
August 1990 UILU-ENG-90-2236
CRHC-90-6

Center for Reliable and High-Performance Computing

C OMPILER-ASSISTED
SIGNATURE MONITORING

Nancy J. W arter
Wen-mei W. Hwu

Coordinated Science Laboratory
College o f Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

UNCLAbblir i t u
4e<!u Ai fv Cl a s s if ic a t io n O f th is Pa GE

REPORT DOCUMENTATION PAGE

la . REPORT SECURITY CLASSIFICATION

Unclassified
lb . RESTRICTIVE MARKINGS

None

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;

distribution unlimited
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUM8ER(S)

UILU-ENG-90-2236 (CRHC-90-6)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A

7a. NAME OF MONITORING ORGANIZATION

Office of Naval Research

6c ADORESS (Cty, State, and ZIP Code)

1101 W. Springfield Ave.
Urbana, IL 61801

7b. ADDRESS (Cty. State, and ZIP Code)

800 N. Quincy St.
Arlington, VA 22217

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION Joint Services

Electronics Program

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014-84-C-0149

8c ADORESS (City, State, and ZIP Code)

800 N. Quincy St.
Arlington, VA 22217

10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)

C O M P I L E R - A S S I S T E D S I G N A T U R E M O N I T O R I N G

12. PERSONAL AUTHOR(S)
Warter, Nancy J. and Hwu, Wen-mei W.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, M onth, Day) 15. PAGE COUNT

T e c h n ic a l FROM TO 1990 August 9 41

16. SUPPLEMENTARY NOTATION

17. COSATI COOES

FIELD GROUP SUB-GROUP

18. SU8JECT TERMS (Continue on reverse i f necessary end identify by block num ber)

perform ance, memory, s ig n a tu r e m o n ito r in g , c o m p ile r -
a s s i s t e d a rc

!9. ABSTRACT (Continue on reverse i f necessary and identify by block number)

A methodology for applying optimizing compiler techniques to signature monitoring in order to reduce per
formance overhead and simplify monitor hardware is introduced. We present models for the monitor architecture
and the signature placement. The monitor architecture model is designed to keep both the hardware and integra
tion complexities low. Our signature model is designed to insert reference signatures in order to satisfy a bound
on the error detection latency. Justifying signatures are inserted on program arcs using an 0 (N2) algorithm which
is significantly better than previous exponential node insertion algorithms. We use optimizing compiler techniques
to customize the signature placement for various target processors and to minimize the performance overhead due
to justifying signatures.

c o n t i nued

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

0 UNCLASSIFIED/UNLIMITED □ SAME AS RPT. □ OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

U n c la s s i f i e d
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted.

All other editions are obsolete.
SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Experiments were performed to study the performance and memory overheads of our compiler-assisted arc
insertion signature monitoring method for a variety of architectures with different branch handling schemes. Using
run-time information for processors with delayed branching or branch target buffers improves the performance
overhead by approximately 50. However, processors that always fetch the instruction following a branch and
squash it if the branch is taken (e.g., the MC68000) are able to hide some of the performance overhead and there
fore the run-time information only slighdy improves the performance overhead. Using the MC68000 as the target
processor, the performance and memory overheads for latencies between 10 and 200 instruction cycles, range from
16 to 4 and from 17 to 11 respectively. After 200 cycles, the overheads remain relatively constant In general,
there is an inverse exponential relationship between the performance and memory overheads and the error detec
tion latency.

*

UNCLASSIFIED

SECURITY CLASSIFICATION O F THIS PAGE

n

C om piler-A ssisted Signature M onitor ing

Nancy J. W arter Wen-mei W. Hwu

A u g u s t 8 , 1990

C e n te r for R eliab le an d H ig h -P e rfo rm an c e C o m p u t in g
C o o rd in a te d Science L a b o ra to ry

1101 W . Springfie ld A ve.
U n iv e rs ity o f Illinois a t U rb a n a -C h a m p a ig n

U r b a n a , I L 61801

A bstract

A methodology for applying optimizing compiler techniques to signature monitoring in order

to reduce performance overhead and simplify monitor hardware is introduced. We present

models for the monitor architecture and the signature placement. The monitor architecture

model is designed to keep both the hardware and integration complexities low. 1 Our signature

model is designed to insert reference signatures in order to satisfy a bound on the error detection

latency. Justifying signatures are inserted on program arcs using an 0(N2) algorithm which

is significantly better than previous exponential node insertion algorithms. We use optimizing

compiler techniques to customize the signature placement for various target processors and to

minimize the performance overhead due to justifying signatures.

Experiments were performed to study the performance and memory overheads of our compiler-

assisted arc insertion signature monitoring method for a variety of architectures with different

branch handling schemes. Using run-time information for processors with delayed branching

or branch target buffers improves the performance overhead by approximately 50%. However,

processors that always fetch the instruction following a branch and squash it if the branch is

taken (e.g., the MC68000) are able to hide some of the performance overhead and therefore the

run-time information only slightly improves the performance overhead. Using the MC68000 as

the target processor, the performance and memory overheads for latencies between 10 and 200

instruction cycles, range from 16% to 4% and from 17% to 11% respectively. After 200 cycles,

the overheads remain relatively constant. In general, there is an inverse exponential relationship

between the performance and memory overheads and the error detection latency.

1 Preliminary research for this paper was presented at FTCS-20[23].

1

1 In troduction

An efficient concurrent error detection scheme should have good error coverage, be easy to imple

ment, not significantly degrade the target system performance, and have reasonable error detection

latency. For embedded concurrent error detection schemes, it is particularly important to keep the

implementation complexity low. Otherwise, the additional hardware may actually lower the system

reliability. To keep the implementation complexity low, the hardware should be simple and the

integration should not require major modifications to the basic system architecture.

In recent years, signature monitoring has become an attractive embedded concurrent error

detection scheme because it can detect approximately 99% of the control flow errors [11, 17, 25]

using a simple watchdog monitor2 [15, 12, 16, 20]. In signature monitoring, the compiler encodes

the program control flow information into signatures. At run-time, the watchdog monitor uses

these signatures to detect instruction bit and sequence errors [21]. Sequence errors correspond to

failures that result in incorrect program flow.

In most signature monitoring schemes, signatures are inserted directly into the program code

[14, 18, 25]. Adding these signatures degrades the target system performance and increases the

program memory requirements. In order to reduce these performance and memory overheads,

previous schemes have added hardware assists to the watchdog monitor [15, 19, 25].

In this paper, we present a signature monitoring method which uses optimizing compiler tech

niques instead of hardware assists to reduce the performance overhead.3 The optimizing compiler

is customized to the target processor so that other than a simple interface, the monitor architecture

is target processor independent. Furthermore, signatures are placed such that they guarantee a

2 Experiments performed by Gunneflo et al. indicate that approximately 78% of the measured errors were control
flow errors [7].

Prelim inary research for this paper was presented at FTCS-20[23].

2

a: Phase 1 *>: Phase 2

Figure 1: The phases of signature monitoring.

bound on the error detection latency.

To analyze the effectiveness of our compiler-assisted approach we compare the performance

and memory overheads with the best hardware-assisted method, Wilken and Shen’s Embedded

Signature Monitoring [25], In addition, we analyze the effect of bounding the error detection

latency on the performance overhead, memory overhead, and error coverage.

2 S ignature M onitoring

There are two phases to signature monitoring as shown in Figure 1. In the first phase, the

compiler generates the signatures off-line and either embeds them into the original code [5, 10, 14,

17, 19, 20, 26] or provides the information directly to the watchdog [5, 15]. During the second

phase, the watchdog monitor computes a run-time signature based on the instructions fetched by

the target processor. At certain points the run-time signature is compared against the precomputed

signature. Errors in the instructions or in their sequencing are detected if the signatures differ.

A program can be represented as a control flow graph. A typical control flow graph is presented

3

1

Figure 2: Weighted program control flow graph.

in Figure 2. A node represents a sequence of instructions with only one entry and one exit point.

Arcs represent the flow of control as determined by branch statements. The weights on the arcs

represent the execution frequency of that branch. For programs that are not self-modifying, the

control flow graph is fixed and known at compile time. For compilers that can estimate the run

time behavior of the program, the weights are also known at compile time. This graph is used to

generate signatures.

There are two types of signatures, reference and justifying. A reference signature is used to

verify the control flow of a program interval which can consist of one or more nodes. Reference

signatures are inserted either within the entry node or within the exit node of an interval. If it is

inserted within the entry node of the interval, when the signature is fetched the watchdog performs

a zero check on the run-time signature and resets the run-time signature to the new reference

value. On the other hand, if it is inserted within the exit node of the interval, when the signature is

fetched the watchdog verifies its run-time signature with the reference value and resets the run-time

4

signature to zero.

If an interval associated with a reference signature includes more than one node, the signa

ture at either the branch or the merge point, for entry node and exit node insertion respectively,

is inconsistent. Justifying signatures are used to make the signature consistent at these points.

Justifying signatures can be inserted either within a node, justifying node insertion, or on an arc,

justifying arc insertion.

2.1 E x i s t in g A p p ro a c h e s

Namjoo’s Path Signature Analysis (PSA) is an example of node insertion [14]. In the original

PSA, reference signatures are inserted at the beginning of each node. To reduce the memory and

performance overhead, generalized PSA (Figure 3a) computes reference signatures for an interval

or path set with a common start node. For each branch in the path set, the signatures will become

inconsistent. Justifying signatures are added to make the signatures of all paths within a path-set

consistent.

In more recent approaches, reference signatures are assigned to the exit or terminal nodes of

paths. In such approaches, the signatures are inconsistent at the merge nodes. In the Signatured

Instruction Stream (SIS) approach (Figure 3b) which uses Branch Address Hashing (BAH), ref

erence signatures are placed before a merge on the sequential path [17, 18, 19]. Instead of using

explicit justifying signatures, Shen and Schuette hash the branch address with the implicit signa

ture value of the branch. If the run-time signature is incorrect then the rehashed branch address

will be incorrect and the error will be detected unless the incorrect target is to another merge node.

Although this scheme does not use justifying signatures, it is a predecessor of arc insertion because

the implicit signature is only hashed along the taken arc of a branch.

5

Figure 3: Existing signature monitoring schemes.

Embedded Signature Monitoring (ESM) is a hybrid node/arc insertion method (Figure 3c)

[‘25, 26]. The compiler inserts justifying signatures within the node after a branch instruction. At

run-time, hardware is used to determine whether or not the branch is taken. If it is then the

justifying signature is included into the run-time signature. Otherwise it is discarded. Thus, the

justifying signature is only included into the run-time signature along the taken arc of a branch.

In general, in arc insertion justifying signatures can be placed on any merge merge arc, not just

the taken arc of a branch. Our signature model presented in Section 4.1.1 considers all of the cases

for arc insertion.

2.1.1 S o ftw are C o m p lex ity

The implementation complexity includes both the hardware and software complexities. In this

paper, the software complexity refers to the time required to compile a program. For a signature

6

Figure 4: Directed acyclic graph with out-degree two.

monitoring approach to be practical the time to compile a program with signatures must be rea

sonable. The algorithm complexity of the signature insertion method reflects the additional time

required to compile the program with signatures. In addition, any optimizing compiler techniques

used specifically for signature insertion should also be included in the software complexity.

In Namjoo’s PSA node insertion algorithm, all paths within a program interval are enumerated

[14]. These paths are then resolved to determine the justifying signatures, their placement, and

the reference signature of the interval. As shown in the following theorem, this algorithm has

exponential complexity.

T h eo rem 1 The maximum number o f paths between two nodes in a directed acyclic graph with an

out-degree o f two is exponential in the number o f nodes in the interval.

P ro o f For the graph depicted in Figure 4 if node N is added to the graph with arcs to nodes N-1

and N-2 then the number of paths is P (N) = P (N — 1) + P{N — 2). This is the Fibonnaci

recurrence. The solution is

_ j_ (l + y / E y _ J _ A - V E X

In Section 5 we present algorithms for arc insertion which have 0 (N 2) complexity for a program

graph with N nodes. In addition, we discuss the software complexity associated with the optimizing

compiler techniques we use.

2.1.2 H a rd w a re C o m p le x ity

To reduce the performance overhead due to inserting the signatures into the program code, previous

methods have used hardware assists. Namjoo modified PSA by moving the signatures from the

program code to the Cerebus-16 watchdog monitor environment [15]. Eifert and Shen extended SIS

by removing the signatures from the program code and instead storing the program control flow

graph and signature information in the monitor memory [5]. This method, Asynchronous Signature

Instruction Stream (ASIS) can monitor multiple processors continuously. Both of these schemes

eliminate the performance overhead but significantly increase the monitor complexity.

SIS and ESM use simple hardware assists to reduce the number of signatures fetched by the

processor and thus reduce the performance overhead. SIS uses branch detection and address hashing

hardware to combine the signature with the branch instruction. ESM uses hardware to determine

whether or not the branch is taken or not.

3 M onitor A rch itec tu re M od el

The watchdog monitor design should be simple and easy to integrate into the target system. It

is especially important to keep the monitor design simple if the target processor has an on-chip

instruction cache. Since the monitor must lie between the processor and memory, the monitor

will have to be integrated into the chip design. To simplify the monitor and ease integration, we

assume that the signature placement scheme does not require additional hardware support or place

restrictions on the target architecture.

The two basic parts of the monitor are the interface and checking modules. The interface

module is responsible for detecting instruction words and signatures and propagating the error

signal from the checking module to the target processor. The interface module is target processor

dependent. Previous work has addressed the interface implementation issues for a variety of target

architectures [9, 14, 16, 18, 20].

The checking module is application specific rather than processor specific. The signature en

coding scheme is chosen based on the error coverage, error detection latency, and performance and

memory overhead requirements of the application. The basic functions of the checking module are

to generate the run-time signature, encorporate justifying signatures, compare against reference

signatures, and propagate an error signal to the interface module if the run-time and reference

signatures disagree.

Subroutine calls and interrupts require special handling. Previous methods use signature stacks

to store the signature during a subroutine call or interrupt handling routine [4, 5, 18, 19]. On a

subroutine return or return from interrupt, the signature is popped off the stack and checking of the

interrupted routine continues. The signature stack significantly increases the monitor complexity

because it requires a memory interface to handle stack overflows. Saxena and McCluskey propose

a software approach for target processors that support coprocessors [16]. On an interrupt, the

signature can be saved by generic processor save/restore routines. While this simplifies the monitor

complexity, it will increase the performance and memory overheads. Wilken and Shen eliminate

the signature stack by using a characteristic signature for each routine [26]. On a return from

interrupt, this characteristic routine is used to justify the run-time signature. The disadvantage of

this approach is that reference signatures cannot be inserted within the interrupt handling routines.

In our approach, we assume that there is a bound on the error detection latency. If the error is

not detected within this bound, the error is assumed to be undetected. If a signature stack is used

and an error occurs within a program interval before an interrupt, the error will not be detected

9

until after the interrupt handler has been executed. Such errors will likely exceed the bound on the

error detection latency and are considered undetected. Therefore, signature stacks are not included

in our model. To eliminate the need for a subroutine signature stack, we assume that reference

signatures are placed before a subroutine call and at the end of a subroutine.

Interrupts, on the other hand, are asynchronous and therefore reference signatures cannot be

placed before an interrupt. Instead, the signature checker is reset on an interrupt and checking

begins on the interrupt handling routine. Reference signatures are inserted within the handling

routine in order to satisfy the bound and at the end of the routine. On a return from interrupt,

the signature checker is disabled until the next reference signature is fetched. After tha t normal

checking resumes.

The elimination of signature stacks greatly simplifies the monitor hardware. In addition, for

on-chip monitors the signatures do not need to be incorporated into the processor state. Therefore,

it is possible to integrate the monitor without major modifications to the original processor design.

4 S ignature Insertion M od el

The signature insertion model indicates how justifying signatures and reference signatures should

be inserted into the program code in order to guarantee that the program is properly encoded.

Furthermore, the justifying signature insertion model is designed to minimize the performance

overhead and the reference signature insertion model is designed to guarantee a specified bound on

the error detection latency. The models have low software complexity and do not require special

hardware support beyond the basic monitor.

10

4.1 J u s t i f y in g S ig n a t u r e I n s e r t i o n

In this section we present our arc insertion model and show how optimizing compiler techniques

can be used to simplify the monitor and reduce the performance overhead.

In justifying arc insertion, the program interval is justified at the program merge nodes. At a

merge node, the signature along each incoming arc is different. Only one signature can be used to

define the signature at the merge node. Justifying signatures are used to transform the remaining

incoming signatures to this unique signature. There is only one constraint to placing the signatures

on the program arcs.

C o n s tra in t 1: For a merge node with i incoming arcs, justifying signatures must be placed on

i — 1 arcs.

The arcs with justifying signatures are justifying arcs and the remaining arc is the unique arc.

4.1.1 A rc In se r t io n M odel

There are three types of justifying arcs, which are drawn as dashed lines in the control flow graphs

of the three cases in Figure 5.

In the first case, the justifying arc represents an unconditional branch. Since it is an uncondi

tional branch, the signature can be placed directly in the node without affecting any other program

path. The signature can either be placed before or after the branch instruction. If the target

architecture always fetches the instruction following a branch, it can be placed after the branch.

Otherwise, it must be placed before the branch.

In the second case, the justifying arc is on the sequential path. The sequential path can either

be the not taken path of a conditional branch or after a non-branching node. Either way, the last

11

To Justify

NODE INSERTION

CASE 1: JUSTIFYING ARC FROM UNCONDITIONAL BRANCH

To Justify

INLINE SIGNATURE

CASE 2: JUSTIFYING ARC ON SEQUENTIAL PATH

Figure 5: Justifying arc insertion.

12

instruction in the source node and the first instruction in the destination node of the justifying

arc are in sequential memory locations. The justifying signature is placed between these two

instructions.

In the third case, the justifying arc is on the taken path of a conditional branch. In this case

the source and destination nodes of the justifying arc are not in sequential memory locations.

Therefore, to place the justifying signature on the arc, a justifying block is inserted between the

source and destination nodes. The justifying block consists of a signature instruction and a jump

instruction. The destination of the branch instruction in the source node is modified to jump to

the justifying block, and the justifying block jumps to the original destination node.

4.1.2 Ju s t ify in g S ig n a tu re G e n e ra t io n

For arc insertion, signature generation depends on the following property.

P ro p e r ty 1: There is a path along unique arcs between the start and terminal nodes of a program

interval.

Based on this property, all of the signatures of the unique arcs in a program interval can be

determined by a breadth first search. After all the unique arcs are labeled with their signatures,

the justifying signatures can be generated as shown in Figure 6. The justifying signature J1 is a

function of the unique signature Si, the unique signature of its source node Sj, and the signature

of node A.

4.1.3 O p tim iz in g C o m p ile r T echn iques

In an optimizing compiler, the architectural features of the target processor are known so that

the compiler can order the instructions such that they fully utilize the target processor while not

13

Figure 6: Signature generation for arc insertion.

violating the execution order. In a similar fashion, the target processor features can be used to

ensure that signatures are placed properly. That is, only signatures that are supposed to be included

into the run-time signature are fetched by the target processor. In particular, the branch handling

scheme must be accounted for. For example, recall that the MC68000 always fetches the instruction

following the branch and discards it if the branch is taken. Therefore, signatures can always be

placed after an unconditional branch without incurring any performance penalty. On the other

hand, signatures cannot be inserted directly after the branch on the sequential arc. Otherwise,

if the branch is taken then the signature will be incorrectly included into the run-time signature.

A detailed performance and memory cost analysis for a variety of branch handling mechanisms is

provided in Section 6.1.1.

Another optimizing compiler technique is to use run-time information to improve the proces

sor performance. For instance, run-time information can be used to place instructions to improve

sequential locality. Run-time information can also be used to place signatures to reduce the per

formance overhead. The minimum number of justifying signatures required to encode a program

14

interval with one reference signature and n conditional branches is n [26]. Arc insertion places the

minimum number of signatures into the program code. Our goal is to use run-time information to

minimize the number of signatures fetched and thus minimize the performance degradation.

In arc insertion, any merge arc can be selected as the unique arc. Run-time information can be

used to guide this selection. By measuring the run-time behavior of the program, the node execution

and branch frequencies can be predicted. Based on this prediction, the cost of inserting a signature

on each merge arc can be determined. The cost, arc-cost, in terms of number of instruction words

fetched, is:

arc-cost = arc-frequency * nodejweight * just-words.

For example, if the signature is placed on the taken path of a conditional branch, arc-frequency is

the probability that the branch is taken, node.weight is the number of times the branch is executed,

and just.words is the number of instructions words required for a justifying block. The just.words

also reflects cost of the special architectural features of the target processor.

The following theorem proves that using arc.cost to select the unique arc minimizes the perfor

mance overhead for justifying arc insertion.

T h e o re m 2 I f the unique arc of each merge node corresponds to the incoming arc with the highest

arc-cost, the number o f instruction words fetched to justify the program is minimized.

P ro o f Since justifying signatures are placed on the arcs, the signature assignments for each merge

node do not depend on the assignments at other merge nodes. Therefore, the total number

of justifying signatures fetched is the sum of the justifying signatures fetched at each merge

node. For a single merge node, if the unique arc has the highest arc.cost of all the incoming

arcs, the number of instruction words fetched to justify that node is a minimum. Since a

15

sum of minimums is a minimum sum, the number of instruction words to justify the entire

program is minimized. □

This theorem proves tha t using run-time information will minimize the performance overhead for

justifying arc insertion. In the experiment section (Section 6) we empirically prove that optimized

arc insertion (i.e., using run-time information) minimizes the overhead due to justifying signatures.

4 .2 R e f e r e n c e S ig n a tu r e I n s e r t i o n

The separation of reference signatures defines the checking interval /mar. For bit errors, the average

detection latency is lmax I 2 and the maximum detection latency is lmax [26]. For single sequence

errors, the average detection latency is l m a x and the maximum detection latency is 2l m a x . Let B

be the bound of the error detection latency for all bit errors and single sequence errors. Reference

signatures must be placed such that / is at most B / 2.

4.2.1 R efe ren ce In se r t io n M odel

The reference signature insertion model is shown in Figure 7. A reference signature is required at

each program exit point in order to correctly check the program (case 1). Recall tha t a signature

stack will violate the bound on the error detection latency. To eliminate the need for a signature

stack for subroutine calls, reference signatures are placed before the call and at the end of the

routine (cases 2 and 3). A reference signature is placed at the end of an inner loop, case 4, in order

to guarantee that loops of length less than lmax do not violate the bound on the detection latency.

Furthermore, this breaks cycles in the program graph which simplifies the reference placement

algorithm presented in the next section. Finally, signatures are placed such tha t no two are farther

apart than lmax (case 5).

16

Reference signatures are placed:

case 1: at program exit points,

case 2: before a subroutine call,

case 3: at the end of subroutines,

case 4: at the end of an inner loop, and

case 5: to guarantee a bound, lmax,
on the error detection latency.

Figure 7: Reference signature insertion model.

5 Signature Insertion A lgor ith m s

In this section, the algorithms for placing and generating both justifying and reference signatures

are presented. A discussion of the algorithm complexities and overhead associated with collecting

run-time information is provided at the end of the section.

5.1 J u s t i f y in g S ig n a t u r e P l a c e m e n t A lg o r i th m

The algorithm for justifying signature placement4 is shown in Figure 8. The algorithm implements

the justifying arc insertion model and generates a partial terminal node set T. This set corresponds

to the first four cases of the reference signature model, namely, a program or subroutine exit node,

an inner-loop exit node, or the node before a subroutine call. The program control flow graph, G, is

the input to the algorithm. First, the terminal nodes are determined. Then, for each merge node, if

all incoming arcs are from terminal nodes, none of the signatures need to be justified. Otherwise, a

unique arc is selected. The unique arc can be specifically selected (e.g., using run-time information)

4 For the algorithms in this section, it is assumed that the compiler converts all switch statem ents into the equivalent
if-else construct, and program placement information is available at compile time to determine the taken path of a
conditional branch.

17

/ ‘ placeJustifying_signatures
input: G = program control flow graph
output: program graph with justifying signatures and

partial terminal node set T 7

placeJustifying_signatures(G)

 ̂ for each node n in G
if n is a terminal node

add n to the terminal node set T
place a reference signature at the end of n

for each merge node m in G
if all incoming arcs to m are from terminal nodes

mark all arcs as unique
else

select a unique arc
fo r each non-unique merge arc x

if x from an unconditional branch
place a justifying signature before the branch instruction

else if x between two sequential nodes s1 and s2
create a justifying signature after the last instruction of node s1

else /* x is the taken arc of a conditional branch */
create a justifying block and place between the conditional

branch node and the target node
 ̂ correct the target labels

Figure 8: Justifying signature placement algorithm.

or it can be selected at random. Note that for an unconditional branch, the signature can be placed

after the branch for target architectures that always fetch the signature following a branch. The

MC68000 is an example of such an architecture [3],

5.2 R e f e r e n c e S ig n a t u r e P l a c e m e n t A lg o r i t h m

The algorithm for reference signature placement is shown in Figure 9 and its functions are shown

in Figure 10. The algorithm places reference signatures so that the maximum distance between

any two reference signatures is less than lmax. The program control flow graph, G, is effectively an

acyclic graph since the terminal nodes break cycles. S and T represent the start node and terminal

node set.

The algorithm is a greedy algorithm. Starting from the start node and each terminal node, it

18

traverses the paths of all successors calculating the maximum path length (step 1). The traversal

along each path stops at a terminal node. When the successor of a node makes the path length

greater than lmax, the current node is marked as a terminal node. The successors of the new

terminal nodes are also traversed. The algorithm stops when all arcs have been visited. The

reference signatures are then placed at the end of each terminal node (step 2).

During the traversal, when paths merge they are combined in add.queue into one path with

the path length set to the maximum path length. In addition, the number of duplicates of the

end node, dups, is incremented. A merge node is only removed from the queue in remove.queue

when all incoming paths have been traversed (i.e., p.dups is equal to the number of predecessors of

p.end-node).

5.3 S ig n a t u r e G e n e r a t i o n A lg o r i th m

The signature generation algorithm is presented in Figure 11. Unique arcs have been identified

by the justifying signature placement algorithm. The unique intermediate signatures are marked

using a breadth first search. Once all the unique arcs have been marked with their intermediate

signatures, the reference signatures are known and the justifying signatures can be calculated as

shown in Figure 6 in Section 4.1.2.

5.3.1 C o m p le x ity A nalysis

For a program graph of N nodes, the complexity of the justifying signature placement algorithm

is 0 (N 2). To generate the terminal nodes, loop analysis must be performed. The complexity of

the loop generation algorithm is 0(JV2)[1]. Once loop analysis has been performed, N nodes are

considered to identify and mark the terminal nodes. To mark the unique arcs, at most 2N — 2

19

/* place_reference_signatures
inputs: G = prog ramjgraph, S = sfart nocto,

T = partial terminal node set,
lmax = 7/2 error detection latency bound

outputs: program graph with reference signatures
placed no further apart than lmax and
the complete terminal node set T 7

place_reference_signatures(G, S, T, lmax)

* p = generate_path(S) /• step 1 y
add_queue(ref_queue, p)
for each terminal node t in T

for each successor s of t
p = generate_path(s)
add_queue(ref_queue, p)

while ref_queue not empty
p = remove_queue(ref_queue)
if p.length + max(|successors of p.end_node|) > lmax

mark p.end_node as a terminal node and add to T
for each successor s of p.end_node

if p.end_node is a terminal node
new_p = generate_path(s)

else
new_p = updatej3ath(s,p)

add_queue(ref_queue, new_p)
destroy p

for each node in G
if a terminal node steP 2

place a reference signature at the end of the node

Figure 9: Reference signature placement algorithm.

20

/ ' generate_path
input: n = program graph node
output: path p which has path length

equal to length of n, n,
number of duplicates of n
initialized to 1 7

generate_path(n)

 ̂ create p
p.length = |n|
p.end_node = n
p.dups = 1
return p

}

/* update_path
inputs: n = program node, p = current path
output: a new path, new_p, which has path

length set to length of p + length of n,
n, the number ot duplicates of n
initialized to 1 7

update_path(n)

U #create new_p
new_p.length = p.length + |n|
new_p.end_node = n
new_p.dups = 1
return new_p

/* add_queue
inputs: queue = list of paths, p = path to add
output: queue with either a new path p or an

updated path e that has the same end
node as p. the updated path e has length
set to the maximum length of p and e and
the number of duplicates of the end node
of e is incremented 7

add_queue(queue, p)

{
for each element e in queue

if e.end_node = p.end_node
e.length = max(e.length, p.length)
e.dups = e.dups + 1

else
add p to end of queue

/* remove_queue
input: queue = list of paths
output: path p whose end node has had

all its incoming arcs visited 7

remove_queue(queue)

p = first element of queue
while p.dups != number of predecessors of p

add p to end of queue
p = first element of queue

return p

Figure 10: Functions of the reference signature placement algorithm.

21

/* signatureaeneration
inputs: G = program graph, S = start node,

T = terminal node set
output: program graph with signatures

generated 7

signature_generation(G,S,T)
{
fo r each node n in {S,T}

for each successor s of n
if s is an unmarked unique arc

mark the intermediate signature on the
unique arc

push s on unique_stack
while unique_stack not empty

pop n off unique_stack
if n is not a terminal node

for each successor s of n
if s is an unmarked unique arc

mark the intermediate signature
on the unique arc

push s on unique stack
else

calculate the reference signature of n
for each merge node in G

calculate the justifying signature of the non-unique
incoming arcs

Figure 11: Signature generation algorithm.

merge arcs are considered for a graph with N nodes and an out degree of two.

The complexity of the reference signature placement algorithm is also 0 (N 2). In step 1,

add.queue is called once for each arc and remove.queue is called once for every node other than

the initial start and terminal nodes. Both add.queue and remove.queue linearly search the queue

and thus have 0 (N) complexity. In step 2, each node is evaluated once. Therefore, the reference

algorithm has 0 ((2 N — 2) * N) -f 0 (N 2) + 0 (N) = 0 (N 2) complexity.

In the signature generation algorithm, the intermediate signature of each arc is marked once.

Therefore, it has 0 (N) complexity. The complexity of all the algorithms combined is 0 (N 2).

Compared to the exponential complexity of justifying node insertion, 0 (N 2) complexity makes

justifying arc insertion a desirable approach.

If run-time information is used to select the unique arcs, the performance overhead due to

22

justifying signatures can be minimized. If a profiler is used to collect the run-time information, the

program is run for a variety of inputs while the execution frequencies are calculated. Therefore,

the time to compile increases. However, for production code, this one-time cost may be worth the

improved performance.

6 E xp er im en ta l R esu lts

In this section, we present the results of experiments performed to study the performance of

compiler-assisted arc insertion and hardware-assisted node insertion and to analyze the impact

of bounding the error detection latency.

To perform the experiments, we added profiling and signature placement to the GNU C com

piler. Programs were compiled with probes inserted at each node. At run-time these probes were

used to collect the branch and node execution frequencies. These frequencies, combined with the

architecture specifications, were used to guide signature placement. Thus, the complete process for

inserting signatures is to compile the program with probes, profile the program on a large set of

sample inputs, and re-compile the program to place signatures.

The experiments were performed using the benchmark set shown in Table 1. The ten benchmarks5

are a combination of Unix, CAD, and text processing programs. The largest benchmark is more

than an order of magnitude larger than benchmarks of previous studies [17, 19]. The sizes of the

input sets used in profiling are also given in Table 1. The average node or basic block size of each

benchmark is given for the MC68000.

5These benchmarks are control intensive. Results for numerical applications will be better.

23

Benchmark Description Size
(bytes)

Number
of inputs

c m p file comparison 2406 16
c o m p re ss compress/expand files 14410 20

diff file comparison 32314 19
e q n format equations 55175 20
g rep search file for expression 4630 20
m p la tile based PLA generator 24104 19
t a r create tape archives 22612 14
tb l format tables 65117 21
wc line/word/char count 1686 20

yacc parsing program generator 48444 10

Table 1: Benchmark characteristics.

6.1 P e r f o r m a n c e o f A r c I n s e r t i o n

In this section we compare the performance and memory overheads of a compiler-assisted arc

insertion and a hardware-assisted node insertion scheme for a variety of branch handling methods.

Justifying Arc Insertion (JAI) is our arc insertion which uses the algorithm in Section 5.1. In

Optimal JAI, the signatures are placed using run-time information. In Random JAI, each unique

signature is randomly selected.

Wilken and Shen’s Embedded Signature Monitoring (ESM) scheme is a hybrid node-arc inser

tion method. It has the performance and memory overheads of node insertion but the software

complexity of arc insertion. Signatures are placed within a node after a branch instruction. At

run-time, hardware is used to determine if the branch is taken. If so, the signature is included into

the run-time signature; otherwise, it is discarded. Therefore, signatures are generated to justify

the arcs.

For these experiments, there was no tight bound on the error detection latency (in the next

section, the effects of bounding the error detection latency are presented). Reference signatures

were placed at the program and subroutine exit nodes, before subroutine calls, and at the inner-loop

24

exit nodes. In order to make the schemes comparable, these signatures were also inserted for ESM,

which originally only inserts reference signatures at the program exit nodes.

When a signature is placed after a branch, some or all of the performance overhead may be

hidden by the branch handling behavior of the target architecture. We ran our experiments for

three branch handling schemes: prefetch, delayed branching, and Branch Target Buffer (BTB). In

the prefetch scheme, the instruction following the branch is always fetched. If the branch is taken,

the instruction is discarded. The MC68000 uses this branch handling method [3]. For delayed

branching, we assume that the delay slot can be filled 70% of the time for a conditional branch

and 100% of the time for an unconditional branch [13]. In the BTB scheme, the expected target

for the branch is fetched from the buffer. We assume that if the target is wrong, the correct target

is determined within one instruction cycle [8].

6.1.1 C o st A nalysis

The performance and memory cost of inserting a signature depends on the insertion scheme and

the target processor architecture. In ESM, a hardware monitor is used to determine whether the

branch is taken or not. This hardware depends on the branch handling hardware of the target

processor. In JAI, the hardware monitor is kept independent of the processor architecture and

implementation by using this information at compile-time to place the signatures. To guarantee

correct checking, the signatures must be placed such that the monitor does not see any incorrectly

fetched signatures. In some cases, to ensure independence from the basic system architecture, NOP

instructions are added which increase the performance and memory overhead costs.

25

prefetch

JAI
delayed
branch BTB

case 1:
unconditional

0) 1

case 2: 2 1 2
sequential

1 1 1

case 3:
taken 3 2 3

ESM
, , delayed

prefetch branch

JAI

prefetch J J S f BTB

ESM
delayed

prefetch branch

0 1

1 0.7

0 0.7

case 1:
unconditional

case 2:
sequential

case 3:
taken

1 1 1

2 1 2

1 1 1

3 2 3

1 1

1 1

a: Performance cost matrix. b: Memory cost matrix.

Figure 12: Performance and memory cost matrices.

The performance and memory overhead costs are presented in Figure 12 6 7. The cost depends

on the signature insertion scheme and the branch handling method. The three cases correspond to

the three cases in the arc insertion model in Figure 5 in Section 4.1.1. ESM was not designed to

work with a BTB and thus the cost for this combination is not presented 8. For all of the cases

we assume that the justifying signature instruction requires one instruction word. The number of

instruction words required to implement the justifying block is discussed in case 3.

P e r fo rm a n c e cost. The performance cost matrix in Figure 12a indicates the number of

instruction words fetched per justifying signature. Each case is described in detail below.

case 1 - u n c o n d itio n a l b ran ch : For an unconditional branch, both schemes place the signature

in the node. The signature is placed after the branch for the prefetch scheme and delayed

branching. Since the instruction after an unconditional branch is always discarded in the

prefetch scheme, the cost for both JAI and ESM is zero. In delayed branching, the delay

6The matrices reflect the cost when the corresponding arc types are traversed. Optimal JAI traverses fewer arcs
than ESM and thus has a lower overall cost.

7The cost for JAI depend on the location of the monitor. The costs presented are conservative. If the monitor is
placed after the instruction register then the cost will be lower.

8The ESM hardware monitor could be modified to handle a BTB based target processor.

26

slot can always be filled for an unconditional branch and thus the cost is one. For the BTB

scheme, the signature is placed before the branch and thus the cost is one.

case 2 - seq u en tia l p a th : For JAI, if the sequential path corresponds to the not taken path of

a conditional branch (top number for case 2 in Figure 12a), the signature cannot be placed

directly after the branch. For the prefetch and BTB schemes, to guarantee that the signature

is not included when the branch is taken, a NOP instruction is inserted between the branch

and the signature and thus the cost is two. This is a cost paid to insure that the monitor is

independent of the basic system architecture.9 For delayed branching, the delay slot is filled

from before the branch for a conditional branch. Therefore, the signature is placed after the

delay slot and the cost is one. If the sequential path does not correspond to the not taken

path of a conditional branch, the cost is one for all of the branch handling methods.

In ESM, the signature is always fetched and discarded by the monitor if a conditional branch

is not taken. For the prefetch scheme, the instruction following the branch is always executed

if the branch is not taken. Therefore, the cost is one. In delayed branching, the delay slot

can be filled 70% of the time and thus the cost is 0.7.

case 3 - ta k e n p a th : For JAI, justifying blocks are placed on the taken arc of the conditional

branch. For prefetch and delayed branching, the signature is placed after the jump instruction

in the justifying block. For the BTB method, the signature is placed before the justifying

block jump instruction. To prevent the signature from being included into the run-time

signature when the target of the conditional branch in the BTB is incorrect, a NOP instruction

is inserted before the signature in the justifying block. Again, this cost is the result of

9It will be shown in Figure 14 that this cost is not incurred in practice.

27

insuring system architecture independence. The cost is simply the number of instruction

words required for the justifying block. We assume that the justifying block size is three

instruction words for the prefetch and BTB schemes, and two instruction words for delayed

branching.10

For ESM, the signature is placed directly after the branch. For the prefetch scheme, the

instruction is squashed if the branch is taken and thus the cost is zero. For delayed branching,

the delay slot can be filled 70% of the time and thus the cost is 0.7.

M e m o ry cost. The memory cost matrix in Figure 12b indicates the number of instruction

words inserted into the program code. Note that cases 2 and 3 for ESM actually stem from one

signature being placed after a conditional branch. Therefore, the memory cost of the cases combined

is one.

6.1.2 P e r fo rm a n c e O v erh ead

In this section we present the relative performance overhead results for Optimal JAI, Random JAI,

and ESM for the three branch handling methods. We also present the performance overhead of the

three insertion schemes for the MC68000 target processor.

Figure 13 shows how each insertion scheme performs relative to Optimal JAI for each branch

handling method. As can be seen, Optimal JAI has the minimum performance overhead for all of

the branch handling schemes. However, for the prefetch branch method, Random JAI performs

almost as well as Optimal JAI. Since the cost of an unconditional branch is zero for the prefetch

scheme, it appears that Random JAI places most of its signatures on the unconditional path. The

10The prefetch scheme estimate is based on the MC68000 which needs two instruction words for a jump instruction.
For the others we assume one word per instruction.

28

prefetch delayed BTB
branching

Branch Handling Method

Figure 13: Normalized performance overhead.

graph in Figure 14b showing the distribution of the performance overhead for Random JAI confirms

this conclusion. Note that for the delayed branching and BTB methods, Optimal JAI adjusts for

the cost of an unconditional branch whereas the signature placement in Random JAI does not

change. Therefore, for these two branch handling methods, the performance overhead for Random

JAI is almost double the performance overhead of Optimal JAI.

For all the schemes and branch handling methods, the number of reference signatures inserted

is the same. Therefore, the relative percentage of performance overhead due to reference signatures

(Figure 14) indicates the overall performance of the schemes for a given branch handling method.

That is, the higher the percentage due to reference signatures, the better the scheme. For all of the

signature insertion schemes, the percentage due to reference signatures shows that a processor with

29

prefetch branch handling will have the lowest performance overhead and processors with delayed

branching will perform slightly better than processors with BTBs.

The distribution of performance overhead for ESM in Figure 14c shows the disadvantage of

node insertion. In node insertion, for a conditional branch, signatures are fetched along both the

taken and not taken (sequential) paths. For ESM, the signatures fetched along the sequential

path account for 18.7% of the performance overhead for prefetch and 12.3% for delayed branching.

These signatures are discarded in ESM but still incur a performance penalty. In arc insertion, these

signatures are not fetched at all.

The performance overhead for the MC68000 in Table 2 shows that adding signature monitoring

to an MC68000 based target system will only degrade the performance by approximately 4%n .

This includes the overhead due to reference signatures placed before a call, at the subroutine and

program exit nodes, and at inner-loop exit nodes. If the overhead due to these reference signatures

is removed so tha t the program is only checked at the exit nodes, the performance overhead is

reduced to approximately 0.1%. In this case, the error detection latency is the entire program

execution time.

6.1.3 M e m o ry O v e rh e a d

Figure 15 shows the normalized memory overhead for all of the branch handling methods. The

same number of signatures were added for all insertion schemes. The difference in the memory

overhead is due to the addition of justifying blocks. Since ESM does not use justifying blocks it has

the lowest memory overhead. Instead, it uses additional hardware. Therefore, there is a tradeoff

between the memory and hardware overheads. The fact that the memory overhead for Random

11 The arithmetic mean is used to summarize the benchmarks [6].

30

Performance
Overhead
Distribution

(%)

100-

5 0 -

r?y l - unconditional case

18583 - taken case

WZ\ - sequential case

BHta - reference signature

91.1

I Cwarn

15.0

R »

prefetch delayed
branching

BTB

Branch Handling Method

a: Distribution of performance overhead for Optimal JAI.

100 -

Performance
Overhead
Distribution

(%)

5 0 -

Fx51 • unconditional case

• taken case

VTffl - sequential case

E881 - reference signature

S1J

m m
prefetch delayed

branching
BTB prefetch delayed

branching

Branch Handling Method

b: Distribution of performance overhead for Random JAI.

Branch Handling Method

c: Distribution of performance overhead for ESM.

Figure 14: Performance overhead distributions.

31

Benchmark Optimal JAI Random JAI ESM

cm p 1.80 1.80 1.80
co m p ress 1.54 1.54 1.75

diff 3.05 3.08 3.72
eqn 3.81 4.02 6.08
grep 4.79 5.14 8.13
m pla 2.26 2.32 2.41

ta r 6.70 6.70 7.20
tb l 6.44 6.61 7.23
wc 3.51 3.51 5.42

yacc 4.71 4.87 4.81

mean 3.86 3.96 4.86
std. dev. 1.80 1.85 2.36

Table 2: Percentage of performance overhead for the MC68000.

JAI is less than for Optimal JAI shows that there is also a tradeoff between the performance and

memory overheads. The memory overhead for the MC68000 is shown in Table 3. On average there

is approximately 11% memory overhead associated with adding JAI to a MC68000 based target

system.

6.2 Bounding the Error Detection Latency

In this section we analyze the effect on the performance and memory overheads of varying the bound

on the error detection latency. We also discuss the impact of reference signature placement on the

error coverage. For this analysis, justifying signatures were optimally placed using the algorithm in

Section 5.1. Reference signatures were placed using the greedy algorithm presented in section 5.2,

where the bound lmax is the maximum distance between two reference signatures. The target

processor in the experiments was the MC68000.

32

prefetch delayed BTB
branching

Branch Handling Method

Figure 15: Normalized memory overhead.

Benchmark Optimal JAI Random JAI ESM
cm p 13.25 13.25 9.52

co m p ress 8.20 8.20 6.46
diff 10.56 10.53 8.60
eqn 8.65 8.72 7.46
g rep 16.25 15.82 13.48
m p la 6.76 6.76 5.98
ta r 9.57 9.64 8.52
tb l 12.34 12.11 9.90
wc 13.77 12.58 10.18

yacc 9.49 9.47 8.24

mean 10.88 10.71 8.83
std. dev. 2.94 2.72 2.14

Table 3: Percentage of memory overhead for the MC68000.

33

6.2.1 P e r fo rm a n c e O v e rh ead

To study the effect of the error detection latency on the performance overhead, p o verhead , signatures

were placed for 19 values of lmax [10, 20, ..., 100, 200, ..., 1000]. For each level of lmax there were 10

overhead observations (one for each benchmark). Assuming a normal distribution at each level of

lmar, a non-linear regression analysis on the experimental observation yields the following statistical

relationship:

P o v e rh e a d = 14.998e-°-049'"-“ + 4.017.

The regression curve for performance overhead is shown in Figure 16. A plot of the residuals

shows that the actual data points are evenly distributed around the predicted function and thus

the fit is reasonable. For low values of l m a x there is a significant change in the overhead for small

changes in /max until /mar is approximately 80 instructions. The worst case corresponds to placing

signatures at each basic block. For a basic block length of 5 instructions12 the worst case mean

performance is approximately 15.76%. The asymptote of this relation, 4.017%, is the performance

overhead due to justifying signatures and reference signatures placed at the subroutine exit nodes,

inner-loop exit nodes, and before a subroutine call. For all of the benchmarks this asymptote is

reached by /max = 300 instructions.

The 95% confidence intervals for the expected value and for an individual prediction are also

shown in Figure 16. From the individual prediction confidence interval, we can conclude that 95%

of new programs will have a performance overhead between approximately 1% and 8% for an /max

of 100. Furthermore, the expected value confidence interval indicates that for /max = 100, 95% of

the time the mean value after including a new program will remain approximately between 3.5%

12The average basic block size for the benchmark set is 5.53 instructions.

34

20

15 -

performance
overhead

o
10 100 500 1000

max distance between reference signatures (instr)

Figure 16: Predicted performance overhead with 95% confidence intervals.

and 4.5%.

6.2.2 M e m o ry O v e rh ead

The same experiments were performed to study the statistical relationship between the memory

overhead, m overhead, and l m a x • Assuming a normal distribution at each level of l m a x , a. non-linear

regression analysis on the experimental observations yields the following statistical relationship:

mov„ht«i = 7.848e_0'°',0,ma* + 10.927.

The regression curve with the 95% confidence intervals is shown in Figure 17. Again, the residual

plot shows tha t the predicted curve is a good fit.

The worst case mean memory overhead (lmax = 5) is approximately 17.35%. The asymptote

overhead is 10.927%. Note that the maximum difference between the performance overhead across

the lmax range is approximately 12%. For the memory overhead, the maximum difference is approx-

35

__ predicted curve
— 95% confidence interval for the expected value

...95% confidence interval for an individual prediction

T------ 1----------------------------- T

Figure 17: Predicted memory overhead with 95% confidence intervals.

imately 7%. Therefore, varying the error detection latency has greater impact on the performance

overhead than on the memory overhead. On the other hand, the memory overhead, even for the

worst case, is worse than the performance overhead. This implies that the longer basic blocks get

executed more frequently.

From the confidence intervals of Figure 17, for an lmax of 100, 95% of the time a new program

will have a memory overhead between approximately 6% and 17%, and the overall mean will remain

between approximately 10.5% and 11.5%.

6.2.3 E r r o r D e te c tio n L a ten cy

For a bound /max? the upper bound on the detection latency for double bit errors is /max• If errors

are evenly distributed, the average detection latency for bit errors is /max/ 2. For single sequence

errors, the maximum detection latency is 2lmax. Therefore, for all single errors, the maximum

36

detection latency is 2/max. Near optimal performance can be achieved for lmax — 100 instructions

or a maximum detection latency of 200 instructions.

6.2.4 Error Coverage

Consider a program interval of lmax w-bit instruction with a iw-bit signature. Using C arter’s MISER,

all double bit errors are detected if:

w
i , 2 2 — 1 . / w \

l m a x < [“ J ^ 2 2 + l j ,

where w is the signature width [2]. For the MC68000, w = 16 and thus /max must be less than 4112

to detect all double bit errors. Therefore, the bit error coverage will not be affected by varying

lmax since there is no point in increasing /max beyond 300.

Wilken and Shen report that the coverage of sequence errors is less than 1 — 1 /(lmax + 1) [25].

For lmax — 10, the sequence error coverage is less than 99.17%. To improve the error coverage, the

intermediate signatures must be randomized [22, 25]. To do this in our signature model, random

initial signatures are added after each reference signature. For the optimal case, on average the

reference signatures account for 43% of the memory overhead and 45% of the performance overhead.

Therefore, randomizing the signatures will increase the optimal performance overhead from 4.02%

to 5.83% and the optimal memory overhead from 10.93% to 15.63%. The error coverage with

randomized intermediate signatures is approximately 1 — 2~w = 99.99 + % for w = 16 [11, 25].

For the same performance and memory overhead, Saxena’s Extended Precision Checksums can

be used [16]. Extended Precision Checksums detect all single bit errors and all unidirected errors.

In addition, the sequence error coverage approaches one as the number of sequence errors increases

and the average detection latency is usually less than lmax/ 2.

37

We were not able to study the effect of interrupts and context switches on the error coverage.

However, since the signature is disabled on a return from interrupt until the first reference signature,

the error coverage will decrease as /max increases.

7 C onclusions

In this paper we presented a signature insertion scheme with simple implementation complexity and

low performance overhead. Our justifying arc insertion method has 0 (N 2) algorithm complexity

compared to the exponential complexity of previous node insertion methods. Furthermore, we

proved that optimizing compiler techniques can be used to minimize the performance overhead for

arc insertion and empirically proved that this optimized arc insertion minimizes the performance

overhead due to justifying signatures.

We also performed experiments bounding the error detection latency and discovered that there

is an inverse exponential relationship between the performance and memory overheads and the

error detection latency. Using the MC68000 as our target processor, the performance and memory

overheads for our benchmark set are relatively constant for detection latencies greater than 200

instruction cycles. For latencies between 10 and 200 cycles, the performance overhead ranges from

approximately 15.76% to 4.02%. Likewise, the memory overhead drops from approximately 17.35%

to 10.93%.

A ck n ow led gem en ts

The authors would like to thank Michael Loui, Pohua Chang, John Fu, Paul Chen, Bob Dimpsey,

and all members of the IMPACT research group for their support, comments and suggestions. The

38

authors would also like to acknowledge the contributions of Tom Conte for the use of his profiling

package. This research has been supported by the Office of Naval Research under Contract N00014-

88-K-0656, the National Science Foundation (NSF) under Grant MIP-8809478, a donation from

NCR, and the National Aeronautics and Space Administration (NASA) under Contract NASA NAG

1-613 in cooperation with the Illinois Computer laboratory for Aerospace Systems and Software

(ICLASS).

R eferences

[1] A.V. Aho, R. Sethi, J.D. Ullman, Compilers, Principles, Techniques, and Tools, Reading, MA:
Addison-Wesley, 1986.

[2] W.C. Carter, ’’Improved Parallel Signature Checkers/Analyzers,” FTCS-16, pp. 416-421,1986.

[3] W. Cramer, G. Kane, 68000 Microprocessor Handbook, Berkeley, CA: McGraw-Hill, 1986.

[4] X. Delord, R. Leveugle, G. Saucier, ’’Extended Duplex Fault Tolerant System with Integrated
Control Flow Checking,” International Workshop on Defect and Fault Tolerance in VLSI Sys
tems, pp 98-109, 1989.

[5] J.B. Eifert, J.P. Shen, ’’Processor Monitoring Using Asynchronous Signatured Instruction
Streams,” FTCS-14, pp. 394-399, 1984.

[6] P.J. Fleming, J.J . Wallace, ’’How Not to Lie with Statistics: The Correct Way to Summarize
Benchmark Results,” Computing Practices, Vol. 29, No. 3, pp. 218-221, March 1986.

[7] U. Gunneflo, J. Karlsson, J. Torin, ’’Evaluation of Error Detection Schemes Using Fault In
jection by Heavy-Ion Radiation,” FTCS-19, pp. 340-347, 1989.

[8] J.K.F. Lee, A.J. Smith, ”Branch Prediction Strategies and Branch Target Buffer Design,”
IEEE Computer, pp. 6-22, January 1984.

[9] R. Leveugle, T. Michel, G. Saucier, ”Design of Microprocessors with Built-In On-Line Test,”
FTCS-20, pp. 450-456, 1990

[10] D.J. Lu, ’’Watchdog Processors and Structural Integrity Checking,” IEEE Trans, on Comput
ers, Vol. 31, No. 7, pp. 681-685, July 1982.

[11] A. Mahmood, E.J. McCluskey, ’’Watchdog Processors: Error Coverage and Overhead,” FTCS-
15, pp. 214-219, 1985.

[12] A. Mahmood, E.J. McCluskey, ’’Concurrent Error Detection Using Watchdog Processors-A
Survey,” IEEE Trans, on Computers, Vol. 37, No. 2, pp. 160-174, February 1988.

39

13] S. McFarling, J. Hennessy, ’’Reducing the Cost of Branches,” Proc. 13th Annu. Symp. on
Comput. Arch., pp. 396-403, 1986.

14] M. Namjoo, ’’Techniques for Concurrent Testing of VLSI Processor Operation,” Int. Test
Conf., pp. 461-468, 1982.

15] M. Namjoo, ”Cerebus-16: An Architecture for a General Purpose Watchdog Processor,”
FTCS-13, pp. 216-219, 1983.

16] N.R. Saxena, E.J. McCluskey, ”Control-Flow Checking Using Watchdog Assists and Extended
Precision Checksums,” FTCS-19, pp. 428-435, 1989.

17] M.A. Schuette, J.P. Shen, D.P. Siewiorek, Y.X. Zhu, ’’Experimental Evaluation of Two Con
current Error Detection Schemes,” FTCS-16, pp. 138-143, 1986.

18] M.A. Schuette, J.P. Shen, ’’Processor Control Flow Monitoring Using Signatured Instruction
Streams,” IEEE Trans, on Computers, Vol. 36, No. 3, pp. 264-276, March 1987.

19] J.P. Shen, M.A. Schuette, ’’On-Line Self-Monitoring Using Signatured Instruction Streams,”
Int. Test Conf., pp. 275-282, 1983.

20] J. Sosnowski, ’’Detection of Control Flow Errors Using Signature and Checking Instructions,”
Int. Test C onf, pp. 81-88, 1988.

21] T. Sridhar, S. T hatte , ’’Concurrent Checking of Program Flow in VLSI Processors,” Int. Test
C onf, pp. 191-199, 1982.

22] C. Tung, J. Robinson, ”On Concurrently Testable Microprogrammed Control Units,” Int. Test
C onf, pp. 895-900, 1986.

23] N.J. Warter, W.W. Hwu, ”A Software Based Approach to Achieving Optimal Performance for
Signature Control Flow Checking,” FTCS-20, pp. 442-449, 1990.

24] N.J. Warter, W.W. Hwu, ’’Compiler-Assisted Signature Monitoring,” Tech. Report, Center for
Reliable and High-Performance Computing, University of Illinois, Urbana-Champaign, IL, (In
preparation).

25] K. Wilken, J.P. Shen, ’’Embedded Signature Monitoring: Analysis and Technique,” Int. Test
C onf, pp. 324-333, 1987.

26] K. Wilken, J.P. Shen, ’’Continuous Signature Monitoring: Efficient Concurrent-Detection of
Processor Control Errors,” Int. Test C onf, pp. 914-925, 1988.

40

