
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI
University Microhms International

A Bert & Howeil Information Company
300 North Zeeb Roaa. Ann Aroor Ml 48106-1346 USA

313 761-4700 300 521-0600

Order Number 9136566

Compiler support for multiple-instruction-issue architectures

Chang, Po-hua, Ph.D.

University of Illinois at Urbana-Champaign, 1991

Copyright ©1991 by Chang, Po-hua. All rights reserved.

UMI
300 N. Zeeb Rd.
Ann Arbor, MI 48106

COMPILER SUPPORT FOR MULTIPLE-INSTRUCTION-ISSUE ARCHITECTURES

BY

PO-HUA CHANG

B.A., University of California, Berkeley, 1987
M.S., University of Illinois, 1989

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1991

Urbana, Illinois

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

T H E GRADUATE COLLEGE

MAY 1991

W E HEREBY RECOMMEND THAT THE THESIS BY

PO-HUA CHANG

ENTITLED- COMPTT.F.R SUPPORT FOR MULTIPLE-INSTRUCTION-ISSUE

ARCHITECTURES

BE ACCEPTED IN PARTIAL FULFILLMENT OF T H E REQUIREMENTS FOR

THE DEGREE OI DOCTOR OF PHILOSOPHY,

Director of Thesis Research

r l ^ ^ - Head of Department

Committee on Final Examination^

Chairperson

Required for doctor's degree but not for master 's.

©Copyright by Po-hua Chang, 1991

COMPILER SUPPORT FOR MULTIPLE-INSTRUCTION-ISSUE
ARCHITECTURES

Po-hua Chang, Ph.D.
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, 1991
Wen-mei Hwu, Advisor

This dissertation demonstrates that substantial speedup over that for conventional

single-instruction-issue architectures can be achieved by multiple-instruction-issue archi­

tectures with the support of an optimizing compiler. We have constructed a full-scale

C compiler that can learn the dynamic behavior of user programs by profiling, apply

the profile information to guide various code improving techniques, and map the pro­

gram parallelism onto the parallel architecture. Our base code optimization technology

is comparable to today's best commercial C compilers. In addition, we have developed

aggressive code generation techniques that are tailored to multiple-instruction-issue ar­

chitectures. Using our compiler, we have characterized the performance of a large class of

multiple-instruction-issue architectures with many important application programs and

realistic input data.

in

DEDICATION

To My Parents

IV

ACKNOWLEDGMENTS

I wish to thank my parents for many years of love and support. They have always

introduced me to the best educational environment at every stage of my life.

I would like to express my sincere gratitude to all the people who have made my school

life enjoyable and productive. Professor Wen-mei Hwu, my thesis advisor, has been my

role model ever since my undergraduate years. In the five years that we have worked

together, we have persevered through some hard times. But his vision and optimism

have always made our struggle less painful. Professors Michael Loui, Janak Patel, and

Prithviraj Banerjee have served on my doctoral committee and provided me with many

valuable suggestions that improved my research work. Andy Glew, Sadun Anik, Tomas

Conte and all my colleagues in the Center for Reliable and High-performance Computing

(CRHC) gave me valuable suggestions and references to further my study. I would like

to thank Professor Yale Pat t for introducing me to the field of computer architecture.

I would like to acknowledge many people who have contributed and are still working

on various components of the IMPACT-1 C compiler. Scott Mahlke has contributed a

large portion of the code optimizer. William Chen has implemented a code generator

for the MIPS-R2000 microprocessor. Roland Ouellette has implemented a code genera­

tor for the Sparc microprocessor. Roger Bringmann has implemented a code generator

for the AMD-29K microprocessor. Nancy Warter has implemented a code generator

for the i860 microprocessor on an Alliant-2800 system. Grant Habb is building an array

subscript memory dependence analyzer. Rick Hank is constructing a more aggressive reg­

ister allocator. John Holm is implementing more machine-dependent code optimizations.

These people have spent many weekends and sleepless nights with me in the laboratory

throughout the years.

v

TABLE OF CONTENTS

CHAPTER PAGE

1 I N T R O D U C T I O N 1
1.1 The Dissertation 3
1.2 Organization of the Dissertation 5

2 B A C K G R O U N D 8
2.1 Fundamental Concepts 8

2.1.1 Transformation of execution sequence by software 9
2.1.2 Transformation of execution sequence by hardware 9
2.1.3 Detection of dependent operations 11
2.1.4 Hazard prevention 11

2.2 Processor Architecture 12
2.2.1 Instruction pipelining 13
2.2.2 Instruction format 15
2.2.3 Instruction-fetch limitations 15
2.2.4 Instruction-decode limitations 16
2.2.5 Branch handling 17
2.2.6 Operand-fetch limitations 17
2.2.7 Resource conflict 18
2.2.8 Cache memories 18

2.3 Scheduling 19
2.3.1 Hardware scheduling 19
2.3.2 Software scheduling 21

2.4 Comparison with Similar Works 27

3 T H E I M P A C T A R C H I T E C T U R A L F R A M E W O R K 31
3.1 Function Unit Resource 33
3.2 Function Unit Delay 33
3.3 Branch Handling 33
3.4 Register Interlocking 35
3.5 Lockstep Execution 36
3.6 Special Operations 37
3.7 Silent Exceptions 37

4 E S S E N T I A L F E A T U R E S Of T H E I M P A C T ! C C O M P I L E R . . . 40
4.1 Open Compiler Architecture 40
4.2 Two-level Intermediate Code 42

V I

4.2.1 The Hcode environment 43
4.2.2 The Lcode ?nvironment 44

4.3 Profiling 45
4.3.1 Definition of a weighted control graph 46
4.3.2 Construction of a weighted control graph 47
4.3.3 Probe insertion 48
4.3.4 Input data 49
4.3.5 Profile data representation 50
4.3.6 Profile data maintenance 51
4.3.7 Reconstruction of control graph 51
4.3.8 Node and arc weight assignment 51
4.3.9 Weight consistency verification 52
4.3.10 Separate compilation 53
4.3.11 Lcode profiling 53
4.3.12 Profile-based code optimization 54

5 M A C H I N E - I N D E P E N D E N T C O D E O P T I M I Z A T I O N 59
5.1 Function Inline Expansion 61

5.1.1 Introduction 61
5.1.2 Critical issues 63
5.1.3 Program representation 68
5.1.4 Hazard prevention 72
5.1.5 Sequence control 73
5.1.6 Essential operations 80
5.1.7 Desirable optimizations 80
5.1.8 Experiments 85
5.1.9 Summary 88

5.2 Instruction Placement 89
5.2.1 Introduction 89
5.2.2 Trace selection 91
5.2.3 Instruction placement 100

5.3 Control Flow Optimization 102
5.3.1 Introduction 102
5.3.2 Multiway branch 102
5.3.3 Branch prediction 104

5.4 Conventional Code Optimization 105
5.5 Trace-Based Code Optimization I l l

6 M A C H I N E - D E P E N D E N T C O D E O P T I M I Z A T I O N 146
6.1 Instruction Selection 147
6.2 Constant Preloading 148
6.3 Register Allocation 150
6.4 Code Scheduling 152

6.4.1 Dataflow analysis 153

VI1

6.4.2 Dependence graph 155
6.4.3 Dependence arc optimization 157
6.4.4 List scheduling 159

7 M U L T B P L E - I N S T R U C T I O N - I S S U E C O D E O P T I M I Z A T I O N 163
7.1 Expanding the Scope of Static Code Scheduling 164

7.1.1 Function inline expansion 164
7.1.2 Instruction placement 165
7.1.3 Branch expansion 166
7.1.4 Loop unrolling 167
7.1.5 Loop peeling 169
7.1.6 Limiting code expansion 170

7.2 Reducing the Length of a Critical Path 171
7.2.1 Induction variable expansion 171
7.2.2 Register renaming 173
7.2.3 Global variable migration 175
7.2.4 Operation combining 176
7.2.5" Post-increment computation 176
7.2.6 Memory disambiguation 177

8 E X P E R I M E N T S 178
8.1 Summary of the Compiler Support 179

8.1.1 Code efficiency 179
8.1.2 Code generation for multiple-operation-issue machine 180
8.1.3 Available parallelism 182

8.2 The Effect of Static Code Scheduling 182
8.2.1 Methodology 183
8.2.2 Base architecture 184
8.2.3 Restricted code percolation 184
8.2.4 General code percolation 184
8.2.5 Speculative execution 185
8.2.6 The effect of limiting function unit resources 185
8.2.7 The effect of changing the memory load latency 186
8.2.8 The effect of increasing branch slots 186

8.3 The Effect of Dynamic Code Scheduling 187
8.3.1 Methodology 187
8.3.2 Base architecture 188
8.3.3 Ideal cache 189
8.3.4 Realistic cache 189
8.3.5 Analysis 189

8.4 The Importance of a Prepass Code Scheduling 191

viii

9 INLINE TARGET INSERTION 203
9.1 Introduction 203
9.2 Background and Motivation 207

9.2.1 Branch instructions 207
9.2.2 Instruction sequencing for pipelined processors 208
9.2.3 Deep pipelining and multiple-instruction-issue 208

9.3 Inline Target Insertion 210
9.3.1 Sequential instruction fetch 210
9.3.2 Compiler implementation 211
9.3.3 Sequencing pipeline implementation 213
9.3.4 Correctness of implementation 216
9.3.5 Interrupt/exception return 222
9.3.6 Extension to out-of-order execution 224
9.3.7 Issuing multiple branch operations per cycle 226

9.4 Experiments 227
9.4.1 The benchmarks 227
9.4.2 Code expansion 228
9.4.3 Instruction sequencing efficiency 230

9.5 Conclusions 232

10 CONCLUSIONS 243
10.1 Summary 243
10.2 Future Directions 245

REFERENCES 248

APPENDLX A MACHINE DESCRIPTION LANGUAGE 259
A.l Basic Data Types 259
A.2 Register Resource 260
A.3 Operation Code 261
A.4 Operand Addressing Mode 261
A.5 Operation Model 262
A.6 Function Unit Model 263
A.7 Instruction Set Model 263

APPENDLX B EXAMPLES Of HCODE AND LCODE 265
B.l C Source Code 265
B.2 Hcode 265
B.3 Lcode 267

VITA 274

ix

LIST OF TABLES

Table Page

2.1 Benchmarks 29

5.1 Benchmark characteristics 116

5.2 Static function call characteristics 116
5.3 Dynamic function call behavior 117
5.4 Inline expansion results 117
5.5 Benchmarks 118
5.6 Selection according to node weight 119
5.7 Selection according to arc weight 119
5.8 Minimum branch probability = 60% 120
5.9 Minimum branch probability = 70% 120
5.10 Minimum branch probability = 80% 121
5.11 Minimum branch probability = 90% 121
5.12 Percentage of various branch types 122
5.13 Multiway branch statistics 122
5.14 Conditional branch results 123
5.15 Classical code optimizations 124

8.1 Benchmarks 192
8.2 Speedup on MIPS-R2000 processor 192
8.3 Operation latencies 193

9.1 A summary of delayed branching mechanisms 234
9.2 A summary of important definitions used in the proofs 234
9.3 Benchmarks 235
9.4 Static and dynamic characteristics 235
9.5 Percentage of likely branches among all static instructions 236
9.6 Probability of prediction miss among all dynamic instructions 236

x

LIST OF FIGURES

Figure Page

1.1 Timing diagram of the execution of four operations 7

2.1 Behavior diagram of the execution hardware 29
2.2 Block diagram of processor model 30

3.1 Top-level block diagram of the processor architecture 39
3.2 Branch architecture 39

4.1 Framework 55
4.2 Hcode 56
4.3 Lcode 57
4.4 Profiler 58

5.1 Separate compilation paradigm 125
5.2 Inlining at compile time 126
5.3 Inlining at link time 127
5.4 A weighted call graph 128
5.5 An inlining example 129
5.6 Activation stack explosion 130
5.7 An example of restricted inlining 131
5.8 Lost opportunity. 132
5.9 Handling single-function recursions 132
5.10 Interdependence between code size increase and sequencing 133
5.11 Inlining a function before absorbing its callees 134
5.12 Inlining a function after absorbing its callees 135
5.13 Expanding into a single caller 136
5.14 Restricted linear sequencing 137
5.15 Code size increase versus call reduction 138
5.16 Example of jump optimization 138
5.17 Another example of jump optimization 139
5.18 A weighted flow graph 140
5.19 Forming super-blocks 141
5.20 An example of common subexpression elimination 142
5.21 An example of dead code removal 143
5.22 An example of loop invariant code removal 144
5.23 An example of super-block global variable migration 145

XI

8.1 Operations per cycle (issue at most 4) 194
8.2 Operations per cycle (issue at most 8) 195
8.3 Restricted code percolation 195
8.4 General code percolation 196
8.5 Speculative execution 196
8.6 Limited function resource, load delay 1 197
8.7 Limited function resource, load delay 2 197
8.8 Different memory operation latencies 198
8.9 Adding branch slots, load delay 1 198
8.10 Adding branch slots, load delay 2 199
8.11 Execution rate (ideal cache) 199
8.12 Execution rate (8K cache) 200
8.13 Execution rate (16K cache) 200
8.14 Speedup (issue at most 2 operations per cycle) 201
8.15 Speedup (issue at most 4 operations per cycle) 202

9.1 (a) An example C program for finding the largest element in Array, (b) The
register assignment 237

9.2 (a) A machine language program generated from the C program shown in
Figure 9.1. (b) A simplified view of the machine language program 237

9.3 A block diagram and a simplified view of a pipelined processor 238
9.4 A timing diagram of the pipelined processor in Figure 9.3 executing the se­

quence of instructions E — » F — » (? — » # - + / — » E — » F of Figure 9.2.
Instructions J and K are scratched from the pipeline because / is taken. . . 238

9.5 A timing diagram of a pipelined processor which results from further dividing
the IF and EX stages of the processor in Figure 9.3 239

9.6 A timing diagram of the pipelined processor which processes two instructions
in parallel 239

9.7 Handling branches in the ITI Algorithm 240
9.8 A running example of Inline Target Insertion 241
9.9 (a) Timing diagram of a pipelined processor executing the sequence, E —»

F —y H' ... of instructions in Figure 9.8(e). (b) A similar timing diagram for
the sequence, E —• F -> G 241

9.10 (a) Timing diagram of a pipelined processor executing the sequence E —»
F -> H' -* I' -> E' oi instructions in Figure 9.8(e). (b) Timing diagram
of a pipelined processor executing the sequence E—tF—tH'—tl—tE of
instructions in Figure 9.8(e) because of an interrupt at / ' 242

9.11 Evaluating the efficiency of instruction sequencing 242

xii

CHAPTER 1

INTRODUCTION

Computer engineers have been striving to improve uniprocessor performance since

the invention of computers. Recently, many designers have demanded the use of the

most powerful microprocessors in their embedded controller and workstation applica­

tions. Designers of multiprocessors have also become accustomed to using the most

powerful microprocessors that are available on the market as the node processors of mul­

tiprocessor architectures. To achieve high performance in a microprocessor, conventional

wisdom suggests exploiting concurrency and using the best circuit technology. Advances

in circuit technology have reduced the time to perform basic hardware functions. With

instruction pipelining and overlapping [Kogge 81], the basic machine cycle time has been

greatly reduced over the years. By optimizing a simple instruction pipeline structure,

current RISC (Reduced Instruction Set Computer) processors achieve an instruction ex­

ecution rate of nearly one operation per cycle [Hennessy 81]. A natural extension to

instruction pipelining is to design microprocessors that can execute multiple operations

per cycle. To consistently perform at this level, these processors must be able to fetch,

decode, issue, execute, and commit more than one operation per cycle. Such a processor

has been called a superscalar processor, a very long instruction word (VLIW) processor,

and a multiple-instruction-issue processor in recent literature.1 Superscalar processor ar­

chitectures differ from VLIW architectures in the instruction fetch/decode/ifsue pipeline

stages. In a superscalar processor, the hardware decodes multiple operations simultane-

^n this dissertation, an operation denotes the basic execution unit. Therefore, we also use the term
multiple-operation-issue processor.

1

ously and decides which operations may be issued to the execution stage as a group. For

a VLIW processor, the compiler decides which operations can be issued to the execution

stage as a group at compile time, and packs these operations into a wide instruction

word. In a VLIW processor, the hardware issues one wide instruction word to the exe­

cution stage at a time. In this dissertation, we present many compiler techniques that

are applicable to both superscalar and VLIW processor architectures. We refer to both

superscalar and VLIW processors as multiple-instruction-issue processors. We will make

a distinction between superscalar and VLIW architectures when we present a technique

that pertains to only one of the two architectures.

In this dissertation, tables and figures always appear at the end of each chapter. Fig­

ure 1.1 shows the timing diagram of the execution of four operations by a non-pipelined

processor, a pipelined processor, and a multiple-instruction-issue processor. A major

task of the compiler for a VLIW processor is to detect a sufficient number of independent

operations to saturate the instruction pipeline. The compiler arranges operations in the

instruction memory in such a way that when operations have been fetched and decoded,

the values of all source operands are available, and these operations can immediately

move to the execution stage of the instruction pipeline. The compiler packs indepen­

dent operations into wide instruction words. The hardware can issue at most one wide

instruction word to the execution hardware per cycle [Fisher 81], [Ellis 86], [Colwell 87],

[Howland 87].

Alternatively, the detection of independent operations can be performed by the hard­

ware, as in a superscalar processor. The hardware fetches and decodes one or more

operations per cycle. After operations have been decoded, the hardware detects opera­

tions that can be executed concurrently and whose source operand values are available.

The hardware prevents the execution of operations whose source operand values are not

available. Therefore, the order in which operations are issued to the execution stage may

be different from the order in which these operations are fetched from the instruction

memory. The hardware can issue multiple independent operations to the execution stage

per cycle [Acosta 86], [Sohi 87], [Weiss 87].

9

Another method is to use a combination of compile-time and run-time scheduling

techniques. The compiler groups independent operations into wide instruction words.

The hardware can fetch and decode one wide instruction word per cycle and allow oper­

ations from different wide instruction words to execute out of the order in which these

operations are fetched [Hwu 87], [Patt 85].

It is unclear how much performance the combined compiler and hardware scheduling

method can achieve beyond the improvement by either method alone. It is unclear how

close the research community has come to the performance limit of multiple-operation-

issue architecture with existing compiler and hardware techniques. Complete answers

to these questions would require many experimental research projects that propose new

compiler and hardware techniques, measure the effectiveness of existing compiler and

hardware techniques on important application programs that exist today and on programs

that are written in explicitly parallel languages which promote the use of parallel data

structures and algorithms.

Many hardware and software techniques for using multiple function units and sup­

porting multiple-operation-issue architectures have been studied [Fisher 81], [Patt 85],

[Smith 85a], [Acosta 86], [Ellis 86], [Sohi 87], [Hwu 87], [Howland 87], [Weiss 87]. Recent

interest in applying these techniques to low-cost microprocessor and microsystem designs

has grown dramatically [Colwell 87], [Hwu 88a], [Hwu 88b], [Pleszkun 88a], [Jouppi 89b],

[Smith 89], [Sohi 89], [Cohn 89], [Intel 89], [IBM 90]. We will discuss the results from

some of these studies in Chapter 2.

1.1 The Dissertation

In this dissertation, we focus on improving the performance of some important appli­

cation programs that were written in the C programming language. These application

programs exhibit complex control flow and use complex data structures. We evaluate

the effectiveness of existing compiler and hardware techniques on these programs, and

3

show experimentally that multiple-operation-issue processors can outperform by large

amounts processors that issue one operation per cycle.

This research has three major objectives. The first objective is to characterize the

performance of multiple-operation-issue architectures using an optimizing compiler. The

second objective is to characterize the effectiveness of code optimizations that are de­

signed specifically for multiple-operation-issue processors. The third objective is to pro­

vide a modular compiler framework, in which new code optimizations can be quickly

implemented, evaluated, and transferred to common use.

An optimizing compiler plays an essential role in processor architecture studies for

two important reasons. First, existing application programs are written primarily in

high-level languages. To measure the execution time of a large set of existing application

programs on a new architecture, a compiler for that architecture must be available.

Second, a naive compiler can translate the application programs into inefficient code

that may not exercise all hardware functions. A naive compiler can also generate many

redundant computations that show unrealistic parallelism. To conduct a fair study of

processor performance, the best compiler support should be provided for each processor

architecture.

We have implemented a full-scale optimizing C compiler from scratch. This compiler,

which we named the IMPACT-I C compiler, can learn the dynamic behavior of the object

program prior to compilation, and use that knowledge to guide a large number of code

improving techniques. The IMPACT! C compiler has been ported to a few existing

commercial machines. The IMPACT-I C compiler can generate code for the MIPS-

R2000, SPARC, i860, and AMD29K microprocessors. In 1991, we plan to construct code

generators for the i486, i960, and IBM-RS6000 microprocessors. We distributed the first

beta test version of the IMPACT-I C compiler to NCR in February 1991. We plan to

release the IMPACT/AMD29K C compiler in April 1991 and the next beta test version

of the IMPACT-I C compiler in May 1991.

We will show that the quality of the code emitted by the IMPACT-I C compiler

is comparable to that from today's best commercial C compilers. From a sound base

4

compiler technology, we have further developed aggressive code transformation, register

allocation, and code scheduling strategies that are tailored for multiple-operation-issue

machines. We have extracted more instruction-level parallelism and have achieved a

speedup ratio that is much greater than that reported by previous studies [Tjaden 70],

[Smith 89], [Sohi 89], [Jouppi 89b].

1.2 Organization of the Dissertation

This dissertation is organized into ten chapters.

Chapter 2 provides necessary background information, defines important terms, and

surveys related works on multiple-operation-issue architectures.

Chapter 3 describes the IMPACT architectural framework of multiple-instruction-

issue processors.

Chapter 4 gives an overview of the IMPACT-I C compiler and describes briefly the

functions of its major components. The IMPACT-I C compiler uses two levels of inter­

mediate code to communicate between various tools and compiler components. Based on

the two levels of intermediate code, two major programming environments have emerged.

Chapter 5 describes machine-independent code optimizations that have been imple­

mented in the IMPACT-I C compiler. Traditional local and global code optimizations,

function inline expansion, instruction placement, and profile-based code optimizations

are all part of the machine-independent code optimizer. We compare the object code

quality against leading commercial C compilers. The measurement data show that the

IMPACT-I C compiler generates highly optimized object code.

Chapter 6 describes machine-dependent code optimizations, including constant preload­

ing, register allocation, and code scheduling. We describe how these optimizations may

degrade the performance of each other. An integrated register allocation and code

scheduling strategy is described in this chapter.

Chapter 7 describes some code transformation techniques that enlarge the scope of

compile-time code scheduling and reduce the lengths of critical paths.

5

Chapter 8 presents measurement data demonstrating the speedup ratio of many

multiple-operation-issue processor architectures over a fixed base processor architecture.

We also compare the performances of compile-time and run-time code scheduling.

Chapter 9 describes a branch architecture which allows multiple branch operations

to be issued per cycle and from branch slots. We show that, by selectively allocating

branch slots, the code expansion penalty due to branch slots is small.

Chapter 10 offers concluding remarks and future directions.

6

Al

A2

A3

Bl

B2

B3

Al

A2

A3

Bl

B2

B3

CI

C2

C3

CI

C2

C3

Dl

D2

D3

Dl

D2

I)3

fetch
decode

get operands

i
con

upda
rrput<
te op eran ds

Al

A2

A3

Bl

B2

B3

CI

C2

C3

Dl

D2

D3

TIME

Figure 1.1 Timing diagram of the execution of four operations.

7

CHAPTER 2

BACKGROUND

2.1 Fundamental Concepts

We define the state of a programmed machine as the collection of the values of all

of its memory elements. Thus, the memory elements can be regarded as state variables

whose values belong to a well-defined range. A state change occurs if there is a change

in the value of any one memory element.

An operation is denoted by a quadruple (OP, SR, DS, RS) where OP indicates a

primitive hardware-defined function, SR (source) and DS (destination) are sets of memory

elements, and RS is the hardware resource that is required to carry out the hardware-

defined function. The execution of an operation consists of the following phases. 1) The

operation is fetched from the instruction memory. 2) The values of all source operands

(SR) are obtained. 3) A value is produced by the primitive hardware-defined function

(given values of all source operands). 4) The destination operand (DS) is assigned the

resultant value. All of the above phases are implemented in hardware.

A purely sequential machine executes a single operation at a time. Therefore, given

a certain program and a specific input, an execution sequence of operations is derived.

Let one such sequence be < opi,op2, ...,op„ > (v a finite number). We define observation

points as cuts at several operation boundaries, where users are allowed to probe a subset

of the state of the program. For a total of m (m < n) such observation points, the result

of program execution is denoted by < Si,s2 , —,sm > , where s,- corresponds to the subset

of the program state that is visible at the ith observation point.

S

All alternative execution models must satisfy the conditions of determinacy and

termination [Karp 66]. Informally stated, given all legal input data to a program, the

result of program execution must be identical for all execution models that satisfy the

determinacy property, and the length of the execution sequence must be finite for all

execution models that satisfy the termination property.

2.1.1 Transformation of execution sequence by software

Compile-time code transformation produces a new version of the object program.

Therefore, the sequence of operations that are fetched from the instruction memory

could be different from that of the original program. A useful application of compile-

time code transformation is to reduce the length of the execution sequence. For example,

a multiplication of an integer value by 4, which takes several machine cycles, can be

replaced by a single-cycle bit-shift operation. Another useful application of compile-time

code transformation is to schedule operations so that once an operation is fetched from

the instruction memory, the needed source operands and function unit resources are

immediately available to execute the operation.

In general, the behavior of the execution hardware is fixed (e.g., is pipelined into four

stages). When hardware parameters, e.g., delay of multiply operation, and organization,

e.g., datapath, are specified, compilers can tailor the output object code to maximize the

resource utilization and to minimize the execution time.

2.1.2 Transformation of execution sequence by hardware

Figure 2.1 depicts the behavior of the execution hardware. The fetch-decode compo­

nent obtains a finite number of operations from the instruction memory and inserts them

into the output queue per cycle. While waiting in the output queue of the fetch-decode

component, operations gather their source operands. The issue component selects a

finite number of operations whose source operands have been obtained and whose func­

tion unit resources have been reserved, and moves the operations to the output queue

9

of the issue component. The execute component takes operations from its input queue

and delivers the result to its output queue. Finally, the commit component updates the

program state.

In Figure 2.1, concurrency detection is the action to identify all operations that can be

moved from the input queue to the output queue of the issue component. Due to limited

hardware resources, e.g., limited bus bandwidth, not all concurrent operations can be

moved to the next stage. Scheduling is the process of selecting a subset of concurrent

operations to be moved to the next stage. Depending on the scheduling policy used, the

operation sequence may be altered in any one component in Figure 2.1. A scheduling

policy which does not change the operation sequence is said to be in-order; otherwise, it

is said to be out-of-order.

The fetch component implements an in-order process. For example, upon an in­

struction cache miss, the fetch unit does not try to fetch the subsequent operation. It

is necessary to fetch operations in-order to establish a precedence relationship between

operations, e.g., assigning a tag to each operation. Operation precedence is an essential

piece of information in implementing register renaming, exception handling, and squash­

ing in out-of-order execution machines. Squashing cancels an operation by converting

its opcode to no-op or by clearing its valid bit. A squashed operation is prevented from

changing the machine state. An operation should be squashed if it is fetched after an

incorrectly predicted branch operation or a trapping operation.

If the issue component implements an in-order process, the machine is said to be

in-order issue. Otherwise, it is out-of-order issue. If both the issue and the execute

components implement in-order processes, the machine is said to be in-order execution;

otherwise, it is out-of-order execution.

An operation commits if it modifies the program state. To support precise interrupt,

it is necessary to commit in-order. It is not in the scope of this research to address

interrupt handling issues. Several techniques for implementing precise interrupts have

been proposed [Smith 85a], [Sohi 87], [Hwu 87] . These techniques allow operations to

modify the memory before they commit.

10

T - *

2.1.3 Detection of dependent operations

Consider two operations opi and opj, where opi precedes cpj in sequential mode of

execution. The problem is to decide whether we could issue opi and opj at the same time,

or issue opj before opi in a multiple-operation-issue processor.

The dependence graph is a well-known representation of operation precedence rela­

tionships [Tjaden 70], [Kuck 81]. Consider two operations op, and opj, where opi precedes

opj in sequential mode of execution. We say that

• opj is flow-dependent on op,- iff the destination operand of op,- is a source operand

of opj, and there is no other operation fetched after opi but before opj such that it

has the same destination operand as op{.

• opj is anti-dependent on opi iff the destination operand of opj is a source operand

of opi.

• opj is output-dependent on opi iff they have the same destination operand.

• opj is control-dependent on op,- iff opi is a branch operation.

A dependence graph constructed by adding dependence arcs to operations in a dy­

namic operation trace is acyclic. The length of each dependence arc corresponds to the

minimum number of cycles between the issue time of the source and destination nodes.

For a flow-dependence arc, the length is usually the operation latency of the source node.

A dependence graph constructed from a program graph may be cyclic due to loop

structures.

2.1.4 Hazard prevention

Consider an integer multiply operation opi and another operation op., which uses the

result of opi. If the delay of multiply operation is 6 cycles, then op{ must be issued to

the execution component at least 6 cycles before op, can be issued to the execution

component. If this enforcement is accomplished by the hardware, then the mechanism

11

for enforcing data dependencies is called hardware interlocking. Detailed descriptions of

various ways to implement hardware interlocks have been surveyed by Kogge [Kogge 81].

Dependence distance can be reduced by adding hardware features. Consider two op­

erations opi and opj, where opi precedes opj in sequential mode of execution. If hardware

register renaming allows opi and opj to write the same destination operand, then the

length of this output-dependence arc is zero, and opi and opj may be issued at the same

time. For another example, the length of flow-dependencies may be reduced by 1 cycle

with a data forwarding circuit.

Software techniques to prevent hazards are called software interlocking. Dependencies

can be enforced by reordering operations and inserting no-ops [Hennessy 83].

2.2 Processor Architecture

The term processor architecture refers to what the machine language programmers see

of a computer system. For example, the VAX, IBM-360, IBM-370, MC68000 architec­

tures allowed families of compatible computers. The definition of a processor architecture

usually includes an instruction set, a virtual memory management policy, and an excep­

tion and interrupt mechanism.

The term processor microarchitecture refers to a particular implementation of a pro­

cessor architecture. Each microarchitecture is fine-tuned according to specific cost and

performance objectives. For example, the width of the internal datapaths, the number

of buses, the number of translation buffer entries, the degree of pipelining, the sizes of

caches, and many other design choices are never directly visible to users. These microar­

chitectural choices strongly affect the delivered speed of the processor system, however.

Some functions can be implemented in hardware or in software. To replace a hardware

function by a software function, some microarchitectural parameters must be specified

to the software designers. For example, by exposing instruction timing information,

instruction scheduling schemes that prevent hazards [Kogge 81] can be implemented in

software. For example, the MIPS project at the Stanford University used optimizing

12

compiler technology to exploit a pipelined microprocessor without hardware interlocks

[Hennessy 83], [Hennessy 82], [Hennessy 81], [Chow 87]. Gross and Lam have also shown

that a compiler can schedule operations for a systolic array computer whose execution

timing is deterministic [Gross 861. Even if there is support for hardware interlocking,

compilers can schedule operations to minimize the occurrences of run-time interlocks to

achieve higher utilization of the parallel hardware.

2.2.1 Instruction pipelining

We define instruction as a number of operations that are fetched from the instruction

memory, decoded, and issued to the execution unit at a time, in lock-step. For single-

operation-issue machines, there is exactly one operation in an instruction; therefore, the

two terms can be used interchangeably when referring to a single-operation-issue machine.

An accepted performance measure of executing a benchmark using a particular input

is the execution time (N * C * T), where N is the number of instructions that need to

be executed, C is the number of cycles per instruction, and T is the cycle time.

The number of instructions that are required to complete a task depends on the

instruction set definition and the quality of the code generated by the compiler. Given

a fixed instruction set that is designed for efficient streamlining (at a maximal rate of

issuing one instruction per cycle), reducing N is one of compiler's major responsibilities.

A goal in designing a fast microarchitecture is to minimize the cycle time and to

minimize the number of cycles per instruction. However, once the degree of instruction

pipelining has been determined, the cycle time is very much a technology dependent

parameter. The length of the instruction pipeline is limited by the data and control

dependencies between instructions; therefore, it cannot be arbitrarily increased. The

maximum throughput is achieved when the processor completes one instruction per cycle

(C = l) .

A typical breakdown of the instruction pipeline consists of the following stages. 1)

(fetch) Fetch one instruction. 2) (decode) Decode the instruction, and access source

operands. 3) (issue) Move operations to function unit input latches. 4) (execute) Execute

13

operations. 5) (distribute) Forward results to function unit input latches. Write result to

the reordering buffer or future file. x 6) (commit) Commit the instruction, permanently

affecting the program state. Each stage may require several cycles. In the best condition,

instructions flow through these stages without blocking, and, effectively, one instruction

is executed per cycle.

Figure 2.2 shows the overall organization of a pipelined processor. In Figure 2.2,

connections between components should be interpreted as multiple buses. The upper­

most component is the instruction fetch stage, in which operations are fetched from the

instruction memory. Operations pass from the fetch stage to the decode stage, in which

they obtain their source operands (or at least tags for obtaining the values of the source

operands later). According to the operation code and the position of the operation in

the instruction, each decoded operation is sent to a function unit. The function units

should be pipelined for operations that may take more than one cycle to execute.

To extend a single-operation-issue architecture into a multiple-operation-issue archi­

tecture, some components in Figure 2.2 should be replicated. 1) The fetch stage should

be able to fetch more than one operation per cycle. 2) The decode stage should be able

to decode all fetched operations simultaneously. 3) There can be more than one register

file to provide more register read and write ports. 4) Some function units should be

replicated. For example, we may want to execute multiple branch operations per cycle

and multiple memory load operations per cycle. 5) The distribution buses must be able

to deliver all results back to the register files.

All forms of hardware concurrencies must be increased in a balanced manner, since the

throughput of the instruction pipeline is determined by the slowest stage of the pipeline.

i Reordering buffer and future file are hardware data structures used to implement precise interrupts
[Smith 85a]. Alternative hardware data structures can be used for the same purpose [Sohi 87], [Hwu 87].

14

2.2.2 Instruction format

If the compiler can decide which operations are always fetched and issued as a group

(an instruction), the compiler can schedule operations (pack operations into an instruc­

tion) to avoid function unit and distribution bus conflicts. For example, if the machine

has only one floating-point arithmetic unit, it makes no sense to issue two floating-point

operations per cycle.

For binary compatibility reasons, we let the hardware decide what operations should

be fetched as a group. Therefore, a program compiled for issuing two operations per cycle

can also run on a machine that issues a different number of operations per cycle. The

disadvantage is that the compile-time management of the function unit resource may not

be as efficient.

In both cases, we can use a variable-length instruction format to reduce the number

of no-ops in program regions where there are few concurrent operations. For example,

Multiflow [Colwell 87] uses a variable-length memory representation.

For Very Long Instruction Word machines, an important question is whether we

should make all function units powerful enough to handle every operation code. Doing

so would require multiple memory read and write ports, and multiple floating-point units.

An alternative is to use many heterogeneous function units and let the compiler limit the

number of each type of operation in an instruction. Sohi and Vajapeyam have studied

the feasibility of this method using small numerical kernels [Sohi 89].

2.2.3 Instruct ion-fetch limitations

A fixed-length instruction (containing a number of operations) is fetched by indexing

the program counter into the instruction memory, in the form of a control store, a cache,

or instruction buffers. To achieve near single-cycle execution, it is necessary to fetch

at least one instruction per cycle. Instruction and data memory access conflicts can be

greatly reduced by the use of separate instruction and data caches [Matick 84]. It is

15

important to align each instruction word at an instruction cache block boundary so that

one wide instruction word can be fetched per cycle.

With a variable-length instruction format, an instruction (containing a number of

concurrent operations) may not be properly aligned at an instruction cache block bound­

ary. A possible solution is to provide an instruction buffer which is at least two times

larger than an instruction cache block. Except for the first misaligned instruction in a

sequential run of instructions, the instruction buffer can combine pieces of data from two

instruction cache blocks to form an instruction per cycle. Therefore, one cycle penalty is

incurred when branching into a nonaligned instruction. A better but more costly solu­

tion is to design an instruction cache memory that can extract and align data from two

consecutive cache blocks in a single cycle.

There is a problem with taken branches in multiple-operation-issue architectures.

Suppose there are three concurrent operations, including the taken branch. In order

to reach an execution rate of four operations per cycle, one operation must be fetched

from the taken path. This problem can be solved by using an extremely fast branch

target buffer [Lee 84], or by using compile-time branch prediction and squashing branch

[McFarling 86]. Hwu, Conte, and Chang [Hwu 89b] have made a direct comparison of the

branch target buffer scheme and the squashing branch scheme for a set of C application

programs, and reported that both are effective, but to achieve high prediction accuracy,

a large number of entries need to be used in the branch target buffer scheme. Smith

et al. have shown that instruction fetching is the most severe bottlneck in a superscalar

processor [Smith 89].

2.2.4 Instruction-decode limitations

To achieve near single-cycle execution, the instruction decode stage must be able

to decode one instruction (multiple operations) per cycle. This is not very difficult if

operations have a fixed size format. The decoder simply needs to parse concurrently

all operations into several fields: fields for controlling the execution hardware, fields

for acquiring source operands, fields for destination operands, and fields for affecting

16

the control flow. On the other hand, decoding variable-length operations can be very

complex and time-consuming [Clark 87], [DeRosa 85].

2.2.5 Branch handling

For a taken branch to redirect the control flow, it must first calculate the target address

and order the fetch logic to fetch sequentially from the target path. Many cycles may be

needed to reload the instruction pipeline. To reduce the length of the instruction pipeline

that needs to be reloaded, branch prediction techniques can be used to allow reloading

without waiting for the condition code to be computed. Several compile-time and run­

time branch prediction schemes have been studied [Lee 84], [Smith 81], [McFarling 86],

[Hwu 89b].

A good branch predictor does not solve the branch problem. A taken branch can

redirect the control flow only after it has been decoded, because the target address is

encoded in the instruction. A solution is to fetch and decode few instructions which

are located subsequent to the branch instruction, while reloading the pipeline from the

target address. The delayed branch scheme [Gross 82] always executes a fixed number

of instructions subsequent to a branch, regardless of the direction of the branch. The

squashing branch scheme [McFarling 86], [Chang 89b] executes the first few instructions

from the predicted path as sequential instructions, by code copying, while reloading the

instruction pipeline. If the prediction is incorrect, the instructions that are executed from

the predicted path are squashed.

2.2.6 Operand-fetch limitations

To issue multiple operations to the execution hardware in every cycle, the decode

stage must be able to fetch source operands of all these operations at the same time. If

we consider only a load/store architecture, the decode stage must be able to read many

register entries at the same time. One approach is to provide one multiple-read-port and

multiple-write-port register file for all function units. Another approach is to provide

17

several register files, each register file having fewer read and write ports than the first

approach. To fetch source operands and to modify destination operands every cycle, it

is necessary to finish the read operation in a half-cycle. Due to limited current budget

and the operation time requirement, there is a limit on the number of read and write

ports that can be implemented in the current technology. Increasing issue parallelism to

a certain point will require the use of multiple register files.

2.2.7 Resource conflict

Increasing the instruction issue rate from one operation to two operations per cycle

does not require all function units to be replicated. For example, adding another floating­

point function unit may produce insignificant speedup, because nonnumerical programs

rarely need floating-point computation. The effects of varying the number of function

units on the performance of multiple-operation-issue architectures have been studied for

small numerical kernels [Hwu 88b], [Pleszkun 88a], [Sohi 89].

2.2.8 Cache memories

The performance of a processor depends greatly on how fast the memory system can

supply instructions and data. One way to improve the performance of the cache memory

subsystem is to increase its size and/or set-associativity [Smith 82], [Hill 85]. This ap­

proach is limited because the cache cycle time increases as the size and set-associativity

increase and because only a limited amount of chip space is available [Eickenmeyer 88],

[Mitchell 88], [Alpert 88], [Przybylski 88], [Hill 88].

From the software side, the performance of the memory system can be improved by

program transformation and data placement techniques. Ferrari examined the potential

of restructuring programs to improve program paging behavior [Ferrari 83]. Hartley de­

scribed a function-level program restructuring technique to improve the page-level locality

of references and to reduce the number of page faults, using the call graph [Hartley 88].

In array and VLIW processors, multiple memory banks are needed to supply instructions

18

and data to all processing units. In order to access several pieces of data concurrently,

it is necessary to place them in different memory banks. Lawrie published a data align­

ment technique which allows parallel and conflict-free access to various slices of data

for an array processor [Lawrie 75]. Ellis discussed several memory-bank disambigua­

tion methods, which distribute memory accesses evenly to each memory bank [Ellis 86].

Data alignment methods based on data dependence analysis for highly iterative scientific

codes have been observed to improve the performance of cache and local memory orga­

nizations [Lawrie 75], [Gannon 88], [Breternitz 88]. J.E. Smith and J.R. Goodman have

reported the effectiveness of various instruction cache replacement policies and organi­

zations [Smith 85b]. McFarling showed that, by using profile information and excluding

certain instructions from the instruction cache, his program restructuring algorithm sig­

nificantly increased the performance of direct-mapped instruction caches [McFarling 89]

Hwu and Chang have proposed another profile-based program restructuring algorithm,

independent from McFarling's work, to achieve good performance on small direct-mapped

instruction caches [Hwu 89a].

2.3 Scheduling

2.3.1 Hardware scheduling

The freedom to concurrently execute multiple operations is constrained by various

forms of dependencies, namely flow-dependence, anti-dependence, output-dependence, and

control-dependence. If operation opj is flow-dependent on operation opi, then the exe­

cution of opj must be postponed until op, has completed execution and has forwarded

the result to opj. Therefore, the only way to reduce the waiting time is to reduce the

execution time of opi and/or to reduce the data forwarding time. When the outcome of

opi is highly predictable, the execution of opj may be initiated early with a predicted

value of the outcome of opi. If operation opj is anti-dependent on operation opi, then opj

is not allowed to modify its destination operand before opi has obtained the original value

of that operand. Therefore, anti-dependence does not pose any problem in an in-order

19

issue machine. In an out-of-order issue machine, op, must keep the original value of its

source operands after it is issued. If opi fails to acquire the value of a source operand,

the hardware must guarantee that the operand value will eventually be forwarded to

opi, considering that a later issued operation opj may intend to write that operand. If

operation opj is output-dependent on operation opi, then opi may not write to its des­

tination operand after opj has written to that operand. Furthermore, opi must be able

to forward its result to all operations that need the value and were fetched after op, but

before opj. If operation opj is control-dependent on operation opt, then opj is not allowed

to commit before opi has generated the condition code. To achieve more concurrency,

hardware scheduling schemes that support out-of-order issuing often can dynamically

rename registers and issue ahead of several pending branch operations.

Scoreboard ing : A scoreboard is a centralized hardware controller for coordinating the

concurrent execution of independent operations [Thornton 70]. The main features of this

method are

(1) Issue logic is limited to one operation per cycle.

(2) An operation can be issued even when its source operands are not available. Until

all source operands have become available, the operation is said to be pending.

(3) Issue logic is blocked when it needs to issue an operation that is output-dependent

on a pending operation.

(4) Issue logic is blocked when it needs to issue an operation to a busy function unit.

(5) Concurrent execution of anti-dependent operations is allowed. But the dependent

operation stays pending in the function unit, until the first operation completes

execution.

(6) All function units communicate through the scoreboard.

20

Tomasulo a lgor i thm: The Tomasulo algorithm [Tomasulo 67] was first implemented

in the IBM 360/91 system. The main features of this algorithm are

(1) Issue logic is limited to one operation per cycle.

(2) Each function unit has a few reservation stations where operations are held pending.

(3) An operation can be issued even when its source operands are not available. Un­

til all source operands have become available, the operation is held pending in a

reservation station.

(4) Each register entry and reservation station source operand entry contains a busy

bit and a tag indicating the location of the pending operation which will produce

the value, when the busy bit is set.

(5) When a result is produced, the common data bus broadcasts the value to all register

entries and all reservation stations, which use associative tag match to read the

result off the bus.

(6) The decode logic assigns the value of a register to an operation when the register

busy bit is not set; otherwise, the tag of the register is assigned to the operation.

(7) Dynamic register renaming reduces anti-dependency and also output-dependency.

(8) The issue logic blocks when it needs to issue an operation to a function unit which

has no more available reservation station.

Several derivatives of the Tomasulo algorithm have been proposed [Weiss 84], [Hwu 86],

[Sohi 87].

2.3.2 Software scheduling

The code scheduling problem has been studied in many different contexts such as

inventory control and manufacturing systems. A survey of scheduling techniques prior

21

to 1977 can be found in [Gonzalez 77]. Here, we will discuss only a small subset of the

published results in software scheduling that are directly relevent to this research.

Local microcode compaction works on a straight-line code without branches [Kleir 71],

[Davidson 81]. The problem with local microcode compaction is that basic blocks typ­

ically contain very few operations to work with. Trace scheduling extends straight-line

code compaction by grouping several basic blocks into a trace [Fisher 81], [Ellis 86],

[Howland 87], [Colwell 87]. The global microcode compaction technique works on an

entire function at a time [Tokoro 81]. Code scheduling for other architectures is very

similar to microcode compaction. Bruno, Jones, and So [Bruno 80] have described tech­

niques of deterministic scheduling for pipelined processors. Hennessy and Gross have de­

scribed a postpass code reordering scheme to ensure software interlocking [Hennessy 83].

Sahni has studied the problem of scheduling multipipelined and multiprocessor comput­

ers [Sahni 84]. Arya [Arya 85] has described an optimal instruction-scheduling model for

a class of vector processors. Gibbon and Muchnick have studied instruction scheduling

for a pipelined architecture [Gibbons 86]. Davidson has described a retargetable instruc­

tion reorganizer [Davidson 86]. Gross and Lam have described an instruction scheduling

scheme for systolic arrays [Gross 86]. Granski, Koren, and Silberman have measured the

effect of code scheduling on the performance of a dataflow computer [Granski 87]. Eisen-

beis has studied the code compaction of loops [Eisenbeis 88]. Lam has studied software

pipelining for VLIW machines [Lam 88]. Most recently, code scheduling has appeared

in compilers for superscalar microprocessors [Warren 90], [Golumbic 90]. The following

paragraphs will provide more discussion of some of the research that has been mentioned

above.

Software inter locking: One extreme point of instruction scheduling is to enforce all

dependencies by software scheduling at the compile-time; it is called software interlocking.

A software interlock is provided by reordering operations and inserting no-ops to prevent

hazards. Because at most one instruction is fetched per cycle, inserting a no-op between

two operations ensures that the fetch times of the two operations are at least two cycles

99

apart. The objective of a code reorganizer is to minimize the length of the schedule while

enforcing software interlock. Hennessy and Gross have shown in [Hennessy 83] that the

complexity of this problem is NP-complete and have proposed a heuristic algorithm. The

scope of code reordering of this heuristic algorithm is limited to within a basic block.

Hennessy and Gross have shown empirical data that their heuristic algorithm performs

well in practice [Hennessy 83].

Trace schedul ing: Trace scheduling [Fisher 81], [Ellis 86] has been a popular tech­

nique among VLIW (Very Long Instruction Word) machines [Colwell 87], [Fisher 83].

VLIW machines have the following features: 1) There is a central controller issuing a

single long instruction word per cycle. 2) Each instruction word contains many indepen­

dent operations. 3) Each operation requires a statically predictable number of cycles to

execute. 4) Each operation may be pipelined.

VLIW compilers are totally responsible for controlling all datapaths and functional

units. The scope of code scheduling can be increased by function inline expansion, loop

unrolling, and trace scheduling. A trace is a loop-free sequence of operations that axe

likely to be executed contiguously for most input data. Trace scheduling consists of a

loop of three steps: trace selection, code compaction for a trace, and generation of repair

code. Trace selection can be based on static analysis of the program structure or on

profile information. Several selection heuristics have been studied in [Chang 88]. Code

compaction of a trace is identical to that of a local microcode compaction algorithm.

Code motion across branch operations may cause logical inconsistencies when branching

off from the middle of a trace, or entering a trace from its middle. Therefore, some repair

code has to be generated for these off-trace branches.

Perco la t ion schedul ing: Unlike trace scheduling in which code is compacted only in

one trace at a time, Nicolau's percolation scheduling allows operations to percolate from

the various parts of the program graph towards the start node [Nicolau 85]. Code motion

is accomplished by repeatedly applying a small set of primitive program transformations

23

between adjacent operations. Nicolau uses a set of rules to decide when and where to

apply the primitive program transformations. After code motion has been stablized, a list

scheduling algorithm [Coffman 76] is used to map the program graph onto the hardware.

Mic rocode compac t i on : Code generation for a multiple-operation-issue machine is

very much like horizontal microprogramming. The only difference is that horizontally

microprogrammed machines are often more irregular in structure and more complex in

timing than multiple-operation-issue machines, such as VLIWs and superscalars. The

code scheduling model for horizontal microprogramming is thus more complex. Early

microprogramming techniques have been summarized in a number of survey papers

[Agerwala 76], [Landskov 80], [Rauscher 80]. Previous works on microcode optimization

have treated several different objectives: minimizing the control memory, minimizing

the control word complexity, minimizing the schedule length, and minimizing the pro­

gramming effort. Background information on all these topics can be found in [Kleir 71],

[Tsuchiya 76].

Local code compaction means that the scope of code compaction is limited to within

a basic block. A realistic machine model for local code compaction can be found in

[Davidson 81]. Davidson et al. have compared four local code compaction methods: first-

come first-serve, critical path, branch and bound, and list scheduling. Global code com­

paction allows code motion across basic block boundaries. Tokoro et al. have described

an extension to a critical-path-based local code compaction algorithm that allows moving

operations on the critical paths across basic blocks [Tokoro 81]. Code motion across a

basic block requires data flow analysis to maintain logical consistency and resource anal­

ysis to avoid contention. Isoda et al. have described a global code compaction scheme

based on the generalized data dependency graph [Isoda 83]. A special case of global

code compaction techniques is trace scheduling, which limits code motion within a linear

sequence of basic blocks [Fisher 81].

To simplify the work of a compiler to detect concurrent operations, one can develop a

high-level language that is most suitable for expressing the intricate timing and concur-

24

rency constraints, and program in that language. Ramamoorthy and Tsuchiya have de­

scribed such a language, which is based on the single assignment concept [Ramamoorthy 74]

Dasgupta has surveyed work in high-level microprogramming [Dasgupta 80].

Loop unro l l ing a n d software pipel in ing: Trace scheduling and global microcode

compaction techniques may not be useful for inner loops that contain very few opera­

tions. Two loop transformation techniques have been commonly applied to enlarge the

scope of code scheduling. Loop unrolling replicates the loop body a number of times,

removes all intermediate conditional branch operations, and combines all index incre­

ment operations into one increment operation. A loop preheadei may be required to

handle an odd number of iterations. An advantage of loop unrolling is the elimination

of some index computations and some conditional branches. Another advantage of loop

unrolling is that the scope of code scheduling has been enlarged several times [Weiss 87],

[Ellis 86], [Dongarra 79.2]. Software pipelining initiates iterations of a loop before the

preceding iteration completes, so that loop bodies of several consecutive iterations can

be overlapped. Lam has provided a hierarchical scheme to make loop pipelining appli­

cable to many loops, including those with conditional operations [Lam 88]. Weiss and

Smith have shown for small numerical kernels that loop unrolling achieves a 1.7 speedup,

and software pipelining achieves a 1.28 speedup for the CRAY-IS scalar architecture

[Weiss 87].

Expres s ion - t r ee he ight reduc t ion : Kuck et al. have described in detail various ways

to reduce the height of expression trees [Kuck 72] by exploiting the associativity, com-

mutativity, and distributivity of arithmetic operations. For example, (((a + b) + c) + d)

may be computed in two parallel steps as ((a + b) + (c + d)). The actual tree rewriting

process is straightforward. The major difficulty is in detecting when a rewriting rule is

beneficial and should be applied. Reducing the height of expression trees can eliminate

some critical paths and allow more concurrent operations.

2.3.2.1 G u a r d e d ins t ruc t ion

Hsu and Davidson have described a decision-tree scheduling algorithm to benefit from

using guarded instructions [Hsu 86]. A decision tree is a set of basic blocks, in which

each interior node is a basic block that terminates in a conditional branch, and each

exterior node is a basic block that terminates in an unconditional branch. A guarded

instruction is a normal instruction plus an additional Boolean guard expression. If the

guard expression is evaluated to false, the instruction is squashed from the instruction

pipeline and effectively becomes a no-op. Using guarded instructions, instructions from

a high probability path can be scheduled early to make efficient use of the delayed part

of a conditional branch.

Reg i s t e r a l locat ion and code scheduling: Applying register allocation (including

assignment [Aho 86]) before code scheduling may sometimes introduce artificial data

dependencies due to recycling registers. Code scheduling increases the time between a

write to a register and reads of the register after the write. Therefore, code scheduling

increases the number of variables that are simultaneously live. It has been found that code

scheduling before register allocation (prepass code scheduling) may use more registers

than necessary [Goodman 88].

Hwu and Chang have proposed an integrated prepass scheduling method and mea­

sured its effectiveness on small numeric kernels [Hwu 88b]. That method consists of three

steps: prepass code scheduling, register allocation, and final code scheduling. The effect

of using an integrated prepass scheduling method on a pipelined superscalar (issuing 2

operations per cycle, 32 registers) is about a 40% reduction in execution cycle count.

Goodman and Hsu have proposed two methods to integrate the register allocation

and code scheduling in large basic blocks [Goodman 88]. Their first method is also an

integrated prepass scheduling method. The effect of using this method for a heavily

pipelined processor can be as much as a 100% reduction in instruction count when the

register resource is constrained (15 registers). When the register resource is scarce, reg­

ister spilling when the next issuing operation has long interlock with previously issued

26

operations can be profitable. Their second method is a DAG-driven register allocator,

using the dependence graph to guide the register assignment. This method has also been

shown to be effective for large basic blocks.

2.4 Comparison with Similar Works

This research explores many compiler and hardware techniques that may affect the

performance of a multiple-operation-issue processor. Measurement data are derived from

some realistic C programs that are in common use. Table 2.1 lists the benchmark pro­

grams that are used in this research.

Most previous research work in multiple-function-unit and multiple-operation-issue

architectures has focused on numerical programs that have large amounts of instruction-

level parallelism in the original source code. This dissertation addresses control intensive

C programs, which are substantially more difficult to parallelize because branch opera­

tions occur frequently, and the number of loop iterations is usually small. Many classic

code optimizations, such as loop unrolling and software pipelining, are less effective for

nonnumeric C programs than for numeric Fortran programs. In general, loop optimiza­

tions may introduce extra operations to set up a more efficient or more parallel version

of the loop body. For software pipelining, several iterations are executed prior to reach­

ing the software-pipelined loop body. In the C programs that we have studied, many

loops iterate only a few times. For these loops, the software-pipelined loop body would

rarely be executed. Loops that iterate very many times usually involve memory accesses

through pointers. Without very powerful memory disambiguation analysis, very limited

code motion can be performed for the unrolled version of the loop. Because we insist on

implementing a fully automatic C compiler, we have implemented a comprehensive suite

of code optimization and analysis programs, instead of treating only one or two code

optimizations. The measurement data that we present in this dissertation belong to the

category of automatic program parallelization. We compile the benchmark programs in

their original form.

27

Hwu and Patt have designed and measured the performance of the HPSm micropro­

cessor that can issue several operations per cycle and can dynamically schedule operations

[Hwu 86]. In this dissertation, we have provided a much larger set of code optimization

techniques and have measured the performance of both in-order and out-of-order execu­

tion architectures. We report the performance of a large class of multiple-instruction-issue

architectures, instead of one processor implementation.

Smith, Johnson, and Horowitz have studied the performance of out-of-order execution

architectures and have derived many interesting design points [Smith 89]. Using the

commercial MIPS C compiler that schedules code specifically for the single-operation-

issue MIPS processor architecture, Smith, Johnson, and Horowitz have not used more

powerful code transformation and static scheduling techniques. We have implemented

and applied many powerful code transformation and static scheduling techniques in our

study of out-of-order execution architectures.

Smith, Lam, and Horowitz have proposed an in-order execution architecture that to­

tally relies on static code scheduling [Smith 90]. They have provided special hardware

support for boosting (moving) operations above a branch operation and have obtained

a performance level that is comparable to that for a purely dynamic scheduling ar­

chitecture. They have used only local code scheduling. Part of this dissertation also

compares the performance of static and dynamic code scheduling methods. We have

implemented aggressive code transformation and global code scheduling algorithms. We

show that instruction boosting provides insignificant performance beyond a good global

code scheduling algorithm.

28

Table 2.1 Benchmarks.

name
cccp
cmp
compress
ditroff
eqn
eqntott
espresso
grep
lex
li
mpla
pic
qsort
tbl
wc
yacc

description
GNU C preprocessor
compare files
compress files
text formatter and typesetter
typeset mathematical formulas for troff
Boolean minimization
Boolean minimization
string search
lexical analysis program generator
Lisp interpreter
pla generator
format pictures for troff
quick sort
format tables for troff
word count
parsing program generator

Figure 2.1 Behavior diagram of the execution hardware.

29

Instruction
fetch

H^ N oper

Instruction
decode

,

ALU

1 '

' ' '

ations

1

Register

file(s)

1

"

FALL

_ ' • _ .

' " "

Brand

• '

,. "

Load

"

1 . • •

Store

Figure 2.2 Block diagram of processor model.

30

CHAPTER 3

THE IMPACT

ARCHITECTURAL

FRAMEWORK

In this chapter, we describe a parameterized processor architecture that is fully sup­

ported by the IMPACT-I C compiler. The objective for developing this architecture is

to provide a simple and cost-effective hardware design. In this dissertation, with our

compiler support, we show experimentally that this simple architecture performs as well

as the most aggressive architecture. The problem of allocating resource and scheduling

operations are primarily treated in the compilation process. Unlike VLIW architectures

in which the compiler is responsible for total control of the hardware, we require some

hardware support to the compilation model.

The machine description language is described in Appendix A.

Figure 3.1 shows a top-level block diagram of the IMPACT processor architecture.

The control unit manages a single instruction stream. In the ideal case, one instruc­

tion is fetched and decoded per cycle, and is forwarded to the function units. The

control unit issues instructions to the function units in the order in which the instruc­

tions are fetched. The number of operations that can be packed into an instruction is

an architectural parameter. In Figure 3.1, we assume that each instruction contains

four operations. Let op[i] denote the ith operation in an instruction. There is an im­

plicit precedence ordering between operations op[i], i = 0...3. Because all operations

31

in an instruction obtain their source operands prior to execution, it is illegal to have

anti-dependent operations in the same instruction. Even though we permit two or more

operations in an instruction to modify the same destination register, the hardware ensures

that only the last operation in the implicit ordering eventually writes the register. There­

fore, output-dependence between operations in an instruction is automatically enforced

by the hardware. The compiler schedules operations to ensure that there is no flow-

dependence (essential-dependence) between operations in an instruction. Operations of

an instruction are processed in lockstep within the control unit. After an instruction is

fetched, all of its operations are decoded at the same time. If any one operation fails to

obtain a source operand, the control unit stalls until a function unit returns the needed

result back to the register file. Upon an instruction cache miss, the control unit stalls

until the requested instruction is obtained from the secondary instruction memory. The

control unit forms a rigid pipeline.

The output of the control unit is fed directly into several independent function units.

Figure 3.1 shows four function unit groups. Each function unit group consists of a set

of function units, such as a group for memory operations and a group for fixed-point

arithmetic operations. The functionality of each function unit group is given to the

compiler in a technology file. The compiler needs to schedule operations in such a way

that op[i] can always be executed by the ith function unit group. To simplify the design,

the resource contention problem will be ignored by providing fully pipelined function

units and enough distribution buses to ensure that each function unit can accept a new

operation per cycle. Except for the memory load operation latency, operation latencies

are deterministic.

Hardware interlocking and register renaming are provided. Therefore, it is not nec­

essary that operation latencies be deterministic. However, for simplicity, external events

that may prolong operation latencies cause the instruction pipeline to stall.

32

3.1 Function Unit Resource

When several operations are issued to the execution unit per cycle, it is necessary to

provide multiple function units. This includes multiple load, store, integer, and floating­

point operations per cycle. In the worst case, all function units are replicated for each

operation slot. For integer programs, we can speculate that the floating-point unit is not

frequently used and does not need to be duplicated. In this case, we can issue at most

one floating-point operation per cycle. In a later chapter, we present experimental data

that show the effect of limiting some function unit resources.

3.2 Function Unit Delay

Concurrent execution of scalar code is often constrained by flow-dependencies be­

tween operations that form critical paths. For example, the condition code of a branch

is often generated by first loading one or more memory variables into registers, and then

executing an arithmetic operation on the registers. It is not always possible to find in­

dependent operations that can be executed after the memory load operations. The only

way to alleviate this problem is to reduce the operation latency of certain operations that

often appear in critical paths, such as memory load operations. Other long latency oper­

ations include integer multiply, integer divide, and floating-point operations. Operation

latency can be reduced by improving the circuit design and by providing a bypass cir­

cuit. The problem with long operation latency can also be alleviated by using aggressive

code motion that computes operations on the critical paths as early as possible. In a

later chapter, we show that memory load operations often appear on critical paths. We

recommend that the operation latency of memory operations be kept as small as possible.

3.3 Branch Handling

Increasing the instruction fetch bandwidth alone is not an adequate solution to the

problem of instruction supply. Hardware support such as a branch target buffer or

33

squashing branch must be provided to maintain a contiguous instruction stream when

branch operations are frequently taken. We have developed inline target insertion, a

variant of the squashing branch scheme [McFarling 86]. Inline target insertion allows

scheduling multiple branch operations into an instruction word, and allows filling branch

slots with branch operations. Inline target insertion requires the compiler to decide for

each branch operation whether it is likely to be taken and whether branch slots should

be allocated for it. Formal proofs of its correctness are provided in Chapter 9.

Figure 3.2 shows the branch architecture. After an instruction has been decoded

and all source operands have been obtained, the integer ALU units compute the branch

condition codes and branch target addresses. The fetch pipeline and the first stage of

the function units form a closed loop. If any one stage stalls, all stages in the closed loop

stall. The semantics of the branch operation in an instruction can be defined as follows:

f o r (i = 0 . . N - l) { # f o r i s s u e bandwidth = N o p e r a t i o n s

i f (o p [i] i s a branch) {

i f (o p [i] i s t aken) {

i f (o p [i] i s i n c o r r e c t l y p r ed i c t ed)

f l u s h t h e f e t c h p i p e l i n e ;

s q u a s h (o p [i + l . . N - l]) ;

pc = t a r g e t (o p [i]) ;

} e l s e {

i f (op [i] i s i n c o r r e c t l y p r ed i c t ed)

f l u s h t h e f e t c h p i p e l i n e ;

pc = pc + 1;

}

>

}

According to inline target insertion, there can be at most one branch operation that

is predicted taken. If there is a predicted-taken branch operation in an instruction,

branch slots are allocated immediately after the instruction and are filled with the first

34

few instructions of the target path. The hardware must implement the above sequen­

tial algorithm in a parallel form, exploiting parallel datapaths in VLSI. The algorithm

specifies that the first taken branch squashs later operations in the implicit operation

ordering of an instruction. If an instruction contains an incorrectly predicted branch,

subsequent instructions in the instruction fetch pipeline are removed. Therefore, the cost

of a mis-predicted branch is the time to refill the instruction fetch pipeline.

3.4 Register Interlocking

The decode stage assigns a unique instruction tag (an integer field) to each instruction.

Dynamic register renaming can be implemented by attaching an instruction tag field and

a Boolean valid bit to each register. If an instruction intends to write a register, it clears

the valid bit of the register and writes the instruction tag into the instruction tag field

of the register. Because an operation may be squashed by a taken branch operation, the

write permission must be reserved after branch operations have been verified.

The valid bit of a register is zero if the value of that register is unknown and will be

defined by an instruction in execution. An instruction can move to the execution unit if

the valid bits of all of its register source operands are set.1

It is desirable to allow several operations in an instruction to write to the same

register. For example,

r l = r 2 ;

beq (r 2 , 0) t o LI ;

r l = r 3 ;

L I :

can be scheduled into one instruction After all branches have been verified, the last

operation in the implicit operation ordering of an instruction is allowed to write the

register; previous writes are squashed.

lA load/store architecture is assumed. Therefore, we do not consider memory source operands.

35

3.5 Lockstep Execution

The property that all source operands of an instruction must be obtained prior to

issuing the instruction co che function units enables the following code optimization.

fo r (i=N; i>0; i—)

is translated to

i = N;

LO:

i — ;

i f (i>0) goto LO;

LI :

A flow-dependence exists between the last two operations of the inner loop. The code

scheduler can transform the code into a parallel form without considering the flow-

dependence.

i = N;

LO:

i — ; i f (i > l) goto LO;

LI :

Because the two operations obtain their source operands before they are issued to the

execution hardware, the branch condition expression can be adjusted to use the old value

of the variable i.

Lockstep execution is valid only for VLIW architectures and not for superscalar ar­

chitectures. For superscalar processors, the compiler does not know what operations the

hardware will issue to the execution unit in a cycle. The IMPACT-I C compiler can

generate code for architectures with and without lockstep execution.

36

3.6 Special Operations

Some flow-dependencies can be eliminated when two interdependent operations can

be combined into a compound operation. For example, when manipulating integer arrays,

the following code segment to load the value of an array element into a register is often

seen:

(mul (rO) (index 4)) # rO = index * s i z e o f (i n t)

(l d _ i (r l) (base rO)) # r l = memory[base + rO]

There exists a flow-dependency between the two operations. One cycle can be saved if a

special memory load operation is provided that automatically multiplies a source operand

by 4. Similar extension can be made for memory store operations. Multiplication by 4

can be implemented as a logical shift of a two's complement number by 2 bit positions

to the left. The additional delay is at most that of a multiplexer and is not likely to

significantly prolong the machine cycle time.

Similarly, some control-dependencies can be eliminated when two interdependent op­

erations can be combined into a compound operation. For example,

i f (rOOO) goto LI ;

r l = 5;

LI :

can be converted into a guarded operation ((rl = 5)if(r0 < > 0)).

Because the focus of this research is on general-purpose computation, we do not apply

this optimization.

3.7 Silent Exceptions

For each operation code, the IMPACT processor architecture provides a functionally

equivalent operation code that signals neither exception nor trap. Using the nontrapping

operation code, the code scheduler may move division and memory load operations from

37

below to above branch operations. When a division operation divides by zero, the result

is not specified. When a memory load operation causes a memory access violation, the

result is also unspecified. If a load operation that has been moved from below to above

a branch operation causes a page fault, the page fault can be handled in the usual way.

The working set of the program may be increased because of the additional page faults.

However, we do not expect these infrequent page faults to degrade the overall system

performance significantly.

We will show in Chapter 8 that nontrapping operations provide substantial speedup.

38

\

Control Unit

\

Function
Unit

Group 0

i

Function
Unit

Group 1

Register

Files

I
Function

Unit
Group 2

\ 1

Function
Unit

Group 3

Figure 3.1 Top-level block diagram of the processor architecture.

4 t
CNT/ALU/FPU.l

op[0] op[l] op[2] op[3]

Figure 3.2 Branch architecture.

39

CHAPTER 4

ESSENTIAL FEATURES Of THE

IMPACT-I C COMPILER

Figure 4.1 shows a block diagram of the IMPACT-I C compiler. The compiler supports

the full C programming language. The compiler has a portable frontend that performs

lexical, syntactic, and semantic analyses. The organization of the IMPACT-I C compiler

is mainly traditional. However, there are three features that distinguishs the IMPACT-I

C compiler from a typical commercial C compiler. This chapter will address each of the

three main features.

4.1 Open Compiler Architecture

An open compiler architecture simplifies the task of adding components to and delet­

ing components from the compiler.

(1) A compiler is an evolving program. Reducing the time to test and verify the

performance of new code optimizations enables us to transfer technology to end

users more quickly.

(2) Because of the large number of components that are required to make a compiler

functional, it is not likely that all components can be implemented using the best

technology in the beginning. Therefore, it is desirable to be able to replace old

components by better replacement parts.

40

(3) With the ability to delete (or at least disable) some components, fault identification

can be accomplished with less effort. This reduces the time that is needed to intro­

duce a new code optimization technique. By restoring existing code optimizations

one by one, one can identify coupling faults between a new component and old

components.

To achieve an open compiler architecture, it is best to make each compiler component

independent of others, by reducing the number of implicit information channels among

components. Our approach to achieving an open compiler architecture is to organize

compiler components around two major intermediate codes. An intermediate code is a

program representation which is easier for the compiler to operate on than the original

source code. For example, a three-address intermediate code can be easily operated on

by code optimizers. An example of a three-address intermediate code can be found in

[Aho 86]. Each intermediate code has a well-defined file representation and internal data

structure representation. The basic functions to read in and write out the intermediate

code from and to external files have been implemented as standard library functions.

In addition, there are functions that check the integrity of the internal data structures.

Primitive functions for manipulating the internal data structures have also been provided.

These library functions have been tested carefully to make each intermediate code a

comfortable environment for component designers. All major compiler components are

implemented as tools. Each tool is connected to an intermediate code environment.

When a tool is invoked, it takes input from the intermediate code internal data structure,

allocates some private data structures if necessary, performs some computations, and

finally, updates the intermediate code internal data structure. After the invocation of a

tool, the library function that checks the integrity of the intermediate code data structure

can be invoked to detect bad components. All information sharing between tools is

through the intermediate data structure.

41

4.2 Two-level Intermediate Code

The IMPACT-I C compiler uses two levels of intermediate code representation. The

reason for using two representations is that some program analysis and code optimizations

require source code information and others require simple intermediate code representa­

tion. The high-level intermediate representation is called Hcode. Hcode representation

preserves complete source code information, including data structure definitions, vari­

able definitions, and function definitions. The low-level intermediate representation is

called Lcode. Lcode representation uses a very simple RISC-like instruction set. All

variable accesses are converted into operations on registers and memory locations. All

function calls are converted into explicit operation sequences to pass parameters, to jump

to subroutine, and to store the result.

Some program analyses and code optimizations can be more easily implemented using

Hcode. For example, memory disambiguation requires source code information about

data structure declarations. Memory accesses to different C data structures (except

the union data structure in C) and fields can be considered to be independent memory

operations. Memory accesses to different variable classes, e.g., static and global, can

also be considered to be independent memory operations. Such information cannot be

derived from assembly language such as the Lcode representation. For another example,

function inline expansion can be easily performed in Hcode by replacing a call statement

by the body of the function. On the other hand, identifying all operations that are part

of a calling sequence (after code motion) is already a difficult task, discounting the actual

expansion steps, at the Lcode level.

Traditional code optimizations work on simple three-address forms. Therefore, Lcode

is a better candidate for implementing traditional code optimizations. Machine-dependent

code optimizations such as constant preloading and code scheduling require accurate map­

ping from the intermediate form to the target assembly or machine language. Therefore,

most machine-dependent code optimizations belong to the Lcode level.

42

An alternative to using two levels of intermediate forms is to use a single intermediate

form whose complexity is somewhere between the Hcode and the Lcode. For example,

parameter passing can be represented by push-args and pop-args psuedo operations.

Most existing compilers have resorted to using one intermediate form. However, we like

to specialize the functionalities of tools surrounding the intermediate forms, by making

information as explicit as possible.

4.2.1 The Hcode environment

Figure 4.2 shows a block diagram of the Hcode environment. Hcode has a well-

defined text representation, which is also a high-level program language. The semantic

and expressive power of Hcode is the same as the C programming language, for Hcode

can preserve all source code information of a C program. Hcode text format, however,

uses an Lisp-like grammar, which is easy to parse and to generate automatically. Hcode

also has a well-defined internal data structure representation. The functions to convert

between the text and the internal representations have been provided.

Three major tools have been constructed. The first tool is an execution profiler that

collects run-time information about the source program. The second tool is a profile-

based interfile function inline expander. The third tool is a profile-based instruction

placement algorithm. Each of the three tools directly modifies the Hcode data structure,

and the tools do not communicate with each other.

The Hcode data structure can be written out to external files in three different styles.

The first style is the Hcode text representation, the second style is the C programming

language, and the third style is the next level of intermediate form, Lcode. The Hcode

output style has greatly assisted in the debugging of Hcode tools, and is essential for

connecting Hcode tools that cannot be accomplished in a single pass. The C output

style has allowed us to implement a machine-independent profiler and also to debug the

Hcode environment on any machine. Generating Lcode is a machine-dependent process:

a set of machine specific functions is written for each target machine. Machine-dependent

parameters include the sizes and alignment requirements of various data types, the layout

43

of data structures, the parameter passing convention, the activation stack convention, and

global/local variable space allocation and placement schemes.

The ability to translate Hcode into C is important for three reasons. First, the Hcode

representation preserves all information in the original C source code. Code optimizations

based on Hcode can exploit all source code level knowledge. Second, Hcode optimizations

can be debugged by translating Hcode into C, and compiling the C program using a

stable compiler. Third, some optimizations, such as function inline expansion, can be

easily done at the Hcode level. After code optimizations have been applied at the Hcode

level, the Hcode intermediate form is translated to the Lcode intermediate form.

4.2.2 The Lcode environment

Figure 4.3 shows the block diagram of the Lcode environment. Like Hcode, Lcode

has a well-defined text representation and an internal data structure representation.

Functions for conversion between the external and the internal formats, for manipulating

the internal format, and for checking the correctness of the internal format have been

provided to tool designers. Lcode tools include a set of local code optimization functions,

a set of global code optimization functions, and a set of machine-dependent optimizations

(register allocation, constant preloading, code scheduling).

After Lcode transformations, the result can be written t o external files in Lcode text

representation. When compiling for a specific machine, the corresponding code generator

can be invoked. We have constructed code generators for MIPS R2000 [Kane 87], SPARC

[Sparc 87], Intel 860 [Intel 89], and AMD29K [Amd].

The most important features of the Lcode intermediate form can be summarized as

follows:

(1) It has infinite number of virtual registers.

(2) It assumes a load/store architecture. The only addressing modes are constants and

register operands.

44

(3) It supports basic integer, single-precision, and double-precision arithmetic opera­

tions.

(4) It supports memory operations for unsigned characters, signed characters, unsigned

short integers, signed short integers, integers, single-precision floating-point and

double-precision floating-point data types.

(5) It supports a spectrum of branch architectures.

(6) It provides a minimal set of synchronization operations.

Hcode and Lcode documents are available as internal reports. Because they are long,

they will not be included in this dissertation. Appendix B shows some Hcode and Lcode

files.

4.3 Profiling

Mapping a computation to a hardware with limited resources requires allocating re­

sources to the most important code section first. For example, the most frequently used

variables should be kept in registers. The traditional approach is to identify loop struc­

tures and assume that the code section within a loop body is most important. However, a

better approach is to implement a profiler in the compilation process. Using a profiler to

obtain the run-time behavior of a source program before code optimization has been re­

ported to be very effective [McFarling 86], [Wall 86], [Wall 88], [Chang 89a], [Chang 89b],

[Chang 89c], [Hwu 89a], [Hwu 89b], [Hwu 89c]. Integrating a profiler with a compiler has

been shown to be feasible. More research work is needed in applying the profile infor­

mation in various code optimization techniques. In this research, we have implemented

a profile-based function inline expansion algorithm, a profile-based branch prediction

algorithm, a profile-based instruction placement algorithm, profile-based global code op­

timizations, and a profile-based code generation algorithm. Detailed descriptions of these

techniques will be presented in Chapters 5 and 6.

45

Figure 4.4 shows a block diagram of the integrated profiler. To profile a C program,

the IMPACT-I C profiler converts the program into a functionally equivalent C program

with all the probes inserted. This new C program can then be compiled by the C

compilers of different systems and executed on these systems to collect profile information

in parallel.

Portability is an important issue in the IMPACT-I C compiler design because it

is an experimental compiler for many possible processor configurations and different

instruction sets. Because the IMPACT-I C compiler will be ported to various systems,

the compiler and profiler interface must also be completely system-independent.

The IMPACT-I profiler is system-independent for the following reasons.

(1) The profiler itself can execute on different systems.

(2) The program with profiling probes can execute on different systems.

(3) The profile information accumulated on a system can be directly used by the

IMPACT-I C compiler and architecture design tools running on a very different

system.

(4) The profile information accumulated on an existing system can be used to guide

the architecture design and code optimization for a nonexisting system.

One problem we have encountered is that the library functions of different operating

systems are different and are not portable. This prevents the library functions from being

profiled if the user insists on machine-independent profiling. On the hand, if the user

is willing to accept system-dependent profiling, then the library functions can also be

profiled along with the user application program.

4.3.1 Definition of a weighted control graph

To make the profile information useful to the compiler, the profile information must

be presented in a structure which can be easily understood by the compiler. The weighted

46

control graph defined below is a structure through which the profile information can be

presented to the compiler.

A control graph is a directed graph in which every node is a basic block and every arc

is a branch path between two basic blocks. There is an arc from node A to node B if and

only if the final branch operation in basic block A can potentially cause a control flow to

basic block B. The node weight is the average execution count of the corresponding basic

block over many inputs. The arc weight is the average number of times the corresponding

branch path is taken over many inputs. A weighted control graph is a control graph in

which all of the nodes and arcs are labeled with their weights.

Let us assume that there are two basic blocks which are uniquely labeled A and B,

and are connected by a branch path from A to B. The arc (A,B) is said to be an outgoing

arc of node A, and an incoming arc of node B. Node A is said to be the source, and node

B is the destination of the arc (A,B). A node may have several incoming and outgoing

arcs.

If we further assume that node A has been executed 50, 60, and 40 times in three

separate runs of the program, the node weight of A is 50, the average of the three runs.

If in the same three runs the arc (A,B) has been taken 40, 45, and 35 times, respectively,

the arc weight of (A,B) is 40, the average of the three runs. Then the probability of the

arc (A,B) will be taken, given that the program control is already in node A, and can be

estimated to be 40/50 (80%).

4.3.2 Construction of a weighted control graph

There are 8 major steps to generate profile information.

(1) The compiler frontend converts the C source program into a control graph.

(2) Constant folding and (block-level) dead code removal eliminate unreachable blocks

from the control graph. Jump optimizations merge basic blocks which are connected

by unconditional branch operations.

(3) The compiler inserts probes into the control graph.

47

(4) The compiler converts the control graph into a functionally equivalent C program.

(5) The functionally equivalent C program with probes is then compiled and installed

into the system.

(6) The program is run many times with realistic input data. Each run produces a

profile file. All profile files are summarized into a single profile file.

(7) The compiler constructs an identical control graph by repeating step 1 and step 2,

or by saving the control graph from step 2. Then the compiler asks the profiler to

supply the node and arc weight information. A weighted control graph is formed

by assigning weights to the nodes and arcs of the control graph.

(8) A weight consistency check program verifies that all weights have been gathered

and assigned consistently.

4.3.3 Probe insertion

After jump optimizations, probes are placed at various places of the control graph.

First, the compiler assigns a unique identifier to each basic block in the program. For

each basic block, the compiler inserts a probe to determine basic block execution count

and the transition count. To derive the transition count, the profiler has to keep track

of the previous basic block during execution. A state variable last-tag is initially set to 0

and is modified to contain the identifier of the previous basic block during execution of

the program. A probe is inserted in every basic block.

s t a t i c i n t l a s t - t a g = 0;

b a s i c - b l o c k - p r o b e (c u r r e n t - i d) {

i nc remen t -node -we igh t (cu r r en t - id) ;

i n c r e m e n t - a r c - w e i g h t (l a s t - t a g , c u r r e n t - i d) ;

l a s t - t a g = c u r r e n t - i d ;

}

48

function-entry-probe(function-id) {

push-tag(last_tag);

last-tag = special ENTRY tag for function (function-id);

}

f u n c t i o n - e x i t - p r o b e () {

l a s t - t a g = p o p - t a g () ;

}

A stack structure, which we call tag-stack, is provided to store and recover the last-tag

value across function calls.1 In the beginning of a function, a probe is inserted to push

the last-tag value onto the stack. Right before returning from a function, a different

probe is inserted to move the top entry of the tag-stack back to last-tag.

The C programming language contains two special library functions, setjmpQ and

longjmpQ, which must be handled differently from other functions. The compiler has to

recognize these two functions and replace setjmpQ with a probe which marks the top of

the tag-stack and longjmpQ with another probe to return the tag-stack to the marked

position. SetjmpQ and longjmpQ are called only indirectly from the two special probes.

4.3.4 Input data

The profile code can be compiled and installed in a public system. In our case, we have

a university research environment in which most jobs are CPU intensive CAD programs,

text editing and formatting programs, and program compilations. Inputs from various

users in selected computer environments can be profiled and averaged. Inputs come from

various people and represent the general system usage.

:In C, a procedure is a function whose return type is void. Therefore, we do not distinguish between
a function call and a procedure invocation.

49

4.3.5 Profile data representation

A node weight attribute and a list of outgoing arc weight attributes are attached to

each control graph node.

s t r u c t a r c {

int destination;

double weight;

struct arc *next;

} ;

s t r u c t node{

double weight;

s t r u c t a r c ^ou tgo ing -a r c s ;

} NodeTable[MAX-NUMBER-OF-NODES];

The destination field of the arc structure specifies the unique node identification

number of the destination block. The weight field of the arc structure is the number of

times the arc has been taken. The next field of the arc structure is a pointer to the next

outgoing arc. The weight field of the node structure is the number of times the node

has been visited. The outgoing-arcs field stores a pointer to a linked list of arc elements

whose weights are nonzero. This data structure is maintained and constantly updated by

the monitor probes inserted in the profile code. Memory spaces for storing the node and

arc structures are allocated statically by declaring two large arrays which are appended

to the user program that is being monitored.

To maintain the profile information over many runs, the user specifies a file in which

the profile information should be stored. At the end of a profile run, the profiler first

reads in the accumulated information stored in the data file, adds in the new information,

and then stores the final data back to the data file.

50

4.3.6 Profile data maintenance

The number of profile runs is also stored in the data file. Each run of the program

generates a new set of node and arc weights. The profiler adjusts the profile data with the

statements: W.permanent = (W.permanent * N/(N+1)) + (W.new / (N+l)); N=N+1,

where N is the number of times the program has been profiled, W.new is the new node

(arc) weight, and W.permanent is the accumulated node (arc) weight.

To combine two accumulated sets, the profiler adjusts the profile data according to

W.total = (W.N * N / (N+M)) + (W.M * M / (N+M)); total=N+M, where TV and

M are the number of runs made by the two systems, respectively. With these flexible

rules, we can concurrently profile a program on a network of heterogeneous machines and

combine the results. The combined profile data can then be used by the IMPACT-I C

compiler and the IMPACT-I architecture design tools executing on different machines in

the network.

4.3.7 Reconstruction of control graph

The IMPACT-I profiler and the IMPACT-I C compiler share the same frontend.

Therefore, they share a consistent view in naming the basic blocks and control transfers.

To generate the profile information, the profiler labels the node and arc weights by

their corresponding unique basic block identifiers. To use the profile information, the

compiler constructs an identical control graph and uses the unique identifiers to assign

weights to the nodes and arcs. After weight assignment, the compiler generates the Hcode

intermediate code. The control graph can be further optimized, and the node and arc

weights are also modified consistently.

4.3.8 Node and arc weight assignment

The probe and query functions have been renamed here to simplify our discussion.

The actual names in the real implementation are long and complex in order to avoid

declaration conflicts with existing user and system defined functions and variables.

51

To access the profile information, the compiler calls a set of functions which are

defined by the profiler.

double NodeWeight(id);

double ArcWeight(src-bb- id , d e s t - b b - i d) ;

The NodeWeightQ function takes one argument which identifies a basic block and

returns the weight associated to the basic block. The ArcWeightQ function takes two

arguments. The first argument specifies the source of a control arc. The second argument

specifies the destination of a control arc.

Any arc can be uniquely identified by its two terminal basic blocks. The ArcWeightQ

function returns the weight of a specified control arc.

A simple algorithm is used to assign node and arc weights. It is combined into the

compiler frontend processing and, therefore, does not require a separate pass.

WeightAssignment(P) {

f o r (a l l nodes Ni of P) {

Ni.weight = NodeWeight(Ni.id);

for (all outgoing arcs Aj of Ni) {

D = destination of Aj;

Aj.weight = ArcWeight(N.id, D.id);

}

}

}

4.3.9 Weight consistency verification

Since a node can be entered only from one of its incoming arcs and exit only through

one of its outgoing arcs, the node weight = sum of the weights of all incoming arcs =

sum of the weights of all outgoing arcs. The control graph of a large integer program

usually consists of thousands of nodes and arcs. The weight consistency check is a nice

way to detect errors in the profile data. This check function will detect most errors due

52

to nonunique basic block ID assignment or inconsistent basic block ID assignment due

to source code change.

4.3.10 Separate compilat ion

Separate compilation can not be done when it is necessary to assign each function (or

basic block) a unique identifier. However, the labeling process does not require the entire

program to be present at once, and, thus, one can still keep a program across a large

number of files. The IMPACT-I C compiler reads in files in an order that is specified by

the user and labels each basic block with a unique integer number. The particular order

specified by the user is recorded in a log file maintained by the IMPACT-I C compiler.

The recorded file sequence is used again by the compiler to construct the control graph

after the profiling process.

Except for providing the initial file sequence, the user does not need to know how

basic blocks are labeled, how the probes are inserted, and how the profile information is

mapped to the source code.

4.3.11 Lcode profiling

Except for the function inline expansion and the instruction placement optimization,

code optimizations are performed at the Lcode level. Therefore, instead of an Hcode-level

profiler, an Lcode-level profiler can effectively guide most code optimizations.

Another reason for constructing an Lcode-level profiler is that some code optimiza­

tions can decrease the accuracy of the profile information. Although approximate profile

information is generally sufficient for guiding later code optimizations, it is not sufficient

to derive performance statistics.

We have implemented an Lcode-level profiler that maintains weighted control graphs

as described in the above sections. The implementation involves changing the code

generator to insert additional code to measure the execution frequencies of every basic

block and the direction of every branch operation.

53

4.3.12 Profile-based code optimization

Most traditional code optimizations can be easily modified to take advantage of the

profile information. For example, classical loop optimizations such as induction variable

elimination and loop unrolling may introduce extra operations in a loop preheader in

order to set up a more efficient loop body. These optimizations may degrade performance

if the number of loop iterations is very small. The average number of loop iterations can

be derived from the weighted control graph. For another example, the compiler should

allocate the most frequently accessed variables to registers. Static program analysis

cannot distinguish a loop that is never executed from one that is frequently executed. On

the other hand, execution and access frequencies can be easily derived from the weighted

control graph. In addition to extending traditional code optimizations to use the profile

information, we have designed more aggressive code optimizations that customize the

most frequently executed program regions and expand the scope of code scheduling.

Detailed descriptions and analyses of these code optimization techniques are provided in

Chapters 5, 6, and 7.

54

x.c
1. C source code level.

syntax / semantic analyzer
PPC (pretty print C)
UGC (Hcode generator)

2. Hcode level.

Hcode (profiler)
Hcode (trace placement)
Hcode (inline expansion)

i, 3. Lcode level

Lcode (code optimization)
Lcode (C code generation)
Lcode (code generation)

monitor

4. assembly
code
level

F igure 4.1 Framework

55

a.hcode

Hcode

flatten

C profiler
generator

profile data
mapper

T

Build internal
data structure

Hcode generator

C generator

Lcode generator

* symbolic register
allocation

trace selection

code
optimization

* eg. constant folding

F igure 4.2 Hcode

56

Lcode Build internal
data structure

Local code
optimization

' i i

Global code
optimization

Lcode
%

Register
assignment

Code scheduling

Constant
generation

Lcode generator

Lcode measure

C generator

New
experiments

Target assembly
code generator

Machine
Spec.

Figure 4.3 Lcode

57

(^profi ler Ẑ>

input(l)

input (2) —

input (3) —

input(k) —

run

_* run

^profile data J ^

run

run

gather —»-^profile data

UNIX IPC

Figure 4.4 Profiler

58

CHAPTER 5

MACHINE-INDEPENDENT

CODE OPTIMIZATION

The set of code optimizations in the IMPACT-I C compiler can be partitioned into

three major groups. The first group is a set of code optimizations that are applicable to all

scalar/multiple-instruction-issue processors. The objectives of these code optimizations

are to make the code more efficient by eliminating redundant operations and by moving

operations from frequently executed program regions to infrequently executed program

regions. In processor architectural studies, it is important to evaluate performance with

highly optimized benchmarks, because redundant operations may show deceptive paral­

lelism. Machine-independent code optimizations are described in Chapter 5. The second

group is a set of code optimizations that are machine-dependent and whose objectives are

to exploit machine features such as a register window. In processor architectural studies,

it is important to apply machine-dependent optimizations to the benchmarks that are

being evaluated, because the true performance of a processor architecture can be shown

only if the benchmarks are optimized for that processor architecture. Machine-dependent

code optimizations are presented in Chapter 6. The third group is a set of code transfor­

mations that enlarge the scope of code scheduling and reduce some dependencies between

operations to improve the performance of code scheduling. These transformations are

specific to processor architectures that can execute many operations concurrently, such

as multiple-instruction-issue architectures. These code transformations are presented in

Chapter 7.

59

The decision components of many code optimizations are interdependent and are

customized for different target machines. To explain why a code optimization should be

applied for a MIPS R2000 machine and not for a SPARC machine, we need to describe

the architectural features of the MIPS R2000 and SPARC architectures. It is not possible

to describe in a dissertation the implementation issues and decisions of the code opti­

mizations that we have implemented in the IMPACT-I C compiler to such a point that

the reader can reproduce the implementation. Therefore, we will provide the reader with

only an intuitive understanding of the code optimization functions. We will describe few

code optimizations, e.g., inline expansion, in detail to show the reader how to design and

implement a code optimization. If the reader is interested in reproducing the results, the

IMPACT-I C compiler can be obtained through a University of Illinois license.

In this chapter, we describe the machine-independent code optimizations that have

been included in the IMPACT-I C compiler. In the Hcode level, we have implemented

function inline expansion, instruction placement, and control flow optimization. In the

Lcode level, we have implemented many classical code optimizations and extended them

to trace-based code optimizations.

In Section 5.1, we describe the function inline expansion technique, which was pre­

sented in [Hwu 89c]. In Section 5.2, we describe the instruction placement technique,

which was presented in [Hwu 89a]. In Section 5.3, we describe the branch optimiza­

tions, which we presented in [Chang 89c]. In Section 5.4, we describe a large number of

classic code optimizations that we have implemented in the IMPACT-I C compiler. In

Section 5.5, we present an extension to classic code optimizations to use profile informa­

tion. Formulations and detailed discussions of these code optimizations can be found in

[Chang 91b].

60

5.1 Function Inline Expansion

5.1.1 Introduction

Large computing tasks are often divided into many smaller subtasks which can be

more easily developed and understood. Function definition and invocation in high level

languages provide a natural means to define and coordinate subtasks to perform the

original task. Structured programming techniques therefore encourage the use of func­

tions. Unfortunately, function invocation disrupts compile-time code optimizations such

as register allocation, code compaction, common subexpression elimination, constant

propagation, copy propagation, and dead code removal. The decreased effectiveness of

these optimization techniques increases memory accesses, decreases pipeline efficiency,

and increases redundant computation.

Emer and Clark reported, for a composite VAX workload, 4.5% of all dynamic in­

structions are function calls and returns [Emer 84]. If we assume equal numbers of call

and return instructions, the above number indicates that there is a function call instruc­

tion for every 44 instructions executed. Eickemeyer and Patel reported a dynamic call

frequency of one out of every 27 to 130 VAX instructions [Eickenmeyer 88]. Gross and

Hennessy reported a dynamic call frequency of one out of every 25 to 50 MIPS instruc­

tions [Gross 82]. Berkeley RISC researchers have reported that a function call is the most

costly source language statements [Patterson 82]. All these previous results argue for an

effective approach to reducing function call costs.

Some recent processors provide hardware support for minimizing the extra memory ac­

cesses due to function calls. For example, the Berkeley RISC processors provide overlap­

ping register windows to reduce the number of memory accesses required to save/restore

registers and to pass parameters [Patterson 82]. Another example is the CRISP processor

that uses stack buffers to capture the memory accesses to local variables so that register

allocation crossing function calls can be simulated in hardware [Ditzel 87]. These hard­

ware approaches consume a significant amount of hardware, stretch the processor cycle

time, and provide little assistance for enlarging the scope of compiler code optimization.

61

In the software realm, interprocedural register allocation schemes reduce the register

save/restore cost across function call boundaries [Chow 88]. Callers and callees can also

communicate parameters and results through a small number of registers [Sherburne 83].

Wall has shown that link-time register allocation that is guided by profile information

is comparable in performance to hardware register window schemes [Wall 86], [Wall 88].

Interprocedural analysis is effective in reducing the negative effects of function calls on the

code scheduling and other code optimization techniques [Allen 74], [Allen 76], [Hecht 75],

[Barth 78], [Li 88]. These software remedies assume that frequent function calls can not

be avoided. If most of the function calls can be eliminated, these complicated remedies

would be unnecessary.

Inline function expansion (or simply inlining) replaces a function call with the func­

tion body. Inline function expansion removes the function call/return costs and provides

enlarged and specialized functions to the code optimizers. With automatic inline func­

tion expansion, the advantages of using functions in software development remain, and

the costs are reduced. In a recent study, Allen and Johnson identified inline expansion

as an essential part of an optimizing C compiler. They gave a few critical reasons for

implementing inline expansion. First, the variable aliasing problem becomes less oner­

ous after inline expansion. Second, the code optimizer can work on the real effects of

the callee after inlining. Third, inlining function calls contained in loops may increase

the opportunities for vectorization [Allen 88]. Scheifler formulated the problem of inline

expansion as a knapsack problem. An inline expander which takes advantage of run­

time statistics in making inlining decisions was implemented for the CLU programming

language. Experimental results, including function invocation reduction, execution time

reduction, and code size expansion, were reported based on four programs written in

CLU [Scheifler 77].

Several code improving techniques may be applicable after inline expansion. These

include register allocation, code scheduling, common subexpression elimination, constant

propagation, and dead code elimination. Richardson and Ganapathi have discussed the

effect of inline expansion and code optimization across functions [Richardson 89].

62

Many optimizing compilers can perform inline expansion. For example, the IBM PL.8

compiler does inline expansion of all leaf-level functions [Auslander 82]. In the GNU C

compiler, the programmers can use the keyword inline as a hint to the compiler for

inline expanding function calls [Stallman 88]. In the MIPS C compiler, the compiler

examines the code structure, e.g., loops, to choose the function calls for inline expansion

[Chow 84]. Parafrase has an inline expander based on program structure analysis to

increase the exposed program parallelism [Huson 82]. It should be noted that the careful

use of the macro expansion and language preprocessing utilities has the same effect as

inline expansion, when inline expansion decisions are made entirely by the programmers.

The IMPACT-I C compiler expands function calls to increase the effectiveness of com­

piler code optimization [Chang 88], [Hwu 89a], [Hwu 89b]. Inline expansion reduces the

number of function calls so that hardware mechanisms such as register windows and stack

buffers become unnecessary. For compiler code optimization, inline expansion serves to

enlarge the scope of register allocation, code scheduling, and other optimizations. The

IMPACT-I Profiler-to-C-Compiler interface allows the profile information to be automat­

ically used by the IMPACT-I C Compiler. The inline expansion is based on execution

profile information to ensure that only the important function calls are expanded. It is

critical that the inputs used for executing the equivalent C program are representative.

Therefore, this approach is more suitable for characterizing realistic programs for which

representative inputs can be easily collected.

5.1.2 Critical issues

The basic idea of inline expansion is simple. Most of the difficulties are due to hazards,

missing information, and reducing the compilation time. We have identified the following

critical issues of inline expansion:

(1) Where should inline expansion be performed in the compilation process?

(2) What data structure should be employed to represent programs?

(3) How can hazards be avoided without incurring excessive compilation cost?

63

(4) How should the sequence of inlining be controlled to reduce compilation cost?

(5) What are the essential operations for inlining a function call?

(6) What are the desirable optimizations to reduce the undesirable effects of inline

expansion?

In the following discussions, the term function corresponds to both procedures and

functions defined in the programming languages such as C and Pascal. A static function

call site (or simply call site) refers to a function invocation specified by the static program.

A function call is the activity of invoking a particular function from a particular call site.

If a call site can potentially invoke more than one function, the call site has more than one

function call associated with it. This is usually due to the use of the call-through-pointer

feature provided in some programming languages. The caller of a function call is the

function which contains the call site of that function call. The callee of a function call is

the function invoked by the function call. An example is shown in the C program below.

There are three static function call sites in the mainQ function; two invoke function

a() and one invokes function b(). Since each call site in this example invokes a unique

function, each has only one function call associated with it. The caller of all the function

calls is mainQ and the callees are a() and b().

main () {
i n t i , j ;

i = a () + b () ;

j = a () ;
}
i n t a () -C . . . }
i n t b() { . . . }

The first issue regarding inline function expansion is where inlining should be per­

formed in the translation process. In most traditional program development environ­

ments, the source files of a program are separately compiled into their corresponding

object files before being linked into an executable file (see Figure 5.1). The compile time

is defined as the period of time in which the source files are independently translated into

64

object files. The link time is defined as the period of time in which the object files are

combined into an executable file. Most of the optimizations are performed at compile

time, whereas only a minimal amount of work to link the object files together is per­

formed at link time. This simple two-stage translation paradigm is frequently referred to

as the separate compilation paradigm.

The advantage of the separate compilation paradigm is that when one of the source

files is modified, only the corresponding object file needs to be regenerated before link­

ing the object files into the new executable file, leaving all the other object files intact.

Because most of the translation work is performed at compile time, separate compila­

tion greatly reduces the cost of program recompilation when only a small number of

source files are modified. Therefore, the two-stage separate compilation paradigm is the

most attractive for program development environments in which programs are frequently

recompiled and usually a small number of source files are modified between each re-

compilation. There are special tools such as the UNIX make program to exploit this

advantage.

Because the caller and callee functions may reside in different source files, inline

function expansion and global optimization in general increase the coupling of the source

files involved. Inline function expansion could be performed either at compile time or at

link time. In either case, separate compilation is no longer possible to perform interfile

inline expansion. The GNU C Compiler has a limited inline expansion feature which

requires the caller and callee to be in the same source file for expansion. With this

limitation, the simple separate compilation paradigm remains intact.

An extension to the separate compilation paradigm to allow inlining at compile time

is illustrated in Figure 5.2. Performing inline function expansion at compile time pro­

vides four major advantages. First, inline function expansion enlarges the scope of code

optimization and thus increases the opportunities for the optimization techniques such

as constant propagation, common subexpression elimination, and dead code removal.

Performing inline function expansion at the early stage of the compile time (before the

code optimization steps) ensures that these code optimization steps benefit from inlin-

65

ing. Second, functions are often created as generic modules to be invoked for a variety

of purposes. Inlining a function call places the body of the corresponding function into a

specific invocation, which eliminates the need to cover the service required by the other

callers. Therefore, constant propagation, constant folding, and dead code removal can

be expected to reduce the code size expansion due to inlining. Third, by inlining the

frequently executed function calls, inlining reduces the coupling between functions. This

reduces the need for complex interprocedural analysis to support optimizations. Fourth,

being applied before system-dependent code generation, inline expansion can be included

in a portable frontend.

Performing inline function expansion at compile time requires the callee function

source (or intermediate) code to be available when the caller is compiled. Note that the

callee functions can reside in source files different from the caller's. As a result, the caller

and callee source files can no longer be compiled independently. In addition, whenever

a callee function is modified, both the callee and caller source files must be recompiled.

This coupling between the caller and callee source files reduces the advantage of the

two-step translation process.

In practice, some library functions are written in assembly languages; they are avail­

able only in the form of object files to be integrated with the user object files at link time.

These library functions are not available for inline function expansion at compile time.

One can argue, however, that since these library functions are already hand-optimized

by the assembly programmers, they need not be involved in the inline function expan­

sion whose major objective is to improve the effectiveness of compile-time optimizations.

Dynamically linked libraries represent a step further in the direction of separating the

library functions from the user programs invoking them. Since the dynamically linked

library functions are not available for inline function expansion at all, they are not in the

scope of this paper.

Inline function expansion can also be performed at link time. A translation process

which employs inlining at link time is illustrated in Figure 5.3. Because all functions are

available at link time, inline expansion can be naturally performed without sacrificing

66

separate compilation. The problem is that many compile-time optimizations should be

performed after inline function expansion but can not be if the inline expansion is done

at link time. There are two alternative solutions to this problem. One is to exclude the

compile-time optimizations from the benefit of inline function expansion. This solution

eliminates most of the advantages of the inline expansion: to enlarge the scope of compile-

time optimizations. There are, however, important code restructuring techniques which

can still benefit from link-time inline expansion [Hwu 89a].

The other solution is to defer the compile-time optimizations to link time, after the

inline expansion is performed. In fact, register allocation has been performed at link time

in Wall's work [Wall 86], [Wall 88]. The problem with this approach is that it eliminates

most of the advantages of separate compilation. Since most of the optimizations are

performed at link time, modifying a single source file incurs the cost of optimizing the

entire program. Note that this is worse than performing inline expansion at the compile

time where modifying a callee function source file requires only the recompilation and

optimization of the corresponding callers. Also, performing optimization at link time

often requires the symbol information to be passed from the compiler to the linker. This

adds to the amount of information stored in the object files.

Inline function expansion is performed at compile time in the IMPACT-I C Com­

piler. Two major considerations led to this design decision. First, all of the compile-time

optimizations can naturally benefit from inline expansion. These compile-time optimiza­

tions include register allocation, common subexpression elimination, constant propaga­

tion, constant folding, dead code removal, and program restructuring. Performing inline

function expansion at compile time is compatible with most of the existing compiler struc­

tures. This makes it more feasible to incorporate the IMPACT-I inlining mechanism into

the existing compilers.

Second, the inline expander in the IMPACT-I C Compiler is designed as a part of

the program optimization mechanism for mature programs. It is designed for compiling

production quality programs such as operating systems, text processing tools, engineering

design tools, program development tools, and user interfaces. It is not recommended for

67

programs at their early stage of development. The general philosophy is that programs

should be tuned only after they start working. This is consistent with the existing

software development practice: make a program work before making it efficient.

The IMPACT-I C Compiler program optimization mechanism is designed as the last

stage of the program tuning process, applied after the programmers have finished de­

bugging and tuning at the coding level. Programs compiled with these optimizations

are expected to run many times before they are revised; trading compilation time for

execution efficiency is a desirable tradeoff. Therefore, separate compilation is not an

important issue for the IMPACT-I inline expander; the primary goal is to have as many

optimizations as possible to benefit from the inline expansion. This leaves us the choice of

either performing inline expansion at the compile time or deferring the inline expansion

and all the optimizations to link time. A major advantage of performing compile-time

rather than link-time inline expansion is that it makes it possible to incorporate the in­

line expander into a system-independent compiler frontend. As a result, the IMPACT-I

inline expansion is performed at compile time.

5.1.3 Program representation

The second issue regarding inline function expansion is what data structure should

be employed to represent the program. To support efficient inlining, the data structure

should have two characteristics. First, the data structure should conveniently capture

the dynamic and static function calling behavior of the represented programs. Second,

efficient algorithms should be available to construct and manipulate the data structure

during the whole process of inline function expansion. Weighted call graphs, as described

below, exhibit both desirable characteristics.

A weighted call graph captures the static and dynamic function call behavior of a

program. A weighted call graph (a directed multigraph), G = (N, E, main), is charac­

terized by three major components: TV is a set of nodes, E is a set of arcs, and main is

the first node of the call graph. Each node in AT is a function in the program and has

associated with it a weight, which is the number of invocations of the function by all

68

callers. Each arc in E is a static function call in the program and has associated with

it a weight, which is the execution count of the call. Finally, main is the first function

executed in this program. The node weights and arc weights may be determined either

by program structure analysis or by profiling.

An example of a weighted call graph is shown in Figure 5.4. There are eight functions

in this example: main, A, B, C, D, E, F, and G. The weights of these functions are

indicated beside the names of the functions. For example, the weights of functions A

and E are 70 and 4, respectively. Each arc in the call graph represents a static function

call whose weight gives its expected dynamic execution count in a run. For example, the

main function calls G from two different static locations; one is expected to execute once

and the other is expected to execute twice in a typical run.

Inlining a function call is equivalent to duplicating the callee node, absorbing the

duplicated node into the caller node, eliminating the arc from the caller to the callee,

and possibly creating some new arcs in the weighted call graph. For example, inlining B

into 0 in Figure 5.4 involves duplicating B, absorbing the duplicated B into D, eliminating

the arc going from D to B, and creating a new system call arc. The resulting call graph

is shown in Figure 5.5.

Detecting recursion is equivalent to detecting cycles in the weighted call graph. For

example, a recursion involving functions A and E in Figure 5.4 can be identified by

detecting the cycle involving nodes A and E in the weighted call graph. Identifying func­

tions which can never be reached during execution is equivalent to finding unreachable

nodes from the main node. For example, Function B is no longer reachable from the

main function after it is inline expanded into Function D (see Figure 5.5). This can

be determined by identifying all of the unreachable nodes from the main node in the

weighted call graph. Efficient graph algorithms for these operations are widely available

[Tarjan 83].

When the inline expander fails to positively determine the internal function calling

characteristics of some functions, there is missing information in the call graph construc­

tion. The two major causes of the missing information are calling external functions

69

and calling through pointers. Calling external functions occurs when a program invokes

a function whose source file is unavailable to the inline expander. Examples include

privileged system service functions and library functions distributed without source files.

Because these can perform function calls themselves, the call graphs thus constructed are

incomplete. Practically, because some privileged system services and library functions

can invoke user functions, a call to an external function may have to be assumed to

indirectly reach all nodes whose function addresses have been used in the computation

in order to detect all recursions and all functions reachable from main.

Calling through pointers is a language feature which allows the callee of a function

call to be determined at the run time. Theoretically, the set of potential callees for a call

through pointer can be identified using program analysis. In practice, calling through

pointers occurs so rarely that it may be assumed to reach all functions without significant

penalty. Whenever there is any uncertainty, it is important to capture all the potential

callees in order to detect all recursions and all functions reachable from main.

Each node in the weighted call graph contains three pieces of information: 1) the

body of the function, 2) the node weight, and 3) a set of outgoing arcs to the callees.

The node for a callee function is duplicated and absorbed by a caller during each inline

expansion. The body of a function gives all the program declarations and statements of

the function. The node weight gives the expected invocation count of the function. The

outgoing arcs identify all static function calls in the present function.

Each arc in the weighted call graph contains five pieces of information: 1) a unique

identifier, 2) the name of the caller, 3) the name of the callee, 4) the arc weight, and 5) a

status. It is necessary to assign each arc a unique identifier because there may be several

arcs between the same pair of caller and callee; the combination of the caller and callee

information can not uniquely identify a static function call. The caller attribute identifies

the function in which the corresponding call site is located. The callee attribute identifies

the function invoked by the function call. The arc weight attribute indicates the expected

execution frequency of the corresponding function call. The status attribute indicates

70

whether this arc is to be considered for inline expansion, rejected for inline expansion, or

already inline expanded.

A weighted call graph is constructed in two steps. The first step generates all the

nodes and arcs according to static program analysis. A node is generated for each function

and an arc is generated for each call site. The function body and the outgoing arcs of

each node are generated at this step. The unique identifier, the caller, the callee, and

the status of each arc are also generated at this step. The second step is to fill in the

weights for the nodes and the arcs.

A system-independent profiler has been integrated into the IMPACT-I C compiler.

The profiler accumulates the average run-time statistics over many runs of a program.

From the profile information, the IMPACT-I C compiler can determine the execution

counts of all instructions and the frequencies of each of the possible directions of branch

instructions. From the execution and branch frequencies, the node weights and arc

weights of the call graph can be derived. Each node weight is simply the number of times

a function is called in a typical run of the program. Each arc weight is the execution

count of a function call.

A special node, &&&, is created to represent all the external functions. A function

which calls external functions requires only one outgoing arc to the &&& node. In turn,

the &&& node has many outgoing arcs, one to each function whose address has been

used in the computation to reflect the fact that these external functions can potentially

invoke every such function in the call graph. One arc to the &&& node sufficiently

represents the effect of calling external functions, because calls to external functions can

not be inlined, and, since an external function call is assumed to indirectly reach all nodes

whose function addresses have been used in the computation, all the potential recursions

and all the functions reachable from the main can be safely detected.

Similarly, a special node, # # # , is used to represent all the functions which may be

called through pointers. Calls through pointers are not considered for inlining in the

IMPACT-I implementation. Rather than assigning a node to represent the potential

callee of each call through pointer, # # # is shared among all calls through pointers.

71

In fact, # # # is assumed to reach all functions whose addresses have been used in the

computation. This again ensures that all of the potential recursions and all of the func­

tions reachable from the main can be safely detected. Experimental data indicate that

function calls to external functions and function calls through pointers occur so rarely

that this conservative approach reduces complexity at little cost in effectiveness.

5.1.4 Hazard prevention

The third issue regarding inline function expansion is how the hazardous function calls

should be excluded from inlining. Three hazards have been identified in inline expansion:

unavailable callee function bodies, multiple potential callees for a call site, and activation

stack explosion. A practical inline expander has to address all these hazards. All the

hazardous function calls are excluded from the weighted call graph and are not considered

for inlining by the sequence controller.

The bodies of external functions are unavailable to the compiler. External functions

include privileged system calls and library functions that are written in an assembly

language. In the case of privileged system calls, the function body is usually not available

regardless of whether the inline expansion is performed at compile time or link time. In

fact, inlining privileged system calls is usually not desirable due to security reasons.

Therefore, privileged system calls should be considered as not inline expandable.

Multiple potential callees for a call site occur due to calling through pointers. Because

the callees of calls through pointers depend on the run-time data, there is, in general,

more than one potential callee for each call site. Note that each inline expansion is

equivalent to replacing a call site with a callee function body. If there is more than

one potential callee, replacing the call site with only one of the potential callee function

bodies eliminates all the calls to the other callees by mistake. Therefore, function calls

originating from a call site with multiple potential callees should not be considered for

inline expansion. If a call through pointer is executed with extremely high frequency,

one can insert if statements to selectively inline the most frequent callees.

72

Parameter passing, register saving, local variable declarations, and returned value

passing associated with a function can all contribute to the activation stack usage. A

summarized activation stack usage can be computed for each function. A recursion may

cause activation stack overflow if a call site with a large activation record is inlined into

one of the functions in the recursion. For example, a recursive function m(x) and another

function n(x) are defined as follows.

m(x) -C i f (x > 0) r e t u r n (m (x - l)) ; e l s e r e t u r n (n (x)) ; }
n(x) -C i n t y[100000]; >

For the above example, two activation stacks are shown in Figure 5.6, one with in­

line expansion and one without. Note that inlining n(x) into the recursion significantly

increases the activation stack usage. If m(x) tends to be called with a large x value,

expanding n(x) will cause an explosion of activation stack usage. Programs which run

correctly without inline expansion may not run after inline expansion. To prevent ac­

tivation stack explosion, a limit on the control stack usage can be imposed for inline

expanding a call into a recursion.

The calls to external functions and the calls through pointers are excluded from inline

expansion. Because the IMPACT-I inline expansion is performed at compile time, any

function calls whose callee source code (or intermediate code) is unavailable are excluded

from inlining. A parameter to the compiler specifies the limit on the activation stack usage

of a function to be inlined into a (potential) recursion. Any functions which require more

activation stack usage are excluded from being inlined into a (potential) recursion. All the

arcs corresponding to these hazardous function calls are excluded from the consideration

of inline expansion. The experimental data indicate that this conservative approach has

little negative impact on the effectiveness of the expander.

5.1.5 Sequence control

The fourth issue regarding inline function expansion is how the sequence of inlining

should be controlled to minimize unnecessary computation, source file access, and code

73

expansion. In this step, we do not consider the hazardous function calls. The sequence

control in inline expansion determines the order in which the arcs in the weighted control

graph, i.e., the static function calls in the program, are inlined. Different sequence

control policies result in different numbers of expansions, different numbers of file accesses,

different code size expansions, and different reductions in dynamic function calls. All of

these considerations affect the cost-effectiveness of inline expansion, and some of them

conflict with one another.

The sequence control of inline expansion can be naturally divided into two steps:

selecting the function calls for expansion and actually expanding these functions. The

goal of selecting the function calls is to minimize the number of dynamic function calls

subject to a limit on code size increase. The goal of actual expansion control is to

minimize the computation cost incurred by the expansion of these selected function calls.

Both steps will be discussed in this section.

In this section, we will limit the discussion to a class of inline expansion with the

following restriction. If a function F has a callee L and L is to be inlined into F, then all

functions absorbing F will also absorb L. Note that this restriction can cause some extra

code expansion, as illustrated in the following example. Function F calls L (100 times)

and is called by A (990 times) and B (10 times) (see Figure 5.7). In this call graph, there

is not enough information to separate the number of times F calls L when it is being

invoked by A and by B. Assume F is to be absorbed into both A and B. If F calls L 99

times when it is invoked by A and 1 time when by B, then L should be absorbed into A

but not B (see Figure 5.8). With our restriction, however, L will be absorbed into both

A and B (see Figure 5.8). Obviously absorbing L into B is not cost-effective in this case.

The problem is, however, that there is not enough information in the call graph to

attribute the F-»L weight to A and B separately. Therefore, the decision to absorb L only

into A would be based on uncertain information. To accurately break down the weights,

one needs to duplicate each arc as many times as the number of possible paths through

which the arc can be reached from the main function. This will cause an exponential

explosion of the number of arcs in the weighted call graph.

74

Because all the hazards due to recursion have been handled by the Hazard Prevention

step, the call graph can be simplified by breaking all the cycles. The cycles in the call

graph can be broken by excluding the least important arc from each cycle in the call

graph. If the least important arc is excluded from inlining to break a cycle involving N

functions, one can lose the opportunity to reduce up to 1/N of the dynamic calls involved

in the recursion. This is usually acceptable for N greater than 1.

If N is equal to 1, breaking the cycle will eliminate all of the opportunity of reducing

the dynamic calls in the recursion. If the recursion happens to be the dominating cause

of dynamic function calls in the entire program, one would lose most of the call reduction

opportunity by breaking the cycle. There is, however, a simple solution to this problem

(see Figure 5.9). One can inline the recursive function call I times before breaking the

cycle. In this case, one loses only 1/7 of the call reduction opportunity by breaking the

cycle.

The weighted call graph becomes a directed acyclic graph after all of the cycles are

broken. All of the following discussions assume this property.

It is desirable to expand as many frequently executed function calls (heavily weighted

arcs in the call graph) as possible. However, unlimited inline expansion causes code size

expansion. To expand a function call, the body of the callee must be duplicated and the

new copy of the callee must be absorbed by the caller. Obviously, this code duplication

process increases program code size in general. Therefore, it is necessary to set an upper

bound on the code size expansion. This limit may be specified as a fixed number and/or

as a function of the original program size. The problem with using a fixed limit is that

the size of the programs handled varies so much that it is very difficult to find a single

limit to suit all of the programs. Setting the upper limit as a function of the original

program size tends to work better for virtual memory and favor large programs. It may

be true that many C functions are called once, and thus the original copies of these call-

once functions can be eliminated by finding unreachable nodes from the main node after

inline expansion. This issue will be addressed in the Desired Optimizations Section.

75

Code size expansion increases the memory required to accommodate the program

and reduces instruction memory hierarchy performance. Precise costs can not be ob­

tained during inline expansion because the code size depends on the optimizations to

be performed after inline expansion. The combination of copy propagation, constant

propagation, and unreachable code removal will reduce the increase in code size. A

rough estimate of the code size increase can be derived from the intermediate code size

of each function. Because the sizes of the functions change during inline expansion, it is

important to keep track of the up-to-date size of each function.

Accurate benefits of inline expansion are equally difficult to obtain during inline

expansion. Inline expansion improves the effectiveness of register allocation and algebraic

optimizations, which reduces the computation steps and the memory accesses required to

execute the program. Because these optimizations are performed after inline expansion,

the precise improvement of their effectiveness due to inline expansion can not be known

during inline expansion. Therefore, the benefit of inline expansion will be judged only

by the reduction in dynamic function calls, which in turn reduces execution time of the

program for each computer architecture. Using call frequency reduction rather than

execution time reduction allows the inline expander to be independent of architectures.

The problem of selecting functions for inline expansion can be formulated as an opti­

mization problem that attempts to minimize dynamic calls given a limited code expansion

allowance. In terms of call graphs, the problem can be formulated as collecting a set of

arcs whose total weight is maximized while the code expansion limit is satisfied. It ap­

pears that the problem is equivalent to a knapsack problem defined as follows: There

is a pile of valuable items each of which has a value and a weight. One is given a

knapsack which can hold up to only a certain weight. The problem is to select a set of

the items whose total weight fits in the knapsack and whose total value is maximized.

The knapsack problem has been shown to be NP-complete [Garey 79]. However, this

straightforward formulation is unfortunately incorrect for inlining. The code size of each

function changes during the inlining process. The code size increase due to inlining each

function call depends on the decision made about each function call. The decision made

76

about each function call, in turn, depends on the code size increase. This dilemma is

illustrated in Figure 5.10.

If L is to be inlined into F, the code expansion due to inlining F into A is the total size

of F and L. Otherwise, the code expansion is simply the size of F. The problem is that

the code increase and the expansion decision depend on each other. Therefore, inline

expansion sequencing is even more difficult than the knapsack problem. Nevertheless,

we will show that a selection algorithm based on call reduction achieves good results in

practice.

The arcs in the weighted call graph are marked with the decision made on them.

These arcs are then inlined in an order which minimizes the expansion steps and source

file accesses incurred.

Different inline expansion sequences can be used to expand the same set of selected

functions. For example, in Figure 5.11, Function D is invoked by both E and G. Assume

that the selection step decides to absorb D, B, and C into both E and G. There are

at least two sequences which can achieve the same goal. One sequence is illustrated in

Figure 5.11, where E—»D and G—»D are eliminated first. Note that by absorbing D into

both E and G (and therefore eliminating E—»D and G—+D in two expansion steps), four

new arcs are created: E—+B, E—»C, G—»B, and G—»C. It takes four more steps to further

absorb B and C into both E and G to eliminate all of these four new arcs. Therefore, it

takes a total of 6 expansion steps to achieve the original goal.

A second sequence is illustrated in Figure 5.12, where B and C are first absorbed into

D, eliminating D—»B and D—>C. Function D, after absorbing B and C, is than absorbed

into E and G. This further eliminates E-»B and E-»C. Note that it takes a total of only

4 expansion steps to achieve the original goal.

The general observation is that if a function is to be absorbed by more than one

caller, inlining this function into its caller before absorbing its callees can increase the

total steps of expansion. The observation is illustrated in Figure 5.13. If a function, F,

is to be inlined into one caller, there is no difference whether the calls in F are inlined

77

before F itself is inlined. Therefore, we need to consider only the situation in which F is

to be inlined into more than one caller.

For the class of inlining algorithms considered in this dissertation, the rule for min­

imizing the expansion steps can be stated as follows: If a function F is absorbed into

more than one caller, all of the callees to be inlined into F must be already inlined. It is

clear that any violation against this rule will increase the number of expansions. It is also

clear that an algorithm conforming to this rule will perform N expansion steps, where

N is the number of function calls to be inlined. Therefore, an algorithm conforming to

the rule is an optimal one as far as the number of expansion steps is concerned.

In a directed acyclic call graph, the optimal rule can be realized by an algorithm

manipulating a queue of terminal nodes. The terminal nodes in the call graph are inlined

into their callers if desired and eliminated from the call graph. This produces a new group

of terminal nodes which are inserted into the queue. The algorithm terminates when all

of the nodes are eliminated from the call graph. The complexity of this algorithm is

O(N), where N is the number of function calls in the program (arcs in the call graph)

eligible for inlining.

Different inline expansion sequences to achieve the same goal may also incur different

numbers of source file accesses. Due to the limited main memory size, only a limited

number of function bodies can reside in the main memory at any time. A natural way

to utilize this limited resource is to cache the function bodies. At any time, a number

of function bodies reside in the main memory. If the inline expander finds the required

function bodies in the main memory, the expansion can be performed without any file

access. Otherwise, file access is performed and new function bodies may replace some

existing ones in the main memory. As in any other cache organization, the locality of

the function body is critical for this caching scheme to reduce the file access frequencies.

A function body is read when it is inlined into its callers; it is written when it absorbs

its callees. Therefore, each inline expansion sequence can be reduced to a sequence of

read and write accesses to the function bodies. To maximize the locality of these accesses,

all of the accesses to a function body should be as temporally close as possible. That is,

78

after the callees of a function are inlined, that function should be inlined into its callers

as soon as possible.

A queue-based algorithm which minimizes the expansion steps also exhibits good

locality. As soon as a function absorbs its callees, it becomes a terminal node in the call

graph. Because only the terminal nodes are processed in each iteration, the algorithm

tends to inline the functions as soon as their callees are inlined. The optimal algorithm to

achieve the maximal locality is yet to be derived. In fact, a precise definition of locality

is yet to be introduced.

The selection of function calls for inlining is based mainly on dynamic call reduction.

All of the arcs in the call graph are sorted according to their weights. The selection

process then goes through the list starting from the heaviest arc. The arcs will be

accepted for inlining until the code increase reaches the predetermined limit. Each time

an arc is selected for inlining, its impact on the code size is immediately reflected in the

call graph.

Because the order of consideration is independent of the code size increase, the de­

cision process is somewhat simplified. However, the algorithm is not guaranteed to be

optimal in dynamic call reduction. This is illustrated in Figure 5.14. The relative sizes

of the functions A, F, L, and M are 4, 4, 2, and 2, respectively. Assume that the limit on

code expansion is 40%. Because inlining F into A is the single step which decreases the

largest number of dynamic function calls, it will be selected by the IMPACT-I expander.

However, inlining both L and M (in two steps) into F actually reduces more dynamic

function calls while incurring the same code increase.

The general observation is that inlining some function calls may incur too much code

increase and thus prevent some cost-effective inlining steps from being selected. We will

show, in the experimentation section, that this problem is not significant in the real

programs examined.

To simplify the control for actually expanding the function calls, inline expansion

is constrained to follow a linear order. The functions (nodes in the call graph) are first

sorted into a linear list according to their weights. The most frequently executed function

79

leads the linear list. A function X can be inlined into another function Y if and only if X

appears before Y in the linear list. Therefore, all inline expansions pertaining to function

X must already have been accomplished before function Y is processed. The rationale

is that functions which are executed frequently are usually called by functions which are

executed less frequently. Therefore, this simple heuristic approximates the effect of the

optimal queue-based algorithm. We will show, in the experimentation section, that this

simple heuristic does approximate the optimal algorithms in practice.

5.1.6 Essential operations

The fifth issue regarding function inline expansion concerns the nature of the essential

operations for inlining a function call. This task consists of three parts: 1) callee dupli­

cation, 2) variable renaming, and 3) parameter handling. The work required to duplicate

the callee is trivial. The actual implementation difficulty is in caching the definitions of

the most frequently inlined functions in memory to reduce the number of file reads.

To avoid conflicts with the caller's local variables, the callee's local variables must be

renamed before inserting the code into the caller. This could be achieved by introducing

a new scope for these local variables. This is especially easy in the modern structure

languages such as Pascal and C where provisions have been made to allow multiple

scopes within each function.

The callee's formal parameters must also be renamed before code insertion. This

again could be achieved by introducing a new scope for these formal parameters. The

renamed formal parameters can then receive the actual parameter values. The return

value has to be buffered by new local temporary variables so that it can be used by the

caller.

5.1.7 Desirable optimizations

The sixth issue regarding function inline expansion is what kind of code optimization

techniques should be applied after inlining. On the one hand, inlining provides an en-

80

larged scope for code optimization techniques and makes them more effective. On the

other hand, code optimization reduces the undesirable effects of inlining such as code

size increase.

Functions are often created as generic modules to be invoked for a variety of purposes.

Different callers may supply different flags to request different services. This is illustrated

in the code segment below, where function F can be invoked by both A and B. The

function can return either 3 or 1000 depending on the value of a flag. In this example,

A and B will pass flag values 1 and 0, respectively.

AO {

i = F (l) ;
}
B() {

j = F (0) ;
}
F (f l a g) {
i n t f l a g ;

i f (f l a g) r e t u r n (3) ; e l s e return(lOOO);
}

Inlining a function call places the body of the callee function into a specific invocation,

which eliminates the need to cover the service required by the other callers. This is

illustrated in the code segment below, where function F is inlined into both A and B.

Note that the formal parameter flag has been renamed by introducing new scopes in both

A and B. Also the actual parameters and the return value has been buffered. Function

F is not shown because it is no longer important after expansion.

AO {

{ int flag, temp;
flag = 1;

if (flag) temp = 3; else temp = 1000;
i = temp;

}
>

81

BO {

{ i n t f l a g , temp;
f l a g = 0;
i f (f l ag) temp = 3 ; e l s e temp = 1000;
j = temp;

}
}

With constant propagation, the constant value assigned to flag is propagated to the

condition of the if statement. The resulting program is illustrated in the code segment

below. The condition of the if statement in A becomes constant 1 and that in B constant

0.

AO {

{ int flag, temp;
flag = 1;
if (1) temp = 3; else temp = 1000;
i = temp;

}
}
BO {

{ int flag, temp;
flag = 0;
if (0) temp = 0; else temp = 1;
j = temp;

}
}

A simple analysis identifies one of the branches of the if statements as unreachable

code. In our example, the else part in A and the then part in B are identified as

unreachable code. These parts can be eliminated from the program as the result of

unreachable code removal. The resulting program is illustrated in the following code

segment.

A() {

{ i n t f l a g , temp;

82

f l a g = 1;
temp = 0;
i = temp;

}
>
BO {

{ i n t f l a g , temp;
f l a g = 0;
temp = 1;
j = temp;

}
}

Another pass of constant propagation will propagate the constant value assigned to

F'jrenamed-temp to the subsequent assignment statement. The resulting program is

illustrated as follows:

A() {

{ int flag, temp;
flag = 1;
temp = 0;
i = 0;

}
}
B() {

{ int flag, temp;
flag = 0;
temp = 1;

j = i ;
}

}

Finally, another analysis identifies the assignments to flag and temp as dead code

because these variables are not used after these assignments. The corresponding decla­

ration can be removed because these variables are neither defined nor used in A and B.

The resulting program is as follows:

A() {

83

{ i = 0; }
>
BO {

{ j = i ; }
}

The above example illustrates that the callee function body can be inlined into a

specific invocation in which the callee is free from the other obligations. On the one

hand, standard optimizations such as copy propagation, constant propagation, constant

folding, and unreachable code can be applied in a straightforward manner to improve

the program efficiency. Without inline expansion, sophisticated interprocedural analysis

would have to be performed to achieve similar effects. Similarly, register allocation and

common subexpression elimination benefit from inlining. On the other hand, the code

increase due to inline expansion can be significantly reduced using these optimizations.

Because programs always start from the main function, any function which is not

reachable from the main function will never be used and can be removed. A function

is reachable from the main function if there is a (directed) path in the call graph from

the main function to the function, or if the function may serve as an exception handler,

or be activated by some external functions. In the C language, this can be detected by

identifying all functions whose addresses are used in computations.

Therefore, if a function is not explicitly reachable after inlining and its address is not

used in any computation, that function can be eliminated. This rule can be applied to

most system and user programs. In some special cases, such as real-time programs, there

may be hidden paths where functions can be invoked through interrupts. Because these

special cases occur rarely, an option to turn off the feature of eliminating unreachable

functions is sufficient for handling them.

84

5.1.8 Experiments

We choose to evaluate the IMPACT-I inline expander with experiments on real pro­

grams. The purpose of these experiments is to answer the following questions:

(1) How many call sites are free of hazards and have significant benefits when inlined?

(2) For all call sites which are considered for inline expansion, how many dynamic calls

can be eliminated?

(3) How much code expansion is incurred by inline expansion?

(4) Do most programs have similar static and dynamic function call characteristics?

(5) How frequently are the function calls executed before and after inline function

expansion?

This experiment consists of four major steps. First, we select a benchmark suite of

fourteen real UNIX programs. Most of the UNIX library functions such as printfQ are

included. Second, a variety of inputs for each benchmark are applied to establish reliable

profile information. For example, we select from many sources 20 files of C programs,

ranging from 100 to 3000 lines, as inputs for cccp, the GNU C language preprocessor.

We also make special effort to exercise as many program options as possible. Third,

the benchmarks are recompiled using profile information. Finally, the effects of inline

expansion are measured.

Table 5.1 summarizes several important characteristics of our benchmarks. The runs

column gives the number of different inputs used in the experiment. The IL column gives

the average dynamic code sizes of the benchmark programs, measured in the number of

thousands of intermediate instructions executed in a typical run of the programs.1 There

are about 3 billion intermediate instructions in the experiments. The CT column gives the

average dynamic count of thousands of control transfers, other than function call/return,

The static code size of a program is the number of instructions in the program. The dynamic code
size of a program is the number of instructions that are executed in a single run of the program.

85

executed in a typical run of the programs. The input column describes the nature of the

inputs used in the experiment.

Note that we use the dynamic counts of intermediate instructions rather than those of

any specific machine instructions in an effort to keep the results general. The benchmark

programs exhibit very different code sizes, control structures, and applications. There

is no direct correlation between the static and dynamic code sizes of these benchmark

programs.

Table 5.2 shows the static function call characteristics. The total column gives the

number of different function calls in the static program. We categorize the static function

calls into four types. The external column gives the percentages of static function calls

to functions whose bodies are unavailable to inline expansion and to system functions

(syscall). The pointer column gives the percentage of static function calls through point­

ers. Function calls through pointers cannot be inlined. The avoided column gives the

number of static function calls which would either introduce function bodies into recur­

sive paths and could cause activation stack explosion, or have an estimated execution

count less than 10. The candidate column gives the percentage of the static function

calls which are candidates for inline expanded. Only the candidate function calls are

considered for inline expansion.

There are a total of 6,722 static function calls in all of the benchmarks. Dividing the

total number of C lines in all of the benchmarks (53,617) by this number gives a static

function call frequency of one in every 8 C lines. All benchmarks show large percentages

of avoided functions (average about 65%). Only very small percentages of static calls

are considered candidate (average about 10%). As a result, after the Hazard Prevention

step, the sequence controller needs to examine only a small number of static function

calls in typical programs.

Note that tee and wc contain no candidate function calls for inlining. As for tee, all

of the frequently executed function calls are privileged system calls. We included this

benchmark to show that programs with extremely high system frequencies exist. As for

wc, there is very little function call activity. A possible explanation is that the program

86

is so small that its author decided to inline all the important function calls by hand. We

included this benchmark to show that automatic inline expansion may not be necessary

for some small programs.

Table 5.3 presents the dynamic behaviors of function calls. A static function call can

correspond to many dynamic function calls. Only those static call sites corresponding

to a large number of dynamic function calls should be considered for inline expansion.

The small percentage of avoided dynamic calls indicates that the conservative IMPACT-I

hazard prevention mechanism is very effective. Note that more than half of the function

calls in cmp, tee, and wc are to external functions (mostly privileged system calls).

Techniques to reduce the frequency of system calls need to be devised to reduce the

function call frequency in these benchmarks.

Although the percentages of static candidate calls are small, candidate call sites

correspond to large percentages of dynamic calls (about 70%). This means that by

expanding a few static call sites, a large number of dynamic calls can be eliminated.

One exception is wc, where function calls are unimportant because they are invoked

very infrequently. The other exception is tee, where almost all the functions calls are to

privileged system functions; the trapping overhead in these privileged system calls makes

the function call overhead unimportant.

Table 5.4 offers the most important results of inline expansion. The code inc column

gives the percentages of increase in static code sizes due to inline expansion. This number

is measured without any optimization after inlining. The call dec column gives the

percentage of dynamic function calls eliminated by inline expansion. The IL per call

column gives the average number of dynamic intermediate instructions executed between

dynamic function calls after inline expansion. The CT per call column gives the average

number of dynamic control transfers executed between dynamic function calls after inline

expansion.

Note that the inline expansion mechanism eliminates a large percentage of dynamic

function calls for function call intensive programs. For programs with few dynamic

function calls, the inline expansion mechanism does not eliminate large percentages of

87

dynamic function calls. This is a desirable behavior because the overall goal is to ensure

infrequent function calls rather than to achieve high elimination percentages.

After inline expansion, function calls account for only a very small percentage of the

control transfers (see the CT per call column). Therefore, function calls become much less

important in the hardware design tradeoffs. Large scopes for compiler optimizations can

be expected for the critical parts of the programs. The code expansion, on the average,

is about a 17% increase in static code size. Because the code size increase is measured

without optimizations after inlining, it is expected to be lower after optimization. In

Figure 5.15, there are two bars associated with each benchmark: the left one shows the

percentage of code size increase and the right one the percentage of call reduction.

The inline expander is not able to eliminate more than 80% of the candidate dynamic

function calls for cccp, espresso, and make, because a large percentage of dynamic func­

tion calls were distributed among a large number of static calls. Inlining many of these

function calls results in only a very small marginal improvement in the dynamic call

reduction. As a result, the inline expander terminates after all the cost-effective static

function calls have been expanded. We would like to point out that an optimal algorithm

would also terminate under these conditions. In all of these benchmarks, the function

call reductions achievable by an optimal algorithm have been achieved by the IMPACT-I

heuristic. It should be noted, however, that an optimal algorithm might incur less code

size increase to achieve the same result.

After inline expansion, the dynamic external, pointer, avoided, and candidate calls

correspond to 56%, 3%, 18%, and 23% of all dynamic calls, respectively. Therefore,

better ways to handle external functions are desirable. Since most external function

calls in this experiment are system calls, new techniques to reduce the number of system

calls should be studied.

5.1.9 Summary

We have identified six critical issues which have to be addressed by realistic inline

expanders: the role of inlining, program representation, hazard prevention, sequence con-

88

trol, program modification, and desirable optimizations. Both theoretical and practical

considerations for addressing these issues are presented. Optimal algorithms are provided

whenever possible and heuristics are suggested whenever desirable. The IMPACT-I C

Compiler inline expander has been implemented and is used to illustrate the design de­

cisions involved in a practical inline expander.

We have shown, for fourteen realistic programs, that inline expansion can substantially

reduce the function call frequencies. The heuristic algorithms adopted in the IMPACT-I

inline expander approximate the optimal algorithms closely for these benchmarks. In­

line expansion also results in enlarged optimization scopes for critical sections of the

programs. We conclude that inline expansion is an extremely cost-effective alternative

and/or supplement to other software and hardware interprocedural optimization tech­

niques.

We have also pointed out problems with system calls, which become the major cost

of function calls after inline expansion. Further study to reduce system calls is necessary.

The art of using profile information to make inlining and other compilation decisions

in general is still in its infancy. The critical issue is how reliable run-time information can

be derived from the profile data. A hybrid methodology combining program analysis and

statistical analysis is being developed in the IMPACT project. A major breakthrough in

this area will lead to the extensive use of run-time information to perform optimizations

not possible in the present generation of compilers.

5.2 Instruction Placement

5.2.1 Introduction

The instruction memory hierarchy (on-chip caches, off-chip secondary caches, mem­

ory) has received only moderate attention due to the low instruction bandwidth require­

ments of conventional machines with a high microcycle count per instruction. In VAX-

11/780, it takes 10.5 microcycles to execute every 3.8 bytes of instructions [Emer 84].

An 8-byte instruction buffer which prefetches instructions during idle cache cycles pro-

89

vides enough instruction bandwidth for the VAX-11/780 microengine. In response to

the increasing demand for processor speed, performance improving techniques such as

pipelining have been widely used to implement processors which requires much higher

instruction bandwidth. For example, the VAX 8600 implementation requires 3.8 in­

struction bytes every 6 microcycles. Further reducing the number of microcycles per

instruction will further increase the instruction memory bandwidth requirement, making

the performance of the instruction memory access an important issue. Many processor

architectures have adopted instruction formats and semantics to allow the instruction

units to be efficiently pipelined [Russell 78], [Hennessy 81], [Chow 87], [Patterson 82].

To simplify instruction decoding, these processor architectures specify fixed instruction

formats, for which the conventional encoding techniques cannot be applied. To simplify

instruction sequencing, these processors specify instructions whose functions are close to

the microinstructions of the microprogrammed processors. The instruction set does not

include powerful opcodes, e.g., block move, that encode sequences of microinstructions.

These two policies make the instruction unit pipelining more efficient, and therefore

match the speed of the instruction unit pipeline to that of the execution pipeline. How­

ever, these policies increase dynamic code size and increase the instruction bandwidth

requirement.

Compiler code improving techniques often increase code size. Inline expansion reduces

function call overhead at the cost of increased code size. Loop unrolling increases code

scheduling flexibility at the cost of increased code size. Trace scheduling extracts the

program parallelism at the cost of increased code size. These techniques rely on the

instruction memory hierarchy to absorb the increased code size so that the program

execution speed can be improved. This puts further demand on the instruction memory

hierarchy performance.

One conventional approach to improving the memory hierarchy performance is to

increase the size and/or set-associativity of the top level cache memory [Smith 82],

[Smith 87]. For example, the MIPS-X processor uses a 2048-byte, 8-way set-associative

instruction cache with 8-byte blocks. This approach is limited because the cache cycle

90

time and the chip space increase as the size and set-associativity increase [Eickenmeyer 88],

[Flynn 85], [Alpert 88]. To make the situation worse, if the compiler generates code with

little spatial locality and/or many cache mapping conflicts, no cache of reasonable size

and set-associativity can provide enough instruction bandwidth. The previous research

results on the instruction cache design, however, did not consider the compiler's instruc­

tion placement algorithms.

We have designed and implemented an instruction placement algorithm to improve

the performance of the instruction memory hierarchy. Spatial locality is maximized by

placing the instructions executed near each other in time into consecutive memory loca­

tions. Cache mapping conflicts are minimized by placing the functions with overlapping

lifetimes into memory locations which do not contend with each other in cache. This

algorithm improves both caching and paging performance.

Using trace-driven simulation, we have demonstrated that the instruction layout al­

gorithm can efficiently exploit small, direct-mapped instruction caches with large blocks.

Good performance is achieved due to a low miss ratio, low memory traffic ratio, and fast

hardware. The effect of varying the cache design parameters (cache size, block size, block

sectoring, partial and loading) has been presented. Experiment data and algorithms can

be found in our published papers [Chang 88], [Hwu 89a].

We will first present the trace selection algorithm, which is the heart of our instruction

placement algorithm. Then we will describe an outline of our instruction placement

optimization.

5.2.2 Trace selection

A trace is an ordered set of basic blocks that tend to execute in a sequence. The

program control is likely to enter a trace from its first basic block. Once the program

control enters a trace, it is likely that all basic blocks in the trace are executed. A trace

selection algorithm identifies traces in a weighted control graph. The objective of trace

selection is to minimize the number of times the program control enters and exits from

the middle of traces, and to maximize the trace lengths.

91

Trace selection was first proposed by Fisher as a systematic approach to global mi­

crocode compaction [Fisher 81]. Since then, improvements and implementations of op­

timizations based on trace selection techniques have been reported [Linn 83], [Su 84],

[Ellis 86], [Howland 87]. These techniques are useful for generating efficient code for

application programs which are too large and too complicated to be hand-optimized.

However, most of the experimental results reported on using trace selection to assist op­

timizing large application programs have been based on small benchmarks with simple

control structures. For different trace selection algorithms, we report the distribution of

control transfers categorized according to their potential impact on the microcode op­

timizations. The experimental results are based on ten C application programs which

exhibit large code size and complicated control structure. The measured data for each

program are accumulated across a large number of input files to ensure the reliability of

the result. All experiments are performed automatically using our IMPACT C compiler

which contains integrated profiling and analysis tools.

T race Schedul ing: We refer readers who are unfamiliar with trace scheduling to the

original paper by Fisher [Fisher 81]. Trace scheduling consists of three major functions :

trace selection, local compaction, and bookkeep. First, the trace selection function selects

the most likely to be executed program path. Then, local compaction is applied to

schedule the trace. And finally, the bookkeep function inserts patch code at the split

and rejoin points to preserve correctness. The three functions are described in great

detail in Ellis's thesis [Ellis 86].

Trace scheduling permits the patch code created during the bookkeep phase of a

trace to be selected and compacted as part of later traces. However, we do not allow

the additional basic blocks generated by the bookkeep function to be considered when

forming later traces, unless they can be absorbed by jump optimization. This requirement

allows us to apply trace selection independently of the local compaction and bookkeep

functions. Code motion moves critical instructions on the program critical paths up to

the earliest point at which they can be executed. The usefulness of the code motion

92

and the cost of the bookkeeping on the total program execution time depend on the

program structure and on the underlying microarchitecture. For example, code motion

applied to a section of a program with large fine-grain parallelism will tend to do well

due to the large code movement freedom. In a pipelined processor, code motion allows

the execution of multicycle operations to overlap with the issuing and execution of less

critical operations when there is no data dependence. Similarly in a processor capable of

issuing multiple instructions per cycle, code motion reduces execution time by packing

operations into fewer instructions.

Trace scheduling guides global code motion by favoring most frequently executed

program paths. Therefore, the goal of the trace selection function is to identify when

forming longer traces is desirable and how all basic blocks should be partitioned into

various traces. It would be grossly complicated for the trace selection function to deal

with microarchitecture-dependent factors such as degree of hardware parallelism. Disre­

garding the hardware limitations, the trace selection function tries to form the longest

possible traces, limited only by program-dependent factors.

The question is what program-dependent factors must the trace selection function

consider. The program control flow, local program parallelism, and the code mobility

as determined by data-flow analysis can all be implemented in the trace selector. The

program flow analysis, by either loop analysis or dynamic profiling, allows the trace

selector to form traces by grouping series of basic blocks which tend to execute together.

The local program parallelism and code mobility analysis tell the trace selector when

trace expansion should be stopped due to limited code movement freedom. However,

the complexity of the analysis, although required in later phases of compilation, hinders

the development of a clean selection function. It is best to use only the control flow

information and to construct the longest traces.

The problem is how to form traces in such a way that the in-trace transition is maxi­

mized and the off-trace transition is minimized. Off-trace transitions can be classified into

five different types. Together with in-trace transition, there are a total of six transition

types (T1-T6).

93

(1) T l connects the last node of a trace to the first node of a different trace.

(2) T2 connects the last node of a trace to a middle node of another trace (maybe the

same trace).

(3) T3 connects a middle node of a trace to the first node of another trace (maybe the

same trace).

(4) T4 connects two middle nodes of different traces.

(5) T5 connects two consecutive nodes within a trace.

(6) T6 connects the last node of a trace to the start node of the same trace.

Code motion is permitted only for T5 connections. A T2 transition requires bookkeeping

at the rejoin location. A T3 transition requires bookkeeping at the branch location. A

T4 connection requires bookkeeping at both the branch and the rejoin locations. A T2,

T3, or T4 transition may execute longer than the same code without applying trace

scheduling. Because code motion is not allowed across T l and T6 connections, global

code motion obtains no speedup over local code compaction for T l and T6 connections.

Let %a, %b, %c, %d, %e and %f denote the percentages of T l , T2, T3, T4, T5 and

T6 transitions, respectively, in a typical program run. The goal of the trace selector is

to maximize %e and to minimize %b, %c, and %d. The various percentages allow us

to compare different trace selection functions. A trace selection function is better than

others if it generates higher %e and lower %b, %c, and %d, for a given control graph.

Select ion Algor i thm: In his trace scheduling paper, Fisher presented the following

trace selection algorithm with node weights as the selection criteria. Later, Ellis in his

thesis implemented the same general trace selection algorithm but used arc weights as

the selection criteria.

a lgor i thm t r a c e _ s e l e c t i o n
mark a l l nodes u n v i s i t e d ;
while (t h e r e a re u n v i s i t e d nodes)

94

/* select a seed */
seed = the node with the largest execution
count among all unvisited nodes;

mark seed visited;
/* grow the trace forward */
current = seed;
loop

s = best_successor_of(current);

if (s==0) exit loop;
add s to the trace;
mark s visited;
current = s;

end loop
/* grow the trace backward */
current = seed;
loop

s = best _predecessor_of (current);
if (s==0) exit loop;
add s t o t h e t r a c e ;
mark s v i s i t e d ;
c u r r e n t = s ;

end loop
/ * compaction and bookkeep */
t r ace . compac t ion ;
book.keep;

end while
end a lgor i thm

Since we do not consider the additional basic blocks generated by the bookkeep func­

tion in the trace selection process, the trace_compaction and the bookkeep functions are

not included in the above algorithm.

To ensure that loop headers become the leading nodes of traces, when enlarging traces,

crossing loop back-edges is prohibited. To avoid generating too many jump operations,

trace selection is turned off for infrequently executed program sections. For example,

branch i f (r0>0) t o LI ;
LO: XXX
LI : YYY

is translated to the following code segment if LO is rarely executed.

95

branch i f (r0<=0) t o LO;
LI : YYY

LO: XXX
goto LI ;

The above example shows that trace selection can increase the number of uncondi­

tional branches. For machines that require branch slots for unconditional branches, it is

better not to perform trace selection for infrequently executed code sections to reduce

code size.

The node weight is the execution count of a basic block. This number can be either

estimated statically by loop analysis or profiled dynamically by an automatic profiler. In

this section, all weights used in the trace selection functions are strictly derived from the

average program profile accumulated over many runs. The selection function based on

node weights is shown in the following code segment.

best_successor_of(x)
let n be the immediate successor of x
having the largest execution count;

if (n is visited) return 0;
return n;

best_predecessor_of(x)
let n be the immediate predecessor of x
having the largest execution count;

if (n is visited) return 0;
return n;

Each node (basic block) of the control graph can have several incoming and outgoing

arcs. Each arc represents a possible branch path connecting two nodes. Trace scheduling

yields some performance gain when the program flows through an arc within a trace, and

suffers when an off-trace arc is taken. Hence, arc weight is a better selection criterion

than node weight. The selection based on arc weights is shown in the following code

segment.

best_successor_of(x)

let e be the arc with the largest execution count
among arcs leaving x;

96

n = t h e d e s t i n a t i o n of e;
i f (n i s v i s i t e d) r e t u r n 0;
r e t u r n n ;

b e s t . p r e d e c e s s o r . o f (x)
l e t e be t h e a r c wi th t h e l a r g e s t execut ion count

among a r c s e n t e r i n g x;
n = t h e source of e;
i f (n i s v i s i t e d) r e t u r n 0;
r e t u r n n ;

Some nodes have many incoming and outgoing arcs. If there is not a single arc which

dominates all others, the performance gain that can be extracted by including the most

likely to be taken arc by a trace will be overshadowed by the combined off-trace cost of

all other arcs. In such instances, it is better to stop the trace expansion. To detect such

cases, a minimum arc probability requirement is added to the selection function.

The probability that an outgoing arc Ai will be taken, given that the program

control is already at node Nj which is the source of Ai, is simply (arc.weight(Ai) /

node.weight(Nj)). The probability that a node Na is reached through an arc Ab is

(arc_weight(Ab) / node.weight(Na)). Adding a minimum branch probability to the se­

lection by arc function results in the following function.

bes t_successor_of(x)
l e t e be t h e a rc wi th t h e l a r g e s t execut ion count

among a r c s l eav ing x;
i f (probability(e)<=MIN_PROB) r e t u r n 0;
n = the destination of e;
if (n is visited) return 0;
return n;

best_predecessor_of(x)
let e be the arc with the largest execution count
among arcs entering x;

if (probability(e)<=MIN_PR0B) return 0;
n = the source of e;
if (n is visited) return 0;
return n;

probability(e)
s = source of e;
d = destination of e;
return min((weight(e)/weight(s)),

97

(w e i g h t (e) / w e i g h t (d))) ;

With the minimum branch probability requirement, the trace selection algorithm will

produce shorter traces, which is undesirable. On the other hand, control flows that enter

and exit from the middle of traces will be kept to a very small number, which is desirable.

In situations in which the bookkeep cost is large, it is better to add the minimum branch

probability requirement.

E x p e r i m e n t s : The compiler compiles and profiles the benchmark programs by insert­

ing extra code to record the execution count of basic blocks and branch paths. The

compiled programs are installed and tested with many inputs. For each run, the profiler

updates the accumulated average execution count of basic blocks and branch paths for

a typical run of the program. With the profile information, the compiler constructs the

weighted control graph. Then trace selection is applied to the weighted control graph,

and the percentages of the six connection types (%a %b %c %d %e %f) are measured.

Ten programs from several application domains are chosen mainly because of their

popularity and substantial program size. Each of the ten programs is run at least ten

times with realistic inputs. We make a special effort to exercise nearly all program

options. In Table 5.5, the name column lists the program name. The runs column

indicates the number of runs under profiler monitoring.

We report the percentage of each of the six transition types executed in a typical

run of the benchmark program. The loop column in the following tables is the average

number of basic blocks in an executed inner loop. The trace column is the average

number of basic blocks of all traces executed. Table 5.6 corresponds to the selection

according to node weight function. Table 5.7 corresponds to the selection according to

arc weight function. Tables 5.8 to 5.11 demonstrate the effect of imposing additional

minimum branch probability requirement.

As we have expected, arc weight is a better selection criterion than node weight.

The additional minimum branch probability requirement further reduces the off-trace

cost. As the minimum branch probability requirement increases, %b, %c, and %d decline

98

slightly. However, as the minimum requirement rises, fewer and smaller traces are formed,

leading to low percentages of in-trace transitions. In any case, the in-trace transition

percentage (%e) is several times larger than the off-trace transition percentages (%b, %c,

%d) combined. This essentially tells us that even a small improvement in in-trace code

movement can compensate for much larger bookkeep cost. The off-trace transitions (%b,

%c, %d) are low, because benchmark programs have predictable branch behavior. The

profile information shows that, on the average, the branch direction of more than 90% of

all branch instructions executed can be correctly predicted statically.

A few of the benchmark programs show substantial inner loop back-edge transitions

(%f). Loop unrolling can be applied to exploit program parallelism across loop itera­

tions. When N copies of a loop exist, the loop back-edge of the first (N-l) instances

can be transformed into normal connections between two distinct nodes. These (N-l)

connections between different iterations of the loop can be selected for trace expansion.

Since many iterations are usually taken before the program control leaves the loop, the

expanded loop structure will form a long trace covering the most important path of all

unrolled instances of the loop.

For several benchmarks, the number of function calls is substantial, more than one

function call per every six basic blocks executed. The program tbl shows the highest

function call frequency, about one function call for every two basic blocks executed. The

profile result shows that the most frequently executed function in tbl consists of only one

basic block. Similarly in the other programs, the most frequently executed functions tend

to be small and can be easily in-line expanded. Since function in-line expansion not only

gives larger traces but also eliminates register saving and restoring around the function

boundaries, the potential gain seems to be more substantial than loop unrolling.

Of all the traces actually executed, the average trace size is about three to four

basic blocks for various selection functions. The relatively small size is due to control

uncertainties and small function body. One can expect some increase in trace length after

function in-line expansion. An inner loop as seen by the IMPACT C compiler is a trace

whose last node branches back to the trace header. The average size of all inner loops

99

executed is about three basic blocks. In other words, one can expect two conditional

branchs in inner loops. Therefore, loop unrolling and software pipelining techniques for

large integer programs must cope with at least two conditional branchs in inner loops.

Since the percentage of off-trace transition (%b, %c, %d) is much smaller than in-trace

transition (%e), trace scheduling can tolerate large off-trace cost.

5.2.3 Instruction placement

The goal of the IMPACT-I C Compiler instruction placement optimization is to lay

out the target program to maximize spatial locality and to minimize cache mapping

conflicts. To maximize spatial locality, instructions are mapped into the same block if

they are executed close to each other in time. Therefore, almost all the bytes in a block

are used when that block is brought in cache. To minimize mapping conflicts, functions

with overlapping lifetimes are mapped into different blocks of the cache. The instruction

placement optimization is implemented in five major steps: execution profiling, function

inline expansion, trace selection, function layout, and global layout.

S t e p 1. Execu t i on profil ing. A program is represented by a weighted call graph. A

call graph is a directed graph in which every node is a function and every arc is a function

call. A weighted call graph is a call graph in which all the nodes and arcs are marked

with their execution frequencies. Each node of the weighted call graph corresponds to

a weighted control graph. A control graph (for a function) is a directed graph in which

every node is a basic block, and every arc is a branch path between two basic blocks. A

weighted control graph is a control graph in which all the nodes and arcs are marked with

their execution frequencies. The IMPACT-I profiler translates each target C program into

an equivalent C program with additional probe function calls. When the equivalent C

program is executed, these probe function calls record the weights of the nodes and arcs

of the call graph for the entire program and the control graph for each function. It is

critical that the inputs used for executing the equivalent C program be representative.

Therefore, this approach is more suitable for characterizing realistic programs for which

100

representative inputs can be easily collected. The IMPACT-I Profiler to C Compiler

interface allows the profile information to be automatically used by the IMPACT-I C

Compiler.

S t e p 2. Func t ion inl ine expans ion . The function calls (arcs in the weighted call

graph) with high execution count are replaced with the function bodies if possible. The

goal is to transform all of the important interfunction control transfers into intrafunction

control transfers. Inline expansion reduces the dynamic interfunction control transfers

to a small percentage (about 1%) of all the control transfers, which provides two major

advantages. First, the spatial locality improves because almost all the control transfers

are within individual functions. Second, the potential cache mapping conflicts are reduced

because the potential conflicts across functions are insignificant.

S t e p 3 . Trace se lect ion. For each function, basic blocks which tend to execute in

sequence are grouped into traces. The traces are the units of instruction placement to

maximize spatial locality. Note that the inline expansion step provides large functions

to enhance the size of the traces selected.

S t e p 4. Func t ion layout . For each function, traces which tend to execute in sequence

are placed in consecutive memory locations. We start with the function entrance trace,

and expand the placement by placing the most important descendant after it. We grow

the placement until all the traces with nonzero execution count have been placed. Traces

with zero execution count are moved to the bottom of the function. This results in a

smaller effective function body, allowing more functions to be packed into each page.

S t e p 5. Global layout . The goal of the global layout algorithm is to place functions

which are executed close to each other in time into the same page, so that interfunction

cache conflicts are further reduced and the working set for instruction paging can be also

reduced.

101

5.3 Control Flow Optimization

5.3.1 Introduction

Pipelining increases the throughput of the instruction fetch, instruction decode, and

instruction execution portions of a high-performance scalar processor. Function call/return

and branch instructions disrupt the flow of instructions through the pipeline, degrading

the utilization of the pipelined datapaths. The IMPACT-I C compiler performs four

optimizations in sequence to improve the control flow:

1) function inline expansion,

2) trace selection,

3) instruction placement, and

4) branch prediction and smart multiway branch implementation.

This section describes the compile-time branch handling issues. We will use the

benchmark programs that are listed in Table 5.1. It is assumed that function inline

expansion, trace selection, and instruction placement have been applied.

5.3.2 Multiway branch

The distribution of various types of branch instructions is listed in Table 5.12. The

%conditional column of Table 5.12 indicates the percentage of conditional branch instruc­

tions among all the dynamic control transfer instructions. The %unconditional column

of Table 5.12 indicates the percentage of unconditional branch (including call/return)

instructions among all of the dynamic control transfer instructions. Inline expansion has

already reduced the number of unconditional branches. The %multiway column of Table

5.12 indicates the percentage of multiway branch instructions among all dynamic control

transfer instructions. Although the percentage of multiway branch instructions is small,

they are nevertheless important due to their long potential execution time.

Each multiway branch (switch statement) can be implemented by a hashing jump

or a sequence of conditional branches. The IMPACT-I C compiler implements each

102

multiway decision as follows. First, the compiler sorts all of the target cases by their

probability of execution. Second, the compiler lays out the conditional branches so that

the ones with higher branching probability appear before those with lower branching

probabilities. An exception to this rule is the default case, which has to be placed at

the very end as an unconditional jump instruction. Third, the compiler calculates the

expected number of comparisons to implement the multiway decision with the sequence

of conditional branches formed in the second step. If the expected number of comparisons

is beyond a threshold (10 in this measurement), a hashing jump will be used instead. The

execution of these hashing jumps involves hashing the input condition into a hash table

of explicit and default cases, fetching the corresponding target address, and redirecting

the instruction fetch with that target address.

Table 5.13 shows the results of the multiway branch implementation. The Vodefault

column indicates the percentage of the time the default case is reached for all switch

statements. For some benchmarks, the %default percentage is high due to the low

coverage of the explicit cases. Because we must place the default case at the end of

the branch sequence as an unconditional branch instruction, high %default percentage

lessens the effectiveness of compiler case layout optimization. The effect is especially

pronounced in eqn.

The %hashing column indicates the percentage of all multiway branches being imple­

mented by hashing jumps. For architectures with long scalar memory access delays, the

threshold for adopting the hashing jumps could be increased to much more than the one

we used (10 expected comparisons). Therefore, one can expect to see a smaller percent­

age of hashing jumps for architectures with long scalar memory delays. The Vosequence

column of Table 5.13 indicates the percentage of all switch statements being implemented

by branch sequences. The total column indicates the average number of cases per multi-

way branch implemented by branch sequences, excluding the default case. The expected

column indicates the expected number of comparisons required to resolve a multiway

branch implemented as a branch sequence. Note that for most benchmarks, the sequence

percentage is close to 100%. For compress, grep, and lex, the high percentage of branch

103

sequence implementations results from the highly biased distribution of selecting cases.

For these benchmarks, the average total number of comparisons is high (10 or more) but

the expected number of comparisons is much lower (at most 5). For the other bench­

marks, almost all multiway branches are implemented as branch sequences, due to their

small numbers of total cases.

If a hashing jump is 10 times more expensive than each conditional branch, the cost of

each multiway branch is reduced to about 3.5 conditional branches per multiway branch.

Because multiway branches occur infrequently in execution, we conclude that the cost of

multiway branches is no longer a major concern.

5.3.3 Branch prediction

We now examine the characteristics of the conditional branches corresponding to

the two-way decisions in C programs. These branches are due to if statements, the

conditional operators (&&, || and ?:), and the loop control structures. The IMPACT-I

C compiler uses the profile information to lay out the instruction space to reduce the

frequency of taken-branch instructions. For each function, basic blocks which tend to

execute in sequence are grouped into traces. Trace selection reduces the number of

(dynamic) taken branches.

Table 5.14 shows a detailed breakdown of the statically predicted and actual behavior

of branches.2 Column TT of Table 5.14 indicates the percentage of branches which are

predicted to be taken and are actually taken, as a percentage of all conditional branches.

Column TN of Table 5.14 indicates the percentage of branches which are predicted to

be taken but are actually not taken, as a percentage of all conditional branches. Column

NT of Table 5.14 indicates the percentage of branches which are predicted not taken but

are actually taken, as a percentage of all conditional branches. Column NN of Table

2The precision of the numbers in Table 5.14 and the other tables in this chapter may not comport
with their accuracy because the sample sizes are small (e.g., 20). The reader should round off one or
two digits when using the results.

104

5.14 indicates the percentage of branches which are predicted not taken and are actually

not taken.

Two observations are worth mentioning. First, about 65% of the dynamic branches

are not taken and almost all of them can be correctly predicted at the compile time. Com­

paring this number with the traditional 35% percentage ([Smith 81], [Lee 84], [Emer 84])

shows that our instruction placement algorithm is effective in reducing taken branches.

Second, among the taken branches (which account for about 35% of the dynamic branches),

most of them can also be correctly predicted at the compile time. Overall, about 92% of

the dynamic branches can be correctly predicted at the compile time.

5.4 Conventional Code Optimization

All of the optimizations that are presented in this section can be formulated as pred­

icates on a set of operations. If all predicates are true, then the set of operations can

be replaced by another set of operations that is more efficient. The scope of code op­

timization is where operations are selected to be tested by the predicates. Local code

optimization limits its scope to a basic block at a time. Global code optimization limits

its scope to a function at a time.

Table 5.15 shows a list of classical code optimizations that have been integrated into

the Lcode optimizer. The name column shows the names of the code optimizations. The

local column is marked yes if the optimization has been implemented as a local code

optimization, and no if otherwise. The global column is marked yes if the optimization

has been implemented as a global code optimization, and no if otherwise. The trace

column is marked yes if the optimization has been implemented as a trace-based global

code optimization, and no if otherwise. In this section, we will briefly describe the

functionality of each optimization. The implementation details can be found in most

compiler text books [Aho 86]. Trace-based code optimizations are described in the next

subsection.

105

Cons tan t P ropaga t ion : Constant propagation involves statements of the form (a =

b), where 6 is a constant. After determining where this definition of a reaches,3 the

constant 6 can be propagated to replace some references to a. This optimization is very

effective in propagating constant parameters after function inline expansion.

Copy P r o p a g a t i o n : Copy propagation involves statements of the form (a = b), where

b is a virtual register. After determining where this definition reaches, references to a

can be replaced by b if b is not modified, or a new register can be introduced to preserve

the value of b. Standard algorithms for performing this copy propagation can be found

in [Aho 86].

RO = Rl ; RO = Rl ; / * can become dead code * /
-> ->

R2 = RO * 5; R2 = Rl * 5; R2 = Rl * 5;

In many cases, the original move statement becomes dead code after copy propagation.

Another form of copy propagation merges two virtual registers into one virtual register

if their lifetimes do not overlap. For example,

RO = Rl * 5; R2 = Rl * 5;
R2 = RO; -> /* becomes dead code */

if (R0>12) goto LO; if (R2>12) goto LO;

M e m o r y Copy P r o p a g a t i o n : Memory copy propagation involves statements of the

form (mem[a] = b), where b can be a constant or a register. After determining where

this definition reaches, references to mem[a] can be replaced by 6 if mem[a] is not mod­

ified. We have implemented a very limited memory disambiguation function to support

this optimization. Our memory disambiguation function currently distinguishes different

global scalar variables and memory accesses using the same base address and constant

offsets.

3An instruction i reaches another instruction y if the values of one or moie source operands of
instruction y can come from instruction x. A formal definition of the reaching definition property and
an algorithm for detecting reaching definitions can be found in [Aho 86].

106

mem[_a] = Rl ; mem[_a] = Rl; mem[_a] = Rl ;

R2 = mem[_a]; R2 = Rl ; / * can become dead code */
R2 = R2 - 19; R2 - Rl - 19; R2 = Rl - 19;

Classical copy propagation optimization includes constant propagation, copy prop­

agation, and memory copy propagation. We classify copy propagation techniques into

these types in order to fine-tune and to characterize the importance of each type.

O p e r a t i o n Combin ing : There are several forms of operation combining. The first

type of operation combining combines two operations into a more powerful operation.

For example, condition code computation and conditional branch operations can often

be combined.

Rl - RO - 5 ; -> Rl = RO - 5; / * can become dead code * /
i f (Rl > 0) goto LO; i f (RO > 5) goto LO; -> i f (RO > 5) goto LO;

For another example, some machines support and-not and orjnot operations.

Rl = not RO;
Rl = Rl and R2; -> Rl = R2 and.not RO;

A side effect of this type of operation combining is that it reduces the length of critical

paths and improves the code scheduling for a multiple operation issue processor.

The second type of operation combining is similar to tree height reduction of expres­

sions by moving constant operands up in an expression tree. For example,

Rl = $SP - 24; -> R3 = 10 - 24;
mem[Rl+10] = RO; mem[$SP+R3] = RO; -> mem[$SP-14] = RO;

A side effect of this type of operation combining is that it may benefit from loop

invariant code elimination and loop induction variable elimination. For example,

Rl = RO - 20; -> Rl = $SP - 20; / * becomes i n v a r i a n t code * /
mem[$SP+Rl] = 0; mem[R0+Rl] = 0;

On machines that support guarded instructions, another type of operation combin­

ing can combine a conditional branch operation and a data movement operation into a

guarded operation. For example,

107

if (cc) goto LI; /* becomes dead code */
LO: Rl = 5; -> if (!cc) Rl = 5;
L * l Z

C o m m o n Subexpress ion E l imina t ion : Because the conversion from Hcode to Lcode

is done one Hcode expression at a time, there can be a lot of redundant computations

across Hcode expressions. Common subexpression elimination tries to identify common

operations and eliminate redundant work. For example,

s t r u c t xx B [] ; / * s i z e o f (s t r u c t xx) = 40 * /
i n t A, B [] , C;
A = B[X] + 5;
C = 4 - B[X];

is translated to

RO = X * 40;
RO = mem[_B + RO] ;
A = RO + 5;
Rl = X * 40; / * redundant * /
Rl = mem[_B + 40] ; / * redundant */
C = 4 - Rl ;

and can be optimized to

RO = X * 40;
R0 = mem[_B + R0];
A = R0 + 5;
C = 4 - R0;

To characterize this optimization more accurately, we distinguish three types of op­

erations: memory load, memory store, and the rest. Common subexpression elimination

that involves memory load operations is called redundant load elimination, and common

subexpression elimination that involves memory store operations is called redundant

store elimination. Redundant load and store elimination can be substantially more dif­

ficult than common subexpression elimination due to limited memory disambiguation

capability.

108

Dead C o d e Remova l : Dead code is a collection of operations whose results will not

be used by later operations and does not affect the output. In the case of local variables,

assignments are to virtual registers and can be eliminated if no more use of the register

occurs before the exit point of a function or before another definition of the register. In

the case of memory stores, dead code removal can be difficult due to limited memory

disambiguation capability. Dead code is traditionally found by determining the liveness

of variables. Most other optimizations convert redundant operations into NO_OPs and

rely on dead code removal to eliminate NO_OPs. Another application of dead code

removal is to remove operations of the form (a = a) and (mem[o] = mem[o]) due to

binding variables to the same storage location.

C o n s t a n t Folding: After function inline expansion and constant propagation, many

operations will have one or more constant operands. Constant folding is applied if the

value of an operation can be determined at compile time. For example, addition by zero

can be converted to a move operation. When all operands are constant, most arithmetic

operations can be evaluated at compile time. Handling branch operations is substantially

more difficult, because constant folding of a conditional branch operation may alter the

control graph structure and therefore affect the dataflow information.

S t r e n g t h R e d u c t i o n : More expensive operations, such as multiplication and division,

can be converted to less expensive operations. For example, multiplication and division

by a constant of a power of two can be converted to a shift operation (can shift multiply

bit positions). On machines that do not have a hardware multiplier, it is desirable to

expand a multiplication into a sequence of shift and add operations. For example,

Rl = RO * 17; -> R2 = RO * 16; -> R2 = RO « 4 ;
Rl = R2 + RO; Rl = R2 + RO;

For another example, modulo operation on a constant of a power of two can be

converted into a bitwise AND operation.

109

O p e r a t i o n Cancel la t ion: On rare occasions, the code optimizer can identify two

operations that cancel each other exactly. This optimization is implemented by pattern

matching special operation pairs.

C o d e Reorde r ing : Whereas code scheduling improves instruction pipelining, code

reordering enables more copy propagation and operation combining optimizations. For

example,

Rl = RO; -> Rl = RO; -> R2 = RO + 6;
RO = 1 ; R2 = Rl + 6; RO = 1;
R2 = Rl + 6; RO = 1;

J u m p Op t imiza t i on : Jump optimization replaces a frequently executed unconditional

jump operation with a copy of the target basic block. This optimization reduces the

number of spurious jump operations that are introduced by instruction placement and

constant folding, which convert some conditional branches whose source operands are

constants into jump operations. This optimization also enlarges the scope of code opti­

mization. However, the drawback is that it modifies the control graph and thus affects

the dataflow information.

D e a d Block E l imina t ion : Basic blocks that will never be executed can be elimi­

nated. This optimization can be implemented by a simple graph algorithm that detects

unreachable nodes of a control graph. All unreachable nodes are dead blocks.

Loop Invar ian t C o d e Remova l : Operations whose operands are invariant in a loop

body can be moved to before the beginning of the loop. The simplest way is to introduce

a loop header basic block and insert invariant code in that basic block. The additional

control flow paths can be simplified later by jump optimization. By reducing the size of

loop bodies, the number of operations that are executed is greatly reduced. Standard

implementation techniques can be found in [Aho 86].

110

Loop Induc t ion Variable S t r e n g t h Reduc t ion : An induction variable is a variable

that appears only in operations of the form (v = v + constant), (v = v — constant),

or (v = constant — v) within a loop body. Loop induction variable strength reduction

replaces complex operations that are linear functions of an induction variable by simpler

operations. Most often, this optimization replaces multiplications between induction

variables and constants by simple increments [Aho 86]. For multidimensional arrays and

structure arrays, multiplications by constants are always necessary to compute address

offsets.

Loop Induc t i on Var iable E l imina t ion : Two induction variables of the same form

can be combined into one. For example,

RO = 0;
Rl = 0; RO = 0;

LO: -> / * change Rl t o RO * /
RO = RO + 1; RO = RO + 1;
Rl = Rl + 1; i f (cc) goto LO;
i f (cc) go to LO;

When the initial values of two induction variables are not identical, they can still be

combined by appropriately adjusting other operations. For example,

RO = $SP - 20; RO = $SP - 20;
Rl = 0; Rl = 0;

L0: R2 = mem[R0] ; -> R2 = mem[R0 •*• Rl] ;
R3 = mem[Rl]; R3 = mem[Rl];

R0 = R0 + 1; Rl = Rl + 1;
Rl = Rl + 1; i f (cc) goto L0;
i f (cc) goto L0;

5.5 Trace-Based Code Optimization

The results from the trace selection experiments indicated that traces are generally

small, containing only a few basic blocks. To increase the size of traces, we first apply

111

jump optimization to replace an unconditional jump operation by a copy of the desti­

nation basic block. Figure 5.16 shows that by duplicating basic block A, an inner loop

that is free of branch operations is formed. Figure 5.17 shows a typical control graph

generated from an (if A then C; B) statement, where C is not likely executed. By dupli­

cating basic block B, an off-trace into the (A, B) trace is eliminated and the (C) trace

is enlarged. Code expansion due to jump optimization can be controlled by inhibiting it

at infrequently executed code sections.

Op t imiz ing frequent ly execu ted p a t h s : All profile-based code optimizations that

will be presented in this section explore a single concept: optimizing the most frequently

executed paths. We will illustrate this concept by an example. Figure 5.18 shows a

weighted control graph which represents a loop program. The execution counts of basic

blocks {A,B,C,D,E,F} are {100,90,10,0,90,100}, respectively. Clearly, the most im­

portant execution path in this example is the {A, B, E, F} trace. Because basic blocks in

this trace are executed many more times than basic blocks D and C, the code optimizer

can apply transformations that reduce the execution time of the {A, B, E, F} trace, but

may increase the execution time of basic blocks D and C. Nonloop-based classic code

optimizations are conservative and do not perform transformations that may increase the

execution time of any basic block. Loop-based classic code optimizations consider the

entire loop body and do not consider the case in which some basic blocks in the loop are

rarely executed because of branch operations that are heavily biased to go to one direc­

tion. In the rest of this subsection, we describe several profile-based code optimizations

that make aggressive decisions and explore more optimization opportunities. Details can

be found in [Chang 91b].

Forming super-blocks: We propose a simple data structure called super-block to

represent a frequently executed path. A super-block has the following features. (1) It

is a linear sequence of basic blocks B(i),i = l...n, where n > 1. (2) It can be entered

only from B(l). (3) The program control may leave the super-block from any one basic

112

block. (4) When a super-block is executed, it is very likely that all basic blocks in the

super-block are executed.

The formation of super-blocks is a two-step procedure: (1) trace selection and (2)

tail duplication. Trace selection identifies basic blocks that tend to execute in a sequence

and groups them into a trace. The trace selection algorithm has been shown in a pre­

vious subsection. Figure 5.18 shows the result of trace selection. Each dotted-line box

represents a trace. There are three traces: {A, B,E,F}, {D}, and {C}.

After trace selection, each trace is converted into a super-block by duplicating the tail

part of the trace to ensure that the program control can enter only from the first basic

block. The tail duplication algorithm is shown in the following code segment.

a lgor i thm t a i l _ d u p l i c a t i o n (a t r a c e B (l . . n)) begin
i f (B(l) i s t h e only b a s i c b lock , from which program

c o n t r o l can e n t e r t h e t r a c e) then
e x i t ; / * i t i s a l r eady a super-b lock * /

l e t B(i) be t h e second b a s i c b lock t h a t i s an e n t r y
po in t t o t h e t r a c e .

f o r (k = i . . n) begin
c r e a t e a t r a c e t h a t con ta ins a copy of B (k) ;
p l ace t h e t r a c e a t t h e end of t h e func t i on ;
r e d i r e c t a l l c o n t r o l flows t o B(k) , except

t h e ones from B (k - l) , t o t h e new t r a c e ;
end f o r

end a lgor i thm

After tail duplication, the example in Figure 5.18 becomes the graph in Figure

5.19. Because there are several control paths into F, we duplicate the tail part of the

{A,B, E,F} trace from basic block F. Each duplicated basic block forms a new super-

block and is appended to the end of the function.4 More code transformations can be

applied after tail duplication to eliminate spurious jump operations. For example, the

F' super-block in Figure 5.19 can be duplicated and each copy can be combined with

4Note that the profile information needs to be scaled accordingly. Scaling the profile information
destroys the accuracy. Fortunately, code optimizations after forming super-blocks need only approxi­
mate profile information. In order to have accurate profile information (for taking measurements), the
transformed program can be profiled again.

113

the C(D) super-block to form a larger super-block. To control code expansion, we add

a basic block to a trace only if the execution count of the basic block exceeds a thresh­

old value, e.g., 100. After forming super-blocks, we optimize only super-blocks whose

execution counts are higher than the threshold value.

E x a m p l e s : Figure 5.20 shows an example of super-block based common subexpres­

sion elimination. Common subexpression elimination cannot be applied to the original

program in Figure 5.20(a) because opB modifies r2 (a source operand of the common

subexpression). Figure 5.20(b) shows the super-blocks that are formed from the original

program. In the transformed program, opB no longer affects the value of r2 that is used

in opC; therefore, common subexpression can now be applied and result in the program

in Figure 5.20(c).

Figure 5.21 shows an example of super-block-based dead code removal. The program

is a simple loop that has been unrolled four times. The loop index variable (rO) has been

expanded into four registers (rl,r2,r3,r4) whose values can be computed in parallel. If

the loop index variable is live after the loop execution, then it is necessary to update the

value of rO in each iteration, as shown in Figure 5.21(a). These update operations, e.g.,

r0=r l , r0=r2, and r0=r3, are dead code in the super-block, because references to them

now refer to rl,r2,r3, and r4. Therefore, we can move these update operations out of the

super-block. The result is shown in Figure 5.21(b).

Figure 5.22 shows an example of super-block-based loop invariant code removal. In

Figure 5.22(a), op A is not loop invariant (in the traditional sense) because its source

operand is a memory variable (buffer.length), and opD is a function call that may modify

the memory variable (buffer.length). In super-block-based loop invariant code removal,

opA is invariant because opD is not in the super-block. The result is shown in Figure

5.22(b).

Figure 5.23 shows an example of super-block-based global variable migration. The

memory variable x[l] cannot migrate into a register in traditional global variable migra­

tion because opC may access x[l]. In super-block-based global variable migration, x[l]

114

can migrate into a register. The result is shown in Figure 5.23(b). Extra operations (opX,

opY and opC) are added to the super-block entry and exit points to ensure correctness

of execution.

S u m m a r y : Nonloop super-block code optimizations are effective because of tail dupli­

cation. Loop super-block code optimizations are effective because we optimize only the

most important execution path of each loop. Experimental data that show the impor­

tance of super-block code optimizations will be presented in Chapter 8.

115

Table 5.1 Benchmark characteristics.

benchmark
bison
cccp
cmp
compress
eqn
espresso
grep
lex
make
tar
tbl
tee
wc
yacc

runs
10
20
16
20
20
20
20
4

20
14
20
20
20
8

IL
9797K
585K
135K
981K

1809K
54496K
2357K

152630K
7629K
809K
581K
24K

392K
15668K

CT
1944K
111K
30K

155K
537K

8522K
857K

56295K
1620K
104K
137K
9.5K
112K

3935K

input
grammar for a C compiler, etc.
C programs (100-3000 lines)
similar/dissimilar text files
same as cccp
papers with .EQ options
original espresso benchmarks
exercised various options
lexers for C, Lisp, awk, and pic
makefiles for cccp, compress, etc.
save/extract files
papers with .TS options
same as cccp
same as cccp
grammar for a C compiler, etc.

Table 5.2 Static function call characteristics.

benchmark
bison
cccp
cmp
compress
eqn
espresso
grep
lex
make
tbl
tar
tee
wc
yacc

total
1026
393
40

183
463

1466
90

560
686
797
445

82
27

464

external
40.4%
15.8%
50.0%
37.7%

4.1%
4.7%

20.0%
8.9%

15.2%
4.4%

31.2%
40.2%
48.1%
19.2%

pointer
0.0%
0.2%
0.0%
0.0%
0.0%
0.8%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

avoided
49.9%
74.3%
47.5%
61.7%
79.3%
64.0%
73.3%
73.2%
63.5%
74.8%
63.8%
59.8%
51.9%
64.7%

candidate
9.6%
9.7%
2.5%
0.5%

16.6%
30.4%
6.6%

17.9%
21.4%
20.8%
4.9%
0.0%
0.0%

16.2%

116

Table 5.3 Dynamic function call behavior.

benchmark
bison
cccp
cmp
compress
eqn
espresso
grep
lex
make
tar
tbl
tee
wc
yacc

total
31104

2569
1001
4684

48428
295778

17489
84648
48056

1442
31987

1583
21

3935

external
36.6%

5.3%
50.2%

8.1%
8.2%
0.1%
1.2%

13.5%
9.2%

35.3%
14.6%
99.1%
53.1%

7.7%

pointer
0.0%
5.4%
0.0%
0.0%
0.0%
9.4%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

avoided
1.4%
6.5%
0.5%
0.6%
0.9%
0.2%
0.1%
0.4%
0.2%

12.0%
3.4%
0.9%

46.9%
0.3%

candidate
62.0%
82.7%
49.3%
91.3%
90.9%
90.3%
98.8%
86.1%
90.6%
52.7%
82.0%

0.0%
0.0%

92.0%

Table 5.4 Inline expansion results.

benchmark
bison
cccp
cmp
compress
eqn
espresso
grep
lex
make
tar
tbl
tee
wc
yacc

code inc
17%
17%

3%
4%

22%
24%
31%
23%
34%
16%
30%

0%
0%

24%

call dec
50%
55%
49%
91%
81%
70%
99%
77%
59%
43%
66%

0%
0%

80%

IL per call CT per call
630
506
265

2324
197
616

11214
7807

388
983

55
15

18310
1205

125
95
58

368
58
96

4071
2880

82
127

13
6

5146
303

117

Table 5.5 Benchmarks.

name
cpp
eqn
espresso
grep
more
mpla
nroff
pic
tbl
wc

runs
34
10
18
10
10
18
10
20
14
10

description
GNU C preprocessor
typeset mathematics for nroff/ditroff
Boolean minimization
pattern search
browse through a text file
technology independent PLA generator
format documents for display
format pictures for nroff/ditroff
format tables for nroff/ditroff
word count program

118

Table 5.6 Selection according to node weight.

benchmark
cpp
eqn
espresso
grep
more
mpla
nroff
pic
tbl
wc

%a
13.9
4.2
26.3
27.4
9.6
10.9
2.5
2.0
3.4
9.4

%b
3.5
17.4
8.13
9.8
13.7
6.1
9.8
10.1
8.2
10.9

%c
10.5
18.0
12.9
10.8
13.8
8.5
10.6
10.9
9.1
13.7

%d
1.1
0.0
7.8
0.4
1.0
12.8
1.2
2.0
0.5
0.0

%e
37.6
56.3
29.4
43.8
60.0
53.1
71.6
71.0
70.2
57.3

%f
33.4
4.2
15.5
7.8
2.4
8.7
4.1
3.9
8.6
8.6

loop
1.8
4.0
2.0
3.0
4.7
3.9
5.4
2.0
1.9
6.0

trace
1.8
2.6
1.9
2.2
3.8
2.8
3.7
3.6
2.5
3.3

Table 5.7 Selection according to arc weight.

benchmark
cpp
eqn
espresso
grep
more
mpla
nroff
pic
tbl
wc

%a
12.6
19.7
14.9
17.8
20.1
12.3
5.1
9.4
6.5
7.0

%b
1.0
1.0
5.7
2.1
1.6
4.7
0.8
1.5
0.8
0.4

%c
8.0
2.2
9.7
2.9
2.1
7.4
1.7
4.1
1.8
2.8

%d
2.0
2.2.
18.6
0.9
0.7
12.8
1.8
1.3
1.5
2.4

%e
43.0
73.1
40.3
68.0
75.1
54.2
87.1
79.3
81.3
78.8

%f
33.4
1.8
10.8
8.5
0.3
8.7
3.6
4.4
8.1
8.6

loop
1.8
1.3
2.1
4.9
3.0
3.9
6.7
5.6
1.5
7.0

trace
2.0
3.1
2.2
3.4
4.4
2.8
5.1
3.9
2.7
5.7

119

Table 5.8 Minimum branch probability = 60%.

benchmark
cpp
eqn
espresso
grep
more
mpla
nroff
pic
tbl
wc

%a
33.4
21.7
23.0
19.2
20.1
29.0
5.7
13.0
7.4
7.0

%b
1.0
0.7
4.7
1.7
1.6
0.9
0.7
1.3
0.7
0.4

%c
2.1
1.9
7.6
2.4
2.1
2.3
1.4
3.1
1.5
2.8

%d
2.0
0.9
16.2
0.4
0.7
12.7
1.8
1.0
1.6
2.4

%e
35.5
73.0
36.7
67.6
75.1
49.4
86.8
78.0
80.8
78.8

%f
25.9
1.8
11.9
8.7
0.3
5.8
3.6
3.6
8.1
8.6

loop
1.7
1.4
1.9
4.9
3.0
3.2
6.6
2.0
1.5
7.0

trace
1.6
2.9
1.8
3.3
4.4
2.1
5.0
3.2
2.7
5.7

Table 5.9 Minimum branch probability = 70%.

benchmark
cpp
eqn
espresso
grep
more
mpla
nroff
pic

tbl
wc

%a
35.8
23.7
56.6
2.0
20.2
29.0
5.9
15.0
9.1
7.0

%b
0.9
0.5
1.5
1.6
1.6
0.9
0.7
1.1
0.7
0.4

%c
1.5
1.4
2.2
2.4
2.1
2.3
1.4
2.6
1.1
2.8

%d
1.8
0.8
8.7
0.0
0.7
12.7
1.8
1.0
1.3
2.4

%e
34.1
71.9
20.2
67.5
75.1
49.4
86.7
76.9
79.7
78.8

%f
25.9
1.7
10.9
8.7
0.3
5.8
3.6
3.5
8.1
8.6

loop
1.7
1.3
1.9
4.9
3.0
3.2
6.6
1.9
1.5
7.0

trace
1.6
2.7
1.6
3.2
4.4
2.1
5.0
2.8
2.6
5.7

Table 5.10 Minimum branch probability = 80%.

benchmark
cpp
eqn
espresso
grep
more
mpla
nroff
pic
tbl
wc

%a
40.5
26.9
67.5
19.9
20.2
32.9
8.6
21.1
11.3
7.0

%b
0.6
0.1
0.8
1.6
1.6
0.8
0.5
0.3
0.7
0.4

%c
1.1
0.9
0.8
2.4
2.1
1.4
1.3
1.2
1.0
2.8

%d
1.44
0.77
5.18
0.02
0.74
12.70
7.11
1.74
1.10
2.41

%e
31.0
69.7
15.7
67.5
75.1
46.5
79.4
72.2
77.9
78.8

%f
25.3
1.7
10.1
8.7
0.3
5.8
3.1
3.5
8.1
8.6

loop
1.7
1.3
1.7
4.9
3.0
3.2
2.9
1.9
1.5
7.0

trace
1.5
2.4
1.4
3.2
4.4
2.0
4.2
2.3
2.5
5.7

Table 5.11 Minimum branch probability = 90%.

benchmark
cpp
eqn
espresso
grep
more
mpla
nroff
pic
tbl
wc

%a
44.7
28.3
76.6
29.5
29.1
39.0
17.6
32.5
12.7
58.0

%b
0.4
0.1
0.1
0.0
0.1
0.6
0.1
0.1
0.5
0.0

%c
1.0
0.7
0.2
0.8
0.6
0.8
0.4
0.2
0.8
0.0

%d
0.8
0.8
0.7
0.0
0.7
12.7
7.0
0.5
1.1
0.0

%e
28.8
68.7
14.2
61.0
69.1
42.7
73.0
64.9
76.8
42.0

%f
24.3
1.5
8.3
8.7
0.3
4.1
2.0
1.7
8.0
0.0

loop
1.6
1.2
1.3
4.9
3.0
3.5
2.6
1.7
1.5
0.0

trace
1.4
2.4
1.2
2.6
3.3
1.8
3.3
2.0
2.4
1.7

121

Table 5.12 Percentage of various branch types.

name
bison
cccp
cmp
compress
eqn
espresso
grep
lex
make
tar
tbl
tee
wc
yacc

%conditional
92.8%
69.0%
80.5%
90.5%
91.5%
85.7%
82.2%
98.4%
93.7%
97.2%
81.4%
79.6%
91.4%
97.1%

%unconditional
6.8%
11.0%
19.4%
9.5%
7.4%
13.5%
13.3%
1.5%
6.0%
2.8%
17.8%
20.4%
8.6%
2.7%

multiway
0.3%
19.9%
0.0%
0.0%
1.0%
0.9%
4.4%
0.1%
0.3%
0.0%
0.8%
0.0%
0.0%
0.2%

Table 5.13 Multiway branch statistics.

name
bison
cccp
cmp
compress
eqn
espresso
grep
lex
make
tar
tbl
tee
wc
yacc

%default
74.7%
92.8%
0.0%
0.0%

84.0%
66.2%
0.0%
35.9%
39.7%
0.0%

22.4%
0.0%
0.0%

48.5%

%hashing
9.3%
51.8%
0.0%
0.0%
75.3%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

%sequence
90.7%
48.2%
100.0%
100.0%
24.7%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%

total
6.96
3.36
3.00
10.00
6.97
2.71
12.00
12.72
8.60
6.38
11.99
3.00
3.00
6.28

expected
6.22
3.15
1.00
1.00
6.13
2.00
1.50
5.42
4.56
1.26
2.94
1.00
1.60
4.87

122

Table 5.14 Conditional branch results.

name
bison
cccp
cmp
compress
eqn
espresso
grep
lex
make
tar
tbl
tee
wc
yacc

TT
33.4%
42.5%
0.0%
18.3%
14.2%
26.5%
8.3%

46.6%
49.8%
90.2%
24.5%
12.3%
10.6%
38.6%

TN
3.1%
6.0%
0.0%
2.8%
3.3%
6.3%
0.3%
1.1%
3.3%
0.7%
1.7%
0.1%
2.9%
2.0%

NT
5.4%
5.2%
3.1%
11.5%
3.3%
9.2%
1.7%
1.7%
2.5%
0.6%
3.7%
12.7%
11.2%
8.1%

NN
58.1%
46.3%
96.9%
67.4%
79.2%
58.0%
89.7%
50.6%
44.4%
8.6%
70.1%
75.0%
75.3%
51.3%

hit — ratio
91.5%
88.8%
96.9%
85.7%
93.4%
84.5%
98.0%
97.2%
94.2%
98.8%
94.6%
87.3%
85.9%
89.9%

123

Table 5.15 Classical code optimizations.

name
constant propagation

copy propagation
memory copy propagation

operation combining
common subexpression elimination

redundant load elimination
redundant store elimination

dead code removal
constant folding

strength reduction
operation cancellation

code reordering
jump optimization

dead block elimination
loop invariant code removal

loop induction variable strength reduction
loop induction variable elimination

loop unrolling

local
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no
no
no
no
no

global
yes
yes
yes
yes
yes
yes
yes
yes
no
no
no
no
yes
yes
yes
yes
yes
yes

trace
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no
yes
yes
yes
yes

124

a.c b.c cc d.c

compiler
parsing

optimization

code gen

linker

parsing

opt

code gen

parsing

oot

code gen

resolving
interobject
file reference

parsing

opt

code gen

executable image
F igure 5.1 Separate compilation paradigm.

125

compiler

a.c

1
parsing

\
a.i

b.

1
c

parsing

\
b.i

c c

I
parsing

1
c i

l

d.

1
c

parsing

'
d.i

inline expansion

a'.i

optimization

code gen

a' .0

'
b'.i

1

opt

code gen

b \

linker

o \ _

res
inter

file re

'
c'.i

opt

code gen

/ ^ y (

olving
object
ference

'

i'.c

d'.i

opt

code gen

executable image
Figure 5.2 Inlining at compile time.

126

compiler

a.

1

c

parsing

code gen

b.c

1
parsing

code gen

b.o \
a.o ^ ^ v ^

linker

c c

\

parsing

code gen

- Z c o

resolving
interobject

file reference

inline expansion

optimization

' '

d.c

\

parsing

code gen

^ - ^ a . o

executable image
Figure 5.3 Inlining at link time.

127

arc3,3 arcl0,7

system call

Figure 5.4 A weighted call graph.

128

system call

Figure 5.5 An inlining example.

129

call graph

stack

growth

l

N

M

M

M

without expansion with expansion

Figure 5.6 Activation stack explosion.

130

Figure 5.7 An example of restricted inlining.

131

A

F

L

B

F

L

F
- r -

_ JL.

without restriction with restriction

Figure 5.8 Lost opportunity.

JL

W

inlined / times

JL

W/I

Figure 5.9 Handling single-function recursions.

132

A

J L

F

_ L

L

inlining both F and L

inlining only F

•
A

F

j ' _

L

Figure 5.10 Interdependence between code size increase and sequencing.

133

main

A,5

D.70

C,70

B,70

system call

D,70

D.70

C,70

B,70

system call

F,7

~r-\
/ M

L Z %

_ — •. JL — — ^ — — — - v . — —

B,7O : : c,7o

system call

Figure 5.11 Inlining a function before absorbing its callees.

134

system call

B,70

i

system call

Figure 5.12 Inlining a function after absorbing its callees.

135

A

_L

F

L

A

J L

F

<

L

step 1

step 1'

A

F

—

| 1

L

A

- r -

V

F

L

i L i

step 2

F i
1
1
1

step 2'
- — » • p

L

A

F

L

i F |
! ~ I_ !

; L i

A

F

L

1

F |

i L i

j L j

Figure 5.13 Expanding into a single caller.

136

Figure 5.14 Restricted linear sequencing.

137

Percentage
Code inc.

and
Call dec.

lOO-i

8 0 -

6 0 -

4 0 -

2 0 -

0

91
99

50 A5 49

11 11

81
70

2<
31

77 80

2c

59
66

3<
43

1(

£
bisoncccpcmpcprs eqnesprscgrep lex make tbl tar yacc

3(
24

Figure 5.15 Code size increase versus call reduction.

B

\ f

A

1 ' ' '

B

A'

' M '

C

Figure 5.16 Example of jump optimization.

138

1 '

A

B

1
C

B

Figure 5.17 Another example of jump optimization.

139

Figure 5.18 A weighted flow graph.

140

1

(10/100)

Figure 5.19 Forming super-blocks.

141

(a)

opB: r2 = r2+1;

(b)

opB: r2 = r2+l;

opC": r3 = r2*3;

(c)

opB: r2 = r2+l;

opC: r3 = r2*3;

Figure 5.20 An example of common subexpression elimination.

142

V *
rl = rO+1
r2 = rO+2
r3 = rO+3
r4 = rO+4

rO = rl;

rO = r2;

rO = r3;

rO = r4;

•i
i

"K

i
i

i
i
i
i

• V
rl = rO+1
r2 = rO+2
r3 = rO+3
r4 = rO+4

rO = r4;

(a) (b)

Figure 5.21 An example of dead code removal.

143

(a)

1 ' ' r i '

opA: r2 = buffer.length;

opB: r3 = r2>rl;

\
2047

opC: rl = rH-1;

1 opD: refillQ;

i

(b)

r

i

"

op A: r2 = buffer.length;

1 '

opB: r3 = r2>rl;

' '

opC: rl = r l+1;

* opD: refill();

Figure 5.22 An example of loop invariant code removal.

144

(a)

U H

opA: x[l] = x[l]+rl;

100

opB: rl = r l+1;

opC: punt();

(b)

opX: r2 = x[l];

i r — (» •

op A: r2 = r2+rl;

opB: rl = r l+1;

opY: x[l] = r2;

opY: x[l] = r2;

opC: punt();

Figure 5.23 An example of super-block global variable migration.

145

CHAPTER 6

MACHINE-DEPENDENT CODE

OPTIMIZATION

A typical IMPACT-I code generator traverses the Lcode data structure four times.

For example, the preliminary version of our Sparc code generator has the following four

phases:

(1) Replace each Lcode operation with one or more target machine operations.

(2) Extract necessary information for the register allocator.

(3) Modify operand fields according to the result of register allocation.

(4) Generate output.

However, to produce better code, additional passes through the Lcode data structure are

made by the code optimizer.

In this chapter, we describe four machine specific optimizations: instruction selec­

tion, constant preloading, register allocation, and code scheduling. These optimizations

have been implemented in the IMPACT-I C compiler for several target machines. The

impact of these code optimizations on the quality of code that the IMPACT-I C compiler

produces for the MIPS-R2000 processor is large.

146

6.1 Instruction Selection

The first step of code generation is to replace a group of Lcode operations by some

target machine operations that produce the same effect on the machine state. For the

most recent RISC processor architectures, one can almost always identify a one-to-one

mapping from every Lcode operation to a target machine operation. Occasionally, an

Lcode operation needs to be converted to a sequence of target machine operations. An

example is the integer division operation for the Sparc processor, in which the integer

division operation is converted into a function call to a highly optimized library routine.

On the other hand, several Lcode operations may be equivalent to one target machine

operation. For example, memory operations can be eliminated by using complex operand

addressing modes in CISC architectures. To derive a good mapping function from the

Lcode instruction set to the target machine instruction set, one needs a clear understand­

ing of the cost of each target machine operation.

The code generator should avoid emitting assembly operations that convert to mul­

tiple machine operations. For example, an assembler typically supports many types of

conditional branch operations (e.g., beq, bne, bgt, bge, bit, ble) for the simplicity of

programming. However, the hardware usually supports few branch operations. The

assembler macro-expands the unsupported ones to several machine operations.

Because the C programming language does not specify how overflow traps should be

handled, the code generator may always emit nontrapping arithmetic operations. The

overhead for testing overflow conditions can be eliminated.

Instruction selection may become more important in future machines that support

special instructions, such as guarded instructions. For example, accessing an array ele­

ment A[X] requires a sequence of flow-dependent operations that is shown in the following

code segment.

rO = X « 2; / * suppose s izeof(A[0])=4 */
r l = load(_A + rO);

The direct solution is to provide a hardware function to do the shifting, addition, and

then the memory load operation as one machine operation. Shifting an operand by two

147

bit positions in hardware is not expensive and is unlikely to increase the machine cycle

time significantly. Special hardware functions have been widely used in special-purpose

processor architectures. For example, hardware accelerators for logic simulation often

support bit-field operand modes.

6.2 Constant Preloading

Some constant literals may be encoded into a machine operation. For example, a

number of MIPS-R2000 operations allow an integer constant in the second source operand

field. Therefore, the code generator should move the constant integer operand field of

arithmetic, load, store, and branch operations to the second operand position to take

advantage of the short integer addressing mode. For branch operations, changing the

order of source operands is legal only if the operation code can be complemented. For

example, branch if 0 < r l (bit) can be transformed to branch if r l > 0 (bgt).

When a constant literal cannot be encoded into an operand field, an explicit memory

load operation is introduced to load the constant into a register. An exception occurs

when the processor has special registers that are hardwired to fixed constant values. For

example, the MIPS-R2000 processor architecture has a special register whose value is

always zero. Therefore, for a MIPS-R2000 processor, preloading zero is never necessary.

In the general case, a range is specified for each operand field of each operation. For

example, we can specify that the second operand field of an add operation can contain

an integer in the range [-1024, 1024]. An integer constant that is not in the range needs

to be preloaded.

After detecting all constant operands that need to be preloaded, the compiler needs to

decide where to insert the preload operation. Suppose that operation X has an operand

field that needs to be preloaded, the preload operation must always be executed before

operation X from all execution paths, and the register that holds the preloaded constant

must not be modified before the execution of operation X. Algorithms that compute the

dominance relation can be found in [Aho 86]. We want to insert the preload operation

148

in an infrequently executed basic block that dominates operation X to minimize the

execution overhead, and to keep the distance between the preload operation and operation

X as short as possible to reduce the lifetime of the register that holds the preloaded value.

Often, the two objectives cannot be simultaneously satisfied. For a machine that has an

abundant supply of registers (e.g., AMD29K), the preload operations can be introduced

as early as at the entry point of a function. For a machine with very few registers, it may

be best to preload only constants for operations in loops and to insert preload operations

in the loop headers immediately before the loop bodies.

Our constant preloading optimization consists of four steps. The first step is to

arrange the source operands to fully utilize the constant literal operand mode of the

architecture. The second step is to determine what needs to be preloaded. Because

the number of usable registers in MIPS-R2000 is limited, constants are preloaded only

in loop preheaders, rather than at entry points of functions. Therefore, the third step

is to detect loops and introduce loop preheader basic blocks. A loop preheader basic

block is guaranteed to dominate every basic block in the loop. When there are nested

loops, we choose a nesting level that has a high iteration count and low loop preheader

cost. We also avoid performing constant preloading for large loops in which the number

of simultaneously live registers is large. Our decision depends on the loop size, the

execution frequencies, and the number of registers that are referenced in the loop. The

fourth step is to decide which constant operands should be preloaded. For each constant

operand, we calculate the number of times it is referenced in the loop body. The profile

information provides an accurate dynamic reference count. Each reference costs one

memory operation if the constant is not preloaded. Therefore, the benefit of preloading

is (number of references — 1). We preload the most important constants. After constant

preloading, nearly every Lcode operation has a one-to-one translation to a MIPS-R2000

machine operation.

Commercial VLIW machines support an elaborate immediate addressing mode [Colwell 87].

A multiple-operation-issue architecture already has sufficient instruction memory band­

width to support an immediate addressing mode. Providing an immediate addressing

149

mode is desirable in multiple-operation-issue architectures for two reasons. First, im­

mediate addressing does not increase the length of the critical path, as does loading a

constant from memory to a register. Second, registers that are required for constant

preloading tend to have long lifetimes and cause more register spilling. With the imme­

diate addressing mode, the constant preloading optimization becomes less significant.

6.3 Register Allocation

Formulations of the register allocation problem can be found in [Chaitin 82] and

[Chow 88]. We have implemented a register allocation algorithm based on graph coloring

that is similar to Chaitin's original algorithm [Chaitin 82]. Our algorithm can handle

both shared and split register files. For example, our register allocator can handle reg­

isters in a floating-point coprocessor, and can also handle different register types (e.g.,

quad-word registers). The algorithm consists of the following steps: 1) construct an

interference graph, 2) determine a correct assignment based on the interference graph,

and 3) insert spill code where necessary. Determining caller-save and callee-save registers

has a large impact on the execution time of our benchmark programs. For leaf-level

functions, we want to use the caller-save registers first because they do not need to be

saved and restored by leaf-level functions. For top-level functions, we want to use the

callee-save registers first because they do not need to be saved and restored around a

subroutine call operation. We prefer to put in caller-save registers values that are not

live across function calls. We also prefer to put in caller-save registers values that may

be easily regenerated, for example, constants and results of simple integer operations,

because they do not need to be saved before a subroutine call.

Conventional compilers perform register allocation and assignment prior to code

scheduling. This approach has a severe drawback for heavily pipelined and multiple-

operation-issue machines. Register allocation can create artificial data dependencies be­

tween operations that limit code scheduling. For example, the first two operations of the

code segment shown below are independent and their order may be interchanged.

150

r 3 = r l + r 2 ;
r6 = r 4 + r 5 ;
r7 = r 3 + r 6 ;

But if the register allocator assigns r6 and r l to the same physical register, the first

two operations are no longer interchangeable.

r 3 = r l + r 2 ; / * r l w i l l not be used af terward * /
r l = r 4 + r 5 ;
r7 = r 3 + r l ;

Then the code scheduler cannot issue the second operation early, even though r4 and

r5 may be available before r l and r2 become available. We have conducted a study

on some numerical kernels and found out that the artificial data dependencies that are

introduced by register allocation can degrade the benchmark performance by an average

of about 30% for a processor that can issue two operations per cycle [Hwu 88b]. In that

paper, we have added a prepass code scheduling to the code generator. After prepass code

scheduling, the register allocator can still introduce artificial data dependencies. But the

new data dependencies will not severely degrade performance because the postpass code

scheduling does not need to change the order of operations that was determined by the

prepass code scheduling, except for spill code due to register allocation.

Code scheduling reduces execution time by overlapping the execution of independent

expressions. A sideeffect is that it tends to increase register lifetimes and increase the

number of simultaneous live registers. Unless properly controlled, prepass code scheduling

may cause many registers to spill. Our approach is to schedule operations that release

registers (source operands) first. Others have proposed a more intelligent scheme to

switch between two scheduling policies, one that minimizes register usage and another

that minimizes schedule length, depending on the number of available registers at any

given time [Goodman 88].

Constant preloading and register allocation compete for registers. Applying con­

stant preloading before register allocation has the risk of preloading too many constants.

Preloaded registers must be kept alive in the duration of the loop where the constants

151

are used. Because the lifetimes of preloaded constants are long, the decision to preload a

constant must be conservative. An integrated constant preloading and register allocation

algorithm may be the ideal solution.

6.4 Code Scheduling

Recall our definition of a super-block in Section 5.5. Our code scheduling algorithm

works on the super-block level. Our approach can be considered as an improvement over

trace scheduling [Fisher 81] because branches entering from the middle of traces are elim­

inated by code duplication. The scope of our scheduler is as large as in trace scheduling,

and upward code motion across basic block boundaries is easier in our approach because

a super-block can be entered only from the top. Downward code motion across basic

block boundaries is unconstrained, but may require copying the operation to the target

path.

In Chapter 8, we will describe some code transformation techniques that greatly

enlarge the sizes of super-blocks (hence, the scope of static scheduling), and reduce

the lengths of critical paths. Classical code optimizations, such as loop invariant code

elimination, can also move operations across basic block boundaries. In this chapter, we

assume that all code optimizations have been applied and discuss code motion that is

due to only code scheduling.

The input to our code scheduler is a function represented as a set of super-blocks and

some control flow paths connecting these super-blocks. The code scheduler processes one

super-block at a time, neglecting the effects of other super-blocks. The effect of long

operation latency across super-block boundaries is very small for our scalar benchmark

programs. When operation latency across super-block boundaries becomes an important

performance degradation factor, one can start from the most important super-block ac­

cording to the profile information, and consider the effect of protruding operation latency

when scheduling less important super-blocks. We have used this approach in a prototype

152

code generator [Hwu 88b], but have not yet adopted this approach in the current code

scheduler due to its complexity.

The outline of our code scheduling algorithm appears in the following code segment.

s chedu le . func t ion (fn) begin
compute dataf low informat ion ;
f o r each super -b lock sb i n fn do

schedule_super_block(sb) ;
end
schedule_super_block(sb) begin

c o n s t r u c t an a c y c l i c dependence graph;
remove redundant dependence a r c s ;
apply l i s t schedul ing ;

end

The following subsections describes the major steps of our algorithm.

6.4.1 Dataflow analysis

To move operations across basic block boundaries, we need to know what registers

are alive at the basic block boundaries. For each super-block, there is an IN set that

specifies the live registers upon entering the super-block. If a variable x belongs to the

IN set of a super-block, the value of variable x may be used before it is defined in the

super-block. For each exit point of a super-block, there is an OUT set that specifies the

live registers upon leaving the super-block through that exit point. Therefore, for each

branch operation, there is a corresponding OUT set. If there is a fall-through path, there

is also a corresponding OUT set. The standard algorithm for computing the IN and

OUT sets can be found in [Aho 86]. Dataflow information is used to decide whether an

operation may be moved across a branch operation.

O p e r a t i o n Perco la t ion : Operation percolation refers to moving an operation across

a conditional branch operation. For example, the code segment shown below contains

three dependent operations.

o p [l] : i f (r0<0) goto LI ;

153

o p [2] : r l = memory[rO + 5] ;
o p [3] : i f (r l>10) goto L2;

The operation op[2] is control-dependent on op[l], and op[3] is flow-dependent on

op[2]. However, if r l is not in the OUT set of op[l], then op[2] can be moved above op[l].

o p [2] : r l = memory[rO + 5] ;
o p [l] : i f (r0<0) goto L I ; / * r l not i n OUT(op[1]) * /
o p [3] : i f (r l>10) goto L2;

When the operation latency of memory load operation is 2 cycles, the original code

will have an idle cycle after issuing op [2]. The percolated version completely hides the

memory load latency by executing op[l] after op[2].

Code percolation repeatedly exchanges the order of two operations until a good sched­

ule is derived. Suppose that opi precedes opi in the strictly sequential execution order;

opi can be scheduled before opi if and only if

(1) opi is not data-dependent on opi,

(2) if opi is control-dependent on opi, opi does not modify any register that is in the

OUT set of the taken path of opi, and

(3) if opi is a branch, opi does not cause exceptions.

The first condition means that opi and opi are independent operations. The second

condition guarantees that opi will not corrupt the variables that are essential in case opi

redirects the control flow. The third condition prevents opi from affecting the system

state when opi redirects the control flow.

Most integer operations, except division and remaindering operations, can be consid­

ered to be safe operations that do not cause exceptions. On systems that do not cause

a trap upon memory access violation, memory load operations can also be considered to

be safe. Some machines write exception flags to the destination registers and handle

exception only until the register is used. For these machines, unsafe operations can also

be moved above conditional branches. A code scheduling scheme that does not allow

154

moving unsafe operations above a branch operation is called a r e s t r i c t ed code pe r ­

colat ion scheme. A code scheduling scheme that does allow moving unsafe operations

above a branch operation is called a general code percola t ion scheme.

Specula t ive Execu t ion : To further increase the freedom of code motion, the second

condition can also be neglected if the machine can automatically convert opi to a no-

op when opi redirects control flow. We call this type of hardware support speculative

execution. The instruction set has to be changed to attach to each operation a tag that

specifies the number of branches that have been percolated with this operation. For

example,

i f (r0==0) goto LI ; i f (rO==l) goto L2;
r l = memory[rO + 2 4] ;
i f (r l<0) goto L4;

can be transformed to

r l = memory[rO + 2 4] ; (t ag -2)
i f (r0==0) goto LI ; i f (rO==l) goto L2; i f (r l<0) goto L4;

Since the tag field of the memory load operation contains the value 2, if the next two

conditional branches must redirect control flow, then the original value of r l must be

restored.

Speculative execution has been proposed by Smith, Lam, and Horowitz [Smith 90].

Their method, which they called boosting, allows operations to be moved above one

branch operation. We compare the performance of this scheme to that of restricted and

general code percolation in Chapter 8. We show that the benefit of speculative execution

is insignificant beyond general code percolation.

6.4.2 Dependence graph

In addition to ensuring that all code motions are legal, the code scheduling algorithm

also needs to consider the allocation of function units. Therefore, code percolation and

speculative execution cannot be implemented as separate passes of the code scheduling

155

algorithm. Our approach is to implement a good code compaction algorithm based on a

dependence graph, and to implement optimizations, such as code percolation, as filters

that transform the dependence graph prior to code compaction.

Treating a super-block as a linear sequence of operations, we can construct an acyclic

dependence graph. The algorithm is shown in the following code segment:

construct_dependence_graph(sb) begin
for i = 1 . . sizeof(sb) do begin

/* add flow-dependence arcs */
for each source operand of op[i] do begin

if (there i s at l eas t one operation in o p [l . . i - l]
tha t writes to the source operand) then begin
op[i] i s flow-dependent on the l a s t operation

in o p [l . . i - 1] tha t writes the source operand;
end

end
/* add anti-dependence arcs */
for j = 1 . . i -1 do begin

if (op[j] uses the destination operand of op[i]) then begin
if (there i s no operation in o p [j + l . . i - l] tha t

writes to tha t operand) then begin
op[i] i s anti-dependent on op[j] ;

end
end

end
/* add output-dependence arcs */
for j = 1 . . i -1 do begin

if (op[j] writes the destination operand of op[i]) then begin
if (there i s no operation in o p [j + l . . i - l] tha t

wri tes to tha t operand) then begin
op[i] i s output-dependent on op[j] ;

end
end

end
/* add control-dependence arcs */
if (op[i] i s a branch operation) then begin

op[i+l . . s izeof(sb)] are control-dependent on o p [i] ;
end

end
end

156

To compute memory dependencies conservatively, we assume that all memory opera­

tions refer to the same memory variable. Several optimizations can improve the accuracy

of the dependence graph, e.g., memory disambiguation.

6.4.3 Dependence arc optimization

Each dependence arc is marked with a distance attribute, designating the minimum is­

sue distance between two dependent operations. For example, if opi is flow-dependent on

opi and the operation latency of opi is 2 cycles, then the distance of the flow-dependence

arc is 2. The code scheduler has to schedule opi at least 2 cycles after opi. Typically,

the flow-dependence arc distance is the operation latency of the source operation, and

all other dependence arcs have a distance of one. Several optimizations can be made to

reduce the dependence arc distances.

First, if the machine allows multiple branch operations to be issued per cycle and to

provide squashing capability, the distance of control dependence arcs can be reduced to

zero. For example,

i f (r0>0) goto LI ;
r l = r l - 1;
i f (r2<10) goto L2;

can be issued at the same cycle as

i f (r0>0) goto LI ; r l = r l - 1; i f (r2<10) goto L2;

An implicit ordering of operations is assumed within an instruction word. The first

taken branch operation squashes all subsequent operations in the same instruction word.

In the above example, if (rO > 0), the next two operations become no-ops.

Second, if the machine allows the compiler to decide what operations are always

fetched and decoded as an instruction word, the distance of anti-dependence arcs can be

reduced to zero. For example,

rO = r l - 1;
r l = 0;

can be packed into an instruction word as

157

rO = r l - 1; r l = 0;

The hardware has to guarantee that all source operands of all operations in the

instruction word are acquired before any of the operations are allowed to modify the

machine state.

Third, if the hardware assumes an implicit ordering of operations when more than

one operation of an instruction can write to the same location, the distance of output-

dependence arcs can be reduced to zero. For example,

rO = r l ;
i f (r l>0) goto LI ;
rO = - r l ;

can be packed into an instruction word as

rO = r l ; i f (r l>0) goto LI ; rO = - r l ;

If the branch is not taken, the third operation determines the final value of rO. If the

branch is taken, the third operation is squashed and the first operation determines the

final value of rO.

Fourth, operation percolation and speculative execution can be implemented by re­

moving certain control-dependence arcs. For example,

if (r0>0) goto LI;
if (r0==0) goto L2;
rl - rl - 5;

has three control-dependence arcs. To allow moving the third operation to above the

two branch operations, we simply eliminate the control-dependence arc between the first

operation and the third operation, and between the second operation and the third

operation.

Fifth, some flow-dependence arcs can also be optimized. For example,

rO = rO - 1;
i f (r0==0) goto LI ;

can be packed into an instruction word as

158

rO = rO - 1; i f (rO==l) goto LI ;

This can be accomplished by converting the dependence arc distance to zero, and let

the code compaction algorithm decide whether to pack the two operations into the same

instruction word.

Sixth, memory dependencies can be eliminated with information from user pragmas

and automatic memory disambiguation tools. We have implemented a tool that per­

forms limited resolution of memory addresses. Each memory address contains a base

address part and an offset field. If two memory operations have different base address

parts and the base addresses are data labels (global variables), we can assume the two

memory operations to be independent operations. If two memory operations have differ­

ent base address parts and the two base addresses are pointers (an address stored in a

register), without pointer analysis, we have to assume that the two memory operations

are dependent, unless explicitly declared independent by a user assertion. Some pointer

accesses can be distinguished from global variable accesses if the compiler determines

that the global variable cannot possibly be accessed through a pointer in the function.

If two memory operations have the same base address, we can determine whether the

two memory operations access overlapping memory regions from the offsets fields. If the

two memory operations access from nonoverlapping memory regions, we can assume that

they are independent operations. If we cannot determine whether or not the two memory

operations access from nonoverlapping memory regions, the two operations are assumed

to be dependent.

6.4.4 List scheduling

The input to the code compaction algorithm is an acyclic dependence graph, where

each node is an operation and each arc specifies the minimum distance between the

issue time of two dependent operations. Our algorithm is a variant of the popular list

scheduling algorithm. The first extension is that we need to handle dependence arcs of

159

zero distance. The second extension is that our algorithm has to allocate function unit

resources.

For each operation, we introduce two attribute fields: issueJime and priority. The

code compaction algorithm will assign the issueJime field of each operation to a positive

integer value. Operations with equal issueJime value are packed into the same instruc­

tion word. A special function issuejurgencyQ determines the importance of scheduling

each operation. For example, operations that belong to some critical paths are assigned

high priority because they must be scheduled as soon as possible. We also need to intro­

duce order sets of operations. One such set is called the ready_sei which contains a set of

operations that may be scheduled for execution at a particular time. The operations in

ready.set are sorted according to their priorities. The readyset is recomputed for every

time increment. A special function ready() is defined to determine whether an operation

can be scheduled at a given time.

In Chapter 3, we introduced the machine model. Each instruction template contains

an order set of operation slots. Each operation slot can contain one operation of a

given type. For example, for a processor that may issue two operations per cycle, one

instruction template may contain a integer ALU operation slot and a floating-point ALU

operation slot. The first operation slot can be filled by any integer ALU operation, such

as an integer addition or subtraction operation. The second operation slot can be filled

by any floating-point ALU operation, such as a double-precision multiplication operation.

The code compaction algorithm is shown in the following code segment:

schedule_graph() begin
/ * i n i t a i l i z a t i o n * /
f o r each ope ra t i on op do

i ssue_t ime(op) = 0;
/ * compute (s t a t i c) p r i o r i t y */
f o r each ope ra t ion op do

p r i o r i t y (o p) = issue_urgency(op) ;
/ * schedul ing * /
t ime = 0;
whi le (t h e r e i s unscheduled opera t ion) do begin

t ime = t ime + 1;
/ * i n i t i a l i z a t i o n */

160

fo r each i n s t r u c t i o n templa te t p do
t p = { } ;

/ * determine ope ra t i on s t a t u s * /
ready_se t = { } ;
f o r each unscheduled ope ra t ion op do

i f (ready(op)) then
r e a d y . s e t = r e a d y . s e t + {op};

/ * pack ope ra t ions i n t o i n s t r u c t i o n templa tes * /
f o r each ope ra t ion op i n r e a d y . s e t i n p r i o r i t y o r d e r do begin

f o r each i n s t r u c t i o n t empla te t p do begin
i f (op can be packed i n t o t p) then

t p = t p + {op};
end

end

/ * s e l e c t t h e b e s t i n s t r u c t i o n t empla te * /
f o r each i n s t r u c t i o n t empla te t p do

p r i o r i t y (t p) = sum of p r i o r i t y of a l l o p e r a t i o n s i n t p ;
b e s t = t h e i n s t r u c t i o n templa te with t h e h ighes t p r i o r i t y (t p) ;
/ * schedule s e l e c t e d ope ra t i ons * /
f o r each ope ra t ion op in b e s t do

issue_t ime(op) = t ime ;
end

end

An operation is ready to be scheduled when all of its dependencies have been fulfilled.

For example, if operation opi is flow-dependent only on operation opi and the operation

latency of opi is 1 cycle, then op2 can be issued at any time after opi has been scheduled.

A special case occurs when the dependence distance equals to zero. For example, if

operation opi is only anti-dependent on operation opi and the anti-dependence distance

is zero, then op2 can be packed to an instruction template tp if opi has been scheduled

at an earlier time, or if opi has been packed into the instruction template tp.

Our approach is to compute the issue-urgency of operations statically, that is, to

compute once before scheduling all operations. An alternative is to recompute the

issue-urgency of unscheduled operations at each time step. We have chosen the static

approach because issuejurgency() is a fairly complex function, and we cannot afford to

recompute per each time step.

161

The objective of our scheduling algorithm is not to produce the shortest schedule for

the super-block, due to branch operations that may redirect control flow away from the

middle of a super-block. The objective is to minimize the average execution time of the

super-block. For example, given the following code segment,

b r t o LO i f (ccO) / * s e c t i o n SO */

b r t o LI i f (c c l) / * s e c t i o n SI * /

b r t o L2 i f (cc2) / * s e c t i o n S2 * /

the objective is to minimize the function (length(Si) * weight(Si)), for i = 1...AT, where

length(Si) is the length of the schedule for section Si, weight(Si) is the profiled execution

count of the section Si, and N is the number of sections that are separated by branch

operations in the super-block.

Our issue-urgency function considers the following factors:

(1) Section weight: operations should be moved to an earlier section if and only if the

schedule of the earlier section is not prolonged.

(2) Latest issue time: operations on critical paths should be scheduled early.

(3) Register liveness: operations that release registers should be scheduled early.

(4) Uncovering: operations that enable more unscheduled operations should be sched­

uled early.

(5) Function unit resource: operations that compete for a limited function unit should

be scheduled early.

162

CHAPTER 7

MULTIPLE-INSTRUCTION-

ISSUE CODE

OPTIMIZATION

Previous works on concurrency exploitation of C integer programs have reported very

low speedup [Jouppi 89a], [Smith 90]. Assuming a uniform unit-time operation latency

and infinite resource, Jouppi has reported an execution rate of about 1.6 operations per

cycle for yacc, a parser generator program [Jouppi 89a]. Smith, Lam, and Horowitz have

reported an execution rate of about 1.4 (1.63/1.18) operations per cycle for a machine

that can fetch 4 operations per cycle and can boost operations above one branch operation

[Smith 90].

We have identified two limiting factors that prevent the static code scheduler from

producing a parallel schedule. First, the scope of scheduling is usually small. The average

basic block size is only about 4 operations. Even with trace selection optimization, a trace

typically contains 12 to 16 operations [Chang 88]. To achieve an execution rate that is

better than 2 operations per cycle, the schedule must be no more than 6 cycles. It is

unlikely to find that level of instruction parallelism in a trace. Second, there is generally

a long critical path in a trace. It is typical to see code segments that load data into

registers, perform some computations on the registers, and then store the result back

into the memory. Such code segments are dominated by (essential) flow-dependencies

that cannot be reduced.

163

The first part of this chapter describes several code transformation techniques that we

have implemented to enlarge the scope of code scheduling. Even if operations in a trace

are inherently sequential, by merging several traces together, the code generator may find

more parallelism. The second part of this chapter describes several code transformation

techniques that we have implemented to reduce the length of a critical path.

7.1 Expanding the Scope of Static Code Scheduling

Recall our definition of a super-block in Chapter 5. A super-block is a linear se­

quence of basic blocks that has a single entry point from the top of the super-block, and

potentially multiple exit points. The scope of our scheduler is a super-block. In the fol­

lowing subsections, we explore ways to increase the number of operations in a frequently

executed super-block.

The relationship between the sizes of super-blocks and the instruction-level parallelism

is not well understood. However, after studying many realistic programs, we strongly

believe that enlarging the sizes of super-blocks can lead to more effective static code

scheduling. We provide experimental data to support this argument in Chapter 8.

To enlarge a super-block, one can move or copy operations from another super-block.

In the case of copying, the instruction space may increase exponentially in the worst

case. In a subsection, we discuss how the amount of instruction space expansion can be

controlled.

7.1.1 Function inline expansion

A function call is an unconditional jump operation that terminates a super-block. In

order to expand a super-block across a function call, one can expand the body of the

called function into the caller function. Many leaf-level functions contain only one or two

C expressions that can be nicely expanded into the calling super-blocks. Implementation

issues of function inline expansion were discussed in Chapter 5.

164

7.1.2 Instruction placement

The instruction placement optimization selects groups of basic blocks that tend to

execute as sequences, reorders basic blocks in a function, and groups basic blocks that

tend to execute sequentially into a trace. A trace is later converted into a super-block

by code duplication. Implementation issues of instruction placement can be found in

Chapter 5. The method to convert a trace into a super-block has been described in

Chapters 5 and 6.

The accuracy of the instruction placement optimization affects the sizes of super-

blocks. For example, the code segment

i f (A) B e l s e C; D;

is traditionally translated to

A; goto Lc i f . f a l s e . ;
B;
goto Ld;

Lc: C;
Ld: D;

When the result of A is almost always true, the instruction placement optimization

generates the following code:

A
B

Ld: D

goto Lc i f . f a l s e . ;

Lc: C;
goto Ld;

Because we expect to go from B to D most of the time, the instruction placement

optimization eliminates unnecessary jump operations at the end of the basic block B.

Because C is less frequently executed, the penalty of adding an unconditional jump

operation to C is small. Then, basic blocks A, B, and D form a trace. After converting

traces to super-blocks, the code becomes

165

A; goto Lc i f . f a l s e . ; B; D;

Lc: C;
Ld ' : D; / * a copy of D * /

The result is a large super-block that contains three basic blocks (A, B,D). The

effect that has been shown in the above example is amplified in realistic C programs, for

instruction placement usually identifies several basic blocks that are likely to be executed

as a sequence.

7.1.3 Branch expansion

Instruction placement moves basic blocks that do not belong to a trace to the end of

the function. To preserve correct control flow, a jump operation is inserted at the end of

the basic block. In order to enlarge the sizes of super-blocks that are formed from these

basic blocks, we can replace the jump operations by copies of the target basic blocks. If

we continue from the example in the previous subsection,

La: A; goto Lc i f . f a l s e . ; B; D;
Le: E; goto La i f . t r u e . ;
Lf: F ;

Lc: C;
D; goto Le;

becomes

La: A; goto Lc i f . f a l s e . ; B; D;
Le: E; goto La i f . t r u e . ;
Lf: F;

Lc: C; D; E; goto La i f . t r u e . ;
goto Lf;

The super-block (C,D) absorbs a new element E by appending a copy after the super-

block. Because Le is no longer an entry point, the basic block E can be absorbed into

the (A, B, D) super-block. The code becomes

166

La: A; goto Lc i f . f a l s e . ; B; D; E; goto La i f . t r u e . ;
Lf: F;

Lc: C; D; E; goto La i f . t r u e . ;
goto Lf;

The result is a larger super-block (A, B, D, E) that forms an inner loop. The off-trace

blocks also form a large super-block (C,D,E).

The first type of branch expansion is to replace an unconditional branch operation

by the target basic block. The second type of branch expansion is to copy the target

basic block of a conditional branch, place the basic block after the conditional branch

operation, and then complement the branch condition.

7.1.4 Loop unrolling

When the number of loop iterations is large, we can expand the body of a loop by

unrolling it a number of times. For small loops, e.g., at most 10 operations, the IMPACT-

I C compiler unrolls the loop bodies 8 or more times. For larger loops or loops containing

several branch operations, the IMPACT-I C compiler typically unrolls the loop bodies

4 times. The IMPACT-I C compiler supports three types of loop unrolling. The first

type is performed when the compiler can detect that the number of loop iterations is

always a multiple of the number of times the loop is unrolled. For example, in the code

segment that follows, the left-side loop can be transformed to the right-side loop because

the number of iterations is a multiple of 4.

f o r (i=0; i<120; i++) f o r (i=0 ; i<120; i+=4) {
x [i] = 0; x [i] = 0;

x [i + l] = 0;
x[i+2] = 0;
x[i+3] = 0;

}

This type of loop unrolling is always preferred because it eliminates some induction

variable increments and loop boundary check operations, without incurring any overhead

cost.

167

The second type of loop unrolling is performed when the loop body is fairly simple,

but it cannot be determined statically that the number of loop iterations is a multiple

of the number of times the loop is unrolled. Therefore, a sequential version is kept to

execute the odd number of iterations. For example,

f o r (i=0 ; i< l im; i++)
x [i] = 0;

can be translated to

f o r (i=0 ; i<(l im%4); i++)
x [i] = 0;

f o r (; i< l im; i+=4) {
x [i] = 0;
x [i + l] = 0;
x [i+2] = 0;
x [i+3] = 0;

}

The third type of loop unrolling is performed when the loop body is fairly complex,

perhaps with several branch operations. The body of the loop is duplicated completely,

including the loop induction variable increment and the loop boundary test operations.

Although the number of operations is not reduced, static code scheduling can benefit

from a much larger loop body. For example,

La: r l = memory[_x + r 2] ;
goto Lb i f (r l == 0) ;
r 2 = r2 + r l ;
goto La i f (r2 < 100);

Lb:

can be expanded to

La: r l = memory[_x + r 2] ;
goto Lb i f (r l == 0) ;
r 2 = r2 + r l ;
goto Lb i f (r2 >= 100);
r l = memory[_x + r2] ;
go to Lb i f (r l == 0) ;
r 2 = r2 + r l ;
goto Lb i f (r2 >= 100);

/ * i t e r a t i o n 1 * /

/ * i t e r a t i o n 2 */

168

r l = memory[_x + r 2] ; / * i t e r a t i o n 3 */
goto Lb i f (r l == 0) ;
r 2 = r2 + r l ;
goto Lb i f (r2 >= 100);
r l = memory[_x + r 2] ; / * i t e r a t i o n 4 */
goto Lb i f (r l == 0) ;
r2 = r2 + r l ;
goto La i f (r2 < 100);

The result of unrolling is a super-block that contains 16 operations for this example. In

realistic programs, there are many large super-block loops, after applying the instruction

placement and branch expansion optimizations. Applying loop unrolling on these large

super-block loops often expands the loop sizes to many tens of operations.

Section 7.2 shows how to eliminate anti-dependencies and output-dependencies in the

unrolled loop. Therefore, the execution of several iterations can be interleaved.

7.1.5 Loop peeling

In realistic C programs, some loops iterate very few times on the average. Because

loop unrolling may introduce some overhead cost, and the loop structure may impose

constraints on register renaming, we propose loop peeling as an alternative approach.

For example, if the following loop is iterated about 4 times on the average, we can peel

off 4 iterations.

La: xxxx
go to La i f . t r u e . ;

Lb:

is transformed to

xxxx
goto Lb if .false.;
xxxx
goto Lb if .false.;
xxxx
goto Lb if .false.;
xxxx

169

goto La i f . t r u e . ;
Lb:

La: xxxx
goto La i f . t r u e . ;
goto Lb;

The first four iterations of the loop become sequential code, and can be combined

with the original loop preheader basic block into a large super-block. The original loop

body has been moved to the end of the function and is rarely executed. This optimization

achieves an effect similar to totally unrolling the loop body.

7.1.6 Limiting code expansion

Code expansion can degrade the performance of the instruction cache and incur a high

cost to maintain executable code in disk memories. We have employed three strategies in

the IMPACT-I C compiler to control the amount of code expansion. The first strategy is

to prevent the program from becoming X times bigger than its original size, where X is

a fixed number, e.g., 1.5. The second strategy is to prevent the program from becoming

larger than a fixed maximum size. Code optimizations that employ these two limits are

formulated as follows.

Input = program G, maximum l i m i t LIMIT, maximum expansion f a c t o r SCALE.
1) I d e n t i f y a l l op t imiza t ion o p p o r t u n i t i e s , { P [i] , i = l . . n } .
2) o r i g . s i z e = s i z e (G) ;
3) i = 0;
4) whi le ((size(G)<LIMIT) and (size(G)<orig_size*SCALE) and (i<=n)) do

apply P [i] ; i = i + l ;

We always start from the most profitable optimization and repeatedly apply opti­

mizations until all optimizations have been applied or until the code size is larger than

the limit. We have formulated function inline expansion and other code expansion opti­

mizations on this framework.

The third strategy is applicable when we know the worst-case code expansion ratio

due to an optimization. The procedure can be formulated as follows:

170

Input = program G, maximum expansion factor SCALE,
maximum expansion factor K due to code optimization.

1) Partition G to nonoverlapping regions, {R[i], i=l..n},
that form a complete cover of G.

2) orig.size = size(G);
max.expansion = (SCALE-l)*orig_size;

3) i = 0; H = {};
4) whi le (((size(H)*K)<max_expansion) and (i<=n)) do

H = H + { R [i] } ; i = i + l ;
5) apply op t imiza t ion on every r eg ion in H;

Because the number of branch slots that are allocated for a predict-taken branch is

fixed, we have applied the above procedure to decide where to allocate branch slots.

7.2 Reducing the Length of a Critical Pa th

Expanding the sizes of super-blocks by code copying is effective. However, the reduc­

tion of the schedule length is small. Careful analysis of the machine code has pinpointed

anti-dependencies, output-dependencies, and memory-dependencies as the primary tar­

gets of more code optimizations to reduce the lengths of critical paths.

In the following subsections, we describe several code transformation techniques that

have been implemented in the IMPACT-I C compiler. Instead of describing many code

patterns that we have observed that benefit from these optimizations, we create an arti­

ficial example that is simple enough to convey the basic ideas. The real implementation

is substantially more involved and covers many more cases.

7.2.1 Induction variable expansion

Because we enlarge super-blocks by code copying, register anti-dependencies and

output-dependencies become explicit. This can be most easily shown by an example.

r2 = 1;
r 3 = _x + 120;

La: r 4 = memory[r3];
r2 = r2 + r 4 ;

171

r 3 = r 3 - 4 ;
goto La i f (r 3 > _x) ;

Lb:

can be unrolled into

r2 = 1; / * accumulator */
r 3 = _x + 120;

La: r 4 = memory[r3]; / * f i r s t i t e r a t i o n * /
r 2 = r 2 + r 4 ;
r 3 = r 3 - 4 ;
go to Lb i f (r 3 <= _ x) ;
r 4 = memory[r3]; / * second i t e r a t i o n * /
r2 = r2 + r 4 ;
r 3 = r 3 - 4 ;
goto Lb i f (r3 <= _ x) ;
r 4 = memory[r3]; / * t h i r d i t e r a t i o n * /
r2 - r2 + r 4 ;
r 3 = r 3 - 4 ;
goto Lb i f (r 3 <= _ x) ;
r 4 = memory[r3]; / * f o u r t h i t e r a t i o n * /
r2 = r2 + r 4 ;
r 3 = r 3 - 4 ;
goto La i f (r 3 > _ x) ;

Lb:

The entire unrolled loop forms a super-block. Without further code optimization,

we schedule this loop and find out that the schedule is very conservative due to anti-

dependencies and output-dependencies. An obvious problem is with the loop induction

variable r3 , which is incremented and used in each iteration.

We have implemented a special code optimization, induction variable expansion, that

generates the value of the loop induction variable for each iteration as soon as possible.

The previous example is transformed into

r2 = 1; / * accumulator * /
r 3 = _x + 120;

La: rlO = r 3 - 4 ; r l l = r 3 - 8; r l 2 = r 3 - 12; r l 3 = r 3 - 16;
r 4 = memory[r3]; / * f i r s t i t e r a t i o n * /
r2 = r2 + r 4 ; r 3 = r lO ;
goto Lb i f (rlO <= _ x) ;
r 4 = memory[rlO]; / * second i t e r a t i o n */

172

r2 = r2 + r4; r3 = rll;
goto Lb if (rll <= _x);
r4 = memory[rll]; /* third iteration */
r2 = r2 + r4; r3 = rl2;
goto Lb if (rl2 <= _x);
r4 = memory[r!2]; /* fourth iteration */
r2 = r2 + r4; r3 = r!3;
goto La if (r!3 > _x);

Lb:

If the loop induction variable is not used after leaving the loop, it is eliminated from

the loop body by dead code elimination.

r2 = 1; / * accumulator * /
r 3 = _x + 120;

La: r lO = r 3 - 4 ; r l l = r 3 - 8; r ! 2 = r 3 - 12; r l 3 = r 3 - 16;
r 4 = memory[r3]; / * f i r s t i t e r a t i o n * /
r 2 = r 2 + r 4 ;
goto Lb i f (r lO <= _x) ;
r4 = memory[r10]; /* second iteration */
r2 = r2 + r4;
goto Lb if (rll <= _x);
r4 = memory[rll]; /* third iteration */
r2 = r2 + r4;
goto Lb if (rl2 <= _x);
r4 = memory[rl2]; /* fourth iteration */
r2 = r2 + r4;
r3 = r!3;
goto La if (rl3 > _x);

Lb:

The induction variable expansion optimization eliminates anti-dependencies and output-

dependencies due to the loop variable, and effectively enables the upward code percolation

of some computations from a later iteration to a previous iteration.

7.2.2 Register renaming

Very little code motion is possible in the previous example after induction variable

expansion. However, a closer look identifies the problem with writing the result of the

memory loads into the same register r4. The memory load operations of later iterations

173

cannot be moved up because of anti-dependencies and output-dependencies. A useful

technique is to rename registers. Then, the loop becomes,

r2 - l ; / * accumulator */
r 3 = _x + 120;

La: rlO = r 3 - 4 ; r l l = r 3 - 8; r l 2 = r 3 - 12; r ! 3 = r 3 - 16;
r 4 = memory[r3]; r20 = memory[rlO];
r30 = memory[r l l] ; r40 = memory[rl2];
r2 = r2 + r 4 ;
goto Lb i f (rlO <= _ x) ;
r 2 - r2 + r 2 0 ;
goto Lb i f (r l l <= _ x) ;
r2 = r2 + r30 ;
goto Lb i f (r l 2 <= _ x) ;
r2 = r2 + r40 ;
r 3 = r ! 3 ;
goto La i f (r ! 3 > _ x) ;

Lb:

The first part of the loop body becomes very parallel. Four addition operations

can be issued in the first cycle, and four memory load operations can be issued in the

second cycle. For a high-issue-rate machine, we have implemented a more aggressive

register renaming scheme that introduces additional move operations. The above example

becomes

r2 = 1; / * accumulator */
r 3 = _x + 120;

La: r lO = r 3 - 4 ; r l l = r 3 - 8; r ! 2 = r 3 - 12; r ! 3 = r 3 - 16;
r 4 = memory[r3]; r20 = memory[rlO];
r30 = memory[r l l] ; r40 = memory[rl2];
r2 = r2 + r 4 ;
rlOO = r2 + r20 ;
r lO l = rlOO + r30 ;
r l 0 2 = r l 0 2 + r40 ;
goto Lb i f (rlO <= _x) ; r2 = rlOO;
goto Lb i f (r l l <= _x) ; r2 = r l O l :
goto Lb i f (r l 2 <= _x) ; r2 = r l 0 2 ;
r 3 = r l 3 ; goto La i f (r l 3 > _x) ;

Lb:

174

Because the IMPACT architecture permits multiple branch operations to be issued

per cycle, and several operations can write to the same register per instruction, the last

part of the loop contains 8 independent operations that can be issued at the same time.

The only remaining sequential section comprises the four addition operations in the

middle of the loop. Traditional tree height reduction optimization can further eliminate

two cycles from the schedule.

The (rl = rlOO) and (rl = rlOl) operations can be moved out of the loop by creating

two new basic blocks that bridge the loop and the targets. Because the profile-based

instruction placement optimization produces a layout that minimizes off-trace cost, the

number of additional register move operations that this optimization introduces is small.

7.2.3 Global variable migration

Most optimizing compilers map scalar local variables that may not be accessed through

pointers to registers. However, few compilers map global scalar variables and fields to

registers. Because a memory load operation requires two cycles to produce a result, the

memory access can increase the length of the critical path. For example, to increment a

global memory variable, the first operation is to load the original value from the memory

into a register, the second operation is to increment the register by one, and the third

operation is to write the value of the register back to the memory. The three operations

require four cycles of execution.

We have implemented global variable migration in the IMPACT-I C compiler. The

algorithm can be informally stated as follows:

I npu t : a program G.
1) Identify a l l loops {L[i] , i = l . . n } in G.
2) for each loop L[i] begin

if (a l l loads and s tores to a memory location can be ident i f ied) then
reg = a new (vi r tua l) r eg i s t e r ; /* before r eg i s t e r assignment */
for every entry path to L[i]

load the memory value into reg;
if (reg i s ever modified in L[i]) then

for every exit path from L[i]
s tore the reg value back to the memory;

175

El imina te a l l l o a d s and s t o r e s t o t h a t memory l o c a t i o n i n L [i] ;
Replace r e f e r e n c e s t o t h a t memory l o c a t i o n by r eg i n L [i] ;

end
end

end

7.2.4 Operation combining

We have described operation combining and operation folding in Chapter 6. Some

(essential) flow-dependent operations can be executed concurrently after applying the

two optimizations. An example of operation combining is shown in the following code

segment:

r l = r 2 + 5 ; r l = sp + 5;
r 3 = memory[sp + r l] ; -> r 3 = memory[r2 + r l] ;

The first operation of the transformed code uses two source operations whose values

are determined early in the function. Therefore, the schedule may be reduced by one

cycle, if the value of rl is produced by an operation on a critical path.

An example of operation folding is shown in the following code segment:

r l = r l + 1;
goto L i f (r l > 100); -> r l = r l + 1; goto L i f (r l > 9 9) ;

Because the two operations are packed into the same instruction, the comparison

operation uses the old value of r l . This code pattern frequently occurs in inner loops.

7.2.5 Post-increment computation

Some loop induction variables cannot be eliminated from the loop body. Because an

induction variable increment operation uses and writes the same register, it is in some

way anti-dependent and flow-dependent with other operations that use the register. A

simple optimization is to selectively transform pre-increment to post-increment style. For

example,

176

r l = r l + 4 ;
r2 = memory[r l] ;

can be transformed into

r 2 = memory[rl + 4] ;
r l = r l + 4 ;

This transformation converts a flow-dependence to an anti-dependence. In the IM­

PACT architecture, the transformed code may be executed as one instruction, while the

original code requires two instructions.

7.2.6 Memory disambiguation

Unlike data dependencies on registers, memory dependencies are difficult to resolve

because pointer analysis is difficult for the C programming language. Our memory dis­

ambiguation tool can distinguish local variables from global variables, different local

variables, different global variables, and different structure fields. However, our memory

disambiguation tool is not powerful enough to disambiguate two pointer accesses, at the

time of this writing.

177

CHAPTER 8

EXPERIMENTS

We have implemented many powerful code improving techniques, including function

inline expansion, instruction placement, loop unrolling, memory disambiguation, register

renaming, branch prediction, and an integrated register allocation and code scheduling

algorithm, which are tailored to multiple-operation-issue processors.

The degree of freedom to move operations across branch operations depends greatly

on the underlying compiler and hardware support. We have identified and implemented

three static code scheduling models: restricted code percolation, general code percolation,

and speculative execution.

We have identified the IMPACT architectural framework of multiple-operation-issue

processors that is supported by our current compiler technology. Within this framework,

the instruction set, the microarchitecture, and the code scheduling model can be specified

in a technology file. Within this framework, code scheduling is done entirely at the time of

compilation. The compiler packs operations into long instruction words. The underlying

processor microarchitecture issues operations to the execution hardware in the order

in which these operations are fetched. In this chapter, we present experimental data

that show the effectiveness of using an aggressive static code scheduling model and a

simple in-order execution hardware, as in the IMPACT framework. We also compare

this performance with that achieved by using out-of-order hardware under the restricted

code percolation model. The experimental data show that the IMPACT framework is

simple and yet powerful.

178

The experimental data in this chapter are derived from some important nonnumerical

programs with realistic input data.

8.1 Summary of the Compiler Support

Code improving techniques for generating efficient sequential code in the IMPACT-I

C compiler can be categorized into two groups: machine-independent optimizations and

machine-dependent optimizations. Machine-independent optimizations include classical

local and global code optimizations [Aho 86], function inline expansion [Hwu 89c], in­

struction placement optimization [Chang 88], [Hwu 89a], loop unrolling, intelligent gener­

ation of switch statements [Chang 89c], and jump optimization. Machine-dependent op­

timizations include profile-based branch prediction, constant preloading, graph-coloring-

based register allocation [Chaitin 82], [Chow 84], and code scheduling. A profiler has

been integrated into the IMPACT-I C compiler. The decision making components of the

code improving techniques use profile information, in addition to static loop analysis.

When hardware resources are scarce, the profile information helps to identify the most

frequently executed program sections and the most frequently accessed variables.

8.1.1 Code efficiency

It is important to measure the performance of multiple-operation-issue architectures

using highly optimized code, because a naive compiler may produce redundant operations

that show deceptive parallelism.

We compare the code quality that is produced by the IMPACT-I C compiler to that

with the MIPS C compiler on a DEC 3100 workstation. Table 8.1 shows the benchmark

programs that are used in this chapter. The name column shows the names of the

benchmark programs. The size column shows the number of lines of C code in each

benchmark program. The description column briefly describes each benchmark program.

Using the execution times of the executable programs that are generated by the

IMPACT-I C compiler (-05, beta release 0.1) as the basis, we show the code quality

179

that is achieved by the MIPS C compiler (-04, release 2.1) and the GNU C compiler

(-0, release 1.37.1). Table 8.2 compares the execution times of executable programs that

are generated by the IMPACT-I C compiler, the MIPS C compiler, and the GNU C

compiler on a DEC3100 machine. The global column shows the speedups of benchmark

programs that are achieved by global code optimizations (-05) over itself, and, therefore,

the numbers are all ones. The local column shows the (negative) speedups of benchmark

programs that are achieved by turning off global code optimizations. Note that global

code optimizations improve program performance only by a small amount over local code

optimizations. The mips — 04 column shows the speedups of benchmark programs that

is achieved by the MIPS C compiler over the IMPACT-I C compiler with global code

optimizations. The gnu — O column shows the speedups of benchmark programs that

are achieved by the GNU C compiler over the IMPACT-I C compiler with global code

optimizations.

Note that the -05 option in the IMPACT-I C compiler does not include profile-based

classic code optimizations. Further performance improvement due to these profile-based

code optimizations is reported in [Chang 91b].

8.1.2 Code generation for multiple-operation-issue machine

A code generator for a parameterized multiple-operation-issue architecture has been

implemented. The code generator performs profile-based branch prediction to support

squashing branch [McFarling 86], [Chang 89b]. The IMPACT-I C compiler performs sev­

eral code transformations that enlarge the scope of static scheduling, including function

inline expansion, instruction placement, loop unrolling, loop peeling, and branch expan­

sion. The compiler also performs several code transformations that reduce the lengths of

critical paths, including induction variable expansion, register renaming, global variable

register allocation, operation combining, operation folding, and memory disambiguation.

Prepass code scheduling is performed prior to register allocation to reduce the effect

of artificial data dependencies that are introduced by register assignment [Hwu 88b],

[Goodman 88]. Postpass code scheduling is performed after register allocation.

180

The code scheduling algorithm consists of the following steps: 1) Form traces from

basic blocks that are likely to be executed as a sequence. 2) Form a large super-block

from each trace of basic blocks by code duplication. A super-block has a unique entry

point and one or more exit points. 3) Construct a dependence graph for each super-block.

4) Improve the dependence graph by removing dependence arcs that can be resolved at

compile time. 5) Compute live-variable information. For each branch path, live-variable

information tells us what variables must not be destroyed when that branch path is taken.

6) Schedule the refined dependence graph according to machine constraints.

Our code scheduling algorithm is a variant of the trace-scheduling algorithm [Fisher 81].

Forming super-blocks eliminates the bookkeeping complexity due to upward code motion.

Our code scheduler moves code both upward and downward across branch operations.

Moving operations from above a branch operation to below is always safe. On the other

hand, moving operations from below a branch to above is not always safe. There are two

major restrictions on upward code motion.

(1) The moved operation must not destroy some value that is needed when the branch

operation is taken.

(2) The moved operation must not cause an exception or trap that may terminate the

program execution.

For example, it is not safe to move a division operation above a branch because of the

possibility of dividing by zero. It is not safe to move a memory load operation above

a branch because of the possibility of memory access violation. We have implemented

a code scheduling algorithm that observes the above two restrictions. We refer to this

algorithm as restricted code percolation.

It is possible to free the code scheduler from the second restriction if the architecture

defines that the division operation and the memory load operation do not cause excep­

tions. Instead of trapping on divide by zero or illegal memory access, a magic value is

returned. Page faults can be handled as usual. We refer to this code scheduling model as

general code percolation. Most commercial processors already have a set of nontrapping

181

unsigned arithmetic operations. The hardware support for the general code percolation

model is the addition of a set of nontrapping memory load operation opcodes, which can

be provided with low cost and in an upward compatible way from existing architectures.

With aggressive hardware support, the first restriction can also be removed. Smith,

Lam, and Horowitz have described such a scheme [Smith 90]. This scheme squashes oper­

ations if the branch direction is incorrectly predicted. We have implemented a scheduling

method in which operations can be freely moved above N branch operations in the same

super-block, where N is a design parameter. We refer to this scheduling model as specu­

lative execution. In the next section, we show the relative performance of the three static

code scheduling models. N is set to 32 for the speculative execution model.

8.1.3 Available parallelism

In Chapter 7, we described several code optimizations that enlarge super-blocks and

reduce the lengths of critical paths. Figures 8.1 and 8.2 clearly show that these code

optimizations are very effective. We assume that all operations take unit time (1 cycle)

and that there are no limitations on the numbers of function units. We further assume

perfect branch prediction. Figure 8.1 shows the average number of operations that are

executed per cycle for each benchmark program, when the issue bandwidth is limited to

at most 4 operations per cycle. Figure 8.2 shows the average number of operations that

are executed per cycle for each benchmark program, when the issue bandwidth is limited

to at most 8 operations per cycle.

8.2 The Effect of Static Code Scheduling

In this section, we evaluate the performance of the IMPACT processor architecture

that has been described in Chapter 3. We apply the code optimization techniques that

have been described in Chapters 4, 5, 6, and 7 to each benchmark program. Starting from

very efficient sequential code, the IMPACT-I C compiler generates code for multiple-

instruction-issue architectures. The experimental data in this section clearly indicate

182

that multiple-instruction-issue processors outperform single-instruction-issue processors

by large margins.

8.2.1 Methodology

A machine description file has been written to describe the instruction set, the mi­

croarchitecture, and the code scheduling model of each processor architecture under

study. The machine description file is used to guide the IMPACT-I C compiler to op­

timize each benchmark program for each processor architecture. We have chosen an

instruction set that is a super-set of the MIPS instruction set to establish a strong single-

instruction-issue base architecture. The microarchitectures use in-order execution and

have deterministic operation latencies. Each processor includes a 64-entry integer regis­

ter bank and a 32-entry floating-point register bank. The architecture uses a squashing

branch scheme and profile-based branch prediction. One branch slot (one instruction) is

automatically allocated for each instruction that contains a predict-taken branch oper­

ation. Using a profiler, we measure the execution count of every operation and collect

branch statistics. From the profile information, we can derive the best and the worst case

execution times of each super-block, assuming an ideal cache. The worst case is due to

long operation latencies that protrude from one super-block to another super-block. The

measurement data indicate that the difference between the best-case and the worst-case

execution times is always negligible. In the following discussion, we consistently use the

worst case execution time measure.

The experiment produces a total of (X * Y) numbers, where X is the number of

processor configurations under study, and Y is the number of benchmark programs. Let

cycle(i,j) denote a function that returns the number of cycles to execute the bench­

mark program j on the machine i. Let cycle(l,j) denote a function that returns the

number of cycles to execute the benchmark program j on the base architecture. We

define the speedup(i) function as the harmonic mean of (cycle(l, ,)/cycle(i,.)) over all

benchmarks. The harmonic mean is used instead of the arithmetic mean to report results

conservatively.

183

8.2.2 Base architecture

The base architecture is a single-cycle-issue processor that uses the general code

percolation model. All function units are pipelined. The 6a.se column of Table 8.3

shows the operation latencies.

Considering one slot penalty for each branch, the base architecture has achieved an

execution rate of better than 0.95 operation per cycle for the benchmark programs.

8.2.3 Restricted code percolation

Figure 8.3 shows the speedups of twelve machines that use restricted code percolation

over the base architecture. Each bar in Figure 8.3 is labeled with XrY, where X is

the number of operations in an instruction word, and Y is the memory load latency.

Except for the memory load latency, operation latencies are the same as that of the base

architecture. There are no restrictions on the numbers of function units. Every operation

code can be executed from any one operation slot of an instruction.

When the memory load latency is 2 cycles, the two-issue machine with restricted code

percolation achieves about a 1.4 speedup over the one-issue machine with general code

percolation. When the memory load latency is 2 cycles, the four-issue machine with

restricted code percolation achieves about a 1.7 speedup over the one-issue machine with

general code percolation.

8.2.4 General code percolation

Figure 8.4 shows the speedups of twelve machines that use general code percolation

over the base architecture. Each bar in Figure 8.4 is labeled with XgY, where X is

the number of operations in an instruction word, and Y is the memory load latency.

Note that the lgl machine is the base architecture. Except for the memory load latency,

operation latencies are the same as that of the base architecture. There are no restrictions

on the numbers of function units. Every operation code can be executed from any one

operation slot of an instruction.

184

http://6a.se

When the memory load latency is 2 cycles, the two-issue machine achieves about a 1.64

speedup over the one-issue machine with general code percolation. When the memory

load latency is 2 cycles, the four-issue machine achieves about a 2.06 speedup over the

one-issue machine with general code percolation. The improvement from restricted code

percolation to general code percolation is substantial for high-issue-rate architectures.

8.2.5 Speculative execution

Figure 8.5 shows the speedup of twelve machines that use speculative execution over

the base architecture. Each bar in Figure 8.5 is labeled with XsY, where X is the number

of operations in an instruction word, and Y is the memory load latency. Except for the

memory load latency, operation latencies are the same as that of the base architecture.

There are no restrictions on the numbers of function units. Every operation code can be

executed from any one operation slot of an instruction.

When the memory load latency is 2 cycles, the two-issue machine with speculative

execution achieves about a 1.65 speedup over the one-issue machine with general code

percolation. When the memory load latency is 2 cycles, the four-issue machine with

speculative execution achieves about a 2.08 speedup over the one-issue machine with

general code percolation. Although speculative execution consistently performs better

than general code percolation, the improvement is not significant.

8.2.6 The effect of limiting function unit resources

For the general code percolation model, we measure the effect of limiting function

unit resources. Each bar in Figures 8.6 and 8.7 is labeled XgY.Z, where X is the number

of operations in an instruction, Y is the memory load latency, and Z is the limited

function unit resource. For (Z = lbr), at most one branch operation can be packed into

an instruction. For (Z = 1st), at most one memory store operation can be packed into

an instruction. For (Z = lst.lld), at most one memory load or store operation can be

packed into an instruction. For (Z = lst.lld.lbr), at most one branch operation can

185

be packed into an instruction, and at most one memory load or store operation can be

packed into an instruction. Figure 8.6 presents the result for single-cycle memory load

latency, and Figure 8.7 presents the result for two-cycle memory load latency.

The experimental data indicate that the ability to execute multiple branch and mem­

ory load operations is important for high-issue-rate architectures. On the other hand,

limiting each instruction to contain at most one memory store operation degrades per­

formance only slightly. Therefore, the data cache interface should support multiple con­

current read ports and a single write port for high-issue-rate architectures.

8.2.7 The effect of changing the memory load latency

Figure 8.8 shows the effect of changing the memory load latency for the general code

percolation model. Each bar in Figure 8.8 is labeled with XgY, where X is the number

of operations in an instruction, and Y is the memory load latency.

For high-issue-rate architectures, increasing the memory load latency dramatically

reduces the instruction-level parallelism, because memory load operations often appear

on critical paths.

8.2.8 The effect of increasing branch slots

Figures 8.9 and 8.10 show the effect of increasing the number of branch slots. Each

bar is labeled XgY.brZ, where X is the number of operations in an instruction, Y is the

memory load latency, and Z is the number of branch slots for a predict-taken branch.

Figure 8.9 shows the result for single-cycle memory load latency, and Figure 8.10 shows

the result for two-cycle memory load latency.

Code optimizations in the IMPACT-I C compiler do not change the program control

flow. Therefore, the number of branch misses is unchanged for different machine config­

urations. For high-issue-rate architectures in which the execution times are shorter, the

branch penalty becomes much greater.

186

http://XgY.br

8.3 The Effect of Dynamic Code Scheduling

Existing processor architectures use the restricted code percolation model, because

illegal memory accesses can cause exceptions. The scheduling result under the restricted

code percolation model represents what can be achieved by extending existing processor

architectures to multiple-instruction-issue architectures. The topic of this section is to

study the effect of static code scheduling and dynamic code scheduling on the restricted

code percolation model.

We compare the performance of three design styles for various instruction fetch rates.

The first design style is to apply static code scheduling, under the restricted code percola­

tion model, for in-order execution architectures. This can be accomplished by replicating

the datapath of a pipelined processor to support higher instruction fetch bandwidth. The

second style is to complement the first style by using out-of-order execution hardware.

Static code scheduling is still under the restricted code percolation model. The third style

is to extend the capability of static code scheduling by using the general code percolation

model, and uses in-order execution hardware. Because in-order execution hardware is

much simpler than out-of-order execution hardware, if the second and the third design

styles achieve comparable performance, the third design style is preferred.

8.3.1 Methodology

We have instrumented a code generator to insert extra code into the user program

to generate instruction traces. Each element of an instruction trace is an instruction

word of the IMPACT processor architecture. Each instruction may contain one or more

operations, depending on the instruction fetch bandwidth parameter. For each memory

and branch operation, we record the memory address and the branch direction in order

to simulate branch logic and cache accesses.

The experimental procedure consists of the following steps: (1) Select a typical input

for each benchmark. (2) Compile the benchmark for a selected machine configuration. (3)

187

Generate an instruction trace for the benchmark. (4) Analyze the instruction trace on the

fly. (5) Repeat step (2) to step (4) for each benchmark and each machine configuration.

The same set of benchmarks as in the previous section are used. The inputs that we

have chosen for each benchmark program are realistic. The simulator consumes entire

traces. Some of the instruction traces contain more than 20 million instructions.

The trace analyzer simulates a simple dynamic code scheduling model that has an

infinite number of reservation stations for each function unit. Hardware register renam­

ing is supported for both the static code scheduling and the dynamic code scheduling

models. The control unit fetches an instruction (N operations) per cycle, except when

a mispredicted branch operation has recently been encountered and caused the control

unit to refill its pipeline. After an instruction has been decoded, those operations that

have not obtained all source operands are placed in the reservation stations; otherwise,

operations are directly submitted to the function units. An operation is moved from a

reservation station to a function unit as soon as its source operands have been obtained.

A branch operation that has been decoded but has not yet computed the condition

code is called a pending branch. Tha trace analyzer allows instructions to execute ahead

of an infinite number of pending branches, simulating unlimited branch lookahead. The

simulation result is an upper bound on the performance of dynamic code scheduling.

Memory load operations are allowed to bypass (the order in the cache access queue)

other memory store operations when the memory addresses do not overlap. A large write

buffer is simulated to allow the accumulation of memory store operations.

8.3.2 Base architecture

The base architecture is a single-operation-issue machine that uses in-order execution

hardware and restricted code percolation. All function units are pipelined. The latency

column of Table 8.3 shows the operation latencies. One branch slot is allocated for each

predicted-taken branch operation.

188

8.3.3 Ideal cache

Figure 8.11 shows the speedups of the three design styles over the base architecture,

with an ideal data cache. Each bar represents the harmonic mean of the speedup of a

machine configuration over all benchmark programs. Each bar is labeled XYZ, where

X is the number of operations that can be packed into an instruction word, F is r or

g (r for restricted percolation, g for general percolation), and Z is i or o (i for in-order

execution, o for out-of-order execution).

8.3.4 Realistic cache

Figure 8.12 shows the speedup of the three design styles over the base architecture

with an 8K data cache, while Figure 8.13 shows the speedup with an 16K data cache.

Each bar represents the harmonic mean of the speedup of a machine configuration over

all benchmark programs. Each bar is labeled XYZ, where X is the number of operations

that can be packed into an instruction word, Y is r or g (r for restricted percolation,

g for general percolation), and Z is i or o (i for in-order execution, o for out-of-order

execution).

8.3.5 Analysis

Although the summary data indicate that the performances of an in-order execution

under the general code percolation model and that of an out-of-order execution under

the restricted code percolation model are comparable, individual execution data show

that each approach performs better for a different subset of the benchmark programs.

We have identified two major reasons why dynamic scheduling occasionally performs

better than static scheduling.

First, code transformation techniques that enlarge the scope of static code schedul­

ing cannot be applied across hashing jump operations. A hashing jump operation is an

unconditional branch operation with a data-dependent branch target. Because the com­

piler cannot determine the branch target statically, branch target expansion cannot be

189

applied, and loop unrolling cannot be applied for a loop that ends with a hashing jump.

Unfortunately, the most important loop of the cccp program ends with a hashing jump

operation that implements a switch statement in C.

Second, memory disambiguation at compile time is limited, while perfect memory

disambiguation can be achieved at run time. Many important loops contain memory

load and store operations through pointers. After loop unrolling, the computation of

different iterations cannot be interleaved because of memory dependencies that cannot

be resolved by the code scheduler. With dynamic code scheduling, the memory load

operations of a loop iteration do bypass the memory store operations of the previous

loop iteration.

When the above two problems do not exist, the general code percolation model can

interleave several loop iterations. For example, under the general code percolation model,

the inner loop

La: r l = memory[rO];
r2 = r2 + r l ;
rO = rO + 1;
goto La i f (r0<=r3) ;

Lb:

can be transformed to a more efficient inner loop body,

La: rl=memory[rO]; rlO=memory[rO+l]; r20=memory[r0+2]; r30=memory[rO+3] ;
r2 = r 2 + r l ; rO = rO + 1; goto Lb i f (r0>=r3) ;
r2 = r 2 + r l O ; rO = rO + 1; goto Lb i f (r0>=r3) ;
r2 = r2 + r 2 0 ; rO = rO + 1; goto Lb i f (r0>=r3) ;
r2 = r 2 + r 3 0 ; rO = rO + 1; goto La i f (r0<r3) ;

Lb:

The memory load operations from several iterations are executed as soon as possible.

On the other hand, the memory load operation cannot be moved across a previous branch

operation in the restricted code percolation model. Even though the out-of-execution

hardware can execute the memory load operation of each iteration as soon as it is fetched,

the execution time of each iteration has already increased by one cycle because the two

cycle load latency is not covered by independent operations.

190

The experimental data indicate that static scheduling and dynamic scheduling have

their own merits and limitations. Therefore, to achieve the highest level of performance,

using out-of-order execution hardware under the general code percolation model may be

the best approach. An interesting future research work is to evaluate the performance

and the cost-effectiveness of this approach.

8.4 The Importance of a Prepass Code Scheduling

In Section 6.3, we described the problem with implementing register allocation and

code scheduling as two separate phases. If register allocation is applied before code

scheduling, then many artificial data dependencies are introduced by the binding of sev­

eral virtual registers to one physical register. In a previous study of small numeric kernels

[Hwu 88b], we have shown that the artificial data dependencies that are introduced by

register allocation can degrade the benchmark performance by an average of about 30%

for a processor that can issue two operations per cycle.

Figures 8.14 and 8.15 demonstrate the importance of adding a prepass code scheduling

for the set of nonnumeric benchmark programs in Table 8.1. In Figures 8.14 and 8.15,

lines whose labels are suffixed by .np indicate the speedups of benchmark programs (over

restricted code percolation, issue 1 operation per cycle), when prepass code scheduling is

disabled. The other lines show the speedups of benchmark programs, when prepass code

scheduling is enabled. We can clearly see that prepass code scheduling is very important.

191

Table 8.1 Benchmarks.

name
cccp
cmp
compress
eqn
eqntott
espresso
grep
lex
qsort
tbl
wc
yacc

size
4787
141
1514
2569
3461
6722
464
3316
250
2817
120
2303

description
GNU C preprocessor
compare files
compress files
typeset mathematical formulas for troff
Boolean minimization
Boolean minimization
string search
lexical analysis program generator
quick sort
format tables for troff
word count
parsing program generator

Table 8.2 Speedup on MIPS-R2000 processor.

benchmark
cccp
cmp

compress
eqn

eqntott
espresso

grep
lex

qsort
tbl
wc

yacc

global
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

local
0.95
0.95
0.95
0.88
0.62
0.91
0.87
0.97
0.94
0.94
0.97
0.87

mips -04
0.93
0.95
0.98
0.87
0.96
0.98
0.97
0.99
1.00
0.98
0.96
1.00

gnu -0
0.92
0.95
0.94
0.87
0.75
0.87
0.82
0.97
0.94
0.93
0.87
0.91

192

Table 8.3 Operation latencies.

fn
integer alu
barrel shifter
integer mul
integer div
load
store
FPalu
FP conv
FPmul
FPdiv

base
1
1
3
25
2
-

3
3
4
25

SPARC
1
1

47
7

2
-

10
10
12
64

i860
1
1
11
59
2
-

3
4
5
38

193

qsort

wc

lex

yacc

eqntott

cccp

espresso

eqn

tbf

compress

cmp

grep

0 1 2 3

Figure 8.1 Operations per cycle (issue at most 4).

194

qsort

wc

lex

yacc

eqntott

cccp

espresso

eqn

"tbl

compress

cmp

grep

0 2 4 6

Figure 8.2 Operations per cycle (issue at most 8).

m
32

•in ~i
4r% I
Wr% I
ira I
2r3 1
4r3 I

I8r3 = 1

I I I I I I
0 0.5 1 1.5 2 2.5

Figure 8.3 Restricted code percolation.

195

Igl 1
%1 1
4gi 1
8gl 1
ig'^ 1
W 1
4g2 1
W 1
lg3 1
*2g8 1
4g3 1
8g3 I

I I I I
0 1 2 3

Figure 8.4 General code percolation.

i s l 1
2sl 1
4sl 1
8sl 1
ls2 1
2s2 ' 1
4s2 1
8s2 1
ls3 1
2s3 1
4s3 1
Ss3 I

I I I I
0 1 2 3
Figure 8.5 Speculative execution.

196

[Til I

3g%.lbr = 3
"271.1st I
"2gl.lst.lld I
2gl. lst . l ld. lbr I

"3gT- I
IglTbr = 3
~4gT.lst l
IgT.lst . l ld I
~ggT.l8t.lld.lbr 1
~8gT— |
-SgObr 1
Hgl-lst I

~8gl.lst.lld I
"Sgl.lst.lld.lbr 1

I I I I
0 1 2 3

F igure 8.6 Limited function resource, load delay 1.

fig— l
-2g2— Z3
~2g2.1br I
"2g2.lst ~1
~2g2.lst.lld I
'2g2.lst.lld.lbr 1

"ggZ-lbr I
3g2.lst I
~4g2.lst.lld ~ 1
~4g2.lst.lld.lbr I
~8p— |
~8g2.1br I
~8~"2.ist I
~8g2.lst.lld I
"8g2.ist.iid.lbr ~1

I I I I I
0 0.5 1 1.5 2

F igure 8.7 Limited function resource, load delay 2.

197

http://2gl.lst.lld
http://2gl.lst.lld.lbr
http://~ggT.l8t.lld.lbr
http://~8gl.lst.lld
http://Sgl.lst.lld.lbr
http://~2g2.lst.lld
http://'2g2.lst.lld.lbr
http://~4g2.lst.lld
http://~4g2.lst.lld.lbr
http://~8g2.lst.lld
http://8g2.ist.iid.lbr

Igl 1
lg2 1
lg3 1
%gl 1
2g2 1

•Igi 1
4gl 1
4g2 I
4g3 1

ygi i
8g2 1
«g3 1

I
0 1 2 3

Figure 8.8 Different memory operation latencies.

Igl.brU 1
lgl.brl 1
lgl.br2 1
lgl.br3 1
2gl.br0 1
2gi.br1 1
2gl.br2 1
2gl.br3 1
4gl.bru 1
4gl.br1 1
4gl.br2 1
4gl.br3 1
ogi.brU 1
ogi.brl 1
8gl.br2 1
8gl.br3 1

I I I I
0 1 2 3

Figure 8.9 Adding branch slots, load delay 1.

198

http://2gi.br
http://4gl.br

lg2.brU 1
ls2.br! 1
Ig2.br2 1
Ig2.br3 1
2g2.brU 1
2g2.br1 1
2g2.br% 1
2g2.br3 1
4g2.bru 1
4g2.brl |
4g2.br2 1
4g2.br3 1
8g2.brU
8g2.br 1
8g2.br2
8g2.br3

1
1

1
I I I I I I
0 0.5 1 1.5 2 2.5

Figure 8.10 Adding branch slots, load delay 2.

In
2n
4n
8n
Iro
2ro

I

1

i
1
1

1
4ro 1
8ro 1
Igi

2& .
I

1
4gi 1
8gi

1
0

1
0.5

1
1

1
1.5

1

1
2 : 2.5

Figure 8.11 Execution rate (ideal cache).

199

http://ls2.br
http://2g2.br
http://8g2.br

In 1
2n 1
4n 1
8n 1
Iro 1
%rp |
4rp 1
«rp 1
Igi 1
3gi 1
4gl 1
«gl 1

I I I I I I
0 0.5 1 1.5 2 2.5

Figure 8.12 Execution rate (8K cache).

i n I
2n 1
4n |
8n 1
iro I
2ro |
4ro |
8ro I
Igi 1
iip 1
4gi 1
«P 1

I I I I I I
0 0.5 1 1.5 2 2.5

Figure 8.13 Execution rate (16K cache).

200

cccp.np
cccp
cmp.np
cmp
compress.np
compress
eqn.np
eqn
eqntott.np
eqntott
espresso.np
espresso
grep.np
grep
lex.np
lex
qsort.np
qsort
tbl.np
tbl
wc.np
wc
yacc.np
yacc

0 0.5 1 1.5 2

Figure 8.14 Speedup (issue at most 2 operations per cycle)

201

cccp.np
cccp
cmp.np
cmp
compress.np
compress
eqn.np
eqn
eqntott.np
eqntott
espresso.np
espresso
grep.np
grep
lex.np
lex
qsort.np
qsort
tbl.np
tbl
wc.np
wc
yacc.np
yacc

0 1 2 3

Figure 8.15 Speedup (issue at most 4 operations per cycle)

202

CHAPTER 9

INLINE TARGET INSERTION

In Chapter 8, the experimental data show that it is important to execute multiple

branch operations per cycle in a multiple-operation-issue machine. In this chapter, we

develop a squashing branch that allows branch operations to be fetched from branch

slots. Not only can branch operations be executed in parallel, they can also be pipelined

in Inline Target Insertion. This chapter is an extension to two previous papers on Inline

Target Insertion [Chang 89b], [Hwu 90].

9.1 Introduction

The instruction sequencing mechanism of a processor determines the instructions to

be fetched from the memory system for execution. In the absence of branch instructions,

the instruction sequencing mechanism keeps requesting the next instructions in the lin­

ear memory space. In this sequential mode, it is easy to maintain a steady supply of

instructions for execution. Branch instructions, however, disrupt the sequential mode

of instruction sequencing. Without special hardware and/or software support, branches

can significantly reduce the performance of pipelined processors by breaking the steady

supply of instructions to the pipeline [Kogge 81].

Many hardware methods for handling branches in pipelined processors have been stud­

ied [Smith 81], [Lee 84], [DeRosa 88], [McFarling 86], [Hsu 86], [Ditzel 87]. An important

class of hardware methods, called Branch Target Buffers (or Branch Target Caches), uses

buffering and extra logic to detect branches at an early stage of the pipeline, predict the

203

branch direction, fetch instructions according to the prediction, and nullify the instruc­

tions fetched due to an incorrect prediction [Lee 84]. Branch Target Buffers have been

adopted by many commercial processors [Lee 84], [Horst 90]. The performance of such

hardware methods is determined by their ability to detect the branches early and to pre­

dict the branch directions accurately. High branch prediction accuracy, about an 85-90%

hit ratio, has been reported for hardware methods [Smith 81], [Lee 84], [McFarling 86].

Another advantage of using Branch Target Buffers is that they do not require recompila-

tion or binary translation of existing code. However, the hardware methods suffer from

the disadvantage of requiring a large amount of fast hardware to be effective [Lee 84],

[Hwu 89b]. Their effectiveness is also sensitive to the frequency of context switching

[Lee 84].

Compiler-assisted methods have also been proposed to handle branches in pipelined

processors. Table 9.1 lists three such methods. Delayed Branching has been a popular

method to absorb branch delay in microsequencers of microprogrammed microengines.

This technique has also been adopted by many recent processor architectures includ­

ing IBM 801 [Radin 82], Stanford MIPS [Hennessy 81], Berkeley RISC [Patterson 82],

HP Spectrum [Birnbaum 86], SUN SPARC [Sparc 87], MIPS R2000 [Kane 87], Motorola

88000 [Melear 89], and AMD 29000 [Amd]. In this approach, instruction slots imme­

diately after a branch are reserved as the delay slots for that branch. The number of

delay slots has to be large enough to cover the delay for evaluating the branch direction.

During compile-time, the delay slots following a branch are filled with instructions that

are independent of the branch direction, if the data and control dependencies allow such

code movement [Gross 82]. Regardless of the branch direction, these instructions in the

delay slots are always executed. McFarling and Hennessy reported that the first delay

slot can be successfully filled by the compiler for approximately 70% of the branches, and

the second delay slot can be filled only 25% of the time [McFarling 86]. It is clear that

delayed branching is not effective for processors requiring more than one slot.

Another compiler-assisted method, called Delayed Branches with Squashing, has been

adopted by some recent processors to complement delayed branching [McFarling 86],

204

[Chow 87], [Melear 89], [Intel 89]. That is, the method is used when the compiler cannot

completely fill the delay slots for delayed branching. In this scheme, the number of slots

after each branch still has to be large enough to cover the branch delay. However, instead

of moving independent instructions into branch delay slots, the compiler can fill the slots

with the predicted successors of the branch. If the actual branch direction differs from

the prediction, the instructions in the branch slots are scratched (squashed or nullified)

from the pipeline.

On the least expensive side, the hardware predicts all conditional branches to be either

always taken (as in Stanford MIPS-X [Chow 87]) or always not-taken (as in Motorola

88000 [Melear 89]). Predicting all the instructions to be taken achieves about a 65%

accuracy whereas predicting not-taken is at about 35% [Smith 81], [Lee 84], [Emer 84].

Predicting all the branches to be either taken or not-taken limits the performance of

delayed branches with squashing. Furthermore, filling the branch slots for predicted-

taken branches requires code copying in general. Predicting all branches to be taken can

result in a large amount of code expansion.

McFarling and Hennessy proposed Profiled Delayed Branches with Squashing. In

this scheme, an execution profiler is used to collect the dynamic execution behavior of

programs such as the preferred direction of each branch [McFarling 86]. The profile infor­

mation is then used by a compile-time code restructurer to predict the branch direction

and to fill the branch slots according to the prediction. To allow each branch to be

predicted differently, an additional bit to indicate the predicted direction is required in

the branch opcode in general [Intel 89]. Through this bit, the compiler can convey the

prediction decision to the hardware. McFarling and Hennessy also suggested methods for

avoiding adding a prediction bit to the branch opcode. Using pipelines with one and two

branch slots, McFarling and Hennessy showed that the method can offer comparable per­

formance with hardware methods at a much lower hardware cost. They suggested that

the stability of execution profile information in compile-time code restructuring should

be further evaluated.

205

This chapter examines the extension of McFarling and Hennessy's idea to processors

employing deep pipelining and multiple-instruction-issue. These techniques increase the

number of slots for each branch. As a result, four issues arise. First, there are only 3

to 5 instructions between branches in the static program (see Section 9.4.2) . To fill a

large number of slots (on the order of ten), one must be able to insert branches into

branch slots. Questions arise regarding the correct execution of branches in branch slots.

Second, the state information about all branch instructions in the instruction pipeline

becomes large. Brute force implementations of return from interrupts and exceptions

can involve saving/restoring a large amount of state information of the instruction se­

quencing mechanism. Third, the code expansion due to code restructuring can be very

large. It is important to control such code expansion without sacrificing performance.

Fourth, the time penalty for refilling the instruction fetch pipeline due to each incorrectly

predicted branch is large. It is very important to show extensive empirical results on the

performance and stability of using profile information in compile-time code restructur­

ing. The first three issues were not addressed by McFarling and Hennessy [McFarling 86].

The second issue was not addressed by previous studies of hardware support for precise

interrupt [Hwu 87], [Smith 85a].

To address these issues, we have specified a compiler and pipeline implementation

method for Delayed Branches with Squashing. We refer to this method as Inline Target

Insertion to reflect the fact that the compiler restructures the code by inserting predicted

successors of branches into their sequential locations. Based on the specification, we show

that the method exhibits desirable properties such as simple compiler and hardware

implementation, clean interrupt/exception return, moderate code expansion, and high

instruction sequencing efficiency. We also provide a proof that Inline Target Insertion

is correct. Our correctness proof of filling branch slots with branch instructions is also

applicable to a previously proposed hardware scheme [Pleszkun 87].

206

9.2 Background and Motivation

9.2.1 Branch instructions

Branch instructions reflect the decisions made in the program algorithm. Figure

9.1(a) shows a C program segment which finds the largest element of an array. There are

two major decisions in the algorithm. One decides whether all the elements have been

inspected, and the other decides whether the current element is larger than all the other

ones inspected so far.

With the register allocation/assignment assumption in Figure 9.1(b), a machine lan­

guage program can be generated as given in Figure 9.2. There are three branches in the

machine language program. Instruction D ensures that the looping condition is checked

before the first iteration. Instruction I checks if the loop should iterate any more. In­

struction F determines if the current array element is larger than all of the others visited

so far.

The simplified view of the machine language program in Figure 9.2 highlights the

effect of branches. Each arc corresponds to a branch in which the head of an arc is

the target instruction. The percentage on each arc indicates the probability for the

corresponding branch to occur in execution. The percentages can be derived by program

analysis and/or execution profiling. If the percentage on an arc is greater than 50%, it

corresponds to a likely branch. Otherwise, it corresponds to an unlikely branch.

The instructions shown in Figure 9.2(a) are static instructions. These are the instruc­

tions generated by the compilers and machine language programmers. During program

execution, each static instruction can be executed multiple times due to loops. Each time

a static instruction is executed, it generates a dynamic instruction. A dynamic branch

instruction which redirects the instruction fetch is called a taken branch.

207

9.2.2 Instruction sequencing for pipelined processors

The latency of decoding and executing branch instructions complicates instruction

sequencing in pipelined processors. A simple hardware example suffices to illustrate

the problem of instruction sequencing for pipelined processors. The processor shown in

Figure 9.3 is divided into four stages: instruction fetch (IF), instruction decode (ID),

instruction execution (EX), and result write-back (WB). The instruction sequencing

logic is implemented in the EX stage. The sequencing pipeline consists of the IF, ID,

and EX stages of the processor pipeline. When a compare-and-branch* instruction

is processed by the EX stage,2 the instruction sequencing logic determines the next

instruction to fetch from the memory system based on the comparison result.

The dynamic pipeline behavior is illustrated by the timing diagram in Figure 9.4.

The vertical dimension gives the clock cycles and the horizontal dimension, the pipeline

stages. For each cycle, the timing diagram indicates the pipeline stage in which each

instruction can be found.

The pipeline fetches instructions sequentially from memory until a branch is encoun­

tered. In Figure 9.4, the instructions to be executed axeE-^F—*G-+H—*I—*

E —*• F. However, the direction of branch / is not known until cycle 7. By this time

instructions J and K have already entered the pipeline. Therefore, in cycle 8, instruction

E enters the pipeline while J and K are scratched. The nonproductive cycles introduced

by incorrectly fetching J and K reduce the throughput of the pipeline.

9.2.3 Deep pipelining and multiple-instruction-issue

The rate of instruction execution is equal to the clock frequency times the number of

instructions executed per clock cycle. One way to improve the instruction execution rate

is to increase the clock frequency. The pipeline stages with the longest delay (critical

i Although the compare-and-branch instructions are assumed in the example, the methods apply to
condition code branches as well.

"Although unconditional branch instructions can redirect the instruction fetch at the ID stage, we
ignore the optimization in this example for simplicity.

208

paths) limit the clock frequency. Therefore, subdividing these stages can potentially

increase the clock frequency and improve the overall performance. This adds stages in

the pipeline and creates a deeper pipeline. For example, if the instruction cache access

and the instruction execution limit the clock frequency, subdividing these stages may

improve the clock frequency. A timing diagram of the resultant pipeline is shown in

Figure 9.5. Now, four instructions are scratched if a compare-and-branch redirects the

instruction fetch. For example, 72 — h may be scratched if Ii redirects the instruction

fetch.

Another method to improve instruction execution rate is to increase the number

of instructions executed per cycle. This is accomplished by fetching, decoding, and

executing multiple instructions per cycle. This is often referred to as multiple-instruction-

issue. The timing diagram of such a pipeline is shown in Figure 9.6. In this example,

two instructions are fetched per cycle. When a compare-and-branch (Ii) reaches the EX

stage, five (h, h, h, h, h) instructions may be scratched from the pipeline.3

As far as instruction sequencing is concerned, multiple-instruction-issue has the same

effect as deep pipelining. They both result in an increased number of instructions which

may be scratched when a branch redirects the instruction fetch.4 Combining deep pipelin­

ing and multiple-instruction-issue will increase the number of instructions to be scratched

to a relatively large number. For example, the TANDEM Cyclone processor requires 14

branch slots due to deep pipeline and multiple-instruction-issue [Horst 90].s The discus­

sions in this chapter do not distinguish between deep pipelining and multiple-instruction-

issue; they are based on the number of instructions to be scratched by branches.

3The number of instructions to be scratched from the pipeline depends on the instruction alignment.
If h rather than 7 : were a branch, four instructions (73,J4,Is,16) would be scratched.

4A difference between multiple-instruction-issue and deep pipelining is that multiple likely control
transfer instructions could be issued in one cycle. Handling multiple likely control transfer instructions
per cycle in a multiple-instruction-issue processor is not difficult in Inline Target Insertion. The details
are not within the scope of this chapter.

5The processor currently employs an extension to the instruction cache which approximates the effect
of a Branch Target Buffer to cope with the branch problem.

209

9.3 Inline Target Insertion

Inline Target Insertion consists of a compile-time code restructuring algorithm and

a run-time pipelined instruction fetch algorithm. The compile-time code restructuring

algorithm transforms a sequential program Ps into a parallel program Pp. Inline Target

Insertion is correct if the instruction sequence generated by executing Pp on a pipelined

instruction fetch unit is identical to that generated by executing Ps on a sequential

instruction fetch unit. In this section, we first formally define the sequential instruction

fetch algorithm. Then, we formally define the code restructuring algorithm and the

pipelined instruction fetch algorithm of Inline Target Insertion. From the formal models

of implementation, we will derive a proof of correctness.

9.3.1 Sequential instruction fetch

In a sequential instruction fetch unit, Is(t) is defined as the dynamic instruction dur­

ing cycle t. The address of Ia(t) will be referred to as Aa(Ia(t)). The target instruction of

a branch instruction Ia(t) will be referred to as target(I„(t)). The next sequential instruc­

tion of a branch instruction I„(t) will be referred to as fallthru(I„(t)). The sequential

instruction fetch algorithm (SIF) is as follows:

Algorithm SIF begin

if (Ia(t) is a taken branch) then

Aa(It(t+l)) <- Aa(target(Ia(t)));

else

Aa(Ia(t + l))^Aa(Ia(t))-rl;6

end

The correct successors of a dynamic instruction I3(t) are defined as the dynamic in­

structions to be executed after Ia(t) as specified by SIF. The kik correct successor of

6In the discussions, all address arithmetics are in terms of instruction words. For example, address <—
address + 1 advances the address to the next instruction.

210

Ia(t) will be denoted CS(Ia(t), k). It should be noted that CS(Ia(t), k) = Ia(t + k). For

a sequential program, P„, whose execution starts from instruction IQ, the instruction se­

quence is (Jo, CS(I0,1), CS(I0,2), ..., CS(IQ, n)), where CS(I0, n) is the first terminating

instruction.

9.3.2 Compiler implementation

The compiler implementation of Inline Target Insertion involves compile-time branch

prediction and code restructuring. Branch prediction marks each static branch as either

likely or unlikely. The prediction is based on the estimated probability for the branch to

redirect an instruction fetch at run time. The probability can be derived from program

analysis and/or execution profiling. The prediction is encoded in the branch instructions.

The predicted successors (PS) of an instruction I are the instructions which tend to

execute after I. The definition of predicted successors is complicated by the frequent

occurrence of branches. Let PS(I,k) refer to the kth predicted successor of I. The

predicted successors of an instruction can be defined recursively:

(1) If 7 is a likely branch, then PS(1,1) is target(I). Otherwise, PS(1,1) is fallthru(I).

(2) (/a = PS(I, k)) A (h = PS(h, 1)) -+ h = PS(I, k + 1).

For example, one can identify the first five predicted successors of F in Figure 9.2

as shown below. Since F is a likely branch, its first predicted successor is its target

instruction H. The second predicted successor of F is I, which is a likely branch itself.

Thus, the third predicted successor of F is 7's target instruction E.

H = PS(F,1)

(H = PS(F,1))A(I = PS(H,1)) -» I = PS(F,1)

(I = PS(F,1))A(E = PS(I,1)) -» E = PS(F,S)

(E = PS(F,3))/\(F = PS(E,1)) -» F = PS(F,A)

(F = PS(F,4))A(H = PS(F,1)) -^ H = PS(F,5)

211

The code restructing algorithm for Inline Target Insertion is shown below. It is also

illustrated by Figure 9.7.

Algorithm ITI(N) begin

(1) Open TV insertion slots after every likely branch. 7

(2) For each likely branch I, adjust its target label from the address of

PS(1,1) to (the address of PS(1,1) + N).

(3) For each likely branch 7, copy its first N predicted successors (PS(1,1),PS(1,2),

...,PS(I,N)) into its slots.8 If some of the inserted instructions are

branches, make sure they branch to the same target after copying.9

end

The goal of 7T7 is to ensure that all original instructions find their predicted succes­

sors in the next sequential locations. This is achieved by inserting the predicted successors

of likely branches into their next sequential locations.

We refer to the slots opened by the 77Y Algorithm as insertion slots instead of more

traditional terms such as delay slots or squashing delay slots. The insertion slots are

associated only with likely branches. The instructions in the insertion slots are duplicate

copies. All the others are original. This is different from the usual meaning of the terms

delay slots and squashing delay slots. They often refer to sequential locations after both

likely and unlikely branches, which can contain uiiginal as well as duplicate copies.

Figure 9.8 illustrates the application of ITI(N = 2) to a part of the machine program

in Figure 9.2. Step 1 opens two insertion slots for the likely branches F and 7. Step 2

"It is possible to extend the proofs to a nonuniform number of slots in the same pipeline. The details
are not in the scope of this chapter.

8This step can be performed iteratively. In the first iteration, the first predicted successors of all likely
branches are determined and inserted. Each subsequent iteration inserts one more predicted successor
for all the likely branches. It takes N iterations to insert all of the target instructions to their assigned
slots.

9This is trivial if the code restructuring works on assembly code. In this case, the branch targets
are specified as labels. The assembler automatically generates the correct branch offset for the inserted
branches.

212

adjusts the branch labels so that F branches to .4(77) + 2 and 7 branches to A(E) + 2.

Step 3 copies the predicted successors of F (77 and 7) and 7 (E and F) into the insertion

slots of F (77' and 7') and 7 (E' and 7^'). Note that the offsets are adjusted so that V

and F' branch to the same target instructions as 7 and F. The reader is encouraged to

apply ITI(N = 3) to the code for more insights into the algorithm.

With Inline Target Insertion, each instruction may be copied into multiple locations.

Therefore, the same instruction may be fetched from one of the several locations. The

original address, A0(I), of a dynamic instruction is the address of the original copy of

7. The fetch address, Aj(I), of a dynamic instruction 7 is the address from which 7 was

fetched. In Figure 9.8, the original address of both 7 and V is the address of 7. The fetch

addresses of 7 and I' are their individual addresses.

It should be noted that 7T7 moves fallthru(I) of a likely branch 7 to A0(I) + N + 1,

which is an original address.

9.3.3 Sequencing pipeline implementation

The sequencing pipeline is divided into N + 1 stages. The sequencing pipeline pro­

cesses all instructions in their fetch order. If any instruction is delayed due to a condition

in the sequencing pipeline, e.g., instruction cache miss, all of the other instructions in the

sequencing pipeline are delayed. This includes the instructions ahead of the one being

delayed. The net effect is that the entire sequencing pipeline freezes. This ensures that

the relative pipeline timing among instructions is accurately exposed to the compiler. It

guarantees that when a likely branch redirects instruction fetch, all instructions in its

insertion slots have entered the sequencing pipeline. Note that this restriction applies

only to the instructions in the sequencing pipeline; the instructions in the execution

pipelines, e.g., data memory access and floating point evaluation, can still proceed while

the instruction sequencing pipeline freezes.

The definition of time in instruction sequencing separates the freeze cycles from the

execution cycles. Freeze cycles do not affect the relative timing among instructions in

the sequencing pipeline. Cycle t refers to the tth cycle of program execution excluding

213

the freeze cycles. Instruction 7(6, t) is defined as the dynamic instruction at the kth stage

of the sequencing pipeline during cycle t; I(l,t) is the tail and I(N + l,t) is the front of

the fetch pipeline. The implementation keeps an array of fetch addresses for all of the

instructions in the sequencing pipeline. The fetch address for the instruction at stage i

in cycle t will be referred to as Aj(I(i,t)).

A hardware function REFILL10 is provided to reload the instruction fetch pipeline

from any original address. REFILL is called when there is a program startup, an

incorrect branch prediction, or a return from interrupt/exception. It is easy to guarantee

that the program startup address is an original address. We will show in the next

subsection that the appropriate original address for a program to resume after incorrect

branch prediction and interrupt/exception handling is always available.

REFILL(pc) begin

Af(I(N-rl,t-rl))^pc;

for k = l.JV do Af(I(N - k + l,t + 1)) <- pc + k;

end

The pipelined instruction fetch algorithm (PIF) that is implemented in hardware is

shown below. The sequencing pipeline fetches instructions sequentially by default. Each

branch can redirect the instruction fetch and/or scratch the subsequent instructions when

it reaches the end of the sequencing pipeline. If a branch redirects the instruction fetch,

the next fetch address is the adjusted target address determined in Algorithm IT I. If the

decision of a branch is incorrectly predicted, it scratches all of the subsequent instructions

from the sequencing pipeline.

REFILL is excluded from the accounting of time when proving the correctness of Inline Target
Insertion. REFILL may be physically implemented as loading an initial address into Af(I(l,t)) and
subsequently computing Af(I(l,t + k)) = ,4/(7(1,* + k - 1)) + 1, for t = L.JV. REFILL is included
in the accounting of time when evaluating the performance of Inline Target Insertion (Section 9.4).

214

Algorithm PIF(N) begin

if (I(N + l,t) is not a branch) then

A / (J (M + 1)) - Af(I(l,t)) + l;

for k = l..N do 4 , (7 (6 + 1, t + 1)) «- A/(7(t , t));

else if (7(./V + l , i) is likely and is taken) then

A/(7(l , t + l))<- A0(target(I(N + 1,<))) + ^ ;

for k = l.JV do Af(I(k + 1, t + 1)) <- ,4,(7(6,*));

else if (7(A~ + 1,*) is unlikely and is not taken) then

Af(I(l,t + l))^Af(I(l,t))-rl;

for k = l.JV do .4 , (7(6+ 1,* + 1)) «- Af(I(k,i));

else if (I(N + l,t) is unlikely but is taken) then

REFILL(A0(target(I(N + 1,«))));

else if (7(A* + l , i) is likely but is not taken) then

REFILL(Af(I{l,t)) + l);

end

Figure 9.9(a) shows a timing diagram for executing the instruction sequence (E —»

F —* H —»• 7 —> E) of the machine program in Figure 9.8(a). With Inline Target Insertion

(Figure 9.8(e)), the instruction sequence becomes (E —» F —» 77' —* I' —* E'). In this

case, the branch decision for F is predicted correctly at compile time. When F reaches

the EX stage in cycle 4, no instruction is scratched from the pipeline. Since F redirects

the instruction fetch, the instruction to be fetched by the IF stage in cycle 5 is E' (the

adjusted target of F) rather than the next sequential instruction G.

Figure 9.9(b) shows a similar timing diagram for executing the instruction sequence

(E —> F —* G). With Inline Target Insertion, the instruction fetch sequence becomes

(E —• F —v 77' —• 7' —> G). In this case, the branch decision for F is predicted

incorrectly at compile time. When F reaches the EX stage in cycle 4, instructions 77'

215

and 7' are scratched from the pipeline. Since F does not redirect the instruction fetch,

the instruction fetch pipeline is refilled from the next sequential instruction G.

9.3.4 Correctness of implementation

Branches are the central issue of Inline Target Insertion. Without branches, the se­

quencing pipeline would simply fetch instructions sequentially. The instructions emerging

from the sequencing pipeline would be the correct sequence. Therefore, the correctness

proofs of the compiler and pipeline implementation will focus on the correct execution of

branches. For pipelines with many slots, it is highly probable to have branches inserted

into insertion slots (see Section 9.4.2). In the case where there are no branches in inser­

tion slots, the correctness follows from the description of the ITI Algorithm. All branch

instructions would be original and they would have their first N predicted successors in

the next N sequential locations, whereas a branch instruction in an insertion slot cannot

have all of its N predicted successors in the next N sequential locations. For example, in

Figure 9.8(e), questions arise regarding the correct execution of F'. When F' redirects

the instruction fetch, how do we know that the resulting instruction sequence is always

equivalent to the correct sequence F —* 77 —* I...1

Definit ion 1 Inline Target Insertion is correct if the instruction sequence that is gen­

erated by (PIF,PP) is (I0, CS(I0,1), CS(IQ,1), ..., CS(I0,n)), where CS(I0,n) is the

first stop instruction.

We shall prove that the instruction sequence that is issued by (PIF, Pp) is identical

to that issued by (SIF, P„). Unfortunately, it is difficult to compare the output of PIF

and SIF on a step-by-step basis. We will first identify sufficient conditions for (PIF,

Pp) to generate the same instruction sequence as (SIF, Pa), and then show that these

conditions are guaranteed by Inline Target Insertion.

To help the reader to read the following lemmas and theorems, we list important

notations in Table 9.2. We define two assertions on the state variables of the instruction

fetch pipeline.

216

R (t) : 7(i,t) = PS(I(N + l,t),N-i + 1),i = 1...N.

S(t) : Af(I(l,t)) = A0(I(N+l,t)) + N.

Theorem 1 states that these two equality relations are sufficient to ensure the cor­

rectness of Inline Target Insertion.

T h e o r e m 1 If R(t) and S(t) are true for all t, then I(N+l,t) = CS(I0,t).

Proof: The theorem can be proved by induction on t.

P(t):I(N+l,t) = CS(I0,t).

Induction basis: From the definition of REFILL, I(N + 1,0) = To. P(0) is true for

t = 0.

Induction step: Assuming P(t) is true, we show P(t + 1) is also true.

Case 1: I(N + l,t) is not an incorrectly predicted branch.

According to PIF, I(N+l,t + l) = I(N,t). R(t) implies that I(N,t) = PS(I(N +

l,t), 1). For a correctly predicted instruction I(N-rl,t), PS(I(N-\-l,t), 1) is equal

to CS(I(N+l,t),l). Hence, I(N + l,t + 1) = I(N,t) = PS(I(N + l,t),l) =

CS(I(N+l,t),l) = CS(I0,t-r 1).

Case 2: I(N + l,t) is unlikely but is taken.

PIF performs REFILL(A0(target(I(N + l,t)))) at t. According to the definition

of REFILL, 7(A~+ M + l) becomes target(I(N+l,t)) which isCS(I(N+l,t),l).

Hence, I(N + l,t + 1) = CS(I(N-r l,t),l) = CS(I0,t + 1).

Case 3 : I(N -J- l,t) is likely but is not taken.

PIF performs REFILL(Af(I(l,t))+l) att. According to the definition of REFILL

andS(t),Af(I(N + l,t + l)) = Af(I(l,t))-rl = A0(I(N-rl,t))-rN+l. Because

I(N + l,t) is a likely branch, IT I allocates N insertion slots after A0(I(N+ l,t)),

and fallthru(I(N + l,t)) is at A0(I(N + l,t)) + N + l.11 Because I(N + l,t) is

u I t should be noted that, if 7(iV + l,t) is a likely branch, the original copy of fallthru(I(N + l,t))
is always at A„(I(N + l,t)) + N + 1 according to ITI. Therefore, A0(I(N + 1,*)) + N + 1 is a legal
argument for REFILL.

2] 7

not taken, CS(I(N + l,t),l) is fallthru(I(N + l,t)). Hence, I(N + l,t + 1) =

fallthru(I(N +1,<)) = CS(I(N + 1, t), 1) = CS(I0, t + 1).

D

Theorem 1 shows that R(t) and S(t) are sufficient to ensure correct execution. There­

fore, we formulate the next theorem as the ultimate correctness proof of Inline Target

Insertion.

T h e o r e m 2 7T7 and PIF ensure that R(t) and S(t) are true for all t.

Theorem 2 has a standard induction proof. We start by proving that 72(0) and 5(0)

are true. Then we show that, if R(t) and S(t) are true, R(t + 1) and S(t + 1) are also

true. Because PIF and 7T7 are complex algorithms, we need to consider several cases

in each step of the proof. Instead of presenting the proof as a whole, we will first present

several lemmas, from which the proof of Theorem 2 naturally follows.

L e m m a 1 Let Ientry be an original instruction. If REFILL(A0(Ientry)) is performed at

time t so that 7e„tr!/ is I(N + 1, t + 1) then R(t + 1) and S(t + 1) are true.

Proof:

ITI ensures that the original instructions find their N predicted successors in their

next N sequential addresses. R(t + 1) naturally follows the definition of REFILL.

Af(I(l,t-r 1)) = Af(I(N + l,t + 1)) + N is implied by the definition of REFILL.

Because Aj(I(N+l,t-rl)) = A0(I(N+l,t + l)), Af(I(l,t-rl)) = A0(I(N+l,t+l))-rN.

Therefore, S(t + 1) is also true.

D

Lemma 1 shows that refilling the instruction fetch pipeline from an original address

ensures that R(t + 1) and S(t + 1) are true. The instruction sequence pipeline is initialized

by REFILL(Ao(I0)), where 70 is the entry point of a program. It follows from Lemma

1 that 72(0) and 5(0) are true.

218

We proceed to prove that, if R(t) and S(t) are true, S(t + 1) is also true. We first

prove for the case when 7(7V + 1,< + 1) is fetched from its original address, and then prove

for the case when I(N + l,t + 1) is fetched from one of its duplicate addresses.

L e m m a 2 If R(t) and S(t) are true and Af(I(N+ l,t + 1)) = A0(I(N + l , i + 1)), then

S(t + 1) is also true.

Proof:

Since I(N + l,t + 1) is fetched from its original address, I(N + l,t) cannot be a likely

branch. We need to consider only the following two cases.

Case 1: I(N + l,t) is not a branch or is an unlikely branch which is not taken.

PIF performs Af(I(l,t + 1)) = As(I(l,t)) + 1 for this case.

Adding 1 to both sides of S(t) results in Af(I(l,t)) + 1 = A0(I(N + l,t)) + N-r 1.

Because IT I allocates insertion slots only for likely branches and I(N-\-l,t) is not a

likely branch, the original addresses ofI(N+l,t) andI(N+l,t+l) must be adjacent

to each other. In other words, A0(I(N + l,t)) + 1 = A0(I(N + l,t + 1)). 77ence,

Af(I(l,t+l)) = Aj(I(l,t)) + l =A0(I(N-rl,t)) + N + l =A0(I(N+l,t-rl)) + N.

Therefore, S(t + 1) is true.

Case 2: I(N + l,t) is an unlikely branch but is taken.

PIF performs REFILL(A0(target(I(N + !,<)))) at time t. The correctness of

S(t + 1) follows from Lemma 1. Note that A0(target(I(N + !,())) is an original

(and therefore legal) address for REFILL.

•

The case in which 7(7V+ l , i +-1) is fetched from an insertion slot is fairly difficult to

prove. We will first prove an intermediate lemma.

L e m m a 3 If Af(I(N + !,< + !)) ^ A0(I(N + l,t + 1)), then there must be a k that

satisfies all of the following four conditions.

(l)0<k<N-l.

219

(2) I(N + 1 , 2 - 6) is a likely branch.

(3) There are no likely branches between I(N + l,t - k + 1) and I(N + l,t) inclusively.

(4) There is no incorrectly predicted branch between I(N + 1,2 — 6) and I(N + 1,2)

inclusively.

Proof-

Since I(N + 1,2 + 1) is not fetched from its original address, it must be fetched from an

insertion slot. Therefore, there must be at least one likely branch among the N instruc­

tions fetched before I(N + 1 , 2 + 1). The one that is fetched closest to I(N + 1,2 + 1)

satisfies (I), (2), and (3).

We can prove (4) by contradiction. Assume that there was an incorrectly predicted

branch between 7(7^+1,2—6) and 7(iV+l, 2) inclusively. Then, a REFILL was performed

after (2 — 6 — 1) at an original address. Because there was no likely branch between

7(AT+1,2—6+1) andI(N+l,t) inclusively, 7(A~+1,2+1) must be fetched from its original

address. This is a contradiction to the hypothesis of this Lemma: Af(I(N + 1,2 + 1)) ^

A0(I(N + 1,2 + 1)).

•

L e m m a 4 IfAj(I(N + 1,2 + 1)) ^ A0(I(N + 1,2+ 1)) and R(t) and S(t) are true, then

S(t + 1) is also true.

Proof:

We will use the k found in Lemma 3.

Case 1: 6 = 0.12

I(N + 1,2) is a likely branch. In this case, PIF performs ,4,(7(1,2 + 1)) =

A0(target(I(N + 1,2))) + N. R(t) implies that I(N,t) = PS(I(N + 1,2), 1).

Because PIF performs Aj(I(N + 1,2 + 1)) = Af(I(N,t)) for this case, I(N +

1,2 + 1) = PS(I(N + 1,2), 1) = target(I(N + 1,2)) and A0(I(N + 1,2 + 1)) =

A0(target(I(N+l,t))). Therefore, Af(I(l,t + l)) = A0(target(I(N-rl,t))) + N =

A0(I(N + l,t + l))-rN.

12Case 1 could be included in Case 2 of the proof. We separate the two cases to make the proof more
clear.

220

Case 2: 1 < 6 < TV - 1.

(1) Because I(N+l,t-k) was a likely branch, PIF performed A, (7 (1 , 2 - 6 + 1)) =

A0(target(I(N + 1 , 2 - 6))) + N.

(2) Because 7 (i V + l , 2 - 6) was a likely branch, I(N,t-k) = target(I(N + 1 ,2-6)) .

Therefore, A0(I(N + 1 , 2 - 6 + 1)) = A0(I(N,t - k)) = A0(target(I(N + 1 , 2 - 6)) .

(3) Because there was no likely branch between I(N + 1 , 2 — 6 + 1) and I(N + 1,2)

inclusively, 4,(7(1,2 + 1)) = 4,(7(1,2 - 6 + 1)) + 6.

(4) From (1), (2) and (3), Af(I(l,t + 1)) = A0(I(N + 1,2 - 6 + 1)) + N + 6.

(5) Because there was no likely branch between I(N + 1 , 2 — 6 + 1) and I(N +1 ,2)

inclusively, A0(I(N + 1 , 2 - 6 + 1)) + 6 = A0(I(N + 1 , 2 + 1)).

(6) From (4) and (5), Af(I(l,t + 1)) = A0(I(N + 1,2 + 1)) + N.

0

Lemmas 2 and 4 together ensure that, if S(i) and R(i) are true for 0 < i < 2, S(t + 1)

is also true. We proceed to show that R(t + 1) is also true.

L e m m a 5 If R(t), S(t), and 5 (2 + 1) are true, then R(t + 1) is also true.

Proof-

Case 1: I(N + 1,2) is an incorrectly predicted branch.

For this case, PIF performs a REFILL. Lemma 1 ensures that I(i,t + 1) =

7"5(7(7V + 1,2 + 1), N - i + l),i = 1...N after a REFILL.

It remains to be shown that the argument to REFILL is an original address. If

I(N + 1,2) is an unlikely branch, the argument to REFILL is A0(target(I(N +

1,2))) which is an original address.

If I(N + 1,2) is a likely branch, the argument to REFILL is 4,(7(1,2)) + 1.

According to Lemmas 2 and 4, 4,(7(1,2)) + 1 = 4„(7(iV + 1,2)) + N + 1. Be­

cause I(N + 1,2) is a likely branch, IT I ensures that A0(I(N + 1,2)) + TV + 1 =

fA,(/aW2Aru(7(Ar+l,2)));.

221

Case 2: I(N + 1,2) is not an incorrectly predicted branch.

(1) From Lemmas 2 and 4, 4,(7(1,2 + 1)) = A0(I(N + 1,2 + 1)) + TV.

(2) According to IT I, an original instruction can find its predicted successors in the

next sequential instructions. Therefore, 7(1,2 + 1) must be PS(I(N + 1,2 + 1), TV)

to be placed in 40(7(7V+ 1,2 + 1)) + TV.

(3) Because I(N+l,t) is not an incorrectly predicted branch, PIF performs for 6 =

1..7V do 4 ,(T(6 +1,2 + 1)) «- 4,(7(6,2)) . Therefore, R(t) implies that I(i,t + 1) =

P5(7(TV + 1,2 + 1), TV - i + 1) for i = 2...TV.

(4) From (2) and (3), R(t + 1) is true.

•

P r o o f of T h e o r e m 2 By induction on 2. It follows from Lemma 1 that 72(0) and 5(0)

are true. From Lemmas 2, 4, and 5, if 72(2) and 5(2) are true, 72(2 + 1) and S(t + 1) are

also true.

•

9.3.5 Interrupt/exception return

The problem of interrupt/exception return arises when interrupts and exceptions

occur to instructions in insertion slots. For example, assume that the execution of code

in Figure 9.8(e) involves an instruction sequence, E —*• F —* 77' —• I' —• E' —> F'.

Branch F is correctly predicted to be taken. The question is, if 77' caused a page fault,

how much instruction sequencing information must be saved so that the process can

resume properly after the page fault is handled? If one saved only the address of 77', the

information about F being taken is lost. Since 77' is a not a branch, the hardware would

assume that 7' was to be executed after 77'. Since 7' is a likely branch and is taken,

the hardware would incorrectly assume that G and 77 resided in the insertion slots of I'.

The instruction execution sequence would become 77' —> 7' —• G —> 77 —• ..., which is

incorrect.

The problem is that resuming execution from 77' violated the restriction that an empty

sequencing pipeline always starts fetching from an original instruction. The hardware

does not have the information that 77' was in the first branch slot of F and that F was

taken before the page fault occurred. Because interrupts and exceptions can occur to

instructions in all insertion slots of a branch and there can be many likely branches in

the slots, the problem cannot be solved by simply remembering the branch decision for

one previous branch.

A popular solution to this problem is to save all of the previous N fetch addresses plus

the fetch address of the reentry instruction. During exception return, all of the TV + 1

fetch addresses will be used to reload their corresponding instructions to restore the

instruction sequencing state to before the exception. The disadvantage of this solution is

that it increases the number of states in the pipeline control logic and can therefore slow

down the circuit. The problem becomes more severe for pipelines with a large number

of slots.

In Inline Target Insertion, interrupt/exception return to an instruction 7 is correctly

performed by REFILL(A0(I)). The memory address A0(I(N+1,2)) is always available

in the form of 4,(7(1,2)) — N (Theorem 2). One can record the original addresses

when delivering an instruction to the execution units. This guarantees that the original

addresses of all instructions active in the execution units are available. Therefore, when an

interrupt/exception occurs to an instruction, the processor can save the original address

of that instruction as the return address. Lemma 1 ensures that J2(2 + 1) and S(t + 1)

are true after REFILL from an original address.

Figure 9.10 shows the effect of an exception on the sequencing pipeline. Figure 9.10(a)

shows the timing of a correct instruction sequence E —y F —• 77' —• 7' —• E' —• F' from

Figure 9.8(e) without exception. Figure 9.10(b) shows the timing with an exception to

77'. When 77' reaches the end of the sequencing pipeline (EX stage) at 2, its 40(77') is

available in the form of 4,(7(1,2)) -TV = 4 , (E ') - 2. This address will be maintained

223

by the hardware until 77' finishes execution.13 When an exception is detected, 40(77') is

saved as the return address. During exception return, the sequencing pipeline resumes

instruction fetch from 77, the original copy of 77'. Note that the instruction sequence

produced is 77 —> 7 —» E', which is equivalent to the one without exception.

Note that the original copies must be preserved to guarantee clean implementation of

interrupt/exception return. In Figure 9.8(e), if normal control transfers always enter the

section at E', there is an opportunity to remove E and F after Inline Target Insertion

to reduce code size. However, this would prevent a clean interrupt/exception return if

one occurs to E' or F'. Section 4.2 presents an alternative approach to reducing code

expansion.

9.3.6 Extension to out-of-order execution

Inline Target Insertion can be extended to handle instruction sequencing for out-of-

order execution machines [Tomasulo 67], [Weiss 84], [Acosta 86], [Hwu 87], [Hwu 88a],

[Smith 89]. The major instruction sequencing problem for out-of-order execution ma­

chines is the indeterminate timing of computing branching conditions and target ad­

dresses. It is not feasible in general to design an efficient sequencing pipeline in which

branches always have their conditions and target addresses at the end of the sequencing

pipeline. To allow efficient out-of-order execution, the sequencing pipeline must allow

the subsequent instructions to proceed whenever possible.

To make Inline Target Insertion and its correctness proofs applicable to out-of-order

execution machines, the following changes should be made to the pipeline implementa­

tion.

(1) The sequencing pipeline is long enough to identify the target addresses for program-

counter-relative branches and for those whose target addresses can be derived with­

out interlocking.

13The real original address does not have to be calculated until an exception is detected. One can
simply save Af(I(l,t)) and calculate only A0(I(N + l,t)) when an exception actually occurs. This avoids
requiring an extra subtracter in the sequencing pipeline.

224

(2) When a branch reaches the end of the sequencing pipeline, the following may occur:

(a) The branch is likely and its target address is not available yet. In this case,

the sequencing pipeline freezes until the interlock is resolved.

(b) The branch is unlikely and its target address is not yet available. In this

case, the sequencing pipeline proceeds with the subsequent instructions. Extra

hardware must be added to hold the target address when it becomes available

to recover from incorrect branch prediction. The execution pipeline must also

be able to cancel the effects of the subsequent instructions emerging from the

sequencing pipeline for the same reason.

(c) The branch condition is not yet available. In this case, the sequencing pipeline

proceeds with the subsequent instructions. Extra hardware must be added to

hold the repair address to recover from incorrect branch prediction. The exe­

cution pipeline must be able to cancel the effects of the subsequent instructions

emerging from the sequencing pipeline for the same reason.

If a branch is program-counter-relative, both the predicted and alternative addresses

are available at the end of the sequencing pipeline. The only difference from the orig­

inal sequencing pipeline model is that the condition might be derived later. Since the

hardware secures the alternative address, the sequencing state can be properly recovered

from incorrectly predicted branches. If the branch target address is derived from run­

time data, the target address of a likely branch may be unavailable at the end of the

sequencing pipeline. Freezing the sequencing pipeline in the above specification ensures

that all theorems hold for this case. As for unlikely branches, the target address is the

alternative address. The sequencing pipeline can proceed as long as the alternative ad­

dress is secured when it becomes available. Therefore, all of the proofs above hold for

out-of-order execution machines.

225

9.3.7 Issuing multiple branch operations per cycle

Inline Target Insertion can be extended to handle multiple branch operations per

cycle. For each instruction which can contain up to M operations, a linear ordering is

assumed among the M operations. All M operations of an instruction can be branches.

All branch operations, except one, must be unlikely (no branch slots). In other words,

there are two situations: (1) all branch operations are unlikely, and (2) one branch

operation is likely and all other branch operations are unlikely. Each branch slot is an

instruction. Branch slots are allocated after an instruction, when there is a likely branch

operation in the instruction.

We need to define the semantics of an instruction with multiple branch operations.

Let oper(i),i = 1...M denote the operations of the instruction at the end of the fetch

pipeline (7(TV +1 ,2)) .

(1) next-pc = 4,(7(1,2)) + 1;

(2) for (i = 1..M) do

if (oper(i) is not a branch operation)

allow oper(i) to proceed in the instruction pipeline;

if (oper(i) is unlikely and is not taken)

allow oper(i) to proceed in the instruction pipeline;

if (oper(i) is unlikely but is taken)

allow oper(i) to proceed in the instruction pipeline;

squash oper(6), 6 = i + 1..M;

squash all later instructions in the fetch pipeline;

next-pc = the target address of oper(i);

if (oper(i) is likely and is taken)

allow oper(i) to proceed in the instruction pipeline;

squash oper(k), k = i + 1..M;

next-pc = the target address of oper(i) + N;

226

if (oper(i) is likely but is not taken)

allow oper(i) to proceed in the instruction pipeline;

squash all later instructions in the fetch pipeline;

(3) 4,(7(1,2)) = next-pc;

If an instruction does not contain a likely branch operation, then we consider the

instruction as a unlikely branch instruction. If an instruction contains a likely branch

operation, then we consider the instruction as a likely branch instruction. In the instruc­

tion level, the theorems that we have proven in this chapter remain valid.

9.4 Experiments

The code expansion cost and instruction sequencing efficiency of Inline Target Inser­

tion can be evaluated only empirically. This section reports experimental results based

on a set of production quality software from UNIX14 and CAD domains. The purpose is

to show that Inline Target Insertion is an effective method for achieving high instruction

sequencing efficiency for pipelined processors. All of the experiments are based on the

an instruction set architecture which closely resembles MIPS R2000/3000 [Kane 87] with

modifications to accommodate Inline Target Insertion. The IMPACT-I C Compiler, an

optimizing C compiler developed for deep pipelining and multiple-instruction-issue at the

University of Illinois, is used to generate code for all of the experiments.

9.4.1 The benchmarks

Table 9.3 presents the benchmarks chosen for this experiment. The C lines column

describes the size of the benchmark programs in number of lines of C code (not counting

comments). The runs column shows the number of inputs used to generate the pro­

file databases and the performance measurement. The input description column briefly

describes the inputs for the benchmarks. The inputs are realistic and representative of

"UNIX is a trademark of AT&T.

227

typical uses of the benchmarks. For example, the grammars for a C compiler and for a

LISP interpreter are two of the ten realistic inputs for bison and yacc. Twenty files of

several production-quality C programs, ranging from 100 to 3000 lines, are inputs to the

cccp program. All of the twenty original benchmark inputs form the input to espresso.

The experimental results are reported, based on the mean and sample deviations of all

program and input combinations shown in Table 9.3. The use of many different real

inputs to each program is intended to verify the stability of Inline Target Insertion using

profile information. The IMPACT-I compiler automatically applies trace selection and

placement, and removes unnecessary unconditional branches via code restructuring.

9.4.2 Code expansion

The problem of code expansion has to do with the frequent occurrence of branches

in programs. Inserting target instructions for a branch adds N instructions to the static

program.15 In Figure 9.8, target insertion for F and 7 increases the size of the loop from

5 to 9 instructions. In general, if Q is the probability that a static instruction is a likely

branch (Q = 0.18 among all the benchmarks), Inline Target Insertion can potentially

increase the code size by N* Q (1.80 for Q = 0.18 and N = 10). Because code expansion

can significantly reduce the efficiency of hierarchical memory systems, the problem of

code expansion must be addressed for pipelines with a large number of slots.

Table 9.4 shows the static control transfer characteristics of the benchmarks. The

static cond. (static uncond.) column gives the percentages of conditional (unconditional)

branches among all the static instructions in the programs. The numbers presented in

Table 9.4 confirm that branches appear frequently in static programs. This shows the

need for being able to insert branches in the insertion slots (see Section 9.3.4). The

high percentage of branches suggests that code expansion must be carefully controlled

for these benchmarks.

15One may argue that the originals of the inserted instructions may be deleted to save space if the flow
of control allows. We have shown, however, that preserving the originals is crucial to the clean return
from exceptions in insertion slots (see Section 9.3.5).

228

A simple method to control code expansion is to reduce the number of likely branches

in static programs using a threshold method. A conditional branch that executes fewer

times than a threshold value is automatically converted into an unlikely branch. An

unconditional branch instruction that executes fewer times than a threshold value can

also be converted into an unlikely branch whose branch condition is always satisfied.

The method reduces the number of likely branches at the cost of some performance

degradation. A similar idea has been implemented in the IBM Second Generation RISC

Architecture [Bakoglu 89].

For example, if there are two likely branches 4 and B in the program, 4 is executed

100 times and it redirects the instruction fetch 95 times; B is executed 5 times and it

redirects the instruction fetch 4 times. Marking 4 and B as likely branches achieves

correct branch prediction 99 (95+4) times out of a total of 105 (100+5). The code size

increases by 2 * N. Since B is not executed nearly as frequently as 4 , one can mark B

as an unlikely branch. In this case, the accuracy of branch prediction is reduced to be 96

(95+1) times out of 105. The code size increases only by TV. Therefore, a large saving in

code expansion could be achieved at the cost of a small loss in performance.

The idea is that all static likely branches cause the same amount of code expansion

but their execution frequency may vary widely. Therefore, by reversing the prediction

for the infrequently executed likely branches reduces code expansion at the cost of a

slight loss of prediction accuracy. This is confirmed by results shown in Table 9.5. The

threshold column specifies the minimum dynamic execution count per run, below which

likely branches are converted to unlikely branches. The E[Q] column lists the mean

percentage of likely branches among all instructions and the SD[Q] column indicates the

sample deviations. The code expansion for a pipeline with TV slots is TV * E[Q]. For

(TV = 2) with a threshold value of 100, one can expect a 2.2% increase in the static code

size. Without code expansion control (threshold=0), the static code size increase would

be 36.2% for the same sequencing pipeline. For an 11-stage sequencing pipeline (N = 10)

with a threshold value of 100, one can expect about an 11% increase in the static code

size. Without code expansion control (threshold=0), the static code size increase would

229

be 181% for the same sequencing pipeline. Note that the results are based on control

intensive programs. The code expansion cost should be much lower for programs with

simple control structures such as scientific applications.

9.4.3 Instruction sequencing efficiency

The problem of instruction sequencing efficiency is concerned with the total number of

dynamic instructions scratched from the pipeline due to all dynamic branches. Since all

insertion slots are inserted with predicted successors, the cost of instruction sequencing

is a function of only N and the branch prediction accuracy. The key issue is whether the

accuracy of compile-time branch prediction is high enough to ensure that the instruction

sequencing efficiency remains high for large values of N.

Evaluating the instruction sequencing efficiency with Inline Target Insertion is straight­

forward. One can profile the program to find the frequency for the dynamic instances

of each branch to go in one of the possible directions. Once a branch is predicted to go

in one direction, the frequency for the branch to go in other directions contributes to

the frequency of incorrect prediction. Note that only the correct dynamic instructions

reach the end of the sequencing pipeline in which branches are executed. Therefore, the

frequency of executing incorrectly predicted branches is not affected by Inline Target

Insertion.

In Figure 9.11(a), the execution frequencies of F and 7 are both 100, and E and

F redirect the instruction fetch 80 and 99 times, respectively. By marking F and 7 as

likely branches, we predict them correctly for 179 times out of 200. That is, 21 dynamic

branches will be incorrectly predicted. Since each incorrectly predicted dynamic branch

creates N nonproductive cycles in the sequencing pipeline, we know that the instruction

frequencing cost is 21*7V. Note that this number is not changed by Inline Target Insertion.

Figure 9.11(b) shows the code generated by ITI(2). Although we do not know exactly

how many times F and F' were executed, respectively, we know that their total execution

count is 100. We also know that the total number of incorrect predictions for F and F'

230

is 20. Therefore, the instruction sequencing cost of Figure 9.11(b) can be derived from

the count of incorrect predictions in Figure 9.11(a) multiplied by TV.

Let P denote the probability that any dynamic instruction is incorrectly predicted.

Note that this probability is calculated for all dynamic instructions, including both

branches and nonbranches. The average instruction sequencing cost can be estimated

by the following equation:

relative sequencing cost per instruction = 1 + P * N (9.1)

If the peak sequencing rate is 1/K cycles per instruction, the actual rate would be

(1 + P * N)/K cycles per instruction.16

Table 9.4 highlights the dynamic branch behavior of the benchmarks. The dynamic

cond. (dynamic uncond.) column gives the percentage of conditional (unconditional)

branches among all the dynamic instructions in the measurement. The dynamic percent­

ages of branches confirm that branch handling is critical to the performance of processors

with a large number of branch slots. For example, 20% of the dynamic instructions of

bison are branches. The P value for this program is the branch prediction miss ratio

times 20%. Assume that the sequencing pipeline has a peak sequencing rate of one cycle

per instruction (K = 1) and it has three slots (N = 3). The required prediction accuracy

to achieve a sequencing rate of 1.1 cycles per instruction can be calculated as follows:

1.1 > = 1 + (1 -accuracy)* 0.2* 3 (9.2)

The prediction accuracy must be at least 83.3%.

Table 9.6 provides the mean and sample deviations of P for a spectrum of thresholds

averaged over all benchmarks. Increasing the threshold effectively converts more branches

into unlikely branches. With TV = 2, the relative sequencing cost per instruction is 1.036

per instruction for threshold equals zero (no optimization). For a sequencing pipeline

whose peak sequencing rate is one instruction per cycle, this means a sustained rate of

16This formula provides a measure of the efficiency of instruction sequencing. It does not take external
events such as instruction misses into account. Since such external events freeze the sequencing pipeline,
one can simply add the extra freeze cycles into the formula to derive the actual instruction fetch rate.

231

1.036 cycles per instruction. For a sequencing pipeline which sequences 6 instructions

per cycle, this translates into 1.036/6 (0.518 for 6 = 2) cycles per instruction. When

the threshold is set to 100, the relative sequencing cost per instruction is 1.04. With

TV = 10, the relative sequencing cost per instruction is 1.18 for threshold equals zero

(no optimization). When the threshold is set to 100, the sequencing cost per instruction

becomes 1.20. Comparing Tables 9.5 and 9.6, it is obvious that converting infrequently

executed branches into unlikely branches reduces the code expansion at little cost of

instruction sequencing efficiency.

9.5 Conclusions

We have defined Inline Target Insertion, a cost-effective instruction sequencing method

extended from the work of McFarling and Hennessy [McFarling 86]. The compiler and

pipeline implementation offers two important features. First, branches can be freely in­

serted into branch slots. The instruction sequencing efficiency is limited solely by the

accuracy of the compile-time branch prediction. Second, the execution can return from

an interruption/exception to a program with one program counter. There is no need

to reload other sequencing pipeline state information. These two features make Inline

Target Insertion a superior alternative (better performance and less software/hardware

complexity) to the conventional delayed branching mechanisms.

Inline Target Insertion has been implemented in the IMPACT-I C Compiler to verify

the compiler implementation complexity. The software implementation is simple and

straightforward. A code expansion control method is also proposed and included in the

IMPACT-I C Compiler implementation. The code expansion and instruction sequencing

efficiency of Inline Target Insertion have been measured for UNIX and CAD programs.

The experiments involve the execution of more than a billion instructions. The size of

programs, variety of programs, and variety of inputs to each program are significantly

larger than those used in the previous experiments.

232

The overall compile-time branch prediction accuracy is about 92% for the benchmarks

in this study. For a pipeline which requires 10 branch slots and fetches two instructions

per cycle, this translates into an effective instruction fetch rate of 0.6 cycles per instruc­

tion (see Section 9.4.3). To achieve the performance level reported in this chapter, the

instruction format must give the compiler complete freedom to predict the direction of

each static branch. While this can be easily achieved in a new instruction set architec­

ture, it could also be incorporated into an existing architecture as an upward compatible

feature.

It is straightforward to compare the performance of Inline Target Insertion and that

of Branch Target Buffers. For the same pipeline, the performance of both are determined

by the branch prediction accuracy. Hwu, Conte and Chang [Hwu 89b] performed a direct

comparison between Inline Target Insertion and Branch Target Buffers based on a similar

set of benchmarks. The conclusion was that, without context switches, Branch Target

Buffers achieved an instruction sequencing efficiency slightly lower than Inline Target

Insertion. Context switches could significantly enlarge the difference [Lee 84]. All in

all, Branch Target Buffers have the advantages of binary compatibility with existing

architectures and no code expansion. Inline Target Insertion has the advantage of not

requiring extra hardware buffers, better performance, and performance insensitive to

context switching.

The results in this chapter do not suggest that Inline Target Insertion is always

superior to Branch Target Buffering. Rather, the contribution is to show that Inline

Target Insertion is a cost-effective alternative to Branch Target Buffer. The performance

is not a major concern. Both achieve very good performance for deep pipelining and

multiple-instruction-issue. The compiler support of Inline Target Insertion is simple

enough not to be a major concern either. This has been proven in the IMPACT-I C

Compiler implementation. If the cost of fast hardware buffers and context switching are

not major concerns but binary code compatibility and code size are, then Branch Target

Buffer should be used. Otherwise, Inline Target Insertion should be employed for its

better performance characteristics and lower hardware cost.

233

Table 9.1 A summary of delayed branching mechanisms.

Scheme
Delayed branches

Delayed branches
with squashing

Profiled delayed branches
with squashing

Hardware features
None

Uniform prediction
and squashing

Prediction bit
and squashing

Compiler features
Fill slots with
independent code
Fill slots with
independent code or
instructions from
the predicted path
Execution profiling
Fill slots with
instructions from
the predicted path

Table 9.2 A summary of important definitions used in the proofs.

N + 1 The number of stages in the instruction sequencing pipeline
7(6,2) The dynamic instruction occupying the kth pipeline stage at cycle 2
4,(7) The fetch address of dynamic instruction 7
40(7) The original address of dynamic instruction 7

PS(I, 6) The kttl predicted successor of 7
CS(1,6) The kth correct successor of dynamic instruction 7

R(t) I(i,t) = PS(I(N-rl,t),N-i-rl), i = l...N
S(t) 4,(7(1,2)) = 40(7(TV+ 1,2)) + TV

234

Table 9.3 Benchmarks.

name
bison
cccp
cmp
compress
eqn
espresso
grep
lex
make
tar
tbl
tee
wc
yacc

C lines
6913
4660

371
1941
4167

11545
1302
3251
7043
3186
4497
1063
345

3333

runs
10
20
16
20
20
20
20

4
20
14
20
18
20
10

input description
grammar for a C compiler, etc.
C programs (100-3000 lines)
similar/dissimilar text files
same as cccp
papers with .EQ options
original espresso benchmarks
exercised various options
lexers for C, Lisp, awk, and pic
makefiles for cccp, compress, etc.
save/extract files
papers with .TS options
text files (100-3000 lines)
same as cccp
grammar for a C compiler, etc.

Table 9.4 Static and dynamic characteristics.

benchmark
bison
cccp
cmp
compress
eqn
espresso
grep
lex
make
tar
tbl
tee
wc
yacc

static
cond.
0.12
0.10
0.09
0.09
0.08
0.09
0.15
0.15
0.12
0.10
0.18
0.09
0.07
0.14

static
uncond.

0.17
0.11
0.15
0.14
0.12
0.12
0.19
0.16
0.14
0.17
0.20
0.15
0.10
0.15

dynamic
cond.
0.19
0.17
0.16
0.11
0.21
0.13
0.30
0.30
0.18
0.12
0.21
0.29
0.22
0.23

dynamic
uncond.

0.01
0.04
0.04
0.01
0.02
0.02
0.05
0.01
0.01
0.00
0.05
0.07
0.02
0.01

235

Table 9.5 Percentage of likely branches among all static instructions.

threshold
0
1

10
20
40
60
80
100
200
400
600

E[QJ
18.1%
4.8%
2.1%
1.8%
1.5%
1.3%
1.2%
1.1%
0.9%
0.6%
0.5%

SD[Q]
3.7%
2.1%
1.6%
1.5%
1.3%
1.2%
1.1%
1.0%
0.8%
0.6%
0.5%

Table 9.6 Probability of prediction miss among all dynamic instructions.

threshold
0
1
10
20
40
60
80
100
200
400
600

E[PJ
0.018
0.018
0.019
0.019
0.020
0.020
0.020
0.020
0.023
0.023
0.025

SD[P]
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.011

236

(4 (b)
MaxElement = 0; rl +- i
for (i = 0; i < IMax; i++) { r 2 <_ temporary for Array[i]

if (Array[i] > MaxElement) MaxElement = Array[i]; .̂g ^_ T^ax
} ••• r4 <— MaxElement

Figure 9.1 (a) An example C program for finding the largest element in Array, (b)
The register assignment.

A: r4 *- 0
B:r l «- 0
C: r3 «- IMax
D: if (rl > r3) goto J [unlikely]
E: r2 f- Array (rl)
F: if (r2 < r4) goto H [likely] 99%
G: r4 «- r2
H: rl «- rl + 1
I: if (rl < r3) goto E [likely]
J: MaxElement <— r4
K: ...
(a) (b)

A
B

C
D
E
F
G

H
I
J
K

80%

Figure 9.2 (a) A machine language program generated from the C program shown in
Figure 9.1. (b) A simplified view of the machine language program.

237

FA

IF

Instruction

memory
IR

ID

Decode and
Register

fetch
01^

EX

ALU and
branch

decision

Next fetch
address

logic

RR

WB

Register

write

F igu re 9.3 A block diagram and a simplified view of a pipelined processor.

1
2
3
4
5
6
7
8
9

IF
E
F
G
77
7
J
K
E
F

ID

E
F
G
77
7
J

E

EX

E
F
G
77
7

WB

E
F
G
77
7

Figure 9.4 A timing diagram of the pipelined processor in Figure 9.3 executing the
sequence of instructions E->F-*G->H->I-*E-+Fof Figure 9.2. Instructions J
and K are scratched from the pipeline because 7 is taken.

238

1
2
3
4
5
6

77\
7i

h
h
h
h
h

IF2

h
h
h
h

ID

7i

h
h

EXX

h
h

EX2

h

WB

h

Figure 9.5 A timing diagram of a pipelined processor which results from further di­
viding the IF and EX stages of the processor in Figure 9.3.

1
2
3
4

IF

h,h
h,h
h,h
T8,77

ID

72,7X

74,73

EX

h,h

WB

h

Figure 9.6 A timing diagram of the pipelined processor which processes two instruc­
tions in parallel.

239

(a) Likely branch handling

C:

AT insertion

slots

fallthru of C

brD

dl
d2

dN

D:

copy

dl
d2

dN

(b) Unlikely branch handling

C:

fallthru of C -»-

no insertion

slots

target of C

adjusted target

of C

brD

D: target of C

Figure 9.7 Handling branches in the ITI Algorithm.

240

likely

E

J L

likely step 1

(b)
1 » E

F

G
H
I

«—

step 2 (c)

1 »

E
F

G
H
I

-.]

«—

step 3
iteration 1

(d)
1

H
•̂

E
F
H'

G
H
I
E'

i

...

step 3
iteration 2

(e)
) E

F
H'

r
G
H
I
E'
F'

1

«—

*- copy a predicted successor into a branch slot
Figure 9.8 A running example of Inline Target Insertion.

(a)
(b)

1
2
3
4
5

IF
E
F
77'
V
E'

ID

E
F
77'
V

EX

E
F
77'

WB

E
F

1
2
3
4

REFILL(A0(G))
5

IF
E
F
77'
7'

7

ID

E
F
77'

77

EX

E
F

G

WB

E

F

Figure 9.9 (a) Timing diagram of a pipelined processor executing the sequence, E —»
F —* 77'... of instructions in Figure 9.8(e). (b) A similar timing diagram for the sequence,
E-^F^G

241

(a)

1
2
3
4
5
6

IF
E
F
77'
7'
E'
F'

ID

E
F
77'
7'
E'

EX

E
F
77'
7'

WB

E
F
77'

(b)

1
2
3
4
5

REFILL(A0(H))
6
7

7F
£
F
77'
7'
£ '

E'
F'

ID

E
F
77'
V

I
E'

EX

E
F
IV

H
I

WB

E
F

77

Figure 9.10 (a) Timing diagram of a pipelined processor executing the sequence E —»
F —> H' —> I' -*• E' of instructions in Figure 9.8(e). (b) Timing diagram of a pipelined
processor executing the sequence E -+ F —* H' —> 7 —> E oi instructions in Figure 9.8(e)
because of an interrupt at I'.

99%

(a)

E

F 100

G

H
I 100

80%
ITI

xi + x2 = 100
x3 + x4 = 100

(b)
E

F xl

H'
r x4

G

H

I x3

E'

F'ar2

<—1

Figure 9.11 Evaluating the efficiency of instruction sequencing

242

CHAPTER 10

CONCLUSIONS

10.1 Summary

For a set of realistic C programs, we have shown that an optimizing compiler can re­

structure the programs and identify instruction-level parallelism, which is then mapped

onto the parallel microarchitectures to reduce the execution cycle count. This disserta­

tion has shown that multiple-instruction-issue processors substantially outperform single-

instruction-issue processors. For a four-operation-issue processor, programs run more

than twice as fast as possible on the best single-operation-issue processor (assuming they

have the same machine cycle time).

In the course of this research, we have developed the IMPACT-I C compiler. The

IMPACT-I C compiler has an open architecture that allows quick changes. Additional

code optimizations can be easily integrated and tested in the IMPACT-I C compiler. The

IMPACT-I C compiler uses two levels of intermediate forms. Source code transformation

techniques such as function inline expansion have been implemented in the high-level

intermediate form, Hcode. Traditional code optimizations have been implemented in the

low-level intermediate form, Lcode.

Automatic profiling capabilities have been added to the IMPACT-I C compiler. The

decision components of code optimizations have access to the profile (run-time) informa­

tion as well as to static loop analysis. When the resources, e.g., registers, function units,

are scarce, the profile information helps the compiler to allocate resources to the most

frequently executed program regions and to the most frequently accessed variables. We

243

have implemented profiling in three different levels: the preprocessor level, the Hcode

level, and the Lcode level. All three have been effective.

It is important to evaluate the performance of multiple-instruction-issue architectures

using highly optimized code for two reasons. First, a naive compiler can produce redun­

dant computations that show deceptive parallelism. Second, we report the speedup over

the most efficient sequential code. To generate efficient code, we have implemented a

large set of code optimizations. The control components of these optimizations use the

profile information. The code quality that is currently produced by the IMPACT-I C

compiler for the DECstation is comparable to that of one of the best commercial C

compilers.

We have proposed and implemented a large set of code transformation techniques

that enlarge the scope of static code scheduling. We have also implemented a large set

of code transformation techniques that reduce the lengths of critical paths. These code

optimizations have exposed the instruction-level parallelisms of the benchmark programs

to the code scheduler.

We have identified the importance of several new code optimizations. First, the

instruction placement optimization reduces the number of taken branches, increases in­

struction cache sequential locality, and produces longer super-blocks. Second, the loop

peeling optimization expands the scope of static code scheduling for infrequently iterated

loops. Third, the branch target expansion optimization reduces the number of taken

branches and enlarges the sizes of super-blocks. Fourth, the induction variable expan­

sion and the register renaming optimizations allow unrolled loop iterations to be merged.

Fifth, the integrated register allocation and code scheduling scheme reduces penalties

due to artificial data dependencies that are introduced by register allocation.

We have identified three levels of static code scheduling models: restricted code per­

colation, general code percolation, and speculative execution. We have implemented

code scheduling algorithms for each of the three models. For many multiple-instruction-

issue architectures, we have shown that the general code percolation model is the most

cost-effective model among the three.

244

Using the IMPACT-I C compiler, we have evaluated the performance of many multiple-

instruction-issue architectures. We have evaluated the effect of limiting some function

unit resources for different instruction issue bandwidths. The experimental data indicate

that, for high issue rate architectures, the ability to execute multiple branch and memory

load operations is important. We have also evaluated the effect of varying memory load

operation latency. The experimental data show that increasing the memory load latency

severely degrades the performance of high issue rate architectures. We have compared the

effectiveness of static code scheduling and dynamic code scheduling to improve the per­

formance of existing processor architectures. The experimental data indicate that static

code scheduling and dynamic code scheduling have their own merits and limitations. The

best approach might be to employ both static and dynamic code scheduling.

We have defined the IMPACT architectural framework of multiple-instruction-issue

processors. Using a simple in-order execution microarchitecture, we have achieved high

performance using compile-time code optimizations. We have developed the inline target

insertion technique that allows multiple branch operations to be issued per cycle and

branch operations to be fetched from branch slots.

We have released the first beta test version of the IMPACT-I C compiler to NCR in

February 1991. We plan to release the IMPACT/AMD29K C compiler in April 1991.

We also plan tp release the second beta test version of the IMPACT-I C compiler in May

1991.

Companies that design and manufacture microprocessors are welcome to adopt the

IMPACT architectural framework. Processor designs under the IMPACT framework are

fully supported by the IMPACT-I C compiler technology.

10.2 Future Directions

The original contributors of the IMPACT-I C compiler are extending the IMPACT-I

compiler technology for shared-memory multiprocessing. The first target machine is an

Alliant FX/2800 multiprocessor, which uses i860 microprocessors as its node processors.

245

Nancy Warter, who wrote the i860 code generator, is in the process of implementing a

compiler based on the IMPACT-I C compiler components for an extended C program­

ming language, which has doall and doacross loop constructs. She will study how to

partition a parallel program, e.g., nested loops, to tasks that are executed on superscalar

microprocessors. Scott Mahlke, who wrote a large portion of the code optimizer, will

design, implement and evaluate code optimizations for shared-memory multiprocessing.

William Chen, who wrote the MIPS R2000 code generator, will study the interrelation­

ships between code optimizations and shared-memory multiprocessor architectures.

Several new members of the IMPACT group are improving existing components and

implementing new components for the IMPACT-I C compiler. John Holm is fine-tuning

the SPARC code generator, which was written by Roland Ouellette. Rick Hank is con­

structing a new register allocator. Dan Lavery is studying the interrelationship between

global graph-coloring register allocation and trace scheduling. Grant Haab is constructing

a memory dependence analyzer with array subscript analysis. Roger Bringmann is fine-

tuning his AMD29K code generator and will study how to generate code for embedded

applications.

The author and several people in the IMPACT group are using the IMPACT-I C

compiler to conduct several experiments. First, we are comparing the performance of

superpipelining architectures to that of multiple-instruction-issue architectures. The

benchmark programs include nonnumeric C application programs and some numeric

FORTRAN application programs, e.g., SPEC FORTRAN benchmarks and Perfect Club

benchmarks. These FORTRAN programs are converted to C using the GNU F2C pro­

gram. Second, we are evaluating the effect of code optimizations on instruction-level

parallelisms and on processor architectures, e.g., instruction cache. Third, we are design­

ing more code optimizations for multiple-instruction-issue architectures (Chapter 7). We

will study the interrelationships between these code optimizations and specific hardware

features of multiple-instruction-issue architectures.

In the future, the author is interested in adding more frontends to the IMPACT-

I compiler framework and extending the IMPACT-I C compiler to an object-oriented

246

compiler, perhaps C++, for distributed parallel processing. With frontends for other

programming languages, such as LISP, Ada and Prolog, the author can show whether

the multiple-instruction-issue code optimizations that have been developed for C are effec­

tive for other programming languages, and whether multiple-instruction-issue processors

achieve substantial speedups of LISP, Ada or Prolog programs.

REFERENCES

[Acosta 86] R. D. Acosta, J. Kjelstrup, and H. C. Torng, "An instruction issuing ap­
proach to enhancing performance in multiple functional unit processors,"
IEEE Transactions on Computers, vol. C-35, no. 9, pp. 815-828, Septem­
ber 1986.

[Agerwala 76] T. Agerwala, "Microprogram optimization: a survey," IEEE Transactions
on Computers, vol. C-25, no. 10, October 1976.

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,
and Tools. Reading, Massachusetts: Addison-Wesley Publishing Company,
1986.

F. E. Allen, "Interprocedural data flow analysis," Proceedings of the IFIP
Congress, 1974.

F. E. Allen and J. Cocke, "A program data flow analysis procedure," Jour­
nal of ACM, vol. 19, no. 3, March 1976.

R. Allen and S. Johnson, "Compiling C for vectorization, parallelism, and
inline expansion," Proceedings of the SIGPLAN '88 Conference on Pro­
gramming Language Design and Implementation, June 1988.

D. B. Alpert and M. J. Flynn, "Performance trade-offs for microprocessor
cache memories," IEEE MICRO, August 1988.

Advanced Micro Devices, "Am29000 streamlined instruction processor, ad­
vance information," Publication Number 09075, Rev. A, Amendment /0 ,
Sunnyvale, California.

S. Arya, "An optimal instruction-scheduling model for a class of vector
processors," IEEE Transactions on Computers, vol. C-34, no. 11, Novem­
ber 1985.

[Auslander 82] M. Auslander and M. Hopkins, "An overview of the PL.8 compiler,"
Proceedings of the SIGPLAN Symposium on Compiler Construction, June
1982.

[Bakoglu 89] H. B. Bakoglu, G. F. Grohoski, and R. K. Montoye, "The IBM RISC
system/6000 processor: hardware overview," IBM Journal of Research and
Development, vol. 34, no. 1, pp. 12-22, January 1990.

[Aho 86]

[Allen 74]

[Allen 76]

[Allen 88]

[Alpert 88]

[Amd]

[Arya 85]

248

[Barth 78] J. M. Barth, "A practical interprocedural data flow analysis algorithm,"
Journal of ACM, vol. 21, no. 9, September 1978.

[Birnbaum 86] J. S. Birnbaum and W. 5. Worley, "Beyond RISC: high precision archi­
tecture," Spring COMPCON, 1986.

[Breternitz 88] M. Breternitz Jr. and J. P. Shen, "Organization of array data for concur­
rent memory access," Proceedings of the 21st Annual Workshop on Micro­
programming and Microarchitecture, November 1988.

[Bruno 80] J. Bruno, J. W. Jones, III, and K. So, "Deterministic scheduling with
pipelined processors," IEEE Transactions on Computers, vol. C-29, no. 4,
April 1980.

[Chaitin 82] G. J. Chaitin, "Register allocation k spilling via graph coloring," ACM
SIGPLAN Notice '82, vol. 17, no. 6, June 1982.

[Chang 88] P. P. Chang and W. W. Hwu, "Trace selection for compiling large C appli­
cation programs to microcode," Proceedings of the 21st Annual Workshop
on Microprogramming and Microarchitectures, pp. 21-29, November 1988.

[Chang 89a] P. P. Chang, "Aggressive code improving techniques based on control flow
analysis," M.S. Thesis, University of Illinois, Champaign-Urbana, (CSG-
105), UILU-ENG-89-2228, September 1989.

[Chang 89b] P. P. Chang and W. W. Hwu, "Forward semantic: a compiler-assisted
instruction fetch method for heavily pipelined processors," Proceedings of
the 22nd Annual International Workshop on Microprogramming and Mi­
croarchitecture, August 1989.

[Chang 89c] P. P. Chang and W. W. Hwu, "Control flow optimization for supercom­
puter scalar processing," Proceedings of the 1989 International Conference
on Supercomputing, June 1989.

[Chang 91a] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu,
"IMPACT: an architectural framework for multiple-instruction-issue pro­
cessors," to appear in the Proceedings of the 18th International Symposium
on Computer Architecture, May 1991.

[Chang 91b] P. P. Chang, S. A. Mahlke, and W. W. Hwu, "Using profile informa­
tion to assist classic code optimizations," Center for Reliable and High-
performance Computing Report, University of Illinois, CRHC-91, April
1991.

[Chow 84] F. Chow and J. Hennessy, "Register allocation by priority-based color­
ing," Proceedings of the ACM SIGPLAN Symposium on Compiler Con­
structions, June 1984.

249

[Chow 87] P. Chow and M. Horowitz, "Architecture tradeoffs in the design of MIPS-
X," Proceedings of the 14th Annual International Symposium on Computer
Architecture, June 1987.

[Chow 88] F. C. Chow, "Minimizing register usage penalty at procedure calls," Pro­
ceedings of the SIGPLAN '88 Conference on Programming Language De­
sign and Implementation, June 1988.

[Clark 87] D. W. Clark, "Pipelining and performance in the VAX 8800 processor,"
Proceedings of the Symposium on Architectural Support for Programming
Languages and Operating Systems, October 1987.

[Coffman 76] E. G. Coffman, Computer and Job-Shop Scheduling Theory. New York:
Wiley, 1976.

[Cohn 89] R. Cohn, T. Gross, M. Lam, and P. S. Tseng, "Architecture and compiler
tradeoffs for a long instruction word microprocessors," Proceedings of the
Third International Conference on Architectural Support for Programming
Languages and Operating Systems, April 1989.

[Colwell 87] R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Papworth, and P. K.
Rodman, "A VLIW architecture for a trace scheduling compiler," Pro­
ceedings of the Second International Conference on Architectural Support
for Programming Languages and Operating Systems, October 1987.

[Dasgupta 80] S. Dasgupta, "Some aspects of high-level microprogramming," Computing
Surveys, vol. 12, no. 3, September 1980.

[Davidson 86] J. W. Davidson, "A retargetable instruction reorganizer," Proceedings of
the SIGPLAN 1986 Symposium on Compiler Construction, June 1986.

[Davidson 81] S. Davidson, D. Landskov, B. D. Shriver, and P. W. Mallett, "Some ex­
periments in local microcode compaction for horizontal machines," IEEE
Transactions on Computers, vol. C-30, no. 7, July 1981.

[DeRosa 85] J. Derosa, R. Glackemeyer, and T. Knight, "Design and implementation
of the VAX 8600 pipeline," IEEE Computer, May 1985.

[DeRosa 88] J. A. DeRosa and H. M. Levy, "An evaluation of branch architectures,"
Proceedings of the 15th International Symposium on Computer Architec­
ture, May 1988.

[Ditzel 87] D. R. Ditzel and H. R. McLellan, "Branch folding in the CRISP micro­
processor: reducing branch delay to zero," Proceedings of the 14th Annual
International Symposium on Computer Architecture, pp. 2-9, June 1987.

[Dongarra 79.2] J.J. Dongarra and A.R. Jinds, "Unrolling loops in Fortran," Software
Practice and Experience, vol. 9, no. 3, pp. 219-226, March 1979.

250

[Eickenmeyer 88] R. J. Eickenmeyer and J. H. Patel, "Performance evaluation of on-chip
register and cache organizations," Proceedings of the 15th International
Symposium on Computer Architecture, May 1988.

[Eisenbeis 88] C. Eisenbeis, "Optimization of horizontal microcode generation for loop
structures," Proceedings of the 1988 International Conference on Super-
computing, July 1988.

J. R. Ellis, Bulldog: a Compiler for VLIW Architectures. Cambridge, Mas­
sachusetts: The MIT Press, 1986.

J. Emer and D. Clark, "A characterization of processor performance in the
VAX-11/780," Proceedings of the 11th Annual Symposium on Computer
Architecture, June 1984.

D. Ferrari, G. Serazzi, and A. Zeigner, Measurement and Tuning of Com­
puter Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

J. A. Fisher, "Trace scheduling: a technique for global microcode com­
paction," IEEE Transactions on Computers, vol. C-30, no. 7, July 1981.

J. A. Fisher, "VLIW architectures and the ELI-512," Proceedings of the
10th Annual Symposium on Computer Architecture, June 1983.

M. J. Flynn, J. D. Johnson, and S. P. Wakefield, "On instruction sets and
their formats," IEEE Transactions on Computers, vol. C-34, no. 3, March
1985.

C. C. Foster and E. M. Riseman, "Percolation of code to enhance parallel
dispatching and execution," IEEE Transactions on Computers, vol. C-21,
pp. 1411-1415, December 1972.

[Gannon 88] D. Gannon, "Strategies for cache and local memory management by global
program transformation," Journal of Parallel and Distributed Computing,
vol. 5, 1988.

[Garey 79] M. R. Garey and D. S. Johnson, Computers and Intractability, a Guide to
the Theory of NP-Completeness. New York: W.H. Freeman and Company,
1979.

[Gibbons 86] P. B. Gibbons and S. S. Muchnick, "Efficient instruction scheduling for a
pipelined architecture," Proceedings of the SIGPLAN 1986 Symposium on
Compiler Construction, June 1986.

[Golumbic 90] M.C. Golumbic and V. Rainish, "Instruction scheduling beyond basic
blocks," IBM Journal of Research and Development, vol. 34, no. 1, pp.
93-97, January 1990.

251

[Ellis 86]

[Emer 84]

[Ferrari 83]

[Fisher 81]

[Fisher 83]

[Flynn 85]

[Foster 72]

[Gonzalez 77] M.J.Gonzalez, "Deterministic processor scheduling," Computing Surveys,
vol. 9, no. 3, September 1977.

[Goodman 88] J. R. Goodman and W.-C. Hsu, "Code scheduling and register allocation
in large basic blocks," Proceedings of the 1988 International Conference
on Supercomputing, St. Malo, July 1988.

M. Granski, I. Koren, and G. M. Silberman, "The effect of operation
scheduling on the performance of a data flow computer," IEEE Trans­
actions on Computers, vol. C-36, no. 9, September 1987.

T. R. Gross and J. L. Hennessy, "Optimizing delayed branches," Proceed­
ings of the 15th Microprogramming Workshop, pp. 114-120, October 1982.

T. Gross and M. S. Lam, "Compilation for a high-performance systolic
array," Proceedings of the SIGPLAN 1986 Symposium on Compiler Con­
struction, June 1986.

S.J. Hartley, "Compile-Time program restructuring in multiprogrammed
virtual memory systems," IEEE Transactions on Software Engineering,
vol. 14, no. 11, November 1988.

M. S. Hecht and J. D. Ullman, "A simple algorithm for global data flow
analysis problems," SIAM Journal of Computing, vol. 4, no. 4, December
1975.

[Hennessy 81] J. L. Hennessy, N. Jouppi, F. Baskett, and J. Gill, "MIPS: a VLSI proces­
sor architecture," Proceedings of the CMU Conference on VLSI Systems
and Computations, October 1981.

[Hennessy 82] J. L. Hennessy, N. Jouppi, F. Baskett, and J. Gill, "Hardware/software
tradeoffs for increased performance," Proceedings of the Symposium on
Architectural Support for Programming Languages and Operating Systems,
March 1982.

[Hennessy 83] J. L. Hennessy and T. Gross, "Postpass code optimization of pipelined
constraints," ACM Transactions on Programming Languages and Systems,
vol. 5, pp. 422-448, ACM, July 1983.

[Hill 85] M. D. Hill and A. J. Smith, "Experimental evaluation of on-chip cache
memories," Proceedings of the 11th Annual Symposium on Computer Ar­
chitecture, June 1985.

[Hill 88] M. D. Hill, "A case for direct-mapped caches," IEEE Computer, December
1988.

252

[Granski 87]

[Gross 82]

[Gross 86]

[Hartley 88]

[Hecht 75]

[Horst 90] R.W. Horst, R.L. Harris, and R.L. Jardine, "Multiple instruction issue in
the nonstop cyclone processor," Proceedings of the International Sympo­
sium on Computer Architecture, May 1990.

[Howland 87] M. A. Howland, R. A. Mueller, and P. H. Sweany, "Trace scheduling op­
timization in a retargetable microcode compiler," Proceedings of the 20th
International Microprogramming Workshop, December 1987.

[Hsu 86] P. Y. T. Hsu and E. S. Davidson, "Highly concurrent scalar processing,"
Proceedings of the 13th International Symposium on Computer Architec­
ture, June 1986.

[Huson 82] C. A. Huson, "An in-line subroutine expander for parafrase," M.S. Thesis,
University of Illinois, Champaign-Urbana, 1982.

[Hwu 86] W. W. Hwu and Y. N. Patt , "HPSm, a high performance restricted data
flow architecture having minimal functionality," Proceedings of the 13th
International Symposium on Computer Architecture, pp. 297-306, June
1986.

[Hwu 87] W. W. Hwu and Y. N. Patt, "Checkpoint repair for high performance
out-of-order execution machines," IEEE Transactions on Computers, De­
cember 1987.

[Hwu 88a] W. W. Hwu, "Exploiting concurrency to achieve high performance in a
single-chip microarchitecture," Ph.D. Dissertation, Computer Science Di­
vision Report, no. UCB/CSD 88/398, University of California, Berkeley,
January 1988.

[Hwu 88b] W. W. Hwu and P. P. Chang, "Exploiting parallel microprocessor mi­
croarchitectures with a compiler code generator," Proceedings of the 15th
International Symposium on Computer Architecture, May 1988.

[Hwu 89a] W. W. Hwu and P. P. Chang, "Achieving high instruction cache perfor­
mance with an optimizing compiler," Proceedings of the 16th International
Symposium on Computer Architecture, June 1989.

[Hwu 89b] W. W. Hwu, T. M. Conte, and P. P. Chang, "Comparing software and
hardware schemes for reducing the cost of branches," Proceedings of the
16th International Symposium on Computer Architecture, May 1989.

[Hwu 89c] W. W. Hwu and P. P. Chang, "Inline function expansion for compiling re­
alistic C programs," Proceedings, ACM SIGPLAN'89 Conference on Pro­
gramming Language Design and Implementation, June 1989.

[Hwu 90] W. W. Hwu and P. P. Chang, "Efficient instruction sequencing with inline
target insertion," Center for Reliable and High-performance Computing
Report, University of Illinois, Urbana-Champaign, 1990.

253

[IBM 90] IBM, Special Issue on IBM RISC System/6000 Processor, IBM Journal of
Research and Development, vol. 34, no. 1, January 1990.

[Intel 89] Intel, "i860(TM) 64-Bit microprocessor," Order Number 240296-002,
Santa Clara, California, April 1989.

[Isoda 83] S. Isoda, Y. Kobayashi, and T. Ishida, "Global compaction of horizontal
microprograms based on the Generalized Data Dependency Graph," IEEE
Transactions on Computers, vol. C-32, no. 10, October 1983.

[Jouppi 89a] N. P. Jouppi, J. Bertoni, and D. W. Wall, "A unified vector/scalar floating­
point architecture," Proceedings of the Third International Conference on
Architectural Support for Programming Languages and Operating Systems,
April 1989.

[Jouppi 89b] N. P. Jouppi and D. W. Wall, "Available instruction-level parallelism for
superscalar and superpipelined machines," Proceedings of the Third Inter­
national Conference on Architectural Support for Programming Languages
and Operating Systems, April 1989.

[Kane 87] G. Kane, MIPS R2000 RISC Architecture. Englewood Cliffs, NJ: Prentice
Hall, 1987.

[Karp 66] R. M. Karp and R. E. Miller, "Properties of a model for parallel com­
putations: determinacy, termination, queuing," SIAM Applied Math., pp.
1390-1411, November 1966.

[Kleir 71] R. L. Kleir, and C. V. Ramamoorthy, "Optimization strategies for mi­
croprograms," IEEE Transactions on Computers, vol. C-20, no. 7, July
1971.

[Kogge 81] P. M. Kogge, The Architecture of Pipelined Computers. New York:
McGraw-Hill, 1981.

[Kuck 72] D. Kuck, Y. Muraoka, and S. Chen, "On the number of operations simulta­
neously executable in Fortran-like programs and their resulting speedup,"
IEEE Transactions on Computers, vol. C-21, pp. 1293-1310, December
1972.

[Kuck 81] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe, "Depen­
dency graphs and compiler optimizations," Proceedings of the 8th ACM
Symposium on Principles of Programming Languages, January 1981.

[Lam 88] M. Lam, "Software pipelining: an effective scheduling technique for VLIW
machines," Proceedings of the SIGPLAN '88 Conference on Programming
Language Design and Implementation, June 1988.

254

[Landskov 80] D. Landskov, S. Davidson, B. Shriver, and P. W. Mallett, "Local mi­
crocode compaction techniques," Computing Surveys, vol. 12, no. 3,
September 1980.

[Lawrie 75] D. H. Lawrie, "Access and alignment of data in an array processor," IEEE
Transactions on Computers, vol. C-24, no. 12, December 1975.

[Lee 84] J. K. F. Lee and A. J. Smith, "Branch prediction strategies and branch
target buffer design," IEEE Computer, January 1984.

[Li 88] Z. Li and P C Yew, "Efficient interprocedural analysis for program
parallelization and restructuring," Proceedings of the ACM/SIGPLAN
PPEALS, 1988.

[Linn 83] J. L. Linn, "SRDAG compaction: a generalization of trace scheduling to
increase the use of global context information," Proceedings of the 16th
Microprogramming Workshop, October 1983.

[Mahlke 91] S. A. Mahlke, N. J. Warter, W. Y. Chen, P. P. Chang, and W. W. Hwu,
"The effect of compiler optimizations on available parallelism in scalar
programs," to appear in Proceedings of the 1991 International Conference
on Parallel Processing, August 1991.

[Matick 84] R. E. Matick and D. T. Ling, "Architecture implications in the design of
microprocessors," IBM Systems Journal, vol. 23, no. 3, 1984.

[McFarling 86] S. McFarling and J. L. Hennessy, "Reducing the cost of branches," Pro­
ceedings of the 13th International Symposium on Computer Architecture,
pp. 396-403, June 1986.

[McFarling 89] S. McFarling, "Program optimization for instruction caches," Proceed­
ings of the third International Conference on Architectural Support for
Programming Languages and Operating Systems, April 1989.

[Melear 89] C. Melear, "The design of the 88000 RISC family," IEEE MICRO, pp.
26-38, April 1989.

[Mitchell 88] C. L. Mitchell and M. J. Flynn, "A workbench for computer architects,"
IEEE Design and Test of Computers, Feburary 1988.

[Nicolau 84] A. Nicolau and J. A. Fisher, "Measuring the parallelism available for very
long instruction word architectures," IEEE Transactions on Computer,
vol. C-33, no. 11, November 1984.

[Nicolau 85] A. Nicolau, "Uniform parallelism exploitation in ordinary programs," Pro­
ceedings of the International Conference on Parallel Processing, pp. 614-
618, August 1985.

255

[Patt 85] Y. N. Patt, W. W. Hwu, and M. C. Shebanow, "HPS, a new microarchi­
tecture: rationale and introduction," Proceedings of the 18th International
Microprogramming Workshop, pp. 103-108, December 1985.

[Patterson 82] D. A. Patterson and C. H. Sequin, "A VLSI RISC," IEEE Computer, pp.
8-21, September 1982.

[Pleszkun 87] A. R. Pleszkun, J . R. Goodman, W.-C. Hsu, R. T. Joersz, G. Bier,
P. Woest, and P. B. Schechter, "WISQ: a restartable architecture using
queues," Proceedings of the 14th International Symposium on Computer
Architecture, pp. 290-299, June 1987.

[Pleszkun 88a] A. R. Pleszkun and G. S. Sohi, "The performance potential of multiple
functional unit processors," Proceedings of the 15th International Sympo­
sium on Computer Architecture, May 1988.

[Pleszkun 88b] A. R. Pleszkun and G. S. Sohi, "Multiple instruction issue and single-chip
processors," Proceedings of the 21st Annual Workshop on Microprogram­
ming and Microarchitecture, November 1988.

[Przybylski 88] S. Przybylski, M. Horowitz, and J. L. Hennessy, "Performance trade­
offs in cache design," Proceedings of the 15th International Symposium on
Computer Architecture, May 1988.

[Radin 82] G. Radin, "The 801 minicomputer," Proceedings of the Symposium on
Architectural Support for Programming Languages and Operating Systems,
pp. 39-47, March 1982.

[Ramamoorthy 74] C. V. Ramamoorthy, and M. Tsuchiya, "A high-level language for
horizontal microprogramming," IEEE Transactions on Computers, vol.
C-23, no. 8, August 1974.

[Rauscher 80] T. G. Rauscher, and P. M. Adams, "Microprogramming: a tutorial and
survey of recent developments," IEEE Transactions on Computers, vol.
C-29, no. 1, January 1980.

[Richardson 89] S. Richardson and M. Ganapathi, "Code optimization across proce­
dures," IEEE Computer, February 1989.

[Russell 78] R. M. Russell, "The Cray-1 computer system," Communications ACM,
vol. 21, no. 1, pp. 63-72, January 1978.

[Sahni 84] S. Sahni, "Scheduling multipipeline and multiprocessor computers," IEEE
Transactions on Computers, vol. C-33, no. 7, July 1984.

[Scheifler 77] R. W. Scheifler, "An analysis of inline substitution for a structured pro­
gramming language," Communications of the ACM, vol. 20, no. 9, Septem­
ber 1977.

256

[Sherburne 83] R. Sherburne, M. Katevenis, D. Patterson, and C. Sequin, "Local mem­
ory in RISCs," Proceedings of the International Conference on Computer
Design, October 1983.

[Smith 81] J. E. Smith, "A study of branch prediction strategies," Proceedings of the
8th International Symposium on Computer Architecture, pp. 135-148, June
1981.

[Smith 82] A. J. Smith, "Cache memories," Computing Surveys, vol. 14, no. 3, ACM,
September 1982.

[Smith 85a] J. E. Smith, and Pleszkun, "Implementation of precise interrupts in
pipelined processors," Proceedings of the 11th Annual Symposium on Com­
puter Architectures, June 1985.

[Smith 85b] J. E. Smith and J. R. Goodman, "Instruction cache replacement policies
and organizations," IEEE Transactions on Computers, vol. C-34, no. 3,
March 1985.

[Smith 85c] A. J. Smith, "Cache evaluation and the impact of workload choice," Pro­
ceedings of the 12th International Symposium on Computer Architecture,
June 1985.

[Smith 87] A. J. Smith, "Line (block) size choice for CPU cache memories," IEEE
Transactions on Computers, vol. C-36, no. 9, September 1987.

[Smith 89] M. D. Smith, M. Johnson, and M. A. Horowitz, "Limits on multiple in­
struction issue," Proceedings of the 3rd International Conference on Ar­
chitectural Support for Programming Languages and Operating Systems,
April 1989.

[Smith 90] M. D. Smith, M. S. Lam, and M. A. Horowitz, "Boosting beyond static
scheduling in a superscalar processor," Proceedings of the 17th Interna­
tional Symposium on Computer Architecture, June 1990.

[Sohi 87] G. S. Sohi and S. Vajapeyam, "Instruction issue logic for high performance,
interruptable pipelined processors," Proceedings of the 14th Annual Sym­
posium on Computer Architecture, June 1987.

[Sohi 89] G. S. Sohi and S. Vajapeyam, "Tradeoffs in instruction format design for
horizontal architectures," Proceedings of the Third International Confer­
ence on Architectural Support for Programming Languages and Operating
Systems, April 1989.

[Sparc 87] SUN Microsystems, The SPARC™ Architecture Manual, Part no. 800-
1399-07, Revision 50, Mountain View, California: SUN, August 1987.

257

[Stallman 88] R. M. Stallman, Internals of GNU CC, 1988 (distributed with the GNU
CC software).

[Su 84] B. Su, S. Ding, and L. Jin, "An improvement of trace scheduling for global
microcode compaction," Proceedings of the 17th Microprogramming Work­
shop, November 1984.

[Thornton 70] J. E. Thornton, Design of a Computer: The Control Data 6600. Glenview,
IL: Scott, Foresman and Co., 1970.

[Tarjan 83] R. E. Tarjan, Data Structures and Network Algorithms. Philadelphia, PA:
SIAM, 1983.

[Tjaden 70] G. S. Tjaden and M. J. Flynn, "Detection and parallel execution of inde­
pendent instructions," IEEE Transactions on Computers, vol. C-19, no.
10, pp. 889-895, October 1970.

[Tokoro 81] M. Tokoro, E. Tamura, and T. Takizuka, "Optimization of micropro­
grams," IEEE Transactions on Computers, vol. C-30, no. 7, July 1981.

[Tomasulo 67] R. M. Tomasulo, "An efficient algorithm for exploiting multiple arithmetic
units," IBM Journal of Research and Development, vol. 11, pp. 25-33,
January 1967.

[Tsuchiya 76] M. Tsuchiya, and M. J. Gonzalez, "Toward optimization of horizontal
microprograms," IEEE Transactions on Computers, vol. C-25, no. 10, Oc­
tober 1976.

D. W. Wall, "Global register allocation at link time," Proceedings of the
SIGPLAN 1986 Symposium on Compiler Construction, June 1986.

D. W. Wall, "Register windows vs. register allocation," Proceedings of the
SIGPLAN '88 Conference on Programming Language Design and Imple­
mentation, June 1988.

H. S. Warren, Jr., "Instruction scheduling for the IBM RISC system/6000
processor," IBM Journal of Research and Development, vol. 34, no. 1, pp.
85-92, January 1990.

S. Weiss and J. E. Smith, "Instruction issue logic in pipelined supercom­
puters," IEEE Transactions on Computers, vol. C-33, no. 11, pp. 1013-
1022, November 1984.

S. Weiss and J. E. Smith, "A study of scalar compilation techniques for
pipelined supercomputers," Proceedings of the Second International Con­
ference on Architectural Support for Programming Languages and Operat­
ing Systems, October 1987.

[Wall 86]

[Wall 88]

[Warren 90]

[Weiss 84]

[Weiss 87]

258

APPENDIX A

MACHINE DESCRIPTION

LANGUAGE

The IMPACT-I C compiler is a technology-file-driven compiler that is intended to

generate code for multiple target machines. Machine dependent code optimizations such

as constant preloading, register allocation, and code scheduling require some knowledge

about the target machine. We have developed a simple language for conveying the

machine dependent information to the IMPACT-I C compiler.

A l Basic Data Types

All integer values are expressed in two's complement number representation, and all

floating-point values are expressed in IEEE floating-point representation. Characters

follow the ASCII definition. Unsigned character is generally sufficient; however, signed

character is also provided. Short integers are provided because some memory mapped

I/O devices are short-integer addressable. To support all of the above data types, a large

number of memory operations are provided. Memory operations support the following

data types:

1) unsigned character (1 byte),

2) signed character (1 byte),

3) unsigned short (2 bytes),

4) signed short (2 bytes),

259

5) unsigned integer (4 bytes),

6) signed integer (4 bytes),

7) single-precision float (4 bytes), and

8) double-precision float (8 bytes).

When characters and short integers are loaded into registers, the values are automat­

ically zero-extended or sign-extended. Therefore, the number of computation data types

is restricted to the following data types:

1) unsigned integer,

2) signed integer,

3) single-precision float, and

4) double-precision float.

A.2 Register Resource

There can be several distinct register sets. Within each register set, registers can

be used individually, or neighboring registers can be used as register-pairs. Our model

assumes that the total register resource is an array of basic words. Then, we define how

several abstract register sets are mapped to the total register resource. Each of these

abstract register files represents a view. For example, we can model two disjoint register

files as follows:

r e g i s t e r - f i l e = a r r ay [0 . . 63] of 3 2 - b i t words;

s c a l a r - r e g i s t e r - f i l e = a r ray [0 . . 31] of 3 2 - b i t words;

f l o a t - r e g i s t e r - f i l e = a r r a y [0 . . 31] of 3 2 - b i t words;

d o u b l e - r e g i s t e r - f i l e = a r ray [0 . . 15] of 6 4 - b i t words;

f o r (i = 0 . . 3 1) s c a l a r - r e g i s t e r - f i l e [i] = r e g i s t e r - f i l e [i] ;

f o r (i = 0 . . 3 1) f l o a t - r e g i s t e r - f i l e [i] = r e g i s t e r - f i l e [i + 3 2] ;

f o r (i = 0 . . 1 5) d o u b l e - r e g i s t e r - f i l e [i] = r e g i s t e r - f i l e [(i * 2) + 3 2 . . (i * 2) + 3 3] ;

260

We have implemented a prioritized graph-coloring method to map from an infinite number

of virtual registers to this physical register model. In our machine description language,

the register set organization shown above is as follows:

(d e f i n e _ r e g i s t e r _ t y p e sp l (INT) 32 0 1)

(de f ine_ . r eg i s t e r . t ype fp l (INT FLOAT) 32 32 1)

(define_.register_. type fp2 (DOUBLE) 16 32 2)

A.3 Operation Code

Each operation code is described by a triple (name, type, delay). The name field

uniquely identifies the operation code. The type field specifies whether this operation

code represents an arithmetic operation, a control operation, a memory load operation, a

memory store operation, a synchronization operation, or a combination of them. The type

information has a special meaning to the code scheduler. For example, no code motion

across a synchronization operation is allowed. The delay field specifies the suggested

dependence distance from this operation to a next use of the operation's result. For

most integer operations, the delay is one. The actual delay may vary at run time. Any

additional delay is enforced by the hardware interlock logic.

(opcode no_op 0 (a r i t h) void 0)

(opcode add 1 (a r i t h) i 1)

(opcode mul 2 (a r i t h) i 4)

(opcode jump 3 (cn t) void 0)

(opcode ld_c 4 (load) i 2)

(opcode s t _ i 5 (s t o r e) void 0)

(opcode fetch_and_add 6 (sync load s t o r e a r i t h) i 2)

261

http://ine_.register.type
http://ine_.register_.type

A.4 Operand Addressing Mode

Load/store architecture is very suitable for instruction pipelining. Assuming load/store

architecture, we provide very simple operand types: integer, floating-point, label, and

register operands. Five predefined functions allow us to define various operand modes.

(def ine_int_operand_type INT1 -128 +128)

(def ine_f loa t_operand_type FL0AT1 0.0 0.0)

(define_double_operand_type D0UBLE1 0.0 0.0)

(def ine_label_operand_type LABEL1 o f f s e t)

(def ine_label_operand_type LABEL2 d i r e c t)

(de f ine_reg i s te r_operand_type SRI sp l)

(def ine_reg is te r_operand_type FR1 fp l)

(de f ine_reg i s te r_operand_type FR2 fp2)

One can specify an arbitrary range for an integer and a floating-point type. In the

example above, the range of a short integer literal is between -128 and 128, and the

floating-point constant literal can be only zero. Several constant integer operand modes

may be specified. Constant preloading means loading constant values that do not fit into

the constant literal fields in registers. An optimization is to place the preload operations

in loop headers or in the function prologue section. An operand field can be one or more

of the above types. For example, the first source operand of an add operation can be

either an INTl or a SRI.

(define_operand_mode DEST (SRI FR1 FR2))

(define_operand_mode SRC (

SRI FR1 FR2 INTl FL0AT1 D0UBLE1 LABEL1 LABEL2

))

262

A.5 Operation Model

An operation type is a triple (ope, sre, dest), where ope is an operation code, sre is

a list of source operands, and dest is a list of destination operands.

(def ine_opera t ion_type add (add (DEST) (SRC SRC)))

(def ine_opera t ion_ type l d _ c (ld_c (DEST) (SRC SRC)))

(def ine_opera t ion_type s t _ i (s t _ i () (SRC SRC SRC)))

In the example above, add operation has one destination operand and two source operands.

The opcode definition and operand modes are also specified.

A.6 Function Unit Model

A function unit is a set of operation types. For example, integer ALU can perform

mov, add, sub, mul, and many other integer operations.

(def ine_operat ion_group ALU

mov add sub mul d iv eq ne gt ge I t l e

l s l l s r a s r o r and xor)

(def ine_operat ion_group LOAD

l d . u c ld_c ld_uc2 l d . u c l d . i ld_f ld_f2)

(def ine_operat ion_group STORE

s t_c s t_c2 s t _ i s t_ f s t_f2)

A.7 Instruction Set Model

An instruction may contain one or more operations. Therefore, an instruction type

is an ordered set of function units. For example, the instruction set of a machine that

issues one operation per cycle may be specified as follows:

(define.instruction_type Tl (ALU))

263

(d e f i n e . i n s t r u c t i o n . t y p e T2 (FALU))

(d e f i n e . i n s t r u c t i o n . t y p e T3 (CNT))

(d e f i n e . i n s t r u c t i o n . t y p e T4 (SYNC))

(d e f i n e . i n s t r u c t i o n . t y p e T5 (LOAD))

(d e f i n e . i n s t r u c t i o n . t y p e T6 (STORE))

The instruction set of a machine that issues two operations per cycle is specified

below.

(d e f i n e . i n s t r u c t i o n . t y p e Tl (ALU ALU))

(d e f i n e . i n s t r u c t i o n . t y p e T2 (ALU FALU))

(d e f i n e . i n s t r u c t i o n . t y p e T3 (ALU CNT))

(d e f i n e . i n s t r u c t i o n . t y p e T4 (LOAD CNT))

The first line specifies that two integer ALU operations can be packed into one instruction.

The second line specifies that one integer ALU and one floating-point ALU operation can

be packed into one instruction. There is an implicit lexical ordering between operations

in the same instruction word. For example, if the hardware allows two operations in the

same instruction to write the same register, the operation in later lexical order should

make the last write to that register.

264

APPENDIX B

EXAMPLES OF HCODE AND

LCODE

Hcode and Lcode documentations are too long to be included in a dissertation. They

are available as internal reports. In the following sections, some Hcode and Lcode files are

provided to give the reader a general feeling about the two levels of intermediate forms.

These Hcode and Lcode files are automatically generated from the source C program.

B.l C Source Code

#define DIM 1200

typedef int T;

T xCDIM], y[DIM], z[DIM] ;

main() {

int i;

for (i=0; i<DIM; i++)

x[i] = y[i] + z [i] ;

ex i t (0) ;

}

265

B.2 Hcode

H c o d e Profile Fi le :

(count 1)

(fn 0 0.000000e+00

(eg 0 (1 1.000000e+00))

)

(fn 1 1.000000e+00

(bb 0 1.000000e+00 (1 1.000000e+00))

(bb 1 1.000000e+00 (2 1.000000e+00))

(bb 2 1.200000e+03 (2 1.199000e+03) (3 1.000000e+00))

(bb 3 1.000000e+00)

)

H c o d e wi th Profile In fo rma t ion :

(GVAR x ((GLOBAL)(INT)((A (s igned 1200)))))

(GVAR y ((GLOBAL)(INT)((A (s igned 1200)))))

(GVAR.z ((GLOBAL)(INT)((A (s igned 1200)))))

(BEGIN.FN main)

(PROFILE 1 1.000000)

(RETURN.TYPE ((GLOBAL)(INT)()))

(LVAR i 1 ((AUTO)(INT)()))

(FN.PRAGMA "optimize.trace")

(FN.PRAGMA "profiled.1")

(FN.PRAGMA "flatten")

(ENTRY 1)

(BB 1 (PROFILE 1.000000 (2 1 1.000000))

(BB.PRAGMA "trace.1")

(assign (var i 1) (signed 0))

266

(IF (It (var i 1) (signed 1200)) (THEN 2) (ELSE 3)))

(BB 2 (PROFILE 1200.000000 (2 1 1199.000000) (3 0 1.000000))

(BB.PRAGMA "trace.2")

(assign (index (var x) (var i 1))

(add (index (var y) (var i 1)) (index (var z) (var i___l))))

(postinc (var i 1))

(IF (It (var i 1) (signed 1200)) (THEN 2) (ELSE 3)))

(BB 3 (PROFILE 1.000000)

(BB.PRAGMA "trace.3")

(call (var exit) (signed 0) (EXPR.PRAGMA "cs.l"))

(RETURN))

(END.FN main)

B.3 Lcode

Lcode after Global Code Optimizations:

(ms t ex t)

(global .main)

(function .main 1.000000)

(cb 1 1.000000 (flow 0 2 1.000000))

(op 0 define ((mac $return_type i))(()()()))

(op 1 define ((mac $local i))((i 0)()()))

(op 2 define ((mac $param i))((i 16)()()))

(op 3 prologue (())(()()()))

(cb 2 1.000000 (flow 0 3 1.000000))

(op 4 mov ((r 12 i))((i 0)()()))

(op 5 mov ((r 41 i))((i 4)()()))

(op 6 mov ((r 42 i))((i 8)()()))

(op 7 mov ((r 43 i))((i 12)()()))

267

(op 8 mov ((r 44 i))((i 16)()()))

(cb 3 240.000000 (flow 1 3 239.000000) (flow 0 4 1.000000))

(op 9 ld.i ((r 25 i))((l _y)(r 12 i)()))

(op 10 ld.i ((r 26 i))((l _z)(r 12 i)()))

(op 11 add ((r 27 i))((r 25 i)(r 26 i)()))

(op 12 st.i (())((! _x)(r 12 i)(r 27 i)))

(op 13 ld.i ((r 29 i))((l _y)(r 41 i)()))

(op 14 ld.i ((r 30 i))((l _z)(r 41 i)()))

(op 15 add ((r 31 i))((r 29 i)(r 30 i)()))

(op 16 st.i (())((! _x)(r 41 i)(r 31 i)))

(op 17 ld.i ((r 33 i))((l _y)(r 42 i)()))

(op 18 ld.i ((r 34 i))((l _z)(r 42 i)()))

(op 19 add ((r 35 i))((r 33 i)(r 34 i)()))

(op 20 st.i (())((1 _z)(r 42 i)(r 35 i)))

(op 21 ld.i ((r 37 i))((l _y)(r 43 i)()))

(op 22 ld.i ((r 38 i))((l _z)(r 43 i)()))

(op 23 add ((r 39 i))((r 37 i)(r 38 i)()))

(op 24 st.i (())(CI _x)Cr 43 i)Cr 39 i)))

Cop 25 ld.i CCr 3 i))CCl _y)Cr 44 i)0))

Cop 26 ld.i CCr 5 i))CCl _z)Cr 44 i)()))

Cop 27 add CCr 6 i))((r 3 i)Cr 5 i)()))

Cop 28 st.i C0)CC1 .x)Cr 44 i)Cr 6 i)))

Cop 29 add.u CCr 12 i))CCr 12 i)(i 20) O))

Cop 30 add.u CCr 44 i))CCr 44 i) (i 20)O))

Cop 31 add.u CCr 43 i))((r 43 i)Ci 20)O))

Cop 32 add.u CCr 42 i))CCr 42 i) (i 20)O))

Cop 33 add.u CCr 41 i))((r 41 i)Ci 20)O))

Cop 34 bne.fs CO) CCr 12 i)Ci 4800) Ccb 3)))

Ccb 4 1.000000 (flow 1 5 1.000000))

268

(op 35 mov ((mac $P0 i)) ((i 0) O O))

Cop 36 j s r (O K C I . e x i t) 0 0))

Ccb 5 1.000000)

(op 37 ep i logue (()) (() () ()))

Cop 38 r t s C O X O O O))

Cend .main)

Lcode after Mul t ip le - Ins t ruc t ion- I s sue Code Opt imiza t ions :

Cms t e x t)

Cglobal .main)

Cfunction .main 1.000000)

Ccb 1 1.000000 Cflow 0 2 1.000000))

Cop 0 d e f i s e (Cmac $ re tu rn_ type i)) (() () ()))

Cop 1 def ine CCmac $ l o c a l i)) ((i 0) O O))

Cop 2 def ine CCmac $param i)) (C i 1 6) 0 0))

Cop 3 prologue CO) CO O O))

Ccb 2 1.000000 Cflow 0 3 1.000000))

Cop 4 mov CCr 3 i)) ((i 0) O O))

Cop 5 mov CCr 16 i)) ((i 4) 0 0))

Cop 6 mov CCr 17 i)) ((i 8) 0 0))

(op 7 mov ((r 18 i)) ((i 1 2) 0 0))

Cop 8 mov CCr 19 i)) ((i 1 6) 0 0))

Ccb 3 240.000000 Cflow 1 3 239.000000) Cflow 0 4 1.000000))

Cop 9 l d . i CCr 4 i))CCr 3 i) U _ y) 0))

Cop 10 l d . i CCr 5 i))CCr 3 i) (1 _ z) ()))

Cop 11 add CCr 6 i))CCr 4 i) (r 5 i) 0))

Cop 12 s t . i CO) CCr 3 i) C l _x)Cr 6 i)))

(op 13 l d . i ((r 7 i))CCr 16 i) Q _ y) 0))

Cop 14 l d . i ((r 8 i)) ((r 16 i) (1 _ z) ()))

269

Cop 15 add CCr 9 i))C(r 7 i)(r 8 i)0))

Cop 16 st.i CO) CCr 16 i)Cl _x)Cr 9 i)))

Cop 17 ld.i CCr 10 i))C(r 17 i) (1 _y)0))

Cop 18 ld.i CCr 11 i))C(r 17 i) (1 _z)0))

Cop 19 add CCr 12 i))CCr 10 i) Cr 11 i)0))

Cop 20 st.i CO) CCr 17 i)Cl _x)Cr 12 i)))

Cop 21 ld.i CCr 13 i))CCr 18 i) (1 _y)0))

Cop 22 ld.i CCr 14 i))CCr 18 i) (1 _z)0))

Cop 23 add CCr 15 i))((r 13 i)Cr 14 i)0))

Cop 24 st.i CO) CCr 18 i)Cl _x)Cr 15 i)))

(op 25 ld.i ((r 0 i))CCr 19 i)Cl _y)0))

Cop 26 ld.i CCr 1 i))CCr 19 i)(l _z)C)))

Cop 27 add CCr 2 i))CCr 0 i) Cr 1 i)0))

Cop 28 st.i CO) CCr 19 i)Cl _x)Cr 2 i)))

Cop 29 add.u CCr 3 i))CCr 3 i)Ci 20) 0))

Cop 30 add.u CCr 19 i))((r 19 i)Ci 20)O))

Cop 31 add.u CCr 18 i))CCr 18 i) (i 20)O))

Cop 32 add.u CCr 17 i))((r 17 i)Ci 20)O))

Cop 33 add.u CCr 16 i))CCr 16 i)(i 20)0))

Cop 34 bne.fs CO) CCr 3 i) (i 4800) Ccb 3)))

Ccb 4 1.000000 Cflow 1 5 1.000000))

Cop 35 mov CCmac $P0 i))CCi 0)00))

Cop 36 jsr (O)CCl .exit) 0 0))

Ccb 5 1.000000)

Cop 37 epilogue CO) CO ()()))

Cop 38 rts (O) CO 0 0))

Cend .main)

270

Lcode after Code Scheduling: We schedule the above Lcode function for a multiple-

instruction-issue machine that can issue up to 16 operations per cycle. Operations whose

(in) attributes are identical belong to the same instruction.

Cms text)

(global .main)

(function .main 1.000000)

(cb 1 1.000000 (flow 0 2 1.000000))

(op 39 define CCmac $swap i))CCi 8) 0 0) (in 0))

Cop 0 define CCmac $return_type i))COOO)Cin 0))

Cop 1 define CCmac $local i))((i 0) 0 0 K i n 0))

Cop 2 define CCmac $param i))CCi 16)0 0)Cin 0))

Cop 3 prologue CO) CO 0 0) On 1))

Cop 43 add CCmac $SP i)) CCmac $SP i)Ci -24)OKfn 0)Cin 2))

Cop 41 st.i CO) CCmac $SP i)Ci 20) Cmac $FP i))Cfn 0)Cin 2))

Cop 42 st.i CO) CCmac $SP i) (i 16) Cr 169 i))Cfn 0)Cin 2))

Cop 40 add CCmac $FP i)) CCmac $SP i)Ci 24)0)Cfn 0)Cin 2))

Ccb 2 1.000000 Cflow 0 3 1.000000))

Cop 4 mov CCr 0 i))((i 0)OOKin 3))

Cop 5 mov CCr 4 i))((i 4)0 0)(in 3))

Cop 6 mov CCr 3 i))((i 8)()())(in 3))

Cop 7 mov CCr 2 i))((i 12)00)(in 3))

Cop 8 mov CCr 1 i))((i 16)00) (in 3))

Ccb 3 240.000000 Cflow 1 3 239.000000) Cflow 0 4 1.000000))

Cop 10 ld.i CCr 8 i))CCl _z)Cr 0 i)())(in 4))

(op 14 ld.i ((r 9 i))((l _z)(r 4 i)())(in 4))

(op 18 ld.i ((r 10 i))((l _z)(r 3 i)())(in 4))

(op 22 ld.i ((r 6 i))CCl _z)(r 2 i)())(in 4))

Cop 9 ld.i (Cr 15 i))(Cl _y)(r 0 i)())(in 4))

271

Cop 13 ld.i C(r 14 i))((l _y)(r 4 i)())(in 4))

(op 17 ld.i ((r 13 i))CCl .y)(r 3 i)())(in4))

Cop 21 ld.i CCr 12 i))CCl _y)(r 2 i)())(in4))

Cop 25 ld.i CCr 11 i))((l _y)(r 1 i)())(in4))

(op 26 ld.i ((r 5 i))((l _z)(r 1 i)())(in 4))

(op 11 add ((r 7 i))((r 15 i)(r 8 i)())(in 5))

(op 15 add ((r 8 i))((r 14 i)(r 9 i)())(in 5))

(op 19 add ((r 9 i))((r 13 i)(r 10 i)())(ia 5))

(op 23 add ((r 10 i))((r 12 i)(r 6 i)())(in 5))

(op 27 add ((r 6 i))((r 11 i)(r 5 i)())(in 5))

(op 12 st.i (())((! _x)Cr 0 i)(r 7 i))(in 6))

Cop 16 st.i (())((! _x)(r 4 i)Cr 8 i))Cin 6))

Cop 20 st.i (())((! _x)(r 3 i)Cr 9 i))Cin 6))

Cop 24 st.i (())((! _x)(r 2 i)Cr 10 i))(in 6))

Cop 28 st.i (())((! _%)(r 1 i)(r 6 i))Cin 6))

Cop 29 add_u CCr 0 i))C(r 0 i)(i 20)C))Cin 6))

(op 30 add.u ((r 1 i))((r 1 i) (i 20)0) (in 6))

(op 31 add.u ((r 2 i))((r 2 i)(i 20)())(in 6))

(op 32 add.u ((r 3 i))((r 3 i)(i 20)O) (in 6))

(op 33 add.u ((r 4 i))((r 4 i)(i 20)())(in 6))

(op 34 bne.fs (0)((r 0 i)(i 4800) (cb 3)) (in 6))

(cb 4 1.000000 (flow 1 5 1.000000))

(op 35 mov ((mac $P0 i))((i 0)()())(in 7))

(op 36 jsr (())((! .exit)()())(in 7))

Ccb 5 1.000000)

Cop 44 ld.i (Cmac $FP i))((mac $SP i)(i 20)())(fn 0)(in 8))

272

(op 45 ld.i ((r 169 i))((mac $SP i)(i 16)())(fn 0)(in 8))

(op 46 add ((mac $SP i))((mac $SP i)(i 24)())(fn 0)(in 8))

(op 37 epilogue (())(()()())(in 9))

(op 38 rts (())(() 0 0) (in 10))

(end .main)

Scheduling Result:

(CONTROL)

(br.t.t 239.0000000000 .main)

(br.t.n 1.0000000000 .main)

(br.n.t 0.0000000000 .main)

(br.n.n 0.0000000000 .main)

(jump.t.t 0.0000000000 .main)

(jump.n.t 0.0000000000 .main)

(jump.rg.t.t 0.0000000000 .main)

(jump.rg.n.t 0.0000000000 .main)

(jsr.t.t 0.0000000000 .main)

(jsr.n.t 1.0000000000 .main)

(rts.t.t 0.0000000000 .main)

(rts.n.t 1.0000000000 .main)

(TIME)

(true.oper.count 6261.0000000000 .main)

(oper.issue.count 6261.0000000000 .main)

(best.cycle.count 968.0000000000 .main)

(worst.cycle.count 968.0000000000 .main)

273

VITA

Po-hua Chang was born in Taipei, Taiwan, on August 16, 1966. He recieved his B.A.

degree in computer science from the University of California, Berkeley, and his M.S.

degree in electrical and computer engineering from the University of Illinois, Urbana-

Champaign. From 1987 to 1990, Po-hua was a research assistant in the Coordinated

Science Laboratory. Since 1991, he has been a research associate in the Center for

Reliable and High-performance Computing. His research interests include optimizing

compilers, code synthesis tools, and computer architectures.

274

