
	  
	  
	  
	  
	  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

COMPACT	  BINNING	  FOR	  PARALLEL	  PROCESSING	  OF	  LIMITED-‐RANGE	  FUNCTIONS	  

BY	  
	  

NADY	  M.	  OBEID	  

THESIS 
 

Submitted in partial fulfillment of the requirements  
for the degree of Master of Science in Electrical and Computer Engineering  

in the Graduate College of the  
University of Illinois at Urbana-Champaign, 2010	  

Urbana,	  Illinois	  

Adviser:	  
	  
	   Professor	  Wen-‐Mei	  W.	  Hwu	  



	   ii	  

ABSTRACT	  

Limited-‐range	   functions	   are	   domain-‐level	   optimizations	   to	   a	   class	   of	   applications	  

where	  all	  input	  elements	  contribute	  to	  all	  output	  elements,	  based	  on	  the	  distance	  between	  

two	  given	  elements.	  When	  the	  contribution	  of	  an	  input	  element	  to	  the	  output	  is	   inversely	  

proportional	   to	   the	   distance,	   a	   limited	   range	   can	   be	   applied,	   which	   approximates	   the	  

contribution	  to	  zero	  beyond	  a	  certain	  cutoff	  distance.	  Introducing	  a	  limited-‐range	  function	  

to	  the	  application	  reduces	  the	  computation	  complexity	  from	  O(N2)	  to	  O(N).	  

Processing	  multiple	  input	  elements	  in	  a	  limited-‐range	  function	  in	  parallel	  can	  lead	  to	  

data	  races	  without	  the	  use	  of	  expensive	  synchronization.	  That	  is	  why	  a	  preferred	  approach	  

is	   an	   output-‐driven	   one,	   where	   multiple	   output	   elements	   are	   processed	   in	   parallel,	   all	  

sharing	   the	   input	   data	   set	   for	   reads.	   Typically	   the	   input	   data	   set	   is	   unstructured,	   which	  

without	   the	   use	   of	   binning,	   would	   result	   in	   every	   output	   element	   in	   the	   output-‐driven	  

approach	  reading	  all	  of	   the	   input	  elements	   to	  determine	  which	  ones	   fall	  within	   its	  cutoff.	  

Binning	   is	   a	   preconditioning	   step	   that	   sorts	   the	   input	   elements	   into	   predetermined	   bins	  

that	   are	   easily	   accessible	  by	   the	  output,	   thus	   allowing	   the	  output	   to	  only	   access	   the	  bins	  

relevant	  to	  its	  computation.	  

Traditionally,	   bins	   were	   created	   with	   uniform	   size	   and	   capacity	   to	   enable	   easy	  

access	  to	  them;	  however,	  making	  the	  bins	  regular	  can	  have	  severe	  side-‐effects	  on	  memory	  

requirements	  to	  maintain	  these	  bins.	  We	  propose	  a	  technique	  to	  allow	  the	  bins	  to	  vary	  in	  

capacity	  in	  order	  to	  reduce	  the	  memory	  overhead,	  at	  the	  cost	  of	  added	  accessing	  overhead.	  

In	  this	  work,	  we	  will	  compare	  regular	  binning	  and	  our	  approach,	  compact	  binning.	  We	  will	  

demonstrate	  that	  compact	  bins	  can	  in	  fact	  improve	  the	  execution	  performance	  of	  limited-‐

range	  functions	  executed	  in	  parallel.	  



	   iii	  

ACKNOWLEDGMENTS	  

	  

First	  and	  foremost,	  I	  would	  like	  to	  thank	  my	  adviser	  Wen-‐Mei	  Hwu	  for	  his	  constant	  

support	  and	  guidance.	  He	  has	  truly	  influenced	  and	  motivated	  my	  work,	  and	  has	  helped	  me	  

grow	   professionally	   in	   the	   two	   years	   he	   has	   been	  my	   adviser.	   Secondly,	   I	   would	   like	   to	  

thank	  Daniel	  Liu	  who	  helped	  a	  lot	  with	  the	  execution	  of	  this	  work.	  I	  would	  also	  like	  to	  thank	  

Ian	  Atkinson	  whose	  collaboration	  on	  an	  MRI	  project	  led	  to	  the	  inception	  of	  this	  work.	  

Over	   the	   last	   two	  years,	   I	  have	  met	  a	   lot	  of	  people	  who	  have	  really	   influenced	  my	  

work.	   I	  would	   like	   to	   thank	   I-‐Jui	   Sung	  who	   I	   shared	   a	   cubicle	  with	   those	   two	   years.	   The	  

countless	  discussions	  I	  have	  had	  with	  him	  have	  challenged	  me	  to	  think	  outside	  the	  box	  and	  

as	  a	  result	  improve	  the	  quality	  of	  my	  research.	  I	  also	  want	  to	  thank	  all	  the	  members	  of	  our	  

research	  group	  who	  have	  lent	  their	  support	  countless	  times.	  In	  no	  particular	  order,	  thank	  

you	  to:	  Chris	  Rodrigues,	  Sara	  Baghsorkhi,	  John	  Stratton,	  Alex	  Papakonstantinou,	  Xiao-‐Long	  

Wu,	  Victor	  Huang,	  Deepthi	  Nandakumar,	  Hee-‐Seok	  Kim,	  Nasser	  Anssari,	  Li-‐Wen	  Chang,	  Tim	  

Wentz,	  and	  Steven	  Wu.	  And	  of	  course,	  nothing	  would	  be	  possible	  without	  the	  help	  of	  our	  

tremendous	  staff	  who	  were	  always	  very	  helpful.	  Thank	  you	  to:	  Marie-‐Pierre	  Lassiva-‐Moulin,	  

Laurie	  Talkington,	  Andrew	  Schuh,	  Umesh	  Thakkar,	  and	  Xiaolin	  Liu.	  

A	  good	  work/life	  balance	  was	   crucial	   to	  maintaining	  my	  sanity,	   so	   I	  would	   like	   to	  

thank	  all	  the	  friends	  who	  stood	  by	  me	  in	  the	  last	  two	  years.	  	  And	  last	  but	  not	  least,	  I	  would	  

like	  to	  thank	  all	  my	  family,	  in	  particular,	  my	  Mom,	  my	  Dad,	  and	  my	  sister	  Nay.	  

Thank	  you	  everyone.	  



	   iv	  

TABLE	  OF	  CONTENTS	  

	  

CHAPTER 1: INTRODUCTION ….………………………………………………..   1 

CHAPTER 2: THE GPU ARCHITECTURE        ……………….…………………….. 13 

CHAPTER 3: DESCRIPTION OF BENCHMARK APPLICATIONS        …………... 22 

CHAPTER 4: COMPARING REGULAR AND COMPACT BINNING    …………... 32 

CHAPTER 5: PARTITIONING ….………………………………………………..  46 

CHAPTER 6: COMPACTION IN RELATION TO SPARSE MATRICES      ……….. 55 

CHAPTER 7: CONCLUSION ….………………………………………………..  59 

REFERENCES       ………………....….……………………………………………….. 61 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 



	   1	  

CHAPTER	  1	  

INTRODUCTION	  

With	   the	   advancement	   and	   ubiquity	   of	   high	   performance	   computing,	   applications	  

from	   various	   scientific	   domains	   have	   emerged	   that	   try	   to	   model	   and	   simulate	   the	  

interactions	  between	  large	  sets	  of	  elements	  in	  physical	  systems.	  These	  applications	  seek	  to	  

measure	   anything	   from	   the	   gravitational	   forces	   between	   many	   bodies	   of	   mass	   to	   the	  

electric	   field	   in	   space	   due	   to	   the	   presence	   of	   charged	   atoms,	   or	   even	   signal	   propagation	  

between	   any	   two	   points	   in	   a	   space.	   This	   information	   is	   simulated	   by	   measuring	   the	  

interactions	  between	  every	  pair	  of	  points	  in	  the	  system.	  For	  example,	  in	  order	  to	  determine	  

the	  electric	  field	  at	  a	  certain	  point	  in	  space,	  we	  need	  to	  compute	  the	  electric	  field	  effect	  of	  

every	  atom	  in	  the	  space	  onto	  that	  point,	  and	  similarly	  every	  atom	  in	  the	  space	  contributes	  

to	  the	  electric	  field	  of	  every	  point	  in	  the	  space.	  However,	  it	  is	  generally	  the	  nature	  of	  these	  

interactions	  that	  the	  effect	  of	  one	  element	  on	  another	  decreases	  as	  the	  distance	  increases	  

between	   them.	  Since	   the	  computation	  required	   to	  simulate	   these	  O(N2)	  systems	   for	   large	  

data	   sets	   is	   very	   expensive,	   scientists	   often	   take	   advantage	   of	   the	   decreasing	   effect	   to	  

accelerate	   the	   computation.	   They	   do	   so	   by	   neglecting	   the	   interactions	   between	   two	  

elements	   when	   the	   distance	   between	   them	   causes	   the	   effects	   on	   one	   another	   to	   be	  

insignificantly	   small.	   In	   other	   words,	   they	   approximate	   all	   the	   effects	   beyond	   a	   certain	  

cutoff	   distance	   to	   be	   zero.	   In	   some	   application,	   the	   distant	   contributions	   are	   computed	  

using	   a	  different	  method.	  By	  doing	   so,	   they	   reduce	   the	   complexity	  of	   the	   algorithm	   from	  

O(N2)	  to	  O(cN)	  where	  c	  is	  the	  constant-‐sized	  cutoff	  distance	  beyond	  which	  no	  interactions	  

are	  computed.	  Applying	  a	  cutoff	   to	   the	  computation	   in	  order	   to	   reduce	   the	  complexity	  of	  

the	  algorithm	  results	  in	  what	  we	  define	  as	  a	  limited-‐range	  function,	  because,	  as	  the	  name	  



	   2	  

suggests,	  we	  confine	  the	  effects	  of	  each	   input	  element	  to	  a	   limited	  set	  of	  output	  elements	  

that	  fall	  within	  its	  range.	  

Typically,	  the	  input	  data	  to	  these	  applications	  are	  irregularly	  distributed	  and	  do	  not	  

follow	  any	  uniform	  distribution	  pattern,	   and	   that	  may	  be	  a	   result	  of	   the	  way	   these	   input	  

elements	   are	   collected	   (e.g.,	   samples	   collected	  by	  an	  MRI	   scanner),	   or	   simply	   the	  natural	  

distribution	   of	   these	   elements	   in	   their	  medium	   (e.g.,	   atom	   cloud	   in	   space).	   On	   the	   other	  

hand,	  when	  simulating	  or	  processing	  these	  input	  elements	  we	  often	  wish	  to	  compute	  their	  

effects	  on	  a	  regularly	  structured	  output	  set	  (e.g.,	  the	  electric	  field	  at	  every	  point	  in	  a	  regular	  

grid)	  where	  the	  output	  data	  set	  is	  much	  larger	  than	  the	  input	  data	  set.	  These	  properties	  are	  

true	   for	   all	   of	   the	   applications	  we	   analyze	   in	   this	  work,	   except	   for	   one	  where	   the	   input	  

element	  set	  and	  the	  output	  element	  set	  are	  the	  same,	  and	  both	  are	  irregular.	  The	  relative	  

sizes	  of	  the	  input	  and	  output,	  the	  regularity	  of	  the	  output,	  and	  irregularity	  of	  the	  input	  are	  

necessary	  considerations	  when	  optimizing	  the	  computation	  of	  these	  systems.	  

	  

1.1	  Sequential	  Implementation	  

When	  computing	  limited-‐range	  functions	  on	  a	  CPU,	  the	  program	  iterates	  over	  all	  the	  

input	   elements,	   and	   computes	   the	   contributions	   of	   each	   input	   onto	   the	   output	   elements.	  

Because	  the	  inputs	  are	  not	  ordered	  in	  any	  uniform	  way,	  their	  location	  in	  the	  space	  cannot	  

be	  inferred	  or	  computed.	  Instead,	  each	  input	  element	  holds	  its	  own	  coordinates	  explicitly.	  

On	  the	  other	  hand,	  if	  the	  output	  is	  a	  regular	  grid,	  the	  coordinates	  of	  every	  output	  point	  can	  

be	   computed.	   That	   is	   why	   it	   often	  makes	  more	   sense	   to	   take	   an	   input	   driven	   approach	  

rather	   than	  an	  output	  driven	  one	  when	  computing	   limited-‐range	   functions.	  Based	  on	   the	  

input’s	  coordinates,	  a	  neighborhood	  is	  determined	  by	  computing	  a	  sphere	  centered	  at	  the	  



	   3	  

input’s	   coordinates	  with	   a	   radius	   equal	   to	   the	   cutoff	   distance.	  Every	  output	   element	   that	  

intercepts	   this	   neighborhood	   region	   is	   therefore	   a	   neighbor	   of	   the	   input	   element	   and	   is	  

contributed	   to	   by	   this	   element.	   Figure	   1	   shows	   a	   two-‐dimensional	   example	   of	   a	  

neighborhood	  around	  one	  of	   the	   input	  elements.	  Since	   the	  neighboring	  output	   to	  a	  given	  

input	  point	  can	  be	  predetermined,	   it	   is	  unnecessary	   to	  visit	  any	  output	  elements	   that	   fall	  

outside	   of	   the	   neighboring	   region.	   Multiple	   input	   elements	   may	   contribute	   to	   the	   same	  

output	  point,	  as	  shown	  in	  Figure	  2;	  however,	  since	  the	  processing	  of	  input	  elements	  is	  done	  

sequentially,	  no	  update	  conflicts	  occur.	  

	  

Figure	  1.	  Depiction	  of	  sequential	  execution	  of	  limited-‐range	  functions	  

1.2	  Parallel	  Implementation	  

Limited-‐range	   functions	   are	   inherently	   parallel.	   Every	   input	   element	   computes	   its	  

contributions	  to	  the	  output	  independently	  from	  other	  input	  points.	  Similarly,	  every	  output	  

point	  can	  be	  computed	  independently	  of	  all	  other	  output	  points.	  However,	  several	  factors	  

can	  hinder	  their	  performance	  on	  parallel	  architectures.	  For	  instance,	  if	  we	  were	  to	  naively	  

port	  the	  input-‐driven	  sequential	  algorithm	  to	  a	  parallel	  execution	  model,	  one	  of	  the	  biggest	  

problems	  we	  face	  is	  write	  contention	  by	  input	  elements	  onto	  the	  output.	  Specifically,	  if	  all	  

input	   elements	   are	   processed	   in	   parallel,	   inputs	   attempting	   to	   update	   the	   same	   output	  



	   4	  

element	  may	  suffer	   from	  data	   races,	   leading	   to	   incorrect	   results.	  The	   two	   input	  elements	  

highlighted	   in	   Figure	   2	  may	   suffer	   from	  a	   data	   race	   if	   they	   both	   attempt	   to	   update	   their	  

shared	   output	   simultaneously	   (contention	   shown	   in	   red).	   Since	   updating	   an	   element	  

requires	   multiple	   instructions	   (read,	   modify,	   write),	   data	   races	   occur	   when	   the	   update	  	  

instructions	   of	   one	   processing	   thread	   are	   interleaved	   with	   the	   update	   instructions	   of	  

another	  thread,	  causing	  one	  of	  the	  threads’	  updates	  to	  be	  lost.	  One	  way	  to	  avoid	  data	  races	  

is	   to	  make	  updates	  atomic,	   that	   is,	  guarantee	   that	   the	   three	   instructions	   from	  one	   thread	  

cannot	  be	  interrupted,	  and	  that	  a	  processing	  thread	  cannot	  start	  updating	  an	  element	  until	  

another	   thread	   that	   is	   already	   in	   the	   process	   of	   updating	   that	   element	   has	   finished.	  

However,	   ensuring	   this	   synchronization	   is	   costly	   and	   can	   deteriorate	   the	   computing	  

performance,	   especially	   when	   several	   threads	   try	   to	   simultaneously	   update	   the	   same	  

element,	  since	  atomicity	  causes	  threads’	  updates	  to	  be	  serialized.	  

	  

Figure	  2.	  Parallel	  implementation	  of	  the	  scatter	  approach	  

Another	   way	   to	   avoid	   data	   races	   is	   to	   privatize	   each	   output	   to	   a	   single	   writer:	  

instead	  of	  having	  each	  thread	  compute	  the	  contributions	  of	  an	   input	  element	  onto	  all	   the	  

neighboring	   output	   elements,	   we	   let	   each	   thread	   compute	   exclusively	   the	   value	   of	   an	  

output	   element	   by	   calculating	   the	   contributions	   of	   its	   neighboring	   input	   elements.	   The	  



	   5	  

definition	  of	  the	  neighborhood	  is	  the	  same	  for	  the	   input-‐driven	  approach	  as	  well	   that	  the	  

output-‐driven	  approach,	  since	  the	  cutoff	  distance	  is	  the	  same	  whether	  seen	  from	  point	  A	  to	  

point	  B	  or	  B	  to	  A.	  	  By	  privatizing	  the	  output	  among	  the	  threads,	  multiple	  output	  may	  end	  up	  

reading	   the	  same	   input	  elements	   (Figure	  3);	  however,	   since	   read	  accesses	  do	  not	  modify	  

the	   input	  elements’	  values,	  no	  synchronization	   is	  needed.	  This	  output-‐driven	  approach	   is	  

called	  a	  “Gather”	  approach	  whereas	  the	  input-‐driven	  one	  is	  called	  a	  “Scatter”	  approach.	  The	  

names	  are	  symbolic	  of	  the	  methods	  of	  computation:	  gather	  is	  a	  collection	  of	  multiple	  input	  

contributions	  onto	  one	  output	  element,	  whereas	  scatter	  takes	  one	  input	  and	  generates	  its	  

contribution	  onto	  multiple	  outputs.	  

	  

Figure	  3.	  Parallel	  implementation	  of	  the	  gather	  approach	  

One	  difficulty	  that	  arises	  with	  the	  gather	  approach	  is	  that,	  as	  we	  mentioned	  earlier	  

in	  this	  chapter,	   input	  elements	  are	  typically	  unstructured,	  and	  need	  to	  explicitly	  maintain	  

their	  coordinate	   information.	  As	  a	  result,	  every	  output	  element	  has	   to	   iterate	  over	  all	   the	  

input	  elements	  and	  determine	  for	  each	  whether	  they	  fall	  within	   its	  cutoff	  distance	  before	  

computing	   their	   contributions,	   as	   seen	   in	   Figure	   4.	   Having	   to	   evaluate	   all	   the	   input	  

elements	   negates	   the	   benefits	   of	   introducing	   a	   cutoff	   in	   the	   first	   place,	   as	   the	   resulting	  

algorithm	  once	  again	  becomes	  O(N2).	  



	   6	  

	  

Figure	  4.	  Side	  effects	  of	  the	  gather	  approach	  without	  binning	  

	  

1.3	  Parallel	  Implementation	  with	  Binning	  

Binning	  is	  one	  technique	  we	  can	  use	  to	  reduce	  the	  complexity	  of	  a	  gather	  algorithm	  

from	  O(N2)	  back	   to	  O(N).	  A	  bin	   is	   a	   container	   corresponding	   to	   a	   sub-‐region	  of	   the	   total	  

space	  containing	  all	  of	  the	  input	  elements	  that	  fall	  within	  this	  space.	  These	  containers	  have	  

known	   characteristics,	   such	   as	   the	   size	   of	   the	   sub-‐regions	   they	   cover	   and	   their	   element	  

capacity,	  and	  this	  makes	  them	  easier	  to	  access	  than	  individual	   input	  elements.	  We	  enable	  

easy	   access	   to	   input	   elements	   by	   placing	   them	   within	   the	   bins.	   Instead	   of	   each	   output	  

element	  having	  to	  traverse	  the	  array	  of	  all	   the	  input	  elements,	   it	  only	  needs	  to	  access	  the	  

bins	  that	  fall	  within	  its	  cutoff	  to	  get	  to	  the	  neighboring	  input	  elements.	  Performing	  binning	  

on	   the	   input	   data	   reduces	   the	   complexity	   of	   the	   computation	   from	   O(N2)	   back	   to	   O(N).	  

Figure	   5	   depicts	   the	   execution	   of	   the	   gather	   approach	   with	   binning.	   Note	   that	   some	  

elements	  that	  fall	  within	  a	  neighboring	  bin	  may	  not	  themselves	  be	  neighbors	  of	  the	  output	  

element,	  so	  it	  is	  still	  necessary	  to	  calculate	  their	  distance	  from	  the	  output	  before	  computing	  

their	  contribution.	  In	  fact	  binning	  cannot	  completely	  prevent	  an	  output	  from	  reading	  input	  



	   7	  

elements	   that	   are	   outside	   of	   its	   cutoff	   region,	   but	   it	   can	   reduce	   the	   number	   of	   these	  

occurrences	  significantly.	  

One	  simple	  way	  to	  make	  all	  the	  bins	  easily	  accessible	  is	  to	  make	  them	  all	  identical.	  

That	  includes	  making	  all	  the	  bins	  represent	  an	  equal	  portion	  of	  the	  space	  (size),	  as	  well	  as	  

making	  each	  bin	  contain	   the	  same	  number	  of	  elements	   (depth).	  By	  doing	  so,	   the	  starting	  

index	  of	  every	  bin	  within	  the	  data	  structure	  containing	  the	  bins	  can	  be	  computed	  using	  the	  

index	  of	  the	  sub-‐region	  that	  bin	  represents	  and	  the	  capacity	  (or	  depth)	  of	  each	  bin.	  

	  

Figure	  5.	  Gather	  implementation	  with	  binning	  

Assigning	   an	   equal	   portion	   of	   the	   space	   to	   each	   bin	   can	   be	   achieved	   (assuming	   a	  

regular	  space)	  by	  simply	  dividing	  the	  total	  region	  evenly	  among	  all	  the	  bins.	  Guaranteeing	  

that	   each	   bin	   contains	   the	   same	   number	   of	   elements,	   on	   the	   other	   hand,	   is	   a	   more	  

challenging	  task,	  since	  the	  number	  of	  elements	  that	  go	  into	  a	  bin	  is	  dependent	  on	  the	  input	  

data,	  and	  can	  vary	  from	  one	  dataset	  to	  another.	  One	  way	  to	  achieve	  uniform	  bin	  capacity	  is	  

to	   make	   every	   bin	   contain	   as	   many	   elements	   as	   the	   largest	   bin.	   In	   other	   words,	   we	  

determine	  the	  maximum	  capacity	  required	  by	  any	  bin,	  and	  make	  the	  capacity	  of	  all	  the	  bins	  

be	  equal	  to	  that	  maximum.	  In	  a	  situation	  where	  the	  elements	  are	  evenly	  distributed	  in	  the	  

space,	  and	  every	  sub-‐region	  contains	  the	  same	  number	  of	  elements,	  the	  maximum	  capacity	  



	   8	  

will	  be	  the	  same	  as	  the	  average	  capacity.	  Figure	  6	  is	  an	  example	  of	  a	  uniformly	  distributed	  

input	  in	  1-‐D	  space.	  The	  integer	  shown	  for	  each	  element	  in	  the	  input	  array	  corresponds	  to	  

the	   bin	   that	   element	   belongs	   to.	   As	   we	   can	   see,	   every	   bin	   contains	   exactly	   two	   input	  

elements,	  which	  makes	   it	   easy	   to	   achieve	  uniform	  bin	   capacity.	  However,	   as	   soon	   as	   the	  

number	  of	  elements	   in	  each	  bin	  starts	  to	  vary,	  maintaining	  a	  uniform	  size	   for	  all	   the	  bins	  

will	   require	   padding	   for	   the	   bins	   that	   have	   fewer	   elements	   than	   the	  maximum	   capacity.	  

Padding	  is	  the	  use	  of	  mock	  elements	  in	  every	  bin	  to	  make	  up	  for	  the	  missing	  elements	  when	  

the	  number	  of	  real	  elements	  in	  the	  bin	  is	  smaller	  than	  the	  maximum	  bin	  depth.	  If	  the	  fifth	  

element	   in	  the	  array	  from	  Figure	  6	  were	  a	  3	  rather	  than	  a	  1	  (shown	  in	  Figure	  7),	   the	  bin	  

depth	  would	  no	  longer	  be	  uniform,	  which	  means	  that	  in	  order	  to	  maintain	  a	  uniform	  depth	  

in	  all	   the	  bins,	  we	  would	  have	  to	  pad	  all	   the	  bins	  than	  have	  fewer	  than	  three	  elements	   in	  

them	  (shown	  as	  “X”	  in	  Figure	  7).	  In	  essence,	  padding	  makes	  all	  the	  bins	  equal	  in	  capacity	  at	  

the	   cost	   of	   increasing	   the	   memory	   requirement	   for	   these	   bins	   by	   introducing	   dummy	  

elements	  into	  the	  bin	  array.	  These	  dummy	  elements	  are	  not	  computed	  for	  when	  an	  output	  

reads	  a	  bin,	  since	  they	  do	  not	  represent	  real	  input	  elements.	  

	  

Figure	  6.	  Example	  of	  regular	  binning	  with	  uniform	  distribution	  

Regular-‐sized	   binning	   has	   a	   space	   complexity	   O(CB),	   where	   C	   is	   the	   capacity	   of	  

every	   bin	   and	   B	   is	   the	   total	   number	   of	   bins.	   Increasing	   the	   maximum	   capacity	   by	   1	  



	   9	  

increases	   the	   amount	   of	   space	   needed	   for	   the	   bin	   data	   structure	   by	   B	   elements.	   This	  

becomes	   increasingly	   expensive	   as	   the	   disparity	   between	   the	   average	   capacity	   and	  

maximum	  capacity	  increases	  (Figure	  7).	  When	  B	  and	  C	  both	  become	  very	  large,	  the	  strain	  

on	  the	  memory	  due	  to	  binning	  may	  become	  the	  limiting	  and	  sometimes	  disabling	  factor	  in	  

performing	   the	   computation.	   We	   will	   demonstrate	   such	   cases	   in	   our	   benchmarks.	   The	  

motivation	  of	  this	  work	  is	  to	  come	  up	  with	  a	  solution	  that	  makes	  binning	  a	  feasible	  solution	  

even	  for	  highly	  unbalanced	  problems.	  

	  

Figure	  7.	  Example	  of	  regular	  binning	  with	  non-‐uniform	  distribution	  

	  

1.4	  Parallel	  Implementation	  with	  Compact	  Binning	  

In	  this	  work,	  we	  propose	  compact	  binning,	  a	  method	  of	  performing	  binning	  with	  a	  

space	  complexity	  of	  O(N),	  where	  N	  is	  the	  number	  of	  input	  elements,	   independently	  of	  the	  

number	  of	  bins	  and	  the	  capacity	  of	  each	  bin.	  The	  main	  idea	  behind	  compact	  binning	  is	  to	  

allow	  each	  bin	   to	  have	   its	  own	  bin	  depth	   regardless	  of	   all	   the	  other	  bins.	  As	  a	   result,	  we	  

eliminate	  the	  need	  for	  padding,	  and	  the	  size	  of	  the	  bin	  data	  structure	  becomes	  only	  as	  large	  

as	   the	   number	   of	   input	   elements	   (Figure	   8).	   The	   variable	   bin	   depth	   and	   elimination	   of	  

padding	  come	  at	  the	  expense	  of	  more	  complicated	  access	  methods	  to	  these	  bin.	  Since	  the	  

size	   of	   each	   bin	   is	   independent	   of	   all	   the	   other	   bins,	   accessing	   a	   bin	   can	   no	   longer	   be	  



	   10	  

computed	   as	   a	   function	   of	   the	   bin	   index	   and	   the	   bin	   capacity.	   Therefore,	   additional	  

overhead	   is	   incurred	   in	   trying	   to	   determine	   the	   starting	   offset	   of	   each	   bin.	   The	   added	  

overhead	  stems	  from	  the	  need	  to	  pre-‐compute	  the	  starting	  index	  of	  every	  bin	  and	  store	  it	  in	  

an	  array	  which	  will	  then	  be	  used	  as	  a	  look-‐up	  table	  when	  trying	  to	  access	  the	  bins	  during	  

the	  limited-‐range	  function	  computation.	  

	  

Figure	  8.	  Example	  of	  compact	  binning	  using	  the	  input	  array	  from	  Figure	  7	  

In	  reality,	  when	  the	  input	  data	  is	  highly	  non-‐uniform,	  it	  is	  advantageous	  to	  partition	  

the	   input	   across	  multiple	   data	   structures.	   In	   the	   case	   of	   regular	   binning,	   since	   the	   space	  

requirement	   is	  a	   factor	  of	   the	  number	  of	  bins	  and	  the	  capacity	  of	  each	  bin,	  programmers	  

often	  place	  a	  cap	  on	  the	  bin	  capacity	  to	  reduce	  the	  size	  of	   the	  bin	  array.	  Bins	  that	  exceed	  

this	   cap	   size	   “spill	   over”	   their	   excess	   to	   another	   data	   structure.	   Bins	   that	   have	   fewer	  

elements	  than	  the	  cap	  are	  still	  padded	  to	  achieve	  regularity.	  In	  this	  situation,	  the	  cap	  size	  is	  

chosen	  to	  maximize	  the	  number	  of	  elements	  that	  get	  placed	  in	  bins,	  while	  simultaneously	  

balancing	  the	  amount	  of	  padding	  required.	  However,	  when	  the	  variance	  from	  the	  average	  

bin	   depth	   becomes	   too	   large,	   there	   may	   no	   longer	   be	   a	   bin	   depth	   that	   maximizes	   the	  

number	  of	  input	  elements	  in	  the	  bins	  without	  incurring	  a	  large	  overhead.	  



	   11	  

Though	  padding	   is	   not	   a	   concern	   for	   compact	   binning,	   partitioning	   the	   input	  data	  

across	  the	  bins	  and	  the	  spill-‐over	  array	  can	  in	  fact	  improve	  the	  overall	  performance	  due	  to	  

better	   load	   balance	   among	   bins.	   In	   Chapter	   5,	   we	   discuss	   a	  method	   for	   partitioning	   the	  

input	  data	  and	  examine	  how	  varying	  the	  cap	  value	  affects	  the	  execution	  in	  the	  regular	  and	  

compact	  binning	  cases.	  

The	   remainder	   of	   this	  work	  will	   be	   dedicated	   to	   comparing	   regular	   and	   compact	  

binning	  in	  the	  context	  of	  limited-‐range	  function	  applications.	  We	  will	  discuss	  the	  different	  

methods	   of	   implementing	   each	   type	   of	   binning	   and	   will	   evaluate	   their	   effect	   on	   four	  

different	  applications	  each	  with	  a	  different	  input	  distribution	  pattern:	  MRI	  gridding,	  cutoff	  

Coulombic	  potential,	  Blinn’s	  blob,	  and	  N-‐body	  simulation.	  All	  except	  for	  the	  last	  application	  

have	   non-‐uniform	   input	   data,	   with	   varying	   degrees	   of	   non-‐uniformity,	   and	   a	   uniform	  

output	   grid.	   In	   the	   case	   of	   N-‐body,	   the	   input	   data	   set	   is	   also	   the	   output	   data	   set,	   and	  

therefore	   both	   are	   non-‐uniformly	   distributed	   within	   the	   space;	   however,	   we	   will	  

demonstrate	   how	   our	   technique	   of	   compact	   binning	   can	   still	   applied	   to	   this	   application	  

without	  hurting	  its	  performance	  on	  GPUs.	  

We	  will	  not,	  however,	  discuss	  in	  this	  work	  when	  to	  use	  cutoff	  and	  how	  to	  determine	  

an	   appropriate	   cutoff	   distance,	   since	   cutoff	   is	   a	   domain	   level	   optimization	   and	   not	   a	  

programming	  optimization.	  In	  other	  words,	  cutoff	  is	  a	  property	  of	  the	  application’s	  domain	  

and	  is	  introduced	  as	  an	  optimization	  to	  the	  computation	  only	  when	  some	  loss	  of	  accuracy	  

in	  the	  output	  can	  be	  tolerated.	  If	  no	  loss	  of	  accuracy	  can	  be	  tolerated	  by	  the	  application,	  the	  

programmer	  cannot	  choose	  to	  introduce	  a	  cutoff	  as	  a	  programming-‐level	  optimization.	  For	  

that	   reason,	  we	  will	  be	  comparing	   the	  use	  of	   regular	  and	  compact	  binning	  assuming	   that	  

the	  application	  allows	  the	  use	  of	  a	  limited-‐range	  function.	  



	   12	  

The	   remainder	   of	   this	  work	  will	   be	   organized	   as	   follows.	   Chapter	   2	  will	   describe	  

GPUs,	  the	  architecture	  on	  which	  this	  work	  was	  conducted.	  Chapter	  3	  will	  describe	  the	  four	  

applications	   used	   for	   the	   analysis	   of	   this	   work.	   Chapter	   4	   will	   discuss	   the	   trade-‐offs	  

between	  regular	  and	  compact	  binning.	  Chapter	  5	  will	  discuss	  partitioning	  as	  an	  orthogonal	  

optimization	   to	   binning.	   Chapters	   6	   will	   discuss	   the	   similarities	   between	   limited	   range	  

functions	  and	  the	  different	  representations	  of	  sparse	  matrices	  in	  the	  linear	  algebra	  domain,	  

and	  Chapter	  7	  will	  conclude	  the	  work.	  



	   13	  

CHAPTER	  2	  

THE	  GPU	  ARCHITECTURE	  

As	   shown	   in	  Chapter	  1,	   limited-‐range	   function	  applications	  are	   inherently	  parallel	  

since	  the	  computation	  of	  each	  input’s	  contributions	  to	  the	  output	  set	  is	  independent	  from	  

all	  other	  input	  points,	  and	  similarly,	  the	  computation	  of	  each	  output	  element	  based	  on	  the	  

inputs’	   contributions	   is	   independent	   from	   all	   other	   output	   points.	   The	   amount	   of	  

parallelism	  in	  these	  computations	  is	  on	  the	  order	  of	  the	  number	  of	  input	  elements	  for	  the	  

scatter	  approach	  and	   the	  number	  of	  output	  elements	   for	   the	  gather	  approach.	  This	   large	  

amount	   of	   parallelism	   makes	   limited-‐range	   functions	   a	   good	   fit	   for	   massively	   parallel	  

architectures	   and	   though	   the	   techniques	  we	  describe	   in	   this	  work	   can	  be	   applied	   to	   any	  

parallel	   architecture,	   they	   are	   best	   suited	   for	   these	   kinds	   of	   architectures	   that	   execute	  

many	   fine-‐grained	   threads	   simultaneously.	   The	   architecture	   we focus on is a graphics 

processing unit (GPU), more specifically, the NVIDIA GTX280 GPU. In this chapter, we will 

describe the details of the architecture and the programming model as relevant to this work. Full 

details on the GPU devices and their programming model can be found in the Programming 

Guide published by NVIDIA [1]. 

 

2.1 CUDA Programming Model 

Compute Unified Device Architecture (CUDA) is the programming language used to 

program NVIDIA GPUs. CUDA is based on the C programming language, with added 

constructs to explicitly describe parallelism. The explicit parallelism constructs are used to 

specify how a function is executed on the GPU. A function that runs on the GPU is called a 

kernel. The kernel is launched from the host (i.e., the CPU), with a specified number of threads, 



	   14	  

all of which execute the same kernel code. GPU threads are lightweight, and a single kernel 

typically invokes hundreds or thousands of threads that are scheduled onto the GPU and 

executed as computing resources become available. Figure 9 shows the organization of the 

various processing elements. Threads are grouped in blocks, which in turn are grouped in a grid. 

A grid therefore is the entire set of all processing threads that carry out the execution of a kernel. 

Blocks within a grid have two-dimensional indices (x and y), which are used to determine the 

section of the work that each block is responsible for. Similarly, every block is made of threads 

with three-dimensional indices (x, y, and z), for determining which part of the work within the 

block every thread computes. GPUs support single program multiple data (SPMD) computation 

models: every block can execute a different path through the kernel code (paths are determined 

by conditional branches) independently of all the other blocks. Therefore, even though all the 

blocks execute the same kernel, different blocks may execute different sets of instructions within 

the kernel. Threads in each block are further grouped into warps of 32 threads, where a warp is 

the atomic vector unit of execution. All threads within a warp execute in the single instruction 

multiple data (SIMD) computation model, which means that all the threads execute the same set 

of instructions of a kernel; however, different warps with the same block are free to execute 

different paths within the kernel. In the event that threads within a warp need to execute different 

paths of the kernel based on their data values (this event is called thread divergence), all the 

threads in the warp have to execute all the paths taken by any of the threads that constitute that 

warp, but only commit the results of the path that is relevant to them. Thread divergence can be 

costly, first because the different paths are serialized (example shown in Figure 10), and 

secondly because it results in threads performing unnecessary computation, thus occupying 

computing resources only to discard the results in the end. 



	   15	  

Though all threads within a warp share the same state (e.g., program counter, execution 

schedule, etc.), each thread maintains its own set of private registers for computing its data 

(shown in Figure 9). Registers are the fastest type of memory available to threads. In addition to 

registers, all threads within a block have access to a shared memory space that can be used to 

read and write common data. This space is managed explicitly in software (by declaring a 

variable or array with the __shared__ keyword appended to its data type) and is commonly used 

to store shared data among threads locally to avoid replicating accesses to the main memory. At 

the highest level, and with the highest access latency, is global memory, which is viewable by all  

	  

Figure	  9.	  CUDA	  programming	  model 

	  

Figure	  10.	  Effects	  of	  thread	  divergence	  on	  warp	  execution 



	   16	  

the threads across blocks, as well as the host processor. Constant memory is a subspace within 

global memory that is read-only, and is cached closer to the SMs for faster re-access to the data 

by the threads. 

All threads within a block can be synchronized using the __syncthreads() function. 

Synchronization enables the use of the shared memory by guaranteeing that all threads have 

finished writing data into it before it is subsequently read, and conversely, data in shared 

memory is read by all threads that need it before it is overwritten by others. In the general case, 

however, threads across blocks cannot be synchronized except by ending the kernel execution. 

The host processor (typically the CPU) controls the computation on the GPU (also 

referred to as the device). The host launches the kernels to be executed on the GPU with the 

corresponding grid and block configurations. Kernel launches are asynchronous, meaning that 

once the host launches a kernel, it can continue executing its own workload without waiting for 

the GPU kernel to complete execution. The kernel is synchronized once the data it computes on 

the device is requested back on the host. Alternatively, the kernel can be made synchronous 

using API calls provided by the language. In addition, because the GPU and CPU have different 

memory address spaces, the CUDA language also provides APIs for dynamically allocating and 

freeing memory on the device, as well as transferring data to and from the device (using DMA 

transfers). These calls are usually synchronous, but their asynchronous equivalents are also 

available. 

 

2.2 GPU Architecture 

As one would expect, there is a duality between the GPU’s hardware organization and the 

programming model. Figure 11 shows a simplified diagram of the GTX 280 architecture. The 



	   17	  

GTX 280 features 240 cores (called streaming processors or SPs). Each processor is a single-

instruction in-order processor with one floating point and integer arithmetic unit. Every eight SPs 

are grouped into a simultaneous multiprocessor (SM), for a total of 30 SMs. All the SPs in an 

SM share a single instruction fetch and decode unit, effectively making the SM an eight-wide 

vector processor, with each SP processing one of the eight elements. Blocks are assigned to 

single SMs for execution, and every SM can maintain contexts and execute up to eight blocks 

simultaneously. Every warp within a block that is scheduled on an SM executes instructions for 

its 32 threads in four consecutive cycles. Scheduling multiple blocks (and by association warps) 

on every SM allows the GPU to hide the long latency of global memory accesses such that when 

one warp makes an access to memory and has to wait for the request to return, another warp can 

be executed in the mean time. 

	  

Figure	  11.	  GTX	  280	  architecture 

Every SM is attached to its own shared memory, which has a separate address space from 

the other shared memories and global memory. Shared memory is a scratchpad memory, 



	   18	  

meaning that it is explicitly managed by software and is not guaranteed to be consistent with the 

contents of global memory. Though multiple blocks may run on an SM simultaneously, each 

block can only access its own equal portion of shared memory. The amount of shared memory 

needed by each block can also determine how many blocks can be scheduled simultaneously on 

an SM. 

Global memory is a high-latency off-chip DRAM memory attached to the GPU and is 

accessible by all the SMs. The DRAM technology makes read and write accesses into memory 

very slow, so one way to improve the efficiency of such memory is to increase the amount of 

data returned by each access, thus amortizing the latency [2]. This collection of data returned by 

a single access is called a burst. In order to utilize the data returned in a given burst, GPUs 

combine accesses of threads within a half-warp if those accesses are made to the same burst. 

When all threads in a half-warp access data in the same burst, we call that a coalesced access 

(Figure 12.a). If the requests are not coalesced (example in Figure 12.b), every thread will issue a 

separate request and receive a full burst, of which it will only extract the data that it needs. 

Performance can degrade significantly as a result of non-coalescing. 

	  

Figure	  12.	  Effects	  of	  coalescing	  and	  alignment	  on	  global	  memory	  accesses 

The GTX 280 supports three burst sizes: 32 bytes, 64 bytes, and 128 bytes, corresponding 

to 2-byte, 4-byte, and 8-byte data types respectively. Alignment is another factor that can affect 

memory performance. Alignment occurs when the starting address of a memory request by a 



	   19	  

half-warp coincides with the start of a burst. If the request does not start at the beginning of the 

burst, the misalignment may cause the request to be split into multiples, thus wasting memory 

bandwidth, increasing memory latency, and resulting in performance degradation (Figure 13).  

Because each bin in compact binning is allowed to have an arbitrary size, misalignment 

becomes a concern when accessing these bins. This motivated us to try and better understand the 

effects of misalignment on the kernel’s performance. To that end, we wrote a micro benchmark 

that simulates the accesses into regular bins that were initially aligned, and recorded the runtime 

as we varied the amount of misalignment. Figure 13, shows the results of that simulation. As we 

can see, misalignment increases the runtime by nearly 60% when threads load consecutive floats 

from the bin array. The runtime improves slightly when the misalignment is 32 bytes since that 

coincides with a 32-byte burst boundary. The effects of misalignment can be reduced if threads 

load a float2 short vector type element from the array rather than a single float. Float4 vector 

types also improve runtime compared to single float types but only in certain cases, and they fail 

to outperform float2 accesses. 

We used profiling counters that recorded the number of accesses made to each of the 

three burst sizes to further explain the change due to misalignment, seen in Figure 13. Based on 

the counters’ values, we have deduced the model shown in Figure 14. The model shown 

corresponds to a half-warp loading 256 consecutive bytes. This corresponds to 4 separate load 

instructions for float, two for float2, and one for float4 data types. Note that even though it only 

takes one instruction to load 256 bytes of float4 data, it takes two memory accesses of the largest 

burst size to satisfy the request. However, those two memory accesses are treated as a single unit 

and cannot be scheduled separately. 



	   20	  

	  

Figure	  13.	  Effects	  of	  misalignment	  on	  float	  and	  float	  vector	  types	  

	  

Figure	  14.	  Memory	  accesses	  due	  to	  misalignment	  

Misalignment had the greatest effect on single float types as it results in six memory 

accesses of various burst sizes to load all 256 bytes. Furthermore, a misaligned access to an array 



	   21	  

of floats causes the largest waste of burst data (everything that is not orange in the misaligned 

float diagram), which inevitably reduces the effective memory bandwidth. Misaligned float2 

accesses waste significantly less bandwidth, despite a slight increase in the number of accesses, 

and that could explain the behavior in Figure 13. Misaligned float4 accesses are the most 

efficient both in the number of added accesses and in the amount of wasted bandwidth; however, 

they perform worse than float2. We believe this to be the result of scheduling since the three 

accesses in the misaligned case have to be scheduled simultaneously, likely resulting in memory 

bank conflicts (for a more thorough study of bank conflicts, please refer to [2]). 

 

 



	   22	  

CHAPTER 3 

DESCRIPTION OF BENCHMARK APPLICATIONS 

In this chapter we will introduce the four benchmarks that we use to compare regular and 

compact binning. We will use these benchmarks in Chapters 4 and 5 to provide quantitative 

analysis for the different aspects of the comparison. The four benchmarks are: MRI 

reconstruction gridding step, cutoff Coulombic potential, Blinn’s blob, and N-body simulation. 

 

3.1 MRI Reconstruction 

Magnetic resonance imaging (MRI) is a common, non-invasive technique used in 

radiology to analyze the internal structure of the human body, and is used for a wide range of 

applications where precise information is desired due to its image resolution compared to other 

imaging techniques like computed tomography (CT) and x-ray. The scanner used for MRI data 

acquisition collects samples in the frequency domain. An inverse fast Fourier transform (IFFT) is 

then applied to the acquired data to transform it back to the image domain. 

Because of the need to perform an FFT operation during reconstruction, traditional 

acquisitions collected data along a Cartesian path with uniform spacing between data points. The 

result, however, was a very slow acquisition that presented physical challenges to the patient, 

who had to lie in the scanner for approximately 20 minutes without moving. More recently, MRI 

acquisition has been performed on non-Cartesian paths, which saves both time and data [3]. 

Research has shown that fewer samples can be collected while still maintaining enough data to 

reconstruct the image without quality degradation. The time and data saved at acquisition time, 

however, come at the expense of added complexity and time needed to reconstruct the images. 

There have been many efforts to speed up the reconstruction of non-Cartesian data. One such 



	   23	  

effort involves treating the input data as a linear system and solving it using an iterative method 

such as least-squares or conjugate gradient, as shown on the right-hand side of Figure 15. Wu et 

al. implemented a GPU version of this approach [4]. Another approach is the gridding technique 

shown on the left-hand side of Figure 15. As the name suggests, the idea behind gridding is to 

map the non-Cartesian input data onto a Cartesian grid in the same domain (i.e., the frequency 

domain), then proceed with IFFT as is done in the classical method. One motivation for using 

gridding instead of the iterative method is that the former has O(N log N) complexity compared 

to the O(N2) complexity of the iterative method. The trade-off comes in the slightly poorer 

quality of the gridding image due to some noise being introduced by the gridding step itself. 

	  

Figure	  15.	  Reconstruction	  techniques	  for	  non-‐Cartesian	  MR	  sampling 

At the heart of the gridding step is an application of limited-range function. Every input 

point, also known as a sample point in the 3D frequency domain space, is mapped onto a 3D 

Cartesian grid of the same space, using a Kaiser-Bessel function [5]. The Kaiser-Bessel function 

is used to determine the weight of the contribution of a sample point onto a grid point, based on 

the distance between the two. Because the weight of the contribution becomes insignificant 

beyond a certain distance between the two points, a hard cutoff is imposed on the kernel beyond 

which the contribution is considered to be zero. The cutoff distance for the Kaiser-Bessel 

function is called the “kernel length.”  



	   24	  

Figure 16 shows a sample acquisition trajectory. The acquisition starts in the center of the 

space and moves outward in a conical shape with varying angles of the cone. One can see from 

the figure that the data density is higher in the center than it is on the outside. Figure 17 is a plot 

of the data density along the space. This better shows the large variation in data distribution 

throughout the space. For a large data set like the one shown in Table 1, approximately 24 

million sample points lie in the horizontal band shown at the bottom of the curve. The average 

density of points in that region is approximately 4 sample points per 1 unit3 bin. The peak density  

	  

Figure	  16.	  Acquisition	  trajectory	  of	  non-‐Cartesian	  MR	  sampling	  

	  

Figure	  17.	  Sample	  density	  for	  the	  trajectory	  shown	  in	  Figure	  16	  



	   25	  

in the middle is 391k points in a single bin, and decreases sharply moving away from the center. 

It is very inefficient, and sometimes infeasible, to apply regular binning to this kind of data 

distribution. Because the mean of the data density is too high and the variance too large, there is 

no bin size that would map the majority of the input points to the GPU and minimize the amount 

of spill-over data to the CPU without causing very large data bloats. In this situation, compact 

binning is more than just an optimization technique; it is an enabling one. We will use the small 

data set for comparison in Chapters 4 and 5 since it can be represented using regular binning if 

the bin depth is capped at 9 samples per bin. Figure 18 shows the output of the small data set. 

	  

Figure	  18.	  Sample	  reconstructed	  MR	  image 

Table	  1.	  MRI	  data	  statistics	  

	  	   Small	   Large	  

No.	  of	  Samples	   2655910	   30144488	  

No.	  of	  Bins	   16777216	   191102976	  

Min	  Bin	  Depth	   0	   0	  

Max	  Bin	  Depth	   11560	   391536	  

Avg	  Bin	  Depth	   0.158305	   0.07316	  

StdDev	   2.86096	   28.861158	  

 



	   26	  

3.2 Cutoff Coulombic Potential 

A biomolecular modeling system seeks to simulate the interactions between atoms in a 

medium. There are two types of interactions in such a system: the interactions among chains of 

covalently bonded atoms (such as proteins) and the interactions between non-bonded atoms. 

These interactions obey Newton’s second law of motion with the forces in the system generated 

by Coulomb’s law of electrostatic interaction. Computing these simulations is computationally 

expensive. It is on the order of O(N) for the covalently bonded atoms, and O(N2) for all the pairs 

of unbonded atoms. Furthermore, because a truly continuous simulation is impossible to achieve, 

we approximate the motion of atoms in the space by breaking down the simulation’s time 

window into many consecutive discrete time steps. For each time step we compute the forces 

exerted on all the atoms in the space, and based on those forces update the velocity and position 

of each atom for the next time step. Depending on the duration of time being simulated and the 

length of each time step, a full simulation’s runtime can be on the orders of hours, weeks, or 

even years. 

Another aspect of the biomolecular system that is useful for simulation and visual 

rendering (example in Figure 19) is to determine the electrostatic potential map for that system. 

The electrostatic potential map is a grid of equally spaced points, and the potential of each point 

on the grid is calculated by accumulating the potential of each atom at that point. Atoms are 

modeled as point charges with each atom i at position ri holding a fixed charge qi. The potential 

of a map point at position r is computed using the following equation: 

 

where ε0 is the dielectric constant of the medium, and s(r) is a unitless scaling factor between 0 

and 1. When s(r) equals 1, the electrostatic potential for every output element is computed by 



	   27	  

iterating over all the atoms in the space, resulting in an O(N2) algorithm.  Hence, to improve the 

algorithm’s complexity, s(r) is chosen in such a way to yield a cutoff distance rc beyond which 

the contribution’s value is insignificant and can be approximated to zero. One choice for s(r) is 

 

With this equation for s(r), the potential of an atom onto a map point diminishes gradually to 0 as 

it approaches rc, the cutoff radius, and is zero beyond rc. 

	  

Figure	  19.	  Example	  of	  a	  rendering	  of	  protein	  cells	  and	  their	  potential	  map 

When s(r) is less than 1, the computation pattern is effectively a limited-range function, 

and can benefit from binning to maintain a computational complexity of O(N) when executed in 

fine-grained parallelism. Because molecules have a fairly uniform density of about 1 atom per  

10 Å3, regular binning works well for this computation. Rodrigues et al. [6] implemented a 

highly optimized version of the electrostatic potential map computation for GPUs using regular 

binning. By using regular binning they were able to control the alignment and coalescing of 

memory accesses when reading bins into shared memory. In this work we will compare their 

regular binning implementation with compact binning and demonstrate that even for well 

distributed input data, compact binning can be a viable solution. Table 2 shows the statistics of 



	   28	  

two input data sets for CP. For our experiments, we will use the large dataset. Compared to the 

MRI dataset, the CP large data set has a much more uniform distribution (smaller standard 

deviation). 

Table	  2.	  Coulombic	  potential	  data	  statistics	  

	   Small	   Large	  

No.	  of	  Atoms	   5943	   570348	  

No.	  of	  Bins	   4913	   140608	  

Min	  Bin	  Depth	   0	   0	  

Max	  Bin	  Depth	   12	   14	  

Avg	  Bin	  Depth	   1.209648	   4.056298	  

StdDev	   2.528611	   3.342421	  

 

3.3 Blinn’s Blob 

The Blinn’s blob algorithm is very similar to the electrostatic potential map computation. 

It too can be used for the image rendering of a point cloud [7], with an example shown in Figure 

20. Blinn’s blob creates a density map by accumulating the density contributions of all atoms to 

a particular point on the grid.  The contributions depend on the distance of the atom from the grid 

point, the radius of the atom as well as the blobbiness that is desired. In addition, because the 

density function exponentially decreases with the increase in distance between the atom/grid 

point pair, every atom only affects a small neighborhood of grid points, beyond which its 

contributions are negligible and can be approximated to zero. Table 3 shows three example data 

sets for Blinn’s blob. All three of these data sets exhibit a very sparse distribution of the input 

elements in the space (average bin depth < 0.2), which means that in the case of regular binning, 

the majority of the bins will only contain padding elements. As a result we expect to see a 

noticeable improvement in performance and memory usage with the use of compact binning. 



	   29	  

	  

Figure	  20.	  Examples	  of	  Blinn's	  blob	  rendering	  for	  atom	  clouds	  

Table	  3.	  Blinn's	  blob	  data	  statistics	  

	   Small	   Large	   Random	  

No.	  of	  Atoms	   1739	   26318	   500000	  

No.	  of	  Bins	   262144	   1179648	   23887872	  

Min	  Bin	  Depth	   0	   0	   0	  

Max	  Bin	  Depth	   360	   3	   3	  

Avg	  Bin	  Depth	   0.006634	   0.02231	   0.020931	  

StdDev	   0.708008	   0.15885	   0.144142	  

 

3.4 N-Body Simulation 

N-body simulations are common tools used to model astrophysical systems and their 

evolution. Due to the very large number of elements and the long period of time for which these 

system are simulated, good performance is critical for the feasibility of these simulations. The N-

body simulation, among other things, seeks to simulate the motions of objects, such as stars, 

galaxies, and planets, through space based on the gravitational forces they exert on each other. 

The objects are typically modeled as points in space with mass, position and velocity attributes, 

and do not represent physical objects. Similar to the Coulombic potential, the motion over time is 

simulated by computing the positions and velocities of all the objects for a given discrete time 

step. The most direct and most accurate approach is the particle-particle simulation, which 

computes the gravitational forces of every pair of objects, but its complexity grows quadratically 



	   30	  

with the number of elements, and thus is computationally infeasible for large simulations. 

Another method is the particle-mesh method (PM) which partitions the space into meshes for 

which a fast Fourier transform is computed to solve Poisson’s equations, therefore reducing the 

computational complexity to O(M log M), where M is the number of meshes. However meshes 

have to be regular to satisfy the constraints of the FFT algorithm, and mapping the particles onto 

the mesh introduces noise into the system, therefore sacrificing some accuracy in the final results. 

A combination of PP and PM combines the benefits of both approaches [8]. If we 

partition the total force on a particle as the sum of nearby forces and distant forces, we can use 

the PP method to compute the nearby forces, where accuracy matters, and PM for the distant 

forces where approximated results can be tolerated. In this setting, computing the PP forces 

becomes an application of limited-range functions. N-body simulation is different from the other 

three applications in that its output is not a regular grid. Since the quantities being computed are 

the forces of the bodies among themselves, the input and output in fact consist of the same data 

set. Input binning is still useful to reduce the number of elements each output object needs to 

access; however, there is little to no locality to the output when every thread block is given an 

equal number of output elements, because the output is non-uniformly distributed in space. For 

that reason, data sharing in the shared memory is not applicable, and may in fact hurt 

performance. Instead, every thread computing the position and velocity of a body reads its 

relevant bins directly from global memory. This access pattern differs vastly from the other three, 

which makes it less relevant for parts of the discussion in Chapters 4 and 5. However, since N-

body is the most general type of limited-range application, it is important to analyze how 

different binning techniques affect its performance. The statistics of the input data for N-body, as 

shown in Table 4, are vastly different from the other three in part because it is the only 



	   31	  

application with as many inputs as outputs, and more inputs than number of bins. Figure 21 is a 

visual representation of the simulation of the data set shown in Table 4 for a given time step. 

	  

Figure	  21.	  Example	  of	  an	  N-‐body	  simulation	  from	  the	  CUDA	  SDK 

Table	  4.	  N-‐body	  data	  statistics	  

	  	   Random	  

No.	  of	  Bodies	   131072	  

No.	  of	  Bins	   32768	  

Min	  Bin	  Depth	   0	  

Max	  Bin	  Depth	   99	  

Avg	  Bin	  Depth	   4	  

StdDev	   6.52	  

 



	   32	  

CHAPTER 4 

COMPARING REGULAR AND COMPACT BINNING 

In this chapter we will compare regular binning and compact binning. We have discussed 

in Chapter 1 how regular binning provides ease of access to the bins, and better control over 

coalescing and alignment of memory accesses, at the cost of large memory requirements when 

the bin densities vary. We have also explained how compact binning eliminates the overhead of 

memory padding at the cost of creating and having to use an additional array for accessing the 

bins. Furthermore, with compact binning, it is more difficult to maintain alignment when 

accessing the data in the bins. In this chapter, we evaluate qualitatively and quantitatively both 

binning approaches. We begin by explaining the algorithm for performing and using each 

binning technique, then proceed to analyzing the differences. 

 

4.1 Regular Binning Algorithm 

Step1: Determining the size of the largest bin 

Determining the size of the largest bin can be done either sequentially or in parallel. Either way, 

a zero-initialized integer array for all the bins needs to be maintained, and as each input element 

is visited and its bin index determined, the integer corresponding to that bin is incremented by 1. 

When performed in parallel, generating the integer array (which is effectively a histogram) is 

most simply done using atomic updates into the array. Once the histogram is generated, we use it 

to determine the size of the largest bin, which can be done by using a reduction computation with 

a max operator, and the final access to determine the max can be done using a reduction 

computation with a max operator [9].  This step can be omitted if the bin size is known statically 

(e.g., applications where the bin size does not change for different input data). Coulombic 



	   33	  

potential is an example of such an application because the density of atoms in space is fairly 

regular across data sets. 

Step2: Binning the input elements 

Once the maximum bin depth has been determined and the data structure allocated accordingly, 

we can perform the actual distribution of input elements into the bins. This step can also be 

performed sequentially or in parallel since it is not very computationally expensive. In order to 

perform binning, we need to maintain another zero-initialized integer array of offsets into each 

bin, which is used to determine the offset within the bin at which to place a given input element. 

For each input element, we determine once again the bin it belongs to, place it at the current 

offset within the bin, then increment the offset. If performed in parallel, binning can be achieved 

by atomically incrementing the offset counter, and the effects of this atomicity are not too severe, 

since the only contention is between elements trying to update the same bin, and all other bins 

can be populated in parallel. 

Step 3: Performing the limited-range function computation 

In order to perform the computation of the limited-range function, the output grid is first divided 

into tiles, where each tile is a subset of spatially local output elements. Each tile is assigned to a 

thread block where every thread computes exclusively the result of one or more output elements 

from that subset. The spatial locality of the output in a tile is important to maximize sharing of 

input data among threads within the block. Figure 22 shows the pseudo code for the limited-

range computation. sharedLocalBin is an array in shared memory that is accessible by all 

the threads within a block. In the code in Figure 22, each thread is shown to compute only one 

output element and compute that output’s index based on the 2D blockIdx and 3D 

threadIdx (both of which are CUDA constructs). Since every thread computes an output 



	   34	  

element exclusively, the result can be accumulated in a local register (line 2).  

Every output element is computed by a single thread exclusively, and that thread can 

compute the value of that element locally (line 2). Every block iterates over all the bins that its 

output tile intersects: zLo to zHi, yLo to yHi, and xLo to xHi are the 3D bounds of the region 

intersected by a given tile. For each bin that is visited, all of its elements are loaded 

cooperatively into shared memory by all the threads in the block. Note that a bin is visited if at 

least one of the outputs within the block’s tile intersects that bin; however, that bin may fall 

outside the cutoff region of other outputs in the tile. That is why it is still necessary to check 

whether a given input point is within the cutoff distance of the output point before computing its 

contribution to that output (line 15). Once all the bins and all the elements within them have been 

visited, and their contributions added, each thread writes its privately computed output to the 

global array that is the final result. 

	  

Figure	  22.	  Pseudo	  code	  for	  parallel	  limited	  range	  function	  kernel	  with	  regular	  bins 

! 00 __shared__  inElem sharedBinCache[/*max size*/]; 
01 outputIdx index = computeOutputIndex(blockIdx, threadIdx); 
02 outElem myOutElem = initOutElem(index); 
03 int zLo = z0 – cutoff; 
04 int zHi = z0 + blockDim.z + cutoff; 
05 // compute yLo, yHi, xLo, xHi similarly 
06 for (z: zLo ! zHi){ 
07   for(y: yLo ! yHi){ 
08     for(x: xLo ! xHi){ 
09       int count = binCount[z][y][x]; 
10       if(threadIdx < count){ 
11         localBinCache[threadIdx] = globalBinArray[z][y][x][threadIdx]; 
12       } 
13       __syncthreads(); 
14       for(i: 0 ! count){ 
15         if(|localBinCache[i].coords – myOutElem.coords| < cutoff){ 
16           /*compute the contribution of this input onto the output*/ 
17         } 
18       } 
19     } 
20   } 
21 } 
22 globalOutputGrid[index] = myOutElem; 



	   35	  

BinCount in line 9 is the histogram generated in step 2 when performing the input binning and is 

used to determine how many elements are in a given bin to avoid unnecessarily loading the 

padding elements. Alternatively, we can load the entire content of the bin regardless of the 

number of real elements within the bin, and as we traverse shared array of elements, break out of 

the loop upon the first occurrence of a padding element (line 14). Effectively, the padding 

elements behave as sentinels in this situation. There are advantages to both approaches. If the 

number of actual elements in each bin is not much smaller than the maximum bin capacity, 

loading the padded elements into shared memory will likely be less costly than reading the 

binCount (which requires an extra global memory access). Alternatively, if the number of 

elements per bin varies significantly, it may be more effective to only load the elements needed, 

by first figuring out how many real elements there are in each bin. Figure 23 compares the two 

alternatives for all four benchmarks. For each benchmark the runtime of the limited-function 

execution is plotted for the sentinel checking method and the count method. For MRI, Blinn, and 

CP, count always performs better than sentinel checking. This is likely an indication of a large 

number of empty bins or bins with fewer than bin depth elements, which causes the sentinel 

method to read more data than the count method, resulting in worse performance. N-body 

(Figure 23.d), on the other hand, performs slightly better with sentinel checking up to a bin depth 

of 10, after which count starts performing better. Overall, despite the additional access to global 

memory to retrieve the size of each bin, checking the element count seems to perform better than 

loading the entire bin into on-chip memory and checking for the sentinel locally. 



	   36	  

	  

Figure	  23.	  Comparing	  the	  runtime	  of	  count	  vs.	  sentinel	  checking	  for	  varying	  bin	  depths 

 

4.2 Compact Binning 

Step 1: Determining the size of each input bin 

This step is identical to step 1 of the regular binning algorithm. The purpose of this step in 

compact binning, however, is slightly different: The histogram built in this step will be used to 

determine the start of each bin rather than the max depth of the bins. 

Step 2: Determining the start of every bin 

Using the histogram generated in step 1, we can determine the start of every bin. The operation 

that achieves this is called a prefix sum. The prefix sum computes, for every element at index i in 

an array, the sum of all the elements from index 0 to index i-1 (the value at index 0 is zero). 

Since every element in the array corresponds to the size of a bin, computing the starting offset of 



	   37	  

a bin corresponds to the sum of the sizes of all the bins that precede it. Prefix sum (also known as 

a scan operation), can be efficiently performed in parallel [10]. 

Step 3: Binning the input elements 

This step is also similar to step 2 of the regular binning algorithm. The only difference is that the 

starting offset of each bin has to be looked up from the array generated in the previous step, since 

it cannot simply be computed, as is the case with regular binning. Just like in regular binning, 

another array needs to be maintained that keeps a count of the number of elements that have 

gone into a bin, to determine the position of every input element that was placed in the bin. 

Despite the fact that bins have varying sizes, each bin can be populated in parallel with other bins 

since the start of every bin can be independently known by reading the starting offset from the 

array of bin offsets. 

Step 4: Performing the limited-range function computation 

In its simplest form, the computation of the limited-range function using compact bins does not 

look much different from its regular equivalent. The only difference is the need to access the bin 

offset array to determine the start and end of a bin, rather than computing its starting offset using 

x, y, and z (lines 9, 10 and 12 in Figure 24). Furthermore, when loading the elements into shared 

memory, the boundary test depends on the variable size of the bin rather than a predetermined 

constant bin size (lines 11 and 15 in Figure 24). 



	   38	  

	  

Figure	  24.	  Pseudo	  code	  for	  parallel	  limited	  range	  function	  kernel	  with	  the	  compact	  bins 

 

4.3 Comparing Regular and Compact Binning 

As mentioned previously, using either regular or compact bins involves a tradeoff. 

Regular bins enable us to compute the starting offset of each bin rather than having to pre-

compute it and store it in an array for look-up during the computation. Furthermore, since the 

bins have the same size, we can better control the layout of these bins in memory, thus ensuring 

aligned accesses. However, the use of padding may sometimes result in a largely inflated bin 

data structure, which can limit the size of the problem that can be computed by a single kernel. In 

addition, because of padding, further checks need to be made to avoid computing unnecessarily 

for those padding elements. One method discussed in Section 4.1 is to maintain an array of the 

element count per bin as shown in Figure 22. An alternative method is to load the entire bin into 

shared memory and check for a sentinel value signifying the end of the valid data in a bin. Either 

!

00 __shared__  inElem sharedBinCache[/*max size*/]; 
01 outputIdx index = computeOutputIndex(blockIdx, threadIdx); 
02 outElem myOutElem = initOutElem(index); 
03 int zLo = z0 – cutoff; 
04 int zHi = z0 + blockDim.z + cutoff; 
05 // compute yLo, yHi, xLo, xHi similarly 
06 for (z: zLo ! zHi){ 
07   for(y: yLo ! yHi){ 
08     for(x: 0 ! xLo ! xHi){ 
09       int start = binOffsetArray[z][y][x]; 
10       int end   = binOffsetArray[z][y][x+1]; 
11       if(threadIdx < end-start){ 
12         localBinCache[threadIdx] = globalBinArray[start+threadIdx]; 
13       } 
14       __syncthreads(); 
15       for(i: 0 ! end-start){ 
16         if(|localBinCache[i].coords – myOutElem.coords| < cutoff){ 
17           /*compute the contribution of this input onto the output*/ 
18         } 
19       } 
20     } 
21   } 
22 } 
23 globalOutputGrid[index] = myOutElem; 



	   39	  

method incurs a certain amount of overhead. 

Compact binning, on the other hand, eliminates the need for padding, therefore 

guaranteeing that all data loaded into shared memory is valid data that will be consumed by at 

least one thread. Yet due to the variable size of the bins, we incur the overhead of needing to 

look up the start and end indices of each bin, which requires additional accesses to global 

memory. Another side effect of the variable size of the bins is the difficulty of controlling the 

alignment of bins in memory. In the following subsections, we will evaluate the effects on 

performance due to the binning overhead, the cost of the various element count methods and the 

effects of misalignment. 

 

4.3.1 Binning overhead 

Computing the size of every bin as the first step of both the compact and the regular 

binning incurs the same computation overhead. Both are O(N) computations, and both have the 

same access pattern into the bin counters, based on the values of the inputs. Both also suffer to 

the same extent from the serializing effects of atomic operations into the bin counter. The use  of 

these arrays differs for the two binning approaches. Regular binning uses this array to determine 

the max bin depth using a reduction operation that takes O(log M) steps and O(M) comparisons 

when performed in parallel (M is the number of output elements). On the other hand, the prefix 

sum used in compact binning to determine the start of every bin takes twice as many steps and 

performs twice as much computation. Note that this computation does not depend on the number 

of input elements or their values, but only depends on the number of output elements. However, 

even for the largest output of any dataset we have analyzed (i.e., the large MRI gridding dataset 

in Table 1), the runtime is 96 ms and 136 ms for reduction and scan respectively, and the 



	   40	  

difference of 40 ms constitutes less than 4% of the total runtime of the algorithm. The final 

binning step also varies slightly for compact and regular binning. The compact implementation 

requires a look-up of the bin’s starting index, which increases the number of memory requests in 

comparison with the regular binning algorithm that computes the starting index. Overall, it takes 

longer to perform compact binning than it does to perform regular binning, but as we will 

demonstrate later on in the work, the difference is not large enough to negate the benefits of 

using compact bins to execute the limited range function. 

 

4.3.2 Added access overhead 

We have shown in Section 4.1 that maintaining the number of real elements per bin 

improves the execution time of the limited range function as compared to loading the entire bin, 

despite requiring an additional access to global memory (Figure 23). With that in mind, the 

access pattern for compact binning is not much different from the count approach for regular 

bins. The only differences are highlighted in red in Figures 22 and 24. Instead of loading the 

number of elements in a bin, the compact algorithm loads the starting offset of the bin, and the 

starting offset of the bin that follows, and from the difference infers the size of a particular bin. 

This results in an extra global memory access for every visited bin. Figure 25 shows the relative 

performance of various access patterns as compared to regular binning (blue series).  We can see 

from the figure that the extra global memory access for compact can have a negative effect on 

performance (green series). Blinn’s blob is the only exception, as it sees a slight performance 

improvement for compact versus regular. The difference, however, is not significant and could 

be attributed to more efficient memory accesses (in terms of simultaneous accesses to the 

different memory banks), and that is beyond the control of the programmer. 



	   41	  

One optimization that can be performed to compact binning is to access an entire range of 

contiguous bins simultaneously rather than accessing each bin separately. More specifically, for 

any given z and y bin coordinates, bins xL through xH, which occupy consecutive memory 

locations, can all be loaded simultaneously since compact bins do not contain any padding; all 

the elements between the start of xL and xH are in fact useful to the computation and all need to 

be loaded into on chip memory. For that reason, rather than simply reading the start of each bin 

and the one following it to determine the range of a single bin in x, we can read the start and end 

indices of the entire range in x once, and load all the elements within that range into on chip 

memory. The benefits of this optimization are three-fold. First, the number of accesses to the bin 

offset array is reduced from two accesses per bin, to two accesses amortized over the number of 

bins within the range. Second, the access into the bins is more efficient as we better utilize 

memory bursts by not breaking bins’ bounds. Finally, by accessing entire ranges rather than 

individual bins, we get rid of the loop for the x dimension (line 8 in Figure 24), thereby reducing 

the overall number of iterations within the kernel. As a result of this optimization, we see a 

significant improvement of the performance of compact binning over regular binning as shown 

by the purple series in Figure 25. Since N-body does not utilize shared memory to share the input 

data among all the threads within a block, the optimization of range accesses does not apply to it. 

The range optimization can also be applied to the regular binning implementation, but its 

overall effects are detrimental to the kernel’s performance. The reason is that by accessing an 

entire range we have to inevitably load padding elements into shared memory, which 

unnecessarily consumes memory bandwidth. The red series in Figure 25 shows the performance 

of the range optimization on regular binning. In the best case, it breaks even with the 

performance of regular binning for Blinn. In the case of MRI, however, we see a 6.82X 



	   42	  

slowdown that can most likely be attributed to the large number of zero elements that end up 

being unnecessarily loaded into on-chip memory. The range optimization could not be applied to 

regular binning in the case of N-body because the implementation does not use shared memory 

to cache the bins. 

	  

Figure	  25.	  Comparing	  regular	  and	  compact	  bin	  accesses 

4.3.3 Effects of misalignment 

One of the potential drawbacks of compact binning is the resulting misalignment of bins 

in memory. In this section, we study these effects. First of all, we propose three techniques to fix 

misalignment. The first one is to pad each input element individually so that it can satisfy the 

alignment requirements. For all of the benchmarks we studied, padding each element to 8 floats 

satisfied the lowest requirement of 32-byte alignment with minimal memory bloating (25% 

overhead for MRI, 50% for the others). Since the padding is done per input element, bins that do 

not contain any elements in them do not contribute to the padding overhead. Furthermore, since 



	   43	  

every element is aligned, by extension, every bin will be aligned as well regardless of the number 

of elements it contains. The only drawback to this technique is that the padding of each element 

will reduce the effective bandwidth from global memory when the elements are read.  

The second approach is to lay out the input elements in the form of arrays of float vector 

types (float2 or float4).  As demonstrated in Chapter 2, the effect of misalignment on float2 

arrays is less severe than on single float arrays. This approach involves a reorganization of the 

bin data structures from arrays of structures to structure of arrays.  Sung et al. discuss the 

benefits of this transformation in their work [2]; however, unlike the strided access pattern they 

discuss, if all the elements within the structures are of the same type (in the case for all the 

benchmarks we analyzed, all the elements are floats), we can have every thread load a single 

float element from within the structure to shared memory, thus maintaining a coalesced access 

since the stride of the access is one (see Figure 26). Since the accesses into the array of structures 

are already coalesced, laying out the data in a structure of array format is not expected to 

significantly impact the performance. However, if we laid out the data in a structure of short 

vector arrays, we would expect to see better performance for misaligned accesses as shown in 

Figure 13 of Chapter 2. 



	   44	  

	  

Figure	  26.	  Array	  of	  structures,	  structure	  of	  arrays,	  structure	  of	  vector	  arrays 

The third and final approach to fixing misalignment is to pad every bin to the nearest 

alignment boundary. This is different from the first proposed method of padding each element, 

since the padding is essentially amortized over the number of existing elements in the bin rather 

than being incurred for each element. In other words, rather than padding each element 

separately to an alignment boundary and incurring a padding overhead for each, we pad the 

entire bin to an alignment boundary to guarantee that the next bin will be aligned; however, the 

elements within a bin may still be misaligned if their data type is not itself aligned. With this 

technique, bins that have zero elements in them (which constitute the majority of bins in our 

studied benchmarks) do not incur any padding. However, the side effect of this approach is the 

reintroduction of padding into the data structure. As shown in Figure 23, loading this data into 

shared memory can greatly affect the performance of the kernel. The only way to avoid loading 

the padding data into shared memory is to load each bin separately rather than loading an entire 



	   45	  

range of bins, and this severely impacts the performance as well, as shown in Figure 25. 

Finally, we measured the effects of each of the techniques discussed in this section that 

aim to improve alignment, and the results are shown in Figure 27. The results have been 

normalized to the runtime of the limited range function executed with regular binning. We can 

see that in fact any effort to reduce or eliminate misaligned accesses seems to impact the 

performance negatively, and that the optimal performance is achieved with a simple array of 

structures layout without any padding. We conclude from this that in the real kernels, the effects 

of misalignment are not as severe as shown in the micro benchmark in Chapter 2. One of the 

reasons could be a healthier ratio of computation to memory accesses, which means that memory 

accesses can be partially or fully overlapped with computation. 

	  

Figure	  27.	  Comparing	  various	  techniques	  for	  eliminating	  misalignment	  of	  compact	  bins	  



	   46	  

CHAPTER 5 

PARTITIONING 

One of the advantages of using compact bins is to relieve the pressure on memory due to 

padding when the sizes of the bins vary. While this also improves the performance of the 

limited-range function as demonstrated in Chapter 4, it does not resolve the issue of load 

balancing. In essence, due to the varying number of elements per bin, some blocks have to 

compute more elements than other blocks. Figure 28.a best illustrates this load imbalance. 

Blocks that reconstruct the center of the space compute significantly more than blocks that 

reconstruct the edges of the space, due to the high concentration of sample points in the center. 

To reduce the effect of this load imbalance, we propose in this chapter a simple technique that 

balances execution by partitioning the work between the CPU and the GPU. Instead of binning 

all of the input elements for execution on the GPU, we determine a bin depth that achieves the 

optimal balance between CPU and GPU execution, and offload all of the elements that exceed 

this bin depth to the CPU when performing binning. Since kernel execution on the GPU is 

asynchronous to the CPU, the optimal bin depth is defined as that which results in equal 

execution time on the GPU and CPU. Figure 28.b illustrates our proposed technique for load 

balancing as applied to the MRI input data. The remainder of this chapter will describe the 

implementation of this load balancing technique and its effects on regular and compact binning. 

Currently the only limitation of this work is that the bin depth used for partitioning needs to be 

provided by the user, and cannot be determined by the program based on input data distribution. 

This requires the user to know the input data distribution in order to choose a bin depth that 

yields good performance. 



	   47	  

	  

Figure	  28.	  Applying	  partitioning	  to	  the	  MRI	  data 

 

5.1 Implementing Partitioning 

To implement partitioning we only need to slightly modify the algorithms described in 

Sections 4.1 and 4.2. In dense binning, the first step becomes unnecessary since the user provides 

the desired bin depth rather than using the max bin depth determined in this step. We need to add 

a check in step 2 that verifies that the bin is not already at the bin depth limit, before adding an 

element to it. If the bin is not full, the thread proceeds to adding the input element, just as it 

would in the non-partitioning method. If the bin is found to be full, the element is instead placed 

in the CPU bin. The CPU bin may be a separate array or an extension of the bin data structure, 

and since this array is the overflow array from all the GPU bins, it cannot be bounded by bin 

depth. When adding an element to the CPU bin, a counter needs to be maintained for that array, 

which every thread increments atomically to determine where to insert its overflowed element. 

If the binning is performed on the GPU, the CPU bin will need to be transferred back to 

the CPU, where it will be processed using a scatter approach into the CPU’s copy of the output 

array. Simultaneously, the GPU performs the gather approach for all of its bins, and in the end 



	   48	  

the CPU and GPU copies of the output array are combined either on the GPU or the CPU as a 

straightforward vector addition. This vector addition is in fact an added overhead that is the 

result of partitioning the work between CPU and GPU, but we will show that despite this 

overhead, the performance of a partitioned execution is better than that of a unified execution on 

the GPU or CPU alone. 

Enabling partitioning for the compact bin approach requires modifying the first step of 

the algorithm, which is to determine the size of every bin. Rather than simply accumulating the 

number of elements that go into each bin, we need to saturate the bin size at bin depth. Therefore, 

every time we atomically update a bin counter, we need to verify that the number of elements in 

that bin have not exceeded the bin depth limit, by reading the returned value of the atomic 

operation. If the returned value is greater than or equal to bin depth, it means that the bin has 

already overflowed, and therefore we need to atomically subtract one element from it to bring it 

back to maximum capacity. The reason for requiring an exact count per bin is because the 

histogram generated in step 1 is later fed into the prefix sum step that determines the starting 

address of every bin. And since the starting address of a bin is determined by summing the 

number of elements in all the previous bins, we need to maintain the exact number of elements 

that go into each bin, and that should not exceed the maximum bin depth. In addition, similar to 

the regular binning case, a CPU bin needs to be maintained at binning time which collects the 

overflow from all the GPU bins to execute them on the CPU simultaneously with the GPU kernel. 

Figure 29 depicts the execution model for the partitioned regular and compact bins. 

Since the optimal bin depth is the one for which the runtime of the overflow on the CPU 

is the same as the runtime of the GPU execution, the optimal bin depth may vary depending on 

the runtime of the CPU and GPU kernels, and modifying either one may require retuning the bin 



	   49	  

depth to maintain equilibrium. In fact the optimal bin size may even vary for the same code if 

run on an environment with a different CPU and/or GPU. Ideally, the bin depth should be 

computed automatically based on some performance model of the GPU and CPU, but this is not 

an easy task, and we consider it to be beyond the scope of this work. 

	  

Figure	  29.	  Partitioned	  execution	  of	  limited-‐range	  functions 

 

5.2 Effects of Bin Depth on GPU Execution 

In this section, we will analyze the effects of varying the bin depth on the runtime of 

regular and compact limited-range functions. A larger bin depth signifies more work is being put 

on the GPU rather than the CPU. In the case of regular binning, a bigger bin depth means more 

padding of the regular bins. 

We plotted the runtime of the limited range function for regular and compact binning 

with varying bin depths. Figure 30 shows those results for all four benchmarks. As would be 

expected, the runtime increases with the increasing bin depth since more work is being 

performed by the kernel. Beyond that, padding does not seem to degrade the performance of the 

regular binning kernel. The regular binning implementation shown here is the one that uses the 

element count array, which means that regardless of the amount of padding, only the real 



	   50	  

elements in every bin will be loaded into on-chip memory. There is a constant runtime gap 

between the regular bin kernel and the compact bin kernel, and that is most likely due to the 

access to the count array for every bin for the former, versus the one-time bound checking for 

each range in the latter (as shown in Section 4.3.2).  

Due to the large output size for the MRI benchmark and the large imbalance in the 

input’s distribution, any bin depth greater than 9 causes the regular bin data structure to exceed 

the global memory capacity. That is not the case for compact binning since the maximum size of 

the bin data structure is equal to the number of input elements, regardless of the maximum bin 

depth specified, and thus we can vary the bin depth arbitrarily as shown in Figure 30.a. That is in 

fact an important advantage of compact binning: the maximum bin depth for regular binning can 

often be limited by the size of memory, even if that bin depth does not achieve the optimal load 

balancing between the CPU and the GPU. One such case is the large MRI data set, which is not 

shown Figure 30. The number of bins for this data set is 576^3, and yet the majority of these bins 

are empty. Representing these bins in a regular format, even with a bin depth of 1, requires    

4.27 GB of memory, which is more than the 4 GB available in the C1060 GPU. On the other 

hand, in the compact bin case, choosing a bin depth that is large enough to bin all of the input 

elements only occupies 0.67 GB of memory. As a result, the user is capable of better choosing a 

bin depth that balances the execution runtime between the CPU and GPU when representing bins 

in a compact format. 

The performance improvement seen for Blinn’s blob is the same shown in Figure 25. 

Because the Blinn’s blob data set is so sparse, with the majority of bins having zero elements in 

them, compact binning achieves a large speedup compared to regular binning because zero-

element bins do not consume any computation or bandwidth overhead in the former, whereas 



	   51	  

they do in the latter.  

It is worth observing how the varying bin depth affects the performance of N-body. 

Unlike the other three benchmarks, N-body does not demonstrate the same steady increase in 

runtime as the bin depth increases. The reason is that N-body does not preload bin contents into 

shared memory; rather, every thread loads the data that it needs immediately from global 

memory before using it. The resulting access pattern into global memory is a lot less regular than 

the other three benchmarks. Varying the bin depth simply randomizes the access pattern further 

and for some bin depths may result in better coalescing, whereas for others it may result in worse 

coalescing. The randomization effects are more noticeable for regular binning since the increase 

in bin depth causes the elements from two adjacent bins to move farther apart, due to padding, 

than in the compact case. 

	  

Figure	  30.	  Regular	  vs.	  compact	  runtime	  for	  varying	  bin	  depths	  



	   52	  

5.3 Best Overall Performance 

We have shown in Section 5.2 how increasing the bin size affects the execution runtime 

of the limited-range kernels. In this section, we will look at the overall performance of the 

overlapped execution of the CPU and GPU kernels. As mentioned previously, since the GPU 

kernel executes asynchronously with respect to the CPU, computing the two partial results can 

be done in parallel, and the overall runtime is equal to the greater of the two runtimes. That is 

why choosing a bin depth that makes the two runtimes equal yields the best overall performance. 

Figures 31, 32, 33, and 34 show the overall execution time for the limited-range function using 

regular and compact bins for all four benchmarks. A bin depth of 0 for all of them signifies that 

all the execution is performed on the CPU. Note that a bin depth of zero does not result in a zero 

runtime for the GPU since the kernel still needs to be launched and the size of each bin needs to 

be checked before realizing that there is no work to be done. The largest bin size shown on all 

graphs corresponds to all the input elements being assigned to the GPU (except for regular 

binned MRI, which exceeds memory capacity beyond a bin size of 9). Regardless of the binning 

format, a given bin depth results in the same number of elements being executed on the CPU, 

and therefore the same runtime. The column highlighted in red corresponds to the bin depth that 

yields the best performance for each case. The curves shown for compact and regular GPU 

execution are the same as the ones shown in Figure 30, and for the optimal bin depth, the 

speedup achieved is the equal in magnitude to the performance gap shown in Figure 30 (the 

performance of compact and regular bins is roughly the same for N-body). 

We notice that for all the benchmarks, the GPU runtime is more resilient to an increase in 

workload than the CPU, in part due to the GPU’s massive parallelism and greater number of 

resources compared to the CPU. This implies that despite the lack of an automated method for 



	   53	  

determining the optimal bin depth, the users need not be exact in their choice of bin depth as 

long as they choose a bin depth large enough to reduce the CPU runtime below that of the GPU. 

	  
Figure	  31.	  Overall	  MRI	  gridding	  runtime	  for	  various	  bin	  depths	  

	  
Figure	  32.	  Overall	  Coulombic	  potential	  runtime	  for	  various	  bin	  depths	  

	  
Figure	  33.	  Overall	  Blinn's	  blob	  runtime	  for	  various	  bin	  depths	  



	   54	  

	  
Figure	  34.	  Overall	  N-‐body	  runtime	  for	  various	  bin	  depths	  

  



	   55	  

CHAPTER 6 

COMPACTION IN RELATION TO SPARSE MATRICES 

The binning concepts introduced in this work are not new concepts, but simply new 

applications of existing concepts. In particular, compaction and partitioning are techniques 

borrowed from sparse matrix representation. In this chapter, we will highlight the similarities and 

differences between the use of these techniques in the domains of sparse matrix multiplication 

and parallel limited-range functions. For an in-depth analysis of sparse matrix representations 

and their performance on GPUs, please refer to the paper written by Nathan Bell and Michael 

Garland on the topic [11]. For the purpose of comparing the two domains, we will only highlight 

the concepts that are relevant to the discussion. 

The most rudimentary way to represent a sparse matrix is to store, for each non-zero 

element, its value, its column index, and its row index, in three arrays. This is known as the COO 

format (COO for coordinates). A sample matrix and its COO representation are shown in Figure 

35. COO is in fact the most explicit way of representing sparse data since it maintains all the 

information of all the elements. A more efficient way to present the matrix data is the CSR 

format, which maintains the value and column index of each element, but sorts the elements 

based on their row index, and rather than maintaining a separate row index value for each 

element, simply maintains a starting index for all the elements of the same row. The row value of 

each element is therefore implied based on the offset range it belongs to (Figure 36). Compact 

binning is in fact closely related to the CSR format. All elements that fall into a bin are sorted in 

such a way that they are in contiguous memory locations, and accessing a certain bin, similar to 

accessing a row in CSR, is done by determining the starting offset of the bin, and the starting 

offset of the bin that follows. 



	   56	  

In a matrix-vector multiplication kernel, each thread computes one element in the output 

vector, and the value of that vector corresponds to the dot product of one row of the matrix and 

the vector it is being multiplied by, and having each thread access one row causes memory 

requests to be non-coalesced. That is why it is more efficient to have an entire warp or block 

handle each row, such that threads are accessing consecutive elements in the sparse matrix data 

structure. In the end, the partial results from all the threads handling the same row are reduced 

down to a single value that corresponds to the value of the output element. Threads in a limited 

range function are also made to access consecutive elements in a bin for both an array of 

structures and a structure of arrays layout, as discussed in Section 4.3.3. The only difference 

between the two kernels is that threads within a warp in sparse matrix multiplications together 

compute the value of a single output element, whereas threads within a warp in a limited range 

kernel together load an input bin that they all need to compute different output elements. 

	  

Figure	  35.	  Dense	  matrix	  and	  COO	  representation 

	  

Figure	  36.	  CSR	  format 



	   57	  

Another efficient layout of sparse matrix data is the ELLPACK format (Figure 37). 

ELLPACK seeks to ensure that threads working on consecutive rows access the data within 

those rows in a coalesced manner. Since elements within a warp execute in lockstep, every 

thread will access the first non-zero element of its row simultaneously, then the second element 

simultaneously, and so on. Therefore to make sure that accesses are coalesced, all first elements 

need to be placed in consecutive memory locations, followed by all second elements, etc. 

Effectively, the ELLPACK format transposes the sparse matrix so that elements in consecutive 

rows become elements in consecutive columns. However, to achieve this transposition, all rows 

have to have the same number of elements in them; otherwise, the access to the transposed 

elements of the original row becomes difficult. To achieve this uniform row size, all rows need 

to be padded up to the maximum row size before performing the transpose. ELLPACK is not as 

useful in the context of limited-range kernels; however, the pre-transpose structure does 

resemble the dense binning representation, where the largest number of non-zero elements in a 

row corresponds to the maximum bin depth, and all the rows that have fewer than max depth 

elements in them are padded to achieve regularity. 

	  

Figure	  37.	  ELLPACK	  format 

In fact, similar to dense binning, a large variance in the number of non-zero elements in 

each row of the sparse matrix causes a large memory bloat in ELLPACK due to padding 



	   58	  

elements. The HYB (for hybrid) format seeks to reduce the overhead of padding. The HYB 

format as described in [11] is a combination of ELLPACK and COO (Figure 38.a). Rather than 

extending each row to the maximum row size, we instead find an average row size that keeps as 

many of the elements in ELLPACK format while minimizing the amount of padding needed. All 

elements that exceed this average row size get stored in a separate COO data structure, which 

can be executed by a separate CPU or GPU kernel. In addition to reducing the padding overhead, 

the HYB format improves load balancing for the execution of the ELLPACK data structure, as it 

reduces the variation in row size. Partitioning in limited-range applications is in fact a hybrid 

format, and achieves the same benefits of reduction of padding overhead and load balancing. 

Partitioning in compact binning is equivalent to a CSR/COO hybrid format (Figure 38.b). 

	  

Figure	  38.	  Hybrid	  format	  representations 

  



	   59	  

CHAPTER 7 

CONCLUSION 

To say that we expected the results of this work would be untrue. Intuitively, one would 

expect that the added complexity of compact binning, while it may benefit certain applications 

and datasets, would prevent this approach from outperforming regular binning for all 

applications. However, upon further analysis, we were able to explain why compact binning can 

in fact outperform regular binning. One of the key factors in this speedup is the reduction of the 

number of loops and memory accesses due to the iteration over ranges of bins rather than 

individual bins when the bin data is compact. The only characteristic of compact bins that made 

this optimization possible, and the reason why the same optimization is disadvantageous for 

regular binning, is the elimination of padding elements from the bin data structure. Furthermore, 

we have demonstrated in Chapter 5 how compact binning can enable better load balancing 

between the CPU and GPU by overcoming the memory capacity barrier encountered with 

regular binning. Table 5 compares the results of the full execution (binning and partitioning, 

limited range computation, and CPU/GPU output reduction) for the best regular binning 

implementation with the best compact binning implementation. For regular binning, the best 

implementation consists of using a count array to determine the number of real elements in each 

bin before loading that bin into shared memory, as well as determining the best partitioning bin 

depth that balances the work done on the CPU and on the GPU. For compact binning, the best 

implementation consists of using range accesses within the smallest dimension of the space, 

using an array of structures for the input data, and finally, similar to regular binning, determining 

the best partitioning bin depth that balances work on the CPU and GPU. The first three 

applications all see an improvement in performance, and in the case of Blinn’s blob, the speedup 



	   60	  

is approximately a factor of 8x over regular binning. For N-body, which does not use any shared 

memory and therefore does not take advantage of range accesses into the bins, we at least do not 

see any loss of performance despite the added complexity of compact binning. 

Table	  5.	  Summary	  of	  compact	  and	  regular	  execution	  runtimes	  

	   Regular	   Compact	   Speedup	  
CutCP	   3.91	   3.47	   1.13x	  
MRI	   1.47	   0.98	   1.50x	  
Blinn	   14.42	   1.81	   7.98x	  
N-‐body	   14.90	   14.60	   1.02x	  

 



	   61	  

REFERENCES 

[1] “NVIDIA CUDA C Programming Guide,” NVIDIA Inc., 22 Oct. 2010. [Online]. Available: 
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programm
ing_Guide.pdf 

 
[2] I. J. Sung, J. Stratton, and W. M. Hwu, “Data layout transformation exploiting memory-

level parallelism in structured grid many-core applications,” in Proceedings of the 19th 
International Conference on Parallel Architectures and Compilation Techniques (PACT) 
2010, Vienna, Austria, September 11-15, 2010. 

 
[3] J. Benedetto and H. Wu, “Non-uniform sampling and spiral MRI reconstruction,” in SPIE-

Wavelet Applications in Signal and Image Processing VIII, vol. 4119, pp. 130-141, 2000. 
 
[4] Y. Zhuo, X. L. Wu, J. Haldar, W. M. Hwu, Z. P. Liang, and B. Sutton, “Accelerating 

iterative field-compensated MR image reconstruction on GPUs,” in International Society for 
Magnetic Resonance in Medicine (ISMRM) 2010, Rotterdam, The Netherlands, 2010. 

 
[5] J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection of a convolution 

function for Fourier inversion using gridding [computerized tomography application],” 
IEEE Transactions on Medical Imaging, vol. 10, no. 3, pp. 473-478, 1991. 

 
[6] C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. M. Hwu, “GPU acceleration of cutoff 

pair potentials for molecular modeling applications,” in CF’08: Proceedings of the 2008 
Conference on Computing Frontiers, 2008, pp. 273-282. 

 
[7] J. M. Singh and P. J. Narayanan, “Real-time ray tracing of implicit surfaces on the GPU,” 

IEEE Transactions on Visualization and Computer Graphics, vol. 99, pp. 261-272, 2009. 
 
[8] J. Waltz, G. L. Page, S. D. Milder, J. Wallin, and A. Antunes, “A performance comparison 

of tree data structures for N-body simulation,” Journal of Computational Physics, vol. 178, 
no. 1, pp. 1-14, 2002. 

 
[9] N. Bell, “Optimizing parallel reduction in CUDA,” NVIDIA Inc., n.d. [Online]. Available: 

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/re
duction.pdf 

 
[10] S. Sengupta, A. Lefohn, and J. Owens, “A work-efficient step-efficient prefix sum 

algorithm,” in Proceedings of the Workshop on Edge Computing Using New Commodity 
Architectures, 2006, pp. 26-27. 

 
[11] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplication on throughput-

oriented processors,” in SC '09: Proceedings of the Conference on High Performance 
Computing Networking, Storage and Analysis, 2009, pp. 1-11. 

 


