyzed.

2. For each procedure called by the root node:

e Add a known node for any provably monomorphic procedures.

e Add a speculative node for all others.

3. Create the iOCG with the OCG for the root node and promote any speculative

nodes to known nodes based on iOCG information and current context.

4. Form super nodes by connecting actual and formal parameters from the OCGs

corresponding to the known nodes in the ACG, into the i0CG.

83

AA (0,38 (1,40

Figure 4.5 OCG for the subclass ClazzA.

5. For each known node in the ACG not yet resolved, treat it as a root node and

repeat the previous steps.

To illustrate the formation of the iOCG and the four resulting types of allocation
decisions, we again use the example application introduced in Figure 2.3 with the added
subclass, ClazzA, introduced in Figure 3.1. The OCG for the method Foo from the class
file, ClazzA, from Figure 3.1 is shown in Figure 4.5. It was derived from its corresponding
CDG shown in Figure 3.3 using the same method outlined in Section 4.3. Figure 4.6 walks
through the formation of the ACG/iOCG for the case where type used to resolve Hoe is
Clazz. Later, we present the results for type ClazzA. The ACG shown in Figure 4.6(a)
begins with the node Hoe. Since Hoe calls an initializer and initializers are by definition
also known, the ACG also contains a known node for <Clazz>. However, the node
Foo is initially speculative. The iOCG is created by connecting the OCGs for Hoe and
<Clazz>, the known nodes in the ACG. Examination of the iOCG reveals that a strong
edge connects nodes Fy and (0,17), meaning that the known type used to resolve Hoe
is also used to resolve Foo, and likewise for the initializer <Object> called at line 6 in

<Clazz>. In Figure 4.6(b), Foo has been promoted to known status and <Object>

84

| @ ©
e @A%%

(a) Initial ACG and corresponding iOCG

(b) After resolving Foo and adding <Object>
17 12,15 Y
11 14
20: @
6 (=)
(O,A (1.17)N|£(0,12 217 0,15) M’
0 1 0 3 0

0,24 i B, (2,24 5 V
/)

(c) After resolving Bar

©

(d) Results after super node bypassing
and property propagation

Figure 4.6 Example of ACG/iOCG constrution.

85

has been added as a known node. The resolution of Foo has added another node to
the ACG, Bar, which is speculative until the iOCG is examined. The OCGs for Foo
and <Clazz> are then added to the iOCG shown in Figure 4.6(b). Note that there is
only one copy of the node <Clazz> in the ACG since the ACG contains the unique
methods called. However, the iOCG is context sensitive and represents each unique call
to a method; therefore, a new copy of the OCG for <Clazz> is added to the graph.
By examining the new iOCG, it is discovered that a strong edge connects P, from node
(0,24), meaning that the same known object instance type used to resolve Foo is now used
to resolve Bar. This allows Bar to be promoted to known status and its corresponding
OCG added to the iOCG. This is shown in Figure 4.6(c). Since all known nodes in the
ACG have been resolved (step 4 in the iIOCG/ACG formation algorithm) the formation
of the iIOCG/ACG terminates.

Next, the super nodes are replaced with direct edges, and the escaping state produced
by the write into the global node is propagated up the graph. The final result shows that
the objects allocated at lines 14 (from Hoe) and 21 (from Foo) are indeed method local and
stack allocatable, while the objects allocated at lines 11 (from Hoe) and 28 (from Bar) are
not. Note that the escaping information also propagates along the weak edges. Referring
back to the four potential determinations, the escaping states of the object instances
created at lines 14, 21, and 11, were determined by using interprocedural information.
However, the escaping state of the object instance allocated at line 28 was known prior
to the incorporation of any interprocedural information due to the edge connecting it

with the global node, G,,.

86

(a) ACG for Clazz o = ClazzA

N/ }
(b) Cooresponding iOCG N

@
A oo,

(c) Results after super node bypassing
and property propagation

Figure 4.7 OCG propagation through the ACG for the type resolution ClazzA.

The next case to consider is when a weak edge is used to connect the parameter node,
Py, for a virtual callee method. This case occurs when the runtime type of the object
instance used to resolve Hoe is the type ClazzA. We show the ACG along with the iOCG
before and after super node removal in Figure 4.7. The construction process is similar
to that of the previous case. The key difference is that in Figure 4.7(b), a weak edge
connects the formal node Fy with the node (0,40). Therefore, the node for Bar in the
ACG of Figure 4.7(a) remains speculative. The inclusion of a speculative node in the
final ACG means that when the escaping state of the object instances is determined from
the iOCG in Figure 4.7(c), only the escaping state of the object instance allocated at
line 11 is definitively known. The other three object instances used in Hoe — Py and the

allocations at lines 14 and 37 — are not decidable based on the iOCG information and

87

are therefore method escaping because they are passed into an unknown path the call to
Bar.

Weak edges are not the only case where during ACG/iOCG construction the type
of an object instance may no longer be considered definitively known. It is possible for
more that one execution path to reach a given call. Therefore, it is possible for more
than one type to be associated with a node. If that node is the parameter node, P, for
a virtual call, then the call node cannot be promoted from speculative to known in the
ACG. There are three types of nodes in an iOCG — formal, parameter, and allocation
nodes — and two types of edges — strong and weak. Based on these node and edge types,
we define the cases where a node type is no longer definitively known within the iOCG

as follows.

Definition 5 A node type is no longer considered definitively known within an i1OCG if

one of the following conditions is true:

e The node is directly connected to another node in the iOCG via a weak edge.

e The node is directly connected to another node that is already of unknown type.

e The node is directly connected via two or more strong edges to nodes of type formal

and/or allocation.

88

4.5 Runtime Structures

In order to improve runtime efficiency, a compact internal representation is used for
the OCG and iOCG. Rather than representing them as graphs with pointers, a table is
used, with each node represented as an entry in the table.

There are several steps when converting an OCG into the table representation. First,
the global nodes only convey a change in escaping state of all nodes connected to them.
Therefore, they can be removed from the graph and the attached nodes marked as method
escaping. The removal of global nodes then leaves only three types of nodes remaining in
the graph: parameter, formal, and allocation nodes. Second, in order to facilitate swift
propagation, a transitive closure of the edges is formed. However, the graphs contain
two types of edges, strong and weak. The rule for forming the transitive closure when it
comes to the two types of edges is simply this: If a strong edge exists along any branch of
a path traversed when forming the transitive closer, then the edge type of the edge added
is a strong edge. This way, weak edges originally incident on parameter nodes remain
incident on those nodes, and nodes that did not have at least one weak edge incident
upon them prior to forming the closure do not acquire a weak edge. Since the primary
purpose of the weak edges is to convey during interprocedural analysis that the exact
type of an object instance is not definitively known, then the original edge still retains
this information and allows for correct propagation.

Figure 4.8 shows the mapping for the nodes in the OCG into the table entries and bit

vector format. Paths between the nodes are represented using bit vectors (links). Each

89

bit location represents an entry in the table, with the leftmost bit corresponding to the
top entry. A bit is set for each node reachable from the current entry (through one or
more edges). There are three additional bits for each entry in the bit vector field. The
first of these, W (weak), is set only for parameter nodes and indicates that the node has
a weak edge incident upon it. The second bit, C (changed), is set during interprocedural
propagation to indicate that one or more of the bits within the bit vector has been set
and requires propagation. The final bit, E (escaped), holds the escaping state of the
entry.

For example, for the transitive closure formed from the OCG for the method Bar,
shown in Figure 4.8(a), there are three formals coming into this procedure: Py, P, and
P,. These are the first three entries in the table. The fourth entry is the allocation node
labeled 28. A parameter node labeled (0,29) is the fifth entry in the table. The edges
between the nodes are defined by setting the corresponding bits in the links bit vector.
For example, the edge between nodes P, and 28 is shown by the setting of the second
and fourth bits (counting from the left) for both entries. The edge between nodes 20 and
(0,29) is shown as the setting of the fourth and fifth bits for those two entries. The edges
added by the transitive closure are represented by also setting the fifth bit for entry 2 and
the second bit for entries 4 and 5. The remaining tables for the class Clazz are created
in a similar fashion and are also shown in Figure 4.8.

Two properties of the OCG table representation enable swift interprocedural prop-
agation of the escaping information. First, all interprocedural connections between the

graphs for each method occur at the parameter entries, and second, since all paths from

91

each node are fully represented, the formal parameter entries for the callee method con-
tain all the information that needs to be propagated to the caller. This information
consists of either state bits, (W,C,E), or new connections between the actual parameters
of the caller. The interprocedural propagation is performed in two passes: a forward pass
to resolve speculative nodes in the ACG, and a backward pass to propagate state changes
from the forward pass. Weak edges are propagated during the forward pass, caller-callee,
allowing an edge to be downgraded from strong to weak. The rule for edge downgrading

follows.

Definition 6 If a node of type parameter in the iOCG has a weak edge directly incident
upon it, then when the OCG for the callee is added to the iOCG, all edges directly incident
upon any and all formal nodes within the super node are downgraded to weak. If a node
of type F_y (formal node of type return) has a weak edge directly incident upon it, then
all edges connected to any and all parameter nodes within the super node are downgraded

to weak.

Since weak edges used to identify Py nodes where the type is unknown are critical for
virtual ACG nodes and all ACG node resolution occurs on the forward pass, downgrad-
ing of edges is only implemented during the forward pass. The downgrading of edges
only during the forward pass allows for the propagation of known type information and
enables safe, accurate method resolution based on known types. Formals representing

returns from the procedure are marked as escaping only when the OCG table is the root

92

(¢) 10CG with edge downgrade

Figure 4.9 Example of additional conservation from combined transitive closure and
edge downgrading.

table for an ACG, thus capturing return escaping events but not introducing additional
conservation by also marking callee return events.

The propagation of weak edge information and downgrading of edges adds an addi-
tional level of conservativeness is primarily an artifact of the transitive closure. Consider
the initial two OCGs shown in Figure 4.9(a). The transitive closure shown in Fig-
ure 4.9(b) adds edges (F'lo, Ply) and (F2, P2;). When the OCGs are connected to

form the iOCG in Figure 4.9(c), the edge from F24 to P2y is downgraded from a strong

93

edge to a weak edge because Pl has a weak edge incident upon it. However, from
examination of the original OCG, it can be seen that P2, is actually from Obj,. Since
allocations are always known types, the parameter P2, should have been a known type
and the resolution of the virtual method called with it, likewise known. However, because
of the downgrading of the new edge added from the transitive closure, the parameter P2,
is no longer considered definitively known.

The propagation of information across the parameter connections is accomplished
with a parameter map, which maps the actual parameters of the callee to the formal
parameters of the caller. Its purpose is to perform the necessary masking and shifting
of the links vector of the callee to the appropriate location of the corresponding actual
parameter node in the caller. These vectors can then be propagated from the callee to
the caller using a simple OR instruction. Any changes are then propagated within the
caller’s OCG, also using simple OR instructions.

Figure 4.10 shows the propagation across the call to Foo and its subsequent call to
Bar. After all interprocedural interfaces occurring in Bar have been resolved: the E
bit on the second formal parameter of Bar is propagated to the table for Foo. This
change sets the E and C bits for the second to last entry in the table for Foo. The C
bit indicates state changes that require propagation. This change propagates to all of
the nodes connected to the changed node in Foo through the use of the link bit vector,
causing the E' and C bits to be set on the second entry (the second formal parameter

into Foo). This information then propagates through the parameter mapping for the

94

Line Parm. Bit vector

Num. |Type|Num.| W| C | E Links

0 0 0 |olo|lofi0000100

ha 1 0o [of1R1)Jo1100010

12 2 0 0@@01100010

14 % o |ofo|0fo0011001
Line Parm. Bit vector

A5 2 9 9 [0y T 000 0 070 0 Num. [Type|Num. | W | C | E Links

17 2 0 |o[ofofi10000100 ol o] o |o | ofoRiNGEINo 010 0

27 2 z o®®o11ooo1o 5 ¢l 0| 2 o(ljc:l)oxoooozlo

17 2| 2| o] offello o 02 1oloi 00| 2 |0 ofERINSSENC 0001
O o | e e B R O O s

Hoe Line Parm. Bit vector
22|12/ 0 |0]0| 0(00011000 Num.|Type| Num.| W | C | E| Links
24 | 2| 0o |o| o610 000 I0ND 0| o o lo|ofolr10000
T e o@®0100001o 418 1 |0joj1j01011
24 | 2| 2 o jofloMoo 100 QRolIEN | O | 0| 2 [0 |0 FORFESEE O O
28 | 1 o |of{ofator ot
Foo
29 | 2 ¢ |lef{ojajoavri
Bar

Figure 4.10 State propagation through the Parameter Maps (circles indicate changes
during iOCG formation).

interprocedural interface between Hoe and Foo, eventually setting the E and C bits on
the second and third entries in Hoe’s table.

After the E bit has been fully propagated, a quick look at the two allocations in
Hoe’s table show that the object instance at line 11 must be heap allocated since it is

escaping, but the object instance at line 14 can be stack allocated.

4.6 Experimental Setup and Results

To evaluate the effectiveness of our techniques, we used several benchmarks from the
Java Grande Threaded Benchmark Suite [35] and several small threaded Java applications
from Doug Lea’s book [36]. A description of the programs used can be found in Table 4.1.

The first seven of these are from [35] and the last seven are from [36].

95

Table 4.1 Description of benchmarks and applications used.

‘ Program | Threads | Description
Performs the International Data
JGFCrypt 4 Encryption Algorithm (IDEA) on an array
of N bytes.
JGFLUFact 4 Solves an NxN linear system using
LU factorization. Same as Linpack.
JGFSor 4 Perform 100 iterations of successive
over-relaxation on a NxN grid.
JGFSeries 4 Computes the first N Fourier coefficients
of the function: f(z) = (x + 1)*.
JGFSparseMatmult | 4 Performs a sparse matrix multiplication
algorithm using a compressed row format.
JGFMolDyn 4 Models partial interactions with boundary
conditions.
JGFRayTracer 4 Renders a 3D scene containing 64 spheres.
Heat 4 Simulates heat diffusion across a mesh.
Fib 4 Computes a Fibinacci number using
a specified number of threads.
Msort 4 Parallel merge/quick sort on random numbers.
NQueens 4 Positions N queens on an NxN board so that they
can not attack each other.
BarrierJacobi 4 Performs a cyclic barrier version of Jacobi
iteration on a mesh of the given size.
LU 4 Decomposes a randomly filled matrix.
MatrixMult 4 Matrix multiplication using parallel

divide-and-conquer.

Evaluating the effectiveness of an optimization on threaded applications poses several

problems. The timing and performance of a threaded application depends on the timing
of the threads. Slight changes in timing between runs of the same application can cause
significant changes in performance by causing one or more threads to stall waiting on
resources that during previous runs had been available at the optimal time. Additionally,

virtual machine overheads, such as garbage collection, can affect performance of the

96

application by occurring at different times. Complicating this data collection dilemma
further is the desire to evaluate the effectiveness of our techniques in a state-of-the-art
Java runtime rather than a VM used solely for research.

To address these issues, we chose to collect traces of the benchmarks using the produc-
tion level HP Hotspot 1.0 VM [37] in interpreted mode. The use of the tracing mechanism
allowed us to capture the dynamic execution trace for these programs on a production
level runtime. We then use this trace to guarantee that the execution order remains the
same for every run of the applications and evaluate the costs of our analysis based on
the same execution order. Furthermore, we guarantee that garbage collection occurs at
the same point in the execution and evaluate the effects on memory of our system.

To handle the simulation of a virtual machine executing the trace lines, we built
a simulation of a Java runtime environment. Figure 4.11 shows an overview of the
Simulated Runtime. The key components of our Simulated Runtime are the Simulated
Execution Engine, the Thread States, the Memory Manager, and the Method Invoker,
with its associated class loader. A more thorough description of the simulator can be
found in Appendix B.

To explain the data collection process we describe briefly the basic units of the sim-
ulated runtime that are pertinent to the collection of the data. The simulated execution
environment simulates the effects of each bytecode instruction encountered by reading
the trace file line in execution order. It then applies the appropriate state changes to the

specified thread, loading and storing thread states as necessary.

9

Trace

Annotated

File
class files
[
& >N
A
e > method invoker [Class loader
Thread i \
: A 3b
States Simulated ! 3a
Execution
2 Engine Initialized
methods Initialized
class files
! RS
A
Memory manager i
A
Y
[[--{ [[[-:] |memory
k& Y

Figure 4.11 An abstract overview of the simulated runtime environment.

Invocations are handled as requests to the method invoker. When a request is received
by the method invoker, it first checks to see if it has an initialized version of the method
available. If it does not have one, it places a request to the class loader. The class loader
first checks its initialized class files to see if the requested class is available. If not, the
class loader loads the class file from a set of preannotated class files. During simulation,
these class files always exist. The class loader locates the requested method and returns
it to the method invoker. When the method invoker receives a new method from the class

loader, it computes the OCG for the method based on its CDG and stores the initialized

98

method (the bytecode for the method, the clean CDG, and the clean OCG) in its table.
A copy is made of the initialized method and passed back to the simulated execution
environment.

The OCG of a newly invoked method returned from the method invoker is checked
by the simulated execution environment to see if it contains allocation nodes. A Boolean
field is used to indicate whether or not a given OCG contains an allocation node. This
field is set at the time the OCG is constructed. If it does contain allocation nodes,
based on the runtime object type used to locate the method and any known object types
in the thread’s state for this invocation, the simulated execution engine constructs the
ACG/iOCG with this method as the root node. If the OCG does not contain allocation
nodes, nothing is done, and the only overhead is the check.

If the simulated execution environment encounters a bytecode instruction involving
a memory location, it processes the request by also involving the memory manager. The
memory manager handles allocation requests as well as field assignments. The simulated
memory representation contains, for each simulated memory location, a table representing
referenced fields as well as the state of the memory location, indicating whether or not a
given memory location is method local. Each field is identified with its unique field ID

and contains a reference to the simulated memory location it is referencing.

4.6.1 Experimental results: potential benefits

In addition to the introduced conservativeness already discussed, there is one more

level or conservation occurring in our implementation from our self-imposed bounding

99

of the ACG/iOCG resolution. We stop the method resolution process in the forward
pass when we reach a speculative node that cannot be promoted or when we reach a
predetermined maximum resolution depth. We set the maximum resolution depth to six
based on observed call stack depths within the simulated runtime. While this constraint
allows us to bound the size of the ACG and guarantee termination of the ACG/iOCG
construction process, we do not always resolve the graph as precisely as we could have.
Any node in the ACG exceeding the maximum resolution depth remains speculative and
therefore by Definition 4, unknown path escaping.

To evaluate the impact of level of added conservation as well as determine the effec-
tiveness of the ACG/iOCG analysis technique, we also implemented an oracle version
of the algorithm. The oracle version used the full CDG and the actual executed calls
within the trace to determine method escaping. The full CDG still contains the direction
on the arcs and does not contain a transitive closure. Furthermore, we only updated
information within the iCDG as a given bytecode instruction is executed. This allowed
us to eliminate any conservation introduced by the absence of control flow information
since we followed the exact execution flow of the application. In addition, we computed
the results at the point of execution, or after the object instance’s full lifetime had been
explored, therefore making all nodes in the ACG known and the full call depth explored.
This eliminated the final loss of precision caused by the speculative nodes and the max-
imum resolution depth in the ACG/iOCG analysis. We consider the use of CDGs in

forming this version of the iCDG as an oracle result that is not achievable with either

100

JGFSeries
JGFSparseMatmult
JGFMolDyn

JGFRayTracer

Programs

Nqueens

BarrierJacobi

MatrixMultiply

I

T

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Precentage

I
T

Figure 4.12 Percentage of method local using iOCG compared to oracle method.

runtime or static analysis. However, it does provide an upper bound for the evaluation
of our simplification.

In Figure 4.12 we compare the determination of method local allocations using our
iOCG method to the best possible results from the oracle method. The graph shows the
percentage of method local allocations found using the iOCG compared with those found
with oracle’s perfect knowledge. To compute the information, we tracked the decision as
fields in the simulated memory locations used by the memory manager, and the values

were collected by analyzing the memory locations collected at the first GC event. Note

101

that, on average over the benchmarks, the quicker iOCG method is able to identify 53.9%
of the method local allocations identified by the oracle method. This result indicates that
although we introduced additional conservation, we were able to identify a significant
portion of the actual method local memory locations.

Additionally, we tracked what percentage of the collected memory locations were
identified as method local based on each of the analysis methods. Figure 4.13 shows for
each of the analysis methods, iOCG and oracle, what percentage of the total collected
memory can be stack allocated. An average of 68.8% of the memory collected was iden-
tified as stack allocatable by the oracle analysis, compared to 36.5% by the ACG/iOCG
technique. These results imply that the use of our technique within our framework could
reduce garbage collection events by as much as 30% by stack allocating these identified
object instances.

To understand how far the benchmark had progressed at the first GC event, we
also recorded the number of dynamic bytecode instructions execution by each of the
benchmarks at the time of the GC event. Table 4.2 contains these numbers. Note that
Heat, Fib, Msort, and NQueens completed execution entirely, and they also showed a

large percentage of the memory locations as method local.

4.6.2 Experimental results: estimated costs

To estimate the costs of our implementation, we compare the cost of the analysis
to the execution time of the application. The propagation of information through the

ACG/iOCG uses logical OR operations. We recorded the number of logical OR operations

102

JGFCrypt
JGFLUFact
JGFSor
JGFSeries
JGFSparseMatmult [e==
JGFMolDyn (e
JGFRayTracer
Heat

Fib

Msort

Benchmarks

Nqueens
BarrierJacobi
LU
MatrixMultiply

Average

EiOCG

0% 10% 20% 30% 40% 50% 60%

Percentage

M Oracle

90% 100%

Figure 4.13 Percentage of method local memory location collected using iOCG com-

pared to oracle method.

performed in constructing the ACG/iOCG for each of the benchmarks, prior to the GC

event. We assert that the cost of each logical OR operation with its associated loads is

comparable to the execution of a single bytecode instruction and therefore consider this a

fundamental measure. Note that in support of this assertion, most bytecode instructions

translate into more than one simple assembly instruction, some requiring additional safety

checks by the virtual machine. In Figure 4.14 we show the ratio of the fundamental OR

operations to the dynamically executed bytecode instructions for each benchmarks. This

cost averages around 20%, which is within the analysis cost bounds we had set.

103

Table 4.2 The actual number of dynamic bytecode instructions executed at the time

of GC.

Brogram I Dynamic instructionﬂ
JGFCrypt 99,910,804
JGFLUFact 79,014,889
JGFSor 83,261,676
JGFSeries 67,872,390
JGFSparseMatmult 115,188,730
JGFMolDyn 92,423,979
JGFRayTracer 25,505,124
Heat 18,541,123
Fib 4,289,037
Msort 7,206,937
NQueens 6,189,075
BarrierJacobi 99,877,803
LU 64,816,366
MatrixMult 98,195,473

To understand the values in Figure 4.14, we also tracked the ratio of method OCGs
that contained an allocation event versus the total number of methods used by the bench-
marks. This method breakdown is shown in Figure 4.15. Because of the large number
of methods coming from the runtime library files, we have broken the methods with al-
location percentage into library methods and application/benchmark specific methods.
Note that for benchmarks that allocate a large portion of temporary location but whose
percentage of benchmark specific methods to library methods is small (Figure 2.8), the
percentage of allocations is substantial. For example, in JGFSparseMatmult, which trans-
forms sparse matrices into vector representations, less than 3% of the methods were from
benchmarks but more than 57% of those contained allocations. This relationship also

holds for the similar benchmark, JGFSor. For the JGFRayTracer, the benchmark meth-

104

JGFCrypt
JGFLuFact [
JGFSor

JGFSeries
JGFSparseMatmult
JGFMolDyn

JGFRayTracer

Programs

Nqueens

BarrierJacobi

MatrixMultply

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage

Figure 4.14 Percentage of OR operations to dynamic bytecode instructions.

ods also contain a large number of allocations, but not as many are method local: because
it is computing the pixels for a scene and passing some of the results back, the objects
tend to persist beyond their allocating methods. JGFCrypt, on the other hand, does not
contain a particularly large percentage of methods containing allocations compared to
the other benchmarks. However, these methods use a substantial number of temporary

structures to hold intermediate results, which can be stack allocated.

105

Gy —

JGFLuFact

JGFSor

JGFSeries

JGFSparseMatmult

JGFMolDyn

JGFRayTracer

Programs

0

Heat

Fib

Msort

Nqueens

BarrierJacobi

LU ‘

\ i
N ——— |

! T T T l
T

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage Allocations [total M benchmark O library]

Figure 4.15 Percentage of unique methods containing allocations.

4.7 Conclusion on iOCG

In this chapter we have shown how our framework is able to capture a significant
percentage of method local stack allocatable object instances that traditionally remain
unidentified by most runtimes. Since most runtimes do not attempt to perform this level
of analysis until the first optimization epoch, these initialization object instances are
rarely if ever identified as stack allocatable and optimization opportunities are missed. If
identified early with a swift, safe, analysis method, their promotion to stack allocatable

objects could delay a GC event and potentially improve startup performance.

106

CHAPTER 5

DYNAMIC OPTIMIZATION VALIDATION AND
ROLLBACK

Up until this point we have discussed how the Dynamic Application Analysis Frame-
work can be used to generate analysis results in a dynamic application. However, the
structures and design of this framework are also applicable to the validation of optimiza-
tions enabled by the analysis results. In this chapter we classify models for optimization
and describe the types of validation that would be necessary to enable each. We also
discuss the necessary mechanisms for rollback and recovery in the event of a validation
failure. In several cases, we show how the information contained within our framework
structures not only facilitates more aggressive optimizations but also enables a finer grain
of validation. By enabling this finer grain validation, some forms of optimizations have

the potential for longer dynamic lifespans.

5.1 Optimization Models and Validation

We start by first defining three types of optimization decisions based on how the
optimizer decides to use the information provided by the analysis engine. They are as

follows.

107

Definition 7 Optimization decisions

e always safe: The optimization performed by the optimizer is restricted to a prov-
able set of monomorphic classes and procedures. Ezecution of the optimizations
enabled under this model remain safe even in the presence of dynamic class load-

mg.

e sometimes safe: The optimizer assumes the class hierarchy (CH) is open. The
optimizer recognizes the “speculative” nodes in the ACG and optimizes based on
these points of optimization-time target mondeterminism. Optimizations enabled
under this model embed checks within the code to determine dynamically when it is

safe to execute along the optimized code path.

o speculatively safe: The optimizer assumes the class hierarchy (CH) is closed.
The optimizer aggressively promotes speculative nodes within the ACG to known
nodes based on information within the CH. It relies on wvalidation and recovery
mechanisms within the runtime if the closed CH assumption is violated. It provides
the runtime with the necessary information to provide the desired level of validation

and recovery.

The actual optimization of a given code region may use a combination of the three
types noting that the aggressiveness of the optimization is correlated to the optimization
type. Therefore, optimizations based on the always safe model are not as aggressive
as those based on the speculatively safe model. However, the always safe model does

not require validation since it is always safe to execute the code optimized under this

108

model even in the event of dynamic class loading. The sometimes safe and speculatively
safe models do require validation, and we classify validation into two main categories as

follows.

e execution time: The validation check is embedded in the executing code and

performed as part of the execution.

e load time: The validation check is performed by the runtime as a new class file is

loaded.

The two types of validation are related directly to the two optimization types requiring
validation. The sometime safe model of optimization, which embeds validation checks
in the optimized code, is an example of execution time validation, while the speculatively
safe model, which relies on the runtime to handle validation, is an example of load time

validation.

5.1.1 Always safe

As previously mentioned, the optimizations we focus on are based on interprocedural
analysis and use optimization tools such as inlining. The determination of whether
an optimization is always safe is based on the type of the procedure being considered
for inlining and optimization. We restrict always safe optimizations to monomorphic

procedures, which we introduced in Chapter 1. We define them more formally as follows:

Definition 8 A monomorphic procedure is any procedure that, within a given context,

can be proven mot to be redefined in the presence of dynamic class loading during the ex-

109

ecution of a dynamic application and is a single-target node in the ACG for the procedure

being analyzed and optimized.

Therefore, in addition to procedures that were declared using the final key word or
procedures that are sealed within a sealed package [22], other procedures can also qualify
as monomorphic. Initializers called by an allocating method are considered monomorphic
procedures because the type of the object instance being initialized is defined by its
allocating procedure and therefore definitively known. Furthermore, method resolution
using the same definitively known allocated object instance, are also single target and
monomorphic within the iCDG/ACG with respect to the given context. For an object
instance to be considered definitively known within a given context, it must meet all of

the following criteria:

1. The object instance is allocated within the iCDG.

2. The object instance is only attached via a node or nodes of type write, to another

node in the iCDG that are also definitively known.

3. The object instance is not attached to any node of type read that contains the

bytecode line number of a checkcast bytecode instruction.

4. The object instance remains enclosed within the iCDG under analysis.

Qualification 1 is a requirement because only object instances actually created within
the iCDG can be considered members of the given class and not one of its subclasses.

Qualification 2 addresses type changes. If an object instance is written to by another

110

object instance represented in the CDG that is also definitively known, then even though
the type may change, it still remains definitively known. Therefore, qualification 2 is
recursive in that in determining if a node is definitively known the optimizer may also
need to resolve attached nodes in the iCDG. Qualification 3 uses the information that
a checkcast bytecode instruction is actually represented in a CDG as a node of type
field read, as specified in Appendix A. Since the node in the CDG contains the bytecode
line number of the operation, a simple check for the bytecode type at that line number
can be used to qualify this. By performing the secondary bytecode check, we can avoid
eliminating all object instances connected to read nodes from the set of definitively known
object instances. Qualification 4 simply addresses the fact that we can only know the
definitive state of an object instance if we can analyze the whole region where the object
instance is used. Therefore, any object instance escaping either via an interprocedural
boundary into a speculative node within the ACG or to another thread, cannot be fully
analyzed and therefore its state cannot be definitively known.

Figure 5.1 shows the optimizing time ACG which assumes the CH contains the three
versions of Clazz shown in Figures 2.3 and 3.1. This ACG varies from the others in
that we have completed two potential targets for Foo and two potential targets for Bar
while still leaving a purely speculative node for each. The calls from Hoe to Foo and
subsequently Bar are virtual calls located via a formal to Hoe which is not definitively
known. The only monomorphic procedures shown in this ACG are the initializers. We

have distinguished these from the known nodes by using a double line around the node.

111

y 12,15

;I?:Foo ' { 20:Foo,
24 22 o ; Specualtive

E's—)_zz[m] 6 [J () Known
:Bar, s<@lazz <Object>
C_) Monomorphic

Figure 5.1 The optimizing time ACG for the versions of Clazz in Figures 2.3 and 3.1.

500: public void HoeUser (Clazz A, Clazz B){ W V
501 Clazz C = new Clazz();

502 <Clezz> 1)
503
504 C.Hoe () ;
505:)
(a) Procedure using Hoe (b) CDG for HoeUser

Figure 5.2 Example user for the class Clazz from Figure 2.3.

If we are optimizing Hoe based on the always safe premise, then only the initializer calls
at lines 12 and 15 are safe for inlining and optimizations.

In contrast, consider the case where the type for the object instance used to call Hoe
is definitively known by the optimizer. Figure 5.2(a) shows the procedure HoeUser that
calls the procedure Hoe. If we are optimizing HoeUser, then the determination of inlining
candidates is based on HoeUser’s iCDG/ACG.

We step through the construction of the iCDG/ACG for HoeUser and identification

of ACG nodes as monomorphic, in Figure 5.3. First, starting with the CDG for HoeUser,

112

500:HoeUser

17
@:FOOUJL{ESKCMZD j]
24
\

)
6.
\/

(b) Graphs after Foo has been upgraded to known based on iCDG information

- fe-N
N
(6N

\/

(c) Graphs after Bar has been upgraded to known based on iCDG information

5:<Clazz>

Figure 5.3 Interprocedural CDG for HoeUser in Figure 5.2.

113

Figure 5.2(b), we connect the initializer called at line 502 and resolve the virtual call
to Hoe at line 504. Note that the call to Hoe and its subsequent node in the ACG is
upgraded to monomorphic because the object instance used to resolve it is the same
one allocated at line 501. The next step is to connect the CDG for Hoe into the iCDG
which causes the speculative node Foo to be added to the ACG. These iCDG/ACG are
the graphs shown in Figure 5.3(a). Upon analysis of the iCDG in Figure 5.3(a) it is
concluded that the same object instance that was used to resolve the virtual call to Hoe
is also used to resolve the virtual call to Foo. This determination is made by following
the arc connected to the parameter node, (0,17), and treating super nodes as extensions
of their attached arcs. The only node connected to this parameter node (excluding super
nodes) is the allocation node, 501. This then causes the node Foo in the ACG to be
upgraded to monomorphic and its corresponding CDG incorporated into the iCDG. This
is shown in Figure 5.3(b). The incorporation of Foo causes a new node to be added to the
ACG, Bar, which is added as a speculative node. By analyzing the iCDG in Figure 5.3(b)
it is observed that the same object instance used to resolve Hoe and subsequently Foo
is also used to resolve Bar. Therefore, Bar can be upgraded to monomorphic and its
corresponding CDG incorporated into the iCDG. This is shown in Figure 5.3(c). The
incorporation of Bar did not add any new nodes to the graph and the CDGs for all
of the known nodes have been incorporated into the iCDG; therefore, the iCDG/ACG
construction terminates.

The final ACG shown in Figure 5.3 contains all monomorphic nodes. This means that

all procedures executed during the execution of HoeUser are candidates for inlining and

114

subsequent optimizations. The final optimized code would remain valid at all times since
dynamic class loading cannot affect the monomorphic state of the nodes in this ACG.
In general, only a subset of the object instances in an iCDG can be classified as
definitwely known and as such only a subset of the nodes in the ACG can be promoted
to monomorphic nodes and optimized using the always safe model. This make the always

safe model conservative, leaving many optimization opportunities unexploited.

5.1.2 Sometimes safe

The sometimes safe optimization model recognizes that the CH is not closed and
can increase the number of class files in it during execution. This causes the inclusion
of speculative nodes for any nodes that are not monomorphic within the ACG. This
model is more aggressive than the always safe model, choosing to optimize one or more
paths through the known nodes in the ACG. The optimizer also embeds the necessary
validation checks and recovery mechanisms in the optimized code to handle the multiple
potential execution paths.

For example, in Figure 5.1, if the profile showed that the execution had always resolved
the call to Foo as Foo,, the optimizer under the sometimes safe optimization model would
inline Fooq, but would embed a type check as validation as early as possible in the code to
determine the type of the object used to locate Foo. If the type check failed, it would re-
direct execution to the original version of the code. The validation check under this model
would be an ezecution time check since the validation is embedded in the optimized code.

Note that for this example, there are actually two types that can result in the execution

115

of Fooy, Clazz and ClazzB as shown in the ACGs of Figures 3.2. Therefore, since the
optimizer assumed the ACG for the unoptimized path could expand to yet unknown
classes, it would need to embed a double type check for this inlining to direct only types
of Clazz and ClazzB to the optimized segment.

However, checking the type at every execution of a method adds overhead even to
the optimized path. If the loading of a new class of the given type is a rare event, then

this overhead may be mitigated by a more aggressive optimization model.

5.1.3 Speculatively safe

Under the speculatively safe optimization model, the CH is assumed closed, meaning
this model assumes no new class files will be loaded into the system. The assumption
forces the registration of a validation check with the runtime. The actual registration of
the validation check can be delayed until after the optimization, allowing the optimizer
to potentially request a finer grain validation of specific properties of the newly loaded
class files.

For example, in Figure 5.1, only the two known nodes for Foo would be included in
the ACG. Although a type check would still be needed to determine the correct version
to execute, the set of types would be considered closed. Unlike the double check used in
the sometimes safe model, this optimization model would only need to check the single
type, ClazzA, that can resolve to Foo;. This model registers a validation request with
the runtime relying on the runtime to disqualify the optimized code should the closed

CH assumption become invalid.

116

100: class ListClazzA extends ListClazz{

L0 ClazzNodeA C;

102

103: ClazzNode getElement (ListClazz o, int 1i){
104: e it sl e s sasal L e
LG5S return o.C;

106: ClazzNodeA X = o0.C;

107 Fortine e 0o <ailsy ier)d
108: X = X.getNext () ;

109: }

EL0s return X;

1A }

By

113:

114: class ClazzNodeA extends ClazzNode{
115 ClazzNodeA n;

116:

117 ClazzNodeA getNext (ClazzNodeA o) {
118: return o.n;

19 }

DR =

Figure 5.4 Subclass for the list class in Figure 3.9.

5.1.4 Mixing optimization models

Sometimes speculative optimizations can be mixed with sometimes safe or always
safe optimizations. To illustrate the combining of sometimes safe and speculative mod-
els, Figure 5.4 introduces two new subclasses, ListClazzA and ClazzNodeA, for the
classes introduced in Figure 3.9. The new ACG for the call to append is shown in Fig-
ure 5.5. Additionally, we introduce a new user class for these two versions of ListClazz,
listBuilderDriver shown in Figure 5.6. If the optimizer is optimizing listBuilder-
Driver, and the profile shows that the call to getElement always resolved to the version
at line 103 of Figure 5.4, then the optimizer under the sometimes safe model could decide
to inline this version of getElement. However, since this is a virtual call, the ACG would

also have a speculative node for getElement. The optimizer upon deciding to inline the

117

56 :append

I
21 etElemen% 103 getElemen} Ll 7 getElementl : 1 ?:add

\ I

27 108

Eé getElement 117 getNex%J

Figure 5.5 ACG for append in Figure 3.9 with the new subclasses in Figure 5.4.

100: wvoid listBuilderDriver (listBuilder o, ListClazz[] lists){

(0 2 ListClazz L = new ListClazz();

102~ <ListClazz> (L) ;

03

104 ListClazzUser D = new ListClazzUser () ;
05 <ListClazzUser> (D) ;

106:

LT for(int-4i = 05 31 < lists,lenathy i++){
108: D.append(lists[i], L);

109: }

L30-¢ }

Figure 5.6 Driver class for the subclasses of ListClazz.

version of getElement based on the profile information, would also place a type check for
the ListClazz type when it is read from A at line 59 of Figure 3.9. The check would be
used to redirect to a normal invocation if the type is not ListClazzA. This then classifies
this portion of the optimization as sometimes safe.

Figure 5.7 highlights the sometimes safe portions of the optimized version of list-
BuilderDriver. Now the optimizer could make a speculative decision based on the loaded
versions of getElement and add. It could decide this set is closed and to cache the value

returned by the call to size in the for loop since neither of these causes the value returned

118

200: wvoid listBuilderDriver (listBuilder o, ListClazz[] lists){

201; //inline initializer for ListClazz L

2031 //inline initializer for ListClazzUser D

2035 //check escaping state of lists to determine which loop

204: if (lists not escaping) { S Ll S
205: int temp = lists.lengt}:\: Sometime Safe checks |
206: for(int 4 = 0; 1 < temp; di++){ e Se e I
207 //inlined append from ListClazzUser

208: //assumed that append formal 1 does not escap

209 //in call to getElement () ;

2103 //cache size result

Z2aLy int £ 2 = lists(i].size();

212 for(int j = 0; j < t_2; j++){

213: //optimized version of loop

214: if(lists[i] is ListClazz){

215 //optimized version of getElement and add

216 telse{

s //original code

218 }

219: }

220: }

o 20 5 }

2227 else{

223 //original code

224: }

T

Figure 5.7 Sometimes safe regions of optimizations for 1istBuilderDriver.

by size to change across iterations of the loop. If a new subclass of ListClazz is loaded
into the runtime, this optimization may no longer be valid. Therefore, the caching of the
return value of size would be speculative and the optimizer would register a validation
request with the runtime for the class loader.

Figure 5.8 highlights the speculative portions of the optimized version of 1istBuilder-
Driver. Note that both the speculative and sometimes safe optimizations are intertwined
in this optimized code segment and the validation failure of the speculative optimization

disqualifies both of them.

119

200:
201 :
20273
2034
204:
205
206:
207:
208:
209:
210:
v B
2313
2Pk
214:
2S5
216
203
218:
2%9:
220:
2215
222

w5

2
P

224:
225’

inline initializer for ListClazz L
/inline initializer for ListClazzUser D

void listBuilderDriver (listBuilder o, ListClazz[] lists){

//check escaping state of lists to determine which loop

if(lists not escaping) {

int temp = lists.length;

For(int i = 07 1< Cembpy 14+4)§
//inlined append from ListClazzUser
//Jassumed that append formal 1 does

/in call to getElement () ;

not escape

//cache size result
int t_2 = lists[i].size()*———
for{int J = 03 3 < £ 2 j+%){

Specualtive optimization
Requires runtime validation

optimized version of loop body

if(lists[i] is List€lazz){

/optimized version of getElement and add

telse({
//original code

}

}
)
else{
//original code

)

Figure 5.8 Speculative optimization in listBuilderDriver.

5.2 Validation Failure, Rollback, and Recovery

Up until this point, we have discussed the need for validation and what types of
validation are needed for each optimization model. However, validation could fail. In
the event of a validation failure, rollback and recovery may be necessary. In this section,
we address the types of rollback and recovery needed to handle validation failures, how
these mechanisms are impacted by the state of the execution at the time of the validation
failure, and what type of information is needed by the runtime to recover from validation
failure events.

We start by identifying the following rollback mechanisms as facilitating the rollback

of the state of the application in the event of a validation failure.

120

e Code based stubs: The replacement of entry instructions at the entry point of
what was previously a valid optimization with an unconditional jump to rollback

and recovery code.

e On stack replacement: The replacement on the call stack of return targets with

unconditional jumps to rollback and recovery code.

e Stack object instance flushing: The transferring of a stack allocated object

instance to the heap.

The first two mechanisms are general and may be necessary for handling validation
failures across a wide range of optimizations. The third recovery mechanism is directly
related to a particular type of optimization, namely stack allocation of object instances
and therefore optimization type dependent. These rollback and recovery mechanisms are
not exclusive to a particular type of validation and could require employment either with
ezecution time or load time validation. For example, in an execution time validation
check, the validation failure event normally redirects either directly to an unoptimized
version of the code or first performs a rollback for some of the state prior to the redirect.
The rollback may include the flushing of stack allocated object instances. In the event of
a load time failure, not only could code stubs be used to redirect future execution of the
optimized region, but it may also be necessary to flush stack allocated object instances
and even in some cases to reset and re-execute portions of the affected region. In the
remainder of this section we focus primarily on load time validation failure events since

execution time validation failures are directly handled within the code.

121

Class file name

Type of validation
Coarse

Fine
Rollback/recovery needed
Call stack

Code
Memory

Figure 5.9 Abstract view of the necessary fields in a validation registration.

Load time validation is handled by the runtime as new class files are loaded into the
system. To facilitate load time validation, we have developed an abstract structure we call
a validation registration. The format of a validation registration is shown in Figure 5.9.
The basic fields are the class file name for the class load event needing validation, the
type of validation, and the type of rollback and recovery needed. The type of validation
can either be a coarse grain validation such as the occurrence of the load event itself, or
a fine grain validation such as particular property of a field or method of the class loaded
by the load event.

For example, the caching of the return value for size described in Section 5.1.4,
was based on the assumption that the CH was closed. Furthermore, it was observed
that within the closed CH, none of the procedures called within the body of the loop
changed the value of size. If a coarse grain validation is used, then any loading of a new
subclass of ListClazz is sufficient to trigger a validation failure event. However, our
framework is designed to do better than this. In our framework, fine grain validation

can be specified, requiring that a validation failure event only occur if the newly loaded

122

subclass of ListClazz contain a new version of getElement and the new version affects
in some way the value returned by size. The validation of this information can be derived
from the CDGs for the newly loaded procedures. Most fine grain validation events use
the information in the CDG/ACG to perform the validation, meaning that in most cases,
without the CDG this type of fine grain validation would not be practical. Therefore,
the CDG/ACG can be viewed as an enabling technology for fine grain validation.
Validation failure from a load event could occur while the execution of the affected

region is in one of the following two states:
e preregion: Not yet entered the affected optimized region of the application.

e in-region: In the process of executing the affected optimized region of the applica-

tion.

Note the absence of a postregion state from the necessity for rollback and recovery. Since
the event affecting the validation failure occurred after the region had been executed, it
could not have affected that region of the program. If the region is to be re-executed,

then the state can be handled as preregion.

5.2.1 Preregion execution state

In the preregion execution state, rollback is not necessary since the region of code has
not yet been executed. Instead, the recovery mechanism can simply replace the entry
instruction for the image of the optimized code region with a stub redirecting future

callees to the unoptimized version of the code. It incurs the added overhead of the

123

redirection; however, this overhead can be mitigated, if not completely eliminated, at the
next optimization epic.

Figure 5.10 shows an abstract view of how this mechanism works. The original code
after the optimizer runs is laid out in memory according Figure 5.10(a). Here we have
shown three optimized versions of the same region of code. Note that each optimized
version is branching to a continuation point, 0x1dff. Whether or not the code at the
branch target for the continuation point is optimized is immaterial, so we have not
specified it. Note also that the original code continues execution on through the branch
target (continuation code) for the three optimized segments. When a validation failure
event causes a stub insertion, the conceptual approach is to place a hard jump at the
entry point for the region. This is shown in Figure 5.10(b) with the jump to the starting
address of the block marked original. This jump instruction can overwrite the entry
instruction(s) in the block since the remainder of the block’s instructions are now dead
code.

There are some additional assumptions made in this abstract representation. For
example, we assume that the state of the program upon entry to each of the optimized
versions is identical to the state of the program should we have entered the original
code version. If it is not, then the stub must contain any necessary patch code to bring
this state back to the state the program would have been in had the original code been
entered. For example, if one or more of the optimized versions used stack allocated object
instances and these object instances were assumed heap allocated in the original code,

then the redirect may not be directly to the original version of the code. Rather, the

124

0x00£ff 0x00£ff |goto Oxlcff |stub
optimized optimized
version 1 version 1
branch 0x1dff branch 0x1dff]
0x03ff 0x03ff |goto Oxlcff stub
optimized optimized
version 2 version 2
branch 0x1dff] branch 0x1dff]
0x10ff 0x10ff goto: OxlcEE stub
optimized optimized
version 3 version 3
branch 0x1dff branch 0x1dff]
OxTcEE OxlcEL
original original
OxldEf 0x1dff

a) Abstract code view b) Stub insertion

Figure 5.10 Abstract view of code space and insertion of redirection stub.

redirection stub would be to a patch code region that flushes the stack allocated object
instances prior to continuing. This patch code could be unique for each of the three
versions of optimized code shown in Figure 5.10. Since the redirection is in the target
entry point for the optimized region, all other code which had this target is unaffected
by the change.

Additionally, this model requires maintenance of the original code. However, most

runtimes do keep the bytecode version of the code available at all times. Therefore, as

125

long as the optimized code and the unoptimized code share the same memory model, call

stack and code space, this level of rollback is achievable in the system.

5.2.2 In-region execution state

The in-region execution state is a little more complex with the required rollback
and recovery being directly related to the aggressiveness of the optimization. We have
identified two approaches to handling executing regions of code when a newly loaded class
file causes a validation failure event. The first approach, continue executing, contends
that the event cannot affect the executing code and can only affect future entries into
the region. Therefore, do nothing to the executing code and just insert stubs in the
optimized region for new entries into the region. This is similar to the stub described in
Section 5.2.1. However, we may be able to get more aggressive with the optimizations if
we can roll back and re-execute. Therefore, the second approach, checkpoint, rollback,
and re-execute, contends that validation failures are rare events; therefore, the cost of
check-pointing, then rolling back the program’s state and re-executing the affected region,
is acceptable. This approach requires extra overhead and recovery code for executing

methods.

5.2.2.1 Approach 1: continue executing

This model allows the region to complete and is only concerned with redirecting future
entries into the region. Note that this model contends that procedures are located via

a specific object or class instance. There is a limited means in which a reference to an

126

object instance can be obtained in an executing application. These limited forms are as

follows.

1. Allocation: The actual creation of a new object.

2. Field Access: The obtaining of an object reference via the reference stored in an-

other object.

3. Global Access: The obtaining of an object reference via the global field of a class

object.

4. Formal Parameter: The reference was passed to the method via a formal parameter.

5. Callee Return: The reference was returned from a callee invocation.

Since this set is finite, and the behavior of the object instances is fully specified in the
CDG for each procedure, we are able to track the state of the object instances involved
in the optimization. The main restriction placed on optimizations under this model is
that object instances involved in the optimization must be definitively known not to
escape either prior to or during the region being optimized. This means object instances
shared among threads or object instances crossing into speculative nodes in the ACG are
excluded from optimization.

To illustrate why this restriction is necessary, consider again the example class in
Figure 3.9 in which we introduce a user, producerQueue shown in Figure 5.11. At opti-
mization time, the only implementation of ListClazzUser is the one shown in Figure 3.9.

The field Q of producerQueue is declared as static and by definition thread escaping.

127

121: class producerQueue({

122 ListClassUser C;
£28: static ListClazz 0;
124: <producerQueue> (producerQueue o) { V
125 0.C = new ListClassUser(); 2
126: o0.C.<ListClazzUser>() ; s
127 0.0 = new ListClazz()} e :
128: 0.0.<ListClazz>(); e 132}
128 } % 7
130: e (2,132) (1,132
I void addJdobs (producerQueue o, ListClazz J){
132+ o.C.append (producerQueue.Q, J);
133: }
134: 3
(a) class file (b) CDG for addJobs

Figure 5.11 A user class for the class file ListClazzUser in Figure 3.9.

Since the field Q is thread escaping, the items stored on it are not under the sole control of
the executing thread. Under the aggressive speculative model, the optimizer may want
to inline append and subsequently getElement then add. However, if while the appli-
cation is running, a new subclass of ListClazz gets loaded, the results from executing
the optimized code may vary from those of an unoptimized version. It is possible for
a new object instance of the new subclass of ListClazz to be on the Q list. The new
subclass may use different versions of getElement and/or add, meaning if the execution
of addJobs is allowed to complete, the result of the execution may not match the unop-
timized version. Therefore, under this model, the determination that Q is escaping would
prevent the optimization.

In order to assure a reasonable level of reliability, optimizations based on this recovery
model are limited to reference fields known to be thread local and in some cases, the

stricter definitively known subset.

128

5.2.2.2 Approach 2: checkpoint, rollback, and re-execute

The second approach enables more aggressive optimizations. The concept is to check-
point the state of the execution prior to entry to the region. If a validation failure event
occurs, roll back to the check-pointed state and redirect execution to the unoptimized
version of the code. This is similar in concept to the speculation mechanisms used in most
compilers and processors. As long as state has not been committed, this model works.
It does incur the cost of the checkpoint operation and may involve several checkpoints
and rollbacks for a given region.

To illustrate, we use again the producerQueue class in Figure 5.11. Again we assume
the CH is closed. This time we perform the aggressive speculative optimizations described
in Section 5.2.2.1 that were prohibited under that model. Now the determination that
Q is escaping is not an automatic disqualification of the optimization. Instead, further
analysis is used to determine how involved the check pointing would need to be should a
rollback and recovery be necessary.

In the case of producerQueue, we can observe from the code that we are only making
a copy of Q and not affecting Q. This observation can be extracted from examination of
the iCDG/ACG for addJobs. The iCDG is shown in Figure 5.12. To observe that Q
is only read, we can reduce the iCDG by removing all property nodes, then bypassing
and removing the field nodes. The steps and the final reduced version are shown in
Figure 5.13. From observation of Figure 5.13(e), it is seen that there are only arcs leaving

the node Q. Therefore, we can accurately conclude that we only read Q. Additionally, Q

129

x

ListClazz.add
ListClazz.size
ListClazz.getElement
ClazzNode.add
ClazzNode.getElement
ListClazzUser.append

Figure 5.12 The iCDG for the procedure addJobs shown in Figure 5.11.

is written to a field in formal node P;. From the information contained in the iCDG
of Figure 5.13(a), the optimizer can determine that the necessary check-pointing is the
copying of the original contents of the field C and its field n prior to execution of the
region. Then if a validation failure event occurs, the original values in these fields can
be restored, any new objects created, discarded, and an unoptimized version of the code

re-executed. The validation registration for this optimized region would consist of the

130

B S
v I i
! 'ﬁ .o ~ s P
RN Py LY s, 198 ot e
sengns SR i o o PUe B haE e it s .
v e i . TR N \ As,22) ete, UYC,27p
(e), ISR v Ws,15) yc,132) . . : . A
3 W= h= \ gL \ P ¥c, 25} o
s / \ Ny iy /
,,-\’ / X \lz-~ (’
A \
szl =iy e, 11 /
\ ’ i . \
S oale,ddk (C,10) s a? I
s A ¥ K /
e i
/ N
. = (n, 49§
5 \\ L
. . N
.(n’40): e) -~
= » \\ // %
i N(n, 41),
\\ /

(a) initial iCDG with super nodes removed

Y e

< £
1 \\
free R b o8 te \\\ \\ Y
N :) . % ~- S PP =
et () c,25§ e ! S T ieash ey
teg’ Vo (e dc,274 3 el %c,27%
N Sger \ S5 Ly
25 = \ X e
< >
o L e 5 - gy
\(n, 41 i a0y ey *n, 49§
oo 4 L s T 4 e

(b) dangling field nodes removed (c) nodes (C,14) and (C,11) removed

& -2
\ ~\
Ve S PSS
s & Bty
2% L \
\ /! \
y s \
\\ }/(\ \
/l > ¥ a
o SRR 'i '
’ vV 55 e e Ao ool A oo - /s R O s g
Wn, 41) {n, 49} 2
A s Sees?

(d) nodes (C.25) and (C.27) removed (e) all field nodes removed

Figure 5.13 The intermediate graphs and final iCDG after removing field nodes.

131

class file names ListClazz and ListClazzUser. It would also specify that the type was
coarse grain since any new version of these class files could invalidate the optimization.
The rollback/recovery would specify both a code and a call stack entry. The code entry
would consist of the same redirect to original version of the code discussed earlier. For the
call stack entries, a stub could be inserted at the previous return points in the optimized
code. This would then cover future entries into the region and returning entries.

For the case of executing code, the runtime must be able to signal the execution that
a validation failure event has occurred. One way to signal the execution is by use of a
flag. The optimized version of the code could check the flag prior to a commit of the
state changes. If the flag is set, do not commit, but roll back to the original version and
re-execute. Note that since the optimized code entry point has been replaced with an
unconditional branch to the original code, the re-execution will automatically redirect
to the original. Since only the optimized version of the code would check this flag, the
setting of it would have no effect on the unoptimized version.

However, there may be no definitive way to determine if all optimized code segments
have completed executing without examining the call stacks of every thread. Therefore,
it may be difficult to determine when it is safe to clear the flag. For this reason, it may
be desirable to use a flag located within the code space of the optimized code segment.

Although these models cover the state of the runtime at the time of the validation

failure event, they do not fully discuss the intricacies of specific optimizations.

132

5.3 Additional Optimization Examples

Optimization concerns and validation of optimizations can also be specific to the type
of optimization employed. In this section, we cover some of the types of optimizations
introduced in Chapter 3 and what forms of validation would be necessary to enable ag-
gressive optimizations. Additionally, we address optimization implementation concerns.
Where appropriate, we show how the information contained with the CDG could be
used to specify a fine grain validation, thus potentially expanding the lifetime of the

optimization.

5.3.1 Stack allocation of object instances

In Chapter 3 we introduced the use of the iCDG/ACG for the discovery of stack
allocatable object instances. In Chapter 4 we focused on the analysis necessary for
discovering stack allocatable object instances at first allocation. In this section, we now
address optimization implementation models and concerns for the implementation of
stack allocation optimizations.

First, if the runtime is using an interpreter based start-up, then the interpreter must
be stack allocation aware. This means that instructions such as getfield and putfield
that used to go through the memory manager to the heap, now need to be redirected
to use the stack. Ideally, we would like to replace these instructions with instructions
that are specific to the runtime’s interpreter and identify these as stack allocations and

accesses. This can be accomplished within the current bytecode code space. Note that

133

in the Java Virtual Machine specification, only 205 of the available 256 unique bytecodes
have been assigned [29]. This gives 51 available unique bytecodes within the instruction
space. The use of the unassigned bytecode space allows the runtime to replace in the
code array for the method, the original heap accessing instruction with the new étack
local accessing version. This can be done swiftly upon entry to the method if the CDG
is used. Since the CDG contains the bytecode address of each access by a heap-accessing
object instance, and it also associates these with their given object instances, the runtime
has the necessary information to implement this change. Furthermore, since the use
of the “special” instructions is internal to the runtime and not visible outside of it,
it does not affect other runtime implementations. Additionally, if future changes to
the Java specifications use this address space, the runtime will need to be redesigned
to accommodate the new instruction and at the same time the “special” instructions
can be adapted. The original specifications showed a similar use of this unassigned
bytecode space with the use of the “quick bytecodes” by the original implementation of
the interpreter [38].

However, not all calling contexts have the same results. Referring back to Figure 3.5
in Chapter 3, the decision on which object instances to stack allocate was based on the
type of the object instance used to locate Hoe. Therefore, the heap accessing bytecode
instructions that need replacement with stack accessing counterparts are dependent on
the runtime type of Clazz o. Since the decision of which bytecodes to replace is made

based on calling context, then the code may only be applicable to this one use.

134

One way to handle this is to have a main code buffer for the original bytecode image of
the code. The class’s method table would point to the main code buffer version. When an
analysis such as the iOCG/ACG described in Chapter 4 identifies stack allocatable object
instances, a specialized version of the method could be created — for example, copying
the main code buffer contents to a new memory location, replacing the instructions used
to access the now stack allocated object instance, and returning a pointer to this new
location. When the method’s execution completes, since this was calling context specific,
the code space is collected. This can be done as a trigger on the call stack, thus allowing
the code space used to house the specialized versions to be collected. Collecting and
regenerating the optimized segments can prove expensive. Therefore, in Chapter 7, we
address some future work that may allow efficient context matching and reuse some of

the optimized methods.

5.3.1.1 Flushing of stack allocated object instances

For optimization time stack allocation decisions described in Chapter 3, the decision
is based on the model being used — always safe, sometimes safe, or speculative. However,
in the event of a validation failure, the object instance may need to be moved from the
stack to the heap. This can involve additional overhead both in the implementation and
the design.

If object instances have been allocated on the stack instead of through the heap, then
when flushing the object instance, all reference fields must also be updated. Therefore,

the decision as to which object instances to stack allocate needs to be weighed against

135

the recovery cost of validation failure events including the expected failure frequency.
Therefore, once an object instance has been identified as stack allocatable, the next
important criterion for determining whether or not to stack allocate it is the type of
fields it contains. We classify the object type criteria for stack allocation progressing

from easiest to implement and recover from to hardest, as follows:

1. All fields of the object are primitive values.

2. One or more reference fields in the object but all reference fields for the given object

instance point to stack allocated object instances.

3. One or more reference fields in the object and the reference fields may point to

stack or heap allocated object instances.

For the first case, all fields are primitive: should the object instance need flushing,
then only the stack allocated object instance is affected. Therefore, the flushing is a
simple copy from the stack to the heap. For the second case, all reference fields point to
other stack allocated object instances, then the flushing of one object instance may have
a ripple affect. For example, if other stack allocated object instances point to it, then
they also must be flushed to the heap for this property to be maintained. Note that the
efficient implementation of such a property may require the use of double-ended pointers
to keep track of all object instances with fields pointing to a given object instance. This
overhead could mitigate any benefit from the optimization. The third case complicates
the second even further. Note that when the memory manager collects unused memory

locations, it often moves object instances within the memory space. Under this model,

136

even if an object instance that had been stack allocated should remain stack allocated,
then at every garbage collection epic, the reference fields accessing heap allocated object
instances would need updating. Therefore, when implementing a speculative optimization
model, it may be desirable to restrict stack allocated object instances to case 1.
Although stack allocation of object instances has the potential to show significant per-
formance improvement, care should be taken when applying the speculative optimization

model to this form of optimization so as to not mitigate the benefits.

5.3.2 Synchronization removal

In Section 3.4.2, we showed how the iCDG could be used to identify redundant and
unnecessary synchronization operations. Furthermore, we showed how these operations
could be eliminated. In this section we address the types of validation, rollback, and
recovery necessary for both the sometimes safe and speculative optimization models.

In the sometimes safe model, nested synchronization may be removed along one of
the paths but not the other path. This is because the other path is assumed unbounded,
meaning the set of potential targets for the callee could expand at any instance. Further-
more, the expanded set has the potential of allowing to escape an object instance that
was thread-local based on the iCDG when the code was optimized. Therefore, in order
to enable aggressive optimizations, the sometime safe model needs to check the escaping
state of references passed across the callee boundary to determine if it is safe to continue
in, or possibly even return to the optimized version of the code. This level of validation

can again be accomplished using the CDGs for the callees.

137

520: «class syncClazzA extends syncClazz {

521 % synchronized void Foo(syncClazz o, syncClazz p, syncClazz a){
522: syncClazz r = new syncClazzA();

523 <syncClazz> (r) ;

524 synchronized(r) {

225 gt

526: G Barlp), 6

B }

528: }

820]

530

\ L] KA
» 7/
N 4 Z \

SramR Lo e g
!/I/ \\\‘ o u ’/’, \\\\
1
wh selBl. WE.B26) [, Se9) AQX
/

-
- < -
- ot

- N
///, ///, \\\\
(L, 524) (U, 527)
A\ 11 L 1
/

Figure 5.14 A new subclass of syncClazz in Figure 3.6.

Figure 5.14 shows a new synchronized class file that extends the syncClazz introduced
in Figure 3.6. At the time the optimizer runs, syncClazz and syncClazzA have been
loaded by the runtime. While optimizing Hoe, the optimizer makes the decision under
the sometimes safe model, to inline the syncClazzA version of Foo. The optimizer then
makes the decision to inline the context monomorphic version of Bar when the context
is from classes SyncClazz or SyncClazzA. Once inlined, the optimizer is able to remove
synchronization operations from the call to Foo, and Bar, as well as the synchronized

block within the syncClazzA implementation of Foo. However, the internal removal

138

Sometime safe checks

540: synchronized Hoe(syncClazz o) {

541 //same as before

542 //embedded check

543: if (o instanceof syncClazzA)
544: //inlined version of Foo from
545: //syncClazzA

546: / /embedded check

547: if(o.f instanceof syncClazzA |
548: o.f instanceof syncClazz){
549: //no syncronization block
550;: q = r;

5851 //inlined version of Bar from
552 //syncClazz

S5 telse(

554 //embedded check failure
535 synchronized (r) {

556 (o

557 o=f Bari(p, a);

558 }

559 }

560" telse{

561z //embedded check failure

562 o.Faota,b):

563 }

564 : }

Figure 5.15 The conceptual view of the sometimes safe inlined version of Hoe.

of the synchronization block is only done on one path. On the alternative path, the
synchronization is still present.

Figure 5.15 shows a conceptual view of the sometimes safe optimization model for
this form of opt<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>