
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

COMPACT	
 BINNING	
 FOR	
 PARALLEL	
 PROCESSING	
 OF	
 LIMITED-­‐RANGE	
 FUNCTIONS	

BY	

	

NADY	
 M.	
 OBEID	

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010	

Urbana,	
 Illinois	

Adviser:	

	

	
 Professor	
 Wen-­‐Mei	
 W.	
 Hwu	

	
 ii	

ABSTRACT	

Limited-­‐range	
 functions	
 are	
 domain-­‐level	
 optimizations	
 to	
 a	
 class	
 of	
 applications	

where	
 all	
 input	
 elements	
 contribute	
 to	
 all	
 output	
 elements,	
 based	
 on	
 the	
 distance	
 between	

two	
 given	
 elements.	
 When	
 the	
 contribution	
 of	
 an	
 input	
 element	
 to	
 the	
 output	
 is	
 inversely	

proportional	
 to	
 the	
 distance,	
 a	
 limited	
 range	
 can	
 be	
 applied,	
 which	
 approximates	
 the	

contribution	
 to	
 zero	
 beyond	
 a	
 certain	
 cutoff	
 distance.	
 Introducing	
 a	
 limited-­‐range	
 function	

to	
 the	
 application	
 reduces	
 the	
 computation	
 complexity	
 from	
 O(N2)	
 to	
 O(N).	

Processing	
 multiple	
 input	
 elements	
 in	
 a	
 limited-­‐range	
 function	
 in	
 parallel	
 can	
 lead	
 to	

data	
 races	
 without	
 the	
 use	
 of	
 expensive	
 synchronization.	
 That	
 is	
 why	
 a	
 preferred	
 approach	

is	
 an	
 output-­‐driven	
 one,	
 where	
 multiple	
 output	
 elements	
 are	
 processed	
 in	
 parallel,	
 all	

sharing	
 the	
 input	
 data	
 set	
 for	
 reads.	
 Typically	
 the	
 input	
 data	
 set	
 is	
 unstructured,	
 which	

without	
 the	
 use	
 of	
 binning,	
 would	
 result	
 in	
 every	
 output	
 element	
 in	
 the	
 output-­‐driven	

approach	
 reading	
 all	
 of	
 the	
 input	
 elements	
 to	
 determine	
 which	
 ones	
 fall	
 within	
 its	
 cutoff.	

Binning	
 is	
 a	
 preconditioning	
 step	
 that	
 sorts	
 the	
 input	
 elements	
 into	
 predetermined	
 bins	

that	
 are	
 easily	
 accessible	
 by	
 the	
 output,	
 thus	
 allowing	
 the	
 output	
 to	
 only	
 access	
 the	
 bins	

relevant	
 to	
 its	
 computation.	

Traditionally,	
 bins	
 were	
 created	
 with	
 uniform	
 size	
 and	
 capacity	
 to	
 enable	
 easy	

access	
 to	
 them;	
 however,	
 making	
 the	
 bins	
 regular	
 can	
 have	
 severe	
 side-­‐effects	
 on	
 memory	

requirements	
 to	
 maintain	
 these	
 bins.	
 We	
 propose	
 a	
 technique	
 to	
 allow	
 the	
 bins	
 to	
 vary	
 in	

capacity	
 in	
 order	
 to	
 reduce	
 the	
 memory	
 overhead,	
 at	
 the	
 cost	
 of	
 added	
 accessing	
 overhead.	

In	
 this	
 work,	
 we	
 will	
 compare	
 regular	
 binning	
 and	
 our	
 approach,	
 compact	
 binning.	
 We	
 will	

demonstrate	
 that	
 compact	
 bins	
 can	
 in	
 fact	
 improve	
 the	
 execution	
 performance	
 of	
 limited-­‐

range	
 functions	
 executed	
 in	
 parallel.	

	
 iii	

ACKNOWLEDGMENTS	

	

First	
 and	
 foremost,	
 I	
 would	
 like	
 to	
 thank	
 my	
 adviser	
 Wen-­‐Mei	
 Hwu	
 for	
 his	
 constant	

support	
 and	
 guidance.	
 He	
 has	
 truly	
 influenced	
 and	
 motivated	
 my	
 work,	
 and	
 has	
 helped	
 me	

grow	
 professionally	
 in	
 the	
 two	
 years	
 he	
 has	
 been	
 my	
 adviser.	
 Secondly,	
 I	
 would	
 like	
 to	

thank	
 Daniel	
 Liu	
 who	
 helped	
 a	
 lot	
 with	
 the	
 execution	
 of	
 this	
 work.	
 I	
 would	
 also	
 like	
 to	
 thank	

Ian	
 Atkinson	
 whose	
 collaboration	
 on	
 an	
 MRI	
 project	
 led	
 to	
 the	
 inception	
 of	
 this	
 work.	

Over	
 the	
 last	
 two	
 years,	
 I	
 have	
 met	
 a	
 lot	
 of	
 people	
 who	
 have	
 really	
 influenced	
 my	

work.	
 I	
 would	
 like	
 to	
 thank	
 I-­‐Jui	
 Sung	
 who	
 I	
 shared	
 a	
 cubicle	
 with	
 those	
 two	
 years.	
 The	

countless	
 discussions	
 I	
 have	
 had	
 with	
 him	
 have	
 challenged	
 me	
 to	
 think	
 outside	
 the	
 box	
 and	

as	
 a	
 result	
 improve	
 the	
 quality	
 of	
 my	
 research.	
 I	
 also	
 want	
 to	
 thank	
 all	
 the	
 members	
 of	
 our	

research	
 group	
 who	
 have	
 lent	
 their	
 support	
 countless	
 times.	
 In	
 no	
 particular	
 order,	
 thank	

you	
 to:	
 Chris	
 Rodrigues,	
 Sara	
 Baghsorkhi,	
 John	
 Stratton,	
 Alex	
 Papakonstantinou,	
 Xiao-­‐Long	

Wu,	
 Victor	
 Huang,	
 Deepthi	
 Nandakumar,	
 Hee-­‐Seok	
 Kim,	
 Nasser	
 Anssari,	
 Li-­‐Wen	
 Chang,	
 Tim	

Wentz,	
 and	
 Steven	
 Wu.	
 And	
 of	
 course,	
 nothing	
 would	
 be	
 possible	
 without	
 the	
 help	
 of	
 our	

tremendous	
 staff	
 who	
 were	
 always	
 very	
 helpful.	
 Thank	
 you	
 to:	
 Marie-­‐Pierre	
 Lassiva-­‐Moulin,	

Laurie	
 Talkington,	
 Andrew	
 Schuh,	
 Umesh	
 Thakkar,	
 and	
 Xiaolin	
 Liu.	

A	
 good	
 work/life	
 balance	
 was	
 crucial	
 to	
 maintaining	
 my	
 sanity,	
 so	
 I	
 would	
 like	
 to	

thank	
 all	
 the	
 friends	
 who	
 stood	
 by	
 me	
 in	
 the	
 last	
 two	
 years.	
 	
 And	
 last	
 but	
 not	
 least,	
 I	
 would	

like	
 to	
 thank	
 all	
 my	
 family,	
 in	
 particular,	
 my	
 Mom,	
 my	
 Dad,	
 and	
 my	
 sister	
 Nay.	

Thank	
 you	
 everyone.	

	
 iv	

TABLE	
 OF	
 CONTENTS	

	

CHAPTER 1: INTRODUCTION ….……………………………………………….. 1

CHAPTER 2: THE GPU ARCHITECTURE ……………….…………………….. 13

CHAPTER 3: DESCRIPTION OF BENCHMARK APPLICATIONS …………... 22

CHAPTER 4: COMPARING REGULAR AND COMPACT BINNING …………... 32

CHAPTER 5: PARTITIONING ….……………………………………………….. 46

CHAPTER 6: COMPACTION IN RELATION TO SPARSE MATRICES ……….. 55

CHAPTER 7: CONCLUSION ….……………………………………………….. 59

REFERENCES ………………....….……………………………………………….. 61

	
 1	

CHAPTER	
 1	

INTRODUCTION	

With	
 the	
 advancement	
 and	
 ubiquity	
 of	
 high	
 performance	
 computing,	
 applications	

from	
 various	
 scientific	
 domains	
 have	
 emerged	
 that	
 try	
 to	
 model	
 and	
 simulate	
 the	

interactions	
 between	
 large	
 sets	
 of	
 elements	
 in	
 physical	
 systems.	
 These	
 applications	
 seek	
 to	

measure	
 anything	
 from	
 the	
 gravitational	
 forces	
 between	
 many	
 bodies	
 of	
 mass	
 to	
 the	

electric	
 field	
 in	
 space	
 due	
 to	
 the	
 presence	
 of	
 charged	
 atoms,	
 or	
 even	
 signal	
 propagation	

between	
 any	
 two	
 points	
 in	
 a	
 space.	
 This	
 information	
 is	
 simulated	
 by	
 measuring	
 the	

interactions	
 between	
 every	
 pair	
 of	
 points	
 in	
 the	
 system.	
 For	
 example,	
 in	
 order	
 to	
 determine	

the	
 electric	
 field	
 at	
 a	
 certain	
 point	
 in	
 space,	
 we	
 need	
 to	
 compute	
 the	
 electric	
 field	
 effect	
 of	

every	
 atom	
 in	
 the	
 space	
 onto	
 that	
 point,	
 and	
 similarly	
 every	
 atom	
 in	
 the	
 space	
 contributes	

to	
 the	
 electric	
 field	
 of	
 every	
 point	
 in	
 the	
 space.	
 However,	
 it	
 is	
 generally	
 the	
 nature	
 of	
 these	

interactions	
 that	
 the	
 effect	
 of	
 one	
 element	
 on	
 another	
 decreases	
 as	
 the	
 distance	
 increases	

between	
 them.	
 Since	
 the	
 computation	
 required	
 to	
 simulate	
 these	
 O(N2)	
 systems	
 for	
 large	

data	
 sets	
 is	
 very	
 expensive,	
 scientists	
 often	
 take	
 advantage	
 of	
 the	
 decreasing	
 effect	
 to	

accelerate	
 the	
 computation.	
 They	
 do	
 so	
 by	
 neglecting	
 the	
 interactions	
 between	
 two	

elements	
 when	
 the	
 distance	
 between	
 them	
 causes	
 the	
 effects	
 on	
 one	
 another	
 to	
 be	

insignificantly	
 small.	
 In	
 other	
 words,	
 they	
 approximate	
 all	
 the	
 effects	
 beyond	
 a	
 certain	

cutoff	
 distance	
 to	
 be	
 zero.	
 In	
 some	
 application,	
 the	
 distant	
 contributions	
 are	
 computed	

using	
 a	
 different	
 method.	
 By	
 doing	
 so,	
 they	
 reduce	
 the	
 complexity	
 of	
 the	
 algorithm	
 from	

O(N2)	
 to	
 O(cN)	
 where	
 c	
 is	
 the	
 constant-­‐sized	
 cutoff	
 distance	
 beyond	
 which	
 no	
 interactions	

are	
 computed.	
 Applying	
 a	
 cutoff	
 to	
 the	
 computation	
 in	
 order	
 to	
 reduce	
 the	
 complexity	
 of	

the	
 algorithm	
 results	
 in	
 what	
 we	
 define	
 as	
 a	
 limited-­‐range	
 function,	
 because,	
 as	
 the	
 name	

	
 2	

suggests,	
 we	
 confine	
 the	
 effects	
 of	
 each	
 input	
 element	
 to	
 a	
 limited	
 set	
 of	
 output	
 elements	

that	
 fall	
 within	
 its	
 range.	

Typically,	
 the	
 input	
 data	
 to	
 these	
 applications	
 are	
 irregularly	
 distributed	
 and	
 do	
 not	

follow	
 any	
 uniform	
 distribution	
 pattern,	
 and	
 that	
 may	
 be	
 a	
 result	
 of	
 the	
 way	
 these	
 input	

elements	
 are	
 collected	
 (e.g.,	
 samples	
 collected	
 by	
 an	
 MRI	
 scanner),	
 or	
 simply	
 the	
 natural	

distribution	
 of	
 these	
 elements	
 in	
 their	
 medium	
 (e.g.,	
 atom	
 cloud	
 in	
 space).	
 On	
 the	
 other	

hand,	
 when	
 simulating	
 or	
 processing	
 these	
 input	
 elements	
 we	
 often	
 wish	
 to	
 compute	
 their	

effects	
 on	
 a	
 regularly	
 structured	
 output	
 set	
 (e.g.,	
 the	
 electric	
 field	
 at	
 every	
 point	
 in	
 a	
 regular	

grid)	
 where	
 the	
 output	
 data	
 set	
 is	
 much	
 larger	
 than	
 the	
 input	
 data	
 set.	
 These	
 properties	
 are	

true	
 for	
 all	
 of	
 the	
 applications	
 we	
 analyze	
 in	
 this	
 work,	
 except	
 for	
 one	
 where	
 the	
 input	

element	
 set	
 and	
 the	
 output	
 element	
 set	
 are	
 the	
 same,	
 and	
 both	
 are	
 irregular.	
 The	
 relative	

sizes	
 of	
 the	
 input	
 and	
 output,	
 the	
 regularity	
 of	
 the	
 output,	
 and	
 irregularity	
 of	
 the	
 input	
 are	

necessary	
 considerations	
 when	
 optimizing	
 the	
 computation	
 of	
 these	
 systems.	

	

1.1	
 Sequential	
 Implementation	

When	
 computing	
 limited-­‐range	
 functions	
 on	
 a	
 CPU,	
 the	
 program	
 iterates	
 over	
 all	
 the	

input	
 elements,	
 and	
 computes	
 the	
 contributions	
 of	
 each	
 input	
 onto	
 the	
 output	
 elements.	

Because	
 the	
 inputs	
 are	
 not	
 ordered	
 in	
 any	
 uniform	
 way,	
 their	
 location	
 in	
 the	
 space	
 cannot	

be	
 inferred	
 or	
 computed.	
 Instead,	
 each	
 input	
 element	
 holds	
 its	
 own	
 coordinates	
 explicitly.	

On	
 the	
 other	
 hand,	
 if	
 the	
 output	
 is	
 a	
 regular	
 grid,	
 the	
 coordinates	
 of	
 every	
 output	
 point	
 can	

be	
 computed.	
 That	
 is	
 why	
 it	
 often	
 makes	
 more	
 sense	
 to	
 take	
 an	
 input	
 driven	
 approach	

rather	
 than	
 an	
 output	
 driven	
 one	
 when	
 computing	
 limited-­‐range	
 functions.	
 Based	
 on	
 the	

input’s	
 coordinates,	
 a	
 neighborhood	
 is	
 determined	
 by	
 computing	
 a	
 sphere	
 centered	
 at	
 the	

	
 3	

input’s	
 coordinates	
 with	
 a	
 radius	
 equal	
 to	
 the	
 cutoff	
 distance.	
 Every	
 output	
 element	
 that	

intercepts	
 this	
 neighborhood	
 region	
 is	
 therefore	
 a	
 neighbor	
 of	
 the	
 input	
 element	
 and	
 is	

contributed	
 to	
 by	
 this	
 element.	
 Figure	
 1	
 shows	
 a	
 two-­‐dimensional	
 example	
 of	
 a	

neighborhood	
 around	
 one	
 of	
 the	
 input	
 elements.	
 Since	
 the	
 neighboring	
 output	
 to	
 a	
 given	

input	
 point	
 can	
 be	
 predetermined,	
 it	
 is	
 unnecessary	
 to	
 visit	
 any	
 output	
 elements	
 that	
 fall	

outside	
 of	
 the	
 neighboring	
 region.	
 Multiple	
 input	
 elements	
 may	
 contribute	
 to	
 the	
 same	

output	
 point,	
 as	
 shown	
 in	
 Figure	
 2;	
 however,	
 since	
 the	
 processing	
 of	
 input	
 elements	
 is	
 done	

sequentially,	
 no	
 update	
 conflicts	
 occur.	

	

Figure	
 1.	
 Depiction	
 of	
 sequential	
 execution	
 of	
 limited-­‐range	
 functions	

1.2	
 Parallel	
 Implementation	

Limited-­‐range	
 functions	
 are	
 inherently	
 parallel.	
 Every	
 input	
 element	
 computes	
 its	

contributions	
 to	
 the	
 output	
 independently	
 from	
 other	
 input	
 points.	
 Similarly,	
 every	
 output	

point	
 can	
 be	
 computed	
 independently	
 of	
 all	
 other	
 output	
 points.	
 However,	
 several	
 factors	

can	
 hinder	
 their	
 performance	
 on	
 parallel	
 architectures.	
 For	
 instance,	
 if	
 we	
 were	
 to	
 naively	

port	
 the	
 input-­‐driven	
 sequential	
 algorithm	
 to	
 a	
 parallel	
 execution	
 model,	
 one	
 of	
 the	
 biggest	

problems	
 we	
 face	
 is	
 write	
 contention	
 by	
 input	
 elements	
 onto	
 the	
 output.	
 Specifically,	
 if	
 all	

input	
 elements	
 are	
 processed	
 in	
 parallel,	
 inputs	
 attempting	
 to	
 update	
 the	
 same	
 output	

	
 4	

element	
 may	
 suffer	
 from	
 data	
 races,	
 leading	
 to	
 incorrect	
 results.	
 The	
 two	
 input	
 elements	

highlighted	
 in	
 Figure	
 2	
 may	
 suffer	
 from	
 a	
 data	
 race	
 if	
 they	
 both	
 attempt	
 to	
 update	
 their	

shared	
 output	
 simultaneously	
 (contention	
 shown	
 in	
 red).	
 Since	
 updating	
 an	
 element	

requires	
 multiple	
 instructions	
 (read,	
 modify,	
 write),	
 data	
 races	
 occur	
 when	
 the	
 update	
 	

instructions	
 of	
 one	
 processing	
 thread	
 are	
 interleaved	
 with	
 the	
 update	
 instructions	
 of	

another	
 thread,	
 causing	
 one	
 of	
 the	
 threads’	
 updates	
 to	
 be	
 lost.	
 One	
 way	
 to	
 avoid	
 data	
 races	

is	
 to	
 make	
 updates	
 atomic,	
 that	
 is,	
 guarantee	
 that	
 the	
 three	
 instructions	
 from	
 one	
 thread	

cannot	
 be	
 interrupted,	
 and	
 that	
 a	
 processing	
 thread	
 cannot	
 start	
 updating	
 an	
 element	
 until	

another	
 thread	
 that	
 is	
 already	
 in	
 the	
 process	
 of	
 updating	
 that	
 element	
 has	
 finished.	

However,	
 ensuring	
 this	
 synchronization	
 is	
 costly	
 and	
 can	
 deteriorate	
 the	
 computing	

performance,	
 especially	
 when	
 several	
 threads	
 try	
 to	
 simultaneously	
 update	
 the	
 same	

element,	
 since	
 atomicity	
 causes	
 threads’	
 updates	
 to	
 be	
 serialized.	

	

Figure	
 2.	
 Parallel	
 implementation	
 of	
 the	
 scatter	
 approach	

Another	
 way	
 to	
 avoid	
 data	
 races	
 is	
 to	
 privatize	
 each	
 output	
 to	
 a	
 single	
 writer:	

instead	
 of	
 having	
 each	
 thread	
 compute	
 the	
 contributions	
 of	
 an	
 input	
 element	
 onto	
 all	
 the	

neighboring	
 output	
 elements,	
 we	
 let	
 each	
 thread	
 compute	
 exclusively	
 the	
 value	
 of	
 an	

output	
 element	
 by	
 calculating	
 the	
 contributions	
 of	
 its	
 neighboring	
 input	
 elements.	
 The	

	
 5	

definition	
 of	
 the	
 neighborhood	
 is	
 the	
 same	
 for	
 the	
 input-­‐driven	
 approach	
 as	
 well	
 that	
 the	

output-­‐driven	
 approach,	
 since	
 the	
 cutoff	
 distance	
 is	
 the	
 same	
 whether	
 seen	
 from	
 point	
 A	
 to	

point	
 B	
 or	
 B	
 to	
 A.	
 	
 By	
 privatizing	
 the	
 output	
 among	
 the	
 threads,	
 multiple	
 output	
 may	
 end	
 up	

reading	
 the	
 same	
 input	
 elements	
 (Figure	
 3);	
 however,	
 since	
 read	
 accesses	
 do	
 not	
 modify	

the	
 input	
 elements’	
 values,	
 no	
 synchronization	
 is	
 needed.	
 This	
 output-­‐driven	
 approach	
 is	

called	
 a	
 “Gather”	
 approach	
 whereas	
 the	
 input-­‐driven	
 one	
 is	
 called	
 a	
 “Scatter”	
 approach.	
 The	

names	
 are	
 symbolic	
 of	
 the	
 methods	
 of	
 computation:	
 gather	
 is	
 a	
 collection	
 of	
 multiple	
 input	

contributions	
 onto	
 one	
 output	
 element,	
 whereas	
 scatter	
 takes	
 one	
 input	
 and	
 generates	
 its	

contribution	
 onto	
 multiple	
 outputs.	

	

Figure	
 3.	
 Parallel	
 implementation	
 of	
 the	
 gather	
 approach	

One	
 difficulty	
 that	
 arises	
 with	
 the	
 gather	
 approach	
 is	
 that,	
 as	
 we	
 mentioned	
 earlier	

in	
 this	
 chapter,	
 input	
 elements	
 are	
 typically	
 unstructured,	
 and	
 need	
 to	
 explicitly	
 maintain	

their	
 coordinate	
 information.	
 As	
 a	
 result,	
 every	
 output	
 element	
 has	
 to	
 iterate	
 over	
 all	
 the	

input	
 elements	
 and	
 determine	
 for	
 each	
 whether	
 they	
 fall	
 within	
 its	
 cutoff	
 distance	
 before	

computing	
 their	
 contributions,	
 as	
 seen	
 in	
 Figure	
 4.	
 Having	
 to	
 evaluate	
 all	
 the	
 input	

elements	
 negates	
 the	
 benefits	
 of	
 introducing	
 a	
 cutoff	
 in	
 the	
 first	
 place,	
 as	
 the	
 resulting	

algorithm	
 once	
 again	
 becomes	
 O(N2).	

	
 6	

	

Figure	
 4.	
 Side	
 effects	
 of	
 the	
 gather	
 approach	
 without	
 binning	

	

1.3	
 Parallel	
 Implementation	
 with	
 Binning	

Binning	
 is	
 one	
 technique	
 we	
 can	
 use	
 to	
 reduce	
 the	
 complexity	
 of	
 a	
 gather	
 algorithm	

from	
 O(N2)	
 back	
 to	
 O(N).	
 A	
 bin	
 is	
 a	
 container	
 corresponding	
 to	
 a	
 sub-­‐region	
 of	
 the	
 total	

space	
 containing	
 all	
 of	
 the	
 input	
 elements	
 that	
 fall	
 within	
 this	
 space.	
 These	
 containers	
 have	

known	
 characteristics,	
 such	
 as	
 the	
 size	
 of	
 the	
 sub-­‐regions	
 they	
 cover	
 and	
 their	
 element	

capacity,	
 and	
 this	
 makes	
 them	
 easier	
 to	
 access	
 than	
 individual	
 input	
 elements.	
 We	
 enable	

easy	
 access	
 to	
 input	
 elements	
 by	
 placing	
 them	
 within	
 the	
 bins.	
 Instead	
 of	
 each	
 output	

element	
 having	
 to	
 traverse	
 the	
 array	
 of	
 all	
 the	
 input	
 elements,	
 it	
 only	
 needs	
 to	
 access	
 the	

bins	
 that	
 fall	
 within	
 its	
 cutoff	
 to	
 get	
 to	
 the	
 neighboring	
 input	
 elements.	
 Performing	
 binning	

on	
 the	
 input	
 data	
 reduces	
 the	
 complexity	
 of	
 the	
 computation	
 from	
 O(N2)	
 back	
 to	
 O(N).	

Figure	
 5	
 depicts	
 the	
 execution	
 of	
 the	
 gather	
 approach	
 with	
 binning.	
 Note	
 that	
 some	

elements	
 that	
 fall	
 within	
 a	
 neighboring	
 bin	
 may	
 not	
 themselves	
 be	
 neighbors	
 of	
 the	
 output	

element,	
 so	
 it	
 is	
 still	
 necessary	
 to	
 calculate	
 their	
 distance	
 from	
 the	
 output	
 before	
 computing	

their	
 contribution.	
 In	
 fact	
 binning	
 cannot	
 completely	
 prevent	
 an	
 output	
 from	
 reading	
 input	

	
 7	

elements	
 that	
 are	
 outside	
 of	
 its	
 cutoff	
 region,	
 but	
 it	
 can	
 reduce	
 the	
 number	
 of	
 these	

occurrences	
 significantly.	

One	
 simple	
 way	
 to	
 make	
 all	
 the	
 bins	
 easily	
 accessible	
 is	
 to	
 make	
 them	
 all	
 identical.	

That	
 includes	
 making	
 all	
 the	
 bins	
 represent	
 an	
 equal	
 portion	
 of	
 the	
 space	
 (size),	
 as	
 well	
 as	

making	
 each	
 bin	
 contain	
 the	
 same	
 number	
 of	
 elements	
 (depth).	
 By	
 doing	
 so,	
 the	
 starting	

index	
 of	
 every	
 bin	
 within	
 the	
 data	
 structure	
 containing	
 the	
 bins	
 can	
 be	
 computed	
 using	
 the	

index	
 of	
 the	
 sub-­‐region	
 that	
 bin	
 represents	
 and	
 the	
 capacity	
 (or	
 depth)	
 of	
 each	
 bin.	

	

Figure	
 5.	
 Gather	
 implementation	
 with	
 binning	

Assigning	
 an	
 equal	
 portion	
 of	
 the	
 space	
 to	
 each	
 bin	
 can	
 be	
 achieved	
 (assuming	
 a	

regular	
 space)	
 by	
 simply	
 dividing	
 the	
 total	
 region	
 evenly	
 among	
 all	
 the	
 bins.	
 Guaranteeing	

that	
 each	
 bin	
 contains	
 the	
 same	
 number	
 of	
 elements,	
 on	
 the	
 other	
 hand,	
 is	
 a	
 more	

challenging	
 task,	
 since	
 the	
 number	
 of	
 elements	
 that	
 go	
 into	
 a	
 bin	
 is	
 dependent	
 on	
 the	
 input	

data,	
 and	
 can	
 vary	
 from	
 one	
 dataset	
 to	
 another.	
 One	
 way	
 to	
 achieve	
 uniform	
 bin	
 capacity	
 is	

to	
 make	
 every	
 bin	
 contain	
 as	
 many	
 elements	
 as	
 the	
 largest	
 bin.	
 In	
 other	
 words,	
 we	

determine	
 the	
 maximum	
 capacity	
 required	
 by	
 any	
 bin,	
 and	
 make	
 the	
 capacity	
 of	
 all	
 the	
 bins	

be	
 equal	
 to	
 that	
 maximum.	
 In	
 a	
 situation	
 where	
 the	
 elements	
 are	
 evenly	
 distributed	
 in	
 the	

space,	
 and	
 every	
 sub-­‐region	
 contains	
 the	
 same	
 number	
 of	
 elements,	
 the	
 maximum	
 capacity	

	
 8	

will	
 be	
 the	
 same	
 as	
 the	
 average	
 capacity.	
 Figure	
 6	
 is	
 an	
 example	
 of	
 a	
 uniformly	
 distributed	

input	
 in	
 1-­‐D	
 space.	
 The	
 integer	
 shown	
 for	
 each	
 element	
 in	
 the	
 input	
 array	
 corresponds	
 to	

the	
 bin	
 that	
 element	
 belongs	
 to.	
 As	
 we	
 can	
 see,	
 every	
 bin	
 contains	
 exactly	
 two	
 input	

elements,	
 which	
 makes	
 it	
 easy	
 to	
 achieve	
 uniform	
 bin	
 capacity.	
 However,	
 as	
 soon	
 as	
 the	

number	
 of	
 elements	
 in	
 each	
 bin	
 starts	
 to	
 vary,	
 maintaining	
 a	
 uniform	
 size	
 for	
 all	
 the	
 bins	

will	
 require	
 padding	
 for	
 the	
 bins	
 that	
 have	
 fewer	
 elements	
 than	
 the	
 maximum	
 capacity.	

Padding	
 is	
 the	
 use	
 of	
 mock	
 elements	
 in	
 every	
 bin	
 to	
 make	
 up	
 for	
 the	
 missing	
 elements	
 when	

the	
 number	
 of	
 real	
 elements	
 in	
 the	
 bin	
 is	
 smaller	
 than	
 the	
 maximum	
 bin	
 depth.	
 If	
 the	
 fifth	

element	
 in	
 the	
 array	
 from	
 Figure	
 6	
 were	
 a	
 3	
 rather	
 than	
 a	
 1	
 (shown	
 in	
 Figure	
 7),	
 the	
 bin	

depth	
 would	
 no	
 longer	
 be	
 uniform,	
 which	
 means	
 that	
 in	
 order	
 to	
 maintain	
 a	
 uniform	
 depth	

in	
 all	
 the	
 bins,	
 we	
 would	
 have	
 to	
 pad	
 all	
 the	
 bins	
 than	
 have	
 fewer	
 than	
 three	
 elements	
 in	

them	
 (shown	
 as	
 “X”	
 in	
 Figure	
 7).	
 In	
 essence,	
 padding	
 makes	
 all	
 the	
 bins	
 equal	
 in	
 capacity	
 at	

the	
 cost	
 of	
 increasing	
 the	
 memory	
 requirement	
 for	
 these	
 bins	
 by	
 introducing	
 dummy	

elements	
 into	
 the	
 bin	
 array.	
 These	
 dummy	
 elements	
 are	
 not	
 computed	
 for	
 when	
 an	
 output	

reads	
 a	
 bin,	
 since	
 they	
 do	
 not	
 represent	
 real	
 input	
 elements.	

	

Figure	
 6.	
 Example	
 of	
 regular	
 binning	
 with	
 uniform	
 distribution	

Regular-­‐sized	
 binning	
 has	
 a	
 space	
 complexity	
 O(CB),	
 where	
 C	
 is	
 the	
 capacity	
 of	

every	
 bin	
 and	
 B	
 is	
 the	
 total	
 number	
 of	
 bins.	
 Increasing	
 the	
 maximum	
 capacity	
 by	
 1	

	
 9	

increases	
 the	
 amount	
 of	
 space	
 needed	
 for	
 the	
 bin	
 data	
 structure	
 by	
 B	
 elements.	
 This	

becomes	
 increasingly	
 expensive	
 as	
 the	
 disparity	
 between	
 the	
 average	
 capacity	
 and	

maximum	
 capacity	
 increases	
 (Figure	
 7).	
 When	
 B	
 and	
 C	
 both	
 become	
 very	
 large,	
 the	
 strain	

on	
 the	
 memory	
 due	
 to	
 binning	
 may	
 become	
 the	
 limiting	
 and	
 sometimes	
 disabling	
 factor	
 in	

performing	
 the	
 computation.	
 We	
 will	
 demonstrate	
 such	
 cases	
 in	
 our	
 benchmarks.	
 The	

motivation	
 of	
 this	
 work	
 is	
 to	
 come	
 up	
 with	
 a	
 solution	
 that	
 makes	
 binning	
 a	
 feasible	
 solution	

even	
 for	
 highly	
 unbalanced	
 problems.	

	

Figure	
 7.	
 Example	
 of	
 regular	
 binning	
 with	
 non-­‐uniform	
 distribution	

	

1.4	
 Parallel	
 Implementation	
 with	
 Compact	
 Binning	

In	
 this	
 work,	
 we	
 propose	
 compact	
 binning,	
 a	
 method	
 of	
 performing	
 binning	
 with	
 a	

space	
 complexity	
 of	
 O(N),	
 where	
 N	
 is	
 the	
 number	
 of	
 input	
 elements,	
 independently	
 of	
 the	

number	
 of	
 bins	
 and	
 the	
 capacity	
 of	
 each	
 bin.	
 The	
 main	
 idea	
 behind	
 compact	
 binning	
 is	
 to	

allow	
 each	
 bin	
 to	
 have	
 its	
 own	
 bin	
 depth	
 regardless	
 of	
 all	
 the	
 other	
 bins.	
 As	
 a	
 result,	
 we	

eliminate	
 the	
 need	
 for	
 padding,	
 and	
 the	
 size	
 of	
 the	
 bin	
 data	
 structure	
 becomes	
 only	
 as	
 large	

as	
 the	
 number	
 of	
 input	
 elements	
 (Figure	
 8).	
 The	
 variable	
 bin	
 depth	
 and	
 elimination	
 of	

padding	
 come	
 at	
 the	
 expense	
 of	
 more	
 complicated	
 access	
 methods	
 to	
 these	
 bin.	
 Since	
 the	

size	
 of	
 each	
 bin	
 is	
 independent	
 of	
 all	
 the	
 other	
 bins,	
 accessing	
 a	
 bin	
 can	
 no	
 longer	
 be	

	
 10	

computed	
 as	
 a	
 function	
 of	
 the	
 bin	
 index	
 and	
 the	
 bin	
 capacity.	
 Therefore,	
 additional	

overhead	
 is	
 incurred	
 in	
 trying	
 to	
 determine	
 the	
 starting	
 offset	
 of	
 each	
 bin.	
 The	
 added	

overhead	
 stems	
 from	
 the	
 need	
 to	
 pre-­‐compute	
 the	
 starting	
 index	
 of	
 every	
 bin	
 and	
 store	
 it	
 in	

an	
 array	
 which	
 will	
 then	
 be	
 used	
 as	
 a	
 look-­‐up	
 table	
 when	
 trying	
 to	
 access	
 the	
 bins	
 during	

the	
 limited-­‐range	
 function	
 computation.	

	

Figure	
 8.	
 Example	
 of	
 compact	
 binning	
 using	
 the	
 input	
 array	
 from	
 Figure	
 7	

In	
 reality,	
 when	
 the	
 input	
 data	
 is	
 highly	
 non-­‐uniform,	
 it	
 is	
 advantageous	
 to	
 partition	

the	
 input	
 across	
 multiple	
 data	
 structures.	
 In	
 the	
 case	
 of	
 regular	
 binning,	
 since	
 the	
 space	

requirement	
 is	
 a	
 factor	
 of	
 the	
 number	
 of	
 bins	
 and	
 the	
 capacity	
 of	
 each	
 bin,	
 programmers	

often	
 place	
 a	
 cap	
 on	
 the	
 bin	
 capacity	
 to	
 reduce	
 the	
 size	
 of	
 the	
 bin	
 array.	
 Bins	
 that	
 exceed	

this	
 cap	
 size	
 “spill	
 over”	
 their	
 excess	
 to	
 another	
 data	
 structure.	
 Bins	
 that	
 have	
 fewer	

elements	
 than	
 the	
 cap	
 are	
 still	
 padded	
 to	
 achieve	
 regularity.	
 In	
 this	
 situation,	
 the	
 cap	
 size	
 is	

chosen	
 to	
 maximize	
 the	
 number	
 of	
 elements	
 that	
 get	
 placed	
 in	
 bins,	
 while	
 simultaneously	

balancing	
 the	
 amount	
 of	
 padding	
 required.	
 However,	
 when	
 the	
 variance	
 from	
 the	
 average	

bin	
 depth	
 becomes	
 too	
 large,	
 there	
 may	
 no	
 longer	
 be	
 a	
 bin	
 depth	
 that	
 maximizes	
 the	

number	
 of	
 input	
 elements	
 in	
 the	
 bins	
 without	
 incurring	
 a	
 large	
 overhead.	

	
 11	

Though	
 padding	
 is	
 not	
 a	
 concern	
 for	
 compact	
 binning,	
 partitioning	
 the	
 input	
 data	

across	
 the	
 bins	
 and	
 the	
 spill-­‐over	
 array	
 can	
 in	
 fact	
 improve	
 the	
 overall	
 performance	
 due	
 to	

better	
 load	
 balance	
 among	
 bins.	
 In	
 Chapter	
 5,	
 we	
 discuss	
 a	
 method	
 for	
 partitioning	
 the	

input	
 data	
 and	
 examine	
 how	
 varying	
 the	
 cap	
 value	
 affects	
 the	
 execution	
 in	
 the	
 regular	
 and	

compact	
 binning	
 cases.	

The	
 remainder	
 of	
 this	
 work	
 will	
 be	
 dedicated	
 to	
 comparing	
 regular	
 and	
 compact	

binning	
 in	
 the	
 context	
 of	
 limited-­‐range	
 function	
 applications.	
 We	
 will	
 discuss	
 the	
 different	

methods	
 of	
 implementing	
 each	
 type	
 of	
 binning	
 and	
 will	
 evaluate	
 their	
 effect	
 on	
 four	

different	
 applications	
 each	
 with	
 a	
 different	
 input	
 distribution	
 pattern:	
 MRI	
 gridding,	
 cutoff	

Coulombic	
 potential,	
 Blinn’s	
 blob,	
 and	
 N-­‐body	
 simulation.	
 All	
 except	
 for	
 the	
 last	
 application	

have	
 non-­‐uniform	
 input	
 data,	
 with	
 varying	
 degrees	
 of	
 non-­‐uniformity,	
 and	
 a	
 uniform	

output	
 grid.	
 In	
 the	
 case	
 of	
 N-­‐body,	
 the	
 input	
 data	
 set	
 is	
 also	
 the	
 output	
 data	
 set,	
 and	

therefore	
 both	
 are	
 non-­‐uniformly	
 distributed	
 within	
 the	
 space;	
 however,	
 we	
 will	

demonstrate	
 how	
 our	
 technique	
 of	
 compact	
 binning	
 can	
 still	
 applied	
 to	
 this	
 application	

without	
 hurting	
 its	
 performance	
 on	
 GPUs.	

We	
 will	
 not,	
 however,	
 discuss	
 in	
 this	
 work	
 when	
 to	
 use	
 cutoff	
 and	
 how	
 to	
 determine	

an	
 appropriate	
 cutoff	
 distance,	
 since	
 cutoff	
 is	
 a	
 domain	
 level	
 optimization	
 and	
 not	
 a	

programming	
 optimization.	
 In	
 other	
 words,	
 cutoff	
 is	
 a	
 property	
 of	
 the	
 application’s	
 domain	

and	
 is	
 introduced	
 as	
 an	
 optimization	
 to	
 the	
 computation	
 only	
 when	
 some	
 loss	
 of	
 accuracy	

in	
 the	
 output	
 can	
 be	
 tolerated.	
 If	
 no	
 loss	
 of	
 accuracy	
 can	
 be	
 tolerated	
 by	
 the	
 application,	
 the	

programmer	
 cannot	
 choose	
 to	
 introduce	
 a	
 cutoff	
 as	
 a	
 programming-­‐level	
 optimization.	
 For	

that	
 reason,	
 we	
 will	
 be	
 comparing	
 the	
 use	
 of	
 regular	
 and	
 compact	
 binning	
 assuming	
 that	

the	
 application	
 allows	
 the	
 use	
 of	
 a	
 limited-­‐range	
 function.	

	
 12	

The	
 remainder	
 of	
 this	
 work	
 will	
 be	
 organized	
 as	
 follows.	
 Chapter	
 2	
 will	
 describe	

GPUs,	
 the	
 architecture	
 on	
 which	
 this	
 work	
 was	
 conducted.	
 Chapter	
 3	
 will	
 describe	
 the	
 four	

applications	
 used	
 for	
 the	
 analysis	
 of	
 this	
 work.	
 Chapter	
 4	
 will	
 discuss	
 the	
 trade-­‐offs	

between	
 regular	
 and	
 compact	
 binning.	
 Chapter	
 5	
 will	
 discuss	
 partitioning	
 as	
 an	
 orthogonal	

optimization	
 to	
 binning.	
 Chapters	
 6	
 will	
 discuss	
 the	
 similarities	
 between	
 limited	
 range	

functions	
 and	
 the	
 different	
 representations	
 of	
 sparse	
 matrices	
 in	
 the	
 linear	
 algebra	
 domain,	

and	
 Chapter	
 7	
 will	
 conclude	
 the	
 work.	

	
 13	

CHAPTER	
 2	

THE	
 GPU	
 ARCHITECTURE	

As	
 shown	
 in	
 Chapter	
 1,	
 limited-­‐range	
 function	
 applications	
 are	
 inherently	
 parallel	

since	
 the	
 computation	
 of	
 each	
 input’s	
 contributions	
 to	
 the	
 output	
 set	
 is	
 independent	
 from	

all	
 other	
 input	
 points,	
 and	
 similarly,	
 the	
 computation	
 of	
 each	
 output	
 element	
 based	
 on	
 the	

inputs’	
 contributions	
 is	
 independent	
 from	
 all	
 other	
 output	
 points.	
 The	
 amount	
 of	

parallelism	
 in	
 these	
 computations	
 is	
 on	
 the	
 order	
 of	
 the	
 number	
 of	
 input	
 elements	
 for	
 the	

scatter	
 approach	
 and	
 the	
 number	
 of	
 output	
 elements	
 for	
 the	
 gather	
 approach.	
 This	
 large	

amount	
 of	
 parallelism	
 makes	
 limited-­‐range	
 functions	
 a	
 good	
 fit	
 for	
 massively	
 parallel	

architectures	
 and	
 though	
 the	
 techniques	
 we	
 describe	
 in	
 this	
 work	
 can	
 be	
 applied	
 to	
 any	

parallel	
 architecture,	
 they	
 are	
 best	
 suited	
 for	
 these	
 kinds	
 of	
 architectures	
 that	
 execute	

many	
 fine-­‐grained	
 threads	
 simultaneously.	
 The	
 architecture	
 we focus on is a graphics

processing unit (GPU), more specifically, the NVIDIA GTX280 GPU. In this chapter, we will

describe the details of the architecture and the programming model as relevant to this work. Full

details on the GPU devices and their programming model can be found in the Programming

Guide published by NVIDIA [1].

2.1 CUDA Programming Model

Compute Unified Device Architecture (CUDA) is the programming language used to

program NVIDIA GPUs. CUDA is based on the C programming language, with added

constructs to explicitly describe parallelism. The explicit parallelism constructs are used to

specify how a function is executed on the GPU. A function that runs on the GPU is called a

kernel. The kernel is launched from the host (i.e., the CPU), with a specified number of threads,

	
 14	

all of which execute the same kernel code. GPU threads are lightweight, and a single kernel

typically invokes hundreds or thousands of threads that are scheduled onto the GPU and

executed as computing resources become available. Figure 9 shows the organization of the

various processing elements. Threads are grouped in blocks, which in turn are grouped in a grid.

A grid therefore is the entire set of all processing threads that carry out the execution of a kernel.

Blocks within a grid have two-dimensional indices (x and y), which are used to determine the

section of the work that each block is responsible for. Similarly, every block is made of threads

with three-dimensional indices (x, y, and z), for determining which part of the work within the

block every thread computes. GPUs support single program multiple data (SPMD) computation

models: every block can execute a different path through the kernel code (paths are determined

by conditional branches) independently of all the other blocks. Therefore, even though all the

blocks execute the same kernel, different blocks may execute different sets of instructions within

the kernel. Threads in each block are further grouped into warps of 32 threads, where a warp is

the atomic vector unit of execution. All threads within a warp execute in the single instruction

multiple data (SIMD) computation model, which means that all the threads execute the same set

of instructions of a kernel; however, different warps with the same block are free to execute

different paths within the kernel. In the event that threads within a warp need to execute different

paths of the kernel based on their data values (this event is called thread divergence), all the

threads in the warp have to execute all the paths taken by any of the threads that constitute that

warp, but only commit the results of the path that is relevant to them. Thread divergence can be

costly, first because the different paths are serialized (example shown in Figure 10), and

secondly because it results in threads performing unnecessary computation, thus occupying

computing resources only to discard the results in the end.

	
 15	

Though all threads within a warp share the same state (e.g., program counter, execution

schedule, etc.), each thread maintains its own set of private registers for computing its data

(shown in Figure 9). Registers are the fastest type of memory available to threads. In addition to

registers, all threads within a block have access to a shared memory space that can be used to

read and write common data. This space is managed explicitly in software (by declaring a

variable or array with the __shared__ keyword appended to its data type) and is commonly used

to store shared data among threads locally to avoid replicating accesses to the main memory. At

the highest level, and with the highest access latency, is global memory, which is viewable by all

	

Figure	
 9.	
 CUDA	
 programming	
 model

	

Figure	
 10.	
 Effects	
 of	
 thread	
 divergence	
 on	
 warp	
 execution

	
 16	

the threads across blocks, as well as the host processor. Constant memory is a subspace within

global memory that is read-only, and is cached closer to the SMs for faster re-access to the data

by the threads.

All threads within a block can be synchronized using the __syncthreads() function.

Synchronization enables the use of the shared memory by guaranteeing that all threads have

finished writing data into it before it is subsequently read, and conversely, data in shared

memory is read by all threads that need it before it is overwritten by others. In the general case,

however, threads across blocks cannot be synchronized except by ending the kernel execution.

The host processor (typically the CPU) controls the computation on the GPU (also

referred to as the device). The host launches the kernels to be executed on the GPU with the

corresponding grid and block configurations. Kernel launches are asynchronous, meaning that

once the host launches a kernel, it can continue executing its own workload without waiting for

the GPU kernel to complete execution. The kernel is synchronized once the data it computes on

the device is requested back on the host. Alternatively, the kernel can be made synchronous

using API calls provided by the language. In addition, because the GPU and CPU have different

memory address spaces, the CUDA language also provides APIs for dynamically allocating and

freeing memory on the device, as well as transferring data to and from the device (using DMA

transfers). These calls are usually synchronous, but their asynchronous equivalents are also

available.

2.2 GPU Architecture

As one would expect, there is a duality between the GPU’s hardware organization and the

programming model. Figure 11 shows a simplified diagram of the GTX 280 architecture. The

	
 17	

GTX 280 features 240 cores (called streaming processors or SPs). Each processor is a single-

instruction in-order processor with one floating point and integer arithmetic unit. Every eight SPs

are grouped into a simultaneous multiprocessor (SM), for a total of 30 SMs. All the SPs in an

SM share a single instruction fetch and decode unit, effectively making the SM an eight-wide

vector processor, with each SP processing one of the eight elements. Blocks are assigned to

single SMs for execution, and every SM can maintain contexts and execute up to eight blocks

simultaneously. Every warp within a block that is scheduled on an SM executes instructions for

its 32 threads in four consecutive cycles. Scheduling multiple blocks (and by association warps)

on every SM allows the GPU to hide the long latency of global memory accesses such that when

one warp makes an access to memory and has to wait for the request to return, another warp can

be executed in the mean time.

	

Figure	
 11.	
 GTX	
 280	
 architecture

Every SM is attached to its own shared memory, which has a separate address space from

the other shared memories and global memory. Shared memory is a scratchpad memory,

	
 18	

meaning that it is explicitly managed by software and is not guaranteed to be consistent with the

contents of global memory. Though multiple blocks may run on an SM simultaneously, each

block can only access its own equal portion of shared memory. The amount of shared memory

needed by each block can also determine how many blocks can be scheduled simultaneously on

an SM.

Global memory is a high-latency off-chip DRAM memory attached to the GPU and is

accessible by all the SMs. The DRAM technology makes read and write accesses into memory

very slow, so one way to improve the efficiency of such memory is to increase the amount of

data returned by each access, thus amortizing the latency [2]. This collection of data returned by

a single access is called a burst. In order to utilize the data returned in a given burst, GPUs

combine accesses of threads within a half-warp if those accesses are made to the same burst.

When all threads in a half-warp access data in the same burst, we call that a coalesced access

(Figure 12.a). If the requests are not coalesced (example in Figure 12.b), every thread will issue a

separate request and receive a full burst, of which it will only extract the data that it needs.

Performance can degrade significantly as a result of non-coalescing.

	

Figure	
 12.	
 Effects	
 of	
 coalescing	
 and	
 alignment	
 on	
 global	
 memory	
 accesses

The GTX 280 supports three burst sizes: 32 bytes, 64 bytes, and 128 bytes, corresponding

to 2-byte, 4-byte, and 8-byte data types respectively. Alignment is another factor that can affect

memory performance. Alignment occurs when the starting address of a memory request by a

	
 19	

half-warp coincides with the start of a burst. If the request does not start at the beginning of the

burst, the misalignment may cause the request to be split into multiples, thus wasting memory

bandwidth, increasing memory latency, and resulting in performance degradation (Figure 13).

Because each bin in compact binning is allowed to have an arbitrary size, misalignment

becomes a concern when accessing these bins. This motivated us to try and better understand the

effects of misalignment on the kernel’s performance. To that end, we wrote a micro benchmark

that simulates the accesses into regular bins that were initially aligned, and recorded the runtime

as we varied the amount of misalignment. Figure 13, shows the results of that simulation. As we

can see, misalignment increases the runtime by nearly 60% when threads load consecutive floats

from the bin array. The runtime improves slightly when the misalignment is 32 bytes since that

coincides with a 32-byte burst boundary. The effects of misalignment can be reduced if threads

load a float2 short vector type element from the array rather than a single float. Float4 vector

types also improve runtime compared to single float types but only in certain cases, and they fail

to outperform float2 accesses.

We used profiling counters that recorded the number of accesses made to each of the

three burst sizes to further explain the change due to misalignment, seen in Figure 13. Based on

the counters’ values, we have deduced the model shown in Figure 14. The model shown

corresponds to a half-warp loading 256 consecutive bytes. This corresponds to 4 separate load

instructions for float, two for float2, and one for float4 data types. Note that even though it only

takes one instruction to load 256 bytes of float4 data, it takes two memory accesses of the largest

burst size to satisfy the request. However, those two memory accesses are treated as a single unit

and cannot be scheduled separately.

	
 20	

	

Figure	
 13.	
 Effects	
 of	
 misalignment	
 on	
 float	
 and	
 float	
 vector	
 types	

	

Figure	
 14.	
 Memory	
 accesses	
 due	
 to	
 misalignment	

Misalignment had the greatest effect on single float types as it results in six memory

accesses of various burst sizes to load all 256 bytes. Furthermore, a misaligned access to an array

	
 21	

of floats causes the largest waste of burst data (everything that is not orange in the misaligned

float diagram), which inevitably reduces the effective memory bandwidth. Misaligned float2

accesses waste significantly less bandwidth, despite a slight increase in the number of accesses,

and that could explain the behavior in Figure 13. Misaligned float4 accesses are the most

efficient both in the number of added accesses and in the amount of wasted bandwidth; however,

they perform worse than float2. We believe this to be the result of scheduling since the three

accesses in the misaligned case have to be scheduled simultaneously, likely resulting in memory

bank conflicts (for a more thorough study of bank conflicts, please refer to [2]).

	
 22	

CHAPTER 3

DESCRIPTION OF BENCHMARK APPLICATIONS

In this chapter we will introduce the four benchmarks that we use to compare regular and

compact binning. We will use these benchmarks in Chapters 4 and 5 to provide quantitative

analysis for the different aspects of the comparison. The four benchmarks are: MRI

reconstruction gridding step, cutoff Coulombic potential, Blinn’s blob, and N-body simulation.

3.1 MRI Reconstruction

Magnetic resonance imaging (MRI) is a common, non-invasive technique used in

radiology to analyze the internal structure of the human body, and is used for a wide range of

applications where precise information is desired due to its image resolution compared to other

imaging techniques like computed tomography (CT) and x-ray. The scanner used for MRI data

acquisition collects samples in the frequency domain. An inverse fast Fourier transform (IFFT) is

then applied to the acquired data to transform it back to the image domain.

Because of the need to perform an FFT operation during reconstruction, traditional

acquisitions collected data along a Cartesian path with uniform spacing between data points. The

result, however, was a very slow acquisition that presented physical challenges to the patient,

who had to lie in the scanner for approximately 20 minutes without moving. More recently, MRI

acquisition has been performed on non-Cartesian paths, which saves both time and data [3].

Research has shown that fewer samples can be collected while still maintaining enough data to

reconstruct the image without quality degradation. The time and data saved at acquisition time,

however, come at the expense of added complexity and time needed to reconstruct the images.

There have been many efforts to speed up the reconstruction of non-Cartesian data. One such

	
 23	

effort involves treating the input data as a linear system and solving it using an iterative method

such as least-squares or conjugate gradient, as shown on the right-hand side of Figure 15. Wu et

al. implemented a GPU version of this approach [4]. Another approach is the gridding technique

shown on the left-hand side of Figure 15. As the name suggests, the idea behind gridding is to

map the non-Cartesian input data onto a Cartesian grid in the same domain (i.e., the frequency

domain), then proceed with IFFT as is done in the classical method. One motivation for using

gridding instead of the iterative method is that the former has O(N log N) complexity compared

to the O(N2) complexity of the iterative method. The trade-off comes in the slightly poorer

quality of the gridding image due to some noise being introduced by the gridding step itself.

	

Figure	
 15.	
 Reconstruction	
 techniques	
 for	
 non-­‐Cartesian	
 MR	
 sampling

At the heart of the gridding step is an application of limited-range function. Every input

point, also known as a sample point in the 3D frequency domain space, is mapped onto a 3D

Cartesian grid of the same space, using a Kaiser-Bessel function [5]. The Kaiser-Bessel function

is used to determine the weight of the contribution of a sample point onto a grid point, based on

the distance between the two. Because the weight of the contribution becomes insignificant

beyond a certain distance between the two points, a hard cutoff is imposed on the kernel beyond

which the contribution is considered to be zero. The cutoff distance for the Kaiser-Bessel

function is called the “kernel length.”

	
 24	

Figure 16 shows a sample acquisition trajectory. The acquisition starts in the center of the

space and moves outward in a conical shape with varying angles of the cone. One can see from

the figure that the data density is higher in the center than it is on the outside. Figure 17 is a plot

of the data density along the space. This better shows the large variation in data distribution

throughout the space. For a large data set like the one shown in Table 1, approximately 24

million sample points lie in the horizontal band shown at the bottom of the curve. The average

density of points in that region is approximately 4 sample points per 1 unit3 bin. The peak density

	

Figure	
 16.	
 Acquisition	
 trajectory	
 of	
 non-­‐Cartesian	
 MR	
 sampling	

	

Figure	
 17.	
 Sample	
 density	
 for	
 the	
 trajectory	
 shown	
 in	
 Figure	
 16	

	
 25	

in the middle is 391k points in a single bin, and decreases sharply moving away from the center.

It is very inefficient, and sometimes infeasible, to apply regular binning to this kind of data

distribution. Because the mean of the data density is too high and the variance too large, there is

no bin size that would map the majority of the input points to the GPU and minimize the amount

of spill-over data to the CPU without causing very large data bloats. In this situation, compact

binning is more than just an optimization technique; it is an enabling one. We will use the small

data set for comparison in Chapters 4 and 5 since it can be represented using regular binning if

the bin depth is capped at 9 samples per bin. Figure 18 shows the output of the small data set.

	

Figure	
 18.	
 Sample	
 reconstructed	
 MR	
 image

Table	
 1.	
 MRI	
 data	
 statistics	

	
 	
 Small	
 Large	

No.	
 of	
 Samples	
 2655910	
 30144488	

No.	
 of	
 Bins	
 16777216	
 191102976	

Min	
 Bin	
 Depth	
 0	
 0	

Max	
 Bin	
 Depth	
 11560	
 391536	

Avg	
 Bin	
 Depth	
 0.158305	
 0.07316	

StdDev	
 2.86096	
 28.861158	

	
 26	

3.2 Cutoff Coulombic Potential

A biomolecular modeling system seeks to simulate the interactions between atoms in a

medium. There are two types of interactions in such a system: the interactions among chains of

covalently bonded atoms (such as proteins) and the interactions between non-bonded atoms.

These interactions obey Newton’s second law of motion with the forces in the system generated

by Coulomb’s law of electrostatic interaction. Computing these simulations is computationally

expensive. It is on the order of O(N) for the covalently bonded atoms, and O(N2) for all the pairs

of unbonded atoms. Furthermore, because a truly continuous simulation is impossible to achieve,

we approximate the motion of atoms in the space by breaking down the simulation’s time

window into many consecutive discrete time steps. For each time step we compute the forces

exerted on all the atoms in the space, and based on those forces update the velocity and position

of each atom for the next time step. Depending on the duration of time being simulated and the

length of each time step, a full simulation’s runtime can be on the orders of hours, weeks, or

even years.

Another aspect of the biomolecular system that is useful for simulation and visual

rendering (example in Figure 19) is to determine the electrostatic potential map for that system.

The electrostatic potential map is a grid of equally spaced points, and the potential of each point

on the grid is calculated by accumulating the potential of each atom at that point. Atoms are

modeled as point charges with each atom i at position ri holding a fixed charge qi. The potential

of a map point at position r is computed using the following equation:

where ε0 is the dielectric constant of the medium, and s(r) is a unitless scaling factor between 0

and 1. When s(r) equals 1, the electrostatic potential for every output element is computed by

	
 27	

iterating over all the atoms in the space, resulting in an O(N2) algorithm. Hence, to improve the

algorithm’s complexity, s(r) is chosen in such a way to yield a cutoff distance rc beyond which

the contribution’s value is insignificant and can be approximated to zero. One choice for s(r) is

With this equation for s(r), the potential of an atom onto a map point diminishes gradually to 0 as

it approaches rc, the cutoff radius, and is zero beyond rc.

	

Figure	
 19.	
 Example	
 of	
 a	
 rendering	
 of	
 protein	
 cells	
 and	
 their	
 potential	
 map

When s(r) is less than 1, the computation pattern is effectively a limited-range function,

and can benefit from binning to maintain a computational complexity of O(N) when executed in

fine-grained parallelism. Because molecules have a fairly uniform density of about 1 atom per

10 Å3, regular binning works well for this computation. Rodrigues et al. [6] implemented a

highly optimized version of the electrostatic potential map computation for GPUs using regular

binning. By using regular binning they were able to control the alignment and coalescing of

memory accesses when reading bins into shared memory. In this work we will compare their

regular binning implementation with compact binning and demonstrate that even for well

distributed input data, compact binning can be a viable solution. Table 2 shows the statistics of

	
 28	

two input data sets for CP. For our experiments, we will use the large dataset. Compared to the

MRI dataset, the CP large data set has a much more uniform distribution (smaller standard

deviation).

Table	
 2.	
 Coulombic	
 potential	
 data	
 statistics	

	
 Small	
 Large	

No.	
 of	
 Atoms	
 5943	
 570348	

No.	
 of	
 Bins	
 4913	
 140608	

Min	
 Bin	
 Depth	
 0	
 0	

Max	
 Bin	
 Depth	
 12	
 14	

Avg	
 Bin	
 Depth	
 1.209648	
 4.056298	

StdDev	
 2.528611	
 3.342421	

3.3 Blinn’s Blob

The Blinn’s blob algorithm is very similar to the electrostatic potential map computation.

It too can be used for the image rendering of a point cloud [7], with an example shown in Figure

20. Blinn’s blob creates a density map by accumulating the density contributions of all atoms to

a particular point on the grid. The contributions depend on the distance of the atom from the grid

point, the radius of the atom as well as the blobbiness that is desired. In addition, because the

density function exponentially decreases with the increase in distance between the atom/grid

point pair, every atom only affects a small neighborhood of grid points, beyond which its

contributions are negligible and can be approximated to zero. Table 3 shows three example data

sets for Blinn’s blob. All three of these data sets exhibit a very sparse distribution of the input

elements in the space (average bin depth < 0.2), which means that in the case of regular binning,

the majority of the bins will only contain padding elements. As a result we expect to see a

noticeable improvement in performance and memory usage with the use of compact binning.

	
 29	

	

Figure	
 20.	
 Examples	
 of	
 Blinn's	
 blob	
 rendering	
 for	
 atom	
 clouds	

Table	
 3.	
 Blinn's	
 blob	
 data	
 statistics	

	
 Small	
 Large	
 Random	

No.	
 of	
 Atoms	
 1739	
 26318	
 500000	

No.	
 of	
 Bins	
 262144	
 1179648	
 23887872	

Min	
 Bin	
 Depth	
 0	
 0	
 0	

Max	
 Bin	
 Depth	
 360	
 3	
 3	

Avg	
 Bin	
 Depth	
 0.006634	
 0.02231	
 0.020931	

StdDev	
 0.708008	
 0.15885	
 0.144142	

3.4 N-Body Simulation

N-body simulations are common tools used to model astrophysical systems and their

evolution. Due to the very large number of elements and the long period of time for which these

system are simulated, good performance is critical for the feasibility of these simulations. The N-

body simulation, among other things, seeks to simulate the motions of objects, such as stars,

galaxies, and planets, through space based on the gravitational forces they exert on each other.

The objects are typically modeled as points in space with mass, position and velocity attributes,

and do not represent physical objects. Similar to the Coulombic potential, the motion over time is

simulated by computing the positions and velocities of all the objects for a given discrete time

step. The most direct and most accurate approach is the particle-particle simulation, which

computes the gravitational forces of every pair of objects, but its complexity grows quadratically

	
 30	

with the number of elements, and thus is computationally infeasible for large simulations.

Another method is the particle-mesh method (PM) which partitions the space into meshes for

which a fast Fourier transform is computed to solve Poisson’s equations, therefore reducing the

computational complexity to O(M log M), where M is the number of meshes. However meshes

have to be regular to satisfy the constraints of the FFT algorithm, and mapping the particles onto

the mesh introduces noise into the system, therefore sacrificing some accuracy in the final results.

A combination of PP and PM combines the benefits of both approaches [8]. If we

partition the total force on a particle as the sum of nearby forces and distant forces, we can use

the PP method to compute the nearby forces, where accuracy matters, and PM for the distant

forces where approximated results can be tolerated. In this setting, computing the PP forces

becomes an application of limited-range functions. N-body simulation is different from the other

three applications in that its output is not a regular grid. Since the quantities being computed are

the forces of the bodies among themselves, the input and output in fact consist of the same data

set. Input binning is still useful to reduce the number of elements each output object needs to

access; however, there is little to no locality to the output when every thread block is given an

equal number of output elements, because the output is non-uniformly distributed in space. For

that reason, data sharing in the shared memory is not applicable, and may in fact hurt

performance. Instead, every thread computing the position and velocity of a body reads its

relevant bins directly from global memory. This access pattern differs vastly from the other three,

which makes it less relevant for parts of the discussion in Chapters 4 and 5. However, since N-

body is the most general type of limited-range application, it is important to analyze how

different binning techniques affect its performance. The statistics of the input data for N-body, as

shown in Table 4, are vastly different from the other three in part because it is the only

	
 31	

application with as many inputs as outputs, and more inputs than number of bins. Figure 21 is a

visual representation of the simulation of the data set shown in Table 4 for a given time step.

	

Figure	
 21.	
 Example	
 of	
 an	
 N-­‐body	
 simulation	
 from	
 the	
 CUDA	
 SDK

Table	
 4.	
 N-­‐body	
 data	
 statistics	

	
 	
 Random	

No.	
 of	
 Bodies	
 131072	

No.	
 of	
 Bins	
 32768	

Min	
 Bin	
 Depth	
 0	

Max	
 Bin	
 Depth	
 99	

Avg	
 Bin	
 Depth	
 4	

StdDev	
 6.52	

	
 32	

CHAPTER 4

COMPARING REGULAR AND COMPACT BINNING

In this chapter we will compare regular binning and compact binning. We have discussed

in Chapter 1 how regular binning provides ease of access to the bins, and better control over

coalescing and alignment of memory accesses, at the cost of large memory requirements when

the bin densities vary. We have also explained how compact binning eliminates the overhead of

memory padding at the cost of creating and having to use an additional array for accessing the

bins. Furthermore, with compact binning, it is more difficult to maintain alignment when

accessing the data in the bins. In this chapter, we evaluate qualitatively and quantitatively both

binning approaches. We begin by explaining the algorithm for performing and using each

binning technique, then proceed to analyzing the differences.

4.1 Regular Binning Algorithm

Step1: Determining the size of the largest bin

Determining the size of the largest bin can be done either sequentially or in parallel. Either way,

a zero-initialized integer array for all the bins needs to be maintained, and as each input element

is visited and its bin index determined, the integer corresponding to that bin is incremented by 1.

When performed in parallel, generating the integer array (which is effectively a histogram) is

most simply done using atomic updates into the array. Once the histogram is generated, we use it

to determine the size of the largest bin, which can be done by using a reduction computation with

a max operator, and the final access to determine the max can be done using a reduction

computation with a max operator [9]. This step can be omitted if the bin size is known statically

(e.g., applications where the bin size does not change for different input data). Coulombic

	
 33	

potential is an example of such an application because the density of atoms in space is fairly

regular across data sets.

Step2: Binning the input elements

Once the maximum bin depth has been determined and the data structure allocated accordingly,

we can perform the actual distribution of input elements into the bins. This step can also be

performed sequentially or in parallel since it is not very computationally expensive. In order to

perform binning, we need to maintain another zero-initialized integer array of offsets into each

bin, which is used to determine the offset within the bin at which to place a given input element.

For each input element, we determine once again the bin it belongs to, place it at the current

offset within the bin, then increment the offset. If performed in parallel, binning can be achieved

by atomically incrementing the offset counter, and the effects of this atomicity are not too severe,

since the only contention is between elements trying to update the same bin, and all other bins

can be populated in parallel.

Step 3: Performing the limited-range function computation

In order to perform the computation of the limited-range function, the output grid is first divided

into tiles, where each tile is a subset of spatially local output elements. Each tile is assigned to a

thread block where every thread computes exclusively the result of one or more output elements

from that subset. The spatial locality of the output in a tile is important to maximize sharing of

input data among threads within the block. Figure 22 shows the pseudo code for the limited-

range computation. sharedLocalBin is an array in shared memory that is accessible by all

the threads within a block. In the code in Figure 22, each thread is shown to compute only one

output element and compute that output’s index based on the 2D blockIdx and 3D

threadIdx (both of which are CUDA constructs). Since every thread computes an output

	
 34	

element exclusively, the result can be accumulated in a local register (line 2).

Every output element is computed by a single thread exclusively, and that thread can

compute the value of that element locally (line 2). Every block iterates over all the bins that its

output tile intersects: zLo to zHi, yLo to yHi, and xLo to xHi are the 3D bounds of the region

intersected by a given tile. For each bin that is visited, all of its elements are loaded

cooperatively into shared memory by all the threads in the block. Note that a bin is visited if at

least one of the outputs within the block’s tile intersects that bin; however, that bin may fall

outside the cutoff region of other outputs in the tile. That is why it is still necessary to check

whether a given input point is within the cutoff distance of the output point before computing its

contribution to that output (line 15). Once all the bins and all the elements within them have been

visited, and their contributions added, each thread writes its privately computed output to the

global array that is the final result.

	

Figure	
 22.	
 Pseudo	
 code	
 for	
 parallel	
 limited	
 range	
 function	
 kernel	
 with	
 regular	
 bins

! 00 __shared__ inElem sharedBinCache[/*max size*/];
01 outputIdx index = computeOutputIndex(blockIdx, threadIdx);
02 outElem myOutElem = initOutElem(index);
03 int zLo = z0 – cutoff;
04 int zHi = z0 + blockDim.z + cutoff;
05 // compute yLo, yHi, xLo, xHi similarly
06 for (z: zLo ! zHi){
07 for(y: yLo ! yHi){
08 for(x: xLo ! xHi){
09 int count = binCount[z][y][x];
10 if(threadIdx < count){
11 localBinCache[threadIdx] = globalBinArray[z][y][x][threadIdx];
12 }
13 __syncthreads();
14 for(i: 0 ! count){
15 if(|localBinCache[i].coords – myOutElem.coords| < cutoff){
16 /*compute the contribution of this input onto the output*/
17 }
18 }
19 }
20 }
21 }
22 globalOutputGrid[index] = myOutElem;

	
 35	

BinCount in line 9 is the histogram generated in step 2 when performing the input binning and is

used to determine how many elements are in a given bin to avoid unnecessarily loading the

padding elements. Alternatively, we can load the entire content of the bin regardless of the

number of real elements within the bin, and as we traverse shared array of elements, break out of

the loop upon the first occurrence of a padding element (line 14). Effectively, the padding

elements behave as sentinels in this situation. There are advantages to both approaches. If the

number of actual elements in each bin is not much smaller than the maximum bin capacity,

loading the padded elements into shared memory will likely be less costly than reading the

binCount (which requires an extra global memory access). Alternatively, if the number of

elements per bin varies significantly, it may be more effective to only load the elements needed,

by first figuring out how many real elements there are in each bin. Figure 23 compares the two

alternatives for all four benchmarks. For each benchmark the runtime of the limited-function

execution is plotted for the sentinel checking method and the count method. For MRI, Blinn, and

CP, count always performs better than sentinel checking. This is likely an indication of a large

number of empty bins or bins with fewer than bin depth elements, which causes the sentinel

method to read more data than the count method, resulting in worse performance. N-body

(Figure 23.d), on the other hand, performs slightly better with sentinel checking up to a bin depth

of 10, after which count starts performing better. Overall, despite the additional access to global

memory to retrieve the size of each bin, checking the element count seems to perform better than

loading the entire bin into on-chip memory and checking for the sentinel locally.

	
 36	

	

Figure	
 23.	
 Comparing	
 the	
 runtime	
 of	
 count	
 vs.	
 sentinel	
 checking	
 for	
 varying	
 bin	
 depths

4.2 Compact Binning

Step 1: Determining the size of each input bin

This step is identical to step 1 of the regular binning algorithm. The purpose of this step in

compact binning, however, is slightly different: The histogram built in this step will be used to

determine the start of each bin rather than the max depth of the bins.

Step 2: Determining the start of every bin

Using the histogram generated in step 1, we can determine the start of every bin. The operation

that achieves this is called a prefix sum. The prefix sum computes, for every element at index i in

an array, the sum of all the elements from index 0 to index i-1 (the value at index 0 is zero).

Since every element in the array corresponds to the size of a bin, computing the starting offset of

	
 37	

a bin corresponds to the sum of the sizes of all the bins that precede it. Prefix sum (also known as

a scan operation), can be efficiently performed in parallel [10].

Step 3: Binning the input elements

This step is also similar to step 2 of the regular binning algorithm. The only difference is that the

starting offset of each bin has to be looked up from the array generated in the previous step, since

it cannot simply be computed, as is the case with regular binning. Just like in regular binning,

another array needs to be maintained that keeps a count of the number of elements that have

gone into a bin, to determine the position of every input element that was placed in the bin.

Despite the fact that bins have varying sizes, each bin can be populated in parallel with other bins

since the start of every bin can be independently known by reading the starting offset from the

array of bin offsets.

Step 4: Performing the limited-range function computation

In its simplest form, the computation of the limited-range function using compact bins does not

look much different from its regular equivalent. The only difference is the need to access the bin

offset array to determine the start and end of a bin, rather than computing its starting offset using

x, y, and z (lines 9, 10 and 12 in Figure 24). Furthermore, when loading the elements into shared

memory, the boundary test depends on the variable size of the bin rather than a predetermined

constant bin size (lines 11 and 15 in Figure 24).

	
 38	

	

Figure	
 24.	
 Pseudo	
 code	
 for	
 parallel	
 limited	
 range	
 function	
 kernel	
 with	
 the	
 compact	
 bins

4.3 Comparing Regular and Compact Binning

As mentioned previously, using either regular or compact bins involves a tradeoff.

Regular bins enable us to compute the starting offset of each bin rather than having to pre-

compute it and store it in an array for look-up during the computation. Furthermore, since the

bins have the same size, we can better control the layout of these bins in memory, thus ensuring

aligned accesses. However, the use of padding may sometimes result in a largely inflated bin

data structure, which can limit the size of the problem that can be computed by a single kernel. In

addition, because of padding, further checks need to be made to avoid computing unnecessarily

for those padding elements. One method discussed in Section 4.1 is to maintain an array of the

element count per bin as shown in Figure 22. An alternative method is to load the entire bin into

shared memory and check for a sentinel value signifying the end of the valid data in a bin. Either

!

00 __shared__ inElem sharedBinCache[/*max size*/];
01 outputIdx index = computeOutputIndex(blockIdx, threadIdx);
02 outElem myOutElem = initOutElem(index);
03 int zLo = z0 – cutoff;
04 int zHi = z0 + blockDim.z + cutoff;
05 // compute yLo, yHi, xLo, xHi similarly
06 for (z: zLo ! zHi){
07 for(y: yLo ! yHi){
08 for(x: 0 ! xLo ! xHi){
09 int start = binOffsetArray[z][y][x];
10 int end = binOffsetArray[z][y][x+1];
11 if(threadIdx < end-start){
12 localBinCache[threadIdx] = globalBinArray[start+threadIdx];
13 }
14 __syncthreads();
15 for(i: 0 ! end-start){
16 if(|localBinCache[i].coords – myOutElem.coords| < cutoff){
17 /*compute the contribution of this input onto the output*/
18 }
19 }
20 }
21 }
22 }
23 globalOutputGrid[index] = myOutElem;

	
 39	

method incurs a certain amount of overhead.

Compact binning, on the other hand, eliminates the need for padding, therefore

guaranteeing that all data loaded into shared memory is valid data that will be consumed by at

least one thread. Yet due to the variable size of the bins, we incur the overhead of needing to

look up the start and end indices of each bin, which requires additional accesses to global

memory. Another side effect of the variable size of the bins is the difficulty of controlling the

alignment of bins in memory. In the following subsections, we will evaluate the effects on

performance due to the binning overhead, the cost of the various element count methods and the

effects of misalignment.

4.3.1 Binning overhead

Computing the size of every bin as the first step of both the compact and the regular

binning incurs the same computation overhead. Both are O(N) computations, and both have the

same access pattern into the bin counters, based on the values of the inputs. Both also suffer to

the same extent from the serializing effects of atomic operations into the bin counter. The use of

these arrays differs for the two binning approaches. Regular binning uses this array to determine

the max bin depth using a reduction operation that takes O(log M) steps and O(M) comparisons

when performed in parallel (M is the number of output elements). On the other hand, the prefix

sum used in compact binning to determine the start of every bin takes twice as many steps and

performs twice as much computation. Note that this computation does not depend on the number

of input elements or their values, but only depends on the number of output elements. However,

even for the largest output of any dataset we have analyzed (i.e., the large MRI gridding dataset

in Table 1), the runtime is 96 ms and 136 ms for reduction and scan respectively, and the

	
 40	

difference of 40 ms constitutes less than 4% of the total runtime of the algorithm. The final

binning step also varies slightly for compact and regular binning. The compact implementation

requires a look-up of the bin’s starting index, which increases the number of memory requests in

comparison with the regular binning algorithm that computes the starting index. Overall, it takes

longer to perform compact binning than it does to perform regular binning, but as we will

demonstrate later on in the work, the difference is not large enough to negate the benefits of

using compact bins to execute the limited range function.

4.3.2 Added access overhead

We have shown in Section 4.1 that maintaining the number of real elements per bin

improves the execution time of the limited range function as compared to loading the entire bin,

despite requiring an additional access to global memory (Figure 23). With that in mind, the

access pattern for compact binning is not much different from the count approach for regular

bins. The only differences are highlighted in red in Figures 22 and 24. Instead of loading the

number of elements in a bin, the compact algorithm loads the starting offset of the bin, and the

starting offset of the bin that follows, and from the difference infers the size of a particular bin.

This results in an extra global memory access for every visited bin. Figure 25 shows the relative

performance of various access patterns as compared to regular binning (blue series). We can see

from the figure that the extra global memory access for compact can have a negative effect on

performance (green series). Blinn’s blob is the only exception, as it sees a slight performance

improvement for compact versus regular. The difference, however, is not significant and could

be attributed to more efficient memory accesses (in terms of simultaneous accesses to the

different memory banks), and that is beyond the control of the programmer.

	
 41	

One optimization that can be performed to compact binning is to access an entire range of

contiguous bins simultaneously rather than accessing each bin separately. More specifically, for

any given z and y bin coordinates, bins xL through xH, which occupy consecutive memory

locations, can all be loaded simultaneously since compact bins do not contain any padding; all

the elements between the start of xL and xH are in fact useful to the computation and all need to

be loaded into on chip memory. For that reason, rather than simply reading the start of each bin

and the one following it to determine the range of a single bin in x, we can read the start and end

indices of the entire range in x once, and load all the elements within that range into on chip

memory. The benefits of this optimization are three-fold. First, the number of accesses to the bin

offset array is reduced from two accesses per bin, to two accesses amortized over the number of

bins within the range. Second, the access into the bins is more efficient as we better utilize

memory bursts by not breaking bins’ bounds. Finally, by accessing entire ranges rather than

individual bins, we get rid of the loop for the x dimension (line 8 in Figure 24), thereby reducing

the overall number of iterations within the kernel. As a result of this optimization, we see a

significant improvement of the performance of compact binning over regular binning as shown

by the purple series in Figure 25. Since N-body does not utilize shared memory to share the input

data among all the threads within a block, the optimization of range accesses does not apply to it.

The range optimization can also be applied to the regular binning implementation, but its

overall effects are detrimental to the kernel’s performance. The reason is that by accessing an

entire range we have to inevitably load padding elements into shared memory, which

unnecessarily consumes memory bandwidth. The red series in Figure 25 shows the performance

of the range optimization on regular binning. In the best case, it breaks even with the

performance of regular binning for Blinn. In the case of MRI, however, we see a 6.82X

	
 42	

slowdown that can most likely be attributed to the large number of zero elements that end up

being unnecessarily loaded into on-chip memory. The range optimization could not be applied to

regular binning in the case of N-body because the implementation does not use shared memory

to cache the bins.

	

Figure	
 25.	
 Comparing	
 regular	
 and	
 compact	
 bin	
 accesses

4.3.3 Effects of misalignment

One of the potential drawbacks of compact binning is the resulting misalignment of bins

in memory. In this section, we study these effects. First of all, we propose three techniques to fix

misalignment. The first one is to pad each input element individually so that it can satisfy the

alignment requirements. For all of the benchmarks we studied, padding each element to 8 floats

satisfied the lowest requirement of 32-byte alignment with minimal memory bloating (25%

overhead for MRI, 50% for the others). Since the padding is done per input element, bins that do

not contain any elements in them do not contribute to the padding overhead. Furthermore, since

	
 43	

every element is aligned, by extension, every bin will be aligned as well regardless of the number

of elements it contains. The only drawback to this technique is that the padding of each element

will reduce the effective bandwidth from global memory when the elements are read.

The second approach is to lay out the input elements in the form of arrays of float vector

types (float2 or float4). As demonstrated in Chapter 2, the effect of misalignment on float2

arrays is less severe than on single float arrays. This approach involves a reorganization of the

bin data structures from arrays of structures to structure of arrays. Sung et al. discuss the

benefits of this transformation in their work [2]; however, unlike the strided access pattern they

discuss, if all the elements within the structures are of the same type (in the case for all the

benchmarks we analyzed, all the elements are floats), we can have every thread load a single

float element from within the structure to shared memory, thus maintaining a coalesced access

since the stride of the access is one (see Figure 26). Since the accesses into the array of structures

are already coalesced, laying out the data in a structure of array format is not expected to

significantly impact the performance. However, if we laid out the data in a structure of short

vector arrays, we would expect to see better performance for misaligned accesses as shown in

Figure 13 of Chapter 2.

	
 44	

	

Figure	
 26.	
 Array	
 of	
 structures,	
 structure	
 of	
 arrays,	
 structure	
 of	
 vector	
 arrays

The third and final approach to fixing misalignment is to pad every bin to the nearest

alignment boundary. This is different from the first proposed method of padding each element,

since the padding is essentially amortized over the number of existing elements in the bin rather

than being incurred for each element. In other words, rather than padding each element

separately to an alignment boundary and incurring a padding overhead for each, we pad the

entire bin to an alignment boundary to guarantee that the next bin will be aligned; however, the

elements within a bin may still be misaligned if their data type is not itself aligned. With this

technique, bins that have zero elements in them (which constitute the majority of bins in our

studied benchmarks) do not incur any padding. However, the side effect of this approach is the

reintroduction of padding into the data structure. As shown in Figure 23, loading this data into

shared memory can greatly affect the performance of the kernel. The only way to avoid loading

the padding data into shared memory is to load each bin separately rather than loading an entire

	
 45	

range of bins, and this severely impacts the performance as well, as shown in Figure 25.

Finally, we measured the effects of each of the techniques discussed in this section that

aim to improve alignment, and the results are shown in Figure 27. The results have been

normalized to the runtime of the limited range function executed with regular binning. We can

see that in fact any effort to reduce or eliminate misaligned accesses seems to impact the

performance negatively, and that the optimal performance is achieved with a simple array of

structures layout without any padding. We conclude from this that in the real kernels, the effects

of misalignment are not as severe as shown in the micro benchmark in Chapter 2. One of the

reasons could be a healthier ratio of computation to memory accesses, which means that memory

accesses can be partially or fully overlapped with computation.

	

Figure	
 27.	
 Comparing	
 various	
 techniques	
 for	
 eliminating	
 misalignment	
 of	
 compact	
 bins	

	
 46	

CHAPTER 5

PARTITIONING

One of the advantages of using compact bins is to relieve the pressure on memory due to

padding when the sizes of the bins vary. While this also improves the performance of the

limited-range function as demonstrated in Chapter 4, it does not resolve the issue of load

balancing. In essence, due to the varying number of elements per bin, some blocks have to

compute more elements than other blocks. Figure 28.a best illustrates this load imbalance.

Blocks that reconstruct the center of the space compute significantly more than blocks that

reconstruct the edges of the space, due to the high concentration of sample points in the center.

To reduce the effect of this load imbalance, we propose in this chapter a simple technique that

balances execution by partitioning the work between the CPU and the GPU. Instead of binning

all of the input elements for execution on the GPU, we determine a bin depth that achieves the

optimal balance between CPU and GPU execution, and offload all of the elements that exceed

this bin depth to the CPU when performing binning. Since kernel execution on the GPU is

asynchronous to the CPU, the optimal bin depth is defined as that which results in equal

execution time on the GPU and CPU. Figure 28.b illustrates our proposed technique for load

balancing as applied to the MRI input data. The remainder of this chapter will describe the

implementation of this load balancing technique and its effects on regular and compact binning.

Currently the only limitation of this work is that the bin depth used for partitioning needs to be

provided by the user, and cannot be determined by the program based on input data distribution.

This requires the user to know the input data distribution in order to choose a bin depth that

yields good performance.

	
 47	

	

Figure	
 28.	
 Applying	
 partitioning	
 to	
 the	
 MRI	
 data

5.1 Implementing Partitioning

To implement partitioning we only need to slightly modify the algorithms described in

Sections 4.1 and 4.2. In dense binning, the first step becomes unnecessary since the user provides

the desired bin depth rather than using the max bin depth determined in this step. We need to add

a check in step 2 that verifies that the bin is not already at the bin depth limit, before adding an

element to it. If the bin is not full, the thread proceeds to adding the input element, just as it

would in the non-partitioning method. If the bin is found to be full, the element is instead placed

in the CPU bin. The CPU bin may be a separate array or an extension of the bin data structure,

and since this array is the overflow array from all the GPU bins, it cannot be bounded by bin

depth. When adding an element to the CPU bin, a counter needs to be maintained for that array,

which every thread increments atomically to determine where to insert its overflowed element.

If the binning is performed on the GPU, the CPU bin will need to be transferred back to

the CPU, where it will be processed using a scatter approach into the CPU’s copy of the output

array. Simultaneously, the GPU performs the gather approach for all of its bins, and in the end

	
 48	

the CPU and GPU copies of the output array are combined either on the GPU or the CPU as a

straightforward vector addition. This vector addition is in fact an added overhead that is the

result of partitioning the work between CPU and GPU, but we will show that despite this

overhead, the performance of a partitioned execution is better than that of a unified execution on

the GPU or CPU alone.

Enabling partitioning for the compact bin approach requires modifying the first step of

the algorithm, which is to determine the size of every bin. Rather than simply accumulating the

number of elements that go into each bin, we need to saturate the bin size at bin depth. Therefore,

every time we atomically update a bin counter, we need to verify that the number of elements in

that bin have not exceeded the bin depth limit, by reading the returned value of the atomic

operation. If the returned value is greater than or equal to bin depth, it means that the bin has

already overflowed, and therefore we need to atomically subtract one element from it to bring it

back to maximum capacity. The reason for requiring an exact count per bin is because the

histogram generated in step 1 is later fed into the prefix sum step that determines the starting

address of every bin. And since the starting address of a bin is determined by summing the

number of elements in all the previous bins, we need to maintain the exact number of elements

that go into each bin, and that should not exceed the maximum bin depth. In addition, similar to

the regular binning case, a CPU bin needs to be maintained at binning time which collects the

overflow from all the GPU bins to execute them on the CPU simultaneously with the GPU kernel.

Figure 29 depicts the execution model for the partitioned regular and compact bins.

Since the optimal bin depth is the one for which the runtime of the overflow on the CPU

is the same as the runtime of the GPU execution, the optimal bin depth may vary depending on

the runtime of the CPU and GPU kernels, and modifying either one may require retuning the bin

	
 49	

depth to maintain equilibrium. In fact the optimal bin size may even vary for the same code if

run on an environment with a different CPU and/or GPU. Ideally, the bin depth should be

computed automatically based on some performance model of the GPU and CPU, but this is not

an easy task, and we consider it to be beyond the scope of this work.

	

Figure	
 29.	
 Partitioned	
 execution	
 of	
 limited-­‐range	
 functions

5.2 Effects of Bin Depth on GPU Execution

In this section, we will analyze the effects of varying the bin depth on the runtime of

regular and compact limited-range functions. A larger bin depth signifies more work is being put

on the GPU rather than the CPU. In the case of regular binning, a bigger bin depth means more

padding of the regular bins.

We plotted the runtime of the limited range function for regular and compact binning

with varying bin depths. Figure 30 shows those results for all four benchmarks. As would be

expected, the runtime increases with the increasing bin depth since more work is being

performed by the kernel. Beyond that, padding does not seem to degrade the performance of the

regular binning kernel. The regular binning implementation shown here is the one that uses the

element count array, which means that regardless of the amount of padding, only the real

	
 50	

elements in every bin will be loaded into on-chip memory. There is a constant runtime gap

between the regular bin kernel and the compact bin kernel, and that is most likely due to the

access to the count array for every bin for the former, versus the one-time bound checking for

each range in the latter (as shown in Section 4.3.2).

Due to the large output size for the MRI benchmark and the large imbalance in the

input’s distribution, any bin depth greater than 9 causes the regular bin data structure to exceed

the global memory capacity. That is not the case for compact binning since the maximum size of

the bin data structure is equal to the number of input elements, regardless of the maximum bin

depth specified, and thus we can vary the bin depth arbitrarily as shown in Figure 30.a. That is in

fact an important advantage of compact binning: the maximum bin depth for regular binning can

often be limited by the size of memory, even if that bin depth does not achieve the optimal load

balancing between the CPU and the GPU. One such case is the large MRI data set, which is not

shown Figure 30. The number of bins for this data set is 576^3, and yet the majority of these bins

are empty. Representing these bins in a regular format, even with a bin depth of 1, requires

4.27 GB of memory, which is more than the 4 GB available in the C1060 GPU. On the other

hand, in the compact bin case, choosing a bin depth that is large enough to bin all of the input

elements only occupies 0.67 GB of memory. As a result, the user is capable of better choosing a

bin depth that balances the execution runtime between the CPU and GPU when representing bins

in a compact format.

The performance improvement seen for Blinn’s blob is the same shown in Figure 25.

Because the Blinn’s blob data set is so sparse, with the majority of bins having zero elements in

them, compact binning achieves a large speedup compared to regular binning because zero-

element bins do not consume any computation or bandwidth overhead in the former, whereas

	
 51	

they do in the latter.

It is worth observing how the varying bin depth affects the performance of N-body.

Unlike the other three benchmarks, N-body does not demonstrate the same steady increase in

runtime as the bin depth increases. The reason is that N-body does not preload bin contents into

shared memory; rather, every thread loads the data that it needs immediately from global

memory before using it. The resulting access pattern into global memory is a lot less regular than

the other three benchmarks. Varying the bin depth simply randomizes the access pattern further

and for some bin depths may result in better coalescing, whereas for others it may result in worse

coalescing. The randomization effects are more noticeable for regular binning since the increase

in bin depth causes the elements from two adjacent bins to move farther apart, due to padding,

than in the compact case.

	

Figure	
 30.	
 Regular	
 vs.	
 compact	
 runtime	
 for	
 varying	
 bin	
 depths	

	
 52	

5.3 Best Overall Performance

We have shown in Section 5.2 how increasing the bin size affects the execution runtime

of the limited-range kernels. In this section, we will look at the overall performance of the

overlapped execution of the CPU and GPU kernels. As mentioned previously, since the GPU

kernel executes asynchronously with respect to the CPU, computing the two partial results can

be done in parallel, and the overall runtime is equal to the greater of the two runtimes. That is

why choosing a bin depth that makes the two runtimes equal yields the best overall performance.

Figures 31, 32, 33, and 34 show the overall execution time for the limited-range function using

regular and compact bins for all four benchmarks. A bin depth of 0 for all of them signifies that

all the execution is performed on the CPU. Note that a bin depth of zero does not result in a zero

runtime for the GPU since the kernel still needs to be launched and the size of each bin needs to

be checked before realizing that there is no work to be done. The largest bin size shown on all

graphs corresponds to all the input elements being assigned to the GPU (except for regular

binned MRI, which exceeds memory capacity beyond a bin size of 9). Regardless of the binning

format, a given bin depth results in the same number of elements being executed on the CPU,

and therefore the same runtime. The column highlighted in red corresponds to the bin depth that

yields the best performance for each case. The curves shown for compact and regular GPU

execution are the same as the ones shown in Figure 30, and for the optimal bin depth, the

speedup achieved is the equal in magnitude to the performance gap shown in Figure 30 (the

performance of compact and regular bins is roughly the same for N-body).

We notice that for all the benchmarks, the GPU runtime is more resilient to an increase in

workload than the CPU, in part due to the GPU’s massive parallelism and greater number of

resources compared to the CPU. This implies that despite the lack of an automated method for

	
 53	

determining the optimal bin depth, the users need not be exact in their choice of bin depth as

long as they choose a bin depth large enough to reduce the CPU runtime below that of the GPU.

	

Figure	
 31.	
 Overall	
 MRI	
 gridding	
 runtime	
 for	
 various	
 bin	
 depths	

	

Figure	
 32.	
 Overall	
 Coulombic	
 potential	
 runtime	
 for	
 various	
 bin	
 depths	

	

Figure	
 33.	
 Overall	
 Blinn's	
 blob	
 runtime	
 for	
 various	
 bin	
 depths	

	
 54	

	

Figure	
 34.	
 Overall	
 N-­‐body	
 runtime	
 for	
 various	
 bin	
 depths	

	
 55	

CHAPTER 6

COMPACTION IN RELATION TO SPARSE MATRICES

The binning concepts introduced in this work are not new concepts, but simply new

applications of existing concepts. In particular, compaction and partitioning are techniques

borrowed from sparse matrix representation. In this chapter, we will highlight the similarities and

differences between the use of these techniques in the domains of sparse matrix multiplication

and parallel limited-range functions. For an in-depth analysis of sparse matrix representations

and their performance on GPUs, please refer to the paper written by Nathan Bell and Michael

Garland on the topic [11]. For the purpose of comparing the two domains, we will only highlight

the concepts that are relevant to the discussion.

The most rudimentary way to represent a sparse matrix is to store, for each non-zero

element, its value, its column index, and its row index, in three arrays. This is known as the COO

format (COO for coordinates). A sample matrix and its COO representation are shown in Figure

35. COO is in fact the most explicit way of representing sparse data since it maintains all the

information of all the elements. A more efficient way to present the matrix data is the CSR

format, which maintains the value and column index of each element, but sorts the elements

based on their row index, and rather than maintaining a separate row index value for each

element, simply maintains a starting index for all the elements of the same row. The row value of

each element is therefore implied based on the offset range it belongs to (Figure 36). Compact

binning is in fact closely related to the CSR format. All elements that fall into a bin are sorted in

such a way that they are in contiguous memory locations, and accessing a certain bin, similar to

accessing a row in CSR, is done by determining the starting offset of the bin, and the starting

offset of the bin that follows.

	
 56	

In a matrix-vector multiplication kernel, each thread computes one element in the output

vector, and the value of that vector corresponds to the dot product of one row of the matrix and

the vector it is being multiplied by, and having each thread access one row causes memory

requests to be non-coalesced. That is why it is more efficient to have an entire warp or block

handle each row, such that threads are accessing consecutive elements in the sparse matrix data

structure. In the end, the partial results from all the threads handling the same row are reduced

down to a single value that corresponds to the value of the output element. Threads in a limited

range function are also made to access consecutive elements in a bin for both an array of

structures and a structure of arrays layout, as discussed in Section 4.3.3. The only difference

between the two kernels is that threads within a warp in sparse matrix multiplications together

compute the value of a single output element, whereas threads within a warp in a limited range

kernel together load an input bin that they all need to compute different output elements.

	

Figure	
 35.	
 Dense	
 matrix	
 and	
 COO	
 representation

	

Figure	
 36.	
 CSR	
 format

	
 57	

Another efficient layout of sparse matrix data is the ELLPACK format (Figure 37).

ELLPACK seeks to ensure that threads working on consecutive rows access the data within

those rows in a coalesced manner. Since elements within a warp execute in lockstep, every

thread will access the first non-zero element of its row simultaneously, then the second element

simultaneously, and so on. Therefore to make sure that accesses are coalesced, all first elements

need to be placed in consecutive memory locations, followed by all second elements, etc.

Effectively, the ELLPACK format transposes the sparse matrix so that elements in consecutive

rows become elements in consecutive columns. However, to achieve this transposition, all rows

have to have the same number of elements in them; otherwise, the access to the transposed

elements of the original row becomes difficult. To achieve this uniform row size, all rows need

to be padded up to the maximum row size before performing the transpose. ELLPACK is not as

useful in the context of limited-range kernels; however, the pre-transpose structure does

resemble the dense binning representation, where the largest number of non-zero elements in a

row corresponds to the maximum bin depth, and all the rows that have fewer than max depth

elements in them are padded to achieve regularity.

	

Figure	
 37.	
 ELLPACK	
 format

In fact, similar to dense binning, a large variance in the number of non-zero elements in

each row of the sparse matrix causes a large memory bloat in ELLPACK due to padding

	
 58	

elements. The HYB (for hybrid) format seeks to reduce the overhead of padding. The HYB

format as described in [11] is a combination of ELLPACK and COO (Figure 38.a). Rather than

extending each row to the maximum row size, we instead find an average row size that keeps as

many of the elements in ELLPACK format while minimizing the amount of padding needed. All

elements that exceed this average row size get stored in a separate COO data structure, which

can be executed by a separate CPU or GPU kernel. In addition to reducing the padding overhead,

the HYB format improves load balancing for the execution of the ELLPACK data structure, as it

reduces the variation in row size. Partitioning in limited-range applications is in fact a hybrid

format, and achieves the same benefits of reduction of padding overhead and load balancing.

Partitioning in compact binning is equivalent to a CSR/COO hybrid format (Figure 38.b).

	

Figure	
 38.	
 Hybrid	
 format	
 representations

	
 59	

CHAPTER 7

CONCLUSION

To say that we expected the results of this work would be untrue. Intuitively, one would

expect that the added complexity of compact binning, while it may benefit certain applications

and datasets, would prevent this approach from outperforming regular binning for all

applications. However, upon further analysis, we were able to explain why compact binning can

in fact outperform regular binning. One of the key factors in this speedup is the reduction of the

number of loops and memory accesses due to the iteration over ranges of bins rather than

individual bins when the bin data is compact. The only characteristic of compact bins that made

this optimization possible, and the reason why the same optimization is disadvantageous for

regular binning, is the elimination of padding elements from the bin data structure. Furthermore,

we have demonstrated in Chapter 5 how compact binning can enable better load balancing

between the CPU and GPU by overcoming the memory capacity barrier encountered with

regular binning. Table 5 compares the results of the full execution (binning and partitioning,

limited range computation, and CPU/GPU output reduction) for the best regular binning

implementation with the best compact binning implementation. For regular binning, the best

implementation consists of using a count array to determine the number of real elements in each

bin before loading that bin into shared memory, as well as determining the best partitioning bin

depth that balances the work done on the CPU and on the GPU. For compact binning, the best

implementation consists of using range accesses within the smallest dimension of the space,

using an array of structures for the input data, and finally, similar to regular binning, determining

the best partitioning bin depth that balances work on the CPU and GPU. The first three

applications all see an improvement in performance, and in the case of Blinn’s blob, the speedup

	
 60	

is approximately a factor of 8x over regular binning. For N-body, which does not use any shared

memory and therefore does not take advantage of range accesses into the bins, we at least do not

see any loss of performance despite the added complexity of compact binning.

Table	
 5.	
 Summary	
 of	
 compact	
 and	
 regular	
 execution	
 runtimes	

	
 Regular	
 Compact	
 Speedup	

CutCP	
 3.91	
 3.47	
 1.13x	

MRI	
 1.47	
 0.98	
 1.50x	

Blinn	
 14.42	
 1.81	
 7.98x	

N-­‐body	
 14.90	
 14.60	
 1.02x	

	
 61	

REFERENCES

[1] “NVIDIA CUDA C Programming Guide,” NVIDIA Inc., 22 Oct. 2010. [Online]. Available:
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programm
ing_Guide.pdf

[2] I. J. Sung, J. Stratton, and W. M. Hwu, “Data layout transformation exploiting memory-

level parallelism in structured grid many-core applications,” in Proceedings of the 19th
International Conference on Parallel Architectures and Compilation Techniques (PACT)
2010, Vienna, Austria, September 11-15, 2010.

[3] J. Benedetto and H. Wu, “Non-uniform sampling and spiral MRI reconstruction,” in SPIE-

Wavelet Applications in Signal and Image Processing VIII, vol. 4119, pp. 130-141, 2000.

[4] Y. Zhuo, X. L. Wu, J. Haldar, W. M. Hwu, Z. P. Liang, and B. Sutton, “Accelerating

iterative field-compensated MR image reconstruction on GPUs,” in International Society for
Magnetic Resonance in Medicine (ISMRM) 2010, Rotterdam, The Netherlands, 2010.

[5] J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection of a convolution

function for Fourier inversion using gridding [computerized tomography application],”
IEEE Transactions on Medical Imaging, vol. 10, no. 3, pp. 473-478, 1991.

[6] C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. M. Hwu, “GPU acceleration of cutoff

pair potentials for molecular modeling applications,” in CF’08: Proceedings of the 2008
Conference on Computing Frontiers, 2008, pp. 273-282.

[7] J. M. Singh and P. J. Narayanan, “Real-time ray tracing of implicit surfaces on the GPU,”

IEEE Transactions on Visualization and Computer Graphics, vol. 99, pp. 261-272, 2009.

[8] J. Waltz, G. L. Page, S. D. Milder, J. Wallin, and A. Antunes, “A performance comparison

of tree data structures for N-body simulation,” Journal of Computational Physics, vol. 178,
no. 1, pp. 1-14, 2002.

[9] N. Bell, “Optimizing parallel reduction in CUDA,” NVIDIA Inc., n.d. [Online]. Available:

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/re
duction.pdf

[10] S. Sengupta, A. Lefohn, and J. Owens, “A work-efficient step-efficient prefix sum

algorithm,” in Proceedings of the Workshop on Edge Computing Using New Commodity
Architectures, 2006, pp. 26-27.

[11] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplication on throughput-

oriented processors,” in SC '09: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, 2009, pp. 1-11.

