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ABSTRACT	
  

Limited-­‐range	
   functions	
   are	
   domain-­‐level	
   optimizations	
   to	
   a	
   class	
   of	
   applications	
  

where	
  all	
  input	
  elements	
  contribute	
  to	
  all	
  output	
  elements,	
  based	
  on	
  the	
  distance	
  between	
  

two	
  given	
  elements.	
  When	
  the	
  contribution	
  of	
  an	
  input	
  element	
  to	
  the	
  output	
  is	
   inversely	
  

proportional	
   to	
   the	
   distance,	
   a	
   limited	
   range	
   can	
   be	
   applied,	
   which	
   approximates	
   the	
  

contribution	
  to	
  zero	
  beyond	
  a	
  certain	
  cutoff	
  distance.	
  Introducing	
  a	
  limited-­‐range	
  function	
  

to	
  the	
  application	
  reduces	
  the	
  computation	
  complexity	
  from	
  O(N2)	
  to	
  O(N).	
  

Processing	
  multiple	
  input	
  elements	
  in	
  a	
  limited-­‐range	
  function	
  in	
  parallel	
  can	
  lead	
  to	
  

data	
  races	
  without	
  the	
  use	
  of	
  expensive	
  synchronization.	
  That	
  is	
  why	
  a	
  preferred	
  approach	
  

is	
   an	
   output-­‐driven	
   one,	
   where	
   multiple	
   output	
   elements	
   are	
   processed	
   in	
   parallel,	
   all	
  

sharing	
   the	
   input	
   data	
   set	
   for	
   reads.	
   Typically	
   the	
   input	
   data	
   set	
   is	
   unstructured,	
   which	
  

without	
   the	
   use	
   of	
   binning,	
   would	
   result	
   in	
   every	
   output	
   element	
   in	
   the	
   output-­‐driven	
  

approach	
  reading	
  all	
  of	
   the	
   input	
  elements	
   to	
  determine	
  which	
  ones	
   fall	
  within	
   its	
  cutoff.	
  

Binning	
   is	
   a	
   preconditioning	
   step	
   that	
   sorts	
   the	
   input	
   elements	
   into	
   predetermined	
   bins	
  

that	
   are	
   easily	
   accessible	
  by	
   the	
  output,	
   thus	
   allowing	
   the	
  output	
   to	
  only	
   access	
   the	
  bins	
  

relevant	
  to	
  its	
  computation.	
  

Traditionally,	
   bins	
   were	
   created	
   with	
   uniform	
   size	
   and	
   capacity	
   to	
   enable	
   easy	
  

access	
  to	
  them;	
  however,	
  making	
  the	
  bins	
  regular	
  can	
  have	
  severe	
  side-­‐effects	
  on	
  memory	
  

requirements	
  to	
  maintain	
  these	
  bins.	
  We	
  propose	
  a	
  technique	
  to	
  allow	
  the	
  bins	
  to	
  vary	
  in	
  

capacity	
  in	
  order	
  to	
  reduce	
  the	
  memory	
  overhead,	
  at	
  the	
  cost	
  of	
  added	
  accessing	
  overhead.	
  

In	
  this	
  work,	
  we	
  will	
  compare	
  regular	
  binning	
  and	
  our	
  approach,	
  compact	
  binning.	
  We	
  will	
  

demonstrate	
  that	
  compact	
  bins	
  can	
  in	
  fact	
  improve	
  the	
  execution	
  performance	
  of	
  limited-­‐

range	
  functions	
  executed	
  in	
  parallel.	
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CHAPTER	
  1	
  

INTRODUCTION	
  

With	
   the	
   advancement	
   and	
   ubiquity	
   of	
   high	
   performance	
   computing,	
   applications	
  

from	
   various	
   scientific	
   domains	
   have	
   emerged	
   that	
   try	
   to	
   model	
   and	
   simulate	
   the	
  

interactions	
  between	
  large	
  sets	
  of	
  elements	
  in	
  physical	
  systems.	
  These	
  applications	
  seek	
  to	
  

measure	
   anything	
   from	
   the	
   gravitational	
   forces	
   between	
   many	
   bodies	
   of	
   mass	
   to	
   the	
  

electric	
   field	
   in	
   space	
   due	
   to	
   the	
   presence	
   of	
   charged	
   atoms,	
   or	
   even	
   signal	
   propagation	
  

between	
   any	
   two	
   points	
   in	
   a	
   space.	
   This	
   information	
   is	
   simulated	
   by	
   measuring	
   the	
  

interactions	
  between	
  every	
  pair	
  of	
  points	
  in	
  the	
  system.	
  For	
  example,	
  in	
  order	
  to	
  determine	
  

the	
  electric	
  field	
  at	
  a	
  certain	
  point	
  in	
  space,	
  we	
  need	
  to	
  compute	
  the	
  electric	
  field	
  effect	
  of	
  

every	
  atom	
  in	
  the	
  space	
  onto	
  that	
  point,	
  and	
  similarly	
  every	
  atom	
  in	
  the	
  space	
  contributes	
  

to	
  the	
  electric	
  field	
  of	
  every	
  point	
  in	
  the	
  space.	
  However,	
  it	
  is	
  generally	
  the	
  nature	
  of	
  these	
  

interactions	
  that	
  the	
  effect	
  of	
  one	
  element	
  on	
  another	
  decreases	
  as	
  the	
  distance	
  increases	
  

between	
   them.	
  Since	
   the	
  computation	
  required	
   to	
  simulate	
   these	
  O(N2)	
  systems	
   for	
   large	
  

data	
   sets	
   is	
   very	
   expensive,	
   scientists	
   often	
   take	
   advantage	
   of	
   the	
   decreasing	
   effect	
   to	
  

accelerate	
   the	
   computation.	
   They	
   do	
   so	
   by	
   neglecting	
   the	
   interactions	
   between	
   two	
  

elements	
   when	
   the	
   distance	
   between	
   them	
   causes	
   the	
   effects	
   on	
   one	
   another	
   to	
   be	
  

insignificantly	
   small.	
   In	
   other	
   words,	
   they	
   approximate	
   all	
   the	
   effects	
   beyond	
   a	
   certain	
  

cutoff	
   distance	
   to	
   be	
   zero.	
   In	
   some	
   application,	
   the	
   distant	
   contributions	
   are	
   computed	
  

using	
   a	
  different	
  method.	
  By	
  doing	
   so,	
   they	
   reduce	
   the	
   complexity	
  of	
   the	
   algorithm	
   from	
  

O(N2)	
  to	
  O(cN)	
  where	
  c	
  is	
  the	
  constant-­‐sized	
  cutoff	
  distance	
  beyond	
  which	
  no	
  interactions	
  

are	
  computed.	
  Applying	
  a	
  cutoff	
   to	
   the	
  computation	
   in	
  order	
   to	
   reduce	
   the	
  complexity	
  of	
  

the	
  algorithm	
  results	
  in	
  what	
  we	
  define	
  as	
  a	
  limited-­‐range	
  function,	
  because,	
  as	
  the	
  name	
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suggests,	
  we	
  confine	
  the	
  effects	
  of	
  each	
   input	
  element	
  to	
  a	
   limited	
  set	
  of	
  output	
  elements	
  

that	
  fall	
  within	
  its	
  range.	
  

Typically,	
  the	
  input	
  data	
  to	
  these	
  applications	
  are	
  irregularly	
  distributed	
  and	
  do	
  not	
  

follow	
  any	
  uniform	
  distribution	
  pattern,	
   and	
   that	
  may	
  be	
  a	
   result	
  of	
   the	
  way	
   these	
   input	
  

elements	
   are	
   collected	
   (e.g.,	
   samples	
   collected	
  by	
  an	
  MRI	
   scanner),	
   or	
   simply	
   the	
  natural	
  

distribution	
   of	
   these	
   elements	
   in	
   their	
  medium	
   (e.g.,	
   atom	
   cloud	
   in	
   space).	
   On	
   the	
   other	
  

hand,	
  when	
  simulating	
  or	
  processing	
  these	
  input	
  elements	
  we	
  often	
  wish	
  to	
  compute	
  their	
  

effects	
  on	
  a	
  regularly	
  structured	
  output	
  set	
  (e.g.,	
  the	
  electric	
  field	
  at	
  every	
  point	
  in	
  a	
  regular	
  

grid)	
  where	
  the	
  output	
  data	
  set	
  is	
  much	
  larger	
  than	
  the	
  input	
  data	
  set.	
  These	
  properties	
  are	
  

true	
   for	
   all	
   of	
   the	
   applications	
  we	
   analyze	
   in	
   this	
  work,	
   except	
   for	
   one	
  where	
   the	
   input	
  

element	
  set	
  and	
  the	
  output	
  element	
  set	
  are	
  the	
  same,	
  and	
  both	
  are	
  irregular.	
  The	
  relative	
  

sizes	
  of	
  the	
  input	
  and	
  output,	
  the	
  regularity	
  of	
  the	
  output,	
  and	
  irregularity	
  of	
  the	
  input	
  are	
  

necessary	
  considerations	
  when	
  optimizing	
  the	
  computation	
  of	
  these	
  systems.	
  

	
  

1.1	
  Sequential	
  Implementation	
  

When	
  computing	
  limited-­‐range	
  functions	
  on	
  a	
  CPU,	
  the	
  program	
  iterates	
  over	
  all	
  the	
  

input	
   elements,	
   and	
   computes	
   the	
   contributions	
   of	
   each	
   input	
   onto	
   the	
   output	
   elements.	
  

Because	
  the	
  inputs	
  are	
  not	
  ordered	
  in	
  any	
  uniform	
  way,	
  their	
  location	
  in	
  the	
  space	
  cannot	
  

be	
  inferred	
  or	
  computed.	
  Instead,	
  each	
  input	
  element	
  holds	
  its	
  own	
  coordinates	
  explicitly.	
  

On	
  the	
  other	
  hand,	
  if	
  the	
  output	
  is	
  a	
  regular	
  grid,	
  the	
  coordinates	
  of	
  every	
  output	
  point	
  can	
  

be	
   computed.	
   That	
   is	
   why	
   it	
   often	
  makes	
  more	
   sense	
   to	
   take	
   an	
   input	
   driven	
   approach	
  

rather	
   than	
  an	
  output	
  driven	
  one	
  when	
  computing	
   limited-­‐range	
   functions.	
  Based	
  on	
   the	
  

input’s	
  coordinates,	
  a	
  neighborhood	
  is	
  determined	
  by	
  computing	
  a	
  sphere	
  centered	
  at	
  the	
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input’s	
   coordinates	
  with	
   a	
   radius	
   equal	
   to	
   the	
   cutoff	
   distance.	
  Every	
  output	
   element	
   that	
  

intercepts	
   this	
   neighborhood	
   region	
   is	
   therefore	
   a	
   neighbor	
   of	
   the	
   input	
   element	
   and	
   is	
  

contributed	
   to	
   by	
   this	
   element.	
   Figure	
   1	
   shows	
   a	
   two-­‐dimensional	
   example	
   of	
   a	
  

neighborhood	
  around	
  one	
  of	
   the	
   input	
  elements.	
  Since	
   the	
  neighboring	
  output	
   to	
  a	
  given	
  

input	
  point	
  can	
  be	
  predetermined,	
   it	
   is	
  unnecessary	
   to	
  visit	
  any	
  output	
  elements	
   that	
   fall	
  

outside	
   of	
   the	
   neighboring	
   region.	
   Multiple	
   input	
   elements	
   may	
   contribute	
   to	
   the	
   same	
  

output	
  point,	
  as	
  shown	
  in	
  Figure	
  2;	
  however,	
  since	
  the	
  processing	
  of	
  input	
  elements	
  is	
  done	
  

sequentially,	
  no	
  update	
  conflicts	
  occur.	
  

	
  

Figure	
  1.	
  Depiction	
  of	
  sequential	
  execution	
  of	
  limited-­‐range	
  functions	
  

1.2	
  Parallel	
  Implementation	
  

Limited-­‐range	
   functions	
   are	
   inherently	
   parallel.	
   Every	
   input	
   element	
   computes	
   its	
  

contributions	
  to	
  the	
  output	
  independently	
  from	
  other	
  input	
  points.	
  Similarly,	
  every	
  output	
  

point	
  can	
  be	
  computed	
  independently	
  of	
  all	
  other	
  output	
  points.	
  However,	
  several	
  factors	
  

can	
  hinder	
  their	
  performance	
  on	
  parallel	
  architectures.	
  For	
  instance,	
  if	
  we	
  were	
  to	
  naively	
  

port	
  the	
  input-­‐driven	
  sequential	
  algorithm	
  to	
  a	
  parallel	
  execution	
  model,	
  one	
  of	
  the	
  biggest	
  

problems	
  we	
  face	
  is	
  write	
  contention	
  by	
  input	
  elements	
  onto	
  the	
  output.	
  Specifically,	
  if	
  all	
  

input	
   elements	
   are	
   processed	
   in	
   parallel,	
   inputs	
   attempting	
   to	
   update	
   the	
   same	
   output	
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element	
  may	
  suffer	
   from	
  data	
   races,	
   leading	
   to	
   incorrect	
   results.	
  The	
   two	
   input	
  elements	
  

highlighted	
   in	
   Figure	
   2	
  may	
   suffer	
   from	
  a	
   data	
   race	
   if	
   they	
   both	
   attempt	
   to	
   update	
   their	
  

shared	
   output	
   simultaneously	
   (contention	
   shown	
   in	
   red).	
   Since	
   updating	
   an	
   element	
  

requires	
   multiple	
   instructions	
   (read,	
   modify,	
   write),	
   data	
   races	
   occur	
   when	
   the	
   update	
  	
  

instructions	
   of	
   one	
   processing	
   thread	
   are	
   interleaved	
   with	
   the	
   update	
   instructions	
   of	
  

another	
  thread,	
  causing	
  one	
  of	
  the	
  threads’	
  updates	
  to	
  be	
  lost.	
  One	
  way	
  to	
  avoid	
  data	
  races	
  

is	
   to	
  make	
  updates	
  atomic,	
   that	
   is,	
  guarantee	
   that	
   the	
   three	
   instructions	
   from	
  one	
   thread	
  

cannot	
  be	
  interrupted,	
  and	
  that	
  a	
  processing	
  thread	
  cannot	
  start	
  updating	
  an	
  element	
  until	
  

another	
   thread	
   that	
   is	
   already	
   in	
   the	
   process	
   of	
   updating	
   that	
   element	
   has	
   finished.	
  

However,	
   ensuring	
   this	
   synchronization	
   is	
   costly	
   and	
   can	
   deteriorate	
   the	
   computing	
  

performance,	
   especially	
   when	
   several	
   threads	
   try	
   to	
   simultaneously	
   update	
   the	
   same	
  

element,	
  since	
  atomicity	
  causes	
  threads’	
  updates	
  to	
  be	
  serialized.	
  

	
  

Figure	
  2.	
  Parallel	
  implementation	
  of	
  the	
  scatter	
  approach	
  

Another	
   way	
   to	
   avoid	
   data	
   races	
   is	
   to	
   privatize	
   each	
   output	
   to	
   a	
   single	
   writer:	
  

instead	
  of	
  having	
  each	
  thread	
  compute	
  the	
  contributions	
  of	
  an	
   input	
  element	
  onto	
  all	
   the	
  

neighboring	
   output	
   elements,	
   we	
   let	
   each	
   thread	
   compute	
   exclusively	
   the	
   value	
   of	
   an	
  

output	
   element	
   by	
   calculating	
   the	
   contributions	
   of	
   its	
   neighboring	
   input	
   elements.	
   The	
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definition	
  of	
  the	
  neighborhood	
  is	
  the	
  same	
  for	
  the	
   input-­‐driven	
  approach	
  as	
  well	
   that	
  the	
  

output-­‐driven	
  approach,	
  since	
  the	
  cutoff	
  distance	
  is	
  the	
  same	
  whether	
  seen	
  from	
  point	
  A	
  to	
  

point	
  B	
  or	
  B	
  to	
  A.	
  	
  By	
  privatizing	
  the	
  output	
  among	
  the	
  threads,	
  multiple	
  output	
  may	
  end	
  up	
  

reading	
   the	
  same	
   input	
  elements	
   (Figure	
  3);	
  however,	
   since	
   read	
  accesses	
  do	
  not	
  modify	
  

the	
   input	
  elements’	
  values,	
  no	
  synchronization	
   is	
  needed.	
  This	
  output-­‐driven	
  approach	
   is	
  

called	
  a	
  “Gather”	
  approach	
  whereas	
  the	
  input-­‐driven	
  one	
  is	
  called	
  a	
  “Scatter”	
  approach.	
  The	
  

names	
  are	
  symbolic	
  of	
  the	
  methods	
  of	
  computation:	
  gather	
  is	
  a	
  collection	
  of	
  multiple	
  input	
  

contributions	
  onto	
  one	
  output	
  element,	
  whereas	
  scatter	
  takes	
  one	
  input	
  and	
  generates	
  its	
  

contribution	
  onto	
  multiple	
  outputs.	
  

	
  

Figure	
  3.	
  Parallel	
  implementation	
  of	
  the	
  gather	
  approach	
  

One	
  difficulty	
  that	
  arises	
  with	
  the	
  gather	
  approach	
  is	
  that,	
  as	
  we	
  mentioned	
  earlier	
  

in	
  this	
  chapter,	
   input	
  elements	
  are	
  typically	
  unstructured,	
  and	
  need	
  to	
  explicitly	
  maintain	
  

their	
  coordinate	
   information.	
  As	
  a	
  result,	
  every	
  output	
  element	
  has	
   to	
   iterate	
  over	
  all	
   the	
  

input	
  elements	
  and	
  determine	
  for	
  each	
  whether	
  they	
  fall	
  within	
   its	
  cutoff	
  distance	
  before	
  

computing	
   their	
   contributions,	
   as	
   seen	
   in	
   Figure	
   4.	
   Having	
   to	
   evaluate	
   all	
   the	
   input	
  

elements	
   negates	
   the	
   benefits	
   of	
   introducing	
   a	
   cutoff	
   in	
   the	
   first	
   place,	
   as	
   the	
   resulting	
  

algorithm	
  once	
  again	
  becomes	
  O(N2).	
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Figure	
  4.	
  Side	
  effects	
  of	
  the	
  gather	
  approach	
  without	
  binning	
  

	
  

1.3	
  Parallel	
  Implementation	
  with	
  Binning	
  

Binning	
  is	
  one	
  technique	
  we	
  can	
  use	
  to	
  reduce	
  the	
  complexity	
  of	
  a	
  gather	
  algorithm	
  

from	
  O(N2)	
  back	
   to	
  O(N).	
  A	
  bin	
   is	
   a	
   container	
   corresponding	
   to	
   a	
   sub-­‐region	
  of	
   the	
   total	
  

space	
  containing	
  all	
  of	
  the	
  input	
  elements	
  that	
  fall	
  within	
  this	
  space.	
  These	
  containers	
  have	
  

known	
   characteristics,	
   such	
   as	
   the	
   size	
   of	
   the	
   sub-­‐regions	
   they	
   cover	
   and	
   their	
   element	
  

capacity,	
  and	
  this	
  makes	
  them	
  easier	
  to	
  access	
  than	
  individual	
   input	
  elements.	
  We	
  enable	
  

easy	
   access	
   to	
   input	
   elements	
   by	
   placing	
   them	
   within	
   the	
   bins.	
   Instead	
   of	
   each	
   output	
  

element	
  having	
  to	
  traverse	
  the	
  array	
  of	
  all	
   the	
  input	
  elements,	
   it	
  only	
  needs	
  to	
  access	
  the	
  

bins	
  that	
  fall	
  within	
  its	
  cutoff	
  to	
  get	
  to	
  the	
  neighboring	
  input	
  elements.	
  Performing	
  binning	
  

on	
   the	
   input	
   data	
   reduces	
   the	
   complexity	
   of	
   the	
   computation	
   from	
   O(N2)	
   back	
   to	
   O(N).	
  

Figure	
   5	
   depicts	
   the	
   execution	
   of	
   the	
   gather	
   approach	
   with	
   binning.	
   Note	
   that	
   some	
  

elements	
  that	
  fall	
  within	
  a	
  neighboring	
  bin	
  may	
  not	
  themselves	
  be	
  neighbors	
  of	
  the	
  output	
  

element,	
  so	
  it	
  is	
  still	
  necessary	
  to	
  calculate	
  their	
  distance	
  from	
  the	
  output	
  before	
  computing	
  

their	
  contribution.	
  In	
  fact	
  binning	
  cannot	
  completely	
  prevent	
  an	
  output	
  from	
  reading	
  input	
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elements	
   that	
   are	
   outside	
   of	
   its	
   cutoff	
   region,	
   but	
   it	
   can	
   reduce	
   the	
   number	
   of	
   these	
  

occurrences	
  significantly.	
  

One	
  simple	
  way	
  to	
  make	
  all	
  the	
  bins	
  easily	
  accessible	
  is	
  to	
  make	
  them	
  all	
  identical.	
  

That	
  includes	
  making	
  all	
  the	
  bins	
  represent	
  an	
  equal	
  portion	
  of	
  the	
  space	
  (size),	
  as	
  well	
  as	
  

making	
  each	
  bin	
  contain	
   the	
  same	
  number	
  of	
  elements	
   (depth).	
  By	
  doing	
  so,	
   the	
  starting	
  

index	
  of	
  every	
  bin	
  within	
  the	
  data	
  structure	
  containing	
  the	
  bins	
  can	
  be	
  computed	
  using	
  the	
  

index	
  of	
  the	
  sub-­‐region	
  that	
  bin	
  represents	
  and	
  the	
  capacity	
  (or	
  depth)	
  of	
  each	
  bin.	
  

	
  

Figure	
  5.	
  Gather	
  implementation	
  with	
  binning	
  

Assigning	
   an	
   equal	
   portion	
   of	
   the	
   space	
   to	
   each	
   bin	
   can	
   be	
   achieved	
   (assuming	
   a	
  

regular	
  space)	
  by	
  simply	
  dividing	
  the	
  total	
  region	
  evenly	
  among	
  all	
  the	
  bins.	
  Guaranteeing	
  

that	
   each	
   bin	
   contains	
   the	
   same	
   number	
   of	
   elements,	
   on	
   the	
   other	
   hand,	
   is	
   a	
   more	
  

challenging	
  task,	
  since	
  the	
  number	
  of	
  elements	
  that	
  go	
  into	
  a	
  bin	
  is	
  dependent	
  on	
  the	
  input	
  

data,	
  and	
  can	
  vary	
  from	
  one	
  dataset	
  to	
  another.	
  One	
  way	
  to	
  achieve	
  uniform	
  bin	
  capacity	
  is	
  

to	
   make	
   every	
   bin	
   contain	
   as	
   many	
   elements	
   as	
   the	
   largest	
   bin.	
   In	
   other	
   words,	
   we	
  

determine	
  the	
  maximum	
  capacity	
  required	
  by	
  any	
  bin,	
  and	
  make	
  the	
  capacity	
  of	
  all	
  the	
  bins	
  

be	
  equal	
  to	
  that	
  maximum.	
  In	
  a	
  situation	
  where	
  the	
  elements	
  are	
  evenly	
  distributed	
  in	
  the	
  

space,	
  and	
  every	
  sub-­‐region	
  contains	
  the	
  same	
  number	
  of	
  elements,	
  the	
  maximum	
  capacity	
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will	
  be	
  the	
  same	
  as	
  the	
  average	
  capacity.	
  Figure	
  6	
  is	
  an	
  example	
  of	
  a	
  uniformly	
  distributed	
  

input	
  in	
  1-­‐D	
  space.	
  The	
  integer	
  shown	
  for	
  each	
  element	
  in	
  the	
  input	
  array	
  corresponds	
  to	
  

the	
   bin	
   that	
   element	
   belongs	
   to.	
   As	
   we	
   can	
   see,	
   every	
   bin	
   contains	
   exactly	
   two	
   input	
  

elements,	
  which	
  makes	
   it	
   easy	
   to	
   achieve	
  uniform	
  bin	
   capacity.	
  However,	
   as	
   soon	
   as	
   the	
  

number	
  of	
  elements	
   in	
  each	
  bin	
  starts	
  to	
  vary,	
  maintaining	
  a	
  uniform	
  size	
   for	
  all	
   the	
  bins	
  

will	
   require	
   padding	
   for	
   the	
   bins	
   that	
   have	
   fewer	
   elements	
   than	
   the	
  maximum	
   capacity.	
  

Padding	
  is	
  the	
  use	
  of	
  mock	
  elements	
  in	
  every	
  bin	
  to	
  make	
  up	
  for	
  the	
  missing	
  elements	
  when	
  

the	
  number	
  of	
  real	
  elements	
  in	
  the	
  bin	
  is	
  smaller	
  than	
  the	
  maximum	
  bin	
  depth.	
  If	
  the	
  fifth	
  

element	
   in	
  the	
  array	
  from	
  Figure	
  6	
  were	
  a	
  3	
  rather	
  than	
  a	
  1	
  (shown	
  in	
  Figure	
  7),	
   the	
  bin	
  

depth	
  would	
  no	
  longer	
  be	
  uniform,	
  which	
  means	
  that	
  in	
  order	
  to	
  maintain	
  a	
  uniform	
  depth	
  

in	
  all	
   the	
  bins,	
  we	
  would	
  have	
  to	
  pad	
  all	
   the	
  bins	
  than	
  have	
  fewer	
  than	
  three	
  elements	
   in	
  

them	
  (shown	
  as	
  “X”	
  in	
  Figure	
  7).	
  In	
  essence,	
  padding	
  makes	
  all	
  the	
  bins	
  equal	
  in	
  capacity	
  at	
  

the	
   cost	
   of	
   increasing	
   the	
   memory	
   requirement	
   for	
   these	
   bins	
   by	
   introducing	
   dummy	
  

elements	
  into	
  the	
  bin	
  array.	
  These	
  dummy	
  elements	
  are	
  not	
  computed	
  for	
  when	
  an	
  output	
  

reads	
  a	
  bin,	
  since	
  they	
  do	
  not	
  represent	
  real	
  input	
  elements.	
  

	
  

Figure	
  6.	
  Example	
  of	
  regular	
  binning	
  with	
  uniform	
  distribution	
  

Regular-­‐sized	
   binning	
   has	
   a	
   space	
   complexity	
   O(CB),	
   where	
   C	
   is	
   the	
   capacity	
   of	
  

every	
   bin	
   and	
   B	
   is	
   the	
   total	
   number	
   of	
   bins.	
   Increasing	
   the	
   maximum	
   capacity	
   by	
   1	
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increases	
   the	
   amount	
   of	
   space	
   needed	
   for	
   the	
   bin	
   data	
   structure	
   by	
   B	
   elements.	
   This	
  

becomes	
   increasingly	
   expensive	
   as	
   the	
   disparity	
   between	
   the	
   average	
   capacity	
   and	
  

maximum	
  capacity	
  increases	
  (Figure	
  7).	
  When	
  B	
  and	
  C	
  both	
  become	
  very	
  large,	
  the	
  strain	
  

on	
  the	
  memory	
  due	
  to	
  binning	
  may	
  become	
  the	
  limiting	
  and	
  sometimes	
  disabling	
  factor	
  in	
  

performing	
   the	
   computation.	
   We	
   will	
   demonstrate	
   such	
   cases	
   in	
   our	
   benchmarks.	
   The	
  

motivation	
  of	
  this	
  work	
  is	
  to	
  come	
  up	
  with	
  a	
  solution	
  that	
  makes	
  binning	
  a	
  feasible	
  solution	
  

even	
  for	
  highly	
  unbalanced	
  problems.	
  

	
  

Figure	
  7.	
  Example	
  of	
  regular	
  binning	
  with	
  non-­‐uniform	
  distribution	
  

	
  

1.4	
  Parallel	
  Implementation	
  with	
  Compact	
  Binning	
  

In	
  this	
  work,	
  we	
  propose	
  compact	
  binning,	
  a	
  method	
  of	
  performing	
  binning	
  with	
  a	
  

space	
  complexity	
  of	
  O(N),	
  where	
  N	
  is	
  the	
  number	
  of	
  input	
  elements,	
   independently	
  of	
  the	
  

number	
  of	
  bins	
  and	
  the	
  capacity	
  of	
  each	
  bin.	
  The	
  main	
  idea	
  behind	
  compact	
  binning	
  is	
  to	
  

allow	
  each	
  bin	
   to	
  have	
   its	
  own	
  bin	
  depth	
   regardless	
  of	
   all	
   the	
  other	
  bins.	
  As	
  a	
   result,	
  we	
  

eliminate	
  the	
  need	
  for	
  padding,	
  and	
  the	
  size	
  of	
  the	
  bin	
  data	
  structure	
  becomes	
  only	
  as	
  large	
  

as	
   the	
   number	
   of	
   input	
   elements	
   (Figure	
   8).	
   The	
   variable	
   bin	
   depth	
   and	
   elimination	
   of	
  

padding	
  come	
  at	
  the	
  expense	
  of	
  more	
  complicated	
  access	
  methods	
  to	
  these	
  bin.	
  Since	
  the	
  

size	
   of	
   each	
   bin	
   is	
   independent	
   of	
   all	
   the	
   other	
   bins,	
   accessing	
   a	
   bin	
   can	
   no	
   longer	
   be	
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computed	
   as	
   a	
   function	
   of	
   the	
   bin	
   index	
   and	
   the	
   bin	
   capacity.	
   Therefore,	
   additional	
  

overhead	
   is	
   incurred	
   in	
   trying	
   to	
   determine	
   the	
   starting	
   offset	
   of	
   each	
   bin.	
   The	
   added	
  

overhead	
  stems	
  from	
  the	
  need	
  to	
  pre-­‐compute	
  the	
  starting	
  index	
  of	
  every	
  bin	
  and	
  store	
  it	
  in	
  

an	
  array	
  which	
  will	
  then	
  be	
  used	
  as	
  a	
  look-­‐up	
  table	
  when	
  trying	
  to	
  access	
  the	
  bins	
  during	
  

the	
  limited-­‐range	
  function	
  computation.	
  

	
  

Figure	
  8.	
  Example	
  of	
  compact	
  binning	
  using	
  the	
  input	
  array	
  from	
  Figure	
  7	
  

In	
  reality,	
  when	
  the	
  input	
  data	
  is	
  highly	
  non-­‐uniform,	
  it	
  is	
  advantageous	
  to	
  partition	
  

the	
   input	
   across	
  multiple	
   data	
   structures.	
   In	
   the	
   case	
   of	
   regular	
   binning,	
   since	
   the	
   space	
  

requirement	
   is	
  a	
   factor	
  of	
   the	
  number	
  of	
  bins	
  and	
  the	
  capacity	
  of	
  each	
  bin,	
  programmers	
  

often	
  place	
  a	
  cap	
  on	
  the	
  bin	
  capacity	
  to	
  reduce	
  the	
  size	
  of	
   the	
  bin	
  array.	
  Bins	
  that	
  exceed	
  

this	
   cap	
   size	
   “spill	
   over”	
   their	
   excess	
   to	
   another	
   data	
   structure.	
   Bins	
   that	
   have	
   fewer	
  

elements	
  than	
  the	
  cap	
  are	
  still	
  padded	
  to	
  achieve	
  regularity.	
  In	
  this	
  situation,	
  the	
  cap	
  size	
  is	
  

chosen	
  to	
  maximize	
  the	
  number	
  of	
  elements	
  that	
  get	
  placed	
  in	
  bins,	
  while	
  simultaneously	
  

balancing	
  the	
  amount	
  of	
  padding	
  required.	
  However,	
  when	
  the	
  variance	
  from	
  the	
  average	
  

bin	
   depth	
   becomes	
   too	
   large,	
   there	
   may	
   no	
   longer	
   be	
   a	
   bin	
   depth	
   that	
   maximizes	
   the	
  

number	
  of	
  input	
  elements	
  in	
  the	
  bins	
  without	
  incurring	
  a	
  large	
  overhead.	
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Though	
  padding	
   is	
   not	
   a	
   concern	
   for	
   compact	
   binning,	
   partitioning	
   the	
   input	
  data	
  

across	
  the	
  bins	
  and	
  the	
  spill-­‐over	
  array	
  can	
  in	
  fact	
  improve	
  the	
  overall	
  performance	
  due	
  to	
  

better	
   load	
   balance	
   among	
   bins.	
   In	
   Chapter	
   5,	
   we	
   discuss	
   a	
  method	
   for	
   partitioning	
   the	
  

input	
  data	
  and	
  examine	
  how	
  varying	
  the	
  cap	
  value	
  affects	
  the	
  execution	
  in	
  the	
  regular	
  and	
  

compact	
  binning	
  cases.	
  

The	
   remainder	
   of	
   this	
  work	
  will	
   be	
   dedicated	
   to	
   comparing	
   regular	
   and	
   compact	
  

binning	
  in	
  the	
  context	
  of	
  limited-­‐range	
  function	
  applications.	
  We	
  will	
  discuss	
  the	
  different	
  

methods	
   of	
   implementing	
   each	
   type	
   of	
   binning	
   and	
   will	
   evaluate	
   their	
   effect	
   on	
   four	
  

different	
  applications	
  each	
  with	
  a	
  different	
  input	
  distribution	
  pattern:	
  MRI	
  gridding,	
  cutoff	
  

Coulombic	
  potential,	
  Blinn’s	
  blob,	
  and	
  N-­‐body	
  simulation.	
  All	
  except	
  for	
  the	
  last	
  application	
  

have	
   non-­‐uniform	
   input	
   data,	
   with	
   varying	
   degrees	
   of	
   non-­‐uniformity,	
   and	
   a	
   uniform	
  

output	
   grid.	
   In	
   the	
   case	
   of	
   N-­‐body,	
   the	
   input	
   data	
   set	
   is	
   also	
   the	
   output	
   data	
   set,	
   and	
  

therefore	
   both	
   are	
   non-­‐uniformly	
   distributed	
   within	
   the	
   space;	
   however,	
   we	
   will	
  

demonstrate	
   how	
   our	
   technique	
   of	
   compact	
   binning	
   can	
   still	
   applied	
   to	
   this	
   application	
  

without	
  hurting	
  its	
  performance	
  on	
  GPUs.	
  

We	
  will	
  not,	
  however,	
  discuss	
  in	
  this	
  work	
  when	
  to	
  use	
  cutoff	
  and	
  how	
  to	
  determine	
  

an	
   appropriate	
   cutoff	
   distance,	
   since	
   cutoff	
   is	
   a	
   domain	
   level	
   optimization	
   and	
   not	
   a	
  

programming	
  optimization.	
  In	
  other	
  words,	
  cutoff	
  is	
  a	
  property	
  of	
  the	
  application’s	
  domain	
  

and	
  is	
  introduced	
  as	
  an	
  optimization	
  to	
  the	
  computation	
  only	
  when	
  some	
  loss	
  of	
  accuracy	
  

in	
  the	
  output	
  can	
  be	
  tolerated.	
  If	
  no	
  loss	
  of	
  accuracy	
  can	
  be	
  tolerated	
  by	
  the	
  application,	
  the	
  

programmer	
  cannot	
  choose	
  to	
  introduce	
  a	
  cutoff	
  as	
  a	
  programming-­‐level	
  optimization.	
  For	
  

that	
   reason,	
  we	
  will	
  be	
  comparing	
   the	
  use	
  of	
   regular	
  and	
  compact	
  binning	
  assuming	
   that	
  

the	
  application	
  allows	
  the	
  use	
  of	
  a	
  limited-­‐range	
  function.	
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The	
   remainder	
   of	
   this	
  work	
  will	
   be	
   organized	
   as	
   follows.	
   Chapter	
   2	
  will	
   describe	
  

GPUs,	
  the	
  architecture	
  on	
  which	
  this	
  work	
  was	
  conducted.	
  Chapter	
  3	
  will	
  describe	
  the	
  four	
  

applications	
   used	
   for	
   the	
   analysis	
   of	
   this	
   work.	
   Chapter	
   4	
   will	
   discuss	
   the	
   trade-­‐offs	
  

between	
  regular	
  and	
  compact	
  binning.	
  Chapter	
  5	
  will	
  discuss	
  partitioning	
  as	
  an	
  orthogonal	
  

optimization	
   to	
   binning.	
   Chapters	
   6	
   will	
   discuss	
   the	
   similarities	
   between	
   limited	
   range	
  

functions	
  and	
  the	
  different	
  representations	
  of	
  sparse	
  matrices	
  in	
  the	
  linear	
  algebra	
  domain,	
  

and	
  Chapter	
  7	
  will	
  conclude	
  the	
  work.	
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CHAPTER	
  2	
  

THE	
  GPU	
  ARCHITECTURE	
  

As	
   shown	
   in	
  Chapter	
  1,	
   limited-­‐range	
   function	
  applications	
  are	
   inherently	
  parallel	
  

since	
  the	
  computation	
  of	
  each	
  input’s	
  contributions	
  to	
  the	
  output	
  set	
  is	
  independent	
  from	
  

all	
  other	
  input	
  points,	
  and	
  similarly,	
  the	
  computation	
  of	
  each	
  output	
  element	
  based	
  on	
  the	
  

inputs’	
   contributions	
   is	
   independent	
   from	
   all	
   other	
   output	
   points.	
   The	
   amount	
   of	
  

parallelism	
  in	
  these	
  computations	
  is	
  on	
  the	
  order	
  of	
  the	
  number	
  of	
  input	
  elements	
  for	
  the	
  

scatter	
  approach	
  and	
   the	
  number	
  of	
  output	
  elements	
   for	
   the	
  gather	
  approach.	
  This	
   large	
  

amount	
   of	
   parallelism	
   makes	
   limited-­‐range	
   functions	
   a	
   good	
   fit	
   for	
   massively	
   parallel	
  

architectures	
   and	
   though	
   the	
   techniques	
  we	
  describe	
   in	
   this	
  work	
   can	
  be	
   applied	
   to	
   any	
  

parallel	
   architecture,	
   they	
   are	
   best	
   suited	
   for	
   these	
   kinds	
   of	
   architectures	
   that	
   execute	
  

many	
   fine-­‐grained	
   threads	
   simultaneously.	
   The	
   architecture	
   we focus on is a graphics 

processing unit (GPU), more specifically, the NVIDIA GTX280 GPU. In this chapter, we will 

describe the details of the architecture and the programming model as relevant to this work. Full 

details on the GPU devices and their programming model can be found in the Programming 

Guide published by NVIDIA [1]. 

 

2.1 CUDA Programming Model 

Compute Unified Device Architecture (CUDA) is the programming language used to 

program NVIDIA GPUs. CUDA is based on the C programming language, with added 

constructs to explicitly describe parallelism. The explicit parallelism constructs are used to 

specify how a function is executed on the GPU. A function that runs on the GPU is called a 

kernel. The kernel is launched from the host (i.e., the CPU), with a specified number of threads, 
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all of which execute the same kernel code. GPU threads are lightweight, and a single kernel 

typically invokes hundreds or thousands of threads that are scheduled onto the GPU and 

executed as computing resources become available. Figure 9 shows the organization of the 

various processing elements. Threads are grouped in blocks, which in turn are grouped in a grid. 

A grid therefore is the entire set of all processing threads that carry out the execution of a kernel. 

Blocks within a grid have two-dimensional indices (x and y), which are used to determine the 

section of the work that each block is responsible for. Similarly, every block is made of threads 

with three-dimensional indices (x, y, and z), for determining which part of the work within the 

block every thread computes. GPUs support single program multiple data (SPMD) computation 

models: every block can execute a different path through the kernel code (paths are determined 

by conditional branches) independently of all the other blocks. Therefore, even though all the 

blocks execute the same kernel, different blocks may execute different sets of instructions within 

the kernel. Threads in each block are further grouped into warps of 32 threads, where a warp is 

the atomic vector unit of execution. All threads within a warp execute in the single instruction 

multiple data (SIMD) computation model, which means that all the threads execute the same set 

of instructions of a kernel; however, different warps with the same block are free to execute 

different paths within the kernel. In the event that threads within a warp need to execute different 

paths of the kernel based on their data values (this event is called thread divergence), all the 

threads in the warp have to execute all the paths taken by any of the threads that constitute that 

warp, but only commit the results of the path that is relevant to them. Thread divergence can be 

costly, first because the different paths are serialized (example shown in Figure 10), and 

secondly because it results in threads performing unnecessary computation, thus occupying 

computing resources only to discard the results in the end. 
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Though all threads within a warp share the same state (e.g., program counter, execution 

schedule, etc.), each thread maintains its own set of private registers for computing its data 

(shown in Figure 9). Registers are the fastest type of memory available to threads. In addition to 

registers, all threads within a block have access to a shared memory space that can be used to 

read and write common data. This space is managed explicitly in software (by declaring a 

variable or array with the __shared__ keyword appended to its data type) and is commonly used 

to store shared data among threads locally to avoid replicating accesses to the main memory. At 

the highest level, and with the highest access latency, is global memory, which is viewable by all  

	
  

Figure	
  9.	
  CUDA	
  programming	
  model 

	
  

Figure	
  10.	
  Effects	
  of	
  thread	
  divergence	
  on	
  warp	
  execution 
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the threads across blocks, as well as the host processor. Constant memory is a subspace within 

global memory that is read-only, and is cached closer to the SMs for faster re-access to the data 

by the threads. 

All threads within a block can be synchronized using the __syncthreads() function. 

Synchronization enables the use of the shared memory by guaranteeing that all threads have 

finished writing data into it before it is subsequently read, and conversely, data in shared 

memory is read by all threads that need it before it is overwritten by others. In the general case, 

however, threads across blocks cannot be synchronized except by ending the kernel execution. 

The host processor (typically the CPU) controls the computation on the GPU (also 

referred to as the device). The host launches the kernels to be executed on the GPU with the 

corresponding grid and block configurations. Kernel launches are asynchronous, meaning that 

once the host launches a kernel, it can continue executing its own workload without waiting for 

the GPU kernel to complete execution. The kernel is synchronized once the data it computes on 

the device is requested back on the host. Alternatively, the kernel can be made synchronous 

using API calls provided by the language. In addition, because the GPU and CPU have different 

memory address spaces, the CUDA language also provides APIs for dynamically allocating and 

freeing memory on the device, as well as transferring data to and from the device (using DMA 

transfers). These calls are usually synchronous, but their asynchronous equivalents are also 

available. 

 

2.2 GPU Architecture 

As one would expect, there is a duality between the GPU’s hardware organization and the 

programming model. Figure 11 shows a simplified diagram of the GTX 280 architecture. The 
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GTX 280 features 240 cores (called streaming processors or SPs). Each processor is a single-

instruction in-order processor with one floating point and integer arithmetic unit. Every eight SPs 

are grouped into a simultaneous multiprocessor (SM), for a total of 30 SMs. All the SPs in an 

SM share a single instruction fetch and decode unit, effectively making the SM an eight-wide 

vector processor, with each SP processing one of the eight elements. Blocks are assigned to 

single SMs for execution, and every SM can maintain contexts and execute up to eight blocks 

simultaneously. Every warp within a block that is scheduled on an SM executes instructions for 

its 32 threads in four consecutive cycles. Scheduling multiple blocks (and by association warps) 

on every SM allows the GPU to hide the long latency of global memory accesses such that when 

one warp makes an access to memory and has to wait for the request to return, another warp can 

be executed in the mean time. 

	
  

Figure	
  11.	
  GTX	
  280	
  architecture 

Every SM is attached to its own shared memory, which has a separate address space from 

the other shared memories and global memory. Shared memory is a scratchpad memory, 
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meaning that it is explicitly managed by software and is not guaranteed to be consistent with the 

contents of global memory. Though multiple blocks may run on an SM simultaneously, each 

block can only access its own equal portion of shared memory. The amount of shared memory 

needed by each block can also determine how many blocks can be scheduled simultaneously on 

an SM. 

Global memory is a high-latency off-chip DRAM memory attached to the GPU and is 

accessible by all the SMs. The DRAM technology makes read and write accesses into memory 

very slow, so one way to improve the efficiency of such memory is to increase the amount of 

data returned by each access, thus amortizing the latency [2]. This collection of data returned by 

a single access is called a burst. In order to utilize the data returned in a given burst, GPUs 

combine accesses of threads within a half-warp if those accesses are made to the same burst. 

When all threads in a half-warp access data in the same burst, we call that a coalesced access 

(Figure 12.a). If the requests are not coalesced (example in Figure 12.b), every thread will issue a 

separate request and receive a full burst, of which it will only extract the data that it needs. 

Performance can degrade significantly as a result of non-coalescing. 

	
  

Figure	
  12.	
  Effects	
  of	
  coalescing	
  and	
  alignment	
  on	
  global	
  memory	
  accesses 

The GTX 280 supports three burst sizes: 32 bytes, 64 bytes, and 128 bytes, corresponding 

to 2-byte, 4-byte, and 8-byte data types respectively. Alignment is another factor that can affect 

memory performance. Alignment occurs when the starting address of a memory request by a 
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half-warp coincides with the start of a burst. If the request does not start at the beginning of the 

burst, the misalignment may cause the request to be split into multiples, thus wasting memory 

bandwidth, increasing memory latency, and resulting in performance degradation (Figure 13).  

Because each bin in compact binning is allowed to have an arbitrary size, misalignment 

becomes a concern when accessing these bins. This motivated us to try and better understand the 

effects of misalignment on the kernel’s performance. To that end, we wrote a micro benchmark 

that simulates the accesses into regular bins that were initially aligned, and recorded the runtime 

as we varied the amount of misalignment. Figure 13, shows the results of that simulation. As we 

can see, misalignment increases the runtime by nearly 60% when threads load consecutive floats 

from the bin array. The runtime improves slightly when the misalignment is 32 bytes since that 

coincides with a 32-byte burst boundary. The effects of misalignment can be reduced if threads 

load a float2 short vector type element from the array rather than a single float. Float4 vector 

types also improve runtime compared to single float types but only in certain cases, and they fail 

to outperform float2 accesses. 

We used profiling counters that recorded the number of accesses made to each of the 

three burst sizes to further explain the change due to misalignment, seen in Figure 13. Based on 

the counters’ values, we have deduced the model shown in Figure 14. The model shown 

corresponds to a half-warp loading 256 consecutive bytes. This corresponds to 4 separate load 

instructions for float, two for float2, and one for float4 data types. Note that even though it only 

takes one instruction to load 256 bytes of float4 data, it takes two memory accesses of the largest 

burst size to satisfy the request. However, those two memory accesses are treated as a single unit 

and cannot be scheduled separately. 
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Figure	
  13.	
  Effects	
  of	
  misalignment	
  on	
  float	
  and	
  float	
  vector	
  types	
  

	
  

Figure	
  14.	
  Memory	
  accesses	
  due	
  to	
  misalignment	
  

Misalignment had the greatest effect on single float types as it results in six memory 

accesses of various burst sizes to load all 256 bytes. Furthermore, a misaligned access to an array 
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of floats causes the largest waste of burst data (everything that is not orange in the misaligned 

float diagram), which inevitably reduces the effective memory bandwidth. Misaligned float2 

accesses waste significantly less bandwidth, despite a slight increase in the number of accesses, 

and that could explain the behavior in Figure 13. Misaligned float4 accesses are the most 

efficient both in the number of added accesses and in the amount of wasted bandwidth; however, 

they perform worse than float2. We believe this to be the result of scheduling since the three 

accesses in the misaligned case have to be scheduled simultaneously, likely resulting in memory 

bank conflicts (for a more thorough study of bank conflicts, please refer to [2]). 
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CHAPTER 3 

DESCRIPTION OF BENCHMARK APPLICATIONS 

In this chapter we will introduce the four benchmarks that we use to compare regular and 

compact binning. We will use these benchmarks in Chapters 4 and 5 to provide quantitative 

analysis for the different aspects of the comparison. The four benchmarks are: MRI 

reconstruction gridding step, cutoff Coulombic potential, Blinn’s blob, and N-body simulation. 

 

3.1 MRI Reconstruction 

Magnetic resonance imaging (MRI) is a common, non-invasive technique used in 

radiology to analyze the internal structure of the human body, and is used for a wide range of 

applications where precise information is desired due to its image resolution compared to other 

imaging techniques like computed tomography (CT) and x-ray. The scanner used for MRI data 

acquisition collects samples in the frequency domain. An inverse fast Fourier transform (IFFT) is 

then applied to the acquired data to transform it back to the image domain. 

Because of the need to perform an FFT operation during reconstruction, traditional 

acquisitions collected data along a Cartesian path with uniform spacing between data points. The 

result, however, was a very slow acquisition that presented physical challenges to the patient, 

who had to lie in the scanner for approximately 20 minutes without moving. More recently, MRI 

acquisition has been performed on non-Cartesian paths, which saves both time and data [3]. 

Research has shown that fewer samples can be collected while still maintaining enough data to 

reconstruct the image without quality degradation. The time and data saved at acquisition time, 

however, come at the expense of added complexity and time needed to reconstruct the images. 

There have been many efforts to speed up the reconstruction of non-Cartesian data. One such 
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effort involves treating the input data as a linear system and solving it using an iterative method 

such as least-squares or conjugate gradient, as shown on the right-hand side of Figure 15. Wu et 

al. implemented a GPU version of this approach [4]. Another approach is the gridding technique 

shown on the left-hand side of Figure 15. As the name suggests, the idea behind gridding is to 

map the non-Cartesian input data onto a Cartesian grid in the same domain (i.e., the frequency 

domain), then proceed with IFFT as is done in the classical method. One motivation for using 

gridding instead of the iterative method is that the former has O(N log N) complexity compared 

to the O(N2) complexity of the iterative method. The trade-off comes in the slightly poorer 

quality of the gridding image due to some noise being introduced by the gridding step itself. 

	
  

Figure	
  15.	
  Reconstruction	
  techniques	
  for	
  non-­‐Cartesian	
  MR	
  sampling 

At the heart of the gridding step is an application of limited-range function. Every input 

point, also known as a sample point in the 3D frequency domain space, is mapped onto a 3D 

Cartesian grid of the same space, using a Kaiser-Bessel function [5]. The Kaiser-Bessel function 

is used to determine the weight of the contribution of a sample point onto a grid point, based on 

the distance between the two. Because the weight of the contribution becomes insignificant 

beyond a certain distance between the two points, a hard cutoff is imposed on the kernel beyond 

which the contribution is considered to be zero. The cutoff distance for the Kaiser-Bessel 

function is called the “kernel length.”  
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Figure 16 shows a sample acquisition trajectory. The acquisition starts in the center of the 

space and moves outward in a conical shape with varying angles of the cone. One can see from 

the figure that the data density is higher in the center than it is on the outside. Figure 17 is a plot 

of the data density along the space. This better shows the large variation in data distribution 

throughout the space. For a large data set like the one shown in Table 1, approximately 24 

million sample points lie in the horizontal band shown at the bottom of the curve. The average 

density of points in that region is approximately 4 sample points per 1 unit3 bin. The peak density  

	
  

Figure	
  16.	
  Acquisition	
  trajectory	
  of	
  non-­‐Cartesian	
  MR	
  sampling	
  

	
  

Figure	
  17.	
  Sample	
  density	
  for	
  the	
  trajectory	
  shown	
  in	
  Figure	
  16	
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in the middle is 391k points in a single bin, and decreases sharply moving away from the center. 

It is very inefficient, and sometimes infeasible, to apply regular binning to this kind of data 

distribution. Because the mean of the data density is too high and the variance too large, there is 

no bin size that would map the majority of the input points to the GPU and minimize the amount 

of spill-over data to the CPU without causing very large data bloats. In this situation, compact 

binning is more than just an optimization technique; it is an enabling one. We will use the small 

data set for comparison in Chapters 4 and 5 since it can be represented using regular binning if 

the bin depth is capped at 9 samples per bin. Figure 18 shows the output of the small data set. 

	
  

Figure	
  18.	
  Sample	
  reconstructed	
  MR	
  image 

Table	
  1.	
  MRI	
  data	
  statistics	
  

	
  	
   Small	
   Large	
  

No.	
  of	
  Samples	
   2655910	
   30144488	
  

No.	
  of	
  Bins	
   16777216	
   191102976	
  

Min	
  Bin	
  Depth	
   0	
   0	
  

Max	
  Bin	
  Depth	
   11560	
   391536	
  

Avg	
  Bin	
  Depth	
   0.158305	
   0.07316	
  

StdDev	
   2.86096	
   28.861158	
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3.2 Cutoff Coulombic Potential 

A biomolecular modeling system seeks to simulate the interactions between atoms in a 

medium. There are two types of interactions in such a system: the interactions among chains of 

covalently bonded atoms (such as proteins) and the interactions between non-bonded atoms. 

These interactions obey Newton’s second law of motion with the forces in the system generated 

by Coulomb’s law of electrostatic interaction. Computing these simulations is computationally 

expensive. It is on the order of O(N) for the covalently bonded atoms, and O(N2) for all the pairs 

of unbonded atoms. Furthermore, because a truly continuous simulation is impossible to achieve, 

we approximate the motion of atoms in the space by breaking down the simulation’s time 

window into many consecutive discrete time steps. For each time step we compute the forces 

exerted on all the atoms in the space, and based on those forces update the velocity and position 

of each atom for the next time step. Depending on the duration of time being simulated and the 

length of each time step, a full simulation’s runtime can be on the orders of hours, weeks, or 

even years. 

Another aspect of the biomolecular system that is useful for simulation and visual 

rendering (example in Figure 19) is to determine the electrostatic potential map for that system. 

The electrostatic potential map is a grid of equally spaced points, and the potential of each point 

on the grid is calculated by accumulating the potential of each atom at that point. Atoms are 

modeled as point charges with each atom i at position ri holding a fixed charge qi. The potential 

of a map point at position r is computed using the following equation: 

 

where ε0 is the dielectric constant of the medium, and s(r) is a unitless scaling factor between 0 

and 1. When s(r) equals 1, the electrostatic potential for every output element is computed by 
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iterating over all the atoms in the space, resulting in an O(N2) algorithm.  Hence, to improve the 

algorithm’s complexity, s(r) is chosen in such a way to yield a cutoff distance rc beyond which 

the contribution’s value is insignificant and can be approximated to zero. One choice for s(r) is 

 

With this equation for s(r), the potential of an atom onto a map point diminishes gradually to 0 as 

it approaches rc, the cutoff radius, and is zero beyond rc. 

	
  

Figure	
  19.	
  Example	
  of	
  a	
  rendering	
  of	
  protein	
  cells	
  and	
  their	
  potential	
  map 

When s(r) is less than 1, the computation pattern is effectively a limited-range function, 

and can benefit from binning to maintain a computational complexity of O(N) when executed in 

fine-grained parallelism. Because molecules have a fairly uniform density of about 1 atom per  

10 Å3, regular binning works well for this computation. Rodrigues et al. [6] implemented a 

highly optimized version of the electrostatic potential map computation for GPUs using regular 

binning. By using regular binning they were able to control the alignment and coalescing of 

memory accesses when reading bins into shared memory. In this work we will compare their 

regular binning implementation with compact binning and demonstrate that even for well 

distributed input data, compact binning can be a viable solution. Table 2 shows the statistics of 
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two input data sets for CP. For our experiments, we will use the large dataset. Compared to the 

MRI dataset, the CP large data set has a much more uniform distribution (smaller standard 

deviation). 

Table	
  2.	
  Coulombic	
  potential	
  data	
  statistics	
  

	
   Small	
   Large	
  

No.	
  of	
  Atoms	
   5943	
   570348	
  

No.	
  of	
  Bins	
   4913	
   140608	
  

Min	
  Bin	
  Depth	
   0	
   0	
  

Max	
  Bin	
  Depth	
   12	
   14	
  

Avg	
  Bin	
  Depth	
   1.209648	
   4.056298	
  

StdDev	
   2.528611	
   3.342421	
  

 

3.3 Blinn’s Blob 

The Blinn’s blob algorithm is very similar to the electrostatic potential map computation. 

It too can be used for the image rendering of a point cloud [7], with an example shown in Figure 

20. Blinn’s blob creates a density map by accumulating the density contributions of all atoms to 

a particular point on the grid.  The contributions depend on the distance of the atom from the grid 

point, the radius of the atom as well as the blobbiness that is desired. In addition, because the 

density function exponentially decreases with the increase in distance between the atom/grid 

point pair, every atom only affects a small neighborhood of grid points, beyond which its 

contributions are negligible and can be approximated to zero. Table 3 shows three example data 

sets for Blinn’s blob. All three of these data sets exhibit a very sparse distribution of the input 

elements in the space (average bin depth < 0.2), which means that in the case of regular binning, 

the majority of the bins will only contain padding elements. As a result we expect to see a 

noticeable improvement in performance and memory usage with the use of compact binning. 
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Figure	
  20.	
  Examples	
  of	
  Blinn's	
  blob	
  rendering	
  for	
  atom	
  clouds	
  

Table	
  3.	
  Blinn's	
  blob	
  data	
  statistics	
  

	
   Small	
   Large	
   Random	
  

No.	
  of	
  Atoms	
   1739	
   26318	
   500000	
  

No.	
  of	
  Bins	
   262144	
   1179648	
   23887872	
  

Min	
  Bin	
  Depth	
   0	
   0	
   0	
  

Max	
  Bin	
  Depth	
   360	
   3	
   3	
  

Avg	
  Bin	
  Depth	
   0.006634	
   0.02231	
   0.020931	
  

StdDev	
   0.708008	
   0.15885	
   0.144142	
  

 

3.4 N-Body Simulation 

N-body simulations are common tools used to model astrophysical systems and their 

evolution. Due to the very large number of elements and the long period of time for which these 

system are simulated, good performance is critical for the feasibility of these simulations. The N-

body simulation, among other things, seeks to simulate the motions of objects, such as stars, 

galaxies, and planets, through space based on the gravitational forces they exert on each other. 

The objects are typically modeled as points in space with mass, position and velocity attributes, 

and do not represent physical objects. Similar to the Coulombic potential, the motion over time is 

simulated by computing the positions and velocities of all the objects for a given discrete time 

step. The most direct and most accurate approach is the particle-particle simulation, which 

computes the gravitational forces of every pair of objects, but its complexity grows quadratically 
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with the number of elements, and thus is computationally infeasible for large simulations. 

Another method is the particle-mesh method (PM) which partitions the space into meshes for 

which a fast Fourier transform is computed to solve Poisson’s equations, therefore reducing the 

computational complexity to O(M log M), where M is the number of meshes. However meshes 

have to be regular to satisfy the constraints of the FFT algorithm, and mapping the particles onto 

the mesh introduces noise into the system, therefore sacrificing some accuracy in the final results. 

A combination of PP and PM combines the benefits of both approaches [8]. If we 

partition the total force on a particle as the sum of nearby forces and distant forces, we can use 

the PP method to compute the nearby forces, where accuracy matters, and PM for the distant 

forces where approximated results can be tolerated. In this setting, computing the PP forces 

becomes an application of limited-range functions. N-body simulation is different from the other 

three applications in that its output is not a regular grid. Since the quantities being computed are 

the forces of the bodies among themselves, the input and output in fact consist of the same data 

set. Input binning is still useful to reduce the number of elements each output object needs to 

access; however, there is little to no locality to the output when every thread block is given an 

equal number of output elements, because the output is non-uniformly distributed in space. For 

that reason, data sharing in the shared memory is not applicable, and may in fact hurt 

performance. Instead, every thread computing the position and velocity of a body reads its 

relevant bins directly from global memory. This access pattern differs vastly from the other three, 

which makes it less relevant for parts of the discussion in Chapters 4 and 5. However, since N-

body is the most general type of limited-range application, it is important to analyze how 

different binning techniques affect its performance. The statistics of the input data for N-body, as 

shown in Table 4, are vastly different from the other three in part because it is the only 
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application with as many inputs as outputs, and more inputs than number of bins. Figure 21 is a 

visual representation of the simulation of the data set shown in Table 4 for a given time step. 

	
  

Figure	
  21.	
  Example	
  of	
  an	
  N-­‐body	
  simulation	
  from	
  the	
  CUDA	
  SDK 

Table	
  4.	
  N-­‐body	
  data	
  statistics	
  

	
  	
   Random	
  

No.	
  of	
  Bodies	
   131072	
  

No.	
  of	
  Bins	
   32768	
  

Min	
  Bin	
  Depth	
   0	
  

Max	
  Bin	
  Depth	
   99	
  

Avg	
  Bin	
  Depth	
   4	
  

StdDev	
   6.52	
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CHAPTER 4 

COMPARING REGULAR AND COMPACT BINNING 

In this chapter we will compare regular binning and compact binning. We have discussed 

in Chapter 1 how regular binning provides ease of access to the bins, and better control over 

coalescing and alignment of memory accesses, at the cost of large memory requirements when 

the bin densities vary. We have also explained how compact binning eliminates the overhead of 

memory padding at the cost of creating and having to use an additional array for accessing the 

bins. Furthermore, with compact binning, it is more difficult to maintain alignment when 

accessing the data in the bins. In this chapter, we evaluate qualitatively and quantitatively both 

binning approaches. We begin by explaining the algorithm for performing and using each 

binning technique, then proceed to analyzing the differences. 

 

4.1 Regular Binning Algorithm 

Step1: Determining the size of the largest bin 

Determining the size of the largest bin can be done either sequentially or in parallel. Either way, 

a zero-initialized integer array for all the bins needs to be maintained, and as each input element 

is visited and its bin index determined, the integer corresponding to that bin is incremented by 1. 

When performed in parallel, generating the integer array (which is effectively a histogram) is 

most simply done using atomic updates into the array. Once the histogram is generated, we use it 

to determine the size of the largest bin, which can be done by using a reduction computation with 

a max operator, and the final access to determine the max can be done using a reduction 

computation with a max operator [9].  This step can be omitted if the bin size is known statically 

(e.g., applications where the bin size does not change for different input data). Coulombic 
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potential is an example of such an application because the density of atoms in space is fairly 

regular across data sets. 

Step2: Binning the input elements 

Once the maximum bin depth has been determined and the data structure allocated accordingly, 

we can perform the actual distribution of input elements into the bins. This step can also be 

performed sequentially or in parallel since it is not very computationally expensive. In order to 

perform binning, we need to maintain another zero-initialized integer array of offsets into each 

bin, which is used to determine the offset within the bin at which to place a given input element. 

For each input element, we determine once again the bin it belongs to, place it at the current 

offset within the bin, then increment the offset. If performed in parallel, binning can be achieved 

by atomically incrementing the offset counter, and the effects of this atomicity are not too severe, 

since the only contention is between elements trying to update the same bin, and all other bins 

can be populated in parallel. 

Step 3: Performing the limited-range function computation 

In order to perform the computation of the limited-range function, the output grid is first divided 

into tiles, where each tile is a subset of spatially local output elements. Each tile is assigned to a 

thread block where every thread computes exclusively the result of one or more output elements 

from that subset. The spatial locality of the output in a tile is important to maximize sharing of 

input data among threads within the block. Figure 22 shows the pseudo code for the limited-

range computation. sharedLocalBin is an array in shared memory that is accessible by all 

the threads within a block. In the code in Figure 22, each thread is shown to compute only one 

output element and compute that output’s index based on the 2D blockIdx and 3D 

threadIdx (both of which are CUDA constructs). Since every thread computes an output 
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element exclusively, the result can be accumulated in a local register (line 2).  

Every output element is computed by a single thread exclusively, and that thread can 

compute the value of that element locally (line 2). Every block iterates over all the bins that its 

output tile intersects: zLo to zHi, yLo to yHi, and xLo to xHi are the 3D bounds of the region 

intersected by a given tile. For each bin that is visited, all of its elements are loaded 

cooperatively into shared memory by all the threads in the block. Note that a bin is visited if at 

least one of the outputs within the block’s tile intersects that bin; however, that bin may fall 

outside the cutoff region of other outputs in the tile. That is why it is still necessary to check 

whether a given input point is within the cutoff distance of the output point before computing its 

contribution to that output (line 15). Once all the bins and all the elements within them have been 

visited, and their contributions added, each thread writes its privately computed output to the 

global array that is the final result. 

	
  

Figure	
  22.	
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  kernel	
  with	
  regular	
  bins 

! 00 __shared__  inElem sharedBinCache[/*max size*/]; 
01 outputIdx index = computeOutputIndex(blockIdx, threadIdx); 
02 outElem myOutElem = initOutElem(index); 
03 int zLo = z0 – cutoff; 
04 int zHi = z0 + blockDim.z + cutoff; 
05 // compute yLo, yHi, xLo, xHi similarly 
06 for (z: zLo ! zHi){ 
07   for(y: yLo ! yHi){ 
08     for(x: xLo ! xHi){ 
09       int count = binCount[z][y][x]; 
10       if(threadIdx < count){ 
11         localBinCache[threadIdx] = globalBinArray[z][y][x][threadIdx]; 
12       } 
13       __syncthreads(); 
14       for(i: 0 ! count){ 
15         if(|localBinCache[i].coords – myOutElem.coords| < cutoff){ 
16           /*compute the contribution of this input onto the output*/ 
17         } 
18       } 
19     } 
20   } 
21 } 
22 globalOutputGrid[index] = myOutElem; 
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BinCount in line 9 is the histogram generated in step 2 when performing the input binning and is 

used to determine how many elements are in a given bin to avoid unnecessarily loading the 

padding elements. Alternatively, we can load the entire content of the bin regardless of the 

number of real elements within the bin, and as we traverse shared array of elements, break out of 

the loop upon the first occurrence of a padding element (line 14). Effectively, the padding 

elements behave as sentinels in this situation. There are advantages to both approaches. If the 

number of actual elements in each bin is not much smaller than the maximum bin capacity, 

loading the padded elements into shared memory will likely be less costly than reading the 

binCount (which requires an extra global memory access). Alternatively, if the number of 

elements per bin varies significantly, it may be more effective to only load the elements needed, 

by first figuring out how many real elements there are in each bin. Figure 23 compares the two 

alternatives for all four benchmarks. For each benchmark the runtime of the limited-function 

execution is plotted for the sentinel checking method and the count method. For MRI, Blinn, and 

CP, count always performs better than sentinel checking. This is likely an indication of a large 

number of empty bins or bins with fewer than bin depth elements, which causes the sentinel 

method to read more data than the count method, resulting in worse performance. N-body 

(Figure 23.d), on the other hand, performs slightly better with sentinel checking up to a bin depth 

of 10, after which count starts performing better. Overall, despite the additional access to global 

memory to retrieve the size of each bin, checking the element count seems to perform better than 

loading the entire bin into on-chip memory and checking for the sentinel locally. 
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4.2 Compact Binning 

Step 1: Determining the size of each input bin 

This step is identical to step 1 of the regular binning algorithm. The purpose of this step in 

compact binning, however, is slightly different: The histogram built in this step will be used to 

determine the start of each bin rather than the max depth of the bins. 

Step 2: Determining the start of every bin 

Using the histogram generated in step 1, we can determine the start of every bin. The operation 

that achieves this is called a prefix sum. The prefix sum computes, for every element at index i in 

an array, the sum of all the elements from index 0 to index i-1 (the value at index 0 is zero). 

Since every element in the array corresponds to the size of a bin, computing the starting offset of 
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a bin corresponds to the sum of the sizes of all the bins that precede it. Prefix sum (also known as 

a scan operation), can be efficiently performed in parallel [10]. 

Step 3: Binning the input elements 

This step is also similar to step 2 of the regular binning algorithm. The only difference is that the 

starting offset of each bin has to be looked up from the array generated in the previous step, since 

it cannot simply be computed, as is the case with regular binning. Just like in regular binning, 

another array needs to be maintained that keeps a count of the number of elements that have 

gone into a bin, to determine the position of every input element that was placed in the bin. 

Despite the fact that bins have varying sizes, each bin can be populated in parallel with other bins 

since the start of every bin can be independently known by reading the starting offset from the 

array of bin offsets. 

Step 4: Performing the limited-range function computation 

In its simplest form, the computation of the limited-range function using compact bins does not 

look much different from its regular equivalent. The only difference is the need to access the bin 

offset array to determine the start and end of a bin, rather than computing its starting offset using 

x, y, and z (lines 9, 10 and 12 in Figure 24). Furthermore, when loading the elements into shared 

memory, the boundary test depends on the variable size of the bin rather than a predetermined 

constant bin size (lines 11 and 15 in Figure 24). 
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4.3 Comparing Regular and Compact Binning 

As mentioned previously, using either regular or compact bins involves a tradeoff. 

Regular bins enable us to compute the starting offset of each bin rather than having to pre-

compute it and store it in an array for look-up during the computation. Furthermore, since the 

bins have the same size, we can better control the layout of these bins in memory, thus ensuring 

aligned accesses. However, the use of padding may sometimes result in a largely inflated bin 

data structure, which can limit the size of the problem that can be computed by a single kernel. In 

addition, because of padding, further checks need to be made to avoid computing unnecessarily 

for those padding elements. One method discussed in Section 4.1 is to maintain an array of the 

element count per bin as shown in Figure 22. An alternative method is to load the entire bin into 

shared memory and check for a sentinel value signifying the end of the valid data in a bin. Either 

!

00 __shared__  inElem sharedBinCache[/*max size*/]; 
01 outputIdx index = computeOutputIndex(blockIdx, threadIdx); 
02 outElem myOutElem = initOutElem(index); 
03 int zLo = z0 – cutoff; 
04 int zHi = z0 + blockDim.z + cutoff; 
05 // compute yLo, yHi, xLo, xHi similarly 
06 for (z: zLo ! zHi){ 
07   for(y: yLo ! yHi){ 
08     for(x: 0 ! xLo ! xHi){ 
09       int start = binOffsetArray[z][y][x]; 
10       int end   = binOffsetArray[z][y][x+1]; 
11       if(threadIdx < end-start){ 
12         localBinCache[threadIdx] = globalBinArray[start+threadIdx]; 
13       } 
14       __syncthreads(); 
15       for(i: 0 ! end-start){ 
16         if(|localBinCache[i].coords – myOutElem.coords| < cutoff){ 
17           /*compute the contribution of this input onto the output*/ 
18         } 
19       } 
20     } 
21   } 
22 } 
23 globalOutputGrid[index] = myOutElem; 
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method incurs a certain amount of overhead. 

Compact binning, on the other hand, eliminates the need for padding, therefore 

guaranteeing that all data loaded into shared memory is valid data that will be consumed by at 

least one thread. Yet due to the variable size of the bins, we incur the overhead of needing to 

look up the start and end indices of each bin, which requires additional accesses to global 

memory. Another side effect of the variable size of the bins is the difficulty of controlling the 

alignment of bins in memory. In the following subsections, we will evaluate the effects on 

performance due to the binning overhead, the cost of the various element count methods and the 

effects of misalignment. 

 

4.3.1 Binning overhead 

Computing the size of every bin as the first step of both the compact and the regular 

binning incurs the same computation overhead. Both are O(N) computations, and both have the 

same access pattern into the bin counters, based on the values of the inputs. Both also suffer to 

the same extent from the serializing effects of atomic operations into the bin counter. The use  of 

these arrays differs for the two binning approaches. Regular binning uses this array to determine 

the max bin depth using a reduction operation that takes O(log M) steps and O(M) comparisons 

when performed in parallel (M is the number of output elements). On the other hand, the prefix 

sum used in compact binning to determine the start of every bin takes twice as many steps and 

performs twice as much computation. Note that this computation does not depend on the number 

of input elements or their values, but only depends on the number of output elements. However, 

even for the largest output of any dataset we have analyzed (i.e., the large MRI gridding dataset 

in Table 1), the runtime is 96 ms and 136 ms for reduction and scan respectively, and the 
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difference of 40 ms constitutes less than 4% of the total runtime of the algorithm. The final 

binning step also varies slightly for compact and regular binning. The compact implementation 

requires a look-up of the bin’s starting index, which increases the number of memory requests in 

comparison with the regular binning algorithm that computes the starting index. Overall, it takes 

longer to perform compact binning than it does to perform regular binning, but as we will 

demonstrate later on in the work, the difference is not large enough to negate the benefits of 

using compact bins to execute the limited range function. 

 

4.3.2 Added access overhead 

We have shown in Section 4.1 that maintaining the number of real elements per bin 

improves the execution time of the limited range function as compared to loading the entire bin, 

despite requiring an additional access to global memory (Figure 23). With that in mind, the 

access pattern for compact binning is not much different from the count approach for regular 

bins. The only differences are highlighted in red in Figures 22 and 24. Instead of loading the 

number of elements in a bin, the compact algorithm loads the starting offset of the bin, and the 

starting offset of the bin that follows, and from the difference infers the size of a particular bin. 

This results in an extra global memory access for every visited bin. Figure 25 shows the relative 

performance of various access patterns as compared to regular binning (blue series).  We can see 

from the figure that the extra global memory access for compact can have a negative effect on 

performance (green series). Blinn’s blob is the only exception, as it sees a slight performance 

improvement for compact versus regular. The difference, however, is not significant and could 

be attributed to more efficient memory accesses (in terms of simultaneous accesses to the 

different memory banks), and that is beyond the control of the programmer. 
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One optimization that can be performed to compact binning is to access an entire range of 

contiguous bins simultaneously rather than accessing each bin separately. More specifically, for 

any given z and y bin coordinates, bins xL through xH, which occupy consecutive memory 

locations, can all be loaded simultaneously since compact bins do not contain any padding; all 

the elements between the start of xL and xH are in fact useful to the computation and all need to 

be loaded into on chip memory. For that reason, rather than simply reading the start of each bin 

and the one following it to determine the range of a single bin in x, we can read the start and end 

indices of the entire range in x once, and load all the elements within that range into on chip 

memory. The benefits of this optimization are three-fold. First, the number of accesses to the bin 

offset array is reduced from two accesses per bin, to two accesses amortized over the number of 

bins within the range. Second, the access into the bins is more efficient as we better utilize 

memory bursts by not breaking bins’ bounds. Finally, by accessing entire ranges rather than 

individual bins, we get rid of the loop for the x dimension (line 8 in Figure 24), thereby reducing 

the overall number of iterations within the kernel. As a result of this optimization, we see a 

significant improvement of the performance of compact binning over regular binning as shown 

by the purple series in Figure 25. Since N-body does not utilize shared memory to share the input 

data among all the threads within a block, the optimization of range accesses does not apply to it. 

The range optimization can also be applied to the regular binning implementation, but its 

overall effects are detrimental to the kernel’s performance. The reason is that by accessing an 

entire range we have to inevitably load padding elements into shared memory, which 

unnecessarily consumes memory bandwidth. The red series in Figure 25 shows the performance 

of the range optimization on regular binning. In the best case, it breaks even with the 

performance of regular binning for Blinn. In the case of MRI, however, we see a 6.82X 
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slowdown that can most likely be attributed to the large number of zero elements that end up 

being unnecessarily loaded into on-chip memory. The range optimization could not be applied to 

regular binning in the case of N-body because the implementation does not use shared memory 

to cache the bins. 

	
  

Figure	
  25.	
  Comparing	
  regular	
  and	
  compact	
  bin	
  accesses 

4.3.3 Effects of misalignment 

One of the potential drawbacks of compact binning is the resulting misalignment of bins 

in memory. In this section, we study these effects. First of all, we propose three techniques to fix 

misalignment. The first one is to pad each input element individually so that it can satisfy the 

alignment requirements. For all of the benchmarks we studied, padding each element to 8 floats 

satisfied the lowest requirement of 32-byte alignment with minimal memory bloating (25% 

overhead for MRI, 50% for the others). Since the padding is done per input element, bins that do 

not contain any elements in them do not contribute to the padding overhead. Furthermore, since 
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every element is aligned, by extension, every bin will be aligned as well regardless of the number 

of elements it contains. The only drawback to this technique is that the padding of each element 

will reduce the effective bandwidth from global memory when the elements are read.  

The second approach is to lay out the input elements in the form of arrays of float vector 

types (float2 or float4).  As demonstrated in Chapter 2, the effect of misalignment on float2 

arrays is less severe than on single float arrays. This approach involves a reorganization of the 

bin data structures from arrays of structures to structure of arrays.  Sung et al. discuss the 

benefits of this transformation in their work [2]; however, unlike the strided access pattern they 

discuss, if all the elements within the structures are of the same type (in the case for all the 

benchmarks we analyzed, all the elements are floats), we can have every thread load a single 

float element from within the structure to shared memory, thus maintaining a coalesced access 

since the stride of the access is one (see Figure 26). Since the accesses into the array of structures 

are already coalesced, laying out the data in a structure of array format is not expected to 

significantly impact the performance. However, if we laid out the data in a structure of short 

vector arrays, we would expect to see better performance for misaligned accesses as shown in 

Figure 13 of Chapter 2. 
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The third and final approach to fixing misalignment is to pad every bin to the nearest 

alignment boundary. This is different from the first proposed method of padding each element, 

since the padding is essentially amortized over the number of existing elements in the bin rather 

than being incurred for each element. In other words, rather than padding each element 

separately to an alignment boundary and incurring a padding overhead for each, we pad the 

entire bin to an alignment boundary to guarantee that the next bin will be aligned; however, the 

elements within a bin may still be misaligned if their data type is not itself aligned. With this 

technique, bins that have zero elements in them (which constitute the majority of bins in our 

studied benchmarks) do not incur any padding. However, the side effect of this approach is the 

reintroduction of padding into the data structure. As shown in Figure 23, loading this data into 

shared memory can greatly affect the performance of the kernel. The only way to avoid loading 

the padding data into shared memory is to load each bin separately rather than loading an entire 
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range of bins, and this severely impacts the performance as well, as shown in Figure 25. 

Finally, we measured the effects of each of the techniques discussed in this section that 

aim to improve alignment, and the results are shown in Figure 27. The results have been 

normalized to the runtime of the limited range function executed with regular binning. We can 

see that in fact any effort to reduce or eliminate misaligned accesses seems to impact the 

performance negatively, and that the optimal performance is achieved with a simple array of 

structures layout without any padding. We conclude from this that in the real kernels, the effects 

of misalignment are not as severe as shown in the micro benchmark in Chapter 2. One of the 

reasons could be a healthier ratio of computation to memory accesses, which means that memory 

accesses can be partially or fully overlapped with computation. 
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CHAPTER 5 

PARTITIONING 

One of the advantages of using compact bins is to relieve the pressure on memory due to 

padding when the sizes of the bins vary. While this also improves the performance of the 

limited-range function as demonstrated in Chapter 4, it does not resolve the issue of load 

balancing. In essence, due to the varying number of elements per bin, some blocks have to 

compute more elements than other blocks. Figure 28.a best illustrates this load imbalance. 

Blocks that reconstruct the center of the space compute significantly more than blocks that 

reconstruct the edges of the space, due to the high concentration of sample points in the center. 

To reduce the effect of this load imbalance, we propose in this chapter a simple technique that 

balances execution by partitioning the work between the CPU and the GPU. Instead of binning 

all of the input elements for execution on the GPU, we determine a bin depth that achieves the 

optimal balance between CPU and GPU execution, and offload all of the elements that exceed 

this bin depth to the CPU when performing binning. Since kernel execution on the GPU is 

asynchronous to the CPU, the optimal bin depth is defined as that which results in equal 

execution time on the GPU and CPU. Figure 28.b illustrates our proposed technique for load 

balancing as applied to the MRI input data. The remainder of this chapter will describe the 

implementation of this load balancing technique and its effects on regular and compact binning. 

Currently the only limitation of this work is that the bin depth used for partitioning needs to be 

provided by the user, and cannot be determined by the program based on input data distribution. 

This requires the user to know the input data distribution in order to choose a bin depth that 

yields good performance. 
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5.1 Implementing Partitioning 

To implement partitioning we only need to slightly modify the algorithms described in 

Sections 4.1 and 4.2. In dense binning, the first step becomes unnecessary since the user provides 

the desired bin depth rather than using the max bin depth determined in this step. We need to add 

a check in step 2 that verifies that the bin is not already at the bin depth limit, before adding an 

element to it. If the bin is not full, the thread proceeds to adding the input element, just as it 

would in the non-partitioning method. If the bin is found to be full, the element is instead placed 

in the CPU bin. The CPU bin may be a separate array or an extension of the bin data structure, 

and since this array is the overflow array from all the GPU bins, it cannot be bounded by bin 

depth. When adding an element to the CPU bin, a counter needs to be maintained for that array, 

which every thread increments atomically to determine where to insert its overflowed element. 

If the binning is performed on the GPU, the CPU bin will need to be transferred back to 

the CPU, where it will be processed using a scatter approach into the CPU’s copy of the output 

array. Simultaneously, the GPU performs the gather approach for all of its bins, and in the end 
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the CPU and GPU copies of the output array are combined either on the GPU or the CPU as a 

straightforward vector addition. This vector addition is in fact an added overhead that is the 

result of partitioning the work between CPU and GPU, but we will show that despite this 

overhead, the performance of a partitioned execution is better than that of a unified execution on 

the GPU or CPU alone. 

Enabling partitioning for the compact bin approach requires modifying the first step of 

the algorithm, which is to determine the size of every bin. Rather than simply accumulating the 

number of elements that go into each bin, we need to saturate the bin size at bin depth. Therefore, 

every time we atomically update a bin counter, we need to verify that the number of elements in 

that bin have not exceeded the bin depth limit, by reading the returned value of the atomic 

operation. If the returned value is greater than or equal to bin depth, it means that the bin has 

already overflowed, and therefore we need to atomically subtract one element from it to bring it 

back to maximum capacity. The reason for requiring an exact count per bin is because the 

histogram generated in step 1 is later fed into the prefix sum step that determines the starting 

address of every bin. And since the starting address of a bin is determined by summing the 

number of elements in all the previous bins, we need to maintain the exact number of elements 

that go into each bin, and that should not exceed the maximum bin depth. In addition, similar to 

the regular binning case, a CPU bin needs to be maintained at binning time which collects the 

overflow from all the GPU bins to execute them on the CPU simultaneously with the GPU kernel. 

Figure 29 depicts the execution model for the partitioned regular and compact bins. 

Since the optimal bin depth is the one for which the runtime of the overflow on the CPU 

is the same as the runtime of the GPU execution, the optimal bin depth may vary depending on 

the runtime of the CPU and GPU kernels, and modifying either one may require retuning the bin 
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depth to maintain equilibrium. In fact the optimal bin size may even vary for the same code if 

run on an environment with a different CPU and/or GPU. Ideally, the bin depth should be 

computed automatically based on some performance model of the GPU and CPU, but this is not 

an easy task, and we consider it to be beyond the scope of this work. 
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5.2 Effects of Bin Depth on GPU Execution 

In this section, we will analyze the effects of varying the bin depth on the runtime of 

regular and compact limited-range functions. A larger bin depth signifies more work is being put 

on the GPU rather than the CPU. In the case of regular binning, a bigger bin depth means more 

padding of the regular bins. 

We plotted the runtime of the limited range function for regular and compact binning 

with varying bin depths. Figure 30 shows those results for all four benchmarks. As would be 

expected, the runtime increases with the increasing bin depth since more work is being 

performed by the kernel. Beyond that, padding does not seem to degrade the performance of the 

regular binning kernel. The regular binning implementation shown here is the one that uses the 

element count array, which means that regardless of the amount of padding, only the real 
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elements in every bin will be loaded into on-chip memory. There is a constant runtime gap 

between the regular bin kernel and the compact bin kernel, and that is most likely due to the 

access to the count array for every bin for the former, versus the one-time bound checking for 

each range in the latter (as shown in Section 4.3.2).  

Due to the large output size for the MRI benchmark and the large imbalance in the 

input’s distribution, any bin depth greater than 9 causes the regular bin data structure to exceed 

the global memory capacity. That is not the case for compact binning since the maximum size of 

the bin data structure is equal to the number of input elements, regardless of the maximum bin 

depth specified, and thus we can vary the bin depth arbitrarily as shown in Figure 30.a. That is in 

fact an important advantage of compact binning: the maximum bin depth for regular binning can 

often be limited by the size of memory, even if that bin depth does not achieve the optimal load 

balancing between the CPU and the GPU. One such case is the large MRI data set, which is not 

shown Figure 30. The number of bins for this data set is 576^3, and yet the majority of these bins 

are empty. Representing these bins in a regular format, even with a bin depth of 1, requires    

4.27 GB of memory, which is more than the 4 GB available in the C1060 GPU. On the other 

hand, in the compact bin case, choosing a bin depth that is large enough to bin all of the input 

elements only occupies 0.67 GB of memory. As a result, the user is capable of better choosing a 

bin depth that balances the execution runtime between the CPU and GPU when representing bins 

in a compact format. 

The performance improvement seen for Blinn’s blob is the same shown in Figure 25. 

Because the Blinn’s blob data set is so sparse, with the majority of bins having zero elements in 

them, compact binning achieves a large speedup compared to regular binning because zero-

element bins do not consume any computation or bandwidth overhead in the former, whereas 
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they do in the latter.  

It is worth observing how the varying bin depth affects the performance of N-body. 

Unlike the other three benchmarks, N-body does not demonstrate the same steady increase in 

runtime as the bin depth increases. The reason is that N-body does not preload bin contents into 

shared memory; rather, every thread loads the data that it needs immediately from global 

memory before using it. The resulting access pattern into global memory is a lot less regular than 

the other three benchmarks. Varying the bin depth simply randomizes the access pattern further 

and for some bin depths may result in better coalescing, whereas for others it may result in worse 

coalescing. The randomization effects are more noticeable for regular binning since the increase 

in bin depth causes the elements from two adjacent bins to move farther apart, due to padding, 

than in the compact case. 
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5.3 Best Overall Performance 

We have shown in Section 5.2 how increasing the bin size affects the execution runtime 

of the limited-range kernels. In this section, we will look at the overall performance of the 

overlapped execution of the CPU and GPU kernels. As mentioned previously, since the GPU 

kernel executes asynchronously with respect to the CPU, computing the two partial results can 

be done in parallel, and the overall runtime is equal to the greater of the two runtimes. That is 

why choosing a bin depth that makes the two runtimes equal yields the best overall performance. 

Figures 31, 32, 33, and 34 show the overall execution time for the limited-range function using 

regular and compact bins for all four benchmarks. A bin depth of 0 for all of them signifies that 

all the execution is performed on the CPU. Note that a bin depth of zero does not result in a zero 

runtime for the GPU since the kernel still needs to be launched and the size of each bin needs to 

be checked before realizing that there is no work to be done. The largest bin size shown on all 

graphs corresponds to all the input elements being assigned to the GPU (except for regular 

binned MRI, which exceeds memory capacity beyond a bin size of 9). Regardless of the binning 

format, a given bin depth results in the same number of elements being executed on the CPU, 

and therefore the same runtime. The column highlighted in red corresponds to the bin depth that 

yields the best performance for each case. The curves shown for compact and regular GPU 

execution are the same as the ones shown in Figure 30, and for the optimal bin depth, the 

speedup achieved is the equal in magnitude to the performance gap shown in Figure 30 (the 

performance of compact and regular bins is roughly the same for N-body). 

We notice that for all the benchmarks, the GPU runtime is more resilient to an increase in 

workload than the CPU, in part due to the GPU’s massive parallelism and greater number of 

resources compared to the CPU. This implies that despite the lack of an automated method for 
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determining the optimal bin depth, the users need not be exact in their choice of bin depth as 

long as they choose a bin depth large enough to reduce the CPU runtime below that of the GPU. 
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CHAPTER 6 

COMPACTION IN RELATION TO SPARSE MATRICES 

The binning concepts introduced in this work are not new concepts, but simply new 

applications of existing concepts. In particular, compaction and partitioning are techniques 

borrowed from sparse matrix representation. In this chapter, we will highlight the similarities and 

differences between the use of these techniques in the domains of sparse matrix multiplication 

and parallel limited-range functions. For an in-depth analysis of sparse matrix representations 

and their performance on GPUs, please refer to the paper written by Nathan Bell and Michael 

Garland on the topic [11]. For the purpose of comparing the two domains, we will only highlight 

the concepts that are relevant to the discussion. 

The most rudimentary way to represent a sparse matrix is to store, for each non-zero 

element, its value, its column index, and its row index, in three arrays. This is known as the COO 

format (COO for coordinates). A sample matrix and its COO representation are shown in Figure 

35. COO is in fact the most explicit way of representing sparse data since it maintains all the 

information of all the elements. A more efficient way to present the matrix data is the CSR 

format, which maintains the value and column index of each element, but sorts the elements 

based on their row index, and rather than maintaining a separate row index value for each 

element, simply maintains a starting index for all the elements of the same row. The row value of 

each element is therefore implied based on the offset range it belongs to (Figure 36). Compact 

binning is in fact closely related to the CSR format. All elements that fall into a bin are sorted in 

such a way that they are in contiguous memory locations, and accessing a certain bin, similar to 

accessing a row in CSR, is done by determining the starting offset of the bin, and the starting 

offset of the bin that follows. 



	
   56	
  

In a matrix-vector multiplication kernel, each thread computes one element in the output 

vector, and the value of that vector corresponds to the dot product of one row of the matrix and 

the vector it is being multiplied by, and having each thread access one row causes memory 

requests to be non-coalesced. That is why it is more efficient to have an entire warp or block 

handle each row, such that threads are accessing consecutive elements in the sparse matrix data 

structure. In the end, the partial results from all the threads handling the same row are reduced 

down to a single value that corresponds to the value of the output element. Threads in a limited 

range function are also made to access consecutive elements in a bin for both an array of 

structures and a structure of arrays layout, as discussed in Section 4.3.3. The only difference 

between the two kernels is that threads within a warp in sparse matrix multiplications together 

compute the value of a single output element, whereas threads within a warp in a limited range 

kernel together load an input bin that they all need to compute different output elements. 

	
  

Figure	
  35.	
  Dense	
  matrix	
  and	
  COO	
  representation 

	
  

Figure	
  36.	
  CSR	
  format 
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Another efficient layout of sparse matrix data is the ELLPACK format (Figure 37). 

ELLPACK seeks to ensure that threads working on consecutive rows access the data within 

those rows in a coalesced manner. Since elements within a warp execute in lockstep, every 

thread will access the first non-zero element of its row simultaneously, then the second element 

simultaneously, and so on. Therefore to make sure that accesses are coalesced, all first elements 

need to be placed in consecutive memory locations, followed by all second elements, etc. 

Effectively, the ELLPACK format transposes the sparse matrix so that elements in consecutive 

rows become elements in consecutive columns. However, to achieve this transposition, all rows 

have to have the same number of elements in them; otherwise, the access to the transposed 

elements of the original row becomes difficult. To achieve this uniform row size, all rows need 

to be padded up to the maximum row size before performing the transpose. ELLPACK is not as 

useful in the context of limited-range kernels; however, the pre-transpose structure does 

resemble the dense binning representation, where the largest number of non-zero elements in a 

row corresponds to the maximum bin depth, and all the rows that have fewer than max depth 

elements in them are padded to achieve regularity. 

	
  

Figure	
  37.	
  ELLPACK	
  format 

In fact, similar to dense binning, a large variance in the number of non-zero elements in 

each row of the sparse matrix causes a large memory bloat in ELLPACK due to padding 
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elements. The HYB (for hybrid) format seeks to reduce the overhead of padding. The HYB 

format as described in [11] is a combination of ELLPACK and COO (Figure 38.a). Rather than 

extending each row to the maximum row size, we instead find an average row size that keeps as 

many of the elements in ELLPACK format while minimizing the amount of padding needed. All 

elements that exceed this average row size get stored in a separate COO data structure, which 

can be executed by a separate CPU or GPU kernel. In addition to reducing the padding overhead, 

the HYB format improves load balancing for the execution of the ELLPACK data structure, as it 

reduces the variation in row size. Partitioning in limited-range applications is in fact a hybrid 

format, and achieves the same benefits of reduction of padding overhead and load balancing. 

Partitioning in compact binning is equivalent to a CSR/COO hybrid format (Figure 38.b). 

	
  

Figure	
  38.	
  Hybrid	
  format	
  representations 
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CHAPTER 7 

CONCLUSION 

To say that we expected the results of this work would be untrue. Intuitively, one would 

expect that the added complexity of compact binning, while it may benefit certain applications 

and datasets, would prevent this approach from outperforming regular binning for all 

applications. However, upon further analysis, we were able to explain why compact binning can 

in fact outperform regular binning. One of the key factors in this speedup is the reduction of the 

number of loops and memory accesses due to the iteration over ranges of bins rather than 

individual bins when the bin data is compact. The only characteristic of compact bins that made 

this optimization possible, and the reason why the same optimization is disadvantageous for 

regular binning, is the elimination of padding elements from the bin data structure. Furthermore, 

we have demonstrated in Chapter 5 how compact binning can enable better load balancing 

between the CPU and GPU by overcoming the memory capacity barrier encountered with 

regular binning. Table 5 compares the results of the full execution (binning and partitioning, 

limited range computation, and CPU/GPU output reduction) for the best regular binning 

implementation with the best compact binning implementation. For regular binning, the best 

implementation consists of using a count array to determine the number of real elements in each 

bin before loading that bin into shared memory, as well as determining the best partitioning bin 

depth that balances the work done on the CPU and on the GPU. For compact binning, the best 

implementation consists of using range accesses within the smallest dimension of the space, 

using an array of structures for the input data, and finally, similar to regular binning, determining 

the best partitioning bin depth that balances work on the CPU and GPU. The first three 

applications all see an improvement in performance, and in the case of Blinn’s blob, the speedup 
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is approximately a factor of 8x over regular binning. For N-body, which does not use any shared 

memory and therefore does not take advantage of range accesses into the bins, we at least do not 

see any loss of performance despite the added complexity of compact binning. 

Table	
  5.	
  Summary	
  of	
  compact	
  and	
  regular	
  execution	
  runtimes	
  

	
   Regular	
   Compact	
   Speedup	
  
CutCP	
   3.91	
   3.47	
   1.13x	
  
MRI	
   1.47	
   0.98	
   1.50x	
  
Blinn	
   14.42	
   1.81	
   7.98x	
  
N-­‐body	
   14.90	
   14.60	
   1.02x	
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