
EMULATION OF THE INTERMEDIATE REPRESENTATION INTHE IMPACT COMPILER
BYQUDUS BABATUNDE OLANIRANB.S., University of Illinois at Urbana-Champaign, 1997

THESISSubmitted in partial ful�llment of the requirementsfor the degree of Master of Science in Electrical Engineeringin the Graduate College of theUniversity of Illinois at Urbana-Champaign, 1998
Urbana, Illinois

iii
ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Wen-mei Hwu, for his guidance andsupport. His e�ective teaching style inuenced my decision to pursue a graduate degreein computer architecture. I thank him for giving me the opportunity to pursue thisgoal. I wish to thank the entire IMPACT group for the infrastructure that created thisresearch opportunity. For the great team environment on the X86 emulator project, Iwould like to thank John Sias and Michael Thiems. Teresa Johnson and John Gyllenhaalprovided great leadership in the development of the project. Thanks to Mattew Mertenfor keeping the o�ce lively. I am very grateful for all the help provided by Dan Connors.His inuence on my education at the university has been invaluable. He has served asmy mentor and provided many useful insights into the development of this project andthesis. For �nancial support through a fellowship, I would like to thank the Universityof Illinois Graduate College.I would also like to express my appreciation to my parents for all their encouragementand support throughout my college years. Finally, I wish to thank and express my loveto Heather Lee who has encouraged me throughout graduate school and for providinginvaluable help with editing this thesis.

iv
TABLE OF CONTENTS

Page1. INTRODUCTION : 12. BACKGROUND : 42.1 Overview of the IMPACT Compiler : : : : : : : : : : : : : : : : : : : 52.2 Overview of Lcode Structure : 83. EMULATION ENVIRONMENT : 103.1 Overview of the IMPACT Simulation Environment : : : : : : : : : : 103.2 Overview of the Lcode Emulation Environment : : : : : : : : : : : : : 124. BENEFITS OF EMULATING THE INTERMEDIATE REPRESENTATION 174.1 Cross-Platform Development : 174.2 Debugging Facility : 195. IMPLEMENTATION DETAILS : 215.1 Initialization of Internal Data Structures : : : : : : : : : : : : : : : : 215.2 Conversion of Lcode to C : 245.2.1 Function declaration : 255.2.2 Local data and variable space : : : : : : : : : : : : : : : : : : 295.2.3 Conditional branches, jumps, and hashing jumps : : : : : : : 305.2.4 In-coming and out-going parameter space : : : : : : : : : : : : 325.2.5 Global data declaration : 345.3 Predication and Speculation Support : : : : : : : : : : : : : : : : : : 385.3.1 Predication : 385.3.2 Speculation : 425.4 Overview : 45

v6. THE LCODE EMULATOR TOOL : 496.1 Integration with Existing IMPACT Tools : : : : : : : : : : : : : : : : 496.2 Using the Lcode Emulator Tool : 506.2.1 Lemulator : 516.2.2 gen Lemulator : 527. CONCLUSION : 55REFERENCES : 57

vi
LIST OF TABLES

Table Page5.1: Predicate de�nition truth table. : 40

vii
LIST OF FIGURES

Figure Page2.1: The IMPACT compiler : 62.2: Lcode function block layout : 93.1: The IMPACT simulation framework : : : : : : : : : : : : : : : : : : : 113.2: The Lcode emulation framework : 143.3: Lcode emulator internal representation: PROFILE structure : : : : : 153.4: Lcode emulator internal representation: HASH PROF structure : : : 155.1: The �rst control block of a typical function in the Lcode format : : : 235.2: (a) Original Lcode, (b) header �le, and (c) function declaration : : : : 255.3: Illustration of automatic argument conversion problem : : : : : : : : 265.4: Lcode and C variable argument function declaration : : : : : : : : : : 275.5: Non-ANSI style and Lcode variable argument function declaration : : 285.6: (a) Hashing jump usage, and (b) data section for hashing jump : : : 305.7: Emulation of a hashing jump in C : : : : : : : : : : : : : : : : : : : 315.8: The general convention between caller and callee functions in Lcode : 325.9: The structure of an Lcode function : : : : : : : : : : : : : : : : : : : 335.10: (a) Lcode scalar variable, (b) equivalent C declaration, and (c) uninitializedC declaration : 365.11: (a) Lcode aggregate variable, and (b) equivalent C declaration : : : : 365.12: (a) Lcode array declaration, and (b) equivalent C declaration : : : : : 375.13: (a) Lcode structure declaration, and (b) equivalent C declaration : : : 385.14: A predicate de�ne instruction in: (a) Lcode form, and (b) C emulationform : 405.15: A predicated instruction in: (a) Lcode form, and (b) C emulation form 415.16: Speculative load in: (a) Lcode form, and (b) C emulation form : : : : 445.17: Speculative divide in: (a) Lcode form, and (b) C emulation form : : : 455.18: Breakdown of the wc program : 465.19: wcp function of wc in the Lcode format : : : : : : : : : : : : : : : : 475.20: C code produced for the wcp Lcode function of wc : : : : : : : : : : 48

1

1. INTRODUCTION
All compilers that support multiple target processors will typically use an interme-diate representation to denote the converted or optimized code. One of the importantaspects of this intermediate representation is that it provides the exibility of gener-ating code for a nonexistent architecture, i.e., research architectures with no hardwaresupport. To support an architecture, a code generator is required to convert the interme-diate representation to assembly language for a target processor. This invariably meansthat in order to test a research (or experimental) architecture, a code generator mustexist for the development platform being used. This platform-speci�c requirement canbe quite constraining for investigating new architectural features because some of theestablished conventions of an architecture only reside within the internal documents ofthe architecture's manufacturer.One way to establish platform independence for an intermediate representation is totranslate the low-level intermediate representation to a higher-level language structure.

2This thesis presents a research infrastructure that provides high-level emulation capa-bility for the internal representation of the Illinois Microarchitecture Project UtilizingAdvanced Compiler Technology (IMPACT) compiler. In this research, the compiler'sintermediate representation is converted to C programming language statements. C isa well-understood language that provides the desired architectural independence since itcan be compiled on any platform.Some of the main bene�ts of emulating intermediate representation in C includeexible pro�ling capabilities, cross-platform independence, and enhanced debugging ca-pabilities. The most important of these bene�ts for the IMPACT compiler is pro�ling.Pro�ling has been shown to be successful in guiding code optimizations [1], [2], such asbranch prediction strategies [3], [4], [5], and instruction-level parallelism enhancing op-timizations. In order to get pro�ling information, probing instructions are inserted intothe program code. Generally, an in-depth knowledge of the development architecture isrequired to correctly support e�cient pro�ling facilities. The signi�cance of the approachbeing presented in this thesis is that minimal knowledge of the architecture is requiredfor generating pro�le information about a program.This thesis illustrate some of the bene�ts of emulating the intermediate representationof a compiler in a high-level language. Its goal is to describe the emulation process, thesurrounding environment, and the support for architectural features that are nonexistentin current processor technology.

3Chapter 2 presents an overview of the IMPACT compiler used throughout this thesis.It also describes the structure of the low-level intermediate representation in the compiler.Chapter 3 describes the IMPACT simulation environment, the emulation environmentdeveloped for this thesis, and the complexity involved in both environments. Chapter 4examines the bene�ts of emulating the IMPACT intermediate representation in a high-level language. Chapter 5 describes the implementation details crucial to the developmentof the emulation framework. Chapter 6 presents how the emulation tool is used. Finally,chapter 7 contains the conclusion.

4

2. BACKGROUND
One of the goals of the IMPACT compiler is to e�ortlessly provide portability in com-pilation for di�erent development platforms. Emulating the intermediate representationin a high-level language can be instrumental in achieving this goal since high-level lan-guages are portable by nature [6]. For this reason, an overview of the IMPACT researchframework is discussed. The framework consists of two separate parts, the IMPACTcompiler and the IMPACT simulator. The IMPACT simulator is discussed in chapter 3.In order to describe the emulation process, it is also important to discuss the generalstructure of the IMPACT low-level intermediate representation. Thus, in addition to theoverview of IMPACT, this chapter presents a brief overview of the low-level intermediaterepresentation. Detailed information about the intermediate representation and its keyinternal data structures can be found in [7].

52.1 Overview of the IMPACT CompilerThe IMPACT compiler has been recognized for its ability to e�ectively utilize pro�leinformation within speculative and predicated execution compilation techniques. A blockdiagram of the IMPACT compiler is presented in Figure 2.1. There are three levels ofintermediate representation within IMPACT, Pcode, Hcode, and Lcode, which divides thecompiler into distinct parts.Pcode is the highest level of intermediate representation based on a parallel C repre-sentation with loop constructs intact, thus closest to the source code. Within Pcode, theIMPACT compiler performs loop transformations [8], function inlining [9], pro�ling, anddependence analysis [10], [11]. Hcode is simply a attened C representation, which servesas the bridge between Pcode and Lcode. In fact, Hcode can be regarded as an extensionof the Pcode format.Lcode is the lowest level of program intermediate representation and is in the formof a generalized register transfer language. It can be viewed as an instruction set for avirtual load-store architecture. All machine independent optimizations [12] are appliedat this level. Likewise, advanced compilation techniques, such as superblock [13] andhyperblock [14] formation, are performed on the Lcode representation of programs. Thefocus of this thesis is to emulate the Lcode representation in C and provide architecturalindependence in the pro�ling process.

6

HP PA-RISC

MIPS

SPARC

IMPACT

AMD 29K

HP PLAYDOH

Intel X86

The IMPACT Compiler

PCODE

FRONT END
Basic Block
Profiler

Function Inline
Expansion

Inter-procedural
Analysis

Dependence
Analysis

Procedure
Inlining

Peephole
Optimization

Acyclic Code
Scheduling

Register
Allocation

Modulo
Scheduling

C / Fortran
 Source

BACK END

LCODE

Code
Layout

Classic Code
Optimization

Superblock
Formation

Hyperblock
Formation

ILP Code
Optimization

MDES

TI C3x/C4x

Region
Compilation

Figure 2.1: The IMPACT compiler

7The machine independent nature of the Lcode format has facilitated the creation ofseveral code generators for several di�erent architectures [7]. The most actively sup-ported architectures are the Sun SPARC, the HP PA-RISC, and the Intel X86. The twomain components of code generation are the instruction scheduler and the register allo-cator [15]. Several scheduling models exist, including acyclic global scheduling [16], [17],sentinel scheduling [18], and software pipelining using modulo scheduling [19].The IMPACT and HPL Playdoh [20] architectures, two experimental instruction-levelparallelism (ILP) architectures, are also supported. These experimental architecturesprovide the necessary framework for advanced compiler and architecture research. Infact, the speci�cations for the architectures are based on parameterizable resources thatallow the exploration of a wide variety of machines. The IMPACT compiler meets thesespeci�cations by using the technology of a machine description database, Mdes [21]. TheMdes contains a large set of information to assist optimization, scheduling, register allo-cation, and code generation. Information provided by the Mdes includes the number andtype of available function units, size and width of the register �le, instruction latencies,instruction operand constraints, addressing modes, and pipeline constraints. In addition,both architectures support forms of speculative and predicated execution. For this thesis,all experiments utilize the IMPACT architecture.

82.2 Overview of Lcode StructureAs with any intermediate representation, each Lcode function consists of a hierarchyof three data structures: a function block, control blocks, and operations. An operationis a fundamental element of computation. A control block is a set of operations with thecharacteristic of a single entry point and multiple exit points. A control block can also bereferred to as a basic block when only one exit point exists. A function block is made upof a sequence of control blocks as shown in Figure 2.2. Each data structure in the Lcodefunction hierarchy is marked with a representative keyword. A function block is markedwith the keyword function, control blocks with cb, and operations with op. Following eachkey word is an identi�er, which gives the function, control block, or operation a uniqueidenti�cation. For functions, the identi�er is the function name, and each control blockand operation is given a unique numerical identi�cation within that function. Di�erentphases of compilation can change the Lcode instructions (or operations).Lcode instructions are described in the three address notation [22]. Lcode is an instruc-tion set for a load-store architecture, supporting an unlimited number of virtual registersand basic synchronization instructions. It is broken down into data and function blocks.Each Lcode instruction is composed of the following four major parts: an operation num-ber (identi�cation), an opcode, operands, and attributes, as shown in Figure 2.2. Inaddition, a predicate register input and ag attributes can be speci�ed on an instruction.The opcode signi�es which operation is to be performed. The available operations canbe broken down into groups of arithmetic and logic unit (ALU), memory access, and

9
(op op_num
 opcode <f l ag at t r i but e>
 ((dest _t ype dest _val ue))
 ((sr c1_t ype sr c1_val ue)
 (sr c2_t ype sr c2_val ue)
 (sr c3_t ype sr c3_val ue))
 ((at t r _name at t r _val ue) . . .)
)

(op ...)

(op ...)

(op ...)

(op ...)

cb 1:

cb 2:

cb 3:

(function foo ..

) Figure 2.2: Lcode function block layoutcontrol ow operations. A detailed description of the Lcode instruction requirements canbe found in [23].

10

3. EMULATION ENVIRONMENT
The IMPACT simulation environment provides the necessary facility to evaluate thee�ects of compiler techniques on various research architectures. It also functions as anenvironment used for pro�ling the control ow of a program. One of the major goalsof this thesis is to make the pro�ling aspect of the simulation environment portable tovarious platforms. The following sections provide an overview of the current environmentand the alternative as presented by this thesis.3.1 Overview of the IMPACT Simulation EnvironmentThe simulation environment involves three important technologies: emulation, probeinsertion, and a trace-driven performance simulator. Figure 3.1 presents a block dia-gram of this environment, which describes the interconnection of the three technologies.Emulation provides a program with the appearance of the architectural functions whichare not directly implemented in the target machine. For instance, predicated executionmust be emulated for the IMPACT Lcode because current processor technology does

11not include predication support. Other examples of emulated features are speculativeexecution, very long instruction word (VLIW) execution semantics, rotating registers,memory conict bu�er (MCB) functionality, or even entire instruction set architectures(ISA) support.
The IMPACT Simulation Framework

Predication

Sentinel Speculation

Rotating Registers

MCB Data

Speculation

Superscalar vs.

VLIW model

Machine Resources and

Latencies

Pipeline Configuration

Instruction & Data

Cache

BTB (Branch Prediction)

MCB (Data Speculation)

Probe

Insertion

Simulator

(Lsim)

Emulation

Support

Program

(Lcode)

System/Hardware Modeling

Instruction Set Architecture Support

Executable

Program

Encoding

code image

Configuration File

Figure 3.1: The IMPACT simulation framework

12Probe insertion into program code allows trace information to be generated whilerunning the executable. Trace information consists of memory target addresses, branchdirection, predicate value generations, and jump target addresses. The IMPACT sim-ulator, Lsim, is a trace-driven framework which is capable of cycle-by-cycle simulationof cache memories, branch prediction hardware, instruction pipelines, superscalar andVLIW processors, and MCB hardware. Lsim processes trace information and coordi-nates it with an encoded version of the Lcode �les. This enables it to coordinate programreferences with simulated machine structures. For instance, trace information containingbranch directions is used by Lsim to update simulated branch target bu�er (BTB) struc-tures as well as follow the proper path of execution. This coordination allows Lsim toattribute variable machine cycles to the operations implied by the trace information. Inshort, the probed executable provides the functionality of the program being simulated,while Lsim estimates the target machine cycles.3.2 Overview of the Lcode Emulation EnvironmentPro�ling is a technique for instrumenting programs in order to collect run-time infor-mation. control-ow and memory-dependence are the two most common types of pro�lingthat are used to guide optimizations. Control-ow pro�ling collects information aboutthe relative frequency of execution paths. Memory-dependence pro�ling summarizes thefrequency of address conicts between two memory references.

13For the purpose of aggressive instruction scheduling, control-ow pro�ling providesthe following information: an invocation count of each function, an execution count ofeach control block, and the branch taken frequency of two-way and multi-way branches.The current IMPACT methodology inserts probes into the program intermediate repre-sentation and links the probed program with an architecture-speci�c probing library toform an executable. Each of the existing code generators supported in IMPACT requireindividual pro�ling libraries formed using custom assembly functions. Such libraries com-plicate and extend the development time of code generators. When the executable is runin conjunction with the simulator, pro�le information is collected for the user speci�edinput.Figure 3.2 presents a block diagram of the pro�ling implementation being presented inthis thesis that avoids the issue of providing architecture-speci�c probing libraries. Sincethe program is being emulated in C, no architectural knowledge is required for instru-menting the program. In the IMPACT methodology, instrumentation involves severalsteps of inserting probing instructions before and after register allocation of a program.Similarly, in this implementation, instrumentation refers to inserting probing C state-ments during the translation process. These probing C statements are pro�le-gatheringfunction calls, which are inserted where appropriate to increment pro�le counters. Thepro�le-gathering functions inserted in the body of the functions are used to indicate thefollowing: function entry, function reentry from a subroutine call, control block entry,and branch or hashing jump behavior.

14
The IMPACT Lcode Emulator

Profiling

Library

Program

(Lcode)

Program

Encoding Translation of

Lcode to C

Profile

Data

Code image

Emulator Generated Executable

Program

Core

Profiling

Core

Figure 3.2: The Lcode emulation frameworkThere are two main data structures that serve as the foundation for collecting pro-�le information in this environment. The data structures used to collect the executionpro�le of each function are shown in Figures 3.3 and 3.4 . These structures and pro�lingfunctions are part of the architecture independent library that is linked in for pro�lingpurposes. Upon execution of the program, in this pro�ling implementation, an encoded

15image of the program is loaded to dynamically allocate space for all of the required pro-�le counters. After building the counters, the program continues with these countersrecording execution pro�le statistics.typedef struct profile{char *name; /*function name*/int func_weight; /*count of function entry*/int max_branch; /*number of branches/jumps in this function*/int *br_jmp_executed; /*execution count of branches/jumps*/int *br_jmp_taken; /*number of times branches were taken*/char *br_jmp_type; /*cond. branch/pred jump/jump/hashing jump*/int num_hash_jumps; /*number of hashing jumps in this function*/HASHPROF *hjmp_profiles; /*profiles for hashing jumps*/int max_cb; /*max control block id*/int *cb_order; /*sequential order of cb's in file*/int *cb_profiles; /*count of control block entry*/struct profile *next_profile;} PROFILE;Figure 3.3: Lcode emulator internal representation: PROFILE structuretypedef struct hashprof{int num_conds; /*number of possible branching condition*/int *cond; /*array of conditions*/int *weight; /*taken weight based on condition*/} HASHPROF;Figure 3.4: Lcode emulator internal representation: HASH PROF structureThis approach is generally observed as being faster than the current method of pro-�ling using the simulator. For example, the pro�ling process is approximately four timesfaster on the benchmark program 134.perl using the test input set. Overall the bench-mark programs, this approach is 38 % faster than using the IMPACT simulator. The

16dynamic allocation approach is used in the Lcode emulator because it is relatively fastand can handle most programs. The speed-up ratio depends on size of the input setand the program. Finally, the pro�le information collected is mapped into the originalintermediate code (Lcode) using the function names and the control block identi�ers.

17

4. BENEFITS OF EMULATING THE INTERMEDIATE REPRESENTATION
One of the primary goals in the development of the Lcode emulator is to providethe IMPACT compiler with a framework for cross-platform development. The IMPACTcompiler currently has some utilities that enable it to exhibit this characteristic, however,it is limited by the need to provide several architectural speci�c tools. Thus, this chapterpresents the Lcode emulator's approach to cross-platform development. In addition, theadditional debugging capability provided by emulating the intermediate representationin a high-level language is also discussed.4.1 Cross-Platform DevelopmentAs shown in Figure 2.1, a C program goes through several phases of translation to in-termediate representations which facilitate code optimizations. Finally, the intermediaterepresentation serves as the input to an architecture-speci�c code generator, which trans-lates it to the actual machine language. Since the IMPACT compiler is heavily dependent

18on pro�le information for guiding code optimizations, this creates a situation in which acode generator and a probing library are required for every development platform.Consider the following scenario. A developer would like to compile code for a TIC3x/C4x digital signal processing processor using the IMPACT compiler. The I/O capa-bilities of this processor are very limited and insu�cient for gathering pro�le information.Also, due to the embedded nature of this processor, the memory requirement for run-ning the compiler is not adequate. Since a code generator exists for this architecturein the IMPACT compiler, it makes producing an executable for it trivial. However, inorder to produce the highly optimized code, a di�erent platform is required for pro�lingand simulation because of the limited resources of the embedded processor. Assumingthe development platform is an X86 machine, this would demand an additional codegenerator for the development platform. In addition, a probing library speci�c to theX86 architecture becomes a critical part of the development process. In order to removethe burden or cost of providing these extra utilities and generate very e�cient code, itbecomes paramount to provide a developer with the means to compile code e�cientlyfor a target architecture on a di�erent development architecture.The pro�ling approach presented in this thesis provides this cross-platform develop-ment capability. In this approach, generating pro�ling information involves running theLcode emulator on the Lcode to generate a pro�le-gathering oriented executable. Sincethe emulation is in C, it can be compiled using the existing software tools on any system.Running the executable generates the pro�le information in a format that can be mapped

19back into the Lcode for further optimizations by the IMPACT compiler. This approachessentially abstracts away the notion of distinct development and target architecures inthe e�ort to generate e�cient code.4.2 Debugging FacilityEmulation of Lcode in C provides a developer with a vast array of tools with which toverify and debug the intermediate representation. One of these tools is a C source leveldebugger, e.g., GNU debugger (gdb) [24]. Upon compilation of one or more C source�les, a program suitable for execution is created. The executable program's symboltable contains information used by the loader for creating its process image, for resolvingexternal references, and debugging. With the information contained in an executable,a typical debugger allows a developer to inspect a program as it executes. The mostcommon debugger is a breakpoint debugger. Inspection of a program is possible becausethese types of debuggers can suspend the program at a particular point. In addition toinspection of the program state, modi�cation is also possible.Program suspension is implemented by inserting breakpoints in the body of the pro-gram. Breakpoints are implemented by replacing the instruction at the desired locationwith a hardware trap instruction. In addition, the debugger stops the program executionif any exception is raised during the program's execution. To continue the execution, theprogram proceeds with the real instruction that was replaced by the trap instruction.Continuation can be implemented in two di�erent ways, either the real instruction is

20emulated, or the trap instruction is replaced with the real instruction. In the latter case,the debugger is single stepped, and the trap instruction is eventually put back in placeof the real instruction. Program execution can proceed until completion, or the nextbreakpoint.The bene�t of having a generic C source level debugger is that a code generator is notrequired to debug a program. Currently, the only means of debugging code generatedby the IMPACT compiler is to use an a architectural-speci�c debugger on the assemblysource code generated. Debugging at this level can be quite tedious, and it requiresunderstanding the semantics of the development platform's assembly language. As aconsequence, it is not always easy to establish a one-to-one correspondence between theintermediate representation and the assembly source code. The Lcode emulator providesa couple of debugging aids to alleviate these problems. The emulator can generate Csource code with the operation number of each Lcode instruction placed on the sameline as its equivalent C statement. In addition, a �le containing a line-to-line mappingbetween a Lcode �le and it corresponding C �le can be generated to further aid thedebugging process.

21

5. IMPLEMENTATION DETAILS
The Lcode emulator's primary function is to convert the IMPACT intermediate rep-resentation into an equivalent form in the C programming language. The emulation of aLcode function in C proceeds in two phases. The �rst phase performs all the initializationof the emulator's internal data structures with the function's information. The secondphase then processes these internal data structures and produces an equivalent C func-tion as its output. In additon to Lcode functions, there is a global data section which isalso processed in the two-pass manner described above. These phases of the translationprocess and some of the internal data structures are described in the following sections.Finally, an overview of the emulation support provided for predicated and speculativeinstructions is presented.5.1 Initialization of Internal Data StructuresThis phase involves the gathering of information from the Lcode structures and �llingin the appropriate emulator structures. One of the �rst characteristics determined in this

22phase is the kind of function being processed; i.e., is it a function with a �xed numberof arguments or a variable argument function? The number and types of the functionarguments are determined and inserted into a dynamic list. The distinction in the kindof functions and other relevant issues will be examined in section 5.2.1.Since the Lcode format utilizes virtual registers, essentially an in�nite number ofregisters, the Lcode emulator determines the maximum register identi�cation number(id) and uses it to dynamically allocate space for its internal data structure. This spaceis used to record the characteristics of these registers. In most cases, many of the registernumbers between zero and the maximum register id are not used. Thus, all the registernumbers are remapped to a new identi�er in the Lcode emulator. The importance of thisremapping is that it reduces the amount of statically allocated space for local variablesin the C source code generated.After these initial determinations, each instruction in the function is further processedto complete the initialization phase. In the Lcode format, the data type of each operandis speci�ed for each instruction. The data type of a register operand can be one of thefollowing: an integer, a oat, a double, or a predicate. As shown in Figure 5.1, thedestination register of op 8 is the integer register number 9. In the Lcode emulator, datatypes such as char, short, etc., are promoted to an integer type using C's casting operator.These data types are used to set the register type in the Lcode emulator's internal datastructures.

23The next step involves determining if any data labels exist in the instruction. In theIMPACT compiler, all data labels are global variables de�ned in a data block. Since thedata block is expected to be in a �le exculsively, all the data labels can be declared asexternal variables. External data variable declarations are expected to be outside andbefore the function de�nition in the C source �le. Thus, a linked list of external datalabels is also built in this phase.Another major part of this phase is the processing of arguments to subroutine calls. Inthe IMPACT arhitecture, the �rst four arguments of a subroutine are passed via register;any extra arguments are passed via memory. The callee function can access argumentspassed via memory from its incoming parameter space, i.e., the callers outgoing param-eter space. However, the Lcode emulator passes these via-memory arguments as regularfunction arguments through the standard C calling convention. Thus, it becomes neces-sary to keep track of how many extra local variables are required for passing via-memoryarguments. Section 5.2.4 describes the parameter space in detail.(cb 1 1.000000 [(flow 0 2 1.000000)])(op 1 define [(mac $P0 i)] [])(op 2 define [(mac $P1 i)] [])(op 3 define [(mac $return_type i)] [])(op 4 define [(mac $local i)] [(i 16)])(op 5 define [(mac $param i)] [(i 16)])(op 6 define [(mac $swap i)] [(i 104)])(op 7 prologue [] [])(op 8 mov [(r 9 i)] [(mac $P0 i)])(op 9 mov [(r 10 i)] [(mac $P1 i)])Figure 5.1: The �rst control block of a typical function in the Lcode format

24The part of a Lcode function that has the most impact on the C source code producedis the �rst control block. Figure 5.1 is an example of a typical �rst control block. Theformal arguments to the function are speci�ed as indicated by op 1 and op 2. The functionreturn type is given by op 3. Next, op 4 indicates the amount of bytes required for thelocal stack; in this example, an allocation of 16 bytes is required. Similarly, op 5 and op6 specify the amount of bytes required for the out-going parameter space and the swapspace respectively. The out-going parameter space represents one of the common waysof communicating parameter passing in intermediate representations. The swap spacerequirement appears only if the Lcode function has gone through the IMPACT registerallocator [15]. This space is used for register spilling when there are not enough physicalarchitectural registers.5.2 Conversion of Lcode to CThis phase uses all the information in the Lcode data structures and the emulator'sdata structures to transform Lcode instructions into C statements. Since all of the func-tions generally do not reside in the same �le, a header �le consisting of extern declarationsof all non-library functions is produced. This header �le is included by all the C source�les generated. In addition, a special library header �le is included for variable argumentfunctions. As mentioned earlier, Lcode is broken into data and function blocks. All datablocks (i.e., global variables) with the exception of hashing jump data blocks reside inone �le, while all the function blocks can reside in one or more �les. This arrangement

25makes all data variables global, hence requiring external declarations in the C function�les generated. The following sections describe in detail the major aspects involved inthe transformation from Lcode instructions to C statements.5.2.1 Function declarationAs shown in Figure 5.2(c), the function de�nition uses the Kernighan and Ritchie(K&R) standard [6] for argument declaration. This stems from a couple of reasons:function prototyping and automatic argument conversions. The Lcode emulator generatesa header �le which contains an external declaration for all the functions in the program.These function prototypes can be referred to as function allusion because the types ofthe formal arguments of the functions are not speci�ed (see Figure 5.2(b)).(global _main)(function _main 1.000000(cb 1 1.000000 [(flow 0 2 1.000000)])(op 1 define [(mac $P0 i)] [])(op 2 define [(mac $P1 i)] [])(op 3 define [(mac $return_type i)] [])(op 4 define [(mac $local i)] [(i 0)])(op 5 define [(mac $param i)] [(i 16)])(op 6 prologue [] [])(op 7 mov [(r 9 i)] [(mac $P0 i)])(op 8 mov [(r 10 i)] [(mac $P1 i)])....(op 108 jsr <E> [] [(l _$fn_wcp)]<(tr (mac $P0 i)(mac $P1 i)(mac $P2 i)(mac$P3 i))(ret (mac $P15 i))>)(a)

#ifndef _EXTERN_H#define _EXTERN_Hextern int wcp();extern int ipr();#endif /* _EXTERN_H */(b)int main(P0, P1)int P0;int P1;{...P15 = wcp(P0,P1,P2,P3);...} (c)Figure 5.2: (a) Original Lcode, (b) header �le, and (c) function declaration

26Function allusions are used in place of ANSI standard [6] function prototypes in orderto minimize the e�ort required to build the header �le. Arguments are automaticallyconverted to a di�erent type when function allusions are used. The data types charsand shorts are converted to ints; oats are converted to doubles. If the combination offunction allusions and the ANSI style of function declarations are used, erroneous resultsmay be produced due to incorrect argument conversions. Consider the functions foo andfoo bar shown in Figure 5.3. Assuming the function de�nitions reside in di�erent �les,an extern declaration is required for foo bar.File_1:extern foo_bar();foo(int xtra){float var1,var2;var1 = 0.0,var2 = 0.0;var1 = foo_bar(var1, var2);}
File_2:float foo_bar(float x, float y){float z;z = x + y;return z;}Figure 5.3: Illustration of automatic argument conversion problemAs shown in the de�nition of foo bar, it requires that its arguments be of type oat.However, when the C compiler generates assembly code for the function foo, variablesa and b are promoted from oats to doubles in accordance with C conventions. Sincethe ANSI style is used for foo bar, the assembly code generated by the compiler doesnot include instructions to convert the argument from doubles to oats. If the K&Rstyle of function declaration is used, the C compiler inserts instructions to convert thearguments passed to foo bar to their correct data types. The only exception to thisapproach of function declaration and prototyping is the variable argument function. The

27ANSI standard is used in this instance, in order for a C compiler to correctly handlesubroutine calls to a variable argument function with varying numbers of argumentswithin the same caller function. For a function with a �xed number of arguments, allthe incoming arguments are speci�ed in the �rst control block of the Lcode function.These arguments are either passed through registers or memory. Figure 5.2(a) showsan example of a �xed argument function in which all the arguments are passed viaregisters. The other type of function is the variable argument function. These functionshave an attribute named VARARG attached to the function declaration in the Lcodeformat as shown in Figure 5.4. The attribute also includes an integer value that reectsthe characteristics of the argument list. The VARARG attribute value is zero or less,since the IMPACT stack implementation uses negative addressing. The value primarilyspeci�es the o�set to the �rst unnamed argument in the argument list.(function _xlsave 0.000000<(VARARG (i -8))>)(cb 1 0.000000 [(flow 0 2 0.000000)])(op 1 define [(mac $P0 i)] [])(op 2 define [(mac $P1 i)] [])(op 3 define [(mac $local i)] [(i 0)])
#include <stdarg.h>int xlsave (int P0, ...){ int P1;va_list ap;va_start(ap, P0);...Figure 5.4: Lcode and C variable argument function declarationIn C, there are two ways of declaring a variable argument function. The �rst methoduses the ANSI standard declaration as shown in Figure 5.4. This method can acceptvariable arguments in a portable fashion. Without conforming to the ANSI standard,

28writing a variable argument function would require knowledge about the stack implemen-tation of a particular compiler. The header �le, stdarg.h, is included in the source �le forthe ANSI style declaration. The second method does not conform to the ANSI standardand requires the inclusion of the header �le, varargs.h. One reason why this methodis not very portable is that the de�nition of the symbolic name va dcl varies based onthe header �le on a system. Figure 5.5 shows an example of this type of function in itsoriginal C and the resulting Lcode form. The VARARG attribute value is equal to zerofor this function since the whole argument list is considered to be variable.#include <vararg.h>void pm_message(va_alist)va_dcl{ ...
(function _pm_message 0.000000<(VARARG (i 0))>)(cb 1 0.000000 [(flow 0 2 0.000000)])(op 1 define [(mac $P0 i)] [])(op 2 define [(mac $local i)] [(i 0)])Figure 5.5: Non-ANSI style and Lcode variable argument function declarationIn translating the declaration of variable argument functions, the Lcode emulatorignores the o�set value on the VARARG attribute and just notes the variable argumentnature as mentioned in section 5.1. All variable argument functions are translated to anANSI style function regardless of their original C source declarations. If a function hasmore than one argument, this is an indication that the original C source code conformedto the ANSI standard. Hence, the Lcode emulator replaces the last argument in theargument list with the C ellipsis notation (: : :), as shown in Figure 5.4. Although P1 isan argument to the function in Lcode representing the variable part of the argument list,it is declared as a local variable in C due to its replacement with the ellipsis. In addition,

29Lcode emulator also notes the last named argument, in this case P0. This is required forcalls to the C macro va start. If the function declaration has only one argument, thenthe original C source code did not conform to the ANSI standard. In this case, the singleargument is used as the last named argument to va start macro call. In the C source codegenerated, the ellipsis notation is also included in the declaration as shown in Figure 5.4.The only di�erence in the de�nition of xlsave and pm message is the variable P1. SinceP1 is not an argument to pm message, it is not declared as a local variable.After the function declaration is completed, the Lcode emulator inserts a declarationfor the local variable ap, argument pointer, of type va list. The type va list de�nes anarray type suitable for refering to each argument in turn. The macro va start initializesap to point to the �rst unnamed argument. This macro must be called once before thevariable ap is used. The Lcode subroutine, builtin va start, is replaced with the va startmacro by the Lcode emulator.5.2.2 Local data and variable spaceAnother important step in the emulation process is the transformation of registerusage in Lcode to local variables. Registers can be emulated by declaring an array ofintegers, oats, or doubles as speci�ed by the maximum register id. However, since allthe available register ids are not actually used, a register remapping function createsnew maximum register ids based on the data types used in the function. This, in e�ect,reduces the number of useless and wasteful local variable declarations. If the Lcode

30includes predicate instructions, an integer array is used to emulate the predicate registers.While only one bit of these variables is used, the run-time overhead of using a singleinteger variable to represent 32 predicate registers would be too exorbitant (i.e., bit-wiseoperations). A declaration of an array of integers is also used to allocate the local stack,swap, and out-going parameter space.5.2.3 Conditional branches, jumps, and hashing jumpsControl block identi�ers are converted to labels in the C source code that is gener-ated. This implementation is straightforward and enables the use of C goto statementsto emulate jumps and conditional branches. Another peculiar transformation of Lcodeinstructions involves hashing jumps, which are the result of switch statements in theoriginal C source code. The general form of a hashing jump is shown in Figure 5.6.(cb 16 0.000000[(flow 21 5 0.000000)(flow 27 8 0.000000)(flow 28 7 0.000000)(flow 26 7 0.000000)(flow 29 5 0.000000)(flow 31 8 0.000000)(flow 33 9 0.000000)(flow 2147483647 3 0.000000)])(op 27 blt [][(r 3 i)(i 21)(cb 3)])(op 28 bgt [][(r 3 i)(i 33)(cb 3)])(op 29 ld_i [(r 17 i)][(r 84 i)(l hash)]<(label (l hash))(param (i 0))>)(op 30 jump_rg [][(r 17 i)(mac $P0 i)])(a)

(ms data)(align 4 hash_0)(reserve 64)(wi (l hash)(l cb5_x))(wi (add (l hash)(i 4))(l cb5_x))(wi (add (l hash)(i 8))(l cb3_x))(wi (add (l hash)(i 12))(l cb3_x))(wi ...)(wi (add (l hash)(i 36))(l cb8_x))(wi (add (l hash)(i 40))(l cb7_x))(wi (add (l hash)(i 48))(l cb3_x))(wi (add (l hash)(i 52))(l cb8_x))(wi (add (l hash)(i 56))(l cb3_x))(wi (add (l hash)(i 60))(l cb9_x))(b)Figure 5.6: (a) Hashing jump usage, and (b) data section for hashing jump

31This conversion is based on pro�le information and is intended to reduce the amountof comparision required before reaching the appropriate block of code. As shown inFigure 5.6, an index into the jump table is used to load the id of the target controlblock. In addition, the control block also has a series of ow arc attributes attached toit. The ow arcs are used to describe the control-ow in the current control block. Eachow arc contains the keyword ow, the branch condition value, target control block, andthe taken frequency. These ow arcs are essential to the transformation of a hashingjump into C statements. Since the ow arcs contains information about the possiblepaths that can be taken from the control block, they are converted to C if-statements asshown in Figure 5.7 and are used in place of the hashing jump.CB_16: if (IR[3] < 218) goto CB_3;if (IR[3] > 233) goto CB_3;/* switch/hashing_jump statements */if (P0 == 218) goto CB_5;else if (P0 == 227) goto CB_8;else if (P0 == 228) goto CB_7;else if (P0 == 226) goto CB_7;else if (P0 == 219) goto CB_5;else if (P0 == 231) goto CB_8;else if (P0 == 233) goto CB_9;else goto CB_3;Figure 5.7: Emulation of a hashing jump in C

325.2.4 In-coming and out-going parameter spacePerhaps one of the most important aspects of the Lcode is the parameter space used forvariable passing between functions. Figure 5.8 shows the general structure of parameterpassing between functions in the Lcode format.
Caller

Callee

Direct means

of value return

Indirect means

of value return

Indirect means

of argument

passing

Direct means

of argument

passing

Figure 5.8: The general convention between caller and callee functions in LcodeIn the IMPACT architecture, only four registers are reserved for argument passingbetween functions. Thus, functions with more than four arguments have their remainingarguments passed through memory. The parameter space of a caller function can bereferred to as the in-coming parameter space of a callee function. These spaces arepointed to by IP and OP in the Lcode format. Figure 5.9 illustrates the structure of afunction in the IMPACT architecture. In addition, it also shows how this structure is

33emulated in C. A global integer pointer, global OP ptr, points to the current out-goingparameter space. Each function has a local pointer called previous OP ptr. At the start ofeach function, the previous OP ptr is set to point to the global OP ptr (i.e., the outgoingparameter space of the caller function). Hence, the previous OP ptr emulates the IPpointer in the Lcode format. The global OP ptr is now set to point to the local parameterspace (i.e. this function's outgoing parameter space). Before each return statement in the
Stack Frame

Local Variable Space

Out-going Parameter

Space (OP)

Previous_OP_ptr

In-coming Parameter

Space (IP)

Stack Frame

Local Variable Space

Out-going Parameter

Space (OP)
Global_OP_ptr

Old stack pointer

New stack pointer

C
a
ll

er
 f

u
n

ct
io

n
C

a
ll

ee
 f

u
n

ct
io

n

Figure 5.9: The structure of an Lcode function

34C source code, the global OP ptr is reassigned to its previous value (the previous OP ptrin the callee function). This implementation allows the chaining of parameter spacesinvolved in a caller-callee series.5.2.5 Global data declarationAs mentioned earlier in the chapter, the Lcode emulator expects the data block of aprogram to reside in a �le without any function blocks. The data block can be furtherclass�ed into initialized and uninitialized data sections. The Lcode operation, ms type, isused to signify the beginning of a new data section. The keyword ms stands for memorysegment. The value for type is either data for initialized sections or block starting space,bss, for an uninitialized sections. The declaration of global data variables consist ofseveral operations. These Lcode data operations can be classi�ed into �ve groups. Acomplete description of each group can be found in [23]. The following is a brief overviewof the operation groups:Group 1 (data op value): Currently data op can only be reserve. It is used to indicatethat a memory block of value number of bytes should be reserved.Group 2 (data op name): The value of data op is either void or global. This opera-tions is used to introduce a new data variable, name. The global keyword is usedto promote the scope of the variable.Group 3 (type size name expr�): This operation is used to initialize the data vari-able name. The type can take on values of byte, word, long, oat, or double. The

35size de�nes the number of units of type to allocate. The initialization value is com-puted by zero or more expr in the operation. Speci�cally, this operation is used toinitialize scalar data types.Group 4 (type expr1 expr2): Typically, the initialization of aggregate data types,such as arrays and structures, utilizes this operation. It can have type values of wb,ww, wi, wf, wf2, or ws. The size of these �elds are byte, word, integer, oat, double,and string pointer, respectively. The operations writes the computation result ofexpr2 to the address determined by the computation result of expr1.Group 5 (data op value name): For this group, data op can only have values of alignor element size. The align keyword is used to de�ne the appropriate alignment foran allocated memory block. While, the element size indicates the size of elementsin an aggregate data type. The value speci�es in number of bytes the alignmentsize or the element size.Several combinations of the operation groups are used for a single variable declaration.The declaration of a scalar variable is shown in Figure 5.10(a). This declaration is madeup of a group 1 and a group 3 operation. The equivalent C statement generated bythe Lcode emulator for the variable ratname is shown in Figure 5.10(b). In Lcode datadeclaration, if the expression part of a group 3 operation is nonexistent as is the case forthe casecount variable, the C declaration is of the form of an uninitialized scalar variableas shown in Figure 5.10(c).

36(global _ratname)(long 1 _ratname (s ``./nrform''))(global _casecount)(long 1 _casecount)(a) char *ratname = ``./nrform'';(b)int casecount;(c)Figure 5.10: (a) Lcode scalar variable, (b) equivalent C declaration, and (c) uninitializedC declarationAggregate data types generally combine operations from groups 1, 2, 4, and 5. Asmentioned earlier, group 4 operations are used solely for the initialization of these datastructures. If an aggregate data type is uninitialized, the Lcode emulator translates all itsmemory allocation into a C character array declaration for the number of bytes reserved.Thus, an uninitialized integer, oat, or double array would have the same type of Cdeclaration. An example of uninitialized memory allocation is shown in Figure 5.11.This is su�cient for the correct functionality since the casting operator is used whenloading or storing data to the allocated space. In this declaration, the correct variabletype is either a oat or an integer based on the align operation. However, this is notsu�cient for determining the correct type.(ms bss)(global _buf)(align 4 _buf)(element_size 4 _buf)(reserve 520)(a) char buf[520];(b)Figure 5.11: (a) Lcode aggregate variable, and (b) equivalent C declaration

37If the aggregate data type is initialized, the alignment directive is used to determinethe data type. In addition, the initialization �elds of an aggregate data type can be usedto distinguish between an array and a structure. Generally, if the element size valuedi�ers from the align value, the Lcode emulator assumes the variable is a structure. Fig-ure 5.12 shows an example of an array declaration in the Lcode format and its equivalentC declaration. The declaration for an array of structures is similar to the simple array(global _big)(align 4 _big)(element_size 4 _big)(reserve 12)(wf (l _big) (f 0.00000000e+00))(wf (add (l _big)(i 4)) (f 1.00000001e-01))(wf (add (l _big)(i 8)) (f 2.00000003e-01))(a)
float big[3] = {0.000000,0.100000,0.200000}; (b)Figure 5.12: (a) Lcode array declaration, and (b) equivalent C declarationdeclaration shown in this example. The main di�erence is that the element size valuedi�ers from the align value and is typically greater than eight (i.e, a double data typerequires eight bytes). The Lcode emulator translates this type of structure by atteningit to take the form of a simple structure declaration. Figure 5.13(a) shows the Lcode dec-laration for a simple structure variable; it is worth noting that the element size operationis not part of the declaration. Finally, if the type �eld of the group 4 operations used forthe initialization are not uniform, then this is a clear indication that the variable is astructure.

38(global _jtype)(align 4 _jtype)(reserve 12)(wi (l _jtype) (i 65))(wi (add (l _jtype)(i 4)) (i 3))(wf (add (l _jtype)(i 8)) (f 4.44999993e-01))(a)
struct jtype_type {int var_0;int var_1;float var_2;} jtype = { 65, 3, 0.445000 };(b)Figure 5.13: (a) Lcode structure declaration, and (b) equivalent C declaration5.3 Predication and Speculation SupportUp to this point, the functionality provided by the Lcode emulator has covered fea-tures that are common place in modern processors. This section describes the ability ofthe Lcode emulator to handle novel architectural features that are being introduced inmodern processor. The increasing ability of the modern processor to execute multipleinstructions in a single cycle vastly impacts the performance of these machines. Theprimary means of meeting this requirement is to expose a large amount of instructionlevel parallelism. However, this requires a means of overcoming the limitations imposedby branch instructions. Branches impose control ow dependencies, which forces thecompiler to make conservative decisions. In order to alleviate these arti�cial perfor-mance bounds imposed by branches, an e�ective means of eliminating branches from theinstruction stream is required.5.3.1 PredicationPredication [25] has been shown to be an architectural feature that exposes ILP ina typical application program. Predication presents an elegant solution for converting

39program control ow into data ow. The essence of predicated execution is the abilityto suppress the modi�cation of the processor state based upon some condition. Thecondition of the branch is used to set Boolean operands, which guards the execution ofinstructions in the branch's paths. This feature allows instruction from both paths tobe fetched and executed simultaneously. The result of the condition which determinesif an instruction should modify state is stored in a set of 1-bit registers. These registersare collectively referred to as the predicate register �le. Instructions that operate on thepredicate registers can be grouped as follows: de�ne, clear, set, load, and store. If thevalue in a speci�ed predicate register is true, the instruction is executed normally; if thevalue is false, the instruction is suppressed.Predicate register values may be set using predicate de�ne instructions. The predi-cate de�ne semantics used are those of the HPL Playdoh architecture [20]. There is apredicate de�ne instruction for each comparison opcode in the original instruction set.The instruction format of a predicate de�ne in the IMPACT intermediate representationis shown below.pred <cmp> <Pin> [(Pout1 <type>) (Pout2 <type>)][(src1) (src2)]This instruction assigns values to registers Pout1 and Pout2 according to a comparisonof src1 and src2 speci�ed by <cmp>. The comparison <cmp> can be equal (eq), notequal (ne), greater than (gt), etc. A predicate <type> is speci�ed for each destinationpredicate. Predicate de�ning instructions can also be predicated, as speci�ed by Pin. An

40example of a predicate de�ning instruction is shown in Figure 5.14(a). This instructionis emulated with the sequence of C statements as shown in Figure 5.14(b).(op 242 pred_ge <(r 102 p)> [(r 105 p_ot)(r 103 p_uf)][(r 4 i)(i 127)])(a)if (PredR[102]) {PredR[105] |= (IR[4] >= 127);PredR[103] = !(IR[4] >= 127);}else{PredR[103] = 0;} (b)Figure 5.14: A predicate de�ne instruction in: (a) Lcode form, and (b) C emulation formThe predicate <type> determines the value written to the destination predicate regis-ter based upon the result of the comparison and of the input predicate, Pin. The followingare predicate types which are particularly useful: unconditional (U), conditional, OR,and AND type predicates and their complements. The conditional predicate type is notused in the IMPACT compiler. Table 5.1 contains the truth table for these predicatetypes, with the exception of the conditional type.Table 5.1: Predicate de�nition truth table.PoutPin Comparison U U OR OR AND AND0 0 0 0 - - - -0 1 0 0 - - - -1 0 0 1 - 1 0 -1 1 1 0 1 - - 0

41Unconditional destination predicate registers are always de�ned, regardless of thevalue of Pin and the result of the comparison. If the value of Pin is 1, the result of thecomparison is placed in the predicate register (or its complement for U). Otherwise, a 0is written to the predicate register. OR-type destination predicate registers are set if Pinis 1 and the result of the comparison is 1 (0 for OR), otherwise the destination predicateregister is unchanged. AND-type predicates are analogous to the OR-type predicate.AND-type destination predicate registers are cleared if Pin is 1 and the result of thecomparison is 0 (1 for AND), otherwise the destination predicate register is unchanged.While predication is a part of the IMPACT instruction set architecture, it is notsupported on modern processors. Therefore, the IMPACT compiler emulates predicatedLcode instruction, inserting control ow into the program. This is the same approachused by the Lcode emulator, since there is no means to specify that an instruction bepredicated in a high-level language. An example of a predicated instruction in the Lcodeformat and the resulting C statements are shown in Figure 5.15(op 53 ld_i <LF> <(r 104 p)> [(r 27 i)] [(r 72 i)(i 0)]<(label (l _wordct)(i 0))(wgt (f 0.156))>)(a)if (PredR[104]) {temp_var = IR[72];IR[27] = *((int *) temp_var);} (b)Figure 5.15: A predicated instruction in: (a) Lcode form, and (b) C emulation form

425.3.2 SpeculationSpeculative execution is another architectural feature that is used to overcome thelimitations imposed by branches in a program. Speculative execution involves the pro-motion of an instruction above the guarding branch. An instruction that should not bereached in the normal control ow of the program can be referred to as a potentiallyexcepting instruction. The general speculation model [26] is used to handle speculatedinstructions that raise exceptions during the execution of the program. In this model,the architecture provides a silent version of instructions that may potentially cause anexception. Thus, exceptions resulting from speculated instructions are ignored; i.e., onlyexceptions from nonspeculative instructions are handled or could cause program termina-tion. In order to emulate speculative instructions in a high-level language, an exceptionhandler that would ignore exceptions in certain cases is required.Emulation of speculative instructions is one of the areas where the Lcode emulatordeparts from the notion of architectural independence. A signal handler is used to providethe facilities for handling exception conditions that arise during execution. Generally,when the handler returns, execution would resume at the instruction that raised theexception signal. Hence, the requirement of ignoring exceptions requires moving theinstruction pointer to the next instruction in the program. This exception-handlingcapability is provided by an architecture-speci�c module. The module is linked into theC source code to aid in the emulation of general speculation

43For a program that contains speculative instructions, the Lcode emulator includesthe header �le signal.h in the C source code that is generated. This header �le containsde�nitions of the C run-time library functions used for handling various conditions thatarise during program execution. The library function used in the emulation of speculativeinstructions is signal(). This function determines how subsequent expception signals willbe handled. It takes two arguments, signal number, sig, and a function pointer, handler.When the signal sig occurs, the signal is restored to its default behavior. Hence, thehandler function is un-installed. Then the function pointed to by handler is invoked. Ifthe handler function returns, execution will resume where it was when the signal occurred.Based on this knowledge of the exception handling capabilities of C, the Lcode emulatorinstalls a signal handler for handling speculative load instructions as follows:signal(SIGSEGV, signal handler);This handler is used to ignore segmentation faults that might result from illegalstorage access. When this exception subsequently occurs, the signal handler un-installsitself. Thus, the signal handler module has the ability to re-install itself after handlingthe exception condition. The initial installation of the signal handler is performed uponentry into the main function of the program.The ags attached to an Lcode instruction determines its speculation status. With-out digressing into details about the ags used in the IMPACT Lcode, several di�erentag attributes are available for use on speculated instructions. The ag attributes ofinterest are \safe potentially excepting instruction," F , and \mask potentially excepting

44instruction," M . Instruction marked with the former ag are safe based on analysisin [16]; therefore, suppression is not required. Instructions marked with the latter agare the only instuctions that might potentially raise an exception, hence requiring specialexception handling. As shown in Figure 5.16(a), the instruction has the mask potentiallyexcepting instruction ag, M , set. Emulating Lcode with speculative instructions in-volves setting a global mask variable before the speculated instruction. The mask iscleared immediately following the speculated instruction. This enables the exceptionhandler to determine which exceptions should be handled or ignored. An example of thisimplementation is shown in Figure 5.16(b).(op 34 ld_i <M> [(r 8 i)] [(r 33 i)(i 4)])(a)MASK_EXCEPTION = 1;temp_var = IR[33] + 4;IR[8] = *((int *) temp_var);MASK_EXCEPTION = 0;(b)Figure 5.16: Speculative load in: (a) Lcode form, and (b) C emulation formThe signal handler approach is only used for handling exception resulting from spec-ulative load or store instructions. The only other speculative instruction that couldpotentially raise an exception is a divide instruction. This could result from using aninvalid divisor of zero. The Lcode emulator handles this instruction by inserting an if-statement that tests the divisor for zero before the actual execution of the speculated

45divide instructions, as shown in Figure 5.17(b). With respect to speculation support, thisis the only opportunity to provide an architecture-independent solution in the emulationof the IMPACT Lcode.(op 37 div <M> [(r 3 i)] [(r 8 i)(r 4 i)])(a)if(IR[4] != 0)IR[3] = IR[8] / IR[4];(b)Figure 5.17: Speculative divide in: (a) Lcode form, and (b) C emulation form
5.4 OverviewThis chapter has provided a detailed description of the process involved in emulatingthe IMPACT Lcode in C. In addition, detailed descriptions of the mechanisms used tohandle special architectural features has been presented. In order to put all this e�ortinto perspective, this section presents the overall structure of the emulation process usingthe UNIX utility word-count, wc. The wc program consist of global data variables andthree functions: main, wcp, and ipr. The Lcode versions of these functions can be splitinto one function per source �le, or they can all reside in the same source �le. The onlyrequirement regarding the placement of Lcode in �les is that the data section for globaldata must reside in a �le by itself. Figure 5.18 shows wc split into three function �lesand one data �le.

46
f_0.lc f_1.lc f_2.lc data.lc

Lemulator

f_0.lc.c f_1.lc.c f_2.lc.c data.lc.cFigure 5.18: Breakdown of the wc programWith these �les as input, the Lcode emulator produces corressponding C �les that canbe compiled with any generic C compiler. The Lcode function wcp is shown in Figure 5.19,and its equivalent C source code is shown in Figure 5.20.

47
(ms text)(global _wcp)(function _wcp 0.950000 <E> <(ARCH:HPPA)(MODEL:PA_7100)>)(cb 1 0.950000 [(flow 0 2 0.950000)] <(trace (i 2))>)(op 1 define [(mac $P0 i)] [])(op 2 define [(mac $P1 i)] [])(op 3 define [(mac $P2 i)] [])(op 4 define [(mac $P3 i)] [])(op 5 define [(mac $return_type i)] [])(op 6 define [(mac $local i)] [(i 0)])(op 7 define [(mac $param i)] [(i 16)])(op 8 prologue [] [])(op 9 mov [(r 1 i)] [(mac $P0 i)])(op 10 mov [(r 2 i)] [(mac $P1 i)])(op 11 mov [(r 3 i)] [(mac $P2 i)])(op 12 mov [(r 4 i)] [(mac $P3 i)])(cb 2 0.950000 [(flow 1 9 0.000000)(flow 0 3 0.950000)] <(trace (i 2))>)(op 13 ld_c [(r 5 i)] [(mac $P0 i)(i 0)] <(param (i 0))>)(op 14 beq [] [(r 5 i)(i 0)(cb 9)] <(NL_stln)>)(cb 3 2.850000 [(flow 108 4 0.950000)(flow 0 12 1.900000)] <(trace (i 1))>)(op 17 ld_c [(r 7 i)] [(r 1 i)(i 0)] <(param (i 0))>)(op 47 add [(r 1 i)] [(r 1 i)(i 1)])(op 18 beq [] [(r 7 i)(i 108)(cb 4)] <(NL_inner)>)(cb 12 1.900000 [(flow 119 8 0.950000)(flow 0 13 0.950000)] <(trace (i 1))>)(op 19 beq [] [(r 7 i)(i 119)(cb 8)] <(NL_inner)>)(cb 13 0.950000 [(flow 1 5 0.000000)(flow 0 7 0.950000)] <(trace (i 1))>)(op 20 bne [] [(r 7 i)(i 99)(cb 5)] <(NL_inner)>)(cb 7 0.950000 [(flow 1 5 0.950000)] <(trace (i 1))>)(op 29 mov [(mac $P0 i)] [(r 2 i)])(op 30 jsr <E> [] [(l _$fn_ipr)] <(tr (mac $P0 i))(ret (mac $P15 i))(param_size (i 16))>)(cb 5 2.850000 [(flow 1 3 1.900000)(flow 0 9 0.950000)] <(trace (i 1))>)(op 25 ld_c [(r 9 i)] [(r 1 i)(i 0)] <(param (i 0))>)(op 26 bne [] [(r 9 i)(i 0)(cb 3)] <(LB_inner)(LE_inner)>)(cb 9 0.950000 [] <(trace (i 0))>)(op 27 epilogue [] [])(op 28 rts [] [] <(tr (mac $P15 i))>)(cb 4 0.950000 [(flow 1 5 0.950000)] <(trace (i 3))>)(op 22 mov [(mac $P0 i)] [(r 4 i)])(op 23 jsr <E> [] [(l _$fn_ipr)] <(tr (mac $P0 i))(ret (mac $P15 i))(param_size (i 16))>)(op 46 jump [] [(cb 5)] <(NL_inner)>)(cb 8 0.950000 [(flow 1 5 0.950000)] <(trace (i 4))>)(op 33 mov [(mac $P0 i)] [(r 3 i)])(op 34 jsr <E> [] [(l _$fn_ipr)] <(tr (mac $P0 i))(ret (mac $P15 i))(param_size (i 16))>)(op 36 jump [] [(cb 5)] <(NL_inner)>)(end _wcp) Figure 5.19: wcp function of wc in the Lcode format

48#include "extern.h"/* declare external variables */extern int *global_OP_ptr;int wcp(P0, P1, P2, P3)int P0;int P1;int P2;int P3;{ /* Local variable declarations */unsigned temp_var;int P15;int IP0;int IR[10];/* outgoing parameter space declaration */int OP[4];int *previous_OP_ptr;/*saving global OP pointer, and init global_OP*/previous_OP_ptr = global_OP_ptr;global_OP_ptr = (int *)((unsigned) OP + 12);CB_1: IR[1] = P0;IR[2] = P1;IR[3] = P2;IR[4] = P3;CB_2: temp_var = P0;IR[5] = *((char *) temp_var);if (IR[5] == 0) goto CB_9;CB_3: temp_var = IR[1] ;IR[7] = *((char *) temp_var);IR[1] = IR[1] + 1;if (IR[7] == 108) goto CB_4;CB_12: if (IR[7] == 119) goto CB_8;CB_13: if (IR[7] != 99) goto CB_5;CB_7: P0 = IR[2] ;P15 = ipr(P0);CB_5: temp_var = IR[1] ;IR[9] = *((char *) temp_var);if (IR[9] != 0) goto CB_3;CB_9: global_OP_ptr = previous_OP_ptr;return P15;CB_4: P0 = IR[4] ;P15 = ipr(P0);goto CB_5;CB_8: P0 = IR[3] ;P15 = ipr(P0);goto CB_5;} Figure 5.20: C code produced for the wcp Lcode function of wc

49

6. THE LCODE EMULATOR TOOL
The internal structure and the implementation of the Lcode emulator has been de-scribed in the detail in the preceeding chapters. This chapter presents some of the othercapabilities provided by the Lcode emulator tool. In addition, it also provides a guide tousing the tool.6.1 Integration with Existing IMPACT ToolsAs described in section 3.1, the IMPACT simulator employs a trace-driven mechanismfor simulating system or hardware models. This mechanism allows for pro�ling andsimulation. An alternative implementation to the pro�ling capabilities of the IMPACTsimulator has been presented in this thesis. However, the Lcode emulator's functionalitydoes not include cycle-by-cycle simulation in a stand alone manner. This functionalityis not included because simulation is not critical for the generation of highly optimizedcode. On the other hand, it is useful for evaluating performance of the code generatedand its e�ect on the hardware. Hence, the Lcode emulator has the capability to generate

50C source code that interacts with the IMPACT simulator. The simulator creates a UNIXpipe between itself and the program under simulation. The pipe is a communicationpath, consisting of a FIFO queue of bytes, between two processes.In order to generate C source code for simulation, the Lcode emulator simply inserts afunction call to send tokens through a pipe to the simulator. The tokens are integer val-ues used to distinguish the program characteristics that are of interest to the simulator.The simulator is used to trace the following in a program: control ow, load and storeaddresses, hashing jumps, predicate values, predicate de�ning instructions, and predi-cated jumps. Communication through the pipe can be time consuming if the frequencyof communication is high. The Lcode emulator assumes that the frequency of functioncalls that send tokens through the pipe to be high. In order to alleviate this problem, theemulated code stores the tokens in a token bu�er. After a speci�ed treshhold is reached,the token bu�er's content is sent through the pipe for the simulator to process. Since thesimulator can be used to trace the control ow of a program, the Lcode emulator can alsouse it to generate pro�le information. In fact, probe insertion for simulation is merely anextension of probe insertion required for pro�ling.6.2 Using the Lcode Emulator ToolThere are two ways to run the Lcode emulator tool. The �rst is to directly runLemulator, which is the name of the Lcode emulator tool executable. The second is torun the gen Lemulator script, which calls Lemulator and sets the necessary parameters.

51The latter approach is generally preferred, as it is easier to use, and requires less commandline arguments. Both methods of running the tool are described in the following sections.6.2.1 LemulatorThe command line syntax of a call to Lemulator is as follows:Lemulator [-i infile] [-o outfile] [-p parmfile] [-Pmacro=value][-Fparm=value]The list of Lcode �les to process is speci�ed with in�le. This list also serves as thefoundation for the C source code generated. Each Lcode �le name is concatinated with'.c' to form its corresponding C source �le name. The output �le is speci�ed with out�le,which is only required for probing for simulation or pro�ling. The output �le is an addresslist consist of function names in the program and a unique identi�er assigned by the Lcodeemulator. The parameter �le to be used is speci�ed by the parm�le. If it is not speci�ed,the parameter �le speci�ed by the STD PARMS FILE environment variable is used. Ifthe environment variable is not set, the STD PARMS �le in the current directory is used.The option `-Pmacro=value' is used to de�ne a macro as value for parameter �lepreprocessing. The macro may used to de�ne parameter values. A macro speci�cationis not required for running the Lcode emulator. All optional parameters to the tool arespeci�ed using the option `-Fparm=value'. This option is used to force parm to value inthe parameter �le. The speci�c parameters for the Lcode emulator are as follows:

52DEBUG: This switch turns on a verbose printing of status information during thegeneration of C source code. The debug information is printed to a �le, and thedefault �le name is out.debug. In addition, each line of C source code generated istagged with a commented number corresponding to the op number of its equivalentLcode instruction.Speculated code: Speci�es the presence of speculative instructions in the Lcode �les.Stand alone pro�ling: Speci�es the type of pro�ling function calls to insert in thebody of the C source code generated.Pro�ling: Similar to the Stand alone pro�ling option.Simulation: Similar to the Stand alone pro�ling option.encoded �le: Name of the encoded �le used with Stand alone pro�ling. The encoded�le is an image of the program, and the default �le name is out.encoded.Output Lcode Ccode mapping: Generates a table with a mapping of lines in theLcode �le to lines in the output C source code �les. This table is stored in a �lenamed table.map.6.2.2 gen LemulatorObviously, specifying all of the necessary parameters with the correct syntax couldbecome tedious. Therefore, the gen Lemulator script was written to simplify running theLcode emulator tool. The command line syntax used to call gen Lemulator is:

53gen Lemulator "dir" "benchmark" "list" [options]for which the arguments are as follows:dir: Speci�es the directory where the input �les are located.benchmark: Speci�es the name of the benchmark being processed.list: File containing a list of all the Lcode �les to be processed.options: The options that can be speci�ed are as follows:debug: same as DEBUG in section 6.2.1mapping: same as Output Lcode Ccode mapping in section 6.2.1speculation: same as Speculated code in section 6.2.1fast prof: same as Stand alone pro�ling in section 6.2.1pro�ling: same as Pro�ling in section 6.2.1simulation: same as Simulation in section 6.2.1merge: Merge pro�le information into orignal Lcode �les
If the Lcode �les are being processed for simulation or pro�ling, this script invokesanother tool, Lencode, to create an encoded image of the Lcode �les. Lemulator is calledonce to process all the �les speci�ed in list, with the given options. The out�le and parm-�le arguments to Lemulator are not speci�ed, therefore default values are used. After theLemulate generates the C source �les, this script invokes a generic C compiler to build

54an executable from the C source �les. If the executable has pro�ling or simulation capa-bilities embedded, the script would run the executable with the appropriate arguments.The output of the program is checked against the expected output to show correctness.Finally, if the merge option is speci�ed, the pro�le information generated is merged intothe original Lcode �les by invoking the gen Lget script.

55

7. CONCLUSION
This thesis has presented an emulation environment as an alternative to some aspectsof the IMPACT simulator. The emulation process involves translating the low-level IM-PACT intermediate representation into equivalent high-level language statements. Thehigh-level language used in this project is the C programming language. Emulating theIMPACT intermediate representation in C provides a high level of portability to thecompilation process.As pro�ling is an important aspect of generating e�cient code in the IMPACT com-piler, this emulation environment provides a platform-independent means of pro�lingIMPACT Lcode. This pro�ling capability is provided by pro�le counters that augmentthe body of the pro�led program. This stand-alone approach for pro�ling is used solelyto support control ow pro�ling. The platform independence is provided as a result ofbeing able to use a generic C compiler to produce an executable from the C source codegenerated by the Lcode emulator. The complexity involved in generating C source code

56for pro�ling or simulation is minimal compared to the traditional IMPACT implementa-tion. In order to establish a link between the Lcode emulator and the suite of availableIMPACT tools, the capability to interact with the IMPACT simulator is provided.Nontraditional architectural features, such as predication and speculation, which onlyexist in research architectures, are supported by the Lcode emulator. In addition, emu-lation of Lcode instruction in C suppliments the IMPACT compiler with a rich set of Csource-level debuggers. The Lcode emulator presented in this thesis has been sucessfullytested on SPEC integer benchmarks and several UNIX utilities. In comparison to theHP-PA speci�c implementation of pro�ling, the stand-alone capability of the Lcode emu-lator runs about 38% faster. This tool should allow for extensions to the current IMPACTISA and veri�cation of the intermediate representation without the high implementationtime required for a code generator.

57
REFERENCES

[1] P. P. Chang, S. A. Mahlke, and W. W. Hwu, \Using pro�le information to assistclassic code optimizations," Software Practice and Experience, vol. 21, pp. 1301{1321, December 1991.[2] W. Y. Chen, S. A. Mahlke, N. J. Warter, R. E. Hank, R. A. Bringmann, S. Anik,D. M. Lavery, J. C. Gyllenhaal, T. Kiyohara, and W. W. Hwu, \Using pro�le in-formation to assist advanced compiler optimization and scheduling," in Proceedingsof the Fifth Workshop on Languages and Compilers for Parallel Computing, August1992.[3] J. A. Fisher and S. M. Freudenberger, \Predicting conditional branch directions fromprevious runs of a program," in Proceedings of the 5th International Conference onArchitectual Support for Programming Languages and Operating Systems, pp. 85{95,October 1992.[4] A. Krall, \Improving the semi-static branch prediction by code replication," in Pro-ceedings of the ACM SIGPLAN 1994 Conference on Programming Language Designand Implementaton, pp. 97{106, June 1994.[5] C. Young and M. D. Smith, \Improving the accuracy of static branch predictionusing branch correlation," in Proceedings of the 6th International Conference onArchitectural Support for Programming Languages and Operating Systems, pp. 232{241, October 1994.[6] P. A. Darnell and P. E. Margolis, C, A Software Engineering Approach. New York:Springer-Verlag, 1990.[7] R. A. Bringmann, \Template for code generation development using the IMPACT-IC compiler," M.S. thesis, University of Illinois, Urbana, IL, 1992.[8] K. Subramanian, \Loop transformations for parallel compilers," M.S. thesis, Uni-versity of Illinois, Urbana, IL, 1993.

58[9] B.-C. Cheng, \Pinline: A pro�le-driven automatic inliner for the impact compiler,"M.S. thesis, University of Illinois, Urbana, IL, 1997.[10] D. M. Gallagher, \Memory disambiguation to facilitate instruction-level parallelismcompilation," Ph.D. dissertation, University of Illinois, Urbana, IL, 1995.[11] G. E. Haab, \Data dependence analysis for Fortran programs in the IMPACT com-piler," M.S. thesis, University of Illinois, Urbana, IL, 1995.[12] S. A. Mahlke, \Design and implementation of a portable global code optimizer,"M.S. thesis, University of Illinois, Urbana, IL, 1991.[13] W.W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery,\The Superblock: An e�ective technique for VLIW and superscalar compilation,"The Journal of Supercomputing, vol. 7, pp. 229{248, January 1993.[14] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, \E�ectivecompiler support for predicated execution using the hyperblock," in Proceedings ofthe 25th International Symposium on Microarchitecture, pp. 45{54, December 1992.[15] R. E. Hank, \Machine independent register allocation for the IMPACT-I C com-piler," M.S. thesis, University of Illinois, Urbana, IL, 1993.[16] R. A. Bringmann, \Compiler-controlled cpeculation," Ph.D. dissertation, Universityof Illinois, Urbana, IL, 1995.[17] P. P. Chang, D. M. Lavery, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, \The im-portance of prepass code scheduling for superscalar and superpipelined processors,"IEEE Transactions on Computers, vol. 44, pp. 353{370, March 1995.[18] S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M. S. Schlansker, \Sen-tinel scheduling for superscalar and VLIW processors," in Proceedings of the 5thInternational Conference on Architectural Support for Programming Languages andOperating Systems, pp. 238{247, October 1992.[19] N. J. Warter, \Modulo scheduling with isomorphic control transformations," Ph.D.dissertation, University of Illinois, Urbana, IL, 1993.[20] V. Kathail, M. S. Schlansker, and B. R. Rau, \HPL PlayDoh architecture spec-i�cation: Version 1.0," Hewlett-Packard Laboratories, Palo Alto, CA, Tech. Rep.HPL-93-80, February 1994.[21] J. C. Gyllenhaal, \A machine description language for compilation," M.S. thesis,University of Illinois, Urbana, IL, 1994.

59[22] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools.Reading, MA: Addison-Wesley, 1986.[23] P. P. Chang and W. W. Hwu, \The lcode language and its environment," Centerfor Reliable and High-Performance Computing, University of Illinois, Urbana, IL,Tech. Rep. CRHC-91-1, January 1991.[24] M. Loukides and A. Oram, Programming with GNU Software. Sebastopol, CA:O'Reilly, 1996.[25] D. I. August, W. W. Hwu, and S. A. Mahlke, \A framework for balancing control owand predication," in Proceedings of the 30th International Symposium on ComputerArchitecture, pp. 92{103, December 1997.[26] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, \The Cydra 5 departmentalsupercomputer," IEEE Computer, vol. 22, pp. 12{35, January 1989.

