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ABSTRACT

Ill

The IMPACT-I C compiler obtains, analyzes, and applies program control 

flow information to guide various code improving techniques. To obtain pro

gram control flow information, a system independent profiler has been 

integrated into the compiler front end. The control flow information obtained 

is converted into a data -structure called a weighted control graph. Function 

inline expansion, trace based optimizations, software branch prediction tech

nique, and instruction memory layout optimization can be applied to the 

weighted control graph. Function inline expansion drastically reduces the 

number of function calls in the program execution. The software branch pred

iction technique greatly reduces the cost of branch instructions for highly 

pipelined processors. Trace selection heuristics group basic blocks which tend 

to execute in a sequence into a trace. Conventional global code compaction 

techniques can be applied on traces. Finally, we show that instruction place

ment can lead to better instruction cache performance.
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CHAPTER 1.

1

INTRODUCTION

The IMPACT-I (Illinois Microarchitecture Project using Advanced Com

piler Technology) C compiler is a microarchitecture technology file driven 

optimizing compiler which is currently being developed at the University of 

Illinois. An automatic profiler has been integrated with the compiler front end 

to collect program run-time information, which characterizes the control flow 

behavior of the program to be optimally compiled by the IMPACT-I C com

piler. Knowing the program control flow behavior, the compiler is able to per

form a series of analyses and trace-based optimization procedures.

A large portion of the first draft of this thesis was written jointly by my 

thesis advisor and myself for conference presentations [Cha88, Hwu88, 

Hwu89, Hwu89_2, Hwu89_3]; therefore, plural subjective pronouns are used 

to indicate his direct contribution to this thesis. In this thesis, we describe 

how the IMPACT-I C compiler obtains, analyzes, and applies program control 

flow information. The major contributions of this thesis are ( l )  the imple

mentation of an efficient portable profiler, (2) the definition of a simple pro

gram intermediate form to concisely describe program control flow behavior,

(3) the implementation of a function inline expansion facility, (4) the applica

bility study of trace-based code improving techniques on large integer pro

grams, and (5) the design and evaluation of several code improving techniques 

which increase processor performance.

1.1. Initial M otive

The demand for high-speed microprocessors continues to increase. Appli

cations include high-performance workstations, application specific processors, 

and implementations of mini- and main-frame computers. The design
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constraints of these microprocessors are different from those of the conven

tional technologies to that require new design approaches. One promising 

approach to designing high-speed microprocessors is to use a sophisticated com

piler to identify and exploit the parallelism both in the programs and in the 

microarchitecture. The program and microarchitecture parallelism must be 

balanced to achieve a cost-effective design.

With advances in VLSI technology, microprocessor designers can provide 

more microarchitectural parallelism to increase performance. Providing mul

tiple decoding logics, multiple execution units and multiple data distribution 

buses, one exploits the horizontal parallelism by issuing and executing multi

ple instructions per machine cycle [Hwu87, E1184]. Providing pipelined execu

tion units [Ram77, Kog8 l], one exploits the vertical parallelism by overlapping 

the issue, decode and execution phases of several microoperations. When the 

microarchitectural parallelism is large enough to cover all fine-grain program 

parallelism, the remaining chip space can be used to implement high-speed 

memories. Adding an instruction buffer [Lee84] allows instruction prefetch 

and maintains continuous input to the execution unit. Increasing the size of 

the register file [G0 0 8 8 ] allows more variables to be kept in high-speed regis

ters. Adding an on-chip cache [Hil85, Alp8 8 , Smi82] can reduce the average 

memory access time. Since the chip space is limited, the processor designer 

must caref ully decide what should be implemented.

On the software side, program parallelisms are often limited. Data and 

control dependencies between microoperations often force sequential execution, 

regardless of the processor’s ability to execute multiple operations con

currently. Various aggressive code improving techniques, including, but not 

limited to, loop unrolling, variable renaming, software pipelining, trace 

scheduling and function in-line expansion can potentially uncover hidden
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program parallelism. These code improving techniques, however, must be 

used with extreme care because they can drastically expand the code space.

We do not yet understand all the design criteria for deriving a perfectly 

balanced hardware and software design. Independent problems in hardware 

and compiler implementation are already critically complex. These problems 

must all be solved individually before we can study the combined effect. 

Hence, a major goal of our project is to develop a suite of programs which w ill 

allow the processor designers to test various alternatives quickly. Among all 

the tools under development, the IMPACT-I C compiler is a technology file 

driven optimizing compiler which is aimed to generate good codes for many 

processor configurations. Coupled with program analysis tools, the IMPACT-1 

C compiler can accurately estimate the execution time of programs on the tar

get microarchitecture. The performance estimation by the compiler can be a 

useful feedback to the processor designer.

1.2. Previous Experience

We constructed a prototype code generator [Hwu88] in 1987 which builds 

dependence graphs [Kuc8l] to render the fine-grain program parallelism, and 

employs a modified list scheduling technique to schedule microoperations into 

fewer instructions. The scheduling function issues microoperations on the 

critical paths first, considers many plausible combinations of microoperations 

which can be combined into an instruction and selects the best instruction- 

template [Tok8l] which w ill lead to a minimum number of instruction- 

templates and resource conflicts in the future. Local code compaction is 

applied to more important basic blocks first and therefore allows operations 

and undesirable resource constraints to migrate to lesser important basic 

blocks. In addition, a simple register allocation mechanism is used to migrate
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important memory variables into registers. Various compiler techniques, 

including data flow analysis, have been tested. Furthermore, we have designed 

a microarchitecture description language capable of modeling the instruction 

set architecture, the pipeline timing, and other hardware features. The code 

generator understands the microarchitecture description language and attempts 

to generate optimized codes for the processor configuration specified in the 

technology file. The prototype code generator was powerful enough for us to 

measure the performance of many small benchmark programs on various 

microprocessor configurations.

In constructing the prototype code generator, we have gained invaluable 

experience in advanced microcode compilation techniques and have observed 

some deficiencies in our prototype code generator.

We have learned that parallel microarchitecture requires substantially 

more registers to hold the intermediate values when evaluating several data 

independent expressions concurrently. This suggests the inclusion of a large 

register file in the microarchitecture and also a good register allocation algo

rithm in the compiler. The register allocation algorithm must at all times con

serve register usage.

We have also found problems with phase-coupled register allocation and 

code scheduling techniques, and implemented an ad hoc heuristic solution. 

Allocating registers before code scheduling may introduce artificial data depen- 

dencies which w ill inhibit code motion. Another problem with allocating 

registers before code scheduling is that data-flow analysis [Aho86] cannot be 

accurately computed without a stable instruction space. For example, if a 

variable is used by two instructions before it is overwritten, we do not know 

which of the two instructions is the last use of the variable before code 

scheduling. An alternative approach is to schedule microoperations before
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register allocation. This tends to move microoperations to the earliest posi

tions where they can be executed and sometimes use more registers than neces

sary. When register spill codes have to be introduced or delay time has to be 

inserted to free some registers, the conventional register allocation schemes can 

no longer guarantee software interlocking. Software interlocking [Hen83] is a 

compiler technique to remove hazards [Kog8l] due to data and control depen

dencies among instructions [Kuc8l]. Therefore, we implement another pass to 

reschedule all microoperations after preliminary scheduling and register allo

cation to support software interlocking.

The prototype code generator supported only local code compaction, which 

restricts code motion to within a basic block. This was not a problem when 

we measured the Livermore [McM84] and Linpack [Don79] benchmark pro

grams because those benchmarks contain large basic block bodies after loop 

unrolling. However, most integer programs, such as editors, text formatting 

programs and compilers, do not appear to have large basic blocks. To exploit 

fine-grain program parallelism, the compiler must apply global code motion. 

A popular control mechanism for global code motion is the trace scheduling 

algorithm [Fis81 ].

Trace scheduling guides global code motion by favoring most frequently 

executed program paths. Similarly, in many other compiler techniques, such 

as register allocation by weighted graph coloring [Cha82, Cho84] and loop 

optimizations, performance can be achieved by speeding up the 

access/execution time of the most frequently used variables/instructions. 

While optimizing the most important parts of a program can potentially 

increase the execution time of lesser critical parts due to code motion, a posi

tive gain is expected in the overall performance.
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Then the natural question to ask is how the compiler knows what vari

ables and which program paths are accessed and executed most frequently. To 

estimate the importance of variables and instructions at compile time, loop 

structures are first identified. Objects in loop structures are assumed to be 

more important.

We feel very uneasy about the large number of if  statements in large C 

integer programs. The static weight estimation technique cannot confidently 

predict the branch probability of an if  statement. Estimating the if  condition 

to be true half of the time is overly conservative. If one profiles many C 

application programs, it is obvious that most if  conditions tend to result in one 

direction. We have thus decided to integrate an automatic profiler with our 

compiler. With accurate program control flow information collected during 

program run-time, the compiler can more confidently select critical sections of 

a program to be compiled optimally.

13 . Program Control Flow

What is program control flow? In a sequential program, there is only one 

program counter which walks through the instruction space until it reachs a 

termination point. In a simple non-pipelined machine, there is only one active 

instruction in the machine. Before the completion of the active instruction, the 

processor must decide which instruction to execute next. Selection of the next 

active instruction is based on the current program state which consists of vari

able values, machine state, and the current program position. For arithmetic 

and logic instructions, the instruction in the next immediate memory location 

(PC+1) is the natural next instruction. For conditional branch instructions, 

the processor selects, among a set of potential next instructions, one instruction 

that is specified by the branch condition. In pipelined and SIMD (Single
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Instruction and Multiple Data Stream) processors, the memory address of the 

next instruction is computed in similar fashion. In sum, the way in which the 

program counter moves from one instruction to another in some controlled 

fashion is called program control flow.

How is program control flow information useful? Knowing which 

instructions w ill immediately be executed, the processor can anticipate future 

events. For example, the processor can prefetch instructions and variables 

which w ill soon be used, without disturbing the execution of the active 

instruction. The compiler can properly encode the future knowledge in the 

code it generates and propagate that information to the microarchitecture. 

Later chapters of this thesis explore many potential uses of the program flow 

information.

1.4. Organization o f Thesis

The body of this thesis consists of six main chapters. In Chapter 2, we 

describe some major concepts and results developed from previous research. 

In Chapter 3, implementation issues of an efficient program profiling tool and a 

suitable data structure to represent program control behavior are presented. In 

Chapter 4, we describe the function inline expansion capability. In Chapter 5, 

we record the control flow behavior of some application programs and design 

hardware and software techniques to increase performance. In Chapter 6, we 

show that trace-based code-improving techniques are suitable for compiling 

large application programs. In Chapter 7, memory layout techniques based on 

program control flow information are introduced. Finally in Chapter 8, we 

offer some concluding remarks.
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CHAPTER 2.

BACKGROUND

Previous researches in compiler design and computer architecture have 

resulted in many performance improving techniques. In this chapter, we w ill 

describe a few techniques which can be furthur improved given that the com

piler knows the program control flow information. In later chapters, algo

rithms and experimental results are provided.

2.1. Code Optimization

An important concept appearing in several code improving techniques is to 

reduce the execution time of the most intensively executed parts of a program. 

The first step of these code improving techniques is to identify the most criti

cal regions of a program. Knowing the critical regions, program transforma

tions are applied to reduce the execution time of these critical regions.

Loop-invariant-code-removal [Aho86] creates a loop header and moves 

instructions whose input operands are invariant in the loop body to the loop 

header. The first step of this technique is to identify loops. Loops are con

sidered more important than straight-line code because loop bodies are usually 

executed many times. Moving code out of a loop results in smaller loop body 

which requires less execution time. We w ill use a simple example to illustrate 

such transformation.

while (loop condition) { 

a = b + 3; 

c = c -  (a + d);

}
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After applying loop-invariant-code-removal, the above loop has an addi

tional loop header.

a = b -I- 3;

temporary = a + d; 

while (loop condition) { 

c = c - temporary;

}

Without run-time information, the compiler looks for sections of a flow 

graph which resemble loops [Aho86]. Loop analysis also tells the degree of 

loop nesting. The exact algorithm can be found in the reference and needs not 

be reiterated here.

The outer loop is assumed to be executed a fixed number of times, usually 

ten. Inner loops are assumed to be the most important, and are assumed to be

executed (10**degrees_of_loop__nesting) times. Then the importance of

instructions and variables appearing in loop bodies can be estimated to be 

(loop_weight*number_of_occurrence).

Many code improving techniques have been designed to optimize inner 

loops. Loop unrolling unrolls several iterations of an inner loop and applies 

variable renaming, code motion and code compaction techniques to increase the 

degree of fine-grain program parallelism and to reduce the number of instruc

tions using microcode compaction techniques [Gra87, Tok81, Fis8l]. Software 

pipelining combines operations from several iterations of an inner loop and 

packs them into as few instructions as possible. In vector machines, inner 

loops are usually converted to vector instructions.

Other code improving techniques also use the instruction and variable 

weight information. Register allocation techniques reduce memory accesses by 

migrating memory variables into registers. Since the number of high-speed
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registers are limited, a priority function based on the access frequency of vari

ables is used to decide what variables should be maintained in registers. When 

spill codes have to be introduced to free registers, the variable usage informa

tion is again used to minimize the spill cost. The priority functions are com

plex and are carefully justified in Chow's paper [Cho84].

More aggressive global code motion, such as global microcode compaction 

techniques, allow micro-operations to move across basic block boundaries. The 

goal is to reduce the execution time of the most critical program paths. For 

example, if we know that basic block bbA has an empty micro-operation field 

and basic block bbB is very likely to be reached from basic block bbA, we can 

possibly move a micro-operation from basic block bbB to fill the empty slot in 

basic block bbA. Potentially, a cycle can be saved when basic block bbB is 

immediately executed after executing basic block bbA.

The accuracy of the instruction and variable weight information directly 

affect the performance of the above code improving techniques. In addition, 

global code motion techniques also require the knowledge of program control 

transfer between basic blocks. Clearly, purely static (compile-time) weight 

estimation, such as loop analysis, no longer suffices. There are three potential 

dangers.

First, the number of loop iterations is not known at compile time. While 

there are several loops of the same nesting level, one loop may iterate many 

more times than all other loops. Since high-speed resources such as registers 

are severly limited, it is necessary to allocate them to only the most important 

program regions.

Second, if  statements can not be predicted with high accuracy at compile 

time, and can cause a loop which is rarely reached to be considered important. 

This undesirable condition appears in the following example.
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if (not likely to be true) {

while (many iterations) {

} /* end while */

} /* end if */

Third, when loop nesting information is not propagated across function 

call boundaries, the importance of a function which is called from a loop in 

some other function may be underestimated. To implement inter-procedural 

register allocation and code motion, it is important to know the relative impor

tance of all functions.

m (){

/* straight-line code */

}

n (){

while (many iterations) { 

m();

}

}

Run-time information is much more accurate than static prediction. It is 

already very common that optimizing compilers support several styles of pro

gram profiling [Bell79, Gra83]. The profile information allows the program

mers to improve the algorithm and coding techniques employed in the most 

intensively executed program regions. In order to automate all code improving 

techniques, we have integrated a profiler with our IMPACT-I C compiler to 

supply accurate instruction and variable weight information to various code
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improving techniques. The run-time information is nicely encoded into a sim

ple data structure. We w ill describe the implementation of the profiler and 

the data structure in the next chapter.

2.2. Branch Prediction

C programs are decision intensive, as indicated by the large number of if  

and switch statements and loop constructs. The conditional branches are 

implied by two-way decisions, and switches are implied by multi-way deci

sion in the C statements. Each switch statement can be implemented by either 

a hashing jump or a sequence of conditional branches. Each iteration of a loop 

requires a two-way decision which determines whether or not the loop should 

be reiterated.

These conditional branches have damaging effects on the performance of 

pipelined processors. One reason is because the outcome of the branch may not 

be available immediately. Another reason is that the branch target address 

requires a full word addition which may require a machine cycle after the 

branch offset is available.

Existing approaches to the branch problem all require some amount of 

special hardware. For example, loop buffers have been used in CDC-7600 

[Cdc75] and CRAY-1 [Cra78], and delayed branch is popular among RISC 

machines [Pat8l]. To prefetch and decode instructions beyond a conditional 

branch instruction, multiple instruction stream and branch prediction stra

tegies have been designed [IBM78, Smi8l].

Lee and Smith described several mechanisms to perform branch prediction 

[Lee84]. In their paper, prediction based on branch history has achieved a 

mean success rate of higher than 90 percent.



13

McFarling and Hennessy examined several static (compile-time) and 

dynamic (hardware-assisted) branch prediction and control mechanisms 

[McF86]. Software branch prediction based on the program execution profile is 

reported to predict slightly better than a 128-entry hardware predictor. To 

overcome the problem of finding safe instructions to fill the branch delay slots, 

controlled squashing of the instructions in the delay slots by special hardware 

is proposed. Squashing capability permits the first couple of instructions in 

the predicted path to be placed in the delay slots. When branches are 

incorrectly predicted, the instructions in the delay slots are squashed before 

they affect the machine state.

The IMPACT-I C compiler also performs static branch prediction based on 

program execution profiling. We are able to isolate the effect of control flow 

transfer due to conditional branches, jump instructions, function call and 

return, and multi-way branch instructions. We also employ a more aggressive 

mechanism to conditionally squash instructions in the delay slots. Branch 

instructions are allowed to be placed in delay slots and conditionally squashed.

2.3. Trace Based Optimization

The idea of improving the most critical regions of a program again appears 

in trace scheduling. The algorithm repeatedly selects the most important pro

gram path, which is called a trace, compacts the trace, and inserts patch codes 

to remove the ill effect of global code motion.

Trace scheduling was first proposed by Fisher [Fis8l] as a systematic 

approach to global microcode compaction. Since improvements and implemen

tations of code improving techniques based on trace selection techniques have 

been reported [Lin83, Su84, Eli84]. These techniques are the most useful for 

generating efficient codes for application programs which are too large and too
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complicated for human micro-programmers. However, most of the experi

mental results reported on using trace selection to assist global code motion 

have been based on small benchmarks with simple control structures.

It is thus necessary to conduct an applicability study of trace-based 

optimization for large integer programs, such as editors and compilers. We 

w ill report in a later chapter the effectiveness of several trace selection func

tions based on profile information. Our result shows that trace-based code 

improving techniques can substantially improve program performance.

Software pipelining and loop unrolling techniques which have been 

reported apply only to simple inner loops. However, we w ill show that there 

are usually several conditional branch instructions in inner loops in large 

integer programs

2.4. Memory Layout

The performance of a high-speed processor depends greatly on how fast 

the memory system can supply instructions and data.

In array and VLIW (Very Long Instruction Word) processors, multiple 

memory banks are needed to supply instructions and data to all processing 

units. In order to access several pieces of data concurrently, it is necessary to 

place them in different memory banks. Lawrie [Law75] published a data 

alignment technique which allows parallel and conflict-free access to various 

slices of data for an array processor. Ellis [Eli84] discussed several memory- 

bank disambiguation methods, which distribute memory accesses evenly to 

each of the memory banks.
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Although bank disambiguation techniques may not be required for high

speed scalar processors, the concept of intelligently organizing and placing 

information into memory to achieve fast information retrieval must be treas

ured and applied.

Given the execution profile information, the IMPACT-I C compiler can 

predict which basic blocks and variables w ill be executed and accessed in the 

future. It is then possible to group and place instructions and variables care

fully in the memory space in such a way that more sequential and spatial 

localities are preserved. Better sequential locality suggests the use of a larger 

cache block size and a more aggressive prefetch algorithm. Instructions and 

variables can also be placed to reduce the number of cache conflicts.

The memory layout algorithms and their implications are presented in a 

later chapter.
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CHAPTER 3.

PROFILE TOOL AND WEIGHTED CONTROL GRAPH

A system independent execution profiler [Cha88] has been implemented 

and integrated into the IMPACT-I C compiler frontend which is also imple

mented by the author. To profile a C program, the IMPACT-I profiler converts 

the program into a functionally equivalent C program with all the probes 

inserted. This new C program can then be compiled by the C compilers of 

different systems and executed on these systems to collect profile information 

concurrently.

Portability is an important issue in the IMPACT-I C compiler design 

because it is an experimental compiler for many possible processor 

configurations and different instruction sets. Because the IMPACT-I tool w ill 

be ported to various systems, the IMPACT-I compiler and profiler interface 

must also be completely system independent.

The IMPACT-I profiler is system independent for four reasons. First, the 

IMPACT-I profiler itself can execute on different systems. Second, the pro

gram with profiling probes can execute on different systems (even in parallel). 

Third, the profile information accumulated on a system can be directly used 

by the IMPACT-I C compiler and architecture design tools running on a very 

different system. Fourth, the profile information accumulated on an existing

system can be used to guide the architecture design and code optimization for a
i

nonexisting system.

In this chapter, we describe the implementation of the IMPACT-I profiler 

and its profile process.
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3.1. D efinition o f a W eighted Control Graph

To make the profile information useful to the compiler, the profile infor

mation must be presented in a structure which can be easily understood by the 

compiler. The weigthted control graph defined below is such a structure via 

which the profile information can be presented to the compiler.

A control graph is a directed graph where every node is a basic block and 

every arc is a branch path between two basic blocks. There is an arc emanat

ing from node A to node B if and only if the final branch instruction in basic 

block A can potentially cause a control transfer to basic block B. The node 

weight is the average execution count of the corresponding basic block in a 

typical run of the program. The arc weight is the average number of times the 

corresponding branch path is taken in a typical run of the program. A 

weighted control graph is a control graph in which all the nodes and arcs are 

labeled with their weights.

Let us assume that there are two basic blocks which are uniquely labeled 

A and B, and are connected by a branch path from A to B. The arc A—»B is said 

to be an outgoing arc of node A, and is an incoming arc of node B. From the 

opposite perspective, node A is said to be the source, and node B is the destina

tion of the arc A—>B. A node may have several incoming and outgoing arcs.

If we furthur assume that node A has been executed 50, 60 and 40 times 

in three separate runs of the program, the node weight of A is 50, the average 

of the three runs. If in the same three runs the arc A—►B has been taken 40, 45 

and 35 times respectively, the arc weight of A—>B is 40, the average of the 

three runs. Then the probability of the arc A->B w ill be taken, given that the 

program control is already in node A and can be estimated to be 40/50 (80%).
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3.2. Construction o f a W eighted Control Graph

There are 8 major steps to generate profile information.

(1) The C source program is converted into a control graph.

(2) Constant folding and dead code removal are applied to the control graph 

to eliminate unreachable blocks. Then, jump optimizations are applied to 

merge basic blocks which are connected by unconditional branch instruc

tions. The results of these optimizations are a modified control graph 

which has fewer and larger basic blocks.

(3) The compiler inserts probes into the control graph.

(4) The control graph is converted into a functionally equivalent C program.

(5) The functionally equivalent C program with probes is then compiled and 

installed into the system.

(6) The program is run many times with realistic data to accumulate profile 

information in a database.

(7) The compiler constructs an identical control graph by repeating steps (1)- 

(3). Then the compiler asks the profiler to supply the node and arc weight 

information. A weighted control graph is formed by assigning weights to 

the nodes and arcs of the control graph.

(8) A weight consistency check function is applied to verify that all weights 

have been gathered and assigned consistently.

3.2.1. Constant folding and dead code removal

Constant folding is a compiler technique which converts an expression 

whose source operands can be computed during compile time into a scalar 

value. For example, (x=12-4) can be reduced to (x=8).
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If the result of a constant expression affects a control operator, the com

piler may be able to identify unreachable code.

#define DEBUG 1

if  (DEBUG) {

/* reached only in DEBUG mode */ 

fprintf(stderr, "> state = °7od0, state);

}

In debugging and testing new programs, programmers usually insert print 

statements to monitor the program state. In this case, the compiler knows that 

the print statement w ill always be executed and can remove the redundant if  

statement. On the other hand, when it is no longer necessary to check the pro

gram state, DEBUG is set to zero and the print statement w ill never be 

reached. In that case, both the if  statement and the print statement can be 

removed.

Similarly, loops whose loop control can be determined statically may be 

removed if the loop is never entered.

In our intermediate representation, each function has an ENTRY basic 

block. The following algorithm has been implemented to remove dead code 

one function at a time.

algorithm remove_unreachable_blockiF)

/*** mark alljiodes unreachable ***/ 

for (all nodes Ni of F) do 

N i.visited = false;

/*** mark all nodes which can be reached ***/

push(ENTRY node of F);

current = pop();

while (current <  >  0) do begin
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current.visited = true;

for (all outgoing arcs A j of current) do begin 

D = destination of Aj; 

if  (D.visited = false) then 

push(D); 

end for

current = pop(); 

end while

/*** remove all unreachable nodes ***/ 

for (all nodes Nk of F) do 

if  (Nk.visited = false) then 

remove Nk; 

e?id algorithm

3.2.2. Loop generation

To reduce the number of branch instructions in loops, all loop structures 

are converted to do while loops in C.

for (A; B; C)

D;

can be translated directly as 

A;

LO :

if  (f B) goto L2;

LI :

D;

C;

goto LO;
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L2 :

or alternatively as a do while loop.

A;

if (B) { 

do {

D;

C;

} while (B);

}

becomes,

A;

if  (! B) goto LI;

LO :

D;

C;

if  (B) goto LO;

LI :

In the above example, an unconditional jump instruction is eliminated. 

Similarly, while loops can be transformed to the do while form by duplicating 

the loop test.

3.2.3. Jump optim ization

We w ill create some superficial code segments to demonstrate the func

tionalities of several jump optimizations which we have implemented in the 

IMPACT-I C compiler. The first type of jump optimization is to create by 

merging basic blocks which are connected by an unconditional jump instruc

tion.
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LO :

A;

branch to LI; /* no other branch result in LI */

L I  :

B;

if  (C) goto L2;

In the code shown above, the basic blocks LO and LI are connected by an 

unconditional jump, and this jump instruction is the only way to enter LI. In 

this case, the two basic blocks can be merged.

LO :

A;

B;

if  (C) goto L2;

The second type of jump optimization is to remove basic blocks which 

contain only a single jump instruction.

LO :

A;

if  (B) goto L2;

LI :

goto L3;

L2 :

goto L4;

L3 :

can be easily converted into 

LO :

A;

if  (B) goto L4;
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L3 :

Another jump optimization requires more code duplication.

LO :

A;

goto L2;

LI :

B;

L2 :

C;

if  (D) goto LA;

L3 :

can be transformed to 

LO :

A;

C;

if  (D) goto L4; 

goto L3;

LI :

B;

C;

if  (D) goto L4;

L 3 :

In the above example, if the chance of reaching LO is much higher than 

reaching LI, a branch instruction is reduced. Also, classical local microcode 

compaction techniques work much better with larger basic blocks. Due to the
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code expansion problem, this type of code optimization can be activated only 

by a special compiler option which specifies an upper limit on the size of a 

basic block that can be duplicated and absorbed.

We have implemented all three types of jump optimizations illustrated 

above and a couple others which have been found less effective because of their 

rare occurrences.

3.2.4. Probe insertion

Af ter jump optimization, probes are placed at various places of the control 

graph. First, the compiler assigns each basic block in the program a unique 

identifier. For each basic block, the compiler inserts a probe to detect basic 

block execution count and the transition count. In order to derive the transi

tion count, the profiler has to keep track of the previous basic block during 

execution. A state variable last_tag  is initially set to 0, and is modified to 

contain the identifier of the previous basic block during execution of the pro

gram. A probe is inserted in every basic block.

static int last_tag = 0;

basic_block_probe(current_id) {

increment__node__weight( current _ id); 

increment_arc_weight(Last_tag, current_id); 

last_tag -  current_id;

}

function__entry_probe(function_id) {

push_tag( last _Jag ); 

last_tag  = special ENTRY tag for 

function (function_id);

}
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function_exit__probe() {

last_tag  = pop_tag();

}

A stack data structure, which we call tag__stack, is provided to store and 

recover the last_tag  value across function invocations. In the beginning of a 

function, a probe is inserted to push the last_tag  value onto the stack. Right 

before returning from a function, a different probe is inserted to move the top 

entry of the tag_stack  back to last_tag .

The C programming language contains two special library functions, 

setjmpO and longjmpO, which must be handled differently from other func

tions. The compiler has to recognize these two functions and to replace 

setjmpO with a probe which marks the top of the tag_stack  and replace 

longjmpO with another probe to return the tag__stack to the marked position. 

SetjmpO and longjmpO are called only indirectly from the two special probes.

3.2.5. H igh-level language as an interm ediate form

There are two major requirements to our profile tools. First, the same 

profile information can be used with a different physical code generation to 

evaluate architecture designs and implementations. Second, the profile infor

mation is available to the code optimizers to improve the quality of the code. 

To fulfill the two requirements, the part of the compiler which inserts 

profiling probes must have access to the program structures before the optimi

zation and the physical code generation are performed.

The internal data structure and the symbol table of the IMPACT-I C com

piler capture completely all information in the source programs. After seman

tic analysis, the compiler can generate two different intermediate forms. To 

generate profile codes, the C programming language is used as the intermediate
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language. Alternatively, IL (intermediate format) code can be generated as the 

input to the code optimizer. Variable renaming is applied before intermediate 

code generation, and all variables have unique names in the intermediate code

format.

The advantage of using C programming language as an alternative inter

mediate language is that the profile code can be compiled by different C com

pilers on various systems. Another advantage which we have not realized in 

the early design stage of the compiler is that we can test the internal represen

tation and therefore the IMPACT-I compiler front end.

Each basic block is assigned a unique label. Transitions between basic 

blocks are implemented using goto statements of C.

while (a>  10) { 

b = c-a; 

a -;

}

is translated to

i f  (a>  10) goto LO; 

goto LI;

LO :

b = c-a; 

a—;

if  (a>  10) goto LO; 

goto LI;

LI :

Since only labels and goto statements are used, one can choose other sym

bolic languages, such as BASIC, as the intermediate form.
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3.2.6. Input data

The profile code can be compiled and installed in a public system. In our 

case, we have an university research environment where most jobs are CPU 

intensive CAD programs, text editing and formatting programs, and program 

compilations. Inputs from various users in the selected computer environment 

can be profiled and averaged. Inputs come from various people and represent 

the general system usage. Unlike benchmarking, the inputs used are from real 

applications, and the entire program execution time is monitored.

3.2.7. Profile data representation

A node weight attribute and a list of outgoing arc weight attributes are 

attached to each control graph node.

struct __Link {

int destination; 

double weight; 

struct _ lin k  *next;

};

struct _node {

double weight;

struct _ lin k  *oul going __arcs;

} NodeTable[MAX__NUMBER_OF_NODES];

The destination field of the _ link  structure specifies the unique node 

identification number of the destination block. The weight field of the _Jink 

structure is the number of times the arc has been taken. The next field of the

_link structure is a pointer to the next outgoing arc. The weight field of the

node structure is the number of times the node has been visited. The



outgoing_arcs field stores a pointer to a linked list of _ link  elements whose 

weights are nonzero.

This data structure is maintained and constantly updated by the monitor 

probes inserted in the profile code. Memory spaces for storing the _node and 

_link  structures are allocated statically by declaring two large arrays which 

are appended to the user program that is being monitored. For all programs 

which we have profiled so far, including programs which consist of more than 

ten thousand lines of C code, five thousand nodes and links are sufficient.

To maintain the profile information over many runs, the user specifies a 

file where the profile information should be stored. At the end of a profile 

run, the profiler first reads in the accumulated information stored in the data

base file, adds in the new information, and then stores the final data back to 

the database file.

3.2.8. Profile database m aintainance

The number of profile runs is also stored in the database file. Each run of 

the program generates a new set of node and arc weights. The profiler adjusts 

the profile data according to W.permanent = W.permanent * N /(N + l) + W.new 

/  (N +l); N=N+1, where N  is the number of times the program has been 

profiled.

To combine two accumulated sets, the profiler adjusts the profile data
i

according to W. total = W.N * N/(N+M) + W.M * M /  (N+M); total=N+M, 

where N and M are the number of runs made by the two systems, respec

tively. With these flexible rules, we can concurrently profile a program on a 

network of heterogeneous machines and combine the results. The combined 

profile data can then be used by the IMPACT-I C compiler and the IMPACT-I 

architecture design tools executing on different machines in the network.

28
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3.2.9. Reconstruction o f flow graph

The IMPACT-I profiler and the IMPACT-I C compiler share the same 

front end. Therefore, they share a consistent view in naming the basic blocks 

and control transfers. To generate the profile information, the profiler labels 

the node and arc weights by their corresponding unique basic block identifiers. 

To use the profile information, the compiler constructs an identical control 

graph, and uses the unique identifiers to assign weights to the nodes and arcs. 

After weight assignment, the compiler generates the IL (intermediate 

language) format. The control graph can be furthur optimized, as long as the 

node and arc weights are also modified consistently.

3.2.10. Node and arc w eight assignment

The names of the probe and query functions have been renamed here to 

simplify our discussion. The actual names in the real implementation are long 

and complex in order to avoid declaration conflicts with existing user and sys

tem defined functions and variables.

To access the profile information, the compiler calls a set of functions 

which are defined by the profiler.

double NodeWeighth id);

double ArcW eighKsrc_bb_id, dest_bb_id);

The NodeWeightO function takes one argument which identifies a basic 

block and returns the weight associated to the basic block. The ArcWeightO 

function takes two arguments. The first argument specifies the source of a 

control link. The second argument specifies the destination of a control link.
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Any link can be uniquely identified by its two terminal basic blocks. The 

ArcWeightO function returns the weight of a specified control link.

A simple algorithm is used to assign node and arc weights. It is combined 

into the compiler front-end processing and therefore, does not require a 

seperate pass.

algorithm weight_jCLSsignment( P) 

for (all nodes Ni of P) do begin 

Ni.weight = NodeWeight( Ni.id); 

for (all outgoing arcs A j of Ni) do begin 

D  = destination of Aj;

Aj.weight = ArcWeighth Ni.id, D.id); 

end for 

end for 

end algorithm

3.2.11. W eight consistency verification

Since a node can be entered only from one of its incoming arcs and exit 

only through one of its outgoing arcs, the node weight = sum of the weights of 

all incoming arcs = sum of the weights of all outgoing arcs.

The control graphs of large integer programs usually consist of thousands 

of nodes and arcs. The weight consistency check is a nice way to detect errors 

in the profile data. This check function w ill detect most errors due to non

unique basic block id assignment or inconsistent basic block id assignment due 

to source code change.
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3.3. Separate Compilation

Seperate compilation can not be done when it is necessary to assign each 

basic block a unique identifier. However, the labeling process does not require 

the entire program to be present at once, and thus, one can still keep a program 

across a large number of files. The IMPACT-I C compiler reads in files accord

ing to a particular order specified by the user and labels each basic block with 

a unique integer number. The particular order specified by the user is 

recorded in a log file maintained by the IMPACT-I compiler. The recorded file 

sequence is used again by the compiler to construct the control graph after the 

profiling process.

Except for providing the initial file sequence, the user does not need to 

know how basic blocks are labeled and how the probes are inserted and how 

the profile information is mapped to the source code. The compiler absorbs all 

the complexity and fu lly  automates the compilation process.

3 A. Portability Issue

The IMPACT-I profiler is system independent. The IMPACT-I compiler 

front end and the profiler are written in C and can be ported to any system  

which has a working C compiler. The program with profile probes is also in C 

and can execute on different systems. And the profile data does not contain 

any system dependent parameters and can be applied on any system. The first 

advantage of our portable profiler is that the profiling process can be distri

buted over a large number of systems. The second obvious advantage is that 

the accumulated profile information can be used by the IMPACT-I system on 

all machines. Hence, the profiling process needs to be executed only once.
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CHAPTER 4.

FUNCTION INLINE EXPANSION

Structured programming techniques encourage the use of functions. As a 

result, realistic C programs often execute a large number of function calls. 

Unfortunately, function calls cause performance problems by hindering com

piler optimizations across function boundaries. Examples of compiler optimi

zations hindered by function calls include register allocation, code scheduling, 

common subexpression elimination, and constant propagation. The decreased 

effectiveness of these optimization techniques increases memory accesses, 

decreases pipeline efficiency, and increases redundant computation.

Some recent processors provide hardware support for minimizing the 

extra memory accesses due to function calls. For example, the Berkeley RISC 

processors provide overlapping register windows to reduce the number of 

memory accesses required to save/restore registers and to pass parameters 

[Pat8l]. Another example is the CRISP processor that uses stack buffers to 

capture the memory accesses to local variables so that the register allocation 

crossing function calls can be simulated in hardware [Dit87]. The problems 

with these hardware approaches are that they tend to consume a significant 

amount of hardware, stretch the processor cycle time, and provide little assis

tance for enlarging the scope of compiler code optimization.

Inline expansion has been employed to reduce the function calls in several 

compilers. Inline expansion replaces the function call statements with the 

function bodies to eliminate function calls. This technique trades off the static 

code size for reduced function call frequency [Hus82, Cho84, A1188, Sta88, 

Str87, Geh84]. In the GNU C compiler, the programmers can use the keyword 

in line as a hint to the compiler for inline expanding function calls. In the 

MIPS C compiler, the compiler examines the code structure (e.g., loops) to
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choose the function calls for inline expansion. In these compilers, little run

time inf ormation has been used to assist inline expansion.

4.1. Our Implementation

There are four major implementation issues regarding inline expansion: 

increase in the static code size, increase in the control stack size, unavailable 

function bodies, and conflicts of identifiers. If not carefully addressed, the 

first two issues could reduce the effectiveness of the memory hierarchy to such 

a degree that system performance decreases due to inline expansion. The 

IMPACT-I C Compiler addresses these two issues by using a heuristic which 

takes into account the estimated execution count, the estimated static code size, 

the estimated stack frame size, and the potential of recursion for each function 

call.

The estimated execution count for each function call is derived by 

profiling the program with a set of representative inputs. Instead of requiring 

the programmer to supply hints to the compiler, this approach requires the 

programmer to supply representative inputs to the program. Therefore, this 

approach is more suitable for speeding up the execution of realistic programs 

for which representative inputs can be easily collected. The IMPACT-I 

Profiler to C Compiler interface allows the profile information to be automati

cally used by the inline expander.

Inline expansion is performed before other code optimization techniques so 

that these other techniques can benefit from inline expansion. Since code 

optimizations change code size, the function inline expander can only base its 

decision on estimated code sizes. The inline expander uses the number of 

intermediate instructions in a function as the estimated code size of that func

tion. Note that inline expansion itself also changes code sizes of functions.
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Therefore, the code size of each function body is updated as function calls are 

expanded.

Since inline expansion is done before register allocation and code schedul

ing, the stack frame size for each function is not known to the function 

expander. The inline expander uses the declarations of parameters and local 

variables to estimate the stack frame size for each function call. The major 

concern here is to avoid introducing any function body with large stack 

frames into recursive call paths. For example, a recursive function m(x) is 

defined as follows.

m(x) { return (x?m (x-l)+m (x-2)+n(x):l); }

Assume n(x) has a large local data structure, as follows.

n(x) { int y[lOOOOO];.....}

If m(x) tends to be called with a large x value, expanding n(x) w ill dramati

cally increase the call stack size. Therefore, the IMPACT-I C Compiler exam

ines the call graph to detect all recursive call paths so that situations as illus

trated above can be avoided. Since inline expansion itself changes the parame

ter and local variable declarations for functions, the size of the stack frame for 

each function is updated as function calls are expanded.

The IMPACT-I C Compiler performs interprocedural analysis to identify 

all the function calls with function bodies that are unavailable for inline 

expansion. These functions are usually either written in assembly language or 

kept unavailable due to prbprietary considerations. Even for standard library 

functions, properly locating the function bodies is a major implementation 

task.

A final note on the implementation is that each object (function, variable, 

etc.) in the program is assigned a unique identifier. Each identifier used by the 

programmer is renamed to ensure that the expanded function body does not
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contain identifiers conflicting with the existing ones. This simplifies the 

management of the symbol table during inline expansion. See Appendix-A for 

details of the IMPACT-I inline expansion algorithm.

4.2. Experiment

Table 4.1 summarizes several important characteristics of our bench

marks. The C lines column shows the static code size of the C benchmark pro

grams measured in the number of program lines. The runs column gives the 

number of different inputs used in the experiment. The size column shows the 

number of bytes required to store the profile information. The average storage 

requirement is about six (6) bytes per one line of C code. The description 

column describes the benchmark programs.

Note that we use the dynamic counts of intermediate instructions rather 

than those of machine instructions to keep the data general. The experiment 

involves measurements based on more than three billion intermediate instruc

tions worth of program execution. The benchmark programs exhibit very 

different code sizes, control structures, and applications. The inputs to each 

program have been chosen to cover a wide spectrum of possible input patterns.

Table 4.2 presents the result of inline expansion. The code inc column 

gives the percentage of increase in static code size due to inline expansion. The 

call dec column gives the percentage of dynamic function calls eliminated by 

the inline expansion. The IL s per call column gives the average number of 

dynamic intermediate instructions executed between dynamic function calls 

after inline expansion. The CTs per call column gives the average number of 

dynamic control transfers executed between dynamic function calls after the 

inline expansion.



36

Table 4 .1 : Benchmark Set

name line run size(B) description

cccp 4660 20 20411 GNU C preprocessor

cmp 371 16 1098 Compare text files

compress 1941 20 5086 File compression

eqn 4167 20 15860 Typeset mathematics

espresso 11545 20 49805 Logic minimization

grep 1302 20 2955 String search

lex 3251 4 26722 Lexical analyzer generator

make 7043 20 24258 Maintain files

tar 3186 14 10065 Create tape archives

tee 1063 18 1846 Replicate output

wc 345 20 1056 Word count

yacc 3333 8 29677 Parsing program generator

Note that the inline expansion mechanism eliminates large percentages of 

dynamic function calls for function call intensive programs. For programs 

with less frequent function calls to begin with, the inline expansion mechan

ism does not eliminate large percentages of dynamic function calls. This is a 

desirable behavior because the overall goal is to ensure infrequent function 

calls rather than to achieve high elimination percentages.

All in all, the inline expansion is very effective in that function calls only 

account for about 1% of the control transfers after inline expansion (see the 

CTs per call column). In terms of frequency, on the average there are hun

dreds of intermediate instructions executed between dynamic function calls.
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Table 4.2 : Inline Expansion Result

name code inc call dec DIs per call CTs per call

cccp 17% 55% 506 95

cmp 3% 49% 265 58

compress 4% 91% 2324 368

eqn 22% 81% 197 58

espresso 22% 68% 576 90

grep 31% 99% 11214 4071

lex 23% 77% 7807 2880

make 22% 56% 362 77

tar 16% 43% 983 127

tee 0% 0% 15 6

wc 0% 0% 18310 5146

yacc 24% 80% 1205 303

AVG 15.3% 58.3% 3647 1107

SD 10.7% 32.0% 5808 1832

Therefore, function calls become unimportant in the hardware design con

siderations. Also, large scopes for compiler optimizations can be expected for 

the critical parts of the programs. The price, on the average, is a 20% increase 

in static code size.
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CHAPTER 5.

BRANCH HANDLING

Conditional branch instructions pose serious problems to the processor 

pipeline design. Without special hardware capability, the instruction issue 

logic can not deliver instructions to the first stage of the processor pipeline 

before the direction of conditional branch instructions can be confirmed. 

Therefore, conditional branch instructions can potentially introduce no__ops to 

the pipeline.

Many special hardware mechanisms have been proposed to overcome the 

conditional branch problem. Some machines permit instruction prefetch from 

both the fall-through path and the branch target path while evaluating the 

branch condition code. Multiway instruction prefetch mechanism allows 

instructions to enter the pipeline as soon as the branch condition is available. 

However, multiway instruction prefetch requires higher memory bandwidth 

and has an exponential cost when branch instructions are extremely frequent. 

The exponential cost is due to prefetching new branch instructions which 

thereby introduce more potential branch paths.

Each conditional branch instruction introduces two branch paths : the 

fall-through path and the taken path. The address of the next instruction in 

the fall-through path is simply a natural increment of the address of the 

branch instruction and can be computed while fetching the branch instruction. 

On the other hand, the address of the first instruction of the taken path is 

specified by a branch offset. The branch offset is often specified in the constant 

literal field of the branch instruction and is available only when the branch 

instruction is fetched. When the branch offset is available, a fu ll integer addi

tion (PC’=PC+offset) is required to generate the target address. In a pipelined 

processor design where a short cycle time is desirable, the target address
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computaion may require an additional cycle. Also, one or more machine cycles 

is required to access the instruction memory. To remove the target address 

and the memory overhead, delayed branch slots and instruction buffers are

introduced.

Delayed branch has been used in several RISC implementations. [Pat81, 

Pat82] Delayed branch requires that the first few instructions, which are 

called the delay slots immediately following the branch instructions be exe

cuted regardless of the outcome of the branch instruction. In a sense, the 

branch instruction is moved up. Therefore, the branch target address evalua

tion and subsequent memory access can overlap with the execution of the 

instructions in the delay slots. The major problem with this scheme is that 

finding instructions to fill the delay slots is difficult due to severe data flow 

dependence.

To remove the memory overhead, instruction buffers and branch target 

buffers have been proposed and implemented [Rus78] When the first couple of 

instructions of the branch taken path can be found in the instruction buffer, 

the overhead of instruction memory access can be removed. The instruction 

buffer is extremely useful to capture small inner loops.

Due to the complexity of the decoding unit, unlike multiway prefetch, 

multiway decoding is not feasible. At best, the processor can decide to decode 

one of several potential branch paths. Since instruction decoding does not 

change machine state (neglecting complex addressing modes), predictive decod

ing can be easily done and undone, while evaluating the branch condition code. 

If the branch eventually results in the branch path, which is anticipatively 

decoded, the processor pipeline remains full. If the branch results in some 

other path, the instructions which have been decoded should be nullified. 

Nullification of an instruction can be done by simply toggling a single valid bit
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and requiring only a small amount of hardware. To increase the probability 

of selecting the correct branch path, several branch prediction schemes have 

been proposed. [Smi8l] Branch prediction can be done by the compiler at com

pile time or by special hardware at run time, or by a combination of the two. 

Hardware branch prediction is expansive and can become the critical path of 

the processor design. Software branch prediction lacks run-time information 

and can predict less accurately. In the following subsections, we w ill show 

that the profile information can be used to enhance software branch prediction. 

The result is comparable to hardware branch prediction schemes.

5.1. Special Hardware and Compiler Support

The IMPACT microarchitecture employs a combination of hardware and 

software techniques to alleviate the conditional branch problem. On the 

software side, the profile information enhances the software branch prediction 

strategy. On the hardware side, forward semantics and instruction squashing 

are supported.

5.1.1. Branch prediction

A branch is said taken if it brings the control flow away from the fall- 

through path. It has been reported by several researchers that more than 65% 

of all branches are taken. Thus the simplest software branch prediction 

method is to predict that all branches are taken. The reason for high taken 

branch frequency is that loops usually iterate several times and most i f  state

ments are evaluated to be false. For each iteration of a loop, a branch is taken 

to bring the control flow back to the loop header. When an if  statement is

evaluated to be false, a branch is taken to lead the control flow to the else part
\

of the if  statement.
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It should be noticed that this simple static branch prediction method is 

compiler dependent and has to be re-evaluated when there is a change in the 

code generation strategy. If the compiler generates the else parts immediately 

after the conditional branch instructions of if  statements, the taken branch 

frequency will decrease.

The IMPACT-I C compiler uses the profile information to lay out the 

instruction space to reduce the frequency of taken branch instructions. We 

favor the fall-through paths because it is desirable to execute as many con

secutive instructions as possible. The result is a better cache sequential local

ity, which permits larger cache block size.

The average branching probability of a particular branch direction is 

arc_weight(E)/node__weight(N), where E is an outgoing arc of N. Among all 

outgoing arcs, the one most likely to be taken is predicted to be taken. If the 

predicted taken arc leads to the fall-through path, the branch is predicted to be 

not taken. On the contrary, if the predicted taken arc changes the control flow, 

the branch is predicted to be taken.

The prediction information must be encoded in the conditional branch 

instructions. One bit per each conditional branch instruction is the least cost 

for implementing software branch prediction. Addtional instruction decoding 

and prefetching logic must also be provided to extract and to apply the 

encoded branch information.

5.1.2. Forward sem antic

Since control flow change can not be done instantaneously due to the 

address computation and the instruction memory access overhead, one or more 

cycles after each taken branch can be wasted. A simple solution is to execute a
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specified number of instructions immediately following the branch instruction 

as if those instructions should be executed before the branch instruction. This 

strategy is called delayed branch and has been widely used in pipelined proces

sor designs. The biggest problem with the delayed branch is that it is usually 

not possible to find instructions to fill all delay slots. It has been reported that 

there is only a 30% chance that the second branch delay slot can be filled.

An alternative method is to implement forward semantic with instruction 

squashing. Unlike delayed branch strategy which moves instructions from 

above the branch instructions to fill the delay slots, forward semantic moves 

the first few  instructions from the most likely to be taken path to fill the 

delay slots. The advantage is that the code motion is no longer constrained by 

data flow dependence and all delay slots can be filled. When the branch direc

tion agrees with the predicted direction, all processor cycles are fu lly  utilized. 

However, when the branch direction disagrees with the predicted direction, the 

effect of the instructions which have been moved to the delay slots must be 

undone before the control flow can backtrack to the correct path. The cost of 

forward semantic strategy is therefore a function of the branch predictability. 

More accurate branch prediction strategy produces better forward semantic 

actions.

5 .13 . Instruction squash

To undo the effect of the instructions in the delay slots upon a branch 

prediction miss, special hardware is required to nullify the instructions and to 

recover the previous contents of memory components which have been affected 

by the instructions in the delay slots. Since the first few stages of processor 

pipelines do not affect the processor state, instruction squash can be easily 

implemented by masking the valid bits of the instructions in the first N stages
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of the processor pipelines when there are N delay slots. The computation 

results and exception signals corresponding to the squashed instructions are 

ignored.

5.1.4. Delayed branch versus forw ard semantics

The major difference between the delayed branch model and the forward 

semantics model is the use of delay slots. Delayed branch moves instructions 

originally before the branch instruction to fill the delay slots, when data 

dependence relations are not violated. Forward semantics first select the path 

which is more likely to be reached, and then move the first few instructions of 

that path to fill the delay slots.

For the delayed branch model, the average cost of a branch instruction is 

(1 + N  - M )t where N  is the number of delay slots for a branch instruction and 

M  is the average number of delay slots which can be successfully filled. 

Because of data dependence constraint, it is difficult to fill more than one delay 

slot. Therefore, the delayed branch is not suitable for very deeply pipelined 

design, which requires many cycles to evaluate the branch condition code 

and/or the branch target address.

For the forward semantics model, the average cost of a branch instruction 

is (1 + (1-P)*N), where N  is the number of instructions needed to be squashed 

upon a branch prediction miss and P  is the probability of correct branch pred

iction. It is assumed that branch instructions can be moved into the delay 

slots, and thus all delay slots can be filled. The forward semantic model is 

very suitable for pipelined processor design because the effect of increasing N  

(as the pipeline becomes deeper), on the performance is scaled by (l-P ). For 

example, given that we can predict 90% of all conditional branch instructions 

correctly and 100% of all unconditional branch instructions correctly, the miss



44

ratio is less than 10%. Therefore, the cost of a branch instruction increases by 

less than 0.1 as Af increases by 1.

5.2. Perf ormance Measure o f Forward Semantics

There are three types of branch instructions in the IMPACT model: 

cond__br (conditional branch instruction with constant branch offset field), 

uncond_br (unconditional branch instruction with constant branch offset 

field), and jump (unconditional branch instruction with data dependent branch 

target address).

The cost of a cond_br instruction is (1 + (1-P)*N), where N  is the number 

of instructions needed to be squashed upon a branch prediction miss and P is 

the probability of correct branch prediction. For example, if P  is 90% and N  is

2 cycles, the cost of a cond_Jbr instruction is 1.2 cycles.

The cost of an uncond_br instruction is 1, because P  is 100%. Since all 

delay slots can be filled, no cycle is wasted.

jump instruction is mostly used to implement a distanced function call, 

function return, and hashing jump (multi-way jump). Since the branch target 

address is data dependent, we do not know how to fill the delay slots at com

pile time. However, for function calls and returns, it is always possible to 

place instructions required in the calling and returning sequence, for example, 

the register saving and stack operations in the delay slots. The greatest loss is 

in generating hashing jumps, for which the delay slots cannot be filled. Since a 

hashing jump is equivalent to a long sequence of simple cond_br instructions, 

the cost is tolerable. Also, one is able to move instructions prior to the jump 

instruction to fill the delay slots, as in the delayed branch model. Since the 

prediction is always correct, the delay slots are never squashed, and thus mov

ing instructions from above the jump instruction to fill the delay slots is



45

correct. This trickery, however, violates the fundamental definition of the 

forward semantic model, although it produces correct results. It may be desir

able to define a different model which defines the correct usage of the delay 

slots rather than the direction of code motion. This new model is not in the 

scope of this thesis.

5 3 . Code Expansion Due to Adding Delay Slots

Since basic blocks are often small, requiring a small number of delay slots 

per branch instruction leads to a rather large code size increase. Two impor

tant questions thus arise. First, can we reduce the number of delay slots? 

Second, can we avoid unnecessary code duplication?

The answer to the first question is yes. The forward semantic model 

allows us to postpone the evaluation of the condition code. The number of

delay slots required is N  = (((X+Y) mod cycle_time) - 1), where X  is the

instruction cache access time and Y is the time to add the branch offset with 

the PC to form the branch target address. It is assumed that the reader is 

familiar with the instruction fetch unit design. The reason for including the 

instruction cache access time in determining the number of delay slots is 

because the branch offset is specified as a constant literal field and is available 

only after the instruction is fetched from the cache. Additional time is 

required to add this offset with the PC (of the branch instruction) to generate 

the branch target address. If the instruction fetch and the addition can be 

done in the same cycle, as in a non-pipelined design, no delay slot is necessary. 

If instruction cache access and the 32-bit addition require one cycle each, one 

delay slot is required.

With branch prediction, it is not necessary to wait for the condition code 

evaluation. As soon as the branch target address is available, the program
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control flow is transferred to a new path. The obvious advantage is that the 

number of delay slots is not dependent on the execution pipeline design. It is 

dependent only on the instruction cache access time and the delay of a 32-bit 

adder. This is true also for uncond_br instructions. For jump instruction, the 

32-bit addition can be avoided and extra time is needed to transfer a register 

value to the prefetch program counter. Since register access occurs in the first 

stage of the execution pipeline, the delay is small.

The answer to the second question is also yes. When a small basic block 

is completely absorbed in the delay slot space of its predecessor basic block, 

there is no need to keep the absorbed basic block if it can not be reached from 

any other basic block. This advantage is especially clear when there is a 

sequence of two-way branch instructions. In our model, these branches can be 

tightly placed together.

5.4. Experiment

In this subsection, experimental results support our claim that system- 

independent profiling can contribute to the computer architecture 

design/implementation. The compiler uses the profile result to predict the 

direction of the branch during compile time.

5.4.1. Benchmark set

The benchmark set is listed in Table 5.1. The inputs to these execution 

instances are taken from a research computing environment. The line column 

indicates the number of non-empty lines in each program excluding comments. 

The run column is the number of different execution instances of the 

corresponding benchmarks used to derive the profiling information. It is 

worth mentioning that the profile information presented in the following
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sections is based on the execution of a few billion intermediate language 

instructions, which would be extremely difficult to handle for benchmarking 

and trace driven simulation.

5.4.2. Static branch prediction w ith  squashing

The distribution of various types of branch instructions is listed in Table

5.2. The °/ocond_br column of Table 5.2 indicates the total number of condi

tional branch instructions profiled as a percentage of all control transfer 

instructions. The °7<)uncond_br column of Table 5.2 indicates the total number 

of unconditional branch instructions profiled as a percentage of all control 

transfer instructions. The %switch column of Table 5.2 indicates the total 

number of multiway branch instructions profiled as a percentage of all control 

transfer instructions.

If a branch is predicted to be taken at the compile time, the delay slots are 

filled with the first two instructions from the taken path. On the other hand, 

if a branch is predicted not to be taken at the compile time, the delay slots are 

filled with the first two instructions from the fall-through path. We assume 

that the delay slots can contain branch instructions. Therefore, each branch 

instruction correctly predicted takes one cycle to execute, and each incorrectly 

predicted branch takes (1+N) cycles to execute, where N is the number of 

instructions which are issued after the branch instruction and are to be 

squashed.

We evaluate the cost of executing branch instructions using compiler 

predictions. We require that our measurement be based on many different 

execution instances of large, frequently used benchmarks.
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Table 5.2 : Percentage o f Various Branch Types

name %cond__br %uncond_br %switch

cccp 54.18 26.79 19.03

cmp 68.88 31.11 0.01

compress 68.08 31.92 0.00

eqn 60.21 38.97 0.82

espresso 77.76 21.47 0.78

grep 70.85 25.35 3.80

lex 71.86 28.12 0.02

make 81.24 18.48 0.27

tar 93.71 6.28 0.01

tee 66.28 33.72 0.01

wc 70.80 29.20 0.00

yacc 89.13 10.72 0.15

5*4.3. Conditional branches

We first examine the characteristics of the conditional branches 

corresponding to the two-way decisions in the C programs. These branches are 

due to if  statements, the && II ?: expressions, and the loop control structures. 

Table 5.3 shows how well the compiler can predict these branches during com

pile time, based on the profile information. Column TT of Table 5.3 indicates 

the number of branches which are predicted to be taken and are actually 

taken, as a percentage of all conditional branches. Column TN  of Table 5.3 

indicates the number of branches which are predicted to be taken but are actu

ally not taken, as a percentage of all conditional branches. Column NT of
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Table 5.3 indicates the number of branches which are predicted not to be taken 

but are actually taken, as a percentage of all conditional branches. Column 

NN  of Table 5.3 indicates the number of branches which are predicted not to 

be taken and are actually not taken.

Table 5.3 : Conditional Branch Statistics

name TT TN NN NT hit_ratio

cccp 46.85 6.26 41.94 4.95 88.79

cmp 0.00 0.00 96.93 3.07 96.93

compress 18.35 2.82 67.06 11.77 85.41

eqn 14.06 3.55 78.66 3.73 92.72

espresso 26.50 6.30 58.00 9.20 84.50

grep 2.60 0.09 95.37 1.94 97.97

lex 48.03 0.58 50.18 1.20 98.21

make 47.48 3.38 46.70 2.45 94.18

tar 90.19 0.63 8.71 0.46 98.90

tee 24.70 12.31 62.73 0.26 87.43

wc 10.56 2.95 75.26 11.22 85.82

yacc 38.27 1.98 51.62 8.13 89.89

TT and N N  columns correspond to correct prediction, and TN  and NT 

columns correspond to incorrect branch prediction. The hit ratio column of 

Table 5.3 is the total correct branch prediction ratio and is simply a sum of TT 

and N N  columns.

N N  branches are desirable because they keep the instruction buffers and 

instruction caches effective.
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5.4.4, M ultiw ay branches

Table 5.4 shows the characteristics of the multiway decision implementa

tion. The °7odefault column indicates the percentage of the time the default case 

is reached for all switch statements. The %hash column indicates the percen

tage of all switch statements being implemented by hashing jumps. The %prof 

column indicates the percentage of all switch statements being implemented by 

branch sequences. The total column indicates the average number of cases per 

switch, except the default case. The expected column indicates the expected 

number of comparisons required to resolve a switch statement implemented as 

a branch sequence.

Each multiway decision (switch statement) can be implemented by either 

a hashing jump or a sequence of conditional branches. The IMPACT-I C com

piler implements each multiway decision as follows. First, the compiler sorts 

all the target cases by their probability of execution. Second, the compiler 

lays out the conditional branches so that the ones with higher branching pro

bability appear before those with lower branching probabilities. An exception 

to this rule is the default case which has to be placed at the very end as an 

unconditional jump instruction. Third, the compiler calculates the expected 

number of comparisons to implement the multiway decision with the sequence 

of conditional branches formed in the second step. If the cost is too high, a 

hashing jump w ill be used.

For some benchmarks, the °7odefault percentage is high. Because we must 

place the default case at the end of the branch sequence as an unconditional 

branch instruction, high °7odefault percentage lessens the effectiveness of com

piler case layout optimization.
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Table 5.4 : M ultiw ay Branch Statistics

name %default %hash %prof total expected

cccp 92.36 53.52 46.48 3.40 3.12

cmp 0.00 0.00 100.00 3.00 1.00

compress 0.00 0.00 100.00 10.00 1.00

eqn 82.98 76.21 23.79 6.97 6.07

espresso 66.18 0.00 100.00 2.71 1.86

grep 0.01 0.00 100.00 12.00 1.50

lex 30.73 0.00 100.00 12.81 5.02

make 39.39 0.00 100.00 8.85 4.71

tar 0.00 0.00 100.00 6.31 1.21

tee 0.00 0.00 100.00 3.00 1.00

wc 0.00 0.00 100.00 3.00 1.60

yacc 46.91 0.00 100.00 6.21 4.73
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TRACE SELECTION

Code optimization techniques such as register allocation, code compaction, 

variable renaming, common subexpression elimination, copy propagation, dead 

code removal, constant folding and strength reduction can perform 

significantly better by favoring the important execution paths while penalizing 

the unimportant ones. Trace selection techniques with profiling information 

identify the important execution paths in terms of frequently invoked 

sequences of basic blocks.

Trace selection was first proposed by Fisher [Fis8l] as a systematic 

approach to global microcode compaction. Since then, improvements and 

implementations of optimizations based on trace selection techniques have been 

reported [Lin83, Su84, E1184, How87]. These techniques are useful for gen

erating efficient codes for application programs which are too large and too 

complicated to be hand-optimized. However, most of the experimental results 

reported on using trace selection to assist optimizing large application pro

grams have been based on small benchmarks with simple control structures. 

The IMPACT-I C compiler has been stable enough for us to compile large C 

programs. This allows us to observe the performance of trace selection algo

rithms on large C application programs over many runs. For different trace 

selection algorithms, we report the distribution of control transfers categorized 

according to their potential impacts on the microcode optimizations.

6.1. Trace Scheduling

We refer readers who are unfamiliar with trace scheduling to the original 

paper by Fisher [Fis8l]. Trace scheduling consists of three major functions: 

trace selection, local compaction, and bookkeep, First, the trace selection
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function selects the most likely to be executed program path. Then, local com

paction is applied to schedule the trace. And finally, the bookkeep function 

inserts patch codes at the split and rejoin points to preserve correctness. The 

three f unctions are described in great detail in Ellis’s dissertation [E1184].

Trace scheduling permits the patch code created during the bookkeep 

phase of a trace to be selected and compacted as part of later traces. However, 

we do not allow the additional basic blocks generated by the bookkeep func

tion, unless they can be absorbed by jump optimization, to be considered when 

forming later traces. This requirement allows us to apply trace selection 

independently of the local compaction and bookkeep functions.

Code motion moves critical instructions on the program critical paths up 

to the earliest point that they can be executed. The usefulness of the code 

motion and the cost of the bookkeeping on the total program execution time 

depend on the program structure and also on the underlying microarchitecture. 

For example, code motion applied to a section of a program with large fine- 

grain parallelism w ill tend to do well due to the large code movement free

dom. In a pipelined processor, code motion allows the execution of multi-cycle 

operations to overlap with the issuing and execution of less critical operations 

when there is no data dependence. Similarly, in a processor capable of issuing 

multiple instructions per cycle, code motion reduces execution time by com

pacting operations into fewer instructions.

Trace scheduling guides global code motion by favoring most frequently 

executed program paths. Therefore, the goal of the trace selection function is 

to identify when forming longer traces are desirable and how all basic blocks 

should be partitioned to various traces. It would be grossly complicated for 

the trace selection function to deal with micro-architecture dependent factors 

such as degree of hardware parallelism. Disregarding the hardware
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limitations, the trace selection functions try to form the longest possible 

traces, limited only by program dependent factors.

The question is what program dependent factors must the trace selection 

function consider. The program control flow, local program parallelism, and 

the code mobility as determined by data-flow analysis can all be implemented 

in the trace selector. The program flow analysis, either by loop analysis or 

dynamic profiling, allows the trace selector to form traces by grouping series 

of basic blocks which tend to execute together. The local program parallelism 

and code mobility analysis tell the trace selector when trace expansion should 

be stopped due to limited code movement freedom. However, the complexity 

of the analysis, although required in later phases of compilation, hinders the 

development of a clean selection function. It is best to use only the control 

flow information and to construct the longest traces.

Our IMPACT-I C compiler allows automatic profiling and provides accu

rate execution weights for all control graph nodes and arcs. The problem now 

is how to form traces in such a way that the in-trace transition is maximized 

and the off-trace transition is minimized. Off-trace transitions can be finer 

partitioned to five different types. Together with in-trace transition, there are 

a total of six transisiton types (T1-T6).

T1 connects the last node of a trace to the 

start node of a different trace.

T2 connects the last node of a trace to a 

middle node of a trace.

T3 connects a middle node of a trace to the 

start node of a trace.

T4 connects two middle nodes.

T5 connects two nodes within a trace.
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T6 connects the last node of a trace to the 

start node of the same trace.

Code motion is permitted only for T5 connections. T2 transition requires 

bookkeeping at the rejoin location. T3 transition requires bookkeeping at the 

branch location. T4 connections require bookkeeping at both the branch and 

the rejoin locations. T2, T3, and T4 thus may execute longer than the same 

code without applying trace scheduling. Global code motion is not allowed 

across T1 and T6 connections, and therefore obtains no speedup over local code 

compaction.

Let %a, %b, %c, %d, %e and %f denote the percentage of T l, T2, T3, T4, 

T5 and T6 transitions respectively, in a typical program run. The goal of the 

trace selector is to maximize %e and to minimize %b, %c, and %d.

The various percentages allow us to compare different trace selection 

functions. A trace selection function is better than others if it generates higher 

%e and lower %b, %c, and %d, for a given control graph.

6.2. Trace Selection

6.2.1. General selection function

In his trace scheduling paper, Fisher presented the following trace selec

tion algorithm with node weights as the selection criterion. Later, Ellis in his 

dissertation implemented the same general trace selection algorithm but used 

arc weights as the selection criterion.

algorithm trace_select ion

mark all nodes unvisited; 

while (there are unvisited nodes)
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/* select a seed */

seed = the node with the largest execution 

count among all unvisited nodes; 

mark seed visited;

/* grow the trace forward */

current = seed;

loop

s = best _sucessor_of( current);

if  (s = 0 )  exit loop;

add s to the trace;

mark s visited;

current = s;

/* grow the trace backward */

current = seed;

loop

s = best p redecessor_o f( current);

if  ( s = 0 )  exit loop;

add s to the trace;

mark s visited;

current = s;

/* compaction and bookkeep */ 

trace^compact ion; 

book_keep;

Since we do not consider the additional basic blocks generated by the

book_keep function in the trace selection process, the trace_compaction and

the book_keep functions are not included in the above algorithm.
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To ensure that loop headers become the leading nodes of traces, in growing 

trace forward and backward, crossing loop back-edges is prohibited.

6.2.2. Selection according to node w eight

Node weight is the execution count of a basic block. This number can 

either be estimated statically by loop analysis, or dynamically profiled by an 

automatic profiler. In this thesis, all weights used in the trace selection func

tions are strictly derived from the average program profile accumulated over 

many runs.

best_successor_of( node)

n = Of all immediate successors of node, 

n has the highest execution count; 

if  (n is visited) return 0; 

return n;

best -predecessor_of(node)

n -  Of all immediate predecessors of node, 

n has the highest execution count; 

if  (n is visited) return 0; 

return n;

6.2.3. Selection according to arc w eight

Each node (basic block) of the control graph can have several incoming 

and outgoing arcs. Each arc represents a possible branch path connecting two 

nodes. Trace scheduling yields some performance gain when the program 

flows through an arc within a trace, and suffers when an off-trace is taken. 

Hence, arc weight is a better selection criterion than node weight.
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best _successor _o f( node)

e = Of all edges leaving node, e has the

highest execution count (highest probability); 

n = the destination of e; 

if  (n is visited) return 0; 

return n; 

best _predecessor_of(node)

e = Of all edges entering node, e has the

highest execution count (highest probability); 

n = the source of e; 

i f  (n is visited) return 0; 

return n;

6.2.4. Selection w ith  minim um arc probability requirement

Some nodes have many incoming and outgoing arcs. If there is not a sin

gle arc which dominates all others, the performance gain that can be extracted 

by including the most likely to be taken arc by a trace w ill be overshadowed 

by the combined off-trace cost of all other arcs. In such instances, it is better 

to stop the trace expansion. To detect such cases, a minimum arc probability 

requirement is added to the selection function.

The probability that an outgoing arc Ai w ill be taken, given that the pro- 

gram control is already at node Nj which is the source of Ai, is simply 

[arc_weight(Ai) /  node_weight(Nj)]. The probability a node Na is reached 

through an arc Ab is [arc_weight(Ab) /  node__weight(Na)]. In Section 6.3, we

measure the performance of this selection heuristic with several MIN_PROB

values.



best_successor__of( node)

e -  Of all edges leaving node, e has the

highest execution count (highest probability); 

if  (probabilitye) < =  MIN_PROB) return 0; 

n = the destination of e; 

if  (n is visited) return 0; 

return n; 

best p redecessor _of( node)

e -  Of all edges entering node, e has the

highest execution count (highest probability); 

if  (probabilitye) < =  MIN_J>ROB) return 0; 

n -  the source of e; 

if  (n is visited) return 0; 

return n; 

probability e) 

s = source of e; 

d = destination of e; 

return min((weight(e)/weightf  s)),

( weight( e)/weightf  d)));

6.3. Experiments

6.3.1. Procedure

The compiler compiles and profiles the benchmark programs by inserting 

extra codes to record the execution count of basic blocks and branch paths. 

The compiled programs are installed and tested with many inputs. For each 

run, the profiler updates the accumulated average execution count of basic

59



60

blocks and branch paths for a typical run of the program. With the profile 

information, the compiler constructs the weighted control graph. Then, trace 

selection is applied to the weighted control graph, and the percentages of the 

six connection types (%a %b %c %d %e %f) are measured.

6.3.2. The benchmark

Several programs from different application domains are chosen mainly 

because of their popularity and substantial program size. Each of these pro

grams is run several times with realistic inputs. We have also made a special 

effort to exercise nearly all program options.

In Table 6.1, the name column lists the program name, the line column 

shows the number of non-empty lines of C code after preprocessing in each of 

the benchmarks, and the run column indicates the number of runs under 

profiler monitoring.

6»3.3. Percentage o f transaction types

We report the percentage of each of the six transition types executed in a 

typical run of the benchmark program. The loop column in the following 

tables is the average number of basic blocks in an executed inner loop. The 

trace column is the average number of basic blocks of all traces executed. The 

terminal column is the percentage of control flow transitions from the end of a 

trace to the beginning of another trace (T1 type). The loop column is the per

centage of control flow transitions from the end of a trace to the beginning of 

the same trace (T6 type). The desirable column is the percentage of control 

flow transitions within traces (T5 type). The undesirable column is the sum of 

T2, T3 and T4 type transitions.
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Table 6.2 corresponds to the selection according to node weight function. 

Table 6.3 corresponds to the selection according to arc weight function. Tables 

6.4 through 6.7 demonstrate the effect of imposing additional minimum 

branch probability requirement.

Table 6.1 : Benchmark Set

name line run size(B) description

cccp 4660 20 20411 GNU C preprocessor

cmp 371 16 1098 Compare text files

compress 1941 20 5086 File compression

eqn 4167 20 15860 Typeset mathematics

espresso 11545 20 49805 Logic minimization

grep 1302 20 2955 String search

lex 3251 4 26722 Lexical analyzer generator

make 7043 20 24258 Maintain files

tar 3186 14 10065 Create tape archives

tee 1063 18 1846 Replicate output

wc 345 20 1056 Word count

yacc 3333 8 29677 Parsing program generator
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Table 6.2 : Selection According to Node Weight

name desirable'" undesirable loop terminal trace loop

cccp 39.60% 17.51% 27.00% 15.88% 1.9 1.8

cmp 83.02% 4.23% 12.74% 0.02% 6.9 7.0

compress 58.90% 26.49% 10.64% 3.97 4.0 3.5

eqn 61.62% 28.73% 6.07% 3.58% . 4.1 8.5

espresso 44.87% 20.12% 24.24% 10.76% 2.3 2.2

grep 54.50% 7.19% 1.89% 36.42% 2.7 4.4

lex 62.15% 2.95% 34.14% 0.76% 2.8 2.8

make 39.08% 7.69% 35.21% 18.03% 1.8 1.7

tar 11.20% 1.92% 85.16% 1.72% 1.1 1.1

tee 66.86% 16.59% 16.23% 0.32% 4.0 4.0

wc 57.29% 24.18% 7.48% 11.05% 3.2 6.0

yacc 47.57% 12.99% 29.85% 9.59% 2.2 2.4

AVG 52.22% 14.22% 24.22% 9.34% 3.1 3.8

SD 17.88% 9.45% 22.28% 10.53% 1.5 2.3
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Table 6.3 : Selection According to Arc Weight

name desirable undesirable loop terminal trace loop

cccp 49.59% 11.85% 27.20% 11.36% 2.3 2.0

cmp 83.03% 4.23% 12.72% 0.02% 6.9 7.0

compress 73.95% 11.45% 10.65% 3.95% 5.8 3.5

eqn 86.95% 5.55% 5.87% 1.63% 10.2 10.6

espresso 55.71% 15.76% 23.22% 5.32% 3.0 2.8

grep 79.53% 3.86% 14.48% 2.13% 6.2 6.9

lex 63.27% 2.08% 34.32% 0.33% 2.8 2.8

make 45.83% 3.57% 36.27% 14.34% 1.9 1.7

tar 12.97% 0.55% 85.15% 1.33% 1.2 1.1

tee 67.10% 16.55% 16.23% 0.10% 4.0 4.0

wc 75.89% 9.03% 7.46% 7.62% 5.5 7.0

yacc 54.08% 9.91% 29.87% 6.14% 2.6 2.5

AVG 62.33% 7.97% 25.29% 4.52% 4.4 4.3

SD 20.57% 5.33% 21.49% 4.65% 2.6 2.9
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Table 6.4 : Minimum Branch Probability = 60%

name desirable undesirable loop terminal trace loop

cccp 42.58% 4.41% 21.46% 31.56% 1.8 1.8

cmp 83.03% 4.23% 12.72% 0.02% 6.9 7.0

compress 68.93% 7.74% 10.64 12.68 3.8 3.5

eqn 84.99% 3.61% 5.97% 5.44% 7.6 9.8

espresso 52.87% 9.67% 20.79% 16.68% 2.4 2.3

grep 77.33% 1.85% 12.74% 8.08% 4.7 5.3

lex 63.22% 1.96% 34.24% 0.58% 2.8 2.8

make 44.89% 2.60% 36.14% 16.37% 1.9 1.7

tar 12.87% 0.44% 85.14% 1.56% 1.2 1.1

tee 75.06% 0.29% 8.17% 16.48% 4.0 4.0

wc 75.88% 9.02% 7.48% 7.61%' 5.5 7.0

yacc 53.25% 8.05%
i

29.19% 9.51% 2.4 2.4

AVG 61.24% 4.49% 23.72% 10.55% 3.8 4.1

SD 21.01% 3.34% 21.98% 8.97% 2.1 2.7
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Table 6.5 : Minimum Branch Probability = 70%

name desirable undesirable loop terminal trace loop

cccp 41.05% 3.74% 21.55% 33.68% 1.8 1.9

cmp 83.03% 4.23% 12.72% 0.02% 6.9 7.0

compress 61.85% 3.11% 5.00% 30.05% 2.8 2.6

eqn 81.69% 2.35% 5.48% 10.48% 5.8 9.5

espresso 45.64% 5.37% 18.24% 30.75% 1.9 2.1

grep 77.24% 1.80% 12.74% 8.22% 4.7 5.3

lex 63.19% 1.79% 34.14% 0.88% 2.8 2.8

make 43.99% 2.08% 35.70% 18.23% 1.8 1.7

tar 12.77% 0.38% 85.14% 1.71% 1.2 1.1

tee 75.00% 0.24% 8.17% 16.6% 4.0 4.0

wc 75.88% 9.02% 7.48% 7.61% 5.5 7.0

yacc 46.25% 4.62% 24.11% 25.02% 2.0 2.1

AVG 58.97% 3.23% 22.54% 15.27% 3.4 3.9

SD 21.36% 2.42% 22.31% 12.28% 1.9 2.7
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Table 6.6 : Minimum Branch Probability = 80%

name desirable undesirable loop terminal trace loop

cccp 37.12% 2.35% 20.73% 39.80% 1.6 1.8

cmp 83.02% 4.22% 12.74% 0.02% 6.9 7.0

compress 55.89% 1.83% 5.00 37.29 2.3 2.6

eqn 79.05% 1.66% 5.23% 14.06% 4.9 10.0

espresso 42.16% 4.05% 17.98% 35.81 1.8 2.0

grep 76.76% 1.73% 12.74% 8.76% 4.5 5.3

lex 62.99% 1.37% 33.81% 1.83% 2.8 2.8

make 43.56% 1.93% 35.63% 18.88% 1.8 1.7

tar 12.64% 0.32% 85.14% 1.91% 1.1 1.1

tee 75.00% 0.24% 8.17% 16.6% 4.0 4.0

wc 47.19% 2.16% 0.00% 50.65% 2.0 0.0

yacc 44.65% 3.33% 23.31% 28.71% 1.9 2.1

AVG 55.00% 2.10% 21.71% 21.19% 3.0 3.4

SD 21.06% 1.26% 22.86% 16.98% 1.7 2.8
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name desirable undesirable loop terminal trace loop

cccp 31.5% 1% 19.4% 53.14% 1.5 1.6

cmp 73.62% 0.88% 0.00% 25.50% 3.9 0.0

compress 53.48% 1.13% 4.98% 40.40% 2.2 2.6

eqn 76.34% 1.13% 5.12% 17.42% 4.3 10.3

espresso 38.09% 1.65% 15.85% 44.40% 1.6 1.9

grep 76.45% 1.69% 12.74% 9.13% 4.5 5.3

lex 61.39% 0.77% 33.35% 4.48% 2.6 2.8

make 40.64% 1.24% 34.25% 23.87% 1.7 1.6

tar 12.53% 0.27% 85.14% 1.91% 1.1 1.1

tee 75.00% 0.24% 8.17% 16.60% 4.0 4.0

wc 39.05% 0.00% 0.00 60.95% 1.6 0.0

yacc 38.68% 1.6% 19.33% 40.40% 1.7 2.1

AVG 51.40% 0.97% 19.86% 28.18% 2.6 2.8

SD 21.15% 0.57% 23.51% 19.42% 1.3 2.8



68

6 3 A . Discussion o f results

As we have expected, arc weight is a better selectia criterion than node 

weight. The additional minimum branch probability requirement further 

reduces the off-trace cost. As the minimum branch probability requirement 

increases, %b, %c, and %d percentages decline slightly. However, as the 

minimum requirement rises, fewer and smaller traces are formed, leading to a 

low percentage of in-trace transitions.

In any case, the in-trace transition (%e) is several times larger than the 

off-trace transitions (%b, %c, %d). This essentially tells us that even a small 

improvement in in-trace code movement can compensate for much larger 

bookkeep cost.

The off-trace transitions (%b, %c, %d) are low, because benchmark pro

grams have predictable branch behavior.

A few of the benchmark programs show, substantial inner loop back-edge 

transitions (%f). Loop unrolling can be applied to exploit program parallelism 

across loop iterations. When N copies of a loop exist, the loop back-edge of the 

first (N -l)  instances can be transformed into normal connections between two 

distinct nodes. These (N -l)  connections between different iterations of the 

loop can be selected for trace expansion. Since many iterations are usually 

taken before the program control leaves the loop, the expanded loop structure 

will form a long trace covering the most important path of all unrolled 

instances of the loop.

Of all traces actually executed, the average trace size is about three to 

four basic blocks for various selection functions. The relatively small size is 

due to control uncertainties and small function body.

An inner loop as seen by the IMPACT-I C compiler is a trace whose last 

node branches back to the trace header. The average size of all inner loops
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executed is about three basic blocks. In other words, one can expect two con

ditional branchs in inner loops. Therefore, loop unrolling and software pipe

lining techniques for large integer programs must cope with at least two condi

tional branches in inner loops.
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CHAPTER 7.

INSTRUCTION PLACEMENT

7.1. Introduction

The instruction memory hierarchy, has received only moderate attention 

because conventional machines typically have a high microcycle count per 

instruction, and thus demand low instruction bandwidth. For instance, a 

VAX-11/780 takes 10.5 microcycles to execute every 3.8 bytes of instructions 

[Eme84]. An 8-byte instruction buffer that prefetches instructions during idle 

cache cycles provided enough instruction bandwidth for the VAX-11/780 

microengine. In response to the increasing demand for processor speed, perfor

mance improving techniques such as pipelining have been widely used to 

implement processors that require a much higher instruction bandwidth. For 

example, the VAX 8600 implementation requires 3.8 instruction bytes for 

every 6 microcycles. Futher reducing the number of microcycles per instruc

tion w ill increase the instruction memory bandwidth requirement and suggests 

the need of better instruction hierarchy designs.

Many processor architectures have adopted instruction formats and 

semantics which allow the instruction units to be efficiently pipelined [Rus78, 

Hen81, Pat81, Pat82]. To simplify instruction decoding, these processor archi

tectures specify fixed instruction formats which unfortunately prevent con

ventional encoding techniques from reducing the program size. To simplify 

instruction sequencing, these processors specify instructions whose functional

ity are close to the microinstructions of the microprogrammed processors and 

prevent the use of powerful opcodes to encode sequences of microinstructions. 

These two policies make the instruction unit pipelining more efficient and, 

therefore, match the speed of the instruction unit pipeline to that of the
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execution pipeline. The cost is an increase in the dynamic code size and, conse

quently, an increase of the instruction bandwidth requirement.

Compiler code improvement techniques often increase code size. Inline 

expansion reduces function call overhead at the cost of increased code size 

[Hwu89]. Loop unrolling increases code scheduling flexibility at the cost of 

increased code size [E1184]. Trace scheduling extracts the program parallelism 

at the cost of increased code size [Fis81, E1184]. These techniques rely on the 

instruction memory hierarchy to absorb the code expansion cost so that the 

program execution speed can be improved. This adds a further demand on the 

instruction memory hierarchy performance.

One conventional approach to improving the memory hierarchy perfor

mance is to increase the size and/or set-associativity of the top-level cache 

memory [Smi82, Hil85]. For example, the MIPS-X processor uses an 2048- 

byte, 8-way set-associative instruction cache with 8-byte blocks. This 

approach is limited by the fact that the cache cycle time increases as the size 

and set-associativity increase and the fact that only a limited amount of 

hardware is available [Eic88, Alp88, Mit88, Prz88]. To make it worse, if the 

compiler generates code with little spatial locality and/or many cache mapping 

conflicts, no cache of reasonable size and set-associativity can provide enough 

instruction bandwidth. However, previous research on the instruction cache 

design have failed to examine the importance of compiler instruction place- 

ment algorithms.

With advances in the compiler technology, an increasing number of 

microarchitecture design parameters have been exposed to the compiler. 

Examples of this trend include pipeline latency [Hen83, Rad82], parallel data 

path [E1184, Fis81, Col87], and register-memory hierarchy. The advantage of 

exposing these microarchitecture details to the compiler is that the compiler
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can generate codes to take advantage of the microarchitecture features (pipe

lining, parallel data paths, and fast registers) without expensive hardware 

schemes. We believe that the instruction memory hierarchy should also be 

exposed to the compiler for improving the system performance.

In this section, we present an instruction placement algorithm which 

improves the efficiency of caching in the instruction memory hierarchy. Based 

on dynamic profiling, this algorithm maximizes spatial locality and minimizes 

cache mapping conflicts of the instruction accesses. The instruction placement 

algorithm has been implemented in the IMPACT-I and produced instruction 

placement for realistic C programs. The instruction placement for each pro

gram is based on the execution of millions of instructions using typical input 

files.

The instruction cache performance for each program, after applying the 

instruction placement algorithm, is measured by trace driven simulation. We 

demonstrate that the instruction layout algorithm can efficiently exploit small 

(below 2048B), direct-mapped instruction caches with large (64B) blocks. 

Direct mapped caches with large blocks are desirable due to their low control 

overhead (tag store and hit detection logic). The effect of varying the cache 

design parameters (cache size, block size, block sectoring, partial loading) is 

presented.

7.2. A lgorithm

The goal of the IMPACT-I C compiler instruction placement mechanism is 

to lay out the target program to maximize the spatial locality and to minimize 

the mapping conflict. To maximize the spatial locality, instructions are 

mapped into the same block if they are executed close to each other in time. 

Therefore, almost all the bytes in a block w ill be used when that block is
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brought in cache. To minimize the mapping conflict, functions with overlap

ping lifetimes are mapped into different blocks of the cache. The mechanism is 

implemented in five major steps: execution profiling, function inline expansion, 

trace selection, function layout, and global layout.

Step 1. Execution profiling. In our C compiler, a program is represented 

by a weighted call graph. A call graph is a directed graph where every node is 

a function and every arc is a function call. A weighted call graph is one in 

which all the nodes and arcs are marked with their execution frequencies.

Each node of the weighted call graph is represented by a weighted control 

graph. A control graph for a function is a directed graph where every node is 

a basic block, and every arc is a branch path between two basic blocks. A 

weighted control graph is a control graph in which all the nodes and arcs are 

marked with their execution frequencies.

The IMPACT-I profiler translates each target C program into an 

equivalent C program with additional probe function calls. When the 

equivalent C program is executed, these probe function calls record the 

weights of nodes and arcs of the call graph for the entire program and the con

trol graph for each function. It is critical that the inputs used for executing 

the equivalent C program be representative. Therefore, this approach is very 

suitable for characterizing realistic programs for which representative inputs 

can be easily collected. The IMPACT-I Profiler to C Compiler interface allows 

the profile information to be automatically used by the IMPACT-I C Compiler.

Step 2. Function in line expansion. The function calls (arcs in the 

weighted call graph) with high execution count are replaced with the function 

body if possible. The goal is to transform all the important inter-function 

control transfers into intra-function control transfers. Inline expansion 

reduces the dynamic inter-function control transfers to a small percentage
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(about 1%) of all control transfers and, consequently, provides two major 

advantages. First, the spatial locality is increased in that almost all control 

transfers are within individual functions. Second, removing function calls 

also reduces potential cache mapping conflicts among functions.

Step 3. Trace* selection* For each function, basic blocks which tend to 

execute in sequence are grouped into traces. The traces are the basic units of 

instruction placement to maximize spatial locality. A recent paper gave a 

detailed description and evaluation of the trace selection algorithm of the 

IMPACT-I C Compiler [Cha88]. Note that the inline expansion step provides 

large functions to enhance the size of the traces selected.

Step 4. Function layout. By carefully placing traces of each function in 

a sequential order, spatial locality can be further preserved. We start with the 

function entrance trace, and expand the placement by placing the most impor

tant descendant after it. We grow the placement until all the traces with non

zero execution count (profiled count) have all been placed. Traces with zero 

execution count (profiled count) are moved to the bottom of the function. This 

results in a smaller effective function body and allows more effective parts of 

functions to be packed into each page.

Step 5. Global layout. Each function is assumed to have two parts : 

effective and non-executed parts. The goal of the global layout algorithm is to 

place functions which are executed close to each other in time into the same 

page, so that inter-function cache conflicts are further reduced (already 

reduced by inline expansion).

* The term trace here is used as in the trace scheduling for global microcode 
compaction. It is not used as in the trace driven simulation. In this section, if the 
term trace is used as in the trace driven simulation, it w ill appear as dynamic trace 
whenever an ambiguity may occur.
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In order to evaluate the effectiveness of our code layout scheme, we ran

domly select one input for each benchmark to take the traces of dynamic 

instruction accesses. These dynamic traces include instruction accesses to both 

the user code and the library code; they do not include any access to the kernel 

code.

In summary, the IMPACT-I instruction placement is based on profile 

information and the performance evaluation presented in this paper is based 

on trace driven simulation.

Appendix C gives an outline of the IMPACT-I instruction placement algo

rithm.

1 3 . Experim entation

Table 7.1 and Table 7.2 summarize several important characteristics of 

our benchmarks. The C lines column shows the static code size of the C 

benchmark programs measured in the number of program lines. The runs 

column gives the number of different inputs used in the profiling process. The 

instructions column gives the dynamic code size of the benchmark programs, 

measured in number of million dynamic instructions. The control column 

gives the dynamic count of control transfers other than function call/return 

executed during the profiling process, measured in number of million dynamic 

instructions. Both instructions and control are accumulated for all the runs. 

The input description describes the nature of the inputs used in the profiling 

process.
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Table 7.1 : Benchmark Set

name C lines runs input description

cccp 4660 20 C programs (100-3000 lines)

cmp 371 16 similar/dissimilar text files

compress 1941 20 same as cccp

grep 1302 20 exercised various options

lex 3251 4 lexers for C, Lisp, awk, and pic

make 7043 20 makefiles for cccp, compress, etc.

tee 1063 18 text files (100-3000 lines)

tar 3186 14 save/extract files

wc 345 20 same as cccp

yacc 3333 8 grammar for a C compiler, etc.

Table 7.2 : Profile Results

name instructions control

cccp 11.7M 2.2M

cmp 2.2M 0.5M

compress 19.6M 3.1M

grep 47.1M 17.1M

lex 3052.6M 1125.9M

make 152.6M 32.4M

tee 0.43M 0.17M

tar 11M 1.5M

wc 7.8M 2.2M

yacc 313.4M 78.7M
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7.4. Basic Experiments

Table 7.3 offers the inline expansion results. The code inc column gives 

the percentage of increase in static code size due to inline expansion. The call 

dec column gives the percentage of dynamic function calls eliminated by the 

inline expansion. The D I’s per call column gives the average number of 

dynamic instructions executed between dynamic function calls after inline 

expansion. The C T s per call column gives the average number of dynamic 

control transfers executed between dynamic function calls after inline expan

sion.

Table 7.3 : Inline Expansion Results

name code inc call dec DFs per call C l 's per call

cccp 17% 55% 506 95

cmp 3% 49% 265 58

compress 4% 91% 2324 368

grep 31% 99% 11214 4071

lex 23% 77% 7807 2880

make 34% 59% 388 82

tee 0% 0% 15 6

tar 16% 43% 983 127

wc 0% 0% 18310 5146

yacc 24% 80% 1205 303

For most of the benchmark programs, the inline expansion mechanism 

successfully eliminates a large percentage of the dynamic function calls. After 

inline expansion, the frequency of function calls is much smaller than the fre

quency of intra-function control transitions (branches). It is also observed 

that hundreds of dynamic instructions are executed per function call. The 

obvious gain is that register save and restore costs across function boundaries
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are greatly reduced. A more subtle advantage that directly affects the perfor

mance of our instruction placement algorithm is that the function inline 

expansion mechanism enlarges function bodies and reduces inter-function 

interactions. More sequential and spatial localities can be found in larger 

function bodies. Reducing inter-function interactions also removes potential 

cache mapping conflicts among interacting functions. The result is that most 

of the complexity in the global layout process can be shifted to the intra

function layout process (trace selection and placement) which is much simpler 

to implement. We have thus decided to implement a simple global layout pro

cess based on a variant of the depth-first-search algorithm.

Table 7.4 Trace Selection Results

name neutral undesirable desirable trace length

cccp 55.23% 3.74% 41.05% 1.8

cmp 12.74% 4.23% 83.03% 6.9

compress 35.04% 3.15% 61.85% 2.8

grep 20.96% 1.80% 77.24% 4.7

lex 35.02% 1.79% 63.19% 2.8

make 53.93% 2.08% 43.99% 1.8

tar 86.85% 0.38% 12.77% 1.2

tee 24.77% 0.24% 75.00% 4.0

wc 15.09% 9.02% 75.88% 5.5

yacc 49.13% 4.62% 46.25% 2.0

Table 7.4 presents the trace selection results. The neutraL column gives 

the percentage of control transfers from the end of a trace to the start of a 

trace. The average percentage (about 39%) for this category suggests that a 

careful selection of a linear ordering of traces could significantly increase the 

spatial locality. The function layout step in the instruction placement algo

rithm has been devised to capture this spatial locality. The undesirable
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column gives the percentage of control transfers which enter and/or exit traces 

at a non-terminal basic block. The desirable column gives the percentage of 

control transfers which go from a basic block to its successor in a trace. The 

small average percentage (about 3%) in the undesirable column and the large 

average percentage (about 58%) in the desirable column indicate that once the 

control is transferred into a trace, it is likely to remain through the end of that 

trace. This justifies our approach to use the traces as units of instruction 

placement. The trace length column gives the average number of basic blocks 

in each trace. On the average, each trace contains 3.4 basic blocks. Since each 

basic block in the IMPACT-I code contains about 4 machine instructions (4 

bytes each), the unit of instruction placements contains about 54 bytes. Con

sidering the spatial locality among traces, a reasonable prediction of a good 

instruction block size would be about 64 bytes.

We use trace-based analysis to evaluate the effectiveness of our code lay

out scheme. A trace is generated by feeding a randomly selected input (typical 

size) to each benchmark program. These dynamic traces include both user 

code and library code, but not kernel code.

Table 7.5 shows the instruction memory access characteristics of the 

benchmark programs and their corresponding dynamic traces. The total static 

bytes column gives the number of machine code bytes generated for each 

benchmark program. The effective static bytes column gives the number of 

machine code bytes which have a non-trivial execution count. The dynamic 

accesses column gives the number of dynamic instruction accesses recorded in 

each dynamic trace.
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Table 7.5 : Static and Dynamic Code Sizes of Benchmarks

name total static size effective static size dynam ic access

cccp 51.6K 29.6K 1.5M

cmp 2.8K 2.0K 0.3M

compress 15.6K 8.8K 2.8M

grep 11.IK 4.5K 0.1M

lex 40.4K 29.7K 51.9M

make 55.0K 34. IK 1.8M

tar 25.8K 15.7K 0.2M

tee 6.5K 3.4K 0.1M

wc 3.1K 2.6K 1.1M

yacc 35.7K 27.0K 3.3M

The effective static program size ranges from 2K to 34K whereas the total 

static program size ranges from 2.8K to 55K. Since the IMPACT-I compiler 

places the effective and ineffective parts of the program into different pages, 

only the effective part needs to be accommodated in the main and cache 

memories. As a result, when a page is transferred from the secondary 

memory to the main memory, all the bytes of that page are likely to be used.

7.5. Caching Experiments

The primary goal of the IMPACT-I instruction placement mechanism is to 

improve the cache performance and to reduce the cost of instruction memory 

hierarchy. As for the instruction caches, the goal is to minimize the data 

storage size and the control overhead (set-associativity and tag storage) to 

obtain the desired cache hit ratio and memory traffic. Direct-mapped caches 

are used in all the measurements due to their minimal set-associativity
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overheads. In the next two tables, the effectiveness of the instruction place

ment mechanism for minimizing the data storage and the tag storage are

shown.

Table 7.6 and Table 7.7 show the effect of varying cache size for a fixed 

block size (64 bytes). The miss columns give the cache miss ratios. The traffic 

columns give the ratios of the number of main memory accesses over the 

number of dynamic instruction accesses (memory traffic ratio). Note that for 

the block size of 64 bytes, a 2K-byte instruction cache provides a low miss 

ratio (average 0.5%) with a reasonable memory traffic ratio (average 8%). As a 

result, less than 1% of instruction accesses need to wait for the data from an 

outside cache or the main memory. Also, the bus to the outside cache and the 

main memory is only loaded by 8% of the instruction access traffic. Even a 

small instruction cache of 512 bytes provides a reasonable miss ratio (average 

1.4%) with a moderate memory traffic ratio (average 22%). Comparing the 

cache sizes to the static program sizes reveals that the instruction placement 

algorithm is successful in mapping the programs into small caches.

Table 7.8 and Table 7.9 show the effect of varying the block size for a 

fixed cache size of 2048 bytes. In general, the miss ratios decrease and the 

memory traffic ratios increase as the block size increases. The miss ratios 

decrease with the increase of the block size because each cache miss brings in 

more useful bytes for larger block sizes. The instruction placement algorithm 

maximizes this effect by placing the bytes which are accessed close in time in 

the same block. The traffic ratios increase with the increase of the block size 

because each cache miss also brings in more useless bytes for large block sizes. 

The instruction placement mechanism minimizes this effect also by placing in 

the same block the bytes which are accessed close in time.
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Table 7.6 : The Effect of Varying Cache Size (16K-4K)

name
16K 8K 4K

miss traffic miss traffic miss traffic

cccp 0.29% 4.65% 0.86% 13.79% 1.53% 24.40%

cmp 0.01% 0.15% 0.01% 0.15% 0.01% 0.15%

compress 0.00% 0.07% 0.00% 0.07% 0.00% 0.08%

grep 0.06% 0.88% 0.06% 0.88% 0.06% 0.91%

lex 0.00% 0.03% 0.01% 0.09% 0.01% 0.21%

make 0.07% 1.16% 0.32% 5.06% 0.69% 11.10%

tar 0.09% 1.43% 0.09% 1.51% 0.24% 3.88%

tee 0.06% 0.92% 0.06% 0.92% 0.06% 0.092

wc 0.00% 0.06% 0.00% 0.06% 0.00% 0.06%

yacc 0.02% 0.26% 0.02% 0.28% 0.23% 3.64%

Table 7.7 : The Effect of Varying Cache Size (2K-512byte)

name
2K IK 0.5K

miss traffic miss traffic miss traffic

cccp 2.70% 43.13% 3.52% 56.32% 4.24% 67.87%

cmp 0.01% 0.15% 0.01% 0.15% 0.01% 0.17%

compress 0.01% 0.08% 0.01% 0.09% 3.54% 56.63%

grep 0.06% 0.87% 0.07% 1.11% 0.60% 9.62%

lex 0.03% 0.48% 0.06% 0.93% 0.31% 4.96%

make 1.35% 21.59% 2.03% 32.46% 2.44% 39.02%

tar 0.27% 4.27% 0.42% 6.76% 0.61% 9.79%

tee 0.08% 1.2% 0.08% 1.28% 0.08% 1.33%

wc 0.00% 0.06% 0.00% 0.06% 0.00% 0.06%

yacc 0.49% 7.86% 1.17% 18.73% 1.99% 31.89%
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Table 7.8 : The Effect of Varying the Block Size (16B-32B)

name
16B 32B

miss traffic miss traffic

cccp 7.53% 30.10% 4.32% 34.58%

cmp 0.04% 0.15% 0.02% 0.15%

compress 0.02% 0.07% 0.01% 0.08%

grep 0.19% 0.76% 0.10% 0.82%

lex 0.08% 0.33% 0.05% 0.38%

make 4.24% 16.95% 2.40% 19.19%

tar 0.72% 2.90% 0.42% 3.32%

tee 0.25% 0.98% 0.13% 1.06%

wc 0.01% 0.06% 0.01% 0.06%

yacc 1.13% 4.53% 0.66% 5.25%

Table 7.9 : The Effect of Varying the Block Size (64B-128B)

name
64B 128B

miss traffic miss traffic

cccp 2.70% 43.13% 2.10% 67.33%

cmp 0.01% 0.15% 0.01% 0.16%

compress 0.01% 0.08% 0.00% 0.09%

grep 0.06% 0.91% 0.03% 1.01%

lex 0.03% 0.48% 0.02% 0.69%

make 1.35% 21.59% 0.95% 30.39%

tar 0.27%’ 4.27% 0.20% 6.37%

tee 0.08% 1.20% 0.04% 1.41%

wc 0.00% 0.06% 0.00% 0.06%

yacc 0.49% 7.86% 0.52% 16.78%
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For a fixed cache size, the larger the block size, the smaller the number of 

tags that are required to manage the cache. For a 2K-byte instruction cache, 

the 64-byte block size provides a low miss ratio (average 0.5%) and reasonable 

memory traffic ratio (average 8%). The configuration requires only 16 tags, 

successfully minimizing the control overhead.

Note that the memory traffic ratio is rather high for benchmarks cccp and 

make. Also, since the cache miss penalty increases with the block size, the 

effective cache access time may increase in spite of the decreased miss ratio. 

For some systems (especially multiprocessor systems), it is desirable to 

decrease the memory traffic ratio and the cache miss penalty at the cost of 

increasing the miss ratio.

We assume that the memory or secondary cache is interleaved and can 

deliver one data per cycle after the initial access delay. We also assume that 

the data for which the cache miss occurs are the first data delivered after the 

initial memory access delay. To furthur reduce the cache miss penalty, the 

processor resumes execution as soon as the accessed data come back from main 

memory. Subsequent instruction fetches after a cache miss, if sequential, can 

directly obtain the instructions from the memory bus as the cache block is 

being repaired. When a branch is taken before the block is completely filled, 

the CPU is stalled until the block is completely transferred.

For a 64-byte block size and a 4-byte memory bus, 16 cycles are required 

after the initial memory access to complete the block transfer. Due to the 

large transfer size, the CPU may be stalled for two reasons. First, our layout 

algorithm does not guarantee that the data for which the repair sequence is 

incurred is positioned at the beginning of the cache block. Second, the CPU is 

stalled while repairing the part of the cache block in front of the data for 

which the miss is incurred. The average number of stalled cycles caused by



each cache miss is about half of the block, assuming random access pattern. 

For a 64-byte block and a 4-byte memory bus, the CPU is stalled for about 8 

cycles. Including the initial memory access cost, the effective cache access time 

may increase although the miss ratio is lower than, for example, the 32 byte 

block size configuration.

One approach to decreasing the memory traffic ratio and the cache miss 

penalty while increasing the miss ratio is to partition each block into sectors 

and only bring in the accessed sector upon cache miss. The memory traffic 

ratio is reduced because the number of memory accesses caused by each cache 

miss is reduced to the size of each sector (rather than the size of each block), 

and thus fewer unused entries are fetched. The miss ratio increases because 

the spatial locality is not fu lly  exploited. Since the instructions placed into 

the same block are likely to be executed near each other in time, not bringing 

in the rest of a missing block can be expected to cause more cache misses.

The sector column in Table 7.10 presents the effect of dividing the 64B 

blocks into sectors of 8 bytes each for a 2048B cache. A comparison with the 

64B column in Table 7.9 shows that, for programs causing large memory 

traffic ratios, sectoring the blocks decreases the memory traffic ratio at the cost 

of increasing the miss ratio. The problem with this approach is that it 

increases the miss ratio to such a degree (e.g., cccp) that the average cache 

access time can actually increase.

An alternative scheme is to load only part of the missing block, from the 

accessed location to the end of that block or to a valid entry previously loaded 

in. The processor resumes execution as soon as the accessed location comes 

back from main memory.

The partial column in Table 7.11 presents the effect of loading only part 

of the missing block. The avg.fetch column shows the average transfer size (in

85
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4-byte entities) for a cache miss. The avg.exec column indicates the average 

number of consecutive instructions (4-bytes each) used starting from a cache 

miss point to a taken branch or another cache miss. A comparison with the 

64B column shows that, for programs causing large memory traffic ratio, this 

approach can significantly reduce the memory traffic ratio at the cost of only 

slightly increasing the miss ratio. Note that for programs with extremely 

small miss ratio and memory traffic ratio, this scheme can actually increase 

both ratios. However, since the traffic ratios are so low for these programs, a 

slight increase does not have visible effect on the system performance.

The code generated by the IMPACT-I C compiler very closely matches the 

physical code of a fixed instruction format (32bits/instruction) RISC type pro

cessor. To show that our result is more general, we w ill repeat the 2K, 64B 

block, partial loading experiment after code scaling. We scale the code to 0.6, 

0.8 and 1.2 of its original size. The scaling affects the size of all basic blocks 

uniformly. The instruction size is still assumed to be 4 bytes, and therefore, 

the effect of code scaling is shown as changes in the number of instructions in 

each basic block. For each basic block, the number of instructions is rounded 

to the nearest integer value. The resultant scaling factor on the effective pro

gram sizes is 0.5, 0.7 and 1.1 for uniform scaling factors of 0.6, 0.8 and 1.2 

respectively, after rounding the basic block instruction counts to integers.

The result supports our claim that our compiler instruction layout optim

ization is generally applicable to many instruction sets and compilers with 

differing code improving ability. A richer instruction set may reduce the 

number of instructions to realize the intermediate form. But the experimental 

result seems to indicate that the cache performance is rather stable.
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Table 7.10 : Sectored Cache

name
sector

miss traffic

cccp 13.88% 27.76%

cmp 0.33% 0.65%

compress 0.47% 0.94%

grep 0.11% 0.21%

lex 0.18% 0.35%

make 8.82% 17.64%

tar 1.62% 3.25%

tee 1.31% 2.62%

wc 0.16% 0.33%

yacc 2.79% 5.57%

Table 7.11 : Partial Loading

name
partial

miss traffic avg.fetch avg.exec

cccp 2.86% 33.78% 11.8 8.2

cmp 0.05% 0.66% 14.2 12.3

compress 0.07% 0.99% 13.9 12.0

grep 0.02% 0.24% 12.6 9.9

lex 0.04% 0.41% 11.1 7.8

make 1.52% 19.77% 13.0 10.1

tar 0.28% 3.55% 12.8 12.2

tee 0.21% 3.00% 14.0 9.9

wc 0.02% 0.33% 14.9 12.7

yacc 0.55% 7.13% 13.1 9.0
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Table 7.12 : The Effect of Code Scaling (0.5 & 0.7)

name
0.5 0.7

miss traffic miss traffic

cccp 2.60% 25.88% 3.02% 31.02%

cmp 0.06% 0.77% 0.05% 0.75%

compress 0.08% 1.05% 0.07% 1.00%

grep 0.03% 0.31% 0.02% 0.27%

lex 0.02% 0.21% 0.03% 0.32%

make 1.26% 13.75% 1.57% 18.22%

tar 0.32% 4.30% 0.27% 3.16%

tee 0.24% 2.97% 0.24% 2.99%

wc 0.02% 0.37% 0.02% 0.36%

yacc 0.65% 5.81% 0.64% 6.75%

Table 7.13 : The Effect of Code Scaling (1.0 & 1.1)

name
1.0 1.1

miss traffic miss traffic

cccp 2.86% 33.78% 3.21% 36.73%

cmp 0.05% 0.66% 0.05% 0.70%

compress 0.07% 0.99% 0.07% 1.02%

grep 0.02% 0.24% 0.02% 0.25%

lex 0.04% 0.41% 0.04% 0.41%

make 1.52% 19.77% 1.78% 23.10%

tar 0.28% 3.55% 0.32% 4.09%

tee 0.21% 3.00% 0.23% 2.95%

wc - 0.02% 0.34% 0.02% 0.36%

yacc 0.55% 7.13% 0.42% 4.68%
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CHAPTER 8.

CONCLUSION

8.1. Autom atic Profiler

We have shown that a totally portable profiler can be integrated into a C 

compiler. The compiler front end remains machine independent. The profiling 

process can be distributed over a network of different computers. The profile 

result can be used on all machines.

8.2. Function Inline Expansion

Using the profile result, the function inline expansion facility in our 

IMPACT-I C Compiler can remove a large percentage of function calls/returns 

with modest code expansion. The inline expansion results in large working 

space for global code optimizations and also better cache locality.

8.3. Conditional Branch Handling

Most conditional branch instructions are highly biased in the benchmark 

programs which we have profiled. Using the profile information, we have 

shown that software branch prediction and forward semantics together per- 

form as w ell as expansive hardware branch prediction and instruction 

buffering mechanisms.
i

8.4. Trace Selection

We have tested several trace selection algorithms and concluded that trace 

selection is indeed effective for optimizing large scalar programs. The off-trace 

cost can be reduced by imposing higher minimum branch probability require

ment.
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8.5. Instruction Placement

We have designed and implemented an instruction placement algorithm to 

improve the performance of the instruction memory hierarchy. Spatial local

ity is maximized by placing the instructions executed near each other in time 

into consecutive memory locations. Cache mapping conflicts are minimized by 

placing the functions with overlapping lifetime into memory locations which 

do not contend with each other in cache.

Using trace-driven simulation, we have demonstrated that the instruction 

layout algorithm can efficiently exploit small, direct-mapped instruction 

caches with large blocks. High instruction cache performance is achieved due 

to low miss ratio, low memory traffic ratio, and fast hardware. The effect of 

varying the cache design parameters (cache size, block size, block sectoring, 

and partial loading) has been presented.

8.6. Future Work

We are continuing this research in several directions. First, we are 

expanding the benchmark set to include more than 30 UNIX and CAD pro

grams. Second, we are studying other code improving techniques, such as loop 

unrolling and software pipelining. Third, more experiments on register alloca

tion and code scheduling w ill be performed. Our final goal is to construct a 

powerful tool for designing a high performance computer system, based on the 

IMPACT optimizing compilers. The tool w ill assist computer microarchitects 

to achieve a cost-effective design which balances the complexity of both the 

compiler technology used and the hardware techniques used.
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APPENDIX A.

INLINE EXPANSION ALGORITHM

1) For each function, apply local inline analysis;

2) Apply global inline analysis;

3) Perform global inline decision;

4) Perform inline expansion;

LocallnlineAnalysisO {

1 : create a new node;

2 : compute various attributes :

(func__name, func__weight, param, func__id)

3 : assign unique id to each expression;

4 : compute (destination) = immediate subcalls;

one entry per call site.

callee = # # #  for call through pointers;

5 ; compute (param_size, local_size)

6 : compute Pset(f);

7 : compute (size) = number of IL instructions;

}

GloballnlineAnalysisO {

1 : replace the callee of all call sites to external functions with

$$$;

2 : compute the outgoing edges of SSS and # # # ;

3 : LinearizationO;

4 ; DetectRecursionO;

}
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LinearizationO {

sort all nodes in such a way that more important 

functions appear in front of the list; (profile weight)

}

DetectRecursionO {

for all functions Fi do

LCALL(Fi) = Fi.destination; /* immediate successors */ 

GCALL(Fi) = LCALL(Fi) + GCALL(Fk) for all 

successors Fk of Fi. 

if (Fi in GCALL(Fi)) then Fi is recursive;

}

InlineDecisionO {

for all call arcs do

if (caller or callee is SSS or # # # )

mark the arc "not_expandable"; 

if (arc.weight <  MIN_INLINE_WEIGHT) 

mark the arc "not_expandable"; 

mark the arc "expandable"; 

sort all "expandable" edges according to weight; (profile weight) 

new_size = original_size = ProgSizeO; 

according to the sorted order (most important first) 

if (Expandable(e) {

if (code expansion after e <  MAX_RATIO) { 

mark e "expand"; 

new_size = ProgSizeO;

NewLocalSizeO;

}

}
}
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Expandable(e(Fi, Fj)) {

for a call from Fi to Fj;

1) Fj must precede Fi in the linear list;

2) if (Fi is recursive) Fj.param_size+Fj.nlocal_size <  MAX_DATA_SIZE;

}

ProgSizeO { /* estimate new program size */

for all functions Fi do 

Fi.nsize = Fi.size; 

according to the linear list order

Fi.nsize += Fk.nsize; for every ’expand* call site 

in Fi, e=(Fi, Fk); 

prog_size = sum of all Fi.nsize;

}

NewLocalSizeO { /* estimate new local declaration size */

for all functions Fi do

Fi.nlocal__size = Fi.local_size; 

according to the linear list order

Fi.nlocal_size += Fk.nlocal_size; for every ’expand’ call 

site in Fi, e=(fi, Fk);

}

InlineExpansionO {

according to the linear list order 

expand all ’expand’ edges;
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APPENDIX B. 

SAMPLE PROFILE PROGRAM

Source program

main() { 
int i, c;
for (i=0; i<  10; i++)

c = ( i> 3  && i< 5)?  1:0;

}

Profile program

int mainO {
int i____ 1;
int c____ 1;

ProfProbe0(0,"pfile");
ProfProbel(l);

H1_L1 :
ProfProbe3(l); 

i____ 1 = 0;
if (i____ 1 <  10) goto 111_L2;

else goto 111_L3;
111_L2 :

ProfProbe3(2);
c____ 1 = (((i____ 1> 3) && ((ProfProbe4(4)), (i.

((ProfProbe4(5)),l) : ((ProfProbe4(6)),0)); 

i____ 1++;
if (i____ 1 < 10) goto 111_L2; else goto 111_L3;

111_L3 :
ProfProbe3(3);
ProfProbe2();
return;

}

1 < 5))) ?
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APPENDIX C

INSTRUCTION PLACEMENT ALGORITHM

MIN_PROB = 0.7;

Algorithm TraceSelection {
/** select the best immediate successor of the basic block, bb **/ 

best__successor(bb) {
In = the outgoing arc with the highest execution count, 
if (w eight(ln )=0) return 0;
if (weight(ln)/weight(bb) <  MIN__PROB) return 0; 
if (weight(ln)/weight(destination(ln)) <  MIN_PROB) return 0; 
if (destination(ln) has been selected) return 0; 

return In;

}
/** select the best immediate predecessor of the basic block, bb **/ 

best__predecessor(bb) {
In = the incoming arc with the highest execution count, 

if (w eight(ln )=0) return 0;
if (weight(ln)/weight(bb) <  MIN_PROB) return 0; 
if (weight(ln)/weight(source(ln)) <  MIN_PROB) return 0; 

if (source(ln) has been selected) return 0; 

return In;

}
trace_select(F) {

int trace__id = 0; 
if (w eight(F )=0), {

/** for non-executed functions, each basic 

** block forms a trace.
** /

for (all BBi in F) {
trace_id = trace_id + 1;
BBi.trace_id = trace_id;

}
return; /** exit function **/
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}
/** for non-zero weight functions. **/ 
sort all BBi in F according to weight(BBi); 
mark all BBi in F not-selected; 
while (there are not-selected BB) { 

trace_id = trace__id + 1; 
seed = the not-selected BB with the highest 

execution count; 
seed.trace__id = trace_id;
/** grow the trace forward **/ 

current = seed; 

for (;;) {
In = best__successor(current); 
if ((ln==0) or (destination(ln)=ENTRY)) { 

break; /** exit for loop **/

}
s = destination(ln); 
s.trace_id = trace_id; 

current = s;

}
/** grow the trace backward **/ 

current = seed; 

for (;;) {
if (current=ENTRY) {

break; /** exit for loop **/

}
In = best_predecessor (current) ; 

if ( ln = 0 )  {
break; /** exit for loop **/

}
s = source(ln); 
s.trace_id = trace_id; 

current = s;



Algorithm FunctionBodyLayout { 
mark all traces un-visited; 

function space = 0; 
current = ENTRY trace;

LI : while (current<>0) {
mark current visited;
place the trace into the function space;
/** try to find a connection to a trace header.
** we consider only non-zero weight traces.
**/

best = best trace connected to the current trace’s 

tail, (terminal to terminal connection only) 

if (w eight(best)O O ) { 
current = best; 
continue; /* goto LI */

}
/** if there is no sequential locality at all,
** we w ill start from the most important not-visited 

** trace.
**/

best = the most important trace among not-selected traces; 

if (b est= 0 ) {
/** all traces have been processed. **/ 
break; /* goto L2 */

} else {
current = best;
continue; /* goto LI */

}

}
L2 ;

}

Algorithm GlobalLayout {
* assume a call graph is available, 
find all call sites (Fi, Fj) =  Fi calls Fj; 
weight(Fi, Fj) = sum of all calls from Fi to Fj;



except when F i= F j, weight(X,X) = 0. 
for each function Fi,

determine the size of its active region, 
determine the size of its non-active region.

/** apply depth-first-search, mark every node **/
Fi.visit = false for all Fi;
from functions Fi on top of the call graph hierarchy (e.g. "main") 

if (F i.visit=false)
Visit(Fi);

/** layout the function according to the depth-first order. **/ 
according to DFS order, layout the effective region of all 
functions.
according to the same DFS order, layout the non-active region of 
the functions.

}

Visit(F) {
static int id-1;
F. visit = true;
F.id = id++;
sort all subcalls from F by weight(F, Fj);
/** from the most important to the least important call site. **/ 
for all callees Fj in the sorted order 

if (Fj.visit=false)
Visit(Fj);

}


